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Abstract

The World Wide Web has had a notable impact on a variety of epistemically-relevant activities,

many of which lie at the heart of the discipline of knowledge engineering. Systems like Wikipedia,

for example, have altered our views regarding the acquisition of knowledge, while citizen science

systems such as Galaxy Zoo have arguably transformed our approach to knowledge discovery.

Other Web-based systems have highlighted the ways in which the human social environment can

be used to support the development of intelligent systems, either by contributing to the provision

of epistemic resources or by helping to shape the profile of machine learning. In the present paper,

such systems are referred to as ‘knowledge machines’. In addition to providing an overview of the

knowledge machine concept, the present paper reviews a number of issues that are associated with

the scientific and philosophical study of knowledge machines. These include the potential impact

of knowledge machines on the theory and practice of knowledge engineering, the role of social

participation in the realization of intelligent systems, and the role of standardized, semantically-

enriched data formats in supporting the ad hoc assembly of special-purpose knowledge systems

and knowledge processing pipelines.

1 Introduction

Knowledge engineering is a discipline that concerns itself with the processes, methods and tools

by which knowledge is acquired, represented and utilized, typically for the purposes of building

and deploying knowledge-based systems (Studer et al. 1998, Schreiber et al. 2000). The World

Wide Web (Web) has had a profound impact on the shape of many of the activities that lie at

the heart of this endeavor (Gil 2011, Schreiber 2013). These include, most notably, the approach

that is adopted with respect to the acquisition of knowledge, as well as the way in which many

forms of intelligent, knowledge-based system are developed and deployed. The impact of the Web

is perhaps most keenly felt in the case of the Semantic Web—the set of Web-based resources

that seek to make the semantic content of syntactic, computational elements both explicit and

amenable to advanced forms of machine-based processing (Berners-Lee et al. 2001, Shadbolt et al.

2006). The Social Web, however, has also played its part in transforming the scope and focus

of traditional knowledge engineering efforts. Crucially, with the advent of Web 2.0 capabilities

the Web has emerged as an important platform for large-scale social participation, and this

has arguably transformed our understanding of the role of socio-computational systems in the

realization of knowledge processes. As Brian Gaines (2013), one of the leading figures in knowledge

engineering, rightly notes, “In our era, computer technology and human-computer interaction

have come to play a major role in knowledge processes, facilitating a level of knowledge generation,

dissemination, access and utilization beyond that we have ever known” (p. 135).

One of the recent foci of research attention within the Web and Internet Science (WAIS)

community is a class of systems called ‘social machines’ (Hendler & Berners-Lee 2010, Shadbolt

et al. 2016, Smart & Shadbolt 2014, Smart et al. 2014). These are systems that feature the



2 p. smart

synergistic inter-play of resources that are drawn from both the technological and the social

domains. In the case of the Web, it has been suggested that social machines should be seen as

the locus of mechanisms that combine the activities of conventional computational resources (i.e.,

the technological elements of the Web) with the activities of multiple human agents (Smart &

Shadbolt 2014). An important category of social machines are concerned with the realization

of knowledge processes and the generation of epistemic outcomes. In the present paper, such

systems are referred to as ‘knowledge machines’. The epistemic power and potential of knowledge

machines is evidenced by systems such as Wikipedia, which provides a compelling example of the

role social machines can play in knowledge acquisition (see Shadbolt 2013). It is also evidenced

by a variety of lesser known systems that support the discovery of knowledge (see Section 3) or

that implement knowledge processing routines (see Section 6).

The main aim of the present paper is to outline the concept of knowledge machines (see

Section 2) and provide concrete examples of systems that qualify as knowledge machines (see

Section 3 and Section 6). The paper also seeks to highlight the potential transformational impact

of knowledge machines with respect to the discipline of knowledge engineering (see Section 2), the

nature of the mechanisms that realize knowledge-relevant processes (see Section 5 and Section 7),

the role of social participation in the realization of knowledge-oriented processing routines (see

Section 6), and the role of standardized, semantically-enriched data formats in supporting the

ad hoc assembly of special-purpose knowledge machines and knowledge processing pipelines (see

Section 8). The paper concludes by emphasizing the importance of knowledge machines as a focus

for future scientific and philosophical attention (see Section 9).

2 Knowledge Machines

Knowledge machines are members of a class of systems that have been referred to as social

machines. In order to help us make sense of the term ‘knowledge machine’, it is therefore important

to gain a better understanding of what is meant by the term ‘social machine’.

There are, in fact, a variety of views as to the meaning of the term ‘social machine’. According

to one view—which I will dub the ‘content creation view’—social machines should be seen as a

class of Web-based socio-technical systems that feature a division of labour between the social

and technological elements. In particular, the human elements of such systems are deemed to

play a role in the creation of online content, while the technological components are seen to

fulfil a largely administrative function. This sort of view is countenanced by Berners-Lee and

Fischetti (1999) who were among the first to apply the term ‘social machine’ to the Web. They

write that:

Real life is and must be full of all kinds of social constraint—the very processes from

which society arises. Computers can help if we use them to create abstract social

machines on the Web: processes in which the people do the creative work and the

machine does the administration. (p. 172) [emphasis added]

There is undoubtedly something compelling about this idea of a social machine as a system

in which it is the human community that is providing the bulk of the online content. Assuming

that the notion of ‘creative work’ in the above quotation should be interpreted in terms of the

generation of online content (e.g., uploading an image or writing some text), then it seems that

Berners-Lee and Fischetti’s characterization can be applied to many systems that form part of the

contemporary Web. These include, for example, systems such as Wikipedia, Twitter, Facebook,

