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Abstract: Nonlinear free vibration of functionally graded shallow shells with complex planform is investigated using the R-functions method (RFM) and variational Ritz method. The proposed method is developed in the framework of the first–order shear deformation shallow shell theory (FSDT). Effect of transverse shear strains and rotary inertia are taken into account. The properties of functionally graded materials (FGM) are assumed to be varying continuously through the thickness according to a power law distribution. The Rayleigh-Ritz procedure is applied to obtain the frequency equation. Admissible functions are constructed by the R-functions theory. To implement the proposed approach the corresponding software has been developed. Comprehensive numerical results for three types of shallow shells with positive, zero and negative curvature with complex planform are presented in tabular and graphical forms. The convergence of the natural frequencies with increasing number of admissible functions has been checked out. Effect of volume fraction exponent, geometry of a shape and boundary conditions on the natural and nonlinear frequencies is brought out. For simply supported rectangular FG shallow shells, the results obtained are compared with those available in the literature. Comparison demonstrates a good accuracy of the approach proposed.
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Introduction

In many practical applications, shallow shells are basic design elements. Advanced structural materials such as functionally graded materials are widely used for their manufacture. In recent years, investigations on FGM have received great attention from many researchers. This is due to the extensive use of functionally gradient shallow shells in many industries such as those in rocket, aerospace and nuclear industry, mechanical and civil engineering. Shells with cutouts are frequently encountered in engineering applications. For example, control surfaces in airplanes such as aileron, rudder and elevators require the provision of cutouts within the shallow shell airfoils – such as wings and stabilizers. This highlights the need for understanding the role of cutouts on the dynamics of shallow shells. 

Various shell theories and numerous analytical and numerical methods were developed in the past. A number of reviews concerning FGM plate and shells have been published recently [1-3]. Nonlinear analysis of FGM plates and shells is also of great interest for many researchers [4-6]. A fairly complete survey of nonlinear vibrations of plates and shells is presented in [7-9]. Nonlinear vibrations of simply supported or clamped FG structures of rectangular, skew or circular planform have been analyzed by different numerical methods, such as Finite Element Method (FEM) [10, 11], Finite Difference Method [12], Differential Quadrature Method [13, 14]. Asymptotic approaches based on analysis of influence of FGM parameters in the problem of longitudinal rod deformations and analysis of the Maxwell Garnett formula using the two-phase composite model were presented in papers [15, 16]. Modified Fourier-Ritz approach, meshless method [17-19] were applied to free vibration of functionally graded and laminated shallow shells with general boundary conditions. 
Zhao et al. [20] presented the static response and free vibration of functionally graded shell panels under mechanical and thermomechanical loading using the element-free kp-Ritz method based on the first-order shear deformation shell theory. Neves et al. [21] investigated free vibrations of FG shell including cylindrical and spherical panels with simply supported and clamped boundary conditions using radial basis functions based collocation and higher-order deformation theory. Pradyumna and Bandyopadhyay [22] analyzed the free vibration analysis of FG curved panels based on higher-order shear deformation theory. Reddy et al. [11] introduced a theoretical formulation for FGM plates using the third-order shear deformation plate theory, and advanced a corresponding finite element model that accounts for thermomechanical coupling, time dependence, and von Karman-type geometric nonlinearity. Free vibration and stability of functionally graded shallow shells according to 2D higher–order deformation theory were reported by Matsunaga [23]. 

The analysis of published literature on the problem of vibration of FGM shallow shells and plates shows that practically all researchers consider rectangular or circular planform and classical boundary conditions. The present study is inspired by the need to develop general and effective methods for investigation of dynamical behaviour of functionally graded shallow shells with complex planform and various boundary conditions. 

The sought methods must be convenient for their application to nonlinear problems. Meshless methods satisfy these requirements. Earlier, in papers [24-28 ] the original meshless method for investigations of the laminated plates and shallow shells has been proposed. This method is based on application of the R-functions theory, variational Ritz method, Bubnov-Galerkin procedure and Runge-Kutta method. 

