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Abstract We synthesise the existing theory of graph sampling. We propose a formal defini-
tion of sampling in finite graphs, and provide a classification of potential graph parameters.
We develop a general approach of Horvitz–Thompson estimation to T -stage snowball sam-
pling, and present various reformulations of some common network sampling methods in
the literature in terms of the outlined graph sampling theory.

Keywords Network · Finite-graph sampling · Multiplicity sampling · Indirect sampling ·
Adaptive cluster sampling

1 Introduction

Many technological, social and biological phenomena exhibit a network structure that may
be the interest of study; see e.g. Newman [20]. As an example of technological networks,
consider the Internet as consisting of routers that are connected to each other via cables. There
are two types of objects, namely routers and cables. A router must be connected to a cable
to be included in the Internet, and a cable must have two routers at both ends. As another
example, consider the social network of kinships. Again, there are two types of objects,
namely persons and kinships. Each person must have two or more kinships, and each kinship
must represent a connection between two persons. However, while it is obvious that any two
routers must be connected by cables to each other either directly or via other routers in the
Internet, it is not sure that any two persons can be connected to each other in the network of
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kinships. The difference can be articulated in terms of some appropriate characterisation of
their respective network structures.

FollowingFrank [11,12,14],we refer to network as a valued graph, and graph as the formal
structure of a network. The structure of a network, i.e. a graph, is defined as a collection of
nodes and edges (between the nodes); measures may be attached to the nodes or the edges or
both to form a valued graph, i.e. a network. For a statistical approach to networks one may
choose to model the entire population network as a random realisation [16], or to exploit
the variation over possible sample networks taken from a given fixed population network.
Graph sampling theory deals with the structure of a network under the latter perspective.
In comparison, finite-population sampling [3,21] can mostly be envisaged as sampling in a
‘graph’ with no edges at all. We shall refer to such a setting as list sampling.

Ove Frank has undoubtedly made the most contributions to the existing graph sampling
theory. See e.g. Frank [8,10,12–14] for his own summary. However, the numerous works of
Frank scatter over several decades, and are not easily appreciable as a whole. For instance,
Frank derives results for different samples of nodes [5,8,15], dyads [5–7,10] or triads [5,10].
But he never proposes a formal definition of the “sample graph” which unifies the different
samples. Or, Frank studies various characteristics of a graph, such as order [5,8,15], size [5–
7,10], degree distribution [5,11], connectedness [5,9], etc. But he never provides a structure
of possible graph parameters which allows one to classify and contrast the different interests
of study. Finally, Frank does not appear to have articulated the role of graph sampling theory
in relation to some common “network sampling methods” (e.g. [1,19,24]), which “are not
explicitly stated as graph problems but which can be given such formulations” [8].

The aim of this paper is to synthesise and extend the existing graph sampling theory, many
elements of which are only implicit in Frank’s works. In particular, we propose a definition
of sample graph taken from a given population graph, together with the relevant observation
procedures that enable sampling in a graph (Sect. 2). In Sect. 3, we provide a structure of
graph totals and graph parameters, which reflects the extended scope of investigation that can
be difficult or impossible using only a list representation.Next, we develop a general approach
to HT-estimation under arbitrary T -stage snowball sampling (Sect. 4). In Sect. 5, we present
various graph sampling reformulations of multiplicity sampling [1], indirect sampling [19]
and adaptive cluster sampling [24], all of which are referred to as unconventional sampling
methods in contrast to themore familiar finite-population samplingmethods, such as stratified
multi-stage sampling. Finally, some concluding remarks are given in Sect. 6, together with a
couple of topics of current research.

2 Sampling on a graph

2.1 Terms and notations

A graph G = (U, A) consists of a set of nodes U and a set of edges A. Define |U | = N and
|A| = R as the order and size of G, respectively. Let Ai j ⊂ A be the set of all edges from i
to j ; let ai j = |Ai j | be its size. If ai j > 1 for some i, j ∈ U , the graph is called a multigraph;
it is a simple graph if ai j = 0, 1. The edges in Ai+ = ⋃

j∈U Ai j and A+i = ⋃
j∈U A ji

are called the outedges and inedges at i , respectively. Let ai+ = |Ai+| = ∑
j∈U ai j and

a+i = |A+i | = ∑
j∈U a ji . The node i is incident to each outedge or inedge at i . The number

of edges incident at a node i is called the degree of i , denoted by di = ai+ + a+i . Two nodes
i and j are adjacent if there exists at least one edge between them, i.e. ai j + a ji > 1. For
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any edge in Ai j , i is called its initial node and j its terminal node. Let αi be the successors
of i , which are the terminal nodes of outedges at i ; let βi be the predecessors of i , which are
the initial nodes of inedges at i . For a simple graph, we have ai+ = |αi | and a+i = |βi |. A
graph is said to be directed (i.e. a digraph) if Ai+ �= A+i ; it is undirected if Ai+ = A+i ,
in which case there is no distinction between outedge and inedge, so that di = ai+ = a+i ,
and αi = βi . Finally, an edge aii connecting the same node i is called a loop, which can
sometimes be a useful means of representation. Whether or not loops are included in the
definitions of the terms and notations above is purely a matter of convention.

Remark Adjacency refers to relationship between nodes, as objects of the same kind; inci-
dence refers to relationship between nodes and edges, i.e. objects of different kinds.

Remark Let the N × N adjacency matrix A have elements ai j = |Ai j |. It is defined to be
symmetric for undirected graphs. Put the diagonal degree matrix D = diag(A1N×1). The
Laplacian matrix L = D − A sums to 0 by row and column, which is of central interest in
Spectral Graph Theory (e.g. [2]).

2.2 Definition of sample graph

Denote by s1 an initial sample of nodes, for s1 ⊆ U . Under a probability design, letπi andπi j

(or π̄i and π̄i j ) be the probabilities of inclusion (or exclusion) of respectively a node and a pair
of nodes in s1. (The exclusion probability of i is the probability of i /∈ s1, and the exclusion
probability of a pair (i, j) is the probability that neither i nor j is in s1.) A defining feature
of sampling on graphs is that one makes use of the edges to select the sample graph, denoted
by Gs . Given s1, the relevant edges are either in α(s1) = ⋃

i∈s1 αi or β(s1) = ⋃
i∈s1 βi ,

where α(s1) = β(s1) for undirected graphs. An observation procedure of the edges needs
to be specified, and the observed edges can be given in terms of a reference set of node
pairs, denoted by s2 where s2 ⊆ U × U , under the convention that the set of edges Ai j are
observed whenever (i j) ∈ s2. Notice that generally speaking (i j) and ( j i) are considered as
two distinct elements in U × U . Denote by π(i j) (or π̄(i j)) the corresponding inclusion (or
exclusion) probability of (i j) ∈ s2, and by π(i j)(kl) (or π̄(i j)(kl)) the inclusion (or exclusion)
probability of these two pairs in s2. Denote by As = A(s2) the edge set inherent of s2, and
Us = s1 ∪ Inc(As) the union of s1 and those nodes that are incident to As . The sample graph
is Gs = (

Us, As
)
.

Example 1 Let U = {1, 2, 3}, and a12 = 1. Suppose s1 = {1}. Provided s2 = s1 × α(s1),
where α(s1) = {2} in this case, the sample graphGs has As = A(s2) = A12 andUs = {1, 2}.
The same sample graph can equally be given by s′

2 = s1 ×U , since A(s′
2) = A12 = A(s2).