YouTube, and Flickr. Such systems are emblematic of an important shift in the way in which

Web-based systems are developed. In place of the idea of an online system (e.g., a website) as

something that is designed by a select group of individuals and pre-populated with content, we

are confronted with an alternative approach, in which the bulk of the software engineering effort

is geared to the provision of a platform that subsequently enables the user community to generate

much of the online content for themselves.
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Despite its appeal, the content creation view has been criticized on the grounds that it cannot

account for the functional diversity of the constituent elements of a social machine (i.e., the social

machine’s components). In particular, it has been suggested that the functional roles of the human

and machine elements should not be restricted to those of a purely ‘creative’ or ‘administrative’

nature (see Smart et al. 2014). As a result, an alternative view of social machines has recently

emerged (Smart et al. in prep). This has been dubbed the mechanistic view of social machines.

The mechanistic view adopts the following definition of a social machine:

Social Machine

A system S is a social machine if and only if 1) S is associated with a mechanism M

that forms the basis of a mechanistic explanation of some phenomenon P, and 2) M

consists of social and technological elements that are deemed to be jointly relevant to

the mechanistic explanation of P.

With this view of social machines to hand, we can now define a knowledge machine as follows:

Knowledge Machine

A knowledge machine is a social machine that engages in a form of knowledge-related

activity. Such activities include those associated with the elicitation, acquisition,

and representation of knowledge, as well as those associated with the discovery of

knowledge and the development of intelligent systems.

In a Web-based context, a knowledge machine is thus a form of Web-based system that exhibits

two important properties:

1. a knowledge machine is associated with a hybrid socio-technical mechanism that is deemed

relevant to the mechanistic explanation of some phenomenon of interest (i.e., knowledge

machines are social machines), and

2. the phenomenon of interest should be one that is deemed to be of epistemic relevance.

For the most part, we can thus regard a knowledge machine as a social machine that is

involved in the production of epistemic outputs, many of which are likely to assume the form of

propositional statements concerning some body of domain-specific knowledge. Cast in this light,

the notion of a knowledge machine is similar (but not identical) to a number of concepts that

have appeared in the epistemological literature. These include the concept of a ‘socio-epistemic

engine’ in social epistemology (Goldman 2011) and the concept of an ‘epistemic group agent’ in

virtue epistemology (Palermos 2015) (see also Section 7). The scope of the knowledge machine

concept is, however, somewhat broader than either of these concepts. In particular, when it comes

to knowledge machines, we are not merely concerned with systems that enable us to produce

knowledge, we are also concerned with activities that involve, for example, the organization and

representation of knowledge,1 as well as the development of intelligent systems that are able to

behave in a manner that respects the epistemic infrastructure of some focal domain of interest.

The value of the knowledge machine concept comes from the way in which it helps us to

appreciate the power and potential of the Web from an epistemic perspective. A crucial point

of interest here relates to the way in which knowledge machines are poised to transform our

traditional understanding of knowledge engineering. Note, for instance, that many of the activities

in which knowledge machines are involved are also ones that we typically associate with the

discipline of knowledge engineering. This includes a range of activities related to the acquisition,

representation and modeling of domain-specific knowledge, typically from a select group of subject

matter experts (Schreiber et al. 2000, Studer et al. 1998). Such forms of overlap encourage us

1This is particularly evident when it comes to systems that aim to generate epistemic resources (e.g.,
computational ontologies) using the representational instruments associated with the Semantic Web
initiative.
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to revise our views concerning the way that many knowledge engineering activities are (or at

least could be) realized. With the knowledge machine concept to hand, we are thus able to

adopt a somewhat ‘distributed’ approach to knowledge engineering,2 one in which the Web and

(perhaps) society-at-large are poised to participate in the mechanistic realization of key knowledge

engineering processes.

In order to help us appreciate this point about the transformation of traditional approaches to

knowledge engineering, imagine that you are tasked with the development of a palaeontological

‘knowledge system’, one that will serve as an online repository of information regarding the

characteristics of dinosaur species. From the perspective of traditional knowledge engineering,

you might attempt to approach this task by first engaging in an iterated sequence of conventional

knowledge elicitation activities (Shadbolt & Smart 2015). You might thus seek to acquire (and

actively elicit) information from various sources (including, expert paleontologists). You would

then, let us suppose, attempt to implement a database to store the acquired information and

generate the code to display the information in (e.g.) a conventional Web browser.

But now consider an alternative approach to ‘knowledge acquisition’, one that is inspired by

the sort of approach adopted by Wikipedia. In this case, you simply provide the technological

infrastructure that is needed to enable the human user community to create and edit online

content for themselves. It is then the human user community that is assigned the task of

populating the relevant ‘knowledge base’ with appropriate content.

Hopefully, this example helps to illustrate at least one of the ways in which the concept

of knowledge machines is of potential relevance to both the theory and practice of knowledge

engineering. Beyond this, however, the knowledge machine concept helps to reveal a range of issues

that establish important points of inter-disciplinary contact between a number of disciplines (e.g.,

knowledge engineering, WAIS, and contemporary epistemology). In subsequent section, I attempt

to provide an initial overview of these issues. I also aim to present examples of knowledge machines

that are relevant to the processes of knowledge discovery (see Section 3, knowledge acquisition

(see Section 5) and knowledge exploitation (see Section 6). Given the scope and complexity of

this topic, it is clearly impossible to cover everything. Important omissions include a range of

systems that participate in the generation of semantically-rich content. Such systems include

collaborative ontology authoring environments (Simperl & Luczak-Rösch 2014), semantic wikis

(Krötzsch et al. 2007), and a variety of online multiplayer games (Siorpaes & Hepp 2008). Given

the reliance of these systems on socio-technical mechanisms and their role in the generation of

epistemic outputs (e.g., Semantic Web resources) many of these systems are likely to qualify as

bona fide knowledge machines.

