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Calibration of robotic manipulator systems for cone
beam tomography imaging

Thomas Blumensath, Neil O’Brien, Charles E. Wood

Abstract—Iterative reconstruction of tomographic data relies
on the precise knowledge of the geometric properties of the
scan system. Common tomography systems such as rotational
tomography, C-arm systems, helical scanners or tomosynthesis
scanners generally use motions described by few rotational or
linear motion axis. We are interested in applications in non-
destructive testing, where objects might have large aspect rations
and complex shapes. For these problems, more complex scan
trajectories are required which can be achieved with robotic
manipulator systems that have several linear or rotational degrees
of freedom.

For the geometric calibration of our system, instead of using
an approach that scans a calibrated phantom with markers
at known relative position, we propose an approach that uses
one (or several) markers with unknown relative positions. The
fiducial marker is then moved by a known amount along one
degree of freedom, thus tracing out a ”virtual” phantom. Using
the assumed spacial locations of the markers together with the
locations of the markers on the imaging plane, we use a non-
linear optimisation method to estimate the orientation of the
linear and rotational manipulator axis, the detector and source
location and the detector orientation.

Index Terms—Laminography, geometric calibration, X-ray
tomography

I. INTRODUCTION

X-ray tomographic imaging technology is a valuable tool
in medical diagnosis, scientific investigations, non-destructive
testing and dimensional metrology. Traditionally, X-ray to-
mography typically relies on circular X-ray scanning trajec-
tories where the X-ray source and detector perform a circu-
lar motion around the object under investigation. In helical
scanning, a second, linear, motion is added. In many medical
tomosynthesis systems and most semiconductor inspection
laminography systems, the X-ray source and/or the sample
perform rotational or linear motions, but now, the axis of
rotation is no longer perpendicular to the central X-ray beam.

With these scan geometries, filtered back-projection type
algorithms, such as the FDK algorithm [1] are often used
as they are fast and work well if enough projections are
available. For high quality image reconstruction, the rotation
axis location and orientation needs to be known with high pre-
cision so that these imaging systems are regularly calibrated.
Additionally, software corrections can often be performed after
data has been acquired. For example, in traditional Computed
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Tomography (CT), the nominal position of the rotation axis
can be shifted artificially in relation to the detector plane to
provide sharper reconstructed volumetric images and some
software packages use automated calibration routines that
estimate the spatial orientation of the rotation axis.

The use of these X-ray tomography systems for non-
destructive testing is limited by the shape of components
that are inspected. Whilst traditional, circular scan trajectories
work well for approximately cylindrical objects or small flat
components such as circuit boards, some fossils or small
flat panels, more complex objects require more flexible scan
trajectories with more degrees of freedom [2], especially
for high spatial resolution imaging with cone-beam systems,
where magnification depends on the ratio between the source
to detector distance and the source to object distance. High
magnification thus requires the source to be close to the
object surface, which is not achievable for many objects with
complex shapes when using few rotational degrees of freedom.

To investigate the use of micro-focus X-ray tomography
systems with complex scan trajectories, we have recently
implemented two sample manipulator systems [3]. The first
system uses a high precision hexapod and is shown in situ in
figure 1. A hexapod consists of two plates connected by six
linear actuators allowing the top plate to move, tilt and rotate
relative to the bottom plate. To increase possible motions, the
Hexapod in our system is mounted on a linear stage and an
additional rotation stage was mounted on the top plate of
the hexapod. The second system used a six axis robot arm
manipulator as commonly used in the automotive industry.

To reconstruct volumetric images from data collected with
these systems, iterative reconstruction methods are used. These
require knowledge of the system and scan geometry, which
is used to define the tomographic forward model. Whilst it
is well known that these models might not be invertible or
might be ill-conditioned unless the scan trajectories satisfy
certain constraints [4], we could show that even highly under-
sampled data can lead to useful reconstructions where full CT
is impossible [3]. However, any uncertainty in the specification
of the system geometry will lead to a reduction in spatial
image resolution. Methods to measure these parameters are
thus crucial.

A. Contribution

This paper looks at the problem of geometric calibration
of a robotic tomographic sample manipulator. We propose an
approach where calibration scans are performed to provide
geometric information and to link this to the positional encoder
data available from the manipulator’s position encoders. By
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Fig. 1: Hexapod based manipulator in our custom build X-
ray room with a 225kV micro-focus X-ray source (left) and a
400mm by 400mm flat panel detector (out of shot to right).
A linear stage (1) holds a six axis hexapod (3) on which an
additional rotation stage is mounted (2). A 600mm by 600mm
carbon fibre panel is shown mounted on our manipulator ready
for laminographic imaging of a 40mm by 40mm region of
interest. The system allows the linear translation of the sample
(x, y and z direction). The hexapod also allows rotation of
the top platform around the three orthogonal axis (α, β and
γ)). The rotation stage offers an additional axis of rotation
to extend the limited rotation range available by the hexapod.
Note, the hexapod rotation axis β might not be aligned with
the rotation stage rotation axis and the hexapod linear axis x
might not be aligned with the axis of the linear stage (1). In
our scans, source, detector and hexapod system (who sit on
their own linear axes, are moved so that a region of interest on
the carbon fibre panel is centred in the X-ray projection image.
The detector and the hexapod assembly are moved towards or
away from the X-ray source to set the require magnification
and clearance. During scanning, source and detector remain
fixed whilst the sample is moved.

detecting and tracking features in the projection images during
the calibration scan, we describe optimisation algorithms that
use the manipulator’s reported position to estimate source and
detector location, detector orientation and the position and
orientation of linear and rotational axes of the manipulator
system.