Observation procedure Frank [8] considers several observation procedures, which can be
formalised as follows. First, given s1, a procedure is induced if Ai j is observed iff both i ∈ s1
and j ∈ s1, or incident reciprocal if Ai j and A ji are both observed provided either i ∈ s1
or j ∈ s1. Second, for digraphs, an incident non-reciprocal procedure is forward if Ai j is
observed provided i ∈ s1, or backward if Ai j is observed provided j ∈ s1. For example,
provided i ∈ s1 and j /∈ s1 and ai j > 0 and a ji > 0, we would observe both A ji and A ji

given an incident reciprocal procedure; only Ai j if it is incident forward; only A ji if it is
incident backward; neither Ai j nor A ji given an induced procedure from s1.

Initial sampling of edges Sample graph initiated by a sample of edges can be defined anal-
ogously. Bernoulli or Poisson sampling can be useful, because it is not required to know all

123



L.-C. Zhang, M. Patone

the edges in advance. Notice that when one is interested in the totals or other functions of
the edges of a graph, initial Bernoulli or Poisson sampling of edges is meaningful—see e.g.
Frank [8, Section 12], whereas initial simple random sampling (of edges) would have been
a trivial set-up, because one would need to know all the edges to start with.

2.3 Some graph sampling methods

We describe some sampling methods based on the aforementioned observation procedures.
Frank [8] elicited several sampling methods based on the aforementioned observation pro-
cedures. We include several alternative specifications which are marked by †. By way of
introduction, the first- and second-order inclusion probabilities of (i j) in s2 are given in
terms of the relevant inclusion probabilities in s1, which facilitates Horvitz–Thompson (HT)
estimation of any totals defined on U × U . As will be illustrated, given s1 and the observa-
tion procedure, the sample graph can be specified using different reference sets s2, but the
inclusion probabilities are more readily obtained for some choices of s2.

(i) s2 = s1 × s1 [Induced]: Both (i j) ∈ s2 and ( j i) ∈ s2 iff i ∈ s1 and j ∈ s1. Then,
π(i j) = πi j and π(i j)(kl) = πi jkl .

(ii.1) s2 = s1 × sa , sa = α(s1) ∪ s1 [Incident forward]: (i j) ∈ s2 iff i ∈ s1 and j ∈ sa . Let
Bj = { j} ∪ β j , i.e. itself and its predecessors, then j ∈ sa iff Bj ∩ s1 �= ∅. Thus,

π̄(i j) = π̄i + π̄Bj − π̄Bj∪{i}.

Similarly, (i j), (kl) ∈ s2 iff i, k ∈ s1 and Bj ∩ s1 �= ∅ and Bl ∩ s1 �= ∅, so that
π̄(i j)(kl) = π̄ik + π̄Bj∪{k} + π̄Bl∪{i} + π̄Bj∪Bl

− π̄Bj∪{i,k} − π̄Bl∪{i,k} − π̄Bj∪Bl∪{i} − π̄Bj∪Bl∪{k} + π̄Bj∪Bl∪{i,k}.

(ii.2) s2 = s1×U [Incident forward]: (i j) ∈ s2 iff i ∈ s1. Then,π(i j) = πi andπ(i j)(kl) = πik .

Remark The sample edge set A(s2) is the same in (ii.2) and (ii.1), because the observation
procedure is the same given s1. For the estimation of any total over A, the two reference sets
would yield the same HT-estimate: any (i j) ∈ s2 with ai j = 0 does not contribute to the
estimate, regardless of its π(i j); whereas for any (i j) ∈ s2 with ai j > 0, we have π(i j) = πi

given s2 in (ii.2), just as one would have obtained in (ii.1) since Bj = Bj ∪ {i} provided
ai j > 0. But it appears easier to arrive at π(i j) and the HT-estimator in (ii.2) than (ii.1).

(ii.3) † s2 = sb×α(s1), sb = s1∩β
(
α(s1)

)
[Incident forward]: This is the smallest Cartesian

product that contains the same sample edge set as in (ii.1) and (ii.2).
(ii.4) † s2 = ⋃

i∈s1 i × αi , where i × αi = ∅ if αi = ∅ [Incident, forward]: Only (i j) with
ai j > 0 is included s2. This is the smallest reference set for the sameGs in (ii.1)–(ii.4).

(iii) s2 = sa × sa , sa = α(s1) ∪ s1 [Induced from sa]: (i j) ∈ s2 even if i ∈ sa\s1 and
j ∈ sa\s1. Similarly to (ii.1), (i j) ∈ s2 iff Bi ∩ s1 �= ∅ and Bj ∩ s1 �= ∅, and so on.
Then,

π̄(i j) = π̄Bi + π̄Bj − π̄Bi∪Bj ,

π̄(i j)(kl) = π̄Bi∪Bk + π̄Bi∪Bl + π̄Bj∪Bk + π̄Bj∪Bl

− π̄Bi∪Bk∪Bl − π̄Bj∪Bk∪Bl − π̄Bi∪Bj∪Bk − π̄Bi∪Bj∪Bl + π̄Bi∪Bj∪Bk∪Bl .

Remark Observation of the edges between i ∈ sa\s1 and j ∈ sa\s1 may be demanding in
practice, even when the observation procedure is reciprocal. For example, let the node be

123



Graph sampling

email account. Then, by surveying i ∈ s1 only, it is possible to observe all the email accounts
that have exchanges with i due to reciprocality. But one would have to survey the accounts
in αi\s1 additionally, in order to satisfy the requirement of (iii).

(iv.1) s2 = s1 × U ∪ U × s1 [Incident reciprocal]: (i j) /∈ s2 iff i /∈ s1 and j /∈ s1. Then,
π(i j) = 1 − π̄i j and π(i j)(kl) = 1 − π̄i j − π̄kl + π̄i jkl .

(iv.2) † s2 = s1× sa ∪ sa × s1, sa = α(s1)∪ s1 [Incident reciprocal]: We have sa × sa = s2∪
(sa\s1)×(sa\s1), where the two sets on the right-hand side are disjoint. The inclusion
probabilities can thus be derived from those in (iii) and those of (sa\s1) × (sa\s1).
However, the sample edge set A(s2) is the same as in (iv.1), and it is straightforward
to derive the HT-estimator of any total over A based on the reference set s2 specified
in (iv.1).

(iv.3) † s2 = ( ⋃
i∈s1 i × αi

) ∪ ( ⋃
i∈s1 βi × i

)
[Incident reciprocal]: This is the smallest

reference set of the sample edge set in (iv.1)–(iv.3).

Example 2 Figure 1 illustrates the four sampling methods (i)–(iv) described above, all of
which are based on the same initial sample s1 = {3, 6, 10}.

3 Graph parameter and HT-estimation

Frank [12] reviews some statistical problems based on population graphs. In a list represen-
tation, the target population U is a collection of elements, which are associated with certain
values of interest. In a graph representation G = (U, A), the elements inU can be the nodes
that have relations to each other, which are presented by the edges in A. It becomes feasible
to investigate the interactions between the elements, their structural positions, etc. which are
difficult or unnatural using a list representation. The extended scope of investigation is above
all reflected in the formulation of the target parameter. In this Section, we provide our own
classification of the potential target parameters based on a graph in terms of graph totals and
graph parameters.

Graph total and graph parameter Let Mk be a subset of U , where |Mk | = k. Let Ck be
the set of all possible Mk’s, where |Ck | = N ![k!(N − k)!]−1. Let G(Mk) be the subgraph
induced by Mk . Let y

(
G(Mk)

)
, or simply y(Mk), be a function of integer or real value. The

corresponding kth order graph total is given by

θ =
∑

Mk∈Ck
y(Mk). (1)

We refer to functions of graph totals as graph parameters.

Remark Network totals can as well be defined by (1), where y(·) can incorporate the values
associated with the nodes and edges of the induced subgraph G(Mk).