3 Knowledge Discovery

In recent years, an important class of systems has emerged to support the process of knowledge

discovery. Such systems are typically referred to as ‘citizen science systems’ (Lintott & Reed

2013). One of the primary aims of these systems is to co-opt the efforts of human volunteers into

the scientific process, typically by enabling large groups of individuals to perform scientifically-

relevant tasks, such as data acquisition and analysis.

Perhaps one of the best examples of a citizen science system is Galaxy Zoo (Lintott et al.

2008). This is a system that was originally designed to support the morphological classification

of nearly one million galaxies that were imaged as part of the Sloan Digital Sky Survey. This

task, it should be clear, is one that requires a significant amount of time and effort. As a result,

Galaxy Zoo was established as an online, Web-based system that enabled casual users to assist

with the galaxy classification effort (see Figure 1).

2The idea of a distributed approach to knowledge engineering is based on the notion of distributed
cognition, as discussed in the cognitive science literature (Hutchins 1995). The core idea is that socio-
technical systems are able to implement some of the activities that we typically associate with knowledge
engineering, e.g., the attempt to elicit, acquire, model and exploit human knowledge.
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Figure 1 The interface of the Galaxy Zoo system. The system displays an image of a celestial object
and asks participants to classify the object into one of six classes, namely elliptical galaxies, clockwise
spiral galaxies, anticlockwise spiral galaxies, other spiral galaxies, stars, and mergers.

As a citizen science system, Galaxy Zoo was a resounding success, yielding more than forty

million individual galaxy classifications (see Lintott et al. 2008). In addition, Galaxy Zoo has

been at the heart of a number of important scientific discoveries. These include an astronomical

phenomenon known as ‘Hanny’s Voorwerp’ (Lintott et al. 2009) and a previously unknown class

of greenish-colored galaxies, aptly called Green Pea galaxies (Cardamone et al. 2009).

Following the success of Galaxy Zoo, a number of other citizen science systems have been

developed to support the analysis of astronomical data. These include the Planet Hunters system,

which aims to support the detection of extra-solar planets. As with Galaxy Zoo, this system

has yielded a number of important scientific discoveries, including the first circumbinary planet

discovered in a four-star system (Schwamb et al. 2013) and the discovery of more than forty

planet candidates in the habitable zone of their parent stars (Wang et al. 2013).

Citizen science systems such as Galaxy Zoo and Planet Hunters attempt to recruit volunteers

for the purpose of analyzing some body of data. Other systems, however, focus their attention on

the acquisition of data, typically by using the human social environment as a form of biological

sensing platform.3 An excellent example of such a system is eBird (Sullivan et al. 2009). eBird

harnesses the observational efforts of thousands of volunteers in order to gather information

about the distribution and abundance of bird species. This provides a valuable source of real-time

information about avian population dynamics. Given the scope and scale of the data acquisition

effort, it is difficult to imagine how the body of data provided by eBird could be acquired in

the absence of large-scale social participation. By 2013, for example, Sullivan et al. (2014) report

3Such systems clearly count as social machines from the standpoint of the content creation view. From the
perspective of the mechanistic view, however, the status of such data gathering systems as social machines
is perhaps somewhat less clear-cut. A useful way of thinking about such systems, I suggest, is to focus
on the way in which the data gathering process is realized by mechanisms that are distributed across the
social and technological domains. If what we seek to explain, in the case of eBird, is the existence of a
large-scale repository of scientifically-relevant data, then it seems we will have no choice but to advert to
an explanatory account that features the involvement of both (multiple) human individuals and a set of
technological components. From this perspective, the status of eBird as a social machine starts to look a
lot less problematic.
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Figure 2 Distribution of sightings of the Indigo bunting (Passerina cyanea) across North America,
aggregated across years and seasons (source: http://ebird.org).

that “over 140 million observations had been submitted by 150,000 separate observers, who spent

10.5 million hours in the field collecting data” (p. 32). Such a dataset is an invaluable epistemic

resource, helping to improve our understanding of the effects of climate change, pollution and

habitat loss on bird populations. It should also be clear that the dataset can be used as an aide to

conservation efforts, providing information about species decline in particular regions and helping

to coordinate cleanup operations in the face of environmental catastrophes (e.g., oil spills) (see

Sullivan et al. 2009).

One of the things that makes eBird interesting as a citizen science system is the way in which

it attempts to address issues of user motivation and community engagement. This is a perennial

problem for the developers of citizen science systems. The problem is that human individuals

are not required to participate in a citizen science system, and thus the long-term viability of

the system is at risk if community interest should begin to wane. There have been a number of

attempts to improve our understanding of the factors that motivate user participation in citizen

science systems, with altruism, a sense of community involvement and social recognition emerging

as particularly important factors (e.g., Tokarchuk et al. 2012). The design of eBird is certainly

inspired by at least some of these factors;4 however, eBird highlights another approach to ensuring

the continued engagement of the user community. In particular, eBird attempts to use the data

submitted by human observers as a means of providing services back to the user community. One

such service comes in the form of a palette of easy-to-use data visualization and analysis tools

that enables community members to (e.g.) identify the most likely places to spot particular birds

of interest. Figure 2, for example, shows the frequency distribution of sightings of the Indigo

bunting (Passerina cyanea).