In this paper, meshless approach using R-functions theory and variational Ritz method is proposed to study nonlinear vibration of functionally graded shallow shells of an arbitrary planform and different boundary conditions. Two shapes of cuts – rectangular and circular – within the basic rectangular planform of shallow shells are considered here. The method is developed in the framework of the first-order shear deformations of shallow shells and it takes into account transverse shear deformation and rotary inertia. It offers the unique procedures for construction of admissible functions that minimize the Lagrange’s functional and satisfy various boundary condition for an arbitrary planform of the shell. The computer code thus developed allows representing geometrical and mechanical information in an analytical form. So, a variety of geometrical parameters such as curvature of the shell, size and location of the cutout, the type of boundary conditions, the mechanical properties of material constituents, various power law exponent to describe through-the-thickness property gradients and other parameters don’t require essential changes to solution procedure. A comparative analysis of the results with those available for shells with a rectangular shape of the plan confirms the effectiveness and reliability of this method and software. Numerous vibration results for FG shallow shells with complex planform and various boundary conditions are presented.
1. Theoretical formulation 
Consider a shallow shell of an arbitrary planform with radii of curvatures 
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Fig 1. Typical FGM square shell panel
Three types of shallow shells with regards to the character of curvature are analysed: circular cylindrical shell (
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 and also flat plate 
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 as shown in Fig.1. It is assumed that FGM shallow shell is made of a mixture of two material constituents: a metal and a ceramics. It is well known that constituents of FGM depend on the temperature. This dependence can be defined as [8]
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where P is a generic material property for Young’s modulus E, Poisson’s ratio 
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 and mass density 
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. The values of constants 
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 for different materials are presented in [8]. So, for accurate prediction of the mechanical response it is essential to take the both temperature and position dependences [9]. The volume fraction 
[image: image13.wmf]c

V

 of the ceramic and 
[image: image14.wmf]m

V

 of the metal are related as

[image: image15.wmf]1

=

+

m

c

V

V

.

In this study Voigt’s rule for definition of material properties of the shell through-the-thickness is applied. According to this rule the volume fraction 
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is defined as 
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where h is the thickness of the shell, 
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 is the parameter that governs the material variation in the thickness direction. It varies from 0 to infinity
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 can be expressed as 
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The first order shear deformation of shallow shell theory (FSDT) is applied. According to this theory the displacement field is given by 
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where 
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describe the rotation of perpendicular to the mid-surface about the Oy and Ox axes respectively, t is the time variable. 


Relations for deformations 
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Note that in formulas (4)  a comma in the subscript indicates partial differentiation with respect to the variable that follows it.

Curvature and twist changes of middle surface 
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In this paper we will consider the shells with the same temperature on the top and bottom surfaces. Then for FG materials, after integration, we obtain the following elasticity relations relating stress resultants 
[image: image40.wmf])

2

,

1

,

(

,

,

=

j

i

M

N

ij

ij

 with six mid-surface strain and curvature components:


[image: image41.wmf]ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

12

22

11

12

22

11

33

33

22

21

22

21

12

11

12

11

33

33

22

21

22

21

12

11

12

11

12

22

11

12

22

11

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

c

c

c

e

e

e

D

B

D

D

B

B

D

D

B

B

B

A

B

B

A

A

B

B

A

A

M

M

M

N

N

N

 ,    (5)

where 
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Transverse shear force resultants 
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If Poisson’s ratios are such that 
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where
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The density of the composite 
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 is determined as a result of the integration through the shell thickness:
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The strain energy 
[image: image67.wmf]U

and the kinetic energy T of FGM shallow shell are given by
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respectively, where
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2. The solution method

The proposed method of investigation of geometrically nonlinear vibration of FGM shallow shells assumes the solution of linear problem at the first step [24]. The variational structural method (RFM) is applied to seek for such a solution. This approach is based on an application of the R-function theory and method by Ritz. Linear solution problem for FGM shallow shells was provided in [24, 30]. 