Motif A subset M ⊂ U with specific characteristics is said to be a motif, denoted by [M].
For example, denote by [i : di = 3] a 1st-order motif, i.e. a node with degree 3. Or, denote
by [i, j : ai j = a ji = 1] the motif of a pair of nodes with mutual simple relationship, or by
[i, j : ai j = a ji = 0] the motif of a pair of non-adjacent nodes. A motif may or may not
have a specific order, giving rise to graph totals with or without given orders.
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Fig. 1 Population graph (top) and four sample graphs (i)–(iv) based on s1 = {3, 6, 10}
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3.1 Graph totals of a given order

3.1.1 First-order graph total: M1 = {i}
Each M1 corresponds to a node. In principle any first-order graph total can be dealt with by a
list sampling method that does not make use of the edges, against which one can evaluate the
efficiency of any graph sampling method. For the two parameters given below, estimation of
the order by snowball sampling is considered by Frank [5,8,15], and estimation of the degree
distribution is considered by Frank [5,11].

Order (of G) Let y(i) ≡ 1, for i ∈ U . Then, θ = |U | = N .

Number of degree- d nodes Let y(i) = δ(di = d) indicate whether or not di equals d , for
i ∈ U . Then, θ is the number of nodes with degree d .

3.1.2 Second-order graph total: M2 = {i, j}
An M2 of a pair of nodes is called a dyad, for M2 ⊂ U and |M2| = 2. Some dyad totals are
considered by Frank [5,10].

Size (of G) Let y(M2) = ai j + a ji be the adjacency count between i and j in a digraph, or
y(M2) = ai j for an undirected graph. Then, θ = ∑

M2∈C2 y(M2) = R is the size (of G).

Remark If there are loops, one can let y(M1) = aii for M1 = {i}, and θ ′ = ∑
M1∈C1 y(M1).

Then, R = θ + θ ′ is a graph parameter based on a 1st- and a 2nd-order graph totals.

Remark Let Nd be the no. degree-d nodes, which is a 1st-order graph total. Then,

2R =
∑

i∈U
di =

D∑

d=1

dNd , where D = max
i∈U di .

This is an example where a higher-order graph total (R) can be ‘reduced’ to lower-order
graph parameters (Nd ). Such reduction can potentially be helpful in practice, e.g. when it is
possible to observe the degree of a sample node without identifying its successors.

Number of adjacent pairs Let y(M2) = δ(ai j + a ji > 0) indicate whether i and j are
adjacent. Then, θ is the total number of adjacent pairs in G. Its ratio to |C2| provides a graph
parameter, i.e. an index of immediacy in the graph. Minimum immediacy is the case when
a graph consists of only isolated nodes, and maximum immediacy if the graph is a clique,
where every pair of distinct nodes are adjacent with each other.

Number of mutual relationships Let y(M2) = δ(ai j a ji > 0) indicate whether i and j have
reciprocal edges between them, in which case their relationship is mutual. Then, θ is the
number of mutual relationships in the graph. Goodman [17] studies the estimation of the
number of mutual relationships in a special digraph, where ai+ = 1 for all i ∈ U .
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3.1.3 Third-order graph total: M3 = {i, j, h}
An M3 of three nodes is called a triad, for M3 ⊂ U and |M3| = 3. Some triad totals are
considered by Frank [5–7,10].

Number of triads Let y(M3) = δ(ai j a jhaih > 0) indicate whether the three nodes form a
triangle in an undirected graph. Then, θ∗ by (1) is the total number of triangles. Triangles
on undirected graphs are intrinsically related to equivalence relationships: for a relationship
(represented by an edge) to be transitive, every pair of connected nodes must be adjacent;
hence, any three connected nodes must form a triangle. For a simple undirected graph,
transitivity is the case iff θ ′ = 0, when θ ′ is given by (1), where

y(M3) = ai j a jh(1 − ahi ) + aiha jh(1 − ai j ) + ai j aih(1 − a jh).

Provided this is not the case, one can e.g. still measure the extent of transitivity by

τ = θ∗/(θ∗ + θ ′),

i.e. a graph parameter. Next, for digraphs and ordered ( j ih), let z( j ih) = a ji aihahj be the
count of strongly connected triangles from j via i and h back to j . Let M̃3 contain all the
possible orderings of M3, i.e. (i jh), (ih j), ( j ih), ( jhi), (hi j) and (hji). Then, the number
of strongly connected triangles in a digraph is given by (1), where

y(M3) =
∑

(i jh)∈M̃3

z(i jh)/3.

Remark For undirected simple graphs, Frank [13] shows that there exists an explicit rela-
tionship between the mean and variance of the degree distribution and the triads of the graph.
Let the numbers of triads of respective size 3, 2 and 1 be given by

θ3,3 =
∑

M3∈C3
ai j a jhaih,

θ3,2 =
∑

M3∈C3
ai j aih(1 − a jh) + ai j a jh(1 − aih) + aiha jh(1 − ai j ),

θ3,1 =
∑

M3∈C3
ai j (1 − a jh)(1 − aih) + aih(1 − ai j )(1 − a jh) + a jh(1 − ai j )(1 − aih).

Let μ = ∑N
d=1 dNd/N = 2R/N and σ 2 = Q/N − μ2, where Q = ∑N

d=1 d
2Nd . We have

R = 1

N − 2

(
θ3,1 + 2θ3,2 + 3θ3,3

)
, Q = 2

N − 1

(
θ3,1 + Nθ3,2 + 3(N − 1)θ3,3

)
.

3.2 Graph totals of unspecified order

A motif is sometimes defined in an order-free manner. Insofar as the corresponding total
can be given as a function of graph totals of specific orders, it can be considered a graph
parameter. Below are some examples that are related to the connectedness of a graph. The
number of connected components is considered by Frank [5,9].
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Number of connected components The subgraph induced from Mk is a connected component
of order k, provided there exists a path for any i �= j ∈ Mk and ai j = a ji = 0 for any i ∈ Mk

and j /∈ Mk , in which case let y(Mk) = 1 but let y(Mk) = 0 otherwise. Then, θk given by (1)
is the number of connected components of order k. The number of connected components
(i.e. as a motif of unspecified order) is the graph parameter given by θ = ∑N

k=1 θk . At one
end, where A = ∅, i.e. there are no edges at all in the graph, we have θ = N = θ1 and
θk = 0 for k > 1. At the other end, where there exists a path between any two nodes, we
have θ = θN = 1 and θk = 0 for k < N .

Number of trees in a forest In a simple graph, a motif [Mk] is a tree if the number of edges
in G(Mk) is k − 1. As an example where θ can be reduced to a specific graph total, suppose
the undirected graph is a forest, where every connected component is a tree. We have then
θ = N − R, where R is the size of the graph, which is a 2nd-order parameter.

Number of cliques A clique is a connected component, where there exists an edge between
any two nodes of the component. It is a motif of unspecified order. The subgraph induced by
a clique is said to be complete. A clustered population can be represented by a graph, where
each cluster of population elements (i.e. nodes) form a clique, and two nodes i and j are
adjacent iff the two belong to the same cluster.

Index of demographicmobility Given the population of a region (U ), let there be an undirected
edge between two persons i and j if their family trees intersect, say, within the last century, i.e.
they are relatives of each other within a ‘distance’ of 100 years. Each connected component
in this graph G is a clique. The ratio between the number of connected components θ and N ,
where N is the maximum possible θ , provides an index of demographic mobility that varies
between 1/N and 1. Alternatively, an index can be given by the ratio between the number of
edges R and |C2|, which varies between 0 and 1, and is a function of a 2nd-order graph total.
This is an example where the target parameter can be specified in terms of a lower-order
graph total than higher-order totals.

Remark In the context of estimating the number of connected components, Frank [5] dis-
cusses the situation where observation is obtained about whether a pair of sample nodes are
connected in the graph, without necessarily including the paths between them in the sample
graph. The observation feature is embedded in the definition of the graph here.