4For example, eBird preserves the provenance of user contributions, enabling specific users to receive
public recognition for important observations (e.g., the first sighting of a bird species in a particular
geographic area).
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Another approach to the problem of user motivation is illustrated by a class of social machines

that go by the name of Games With A Purposes (GWAPs) (von Ahn 2006, von Ahn & Dabbish

2008, Savage 2012). The general idea behind GWAPs is that peoples’ game-playing actions can

be used to perform a useful task. Given the apparent enthusiasm that people have for computer

games,5 it seems that this approach has considerable promise in terms of harnessing human

cognitive abilities for the purposes of tackling problems that lie beyond the current reach of

Artificial Intelligence (AI) algorithms. The problem, of course, is how make a game sufficiently

engaging to human game-players, while simultaneously satisfying the constraint that player

actions are able to be exploited in the context of another task. There are, in general, two ways

of approaching this problem. The first is to take the target task and attempt to make it as

fun as possible, typically by scoring user performance and making lists of top-scoring players

publicly available. For the sake of convenience, we can refer to this particular class of GWAPs

as ‘goal-transparent GWAPs’. A second approach is to design the game in such a way that the

relationship between game-player actions and the task to which such actions are applied is much

less obvious. In such cases, the fact that the game is being used to collect or analyze a body of

(e.g.) scientific data is typically ‘invisible’ to the end-user—in fact, the human game-player may

not even be aware that their game-play actions are being used to perform some other task. Given

that the real objectives of such games are invisible to the uninformed game-player, we can refer

to this category of GWAPs as ‘goal-opaque GWAPs’.

An important example of a ‘goal-transparent GWAP’ is the protein-folding game, Foldit

(Khatib, Cooper, Tyka, Xu, Makedon, Popović, Baker & Foldit Players 2011, Cooper et al. 2010,

Good & Su 2011). Foldit is an online multiplayer game that aims to derive accurate protein

structure models via game-play responses. The game involves the presentation of improperly

folded protein structures to human game-players. The protein structure is then manipulated

using a combination of manual and automatic actions so as to maximize the score associated

with a computed evaluation metric. The game is interesting because it provides a compelling

example of the way in which social machines can be used to maximally exploit the distinctive

capabilities of human and machine components (Crouser et al. 2013). For example, in attempting

to maximize their score, an individual user can interact with the protein structure, tugging and

twisting the protein backbone as a means of exploring the target solution space. In doing so, the

human game-players are deemed to rely on a set of visual and spatial cognitive abilities that are,

as yet, unmatched by the capabilities of existing AI systems. There is, however, an important role

for machine-based processes in supporting the user’s search for optimal protein conformations.

In particular, the Foldit interface provides access to a range of tools that implement so-called

‘automatic moves’. These include, for example, a ‘wiggle’ routine that attempts to perform

a localized search for high-scoring protein structures in the vicinity of the current structural

candidate (see Cooper et al. 2010).

Perhaps one of the most impressive accomplishments of the Foldit system is its success in

deciphering the crystal structure of the retroviral protease of the Mason-Pfizer monkey virus, a

simian AIDS-causing virus (Khatib, DiMaio, Cooper, Kazmierczyk, Gilski, Krzywda, Zabranska,

Pichova, Thompson, Popović, Jaskolski & Baker 2011). The structure of this protein (an enzyme)

had remained elusive despite attempts to solve the problem using conventional computational

and experimental methods. When assigned to the Foldit system, however, a group of Foldit

players were able to produce an accurate 3D model of the target protein within the space

of just three weeks. This represents an important breakthrough for the biomedical research

community, especially given the importance of retroviral proteases to Human Immunodeficiency

Virus (HIV) research (e.g., Kohl et al. 1988). The upshot is that we are provided with an important

demonstration of the power of GWAPs in regards to their ability to contribute to the process of

scientific discovery.

5It is estimated that there are hundreds of millions of gamers worldwide who collectively spend more
than 3 billion hours per week playing video games (see McGonigal 2011).
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(a) (b)

Figure 3 Two screenshots of the ‘Genes In Space’ game. (a) The user plots a route, aiming to collect
as much Element Alpha as possible. (b) The user attempts to pilot a spacecraft along the previously
plotted route.

Compared to ‘goal-transparent GWAPs’, ‘goal-opaque GWAPs’ are typically much harder to

design. In particular, the game designer has to find a way of encouraging users to engage in

actions that serve a dual purpose. Firstly, the actions in question need to be consistent with

the ludic objectives of the game. Secondly, the game-play actions need to be applicable to some

form of scientifically-relevant information processing. An interesting example of a game that

manages to satisfy both of these constraints is ‘Genes In Space’ (Coburn 2014). Genes In Space

is a game that was developed for the UK cancer research charity, Cancer Research UK. The

purpose of the game, from the perspective of the human game-player, is to map a route through

an asteroid-strewn landscape, collecting as much of a target substance (called ‘Element Alpha’)

as they can (see Figure 3). In actual fact, by plotting (and then flying) a route through the

virtual environment, the human game-players are assisting with the analysis of genomic datasets,

helping scientists understand the genetic bases of (in this case) breast cancer. Importantly, from

a knowledge machine perspective, ‘Genes In Space’ is a game that succeeds in combining the

respective capabilities of human agents and computational systems so as to yield a hybrid system

with epistemically-relevant properties (see Coburn 2014).

The main purpose of ‘Genes In Space’ is to support the analysis of a pre-existing body of

scientific data. But not all GWAPs need to perform a data analytic function.6 As is the case with

citizen science systems, GWAPs can be used to collect as well as analyze bodies of scientific data.