Calibration in traditional, rotation based, X-ray tomogra-
phy systems has been studied before. Purely data driven
approaches try to find the rotation axis alignment based on
projections that are offset by 180 degree [5], or optimise
quality measures such as entropy to improve the spatial reso-
lution of the reconstructed image [6], thus estimating system
parameters in the process. An alternative is the work in [7]
where a geometrical model of the object is used for calibration.
Another set of approaches uses calibration phantoms or other
measurement devices. For example, [8] and [9] use fixed test
objects for calibration, whilst atomic force microscopy has
been used in [10].

Geometric calibration for tomosynthesis systems has been
studied in [11], [12] and [13]. Calibration of these systems
is done using a phantom with several markers. The relative
position of the markers in the phantom is assumed known.
A full scan is then performed of the phantom and for each
marker, the marker centre is estimated in each projection
image. For each projection, a linear transform is then estimated
that maps the centre of each marker in 3D space to to the centre
of the marker’s projection centre [11]. This provides sufficient
geometric information to either correct each projection image
before a filtered backprojection reconstruction is computed or
to compute an accurate system matrix for each projection to
use in algebraic reconstruction. Different types of markers are
used commonly in the construction of calibration phantoms.
Tungsten [12], steel [14] or ruby [15] spheres are common and
so are hole plates [16]. A detailed analysis of the influence of
different sources of errors on the accuracy of this approach to
geometric calibration can be found in [17] and [18].

The calibration approach of [11] has also been used in
robotised inspection [19]. Calibration based on the method in
[11], however, relies on the availability of a dedicated phantom
with markers that are either placed with high precision or
whose location can be measured accurately. We propose an
approach that does not rely on such a phantom. Instead, we
assume that we have a manipulator that is either manufactured
to the required precision or whose movement accuracy has
been measured. Our work builds on the work in [8] and [9].
As in [8] and [11], we use calibration scans. However, in
contrast to the approach in [11], instead of estimating the
geometry for each projection, we only estimate the location
and orientation of the linear (translational) and rotational axes
along and around which the manipulator (and or the source
and the detector) move.

Our calibration scans will use one or several small (2mm)
chrome steel spheres. Spheres can either be mounted on an
X-ray transparent object and attached to the manipulator or
they can be attached directly to the object that is to be
scanned (either directly using tape or mounted on a acrylic
block which in turn is taped to the object). To estimate the
orientation and location of linear axis of motion, we use the
sample manipulator to move the sphere to different positions
within the X-ray cone-beam. This is equivalent to the use
of a test phantom constructed of several spheres placed at
fixed and known distances and angles. Uncertainty in the
accuracy of sphere location now depends on the accuracy
of the sample manipulator system. This uncertainty could be
assessed using co-ordinate measurement machines, though in
this work we rely on the encoder accuracy in the manipulator
and thus assume that the reported locations are the actually
achieved locations. An evaluation of biases, non-linearities and
variances in the sample manipulator’s accuracy remains to be
undertaken in the future.

The advantage of our approach is that we do not need
a calibrated phantom, however, we do assume the system’s
motion is accurately modelled with several linear or rotational
degrees of freedom the movement along which is accurately
measured by the manipulator itself. Deviations from these
assumptions cannot be corrected for with our approach.
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As in [9] and [11], we define the geometry of our system
with all its degrees of freedom and use an optimisation method
to optimise the geometric parameters based on an estimate
of the centres of the projected spheres. The difference to [9]
is that our geometry is less constrained than the traditional
cone-beam tomography geometry with a single rotation axis.
In contrast to the approach in [11], our aim is the estimation
of the axes of motion, rather than the linear projection matrix
estimated in [11]. Due to the non-linear relationship between
the movements along and around these axes and the location
of marker centres in the projection image, we do not have a
linear system that can be solved with a direct method. Instead,
we have a non-linear optimisation problem that we will solve
with co-ordinate descent.

B. Notation

We will use bold face roman characters to specify vectors
in three dimensional Euclidean space. In particular,
• S - is the source location
• D0 - is the detector location (specified as either the

detector centre or as one of the corner pixels)
• u, v and n are orthogonal vectors that define the detector

orientation, u points along detector rows and v points
along detector columns

• x, y and z are orthonormal co-ordinate axis that define
the main co-ordinate system we will be using.

• P will be a generic point in space, such as the location
of the calibration sphere.

• d(P) will be a two dimensional vector that defines the
location of the projection of point P in terms of the two
row and column detector co-ordinate vectors. We will
write d1 as the component of d(P) in the direction u
and d2 as the component of d(P) in the direction v.

All vectors will be in relation to a co-ordinate system with zero
point at one of the sphere locations in one of the calibration
scan locations. The directions of the coordinate axis are then
the directions of the linear sample manipulator movement
axes, which are assumed to be orthogonal.

II. SYSTEM SETUP

The geometry of an X-ray cone-beam projection system can
be defined by the source location S, the location of the detector
D0 and by a local co-ordinate system on the detector defined
by orthogonal vectors u and v, so that each point on the
detector can be written as DP = D0+d1u+d2v. Note that u
and v also define the orthogonal vector n = u×v. In general,
source and detector locations can change from projection to
projection, though for simplicity, we assume that the source
and detector location and orientation remain fixed during the
scan1.

The manipulator is assumed to provide linear motions along
three orthogonal axis x, y and z as well as rotational motion
around a rotation axis r. We restrict the derivation to a single

1To extend our approach to allow movement of source and detector,
additional calibration scans that link the source and detector movement axes
to the system co-ordinates can be introduced.

rotation axis, though the extension to several axes can follow a
similar approach to the one we use here. We assume the three
linear axes x, y and z form the basis of our global co-ordinate
system, that is, we express all other vectors as combinations
of x, y and z.