Geodesics in a graph Let an undirected graph G be connected, i.e. U = MN is a connected
component. The geodesic between nodes i and j is the shortest path between them, denoted
by [Mk], where Mk contains the nodes on the geodesic, including i and j . A geodesic [Mk]
is a motif of order k, whereas geodesic is generally a motif of unspecified order. Let θ

be the harmonic mean of the length of the geodesics in G, which is a closeness centrality
measure [20]. For instance, it is at its minimum value 1 if G is complete. Alternatively, let
y(M2) = 1/(k − 1), provided [Mk] is the geodesic between i and j , so that θ can equally be
given as a 2nd-order graph parameter. Again, this is an example where a lower-order graph
parameter can be used as the target parameter instead of alternatives involving higher-order
graph totals, provided the required observation.

3.3 HT-estimation

A basic estimation approach in graph sampling is the HT-estimator of a graph total (1).
Provided the inclusion probability π(Mk ) for Mk ∈ Ck , the HT-estimator is given by
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θ̂ =
∑

Mk∈Ck
δ[Mk ]y(Mk)/π(Mk ), (2)

where δ[Mk ] = 1 if [Mk] is observed and π(Mk ) is its inclusion probability. The observation of
[Mk] means not only Mk ⊆ Us , but also it is possible to identify whether Mk is a particular
motif in order to compute y(Mk). The probability π(Mk ) is defined with respect to a chosen
reference set s2 and the corresponding sample graph Gs . It follows that a motif [Mk] is
observed in Gs if Mk ⊆ Us and Mk × Mk ⊆ s2. More detailed explanation of π(Mk ) will be
given in Sect. 4. The example below illustrates the idea.

Example 3 Consider an undirected simple graph. Let 3-node star be the motif of interest, and
y(M3) = ai j aih(1− a jh) + ai j a jh(1 − aih) + aiha jh(1− ai j ) the corresponding indicator.
Suppose incident observation and s2 = s1 × U . Consider M3 = {i, j, h} ⊂ Us . To be able
to identify whether it is the motif of interest, all the three pairs (i j), (ih) and ( jh) need to
be in s2; accordingly, π(M3) = Pr

(
(i j) ∈ s2, (ih) ∈ s2, ( jh) ∈ s2

)
. An example where this is

not the case is i ∈ s1 and j, h ∈ α(s1)\s1, so that the observed part of this triad is a star, but
one cannot be sure if a jh = 0 in the population graph, because ( jh) /∈ s2.

Symmetric designs The inclusion probability π(Mk ) depends on the sampling design of initial
s1. At various places, Frank consider simple random sampling (SRS) without replacement,
Bernoulli sampling and Poisson sampling for selecting the initial sample. In particular, a
sampling design is symmetric [6] if the inclusion probability πMk = Pr(Mk ∈ s1) only
depends on k but is a constant of Mk , for all 1 ≤ k ≤ N . SRS with or without replacement
and Bernoulli sampling are all symmetric designs. SRS without replacement is the only
symmetric design with fixed sample size of distinct elements.

Approximate approach The initial inclusion probability πMk has a simpler expression under
Bernoulli sampling than under an SRS design. Provided negligible sampling fraction of
s1, many authors use Bernoulli sampling with probability p = |s1|/N to approximate any
symmetric designs. Similarly, initial unequal probability sampling may be approximated by
Poisson sampling with the same πi , for i ∈ U , provided negligible sampling fraction |s1|/N .
Finally, Monte Carlo simulation [4] may be used to approximate the relevant πMk under
sampling without replacement.

4 T -stage snowball sampling

An incident observation procedure (Sect. 2.3) provides the means to enlarge a set of sample
nodes by their out-of-sample adjacent nodes. It yields amethod of 1-stage snowball sampling,
which canbe extended successively to yield the T -stage snowball sampling.Belowweassume
that all the successors are included in the sample. But it is possible to take only some of the
successors at each stage (e.g. [23]). In particular, taking one successor each time yields a T -
stage walk (e.g. [18]). Two different observation procedures will be considered, i.e. incident
forward in digraphs and incident reciprocal in directed or undirected graphs. We develop
general formulae for inclusion probabilities under T -stage snowball sampling. It is shown
that additional observation features are necessary for the HT-estimator based on T -stage
snowball sampling, which will be referred to as incident ancestral. Previously, Goodman
[17] has studied the estimation of mutual relationships between i and j , where ai j a ji > 0
for i �= j ∈ U , based on T -stage snowball sampling in a special digraph with fixed ai+ ≡ 1;
Frank [8] and Frank and Snijders [15] considered explicitly HT-estimation based on 1-stage
snowball sampling.
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Sample graph Gs = (Us, As) Let s1,0 be the initial sample of seeds, and α(s1,0) its suc-
cessors. Let U0 ⊆ U be the set of possible initial sample nodes. The additional nodes
s1,1 = α(s1,0)\s1,0 are called the fist-wave snowball sample, which are the seeds of the
second-wave snowball sample, and so on. At the t th stage, let s1,t = α(s1,t−1)\

( ⋃t−1
h=0 s1,h

)

be the t th stage seeds, for t = 1, 2, . . . , T . If s1,t = ∅, set s1,t+1 = · · · = s1,T = ∅ and
terminate, otherwise move to stage t + 1. Let s1 = ⋃T−1

t=0 s1,t be the sample of seeds. This
may result in two different sample graphs.

I Let s2 = s1 ×U provided incident forward observation in digraphs, such that the sample
graph Gs has edge set As = ⋃

i∈s1
⋃

j∈αi
Ai j and node set Us = s1 ∪ α(s1).

II Let s2 = s1 ×U ∪U × s1 provided incident reciprocal observation, digraphs or not, such
that Gs has edge set As = ⋃

i∈s1
⋃

j∈αi
(Ai j ∪ A ji ) and node set Us = s1 ∪ α(s1).

Remark One may disregard any loops in snowball sampling, because they do not affect the
propagation of the waves of nodes, but only cause complications to their definition.

4.1 Inclusion probabilities of nodes and edges in Gs

Below we develop the inclusion probabilities π(i) and π(i)( j) of nodes in Us , and π(i j) and
π(i j)(hl) of edges in As , under T -stage snowball sampling with s2 as specified above.

Forward observation in digraphs The stage-specific seed samples s1,0, . . . , s1,T−1 are dis-
joint, so that each observed edge, denoted by 〈i j〉 ∈ As , can only be included at a particular

stage. For i ∈ U , let β
[0]
i = U0 ∩ {i}; let β

[t]
i = U0 ∩

(
β(β

[t−1]
i )\( ⋃t−1

h=0 β
[h]
i

))
be its

t th generation predecessors, for t > 0, which consists of the nodes that would lead to i in
t-stages from s1,0 but not sooner. Notice that β

[0]
i , β

[1]
i , β

[2]
i , . . . are disjoint. We have

π(i) = 1 − π̄Bi for Bi =
T⋃

t=0

β
[t]
i ,

π(i j) = 1 − π̄Bi j for Bi j =
T−1⋃

t=0

β
[t]
i .

The respective joint inclusion probabilities follow as π(i)( j) = 1− π̄Bi − π̄Bj + π̄Bi∪Bj and
π(i j)(hl) = 1 − π̄Bi j − π̄Bhl + π̄Bi j∪Bhl .