An interesting example of this sort of game-mediated data acquisition capability comes in the

form of a game called ‘Sea Hero Quest’7 (Morgan 2016, Spiers et al. 2016). This is an example

of what I have dubbed ‘goal-opaque GWAPs’, and thus the real purpose of the game (i.e., the

acquisition of scientific data) is not immediately obvious to the uninformed game-player. In fact,

the real purpose of the game is to provide information about a specific form of navigational

competence, namely the ability to orient oneself in a virtual 3D space and navigate to a target

location. This is important, because impairments in spatial navigation ability are known to be one

of the early signs of dementia. By thus understanding something about the normal parameters of

navigational behaviour, the scientific community hopes to be able to detect the onset of dementia

at an early stage.

6Neither is the remit of GWAPs necessarily restricted to the scientific domain. One area of recent attention
in the knowledge engineering community is the use of GWAPs to support the development of Semantic
Web resources (Simperl et al. 2013, Siorpaes & Hepp 2008).
7See http://www.seaheroquest.com/en/
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The citizen science systems and GWAPs described in this section are undoubtedly an important

expression of the growing interest in the computational power and potential of the human

social environment. But should such systems be regarded as genuine members of the class of

knowledge machines? I suggest they should, and the reason for this is that such systems meet

the criteria presented in Section 2. Firstly, there can be little doubt that these systems qualify

as social machines. This is because such systems often involve complex forms of causally-relevant

interaction between a set of social8 resources (e.g., the game playing community) and a set of

technological elements (e.g., the elements that are responsible for game execution and the tracking

of user actions). Such forms of socio-technical entanglement with respect to the performance of

a particular task (e.g., data analysis) are sufficient for us to see such systems as social machines.

In addition to this, however, the systems in question are also ones that perform an epistemically-

relevant function: they support the acquisition and analysis of data, specifically for the purposes

of expanding the epistemic horizons of the scientific community.

4 Knowing Us

The Web has provided a valuable opportunity for society-at-large to be recruited into a broad

array of epistemically-relevant activities. Citizen science systems provide us with a clear and

unambiguous example of the sort of contribution that society can make to our attempts at

knowledge discovery. There are, however, other ways of thinking about the epistemic implications

of the Web. Just as the Web has provided the basis for large-scale forms of social participation

in any number of online activities, so too it has also opened the door to novel forms of social

observation and analysis. Crucially, as our everyday social activities and endeavors become ever-

more closely entwined with the online realm, it becomes increasingly tempting to view the Web as

part of the causally-active physical fabric that realizes social processes (Smart & Shadbolt 2014,

Smart et al. in prep). In other words, the Web presents us with a vision of society in which at least

some kinds of social phenomena are subject (at least in part) to Web-based forms of computational

realization. This raises a host of important issues concerning our ability to monitor, influence,

and, indeed, create social processes. As is noted by Strohmaier and Wagner (2014):

Today, the World Wide Web represents not only an increasingly useful reflection of

human social behaviour, but everyday social interactions on the Web are increasingly

mediated and shaped by algorithms and computational methods in general. (p. 84)

Using the Web as a platform for social observation and monitoring clearly raises a host of

issues concerning privacy, surveillance and social control. Nevertheless, the fact that important

forms of social activity are now occurring in the online realm does provide us with a valuable

opportunity to improve our understanding of society. This is important, because our contemporary

society is a system of such complexity that its dynamical profile often resists our best attempts

at prediction and explanation. In the wake of such complexity, it is perhaps tempting to think

that the mechanistic underpinnings of social phenomena are doomed to forever lie beyond the

reach of our (social) scientific grasp. However, when we see the Web as part of the material

8The social status of the human elements in such cases is not something that should be in doubt. For even
GWAPs that fail to support direct player-to-player interactions still require a large number of participants
in order to fulfil their epistemic purpose. In other words, important forms of knowledge discovery are often
predicated on the contributions of multiple individuals. We can see evidence of this in both the ‘Genes in
Space’ and ‘Sea Hero Quest’ games. In the case of ‘Genes In Space’, multiple (independent) contributions
are required in order to ensure the reliability of analytic outcomes. According to comments posted on the
Cancer Research UK website, for instance, ‘Genes In Space’ has been used to analyze the “entire genomes
of 1980 patients, each checked 50 times for accuracy” (see http://www.cancerresearchuk.org/support-
us/citizen-science/the-projects#citizenscience1). A somewhat different role for multiple human contri-
butions is apparent in the case of ‘Sea Hero Quest’. Here ‘social’ participation is a prerequisite for the
success of the larger scientific effort, i.e., the assembly of a normative dataset for the purposes of diagnostic
testing.
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fabric of society (i.e., as part of the physical machinery that realizes social phenomena), then

we are afforded a much more positive perspective on the empirical and theoretical prospects

of contemporary social science. This is because advances in mechanistic understanding (across

all the sciences) are often linked to our ability to subject some target system to sophisticated

forms of instrumentation and measurement. Perhaps, therefore, we can see the advent of the

Web, and the current efflorescence of Web-enabled devices, as marking a potential seachange in

our ability to establish an explanatorily- and predictively-potent grip on the social realm. Just as

progress in other areas of science has followed hot on the heels of our ability to observe, measure,

and monitor—consider the impact of the microscope and telescope on the fields of biology and

astronomy—perhaps the Web is poised to progress the cause of the social sciences in a similar

manner. In essence, what the Web gives us is an ability to observe (in more-or-less real time)

the ebb and flow of social processes on a (potentially) global scale. As a result of such newfound

abilities, we may, at last, be able to acquire the sort of data that informs our search for the

mechanistic bases of (at at least some kinds of) social phenomena.