III. CALIBRATION SCANS

In order to perform geometric calibration, we either need a
calibrated test object with several features distributed in space
or we use an object with a single feature that is moved to
different spatial locations using the manipulator. We follow
the second approach which requires some form of calibration
of the manipulator itself. Whilst we have done some initial
calibration experiments with one of our manipulators, we
assume that the accuracy of the manipulators is high enough
and that the positional readouts from the internal positional
encoders is accurate to the required precision.

As test object, we used either ruby spheres or 2mm grade
10 hardened 52100 Chrome Steel ball bearings that were
either taped to the test object or glued onto some other low
attenuating holder which in turn was taped to he test object.
Whilst the cone-beam projections of spheres are not exactly
circular [20], we make this assumption.

Our experiments are performed in a purpose build Nikon
metrology X-ray room. We use a Nikon 225kV micro focus
X-ray source, a Perkin Elmer XRD 1621 xN3 ES detector
with CsI scintillator (16 bit, 0.2mm pixel size and 2048 x
2048 pixel image size). Tube voltage was set to between 80
and 90 kV with power adjusted to between 13W and 52W,
depending on the object in the X-ray beam.

A. Calibration of linear axis

We use a single sphere to estimate source location S,
detector location D0 and detector orientation (roll, yaw and
pitch) specified by the orthogonal vectors u and v. This is
done relative to the three linear axes of the manipulator x,
y and z which form the orthogonal basis of our co-ordinate
system. A calibration scan is used where projection images are
taken at different spatial positions with different values for x,
y and z. We use 18 projections, taken with the manipulator
performing linear motions to points xx + yy + zz, where
x ∈ {−dx, 0,+dx}, y ∈ {−dy, 0,+dy} and z ∈ {−dz, 0, }.
The values for dx, dy and dz depend on the magnification used
in the scan and are chosen so that all points are projected onto
the detector. We did not use z = +dz to avoid collision with
the X-ray source.

In our experiments, we scanned a range of composite
panels of varying dimensions (with thicknesses between 5mm
and 10mm and hight and width between 20mm by 20mm
to 600mm by 600mm. Panels were made predominately of
carbon fibre reinforced polymer, but some contained additional
copper mesh layers and different aerospace paint systems. For
the calibration scan, the sphere was attached the composite
panel (the sample).
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B. Calibration of rotation axis

To calibrate the rotation axes, we use the same sphere at-
tached to the same location on the sample as in the calibration
of the linear axis. We also use two additional spheres mounted
to the manipulator in different positions. We then rotate the
axis through a range of rotational offsets (including a rotation
of 0). The position of the sphere used for both, linear and
rotational calibration should be in the same position when the
rotation is 0 and the linear shift is 0. This is important to allow
us to link the position of the rotation axis to the co-ordinate
system x, y and z. Both calibration scans are thus performed
one after the other with at least one sphere staying in place.

C. Analysing the projection data

We estimate the centres of the balls by manually identifying
the different features in the image. This is done using a graphic
user interface in which the user clicks on the sphere in each
image. A mask is generated around this pixel that is large
enough to contain the entire sphere. Once the different features
are identified in each image, a neighbourhood of each feature
is selected using the masks. This region is then filtered using
a gaussian filter with a standard deviation of five pixels before
canny edge detection detects the outline of the spheres. After
outlier detection, the edge points are fitted with a circle whose
centre is used as the centre of the projected sphere.

The results are shown in figure 2, where we show six differ-
ent projection images after linear (top) and rotational (bottom)
displacement of the sample. Overlaid are all estimated sphere
centres for the linear (top) and rotational (bottom) motions2.
For the linear motion, we have used a single sphere to trace a
3 by 3 grid of locations at two magnifications. For the rotation,
we have use seven projections at different rotation angles and
estimated the centres of three spheres whenever these were
projected onto the detector (On occasion, a sphere might be
rotated fully or partially outside the cone beam so that no
data is available for this sphere for this projection). Centres
for different spheres are shown in different colours. In the
example shown in figure 2, the spheres were attached to the
object that was to be scanned subsequently. The object here
is a 300mm by 300mm by 10mm carbon fibre panel with a
copper mesh layer as used in composite aircraft manufacture.
One sphere was taped directly to the panel (the lower sphere
in all images) whilst the other two spheres were attached with
epoxy glue to a perspex block into which two shallow conical
holes were machined to better secure the spheres. The epoxy
block was then taped to the sample. The shadow of the epoxy
block is visible in figure 2 as a darker square region.

IV. GEOMETRIC CALIBRATION

To estimate the system’s geometric parameters, we model
the centre of each sphere as a point in 3D space, which we
parameterise as a function of the unknown system parameters
and the linear shifts or rotation angles. We then model the

2Note that when plotting the crosses that identify sphere centres, the crosses
are not exactly centred on the spheres. This is an artefact of plotting the figures
and does not reflect the actual estimates of the sphere centres.

Fig. 2: Flat field corrected and log transformed x-ray intensity
images at three different linear off-set locations (top) and three
rotations (bottom) for a region of interest view of a carbon
fibre panel with a coper mesh layer. The panel extends across
the entire image in all views. Three chrome steel ball bearings
(dark circles) are attached, two mounted on a perspex block
(darker grey area in the images). X-ray source power and
voltage were adjusted to give a good contrast between the ball
bearings and the panel. For the linear off-set calibration, we
only use the lower sphere. The projection of the sphere and its
identified location (+) are shown (from left to right) in the top
right, central and bottom left locations. The other (+) in the
top row indicate the estimated sphere locations for the other
off-sets. In the bottom row, we show projections with three
rotational off-sets. We use all three spheres for calibration and
the estimated locations of the sphere centres are shown with
different colours labelling different spheres. Axis labels are in
mm. The copper mesh pattern produces aliasing artefacts in
the low resolution images displayed in the pdf version of this
manuscript, these are not visible in the original images.

projection of these points onto the detector plane. We optimise
the unknown system parameters to minimise the distance
between the predicted locations of the points on the plane and
the actually observed centre positions of the projected spheres.