Incident reciprocal observation Each 〈i j〉 ∈ As can only be included at a particular stage,
where either i or j is in the seed sample, regardless if the graph is directed or not. For i ∈ U ,
let ηi = { j ∈ U ; ai j + a ji > 0} be the set of its adjacent nodes. Let η

[0]
i = U0 ∩ {i}; let

η
[t]
i = U0 ∩

(
η(η

[t−1]
i )\( ⋃t−1

h=0 η
[h]
i

))
be its t th step neighbours, for t > 0, which are the

nodes that would lead to i in t-stages from s1,0 but not sooner. We have

π(i) = 1 − π̄Ri for Ri =
T⋃

t=0

η
[t]
i , (3)

π(i j) = 1 − π̄Ri j for Ri j =
T−1⋃

t=0

η
[t]
i ∪ η

[t]
j . (4)

The respective joint inclusion probabilities follow as π(i)( j) = 1− π̄Ri − π̄R j + π̄Ri∪R j and
π(i j)(hl) = 1 − π̄Ri j − π̄Rhl + π̄Ri j∪Rhl .
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Fig. 2 Population graphG with 10 nodes and 11 edges (left), a sample graphGs by 2-stage snowball sampling
starting from s1,0 = {3, 4} by simple random sampling (right)

Incident ancestral observation procedure It is thus clear that additional features of the obser-
vation procedure is required in order to calculate π(i) and π(i)( j) given any T ≥ 1, or π(i j)

and π(i j)(hl) given any T ≥ 2. Reciprocal or not, an incident procedure is said to be ances-
tral in addition, if one is able to observe all the nodes that would lead to the inclusion of
a node i ∈ Us , which will be referred to as its ancestors. These are the predecessors of
various generations for forward observation in digraphs, or the neighbours of various steps
for reciprocal observation in directed or undirected graphs. Notice that the edges connecting
the sample nodes in Us and their out-of-sample ancestors are not included in the sample
graph Gs . More comments regarding the connections between snowball sampling and some
well-known network sampling methods will be given in Sect. 5.

Remark Frank [5] defines the reach at i as the order of the connected component containing
node i . The requirement of observing the reach, without including the whole connected
component in the sample graph, is similar to that of an ancestral observation procedure, even
though the two are clearly different.

Example 4 To illustrate the inclusion probabilities (3) and (4), consider the population graph
G = (U, A), and a sample graph Gs = (Us, As) by 2-stage snowball sampling, with the
initial sample s1,0 = {3, 4} by SRS with sample size 2. The 1st- and 2nd-wave snowball
samples are s1,1 = {8, 9, 10} and s1,2 = {1, 5, 7}, respectively. The sample of seeds is
s1 = {3, 4, 8, 9, 10}. Both G and Gs are given in Fig. 2. To the left of Fig. 3, the true node
inclusion probabilities π(i) are plotted against those given by (3), where there are 5 distinct
values; to the right, the true edge inclusion probabilities π(i j) are plotted against those given
by (4), where there are 4 distinct values. In both cases, the true inclusion probabilities are
calculated directly over the 45 possible initial samples of size 2.

4.2 Arbitrary Mk with k ≥ 2 and s2 = s1 × U ∪ U × s1

To fix the idea, consider incident reciprocal observation in directed or undirected graphs.
Notice that one can as well let s2 = s1 ×U in the case of undirected graphs.
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Fig. 3 Inclusion probability π(i): true vs. (3), left; π(i j): true vs. (4), right

Definition of π(Mk ) for Mk ⊂ U To be clear, write {i1, i2, . . . , ik} for Mk ⊂ U . Let M (h)
k =

Mk\{ih} be the subset obtained by dropping ih from Mk , for h = 1, . . . , k. As explained in
Sect. 3.3, to be able to identify the motif [Mk], there can be at most one node in Mk that
belongs to the last wave of snowball sample (s1,T ). In other words, at least one of the k

subsets M (h)
k must be in the sample of seeds s1. We have

π(Mk ) = Pr
(
M (1)

k ⊆ s1 or M
(2)
k ⊆ s1 or · · · or M (k)

k ⊆ s1 or Mk ⊆ s1
)

=
k∑

h=1

Pr
(
M (h)

k ⊆ s1
)

− (k − 1)Pr
(
Mk ⊆ s1

)
, (5)

where Pr
(
Mk ⊆ s1

) = π(i1)(i2)···(ik ) is joint inclusion probability of the relevant nodes in s1,

similarly for Pr
(
M (h)

k ⊆ s1
)
, where h = 1, . . . , k. The expression (5) follows from noting

{M (h)
k ⊆ s1} ∩ {Mk ⊆ s1} = {Mk ⊆ s1}, and {M (h)

k ⊆ s1} ∩ {M (l)
k ⊆ s1} = {Mk ⊆ s1}, and(

{M (h)
k ⊆ s1}\{Mk ⊆ s1}

)
∩

(
{M (l)

k ⊆ s1}\{Mk ⊆ s1}
)

= ∅.

Joint inclusion probability π(Mk )(M ′
k )

For Mk ⊂ U and M ′
k ⊂ U , the joint observation of

[Mk] and [M ′
k] requires that (i) at most one node i in s1,T , provided i ∈ Mk ∩ M ′

k , or (ii)
at most two nodes i, j in s1,T , provided i ∈ Mk\M ′

k and j ∈ M ′
k\Mk . Put M = Mk ∪ M ′

k .
The relevant subsets are M (i) for all i ∈ Mk ∩ M ′

k , and M (i j) for all i ∈ Mk\M ′
k and

j ∈ M ′
k\Mk . The joint inclusion probability π(Mk )(M ′

k )
follows, similarly as above for π(Mk ),

as the probability that at least one of these subsets is in the sample of seeds s1.

Probability π(i1)(i2)···(ik ) In the case of k = 2,π(i)( j) is as given earlier in Sect. 4.1. To express
π(i1)(i2)···(ik ) in terms of the probabilities for the initial seed sample s1,0, we have

π(i1)(i2)···(ik ) =
∑

L⊆Mk

(−1)|L|π̄(L), (6)
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where L includes ∅, and |L| is its cardinality, and π̄(L) is the exclusion probability

π̄(L) = Pr(L ∩ s1 = ∅) = Pr(RL ∩ s1,0 = ∅) = π̄RL =
∑

D⊆RL

(−1)|D|πD, (7)

where RL = ⋃
i∈L Ri and Ri = ⋃T−1

t=0 η
[t]
i is the ancestors of i up to the T − 1 steps, and

πD is joint inclusion probability of the nodes in D in the initial sample of seeds s1,0.

4.3 Arbitrary Mk with k ≥ 2 and s∗2 = s1 × s1

By dropping the nodes s1,T of the last wave of T -stage snowball sampling, we ensure that
the motif of any subset Mk ∈ s1 is observable. The idea is developed below.

Definition of π(Mk ) for Mk ⊆ s1 LetGs = (Us, As) be the sample graph of T -stage snowball
sampling, with reference set s2 = s1 × U ∪ U × s1. Let G∗

s = (U∗
s , A∗

s ) be the reduced
sample graph obtained from dropping s1,T , with reference set s∗

2 = s1 × s1, where A∗
s =

As\{〈i j〉; i ∈ s1, j ∈ s1,T } and U∗
s = Us\s1,T = s1. Notice that A∗

s contains all the edges
between any i, j ∈ s1 in the population graph G, and G∗

s is the same sample graph that is
obtained from s1 by induced observation directly. It follows that one observes the motif for
any Mk ∈ s1, so that the inclusion probability π(Mk ) is given by

π(Mk ) = Pr
(
Mk ⊆ s1

) = π(i1)(i2)···(ik ), (8)

where π(i1)(i2)···(ik ) is given by (6) and (7) as before.

Joint inclusion probability π(Mk )(M ′
k )

For Mk ⊂ s1 and M ′
k ⊂ s1, the joint observation of

[Mk] and [M ′
k] requires simplyM = Mk∪M ′

k ⊆ s1. The joint inclusion probabilityπ(Mk )(M ′
k )

is therefore given by π(M) on replacing Mk by M in (8), (6) and (7).