It is assumed that inertia forces in the middle surface of a shell are ignored at solving the nonlinear problem. Introduce unknown functions in the following form:
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where 
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where 
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System (9) is supplemented by the corresponding boundary conditions. Solution of this problem is carried out by means of variational method by Ritz and RFM. Taking into account such a choice of functions 
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 and substituting expressions (8) in the equation of motion and applying the procedure of Bubnov-Galerkin, the following nonlinear differential equation of the second order is obtained:


[image: image102.wmf]0

)

(

)

(

)

(

)

(

3

1

2

1

1

2

1

=

+

+

+

t

y

t

y

t

y

t

y

L

g

b

w

&

&

.                                  (10)

Values for coefficients of equation (10) have been obtained in analytical form. They are expressed through the double integrals of unknown functions: 
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Method by Runge-Kutta was used for solution of equation (10).

3. Numerical results and discussion
3.1. Test linear vibration problem

In order to validate the solution structure, the software and the accuracy of the proposed method, a test problem has been solved. The numerical values of the natural frequencies for clamped and simply supported functionally graded cylindrical and spherical shell panels are compared with the published results in [21, 22].


Results are compared with those from Neves and Ferreira [21], who used radial basis functions based collocation, according to a higher-order shear deformation theory that accounts for through-the-thickness deformation and with  those from Pradyumna and Bandyopadhyay [22], who used finite elements formulation and a HSDT disregarding through-the-thickness deformations.


The following material properties 
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The non-dimensional frequency is given as: 
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a) Clamped and simply supported functionally graded cylindrical shell panel

The free vibration of clamped and simply supported FG cylindrical shell panels is analysed. In Table 1 the fundamental frequencies of square clamped FGM cylindrical shell panels of the 
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 are presented. 

Table 1 Fundamental frequencies of CCCC square cylindrical shell panels 
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	Source
	h/a=10
	h/a=20
	h/a=50
	h/a=100

	
	RFM
	72.8029
	78.6677
	85.6286
	102.362

	0
	Ref.[21]
	72.8141
	78.7342
	85.7713
	102.7871

	
	Ref.[22]
	71.7395
	77.5654
	84.88
	102.3351

	
	RFM
	60.0817
	64.6433
	70.7237
	85.7915

	0.5
	Ref.[21]
	59.9353
	64.4438
	70.5664
	85.9029

	
	Ref.[22]
	58.5305
	63.1381
	69.86
	86.5452

	
	RFM
	53.3031
	57.2635
	62.8322
	76.7814

	1
	Ref.[21]
	53.2759
	57.2226
	62.8414
	77.0381

	
	Ref.[22]
	52.0173
	56.088
	62.2152
	77.0774


The results of the present approach in Table 1 compare well with those found in the references. 

Table 2 presents the fundamental frequency of a square simply supported FGM cylindrical shell panel with constituents 
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 as well.

Table 2 Fundamental frequencies of SSSS square cylindrical shell panels 
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	Source
	R/a=1
	R/a=5
	R/a=10
	R/a=50
	Plate