A. Cone-beam projection

Let us start by modelling the projection of a point in 3D
space onto the detector. For any point P that lies between the
source and the detector, the cone-beam projection of P onto
the detector can then be written in two ways:

D0 + d1(P)u+ d2(P)v (1)

and
S+ α(P− S), (2)

where α is a positive scalar. This is shown in figure 3. Let us
also define the point DS , which is the orthogonal projection of
the source location onto the detector. To derive an expression
for α, we can then consider the two triangles D0SDS and
DPSDS , which share the side SDS .

Note that the line SDS is parallel to the normal of the
detector plane, which is defined as n = u×v. Let us assume
that u and v are orthonormal. This implies that n is of unit
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Fig. 3: 2D view along the direction v of the geometry of the
cone-beam projection setting.

length as well. Let us also assume that n points from the
detector towards the source, that is, 〈DS − S,n〉 < 0, where
〈·, ·〉 is the inner product. The length of the vector SDS is thus
−〈D0−S,n〉. Similarly, the component of P−S in direction
n is |〈P − S,n〉|, where the negative sign comes from the
assumption that P lies between the source and the detector.
If we instead assume that n points away from the source,
then the signs are in the opposite direction. In either case, the
ratio 〈D0 − S,n〉/〈P− S,n〉 is always positive whenever the
points P lie between the source and the detector.

As DPSDS and SPS+ n〈P− S,n〉 are similar, we have
the relationship:

α
‖P− S‖
‖DS − S‖

=
‖P− S‖

‖n〈P− S,n〉‖
=
‖P− S‖
−〈P− S,n〉

(3)

Which, using ‖DS − S‖ = −〈D0 − S,n〉 means that

α =
〈D0 − S,n〉
〈P− S,n〉

. (4)

We thus have the following equation that links the detector
co-ordinate location of a projected point to the location of this
point:

d1(P)u+ d2(P)v = (S−D0) +
〈D0 − S,n〉
〈P− S,n〉

(P− S). (5)

Taking inner products with u and v and using the fact that
〈u,v〉 = 0 and 〈u,n〉 = 0, we thus get the following
equations:

d(P) =

[
d1(P)
d2(P)

]
=

[
〈S−D0,u〉+ 〈D0−S,n〉

〈P−S,n〉 〈P− S,u〉
〈S−D0,v〉+ 〈D0−S,n〉

〈P−S,n〉 〈P− S,v〉

]
(6)

This links the location of any point P to the location of the
projection of this point in terms of the detector co-ordinates u
and v. This mapping is a function of the unknown geometric
parameters S, D0, u and v.

B. Mapping linear and rotational motion to points in 3D space

We assumed that the linear motion defines a linear co-
ordinate system with three orthonormal axes in 3D. We thus
assumed we know the locations of the points P for the
different linear motions.

For the rotational motion, we know that one of the points
P is at the centre of the co-ordinate system. However we

do not know the spatial position of the other points, all we
know is that they are rotated versions of points in 3D space
(some are rotated versions of the zero point). Importantly, the
rotation is around an unknown axis of rotation which needs
to be estimated.

For sphere i, let Pki be the actual location of the centre of the
sphere in 3D space after a rotation by some angle θk. Each
sphere is assumed to be rotated around the same rotational
axis. We use the following way to describe the location of
points Pki in terms of this axis

Pki = p0 + αir+ aiq
k
i , (7)

where r is the axis of rotation, p0 specifies the location of this
axis in relation to our co-ordinate system and vectors qki (θ

k
i )

are unit vectors that are orthogonal to the rotation axis which
are rotated around this axis by θk relative to some initial vector
qki (0). As this model is over-specified, we assumed that r
and qki (θ

k
i ) are unit vectors. Furthermore, we fix one of the

co-ordinates of p0. We chose the direction which is roughly
parallel to the expected axis of rotation. The parameter ai thus
specifies the distance of the sphere from the axis of rotation.
Similarly, the parameters αi specify the height of the plane of
rotation along r above point p0.

Let I = [1, 0, 0]T . To define the vectors qki , we define

qo(r) =
I− r/‖r‖2IT r
‖I− r/‖r‖2IT r‖

(8)

which is a unit norm vector orthogonal to r (We assumed that
the rotation axis is not parallel to the x axis of our co-ordinate
system). Let Rθ(P) be the affine transformation that describes
the rotation of a point P around the axis defined by p0 and
r. The vectors qki are then

qki = Rθ0i+θk(qo), (9)

where θk is the rotation angle used when taking the kth

projection and where θi0 is an initial rotation that depends on
the location of the sphere relative to the rotation axis.

With this model, we thus have to estimate the following
parameters: p0, r, αi, ai and θ0i . The first two vectors specify
the location and orientation of the rotation axis, whilst the
other parameters define the location of the spheres relative to
this axis.

V. ESTIMATION OF PARAMETERS FROM LINEAR MOTIONS

In the calibration experiment a sphere is moved to differ-
ent points along three orthogonal axes. We assume that we
know the distances between the sphere centres after each
motion. We can then define a lab co-ordinate system, that
is, we have a co-ordinate system in which the centre loca-
tions are known, that is, we know P1,P2, · · · ,PN . Assume
all spheres have been projected onto the detector to points
d(P1),d(P2), · · · ,d(PN ) which have been estimated using,
for example, our circle fitting procedures. Assuming the de-
tector rows and columns are orthogonal, we define D0 to be
the bottom left (as seen from the source) pixel location in the
lab co-ordinate system. We define u to point along the pixel
rows and v along pixel columns. The estimated centres of the
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sphere projections are given in detector co-ordinates, that is,
for sphere i, we have a vector di.