Other reduced graphs The sample graph G∗
s is obtained from dropping the T th wave nodes

s1,T . Rewrite G∗
s as G(T−1)

s ; it can be reduced to G(T−2)
s by dropping s1,T−1 as well. This

yields G(T−2)
s as the induced graph among s1\s1,T−1. The inclusion probability π(Mk ) for

Mk ⊂ A(T−2)
s can be derived similarly as (8). Carrying on like this, one obtains in the

end the reduced graph G(0)
s , with reference set s2 = s1,0 × s1,0, which is just the induced

graph among s1,0. The inclusion probability π(Mk ) for Mk ∈ s1,0 is πMk = Pr
(
Mk ⊆ s1,0

)

directly. Notice that the sample graph G(0)
s under T -stage snowball sampling can equally

be obtained as G(0)
s under 1-stage snowball sampling. It follows that the additional T − 1

wave-samples would simply have been wasted, had one only used G(0)
s for estimation. For

the same reason it is equally implausible to use G(1)
s , . . . ,G(T−2)

s . However, G(T−1)
s = G∗

s
is different because the last wave serves to establish G∗

s as an induced sub-population graph,
i.e. with no potentially missing edges among the relevant nodes.

Comparisons between G∗
s and Gs On the one hand, whichever motif of interest, Gs always

has a larger or equal number of observations than G∗
s . Hence, one may expect a loss of

efficiency with G∗
s . On the other hand, estimation based on Gs requires more computation

than G∗
s . Firstly, for any Mk ⊆ s1, it requires about k times extra computation for π(Mk ) by

(5) than by (8). This is due to the need to compute the probability of possibly observing Mk
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Fig. 4 Population graph G with 13 nodes and 19 edges (top); sample graphsGs (bottom left) and G∗
s (bottom

right) by 2-stage snowball sampling with initial s1,0 = {4, 5, 10}

as M (h)
k ⊂ s1 and h ∈ s1,T , even if Mk is observed as Mk ⊂ s1, which is unnecessary with

respect to s∗
2 , where the observations are restricted to those among the nodes in s1 without

involving s1,T . Secondly, corresponding to each Mk ⊆ s1, there are additional observations
with respect to s2, which are all the possible M ′

k = {M (h)
k , j; h ∈ Mk, j /∈ s1}, because the

motif of such an M ′
k can be identified. The motif of any M ′

k is unknown, if it differs from
any Mk ⊆ s1 by at least two nodes.

Example 5 To illustrate the inclusion probabilities (5) and (8), consider the population graph
G = (U, A) in Fig. 4, where |U | = 13 and |A| = 19, together with the two 2-stage snowball
sample graphs Gs and G∗

s , both with s1,0 = {4, 5, 10} by SRS of sample size 3. We have
s1,1 = {1, 2, 8, 9}, s1,2 = {3, 6, 12, 13} and s1 = {1, 2, 4, 5, 8, 9, 10}. Table 1 lists 6 selected
triad (M3) inclusionprobabilities givenby (5) and (8), respectively,with respect to s2 = s1×U
and s∗

2 = s1 × s1. These are seen to be equal to the true probabilities calculated directly over
all possible initial samples s1,0, under SRS of sample size 3. Table 2 shows the estimates of the
four 3rd-order graph totals θ̂3,h , for h = 0, 1, 2, 3, which are as defined in Sect. 3.1.3, based
on these two sample graphsGs andG∗

s . The expectation and standard error of each estimators
are also given in Table 2, which can be evaluated directly over all the possible initial sample
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Table 1 Inclusion probability
π(M3) of selected
M3 = {i1, i2, i3}

i1 i2 i3 With s2 = s1 ×U With s∗2 = s1 × s1

By (5) True By (8) True

1 2 3 0.9230769 0.9230769 0.5664336 0.5664336

1 2 4 0.8531469 0.8531469 0.2657343 0.2657343

1 3 4 0.8321678 0.8321678 0.2027972 0.2027972

2 3 4 0.8531469 0.8531469 0.2552448 0.2552448

1 2 5 0.8671329 0.8671329 0.6223776 0.6223776

1 3 5 0.8881119 0.8881119 0.5384615 0.5384615

Table 2 Third-order graph total
estimate, expectation and
standard error

Based on sample graph Gs θ̂3,0 θ̂3,1 θ̂3,2 θ̂3,3

Estimate 96.251 89.260 26.289 2.515

Expectation 121 123 40 2

Standard error 22.977 18.591 7.025 0.768

Based on sample graph G∗
s θ̂3,0 θ̂3,1 θ̂3,2 θ̂3,3

Estimate 59.128 63.209 19.211 1.607

Expectation 121 123 40 2

Standard error 78.694 49.929 15.038 1.195

s1,0. The true totals in the population graph G are (θ3,0, θ3,1, θ3,2, θ3,3) = (121, 123, 40, 2).
Clearly, both HT-estimators are unbiased, and using G∗

s entails a loss of efficiency against
Gs , as commented earlier.

4.4 Proportional representative sampling in graphs

A traditional sampling method is sometimes said to be (proportional) representative if the
sample distribution of the survey values of interest is an unbiased estimator of the population
distribution directly. This is the case provided equal probability selection. Equipped with the
general formulae forπ(Mk ) under T -stage snowball sampling, belowwe propose and examine
a proportional representativeness concept for graph sampling.

Graph proportional representativeness Let mk �= m′
k be two distinct motifs of the order k.

A graph sampling method is kth order proportionally representative (PRk) if

E[θs]/θ = E[θ ′
s]/θ ′, (9)

where θ is the number ofmk in the population graph G, and θs that of the observedmk in the
sample graph Gs with reference set s2, and similarly with θ ′ and θ ′

s for m
′
k . Let y(Mk) = 1

if [Mk] = mk and 0 otherwise. Let δ[Mk ] be the observation indicator with respect to s2. We
have θ = ∑

Mk∈Ck y(Mk) and θs = ∑
Mk∈Ck δ[Mk ]y(Mk). Clearly, a graph sampling method

will be PRk if π(Mk ) is a constant for different motifs of order k. Under any PRk design, one
may estimate the relative frequency between mk and m′

k by θs/θ
′
s .
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Result 1. Induced observation from s1 is P Rk for k ≥ 1, provided s2 = s1×s1 and symmetric
design p(s1). The result follows since, for any Mk ⊂ As = s1, we have π(Mk ) = πMk , which
is a constant of [Mk] by virtue of symmetric design p(s1).

Result 2. One-stage snowball sampling is PRk for k ≥ 2, provided s2 = s1 × U ∪ U × s1
and symmetric design p(s1). Suppose first reciprocal observation. We have Ri = {i} ∪ η

[1]
i ,

whose cardinality varies for different nodes in G. It follows that π(M1) = π(i) by (3) is not a
constant over U , i.e. the design is not PR1. Next, for Mk with k ≥ 2, π(Mk ) by (5) depends
on k + 1 probabilities given by (6) and (7). Each relevant probability π̄(L) is only a function
of |RL | provided symmetric design p(s1), where RL = ⋃

i∈L Ri = L since Ri = {i} given
T = 1. It follows that |RL | = |L| regardless of the nodes in Mk , such that π(Mk ) is a constant
of Mk , i.e. PRk . Similarly for forward observation in digraphs.

Remark Setting s∗
2 = s1 × s1 yields induced sample graph from s1 and Result 1.

Result 3. T -stage snowball sampling is generally not PRk for k ≥ 1 and T ≥ 2, despite
symmetric design p(s1). As under 1-stage snowball sampling, the design is not PR1.Whether
by (5) or (8) for k ≥ 2,π(Mk ) depends on π̄(L) in (6),which is only a function of |RL |provided
symmetric design p(s1). However, given T ≥ 2 and |L|, RL = ⋃

i∈L Ri generally varies for
different L , so that neither RL nor |RL | is a constant of the nodes in Mk , i.e. the design is
not PRk . Similarly for forward observation in digraphs.