	 
	RFM
	53.7464
	42.8494
	42.4338
	42.2996
	42.2939

	0
	Ref.[21]
	52.1101
	42.7172
	42.3684
	42.256
	42.2513

	 
	Ref.[22]
	51.5216
	42.2543
	41.908
	41.7963
	41.7917

	 
	RFM
	49.5653
	39.1767
	38.7832
	38.6597
	38.6558

	0.2
	Ref.[21]
	47.859
	38.7646
	38.4368
	38.3384
	38.3368

	 
	Ref.[22]
	47.5968
	40.1621
	39.8472
	39.7465
	39.7426

	 
	RFM
	45.0048
	35.1827
	34.8125
	34.6998
	34.6975

	0.5
	Ref.[21]
	43.6239
	34.9273
	34.6219
	34.5365
	34.5376

	 
	Ref.[22]
	43.3019
	37.287
	36.9995
	36.9088
	36.9057

	 
	RFM
	40.2285
	31.1428
	30.8022
	30.7016
	30.7008

	1
	Ref.[21]
	39.1246
	30.9865
	30.7077
	30.6355
	30.6386

	 
	Ref.[22]
	38.7715
	33.2268
	32.9585
	32.875
	32.8726

	 
	RFM
	35.6361
	27.7018
	27.4087
	27.3251
	27.3256

	2
	Ref.[21]
	34.7289
	27.5977
	27.3616
	27.3055
	27.3102

	 
	Ref.[22]
	34.3338
	27.4449
	27.1789
	27.0961
	27.0937

	 
	RFM
	29.6011
	24.3663
	24.1808
	24.1291
	24.1298

	10
	Ref.[21]
	28.7611
	24.2839
	24.1444
	24.1125
	24.1171

	 
	Ref.[22]
	28.2757
	19.3892
	19.1562
	19.0809
	19.0778

	 
	RFM
	24.2852
	19.3618
	19.174
	19.1133
	19.1108

	∞
	Ref.[21]
	23.5448
	19.3008
	19.1433
	19.0924
	19.0903

	 
	Ref.[22]
	24.1988
	19.0917
	18.9352
	18.8848
	18.8827


According to Tables 1-2, the difference between results obtained by the use of R-function method proposed here and those in [21, 22] is about 1 %, which confirms a good agreement of obtained values for the considered cases.

b) Clamped and simply supported functionally graded spherical shell panel

Now the free vibrations of clamped and simply supported FGM spherical shell panels are studied. Results for free vibration of simply supported FG spherical shell panels are presented in Table 3. The fundamental frequencies of a square simply supported FG spherical shell panel composed of aluminum (11) and alumina (12) with side-to-thickness ratio 
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 as well as power law exponents 
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 are shown.

For graphical illustration of good agreement of obtained results with published ones [21, 22] Fig.2 is presented. For the calculation of the fundamental frequencies of square simply supported FGM cylindrical shell panel the values of power law exponents are taken as 
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=0, 0.2, 0.5, 1, 2, 10, ∞ and side-to-radius ratio is 
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Table 3 Fundamental frequencies of SSSS square spherical shell panels 
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	Source
	R/a=1
	R/a=5
	R/a=10
	R/a=50
	Plate