To estimate the geometry of the cone-beam projection, we
define the following cost function:

1

N

∑
i

〈di − d(Pi),di − d(Pi)〉.

We would like to minimise this cost with respect to the vectors
S, D0, u and v under the constraints that

〈u,u〉 = 1, (10)

〈u,v〉 = 0, (11)

n = u× v (12)

and
〈D0 − S,n〉
〈P− S,n〉

> 0. (13)

Different approaches to the optimisation of this cost func-
tion are possible. We could use a gradient descend method,
however, exploratory experiments have shown that a carefully
designed co-ordinate descend method with line search proce-
dure was faster and this is the approach we present here.

We initialise all unknown geometric parameters with esti-
mates taken from our scanner’s geometric setup. We have set
up our system so that two of the axis of the manipulator run
roughly parallel to the two axes of the detector. We also have
mounted the sphere so that it is projected close to the centre
of the detector. We thus initialise
• u is set to the x-direction of our manipulator axis
• v is set to the y-direction of our manipulator axis.
• the position of the source location is set to zero in the x

and y direction
• the detector position D0 is set to zero in the x and y

direction
• the source to object and source to detector distances are

set to arbitrary values which in turn define the source and
detector z coordinates.

We know that point P0 = [0, 0, 0]T projects onto the
detector at point d0. We thus constrained our optimisation so
that this is always satisfied. To do this, we start optimisation
by moving the detector location D0 so that the point [0, 0, 0]T

projects onto d0. To simplify notation, we re-parameterise the
detector co-ordinate system by defining the zero point of the
detector co-ordinate system to be the point on the detector
onto which the first sphere is projected. Let D0 be that point,
that is D0 = D0 + d0[1]u + d0[2]v. Let di be the adjusted
coordinates of the measured projections such that

D0 + di[1]u+ di[2]v = D0 + di[1]u+ di[2]v. (14)

With this parameterisation, we can then optimise system
properties one at a time whilst keeping the projection of P0

fixed on point D0. S and D0 are defined through the vectors
S and D0 − S which are parallel as the points S, D0 and
[0, 0, 0]T lie on a line by definition. If we move S along this
line closer to D0, we in effect change the magnification of
the projections. If we move both S and D0 so that the ratio
between the length of (SP) and the length of PD stays the

same, then the magnification stays the same but we change
the effective cone angle used in the projection. We can also
rotate S and D0 around the co-ordinate system centre (this
gives us two parameters to optimise) and we can rotate u and
v around point D0 (giving two more parameters).

We then iteratively use bracketing line search procedures
[21] to optimise

1) Magnification
2) Cone angle
3) Rotation of S, D0 and v around an axis parallel to u

going through the coordinate centre.
4) Rotation of S, D0 and u around an axis parallel to v

going through the coordinate centre.
5) Rotation of u and v around D0 keeping u and v in the

detector plane.
6) Rotation of v around D0 and axis u.
In the first iteration, we only optimise based on the pro-

jections for which the points P where in one plane, i.e.
Pi = [·, ·, 0]T which provided a rough initial estimate of all
parameters apart from the source to detector distance.

We then optimise with respect to all parameters, using
bracketed line search optimise one randomly selected param-
eter at a time. This is in effect a co-ordinate descent method
to optimise the non-linear cost function [21].

VI. OPTIMISATION OF ROTATION AXIS

Once a co-ordinate system has been established together
with the source and detector locations as well as the detector
co-ordinate axis, the use of rotations in many tomographic
trajectories requires the estimation of one or several rotation
axis.

We again parameterise the problem so that P0 projects onto
D0 and get initial estimates of the system parameters by
• Setting the rotation axis is parallel to the y axis.
• Initialising orientation and location of the axis by opti-

mising only the projections from the sphere that at θ00 is
at point P0.

• Estimating α0 by projecting the initial estimate of the
rotation axis onto the detector assuming r to be known.

• Projecting all points d(Pi) on the projector onto this
projection of the rotation axis. This provides an initial
estimate of α0.

This is done for all spheres
We then use co-ordinate wise bracketing line search to

estimate the rotation axis location and orientation.
During the optimisation, we fix the position of the rotation

axis by using the fact that one sphere is at point [0, 0, 0] at a
rotation of 0. This constraint defines the following equation

0 = p0 + α1r+ a1q
0
i , (15)

which allows us to compute a1, p0[1] and p0[3] for any α1

a θ0. Remember that θ0 defines the vector q0
i in relation to

r. In fact, we use the above equality every time we update θ0
and q0

i to update the location of the rotation axis.
We then estimate the vector q0 for this sphere which

is parameterised through two parameters, an initial rotation
around r and its length a0. We perform a two stage line search,
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for each proposed value of a0, we run a bracketed line search
to find the optimal initial rotation. The cost is always evaluated
such that for any combination of length and initial rotation, the
vector p0 is shifted so that point P0 = [0, 0, 0]T . Note that the
initial rotation cost will be a circular cost function that is 2π
periodic. The initial bracket for the line search is thus always
made up of two points that are 2π apart plus a point between
them that has a lower cost. This way we are able to explore all
possible values of rotation. Also, sometimes, the line search
for the length of the vector returns a negative value at which
point we change the sign of this length together with the initial
rotation angle to which we add π. Initially this optimisation
is done looking only at the error between the locations of
the projected sphere centres for this one sphere. Optimisation
is stopped once this distance is at a minimum and does not
change significantly any more.