5 Network sampling methods

As prominent examples from the network sampling literature we consider here multiplicity
sampling [1], indirect sampling [19] and adaptive cluster sampling [24]. Below we first
summarise broadly their characteristics in terms of target parameter, sampling and estimator,
and then discuss four salient applications of these methods using the snowball sampling
theory developed in Sect. 4.

Target parameter In all the network samplingmethodsmentioned above, the target parameter
is the total of a value associated with each node of the graph, denoted by yi for i ∈ U , which
can be referred to as a 1st-order network total θ = ∑

i∈U yi in light of (1). This does not differ
from that when “conventional” sampling methods are applied for the same purpose, where
Sirken [22] uses the term conventional in contrast to network. In other words, these network
sampling methods have so far only been applied to overcome either certain deficiency of
frame or lack of efficiency of the traditional sampling methods, as discussed below in terms
of sampling and estimator, but not in order to study genuine network totals or parameters,
which are of orders higher than one.

Sampling Like in the definition of sample graph, these network sampling methods start with
an initial sample s1. The sampling frame of s1 can be direct or indirect. In the latter case, the
sampling units are not the population elements. This may be necessary because a frame of
the population elements is unavailable, such as when siblings are identified by following up
kins to the household members of an initial sample of households [22]. Or, a frame of the
elements may be available but is unethical to use, such as when children are accessed via
a sample of parents [19]. In cases a direct frame of elements is used, the initial sample s1
may be inefficient due to the low prevalence of in-scope target population elements, so that
an observation procedure depending on the network relationship (between the elements) is
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used to increase the effective sample size. This is the case with adaptive cluster sampling
(Thompson, 1989).

Estimator For 1-st order network parameters (1), where the population elements are repre-
sented as nodes in the population graph G = (U, A), the HT-estimator (2) is defined for the
observed nodes in the sample graphGs = (Us, As). Another approach in the aforementioned
methods is the HT-estimator defined for the selected sampling units. Let F be the frame of
sampling units, where l ∈ F has inclusion probability πl . We have

∑

l∈F
zl =

∑

l∈F

(∑

i∈U
wli yi

)
=

∑

i∈U
yi

∑

l∈F
wli =

∑

i∈U
yi = θ,

where zl = ∑
i∈U wli yi is a value constructed for the sampling units, based on any chosen

weights, provided
∑

k∈F wki = 1, as noted by Birnbaum and Sirken [1]. The corresponding
HT-estimator that is unbiased for θ can be given by

θ̃HT =
∑

l∈s1
zl/πl =

∑

l∈F
zlδl/πl , (10)

where δl = 1 if l ∈ s1 and 0 otherwise. To ensure that zl can be calculated no matter which
actual sample s1, the weights wli must not depend on s1. A common approach is to set
wli = 1/mi , where l a sampling unit in s1 which gives rise to i , and mi is the number of
all sampling units in F that could lead to the observation of i , for i ∈ U . The number mi

is referred to as the multiplicity of the element [1]. The observation of mi for each sample
element is the same kind of requirement as the observation of the ancestors of a node in Us

under snowball sampling. The literature is inconclusive on the relative efficiency between
the two estimators (2) and (10).

5.1 Sampling patients via hospitals

Birnbaum and Sirken [1] consider this situation, without using graph representation. To fix
the idea, suppose a sample of hospitals is selected according to a probability design. From
each sample hospital, one observes a number of patients of a given type, who are treated at this
hospital. Let the target parameter θ be the population size of such patients. The complication
arises from the fact that a patient may receive treatment at more than one hospital. Sirken
[22] refers to conventional sampling where every population element is linked to one and
only one sampling unit, whereas in the case of network sampling a population element (i.e.
patient of a certain type) can be linked to a varying number of sampling units (i.e. hospitals).
Sirken [22] refers to ‘cluster’ as the group of population elements which are linked to the
same sampling unit, and ‘network’ the group of sampling units which are linked to the same
population element. The distinction between cluster and network here needs to be accounted
for in estimation.

(P) Projection graph The HT-estimator (2) can be obtained using the following graph sam-
pling set-up. Denote by H the known set of hospitals and P the unknown set of in-scope
patients, where θ = |P|. Let G = (U, A) have U = H ∪ P . For any i ∈ H and j ∈ P ,
ai j ∈ A iff patient j receives treatment at hospital i . Let the simple graph be undirected.
Notice that (H, P) form a bipartition ofU , where there are no other edges at all except those
that project H onto P . Given s1 ⊂ H = U0, let s2 = s1 × P for 1-stage snowball sampling.
The observation procedure must be incident ancestral, so that mi is observed for i ∈ α(s1),
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without including in the sample graph Gs all the edges that are incident at i but outside of
s2. The inclusion probability π(i) is given by (3), where we have η

[0]
i = ∅ sinceU0 ∩ P = ∅,

and η
[1]
i = βi , so that Ri = βi and |Ri | = mi . Let yi = 1 for all i ∈ P .

Remark The HT-estimator (2) and (10) correspond to the first two estimators proposed by
Birnbaum and Sirken [1]. Their third estimator is defined for the edges in the projection
graph, which however lacks a formulation that allows it to be applied generally.

Two-stage snowball sampling Consider 2-stage snowball sampling in the same graph, under
which the observation procedure is incident but needs not be ancestral in addition. Given
s1,0 ⊂ H , let s1,1 = α(s1,0) ⊆ P and s1,2 = α(s1,1) ⊆ H , i.e. reverse projection. The
HT-estimator (2) makes only use of the nodes (i.e. motif of interest) in s1,1, where yi ≡ 1,
and π(i) is given by (3), for which Ri = βi is fully observed due to the addition of s1,2.

5.2 Sampling children via parents

Lavalleè [19] considers this situation. Children are the population elements. Suppose a sample
of parents is selected according to a probability design. One obtains all the children of each
sample parent. Without losing generality, let the target parameter θ be the number of children
who are not orphans. The same complication arises from the fact that a child may be accessed
via two parents if they are both in the sampling frame. Clearly, the situation is conceptually
the same as sampling patients via hospitals above.

Remark Lavalleè [19] represents the situation using the same graph (P) above, where U =
P ∪ C , and P consists of the parents and C the children. The HT-estimator (2) based on
either 1- or 2-stage snowball sampling formulation is the same as above, with yi ≡ 1 for
i ∈ C . Lavalleè [19] considers only the HT-estimator (10).

(M) Multigraph Put G = (U, A) where U = P and A = C , i.e. with parents as the nodes
and children as the edges. Let Ai j represent the ai j children of parents i and j . Let loops
Aii at node i represent the aii children of single-parent i . Given s1 = s1,0 ⊂ P = U0, let
s1,1 = α(s1,0)\s1,0, i.e. 1-stage snowball sampling. The incident observation procedure is
ancestral by construction here. Let s2 = s1 × U . The inclusion probability π(i j) of a child

〈i j〉 ∈ A is given by (4), where η
[0]
i = {i} and η

[0]
j = { j} under 1-stage snowball sampling;

whereas π(i i) of a child 〈i i〉 of a single parent is also given by (4), where η
[0]
i = {i}.

Remark Making population elements the edges of the graph is not convenient for the hospital-
patient application, because while each child corresponds to only one edge, each patient may
appear as multiple edges incident to different nodes (i.e. hospitals).

5.3 Sampling siblings via households

Sirken [22] discusses this situation, without resorting to explicit graph representation. To
fix the idea, suppose a sample of households is selected according to a probability design.
For each member of the household, one obtains all the siblings who may or may not live in
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the same household. The observation elements are siblings, denoted by S, which excludes
anyone who has no siblings. Without losing generality, let θ be the number of siblings.