	 
	RFM
	80.4992
	44.6403
	42.8941
	42.3181
	42.2939

	0
	Ref.[21]
	79.0008
	44.4697
	42.818
	42.2741
	42.2513

	 
	Ref.[22]
	78.2306
	44.0073
	42.3579
	41.8145
	41.7917

	 
	RFM
	74.6887
	40.878
	39.2175
	38.676
	38.6558

	0.2
	Ref.[21]
	73.0034
	40.4211
	38.8551
	38.3528
	38.3368

	 
	Ref.[22]
	72.6343
	41.7782
	42.818
	39.7629
	39.7426

	 
	RFM
	68.3253
	36.786
	35.2191
	34.7139
	34.6975

	0.5
	Ref.[21]
	66.9033
	36.4782
	35.008
	34.5478
	34.5376

	 
	Ref.[22]
	66.5025
	38.7731
	37.3785
	36.9234
	36.9057

	 
	RFM
	61.4497
	32.6222
	31.1749
	30.7135
	30.7008

	1
	Ref.[21]
	60.2636
	32.4101
	31.0572
	30.6437
	30.6386

	 
	Ref.[22]
	59.8521
	34.6004
	33.308
	2.8881
	32.8726

	 
	RFM
	54.2238
	28.99
	27.7303
	27.3343
	27.3256

	2
	Ref.[21]
	53.2311
	28.8329
	27.6602
	27.3109
	27.3102

	 
	Ref.[22]
	52.7875
	28.7459
	27.511
	27.1085
	27.0937

	 
	RFM
	43.0442
	25.2207
	24.3917
	24.1349
	24.1298

	10
	Ref.[21]
	42.2155
	25.1038
	24.3401
	24.1168
	24.1171

	 
	Ref.[22]
	41.6702
	20.4691
	19.4357
	19.0922
	19.0778

	 
	RFM
	36.3729
	20.1709
	19.382
	19.1217
	19.1108

	∞
	Ref.[21]
	35.6948
	20.0927
	19.3464
	19.1006
	19.0903

	 
	Ref.[22]
	36.2904
	19.8838
	19.1385
	18.893
	18.8827
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Fig.2 Comparison of obtained fundamental frequencies with known ones from papers [21, 22]

Fig.2 shows a visual comparison of obtained fundamental frequency with known results from papers [21, 22] for simply supported square cylindrical shell panel with length-to-thickness ratio 
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 and several power law exponents 
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. It can be observed that results obtained are good agreed with published ones [21, 22].
3.2. Free vibration of shallow shells with a complex planform

A literature search on the topic of free vibration analysis of FGM clamped or simply supported shallow shells with complex planform shows that this problem has not received much attention. Therefore, our main task is to demonstrate the essential advantages of the RFM, since it allows the geometrical information of the boundary value problems to be taken into account in an analytical way. To illustrate the strength of the proposed method, several shells with complex planform are analyzed. The effects of boundary conditions, the shape of the plan, curvatures on the fundamental frequencies have been examined.

a) Clamped FGM shell panel with rectangular cuts 

Consider a clamped shallow shell with the shape shown in Fig.3.
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Fig.3 FGM shell panel with rectangular cuts