After this initial optimisation, we have an estimate of p0

which we then use to initialise the position of the other
spheres. The only difference is that we also do an additional
bracketed line search for the values of αi. We first optimise
the initial rotation of the vector and then optimise αi, both
using bracketed line searches.

Fine tuning for these parameters is performed similar to
the approach used for the linear axis using a randomised
coordinate descend algorithm with bracketed line search, with
the difference that now the dependence of the projected
sphere locations on the rotation axis parameters follows a
different form. Note that when estimating a0 and θ0 we are
automatically updating p0 as well. Only once the cost function
has converged with sufficient precision do we add bracketed
line searches that rotate the rotation axis r around q0(r) and
p0(r) = r× q0(r).

VII. RESULTS

To analyse the performance of the method, we performed
several calibration scans using both manipulators. Several
aspects of the method are of interest and we explore the
convergence, how well the method works over a range of
scans, how repeatable the measurements are and, finally, how
much the calibration improves image quality. The main perfor-
mance measure we are using will be in terms of the average
error between the measured locations of the projections of
the spheres and the estimated projections for the assumed
geometry. Detector pixels were 0.2mm wide and high and we
express the error also in mm. Thus, errors below 0.2mm are
smaller than the pixel size.

A. Convergence

1) Calibrating linear axis: To see how well the method
performs and converges, we show the difference between
measured and estimated centre locations on the detector in
figure 4. The first panel shows the difference after an initial
estimation of the magnification and cone angle whilst the
second panel shows the final result after 35 iterations. Figure
5 shows the speed with which the method converges. It only
takes about 5 iterations to get a sub-pixel average error.
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Fig. 4: Measured sphere centres on detector (red +) and esti-
mated centres for optimised geometry (blue circle). Average
distance between observed and estimated centres is 0.092mm,
which is half the width of a pixel.
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Fig. 5: Convergence speed of the method plotted on a loga-
rithmic y-axis. An error of less than 0.1mm is achieved after
only 4 iterations.

2) Calibrating rotational axis: Results for the calibration
of the rotation axis are similar. To show the difference be-
tween the initial estimates of the projected sphere centres
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and achieved accuracy after convergence, we show both the
estimated (coloured circles) and measured (red crosses) centres
in figure 6.
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(b) After convergence

Fig. 6: Measured sphere centres on detector (red +) and
estimated centres for optimised geometry (blue circle) for the
three spheres used to estimate the location of the rotation axis.
Average distance between observed and estimated centres is
0.033mm, which is a sixth of the width of a pixel.

B. Performance for different scans

The average accuracy in mm achieved in different scans
is given in table I, which shows sub-pixel accuracy for all
but one scan. Accuracy for the robot was in general worse
than that for the Hexapod manipulator. Note that scan 17
was performed with a magnification of 5, whilst all other
scans used a magnification of 10. At the lower magnification,
positional errors are magnified less which explains the error
for scan 17 which is less than the error observed in the other
two robot arm scans.

Accuracy of the limited angle calibrations, which measure
the average accuracy of the sphere centres from the rotational
calibration scan is significantly smaller than the errors in

the raster calibration scans. This is likely to be due to the
more stable rotation axis in our system. The rotation stage is
mounted on top of the hexapod. Thus, when using this axis,
all other axis do not move. For the raster scan, we however
used the linear axis together with the hexapod to perform the
required motion leading potentially to additional compound
inaccuracies. We also assumed that our linear axes are linear
and orthogonal and deviation form these assumptions will lead
to further uncertainty in the results.

C. Repeatability

For some of the raster scans, we performed a calibration
scan before and after the full scan. This allows us to compare
repeatability of the calibration process and the repeatability of
the manipulator. Table II shows the average repeatability in
the estimation of the sphere centres. We used two approaches
to compare repeatability. For scans 1 to 5, we performed two
calibration scans, where the sphere was attached to the sample
and a 3 by 3 grid of points was imaged in a single plane. We
then compared the repeatability of this grid of projected points.
As the spheres were removed for the full scan, the spheres
were not attached to the same points for both calibration. We
thus shifted the second set of points to have the same mean to
the mean location of the first set of points. We then compute
the difference between the two measurements and calculate a
mean derivation as well as a standard deviation in this error.
However, as the spheres were mounted in different locations,
this introduced some additional errors due to the cone angle of
the beam. For the last two scans (scans 6 and 7) we performed
two full calibration scans, used these to estimate source and
detector location/orientation. Once we have the two sets of
estimated source and detector locations, we then used these to
simulate projected points. This ensured that the same locations
were used to compute the two sets of observations. Both results
show that there was an error of between one and two pixels
in the location of the estimated sphere centres.

Scan manipulator motion accuracy (mm)
1 hexapod raster 0.0923
2 hexapod raster 0.0981
3 hexapod raster 0.0424
4 hexapod raster 0.0627
5 hexapod raster 0.0628
6 hexapod raster 0.0639
7 hexapod raster 0.0537
8 hexapod raster 0.1187
9 robot raster 0.2831

10 hexapod raster 0.1433
11 hexapod raster 0.1079
12 hexapod raster 0.1324
13 hexapod raster 0.1139
14 hexapod raster 0.1430
15 hexapod raster 0.1497
16 robot raster 0.1736
17 robot raster 0.0816
18 hexapod lim. angl. 0.0316
19 hexapod lim. angl. 0.0344

TABLE I: Average accuracy after optimisation for a range
of scans with different manipulators and for different scan
trajectories.
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This is thus the expected spatial resolution limit for any
reconstruction, as the uncertainties in the estimated source and
detector locations will mean that we will have errors in the
specification of our geometry of the order of a pixel.