It is at this point that claims about the epistemic significance of social machines begins to

establish contact with the interests of the social science community. For the current interest

and enthusiasm for mechanistic explanation in the social sciences (Hedström 2005, Hedström &

Ylikoski 2010) dovetails perfectly with the current interest in the Web as a source of scientifically-

relevant information about the social environment (see Strohmaier & Wagner 2014).9 Even if we

retreat from the idea that the Web forms part of the material fabric that realizes (at least some

kinds of) social phenomena, there can be little doubt that the Web provides us with a significant,

socially-relevant observational ability, if only because so many of our everyday social activities are

now tied up with the use of the Web. Such insights lie at the heart of a number of recent claims

concerning the functional status of the Web (or parts thereof) as a form of ‘digital socioscope’

(Mejova et al. 2015) or ‘social observatory’ (Caton et al. 2015). They also lie at the heart of recent

attempts to use the Web as a platform for what is called ‘social mining’ (Giannotti et al. 2012).

When it comes to the role of knowledge machines in the process of knowledge discovery,

therefore, we should not limit ourselves to the idea of the social environment as forming a literal

part of the machinery that realizes parts of the scientific process; we can also think about the

way in which knowledge machines are poised to provide us with a better understanding of the

various forms of causal commerce that help to shape the structure of the social world.

5 Epistemic Engineers

In Section 2 we encountered the idea of knowledge machines exploiting large-scale social

participation for the purposes of knowledge acquisition. Wikipedia, of course, is the ultimate

expression of this idea. By relying on a relatively simple set of human-computer interaction

protocols, Wikipedia has emerged as a particularly important epistemic resource (Fallis 2008,

2011), unrivalled with respect to its epistemic scope and roughly neck-and-neck with conventional

encyclopedias in terms of its epistemic reliability (Giles 2005, Fallis 2008). Wikipedia is, of course,

a system that is intended to provide information for human consumption. In this respect, its

epistemic outputs are unlike those encountered in traditional knowledge engineering projects.

There is, in particular, no commitment to the sort of formal, machine-readable representations

that are the typical outputs of conventional knowledge engineering efforts. This does not, however,

mean that Wikipedia is irrelevant when it comes to the provision of such resources. DBpedia is

one example where Wikipedia has helped to provide a structured epistemic resource that is of

direct relevance to the implementation of traditional knowledge-based systems (Auer et al. 2007,

Lehmann et al. 2012).

9Such claims resonate with the idea that social machines serve as part of the realization base for social
phenomena. In this respect, work into what are called ‘Web Observatories’ is of particular interest and
relevance, especially since such efforts often seek to observe and monitor the behaviour of social machines
on the Web (Tiropanis et al. 2013, Tinati et al. 2015).
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The case of Wikipedia serves as an important object lesson regarding the power and potential

of knowledge machines to press maximal epistemic benefit from large-scale forms of social

participation. The scale, scope and complexity of Wikipedia exceeds anything that could have

been developed by a single human individual, and it is for this reason that Wikipedia is sometimes

said to serve as an important example of collective intelligence (Malone et al. 2010, Bonabeau

2009). In particular, the ‘intelligence’ of the human community with respect to the development

of Wikipedia is sometimes seen to echo the intelligence exhibited by certain species of eusocial

insect (e.g. Turner 2011). Thus just as certain species of insect are able to coordinate their efforts

so as to achieve feats of physical engineering that far outstrip the reach of their rather limited

individual behavioral and cognitive repertoires, so too Wikipedia may be seen to represent a

prodigious feat of socio-epistemic engineering, one that is, for the most part, beyond the ken of

any single human individual.

What makes this comparison with insect societies of particular interest is not just the scale

of the collective achievements—the grand epistemic and physical edifices that emerge from the

coordinated swirl of collective action—it is also the fact that such achievements may be grounded

in the operation of similar mechanisms. Indeed, one class of mechanisms has proved to be

of particular interest and relevance in the case of both insect societies and the operation of

social machines. These mechanisms are referred to as ‘stigmergic mechanisms’. The concept of

‘stigmergy’ was first introduced by the French entomologist, Pierre-Paul Grassé, who used the

term to account for the coordinated behaviour of termite colonies (see Theraulaz & Bonabeau

1999). But it is not just the behaviour of the eusocial insects that has been characterized in

stigmergic terms; the notion of stigmergy has also been applied to systems that are the occasional

empirical targets of the social machine research community. These include collaborative editing

systems, such as Wikipedia (Parunak 2005, Heylighen 2016a), and open source software systems,

such as Ushahidi (Marsden 2013). This particular point of convergence helps to highlight the

potential relevance of stigmergic mechanisms to our understanding of a variety of knowledge

machines. Indeed, when it comes to systems like Wikipedia, the notion of stigmergy is important

in helping us to understand how the human social environment comes to play an explanatorily-

significant (and thus mechanistically-relevant) role in knowledge acquisition processes. To help

us see this, it will be useful to look at the notion of stigmergy in a bit more detail.

A useful definition of stigmergy is provided by Heylighen (2016a). He suggests that:

...stigmergy is an indirect, mediated mechanism of coordination between actions,

in which the trace of an action left on a medium stimulates the performance of a

subsequent action. (p. 6)

One thing that should be clear from this definition is that issues of environmental structuring

and environmental mediation play a key role in stigmergic mechanisms. Typically, the concept

of stigmergy implies that one or more agents will participate in the modification of some

environmental resource, which then alters the behaviour of other agents. The result is that

complex structures and behavioral patterns emerge as a direct result of the agent’s tendency to

engage in actions that alter the conditions controlling the expression of other actions (including

those expressed by agents that share the same ‘local environment’10).