(2P) Twice projection graph Denote by H the households, P the persons, and S the siblings,
where i ∈ S is considered a different element to j ∈ P , even if i and j refer to the same
person in real life. Let G = (U, A), where U = H ∪ P ∪ S and A = AHP ∪ APS . Each
Ahj ⊂ AHP is such that h ∈ H and j ∈ P , i.e. AHP projects H onto P; each Ai j ∈ APS

is such that i ∈ P and j ∈ S are siblings, including when the two refer to the same person,
i.e. APS projects P onto S. Let the twice projection graph from H to P to S be undirected.
Consider 2-stage snowball sampling starting from s1,0 ⊂ H = U0. Let s2 = s1 × U , where
s1 = s1,0 ∪ s1,1 is the sample of seeds. The observation procedure must be incident ancestral,
provided which the HT-estimator (2) is only based on s1,2. For i ∈ S, we have yi = 1 and
π(i) given by (3), where η

[0]
i = η

[1]
i = 0 because it can only be reached from s1,0 in exactly

two waves, and ηi = η
[2]
i where |ηi | = mi is the number of households that can lead to i

from s1,0, i.e. its multiplicity according to Birnbaum and Sirken [1].

(PR) Projection relation graph Put G = (U, A), where U = H ∪ P . Let ai j ∈ A if (i)
person j belongs to household i , or (ii) persons i and j are siblings of each other. The edges
of type (i) project H on to P , whereas those of type (ii) are relations within P . Notice that
each group of siblings form a clique; a person without siblings is a single-node clique. To
ensure ancestral observation, consider 3-stage snowball sampling. Given s1,0 ⊂ H = U0,
s1,1 consists of the members of the households in s1,0, and s1,2 the siblings of s1,1 which are
outside of the initial sample households, and s1,3 ⊆ H consists of the households to s1,2. Let
s2 = s1×U , where s1 = s1,0∪s1,1∪s1,2. The HT-estimator (2) makes use of i ∈ s1∩ S, with
yi ≡ 1. The corresponding π(i) is given by (3), where η

[0]
i = 0, and η

[1]
i is the household of i ,

and η
[2]
i contains the households of its out-of-household siblings. In other words, ηi contains

all the households that can lead to i , where |ηi | = mi .

Remark Sampling in the graphs (2P) and (PR) makes use of relationships among the popu-
lation elements, unlike sampling of patients or children in the projection graph (P).

(HP) Hypernode projection graph Let each clique in the graph (PR) above be a hypernode—
all the nodes of a hypernode are always observed together or not at all. Let G = (U, A),
where U = H ∪ P , and P consists of all the hypernodes of P . Let ai j = 1 iff at least one
node in the hypernode j belongs to household i . This yields an undirected simple graph as
the hypernode projection graph. Consider 2-stage snowball sampling withU0 = H as in the
projection graph, such that observation is ancestral by construction. Both HT-estimators (2)
and (10) follow directly, where yi is the number of nodes in i ∈ P .

5.4 Adaptive cluster sampling of rare species

In contrast to conventional sampling, Thompson [24] characterises adaptive sampling designs
as those inwhich the procedure to include units in the sample depends on the values of interest
observed during the survey. To fix the idea, suppose an area is divided into (spatial) grids
as the units of sampling and observation. Each grid in an initial sample of grids is surveyed
for a given species of interest. If it is not found there, one would move on to another grid
in the initial sample. However, whenever the species is found in grid i , one would survey
each of its neighbour grids in four directions, beyond the initial sample, provided not all of
them have been surveyed before. This observation procedure can help to increase the number
of in-scope grids, compared to random sampling of the same amount of grids, provided the
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species is more likely to be found given that it is found in a neighbour grid than otherwise.
Once in a new grid, the procedure is repeated and the survey may or may not continue to
the neighbour grids, depending on the finding in the current grid. The sampling is finished
if no new grids can be added to the sample, or if one has reached a predetermined limit in
terms of the number of surveyed grids, time, resource, etc. The observed in-scope grids form
sampling as well as observation clusters, in the sense that all the member grids of a cluster
are sampled and observed if any one of them is.

(T) Transitive graphAdaptive cluster sampling (ACS) can be represented as 2-stage snowball
sampling in a transitive graph as follows. Let G = (U, A), where U contains all the grids
in ACS. Let UA contain all the grids where the rare species is present. Let Uc

A = U\UA.
Let ai j = 1 iff i, j ∈ UA and i and j belong to the same observation cluster under the
ACS. This yields an undirected simple transitive graph, where each i ∈ Uc

A is an isolated
node, and each group of connected nodes inUA form a clique. Without losing generality, let
θ = |UA|. The snowball sampling starts with s1,0 ⊂ U = U0, i.e. any grid can be selected
initially. Let s1,1 = α(s1,0). Notice that the isolated nodes in s1,0 do not lead to any nodes in
s1,1, while a connected node in s1,0 leads to all the nodes in the same observation cluster but
none in Uc

A, since edges exist only among the nodes in UA. In reality, a neighbour grid of
i ∈ UA∩s1,0 which belongs toUc

A is also surveyed, but it will not lead to any additional nodes
in the next wave, nor will it be the motif of interest in estimation. It is therefore convenient
to represent this adaptive nature of the ACS by not including in s1,1 any node from Uc

A at
all. The 2nd-wave snowball sample will be empty, i.e. s1,2 = ∅, because all the connected
nodes in a clique will already be observed either in s1,0 or s1,1. But the 2nd-stage is needed
to ensure that the observation is ancestral by construction. The HT-estimator (2) uses every
node i ∈ s1 = s1,0 ∪ s1,1, with yi = 1, and π(i) is given by (3), where η

[0]
i = {i}, and η

[1]
i

contains all its adjacent nodes.

Remark The graph (T) is the same as the relation part of the graph (PR) in the case of sampling
siblings via households. The projection part is not necessary here because the initial sampling
uses a direct frame, unlike the other applications above.

Remark The ACS can as well be represented by the graph (HP), with the cliques in the graph
(T) above as the hypernodes. Both HT-estimators (2) and (10) follow directly.

6 Concluding remarks

In this paper we synthesised the existing graph sampling theory, and made several extensions
of our own. We proposed a definition of sample graph, to replace the different samples of
nodes, dyads, triads, etc. This provides formally an analogy between sample graph as a sub-
population graph and sample as a sub-population. Next, we developed a general approach of
HT-estimation based on arbitrary T -stage snowball sampling. It is clarified that design-based
estimation based on snowball sampling requires the observation procedure to be ancestral,
which can be hard to fulfil in many practical applications of snowball or snowball-like sam-
pling, including the estimation of a clandestine target population size. Without satisfying
the ancestral requirement, the estimation will have to be based on an appropriate statistical
model instead.

We presented various graph sampling formulations of the existing design-based network
samplingmethods. It is seen that different graph representations reveal the different estimators
more or less readily, so the choicematters in applications. The graph sampling theory provides
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a more general and flexible framework to study and compare these unconventional methods,
and to develop possible alternatives and modifications.

Moreover, it transpires that these existing network sampling methods do not really differ
from conventional sampling with respect to the target parameter. We believe that the scope
of investigation can be greatly extended if one starts to consider other genuine network
parameters, which can only be studied using a graph representation. Two research directions
can be identified in this respect. First, we are currently examining the scope of problems that
can be studied using the (hypernode) projection graph, and the properties of the design-based
estimation methods. Second, it seems intuitive that a lower-order network parameter can be
estimated using a ‘smaller’ or more fragmented sample graph than a higher-order parameter.
It is therefore interesting to understand better the conditions, by which a high-order network
parameter can be expressed as a function of lower-order parameters. Although this is perhaps
more of a mathematical than statistical problem, such transformations can potentially be very
useful for the applications of the graph sampling theory. Developing a comprehensive finite-
graph sampling theory, beyond the established finite-population sampling theory, seems an
exciting area for future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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