It is interesting to observe that there do not seem to be
significant differences in the errors between the robot arm and
the hexapod. Also of note is the fact that the error in the
repeatability seems to be large than the error in the calibration.

To investigate the influence that these errors can have on
the estimation of the location of the source and detector, we
conducted a simulation study where we defined a geometry
similar to the geometry in the experiments used above with
a magnification of about 10. We then calculated the exact
locations of a grid of points projected onto he detector. We
added different amounts of gaussian noise to these points. The
errors in the location of the source and the detector are shown
in table III. These results are the standard derivation in the
error over several repeated experiments. These errors are linear
in the amount of noise added to the original locations. The
error in the estimation of the source location has a standard
deviation that is roughly ten times the error in the projected
grid of points, whilst the error in the detector location is
roughly of the same magnitude. The error in the orientation
of the detector is measured not in mm but in radians and
measures the rotation of the estimated vector relative to the
true vector.

D. Sphere centre detection performance

We also analysed the performance of the sphere fitting pro-
cedure. We used canny edge detection and the parameters of
the edge detection algorithm did not influence the performance
significantly as long as we reliably estimated the edge of the
sphere of interest without the inclusion of other edges, which
we ensured with our masking and outlier detection approach.

The background on the projection image did however have
an influence on the estimation of the sphere centre. As we
attached the spheres to different samples, the variations in the

Scan manipulator accuracy (mm)
1 robot 0.2658
2 robot 0.4388
3 hexapod 0.2896
4 robot 0.3150
5 robot 0.1332
6 hexapod 0.2207
7 hexapod 0.4333

TABLE II: Error estimates in the location of the sphere centres
when repeating the calibration scans.

std=0.1 std=0.5 std=1 std=2
Quantity

S 1.1522 6.0109 12.5913 23.6311
D0 0.1336 0.6985 1.4583 2.7480
u 0.0010 0.0055 0.0103 0.0182
v 0.0009 0.0048 0.0080 0.0185

TABLE III: Standard deviation of the error in the different
geometric vectors for different amounts of noise added to the
estimated sphere centre locations.

sample’s attenuation were observed to lead to edge estimates
that were not always circular. Care should thus be taken when
attaching the sphere to either use a part of the sample with
relatively constant attenuation or to remove the sample and
mount the sphere differently.

The applied Gaussian smoothing was observed to have some
influence on the accuracy of the centre estimation process. To
evaluate the influence of Gaussian smoothing, we looked at the
error after optimisation of the geometry between the estimated
sphere centres and the observed sphere centres. Results for
two scans are shown in table IV for different amounts of
smoothing. We see that a smoothing kernel with standard
deviation of about 3mm (or 15 pixels) provides the most
accurate results.

E. Improvement in image quality

To compare the change in image quality with and without
calibration, we did two reconstructions of a scan acquired
from a carbon fibre composite panel using a raster scan
trajectory. In the un-calibrated reconstruction, we assumed
that the motion in the raster scan was parallel to the detector
and that the detector was orthogonal to the vector from the
source to the detector centre. Note that the estimation of
the source to detector distance is not important as a change
in this parameter simply re-scales the reconstructed volume
in the source to detector distance. Results with and without
calibration are shown in figure 7, where more detail is visible
in the reconstruction with calibration. Image sharpness has
been used previously as a measure of calibration accuracy [22].
We have measured sharpness as a fraction of high frequency
image components relative to low frequency components. With
this measure, we observed that calibration improved image
quality for all scans we performed with calibration. Note that
reconstruction of limited angle scans was not possible without
an estimation of the location of the rotation axis and so for
these scans, comparison to uncalibrated reconstruction was not
possible.

F. Conclusions

The estimation of geometric properties for a tomographic
sample manipulator system with several degrees of freedom

Scan
std 0.2 0.4 0.6 0.8 1

1 0.1207 0.1203 0.1207 0.1205 0.1187
2 0.0567 0.0557 0.0532 0.0540 0.0537

std 1.2 1.4 1.6 1.8 2
1 0.1178 0.1172 0.1138 0.1094 0.1030
2 0.0542 0.0578 0.0529 0.0569 0.0577

std 2.2 2.4 2.6 2.8 3
1 0.1022 0.1033 0.1008 0.1057 0.1038
2 0.0565 0.0559 0.0577 0.0548 0.0606

std 3.2 3.4 3.6 3.8 4
1 0.1056 0.1083 0.1143 0.1207 0.1269
2 0.0568 0.0580 0.0592 0.0598 0.0603

TABLE IV: Average error (accuracy) after optimisation be-
tween observed and estimated sphere centres for different
levels of Gaussian smoothing (std in mm).
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(a) Reconstruction with calibration.

(b) Reconstruction without calibration.

Fig. 7: Detail in a slice of the reconstructed volume with
(a) and without (b) calibration. The images show an approx-
imately 2mm by 2mm region of a carbon fibre panel. The
calibrated reconstruction more clearly shows defects of interest
such as inclusions (bright spots in lower circle) and the sharper
edges to air pockets (top circle).

poses several challenges. Precise geometric information is
required for good volumetric reconstruction. We have ex-
plored an approach that uses one or several spheres that are
imaged with the manipulator in different configurations. By
choosing the configurations carefully, we could show that
the projection images contain sufficient information for an
accurate estimation of parameters such as source location,
detector location and orientation and the alignment of linear
and rotational manipulator axes. We explored this approach
using two manipulator, a six axis robot arm as well as a
hexapod system. Our approach allowed us to estimate geo-
metric properties with sufficient accuracy to guarantee average
geometric errors in the projected image to be below pixel size.
This provided in plane spatial resolutions in our laminography
scans performed with ten times magnification, that were well
below 100 micrometers.