In applying the concept of stigmergy to Wikipedia, a couple of points are worth highlighting.

The first is that the appeal to stigmergic mechanisms as a means of explaining the coordination

of collective behaviors (and the subsequent emergence of complex structures) is a strategy that

is in perfect accord with the mechanistic view of social machines introduced in Section 2. The

mechanistic view of social machines, recall, focuses on the nature of the mechanisms that are

responsible for some phenomenon of interest. This is precisely the sort of explanatory account

10The notion of a ‘local environment’ is typically understood in terms of spatial criteria. In the case of
the Web, however, the local environment means the set of online resources (e.g., Wikipedia articles) that
are accessed by multiple individuals.



12 p. smart

that is provided by the appeal to stigmergic mechanisms. In the classical case of behavioral

coordination in eusocial insects, the notion of stigmergy identifies a form of social (or perhaps

eusocial!) mechanism that features the integration of forces and factors that are distributed across

the social (i.e., the insects) and non-social (i.e., the stigmergic medium) realms. Similarly, in the

case of the mechanistic view of social machines, what we are looking for is a materially-hybrid

mechanism that features a combination of both social and technological components. The only

real difference here is the nature of the stigmergic medium that works to coordinate collective

behavior. For in systems such as Wikipedia, the resources of the online environment are not ones

that need to be entirely passive—in the sense that they are subject to modification only by the

actions of the user community. Instead, it seems perfectly possible that such resources can also be

altered by computational processes that emanate from ostensibly non-social (i.e., technological)

sources. This does not, of course, undermine the explanatory relevance of stigmergy as a means

of accounting for the behavioral profile of knowledge machines. When it comes to Wikipedia, for

example, Heylighen (2016b) is quick to note that we can explain the behaviour of Wikipedia bots

in the same sort of manner as we explain the behaviour of human editors:

...a collectively edited website, like Wikipedia, may have some in-built procedures

that automatically correct formatting errors, add links, or signal incoherencies. The

fact that these actions are performed by computer programs (e.g. ‘bots’) does not

fundamentally distinguish them from the actions of human contributors, since they

all undergo the same stigmergic coordination. (Heylighen 2016b, p. 52)

Stigmergy thus provides us with an important example of an explanatory account that is

both mechanistic in spirit and oriented to the social domain. It is, as such, a concept that may

be applicable to many kinds of social machines, especially those that involve the collaborative

construction of online resources or the Web-mediated coordination of social activities.

A second point that is worth noting when it comes to stigmergic mechanisms and Wikipedia is

the way in which the concept of stigmergy informs our understanding of Wikipedia qua knowledge

elicitation or knowledge acquisition system. To help us see this, let us turn our attention to one

of the bugbears of traditional knowledge engineering: the problem of the ‘knowledge acquisition

bottleneck’ (Hayes-Roth et al. 1983). This is the problem of acquiring knowledge from a particular

source (e.g., a human subject matter expert) in a manner that complies with (e.g.) the temporal

and budgetary constraints of a knowledge engineering project. The approach to addressing the

knowledge acquisition bottleneck is typically rooted in the careful selection and deployment of

a range of knowledge elicitation techniques (Shadbolt & Smart 2015). These are deemed to

establish the sort of conditions that best support the elicitation of particular kinds of knowledge

(see Hoffman & Lintern 2006). A useful way of thinking about this state-of-affairs is to see

the knowledge acquisition specialist—or knowledge engineer—as involved in the construction of

situations that are of differential utility with respect to the elicitation of particular kinds of

knowledge (see Figure 4a). In attempting to elicit procedural knowledge, for example, it may be

of little practical value to establish a situation where the expert is required to respond, verbally,

to a series of task-related questions. Instead, it may be much more appropriate to simply let

the expert perform the relevant task and provide a running commentary as to the purpose of

particular actions. What we end up with, in this case, is what might be called a ‘situated view

of knowledge acquisition’: a way of thinking about the process of knowledge acquisition as the

intelligent construction of situations that are of differential effectiveness with respect to the

elicitation of particular kinds of knowledge.

Now consider how this situated view of knowledge acquisition is altered in the wake of systems

like Wikipedia (see Figure 4b). Here, the role of the knowledge engineer—if indeed there is one—

is reduced to the design of a technological system that is intended to solicit and record inputs

from the user community. This is clearly important when it comes to the acquisition of particular

bodies of knowledge. But note that when we turn our attention to the run-time operation of the
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Figure 4 A situated view of knowledge acquisition from the perspective of (a) traditional knowledge
engineering and (b) the perspective of a knowledge machine such as Wikipedia. In the case of traditional
knowledge engineering (a), the knowledge engineer aims to create a situation that supports the elicitation
of particular bodies of knowledge. In the case of Wikipedia (b), the role of the knowledge engineer, if
there is one, is limited to the design of the technological system that supports the subsequent elicitation
of collective knowledge via stigmergic mechanisms.

system we can see that an important form of ‘situational engineering’ is also being performed

by the actual users of the system. The process of knowledge acquisition has, in a sense, become

autocatalytic: as the actions of the user community progressively alter the structure of the online

environment, so the suite of cues, prompts and affordances that work to elicit and structure

further contributions is also altered. The result is that the community-at-large can be seen to

play an active role in shaping the informational and social contexts that may help (or hinder!)

the acquisition of further knowledge.