Geometrical parameters are: 
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The shell consists of two composites: aluminum (11) and alumina (12). The boundary conditions for FSDT of this case are:
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The solution structure for FSDT can be taken as:
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In order to realize this solution structure, we need to construct the equation of the edge 
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Here the R-operations are defined as [29]
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An initial study was performed to ensure the convergence of the present approach and certain numbers of polynomial power to use in the computation of the vibration problems. Results are presented in Table 4 and refer to the first vibration mode of a simply supported cylindrical panel composed of 
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Table 4 Convergence of fundamental frequencies of the first vibration mode 
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Table 5 presents the fundamental frequency of a square clamped FGM shell panel of the 
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Table 5 Fundamental frequencies of CCCC shell panels, h/2a=10 for various 
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From the numerical experiment conducted for shallow shells with different sizes of rectangular cuts 
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, it follows that for different shapes of the shell the values of the fundamental frequencies differ by less than 0.5%. This observation concurs well with the physical expectation that curvature does not have significant influence on the frequency for the case of a clamped shell.
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Fig.4 Fundamental frequencies for CCCC cylindrical shell panel 
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Fig.5 Fundamental frequency for CCCC spherical shell panel 
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Figures 4-5 demonstrate graphically the values of fundamental frequencies for clamped cylindrical and spherical shell panels composed of aluminum (11) and alumina (12) with side-to-thickness ratio 
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b) Simply supported FGM shell panel with rectangular cuts 
The free vibration of simply supported FGM shell panel with rectangular cuts is analyzed next. Geometrical parameters are the same as those for example 3.2(a). The boundary conditions for FDST are the following (contour is simply supported in tangent direction and clamped in transvers direction):
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To satisfy the main boundary conditions, it is necessary to construct the following solution structure:
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Using the R-function operations we build the equations in the following form:
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In order to get correct results for the case considered here, the size of the cut is gradually increased. First, the domain was constructed with values 
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. The shell with rectangular cuts tends quite close to the square shell panel and hence it is clear that results for square shell panel and shell with small rectangular cuts are very close as well (see values from two first columns of Table 6).
These rectangular cuts have been expanded from size of cuts 
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Table 6 Fundamental frequencies of SSSS cylindrical shell panels 
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It is seen that values of natural frequencies of fully clamped shell are higher than the same shell with fully simply supported boundary conditions. It is clear that clamped boundary condition makes higher stiffness in the shell compared to simply supported boundary condition.
c) Clamped FGM shell panel with circular cuts 
Let us consider a clamped shallow shell with the shape shown in Fig.6. The geometrical parameters chosen for this problem are: 
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The shell consists of two composites: aluminum (11) and alumina (12). The boundary condition for FSDT are:
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The solution structure for FSDT can be taken in the following form:
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 is an equation of the boundary of the shell planform.
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Construct the equation of the border 
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Table 7 presents the fundamental frequency of a clamped FGM shell panel with circular cuts 
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Table 7 Fundamental frequencies of CCCC shell panels 
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	116.76
	117.03
	116.87
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From Table 7 it follows that for different shapes of shell the values of fundamental frequencies are differed starting with the third sign. It is agreed with the physical statement of problem, since the curvature does not essentially influent on the frequency for a case of clamped shell.
Table 8 First 4 modes of CCCC FGM spherical shell panel with circular cuts
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In Table 8 the first 4 modes of CCCC spherical shell panel with circular cuts with constituents 
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3.3 Nonlinear free vibrations
Now the nonlinear free vibrations of clamped spherical shell panel with spherical cuts are investigated (geometrical shape in Fig.6) with constituents 
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. Fig. 7 shows the nonlinear frequency amplitude relation for different power law exponents k.
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Fig. 7 Effect of volume fraction index k on the frequency ratio of CCCC spherical shell panel R/2a=10 with circular cuts
The nonlinear free vibrations of simply supported cylindrical shell panel with rectangular cuts are investigated (geometrical shape in Fig.3) with constituents 
[image: image343.wmf]3

2

/

O

Al

Al

, side-to-thickness ratio 
[image: image344.wmf]1

.

0

2

/

=

a

h

. Geometrical parameters are 
[image: image345.wmf]35

.

0

2

/

;

25

.

0

2

/

;

1

/

1

1

=

=

=

a

b

a

a

b

a

. Fig.8 shows the nonlinear frequency amplitude relation for different power law exponents k.
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Fig. 8 Effect of volume fraction index k on the frequency ratio of SSSS cylindrical shell panel R/2a=10 with rectangular cuts
It can be noted that power-law exponent k effects on nonlinear frequencies essentially. The pure alumina (ceramics) shell has the greatest frequencies. This is due to the fact that it has the great Young’s modulus Ec. Even though the FGM shell (k = 4, 10) contains small volume fraction of alumina it is much stiffer than the pure aluminium shell and so their frequencies are larger than corresponding ones for metal (k = 100000).
Conclusions


This paper deals with an application of the R-functions theory and variational methods (RFM) to investigate linear and nonlinear free vibrations of functionally graded shallow shells. The proposed method is a meshless one and allows to expand modes in truncated series in basis functions constructed by the R-functions theory. Advantages of this technique are absence of mesh, constructions of basis functions in analytical form for an arbitrary planform of the shells. Test problems have been solved, they validate the constructed admissible functions, the computer code and the accuracy of the method proposed. The numerical values of the natural frequencies for clamped and simply supported functionally graded cylindrical and spherical square shell panels are compared with the published results. These comparisons have demonstrated the accuracy and validation of the developed method and worked out software. Shells of the complex planform with rectangular and circular cutouts are analysed. Various new results are presented in tabular and graphical forms. Through these data it is easy to analyse the effect of boundary conditions, the shape of the plan, curvatures and volume fraction index on the fundamental and nonlinear frequencies what have been examined.
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