REFERENCES

[1] L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone-beam
algorithm,” Journal of the Optical Society of America A, vol. 1, no. 6,
pp. 612–619, 1984.

[2] N. O’Brian, R. Boardman, I. Sinclair, and T. Blumensath, “Recent
advances in x-ray cone-beam computed laminography,” Journal of X-
ray science and technology, vol. 24, pp. 691–707, 2016.

[3] C. Wood, N. O’Brian, A. Denisov, and T. Blumensath, “Com-
puted laminography of cfrp using an x-ray cone beam and robotic
sample manipulator systems,” Submitted for publication, preprint at
https://eprints.soton.ac.uk/415613/, 2018.

[4] P. Grangeat, “Mathematical framework of cone beam 3d reconstruction
via the first derivative of the radon transform,” in Mathematical Methods
in Tomography, ser. Lecture Notes in Mathematics, G. Herman, A. Louis,
and F. Natterer, Eds., vol. 1497. Berlin, Germany: Springer, 1991.

[5] D. Panetta, N. Belcari, A. D. Guerra, and S. Moehrs, “An optimization-
based method for geometrical calibration in cone-beam ct without
dedicated phantoms,” Physics in Medicine and Biology, vol. 53, no. 14,
pp. 3841–3861, 2008.

[6] Y. Kyriakou, R. Lapp, L. Hillebrand, D. Ertel, and W. Kalender,
“Simultaneous misalignment correction for approximate circular cone-
beam computed tomography,” Physics in Medicine and Biology, vol. 53,
no. 22, pp. 6267–6289, 2008.

[7] I. B. Tekaya, V. Kaftandjian, F. Buyens, S. Sevestre, and S. Legoupil,
“Registration-based geometric calibration of industrial x-ray tomography
system,” IEEE Transactions on Nuclear Science, vol. 60, no. 5, 2013.

[8] F. Noo, R. Clackdoyle, C. Mennessier, T. White, and T. Roney, “Analytic
method based on identification of ellipse parameters for scanner cali-
bration in cone-beam tomography,” Physics in Medicine and Biology,
vol. 45, no. 11, pp. 3489–3508, 2000.

[9] C. Mennessier, R. Clackdoyle, and F. Noo, “Direct determination of
geometric alignment parameters for cone-beam scanners,” Physics in
Medicine and Biology, vol. 54, no. 6, p. 16331660, 2010.

[10] P. Kalukin, B. Winn, Y. Wang, C. Jacobsen, Z. Levine, and J. Fu,
“Calibration of high-resolution x-ray tomography with atomic force
microscopy,” Journal of Research of the National Institute of Standards
and Technology, vol. 105, no. 6, pp. 867–874, 2000.

[11] X. Li, Z. Da, and B. Liu, “A generic geometric calibration method
for tomographic imaging systems with flat-panel detectors–a detailed
implementation guide,” Med. Phys., vol. 37, no. 7, pp. 3844–3854, 2010.

[12] D. Scaduto and W. Zhao, “Determination of system geometrical param-
eters and consistency between scans for contrast-enhanced digital breast
tomosynthesis,” in Breast Imaging, International Workshop on Digital
Mammography, 2012, pp. 24–31.

[13] H. Miau, H. Zhao, and H. Liu, “A phantom-based calibration method
for digital x-ray tomosynthesis,” J. X-ray Sci. Technol., vol. 20, no. 1,
pp. 17–29, 2012.

[14] J. Calliste, G. Wu, P. Laganis, D. Spronk, H. Jafari, K. Olson, B. Gao,
Y. Lee, O. Zhou, and J. Lu, “Second generation stationary digital breast
tomosynthesis system with faster scan time and wider angular span,”
Med. Phys., vol. 44, no. 9, pp. 4482–4495, 2017.

[15] A. Kraemera and G. Lanza, “Assessment of the measurement procedure
for dimensional metrology with x-ray computed tomography,” in 14th
CIRP Conference on Computer Aided Tolerancing (CAT), 2016, pp. 362–
367–31.

[16] J. Choi, S. Hwang, and Y. Choi, “Focal spot calibration in a digital breast
tomosynthesis system,” J. of the Korean Phys. Soc., vol. 60, no. 9, pp.
1457–1463, 2012.

[17] X. Li, Z. Da, and B. Liu, “Sensitivity analysis of a geometric calibration
method using projection matrices for digital tomosynthesis systems.”
Med. Phys., vol. 38, no. 1, pp. 202–209, 2011.

[18] J. Mainprize, A. Bloomquist, X. Wang, and M. Yaffe, “Dependence of
image quality on geometric factors in breast tomosynthesis.” Med. Phys.,
vol. 38, no. 6, pp. 3090–3103, 2011.

[19] H. Banjak, M. Costin, C. Vienne, and V. Kaftandjian, “X-ray computed
tomography reconstruction on nonstandard trajectories for robotized
inspection,” in 19th World Conference on Non-Destructive Testing, 2016.

[20] R. Clackdoyle and C. Mennessier, “Centers and centroids of the cone-
beam projection of a ball,” Physics in Medicine and Biology, vol. 56,
no. 23, pp. 7371–7391, 2011.

[21] S. Boyd and L. Vandenberghe, Convex Optimisation. Cambridge
University Press, 2004.

[22] D. Panetta, N. Belcari, A. Del Guerra, A. Bartolomei, and P. Salvadori,
“Analysis of image sharpness reproducibility on a novel engineered
micro-ct scanner with variable geometry and embedded recalibration
software.” IPhys Med., vol. 28, no. 2, pp. 166–173, 2012.