When we think of knowledge acquisition from the perspective of knowledge machines like

Wikipedia, we are thus provided with a vision in which the user community is engaged in a

form of ‘epistemic engineering’. Somewhat surprisingly, however, this role is not limited to the

relatively straightforward idea of multiple individuals coming together to create an epistemically-

significant resource. There is also a sense in which we can see the user community as assuming the

sort of role traditionally assigned to a knowledge engineer. The vision of knowledge acquisition à

la knowledge machines is thus one in which the human social environment is poised to play an

important role in the progressive creation and configuration of situations that are relevant to the

elicitation and acquisition of collective knowledge.

As a means of making this (admittedly awkward) idea a little clearer, consider the way in which

the conversational exchanges between two people may provide the basis for a form of collaborative

recall (see Sutton et al. 2010). Consider, for example, the following exchange (taken from Sutton

et al. 2010) between a husband and wife discussing their honeymoon. In this particular exchange,

the couple are trying to recall the name of a show they attended.

Wife: And we went to two shows. Can you remember what they were called?
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Husband: We did. One was a musical, or were they both? I don’t... no... one...

W: John Hanson was in it.

H: Desert Song.

W: Desert Song, that’s it, I couldn’t remember what it was called, but yes, I knew John

Hanson was in it.

H: Yes.

This exchange is quite typical of our attempts to recall some piece of shared information in

a social context, and it highlights something important about the nature of collaborative recall.

Notice that the name of the show is successfully recalled as the result of the cross-cuing that occurs

between the individuals. One person provides a cue, which by itself is inadequate to prompt the

recall of the target information by either person. The cue does, however, provide the basis for

the retrieval of another cue that is then fed back to the original person, and so on. This iterative

cycle of reciprocal influence supports the progressive generation and elaboration of cues until,

eventually, the conditions for one or other person to successfully recall the relevant information

are established.

What we see in the case of collaborative recall is thus somewhat reminiscent of the sorts of

influence that occur in the context of (at least some) knowledge machines. Just as iterative cycles

of information flow and influence support the progressive creation and elaboration of mnemonic

cues that ultimately help to prompt the recall of target memories, so too the pattern of exchanges

that occur between human agents and some form of online stigmergic medium can be seen to

establish the situations that shape the structure of subsequent user contributions.

6 Expert Systems

One of the major goals of traditional knowledge engineering was to support the development

of systems that emulated the performance of human experts in some particular task context.

This was, by no means, the only objective of traditional knowledge engineering; nevertheless, the

development of systems that embodied aspects of human expert knowledge (i.e., expert systems)

was clearly one of the major drivers of knowledge engineering research throughout the 1980s and

1990s (Hayes-Roth et al. 1983, Hart 1986, Kidd 1987).

With the advent of the Web and, especially, the Semantic Web (Berners-Lee et al. 2001,

Shadbolt et al. 2006), much of the early interest and enthusiasm in expert systems began to be

eclipsed by a much broader, and in some ways much grander, vision of the goal of knowledge

engineering. Instead of stand-alone systems that sought to embody the knowledge and expertise

of individuals within narrow domains of interest, the Semantic Web provided a vision of the Web

as a globally-distributed knowledge repository, one in which the universe of human concepts could

be represented in digital form. The result was that the focus of knowledge engineering research

began to shift. The emphasis on detailed models of expert performance began to be replaced by

an interest in the development of general-purpose computational ontologies (Gómez-Pérez et al.

2004). Such ontologies were intended, for the most part, to be publicly accessible resources that

were available for use in any number of knowledge-based systems and services.

There is clearly a sense in which the Semantic Web has had a profound impact on the scope

and focus of knowledge engineering, both as an area of fundamental research and as an area of

applied systems engineering (e.g., Gil 2011). The nature of this impact should not, however, be

overstated. For even in the contemporary era, there is a sense in which the fundamental goals of

knowledge engineering remain largely unchanged. Irrespective of whether our attention is focused

on traditional knowledge engineering or the attempt to build a Web-based semantic computing

infrastructure, the goal of building intelligent systems remains a core focus of interest and concern.

The Semantic Web has undoubtedly altered the way we seek to acquire, model and exploit human

knowledge, but it has not altered our sense of the fundamental importance of building systems

that are able to capitalize on the rich body of knowledge and experience that our species has

managed to accumulate.
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There are a number of ways in which the notion of knowledge machines is relevant to this

vision. One example is provided by efforts that seek to enrich the environment in which future

forms of intelligent systems are likely to be implemented. Here we encounter a rich body of work

that is concerned with the development of semantically-rich resources, such as the computational

ontologies mentioned earlier. At least some of the systems being developed in this space should

arguably be counted among the ranks of knowledge machines. For such systems are often designed

to co-opt the services of both humans and machines in delivering resources that support machine-

based forms of reasoning and inference (Simperl et al. 2013, Siorpaes & Hepp 2008).

Another way in which the knowledge machine concept is relevant to the implementation of

intelligent systems is revealed by situations in which the knowledge machine itself functions as a

form of knowledge-based system. A good example of such a system is described by Branson et

al. (2014). Branson et al. were interested in combining the capabilities of human and machine

elements in order to develop a hybrid system capable of identifying the species of bird depicted in

a series of photographic images. This is a task that poses a significant challenge for both humans

and machines (see Figure 5a). Branson et al.’s key insight, in this case, was to recognize the

way in which the larger task of image classification could be decomposed into a series of smaller,

more tractable steps, each of which could be assigned to the human or machine elements of a

functionally-integrated (yet materially-hybrid) system (see Figure 5b). One of the steps in image

classification, for example, relates to the extraction of specific features. These include features

relating to (e.g.) the color of the bird’s plumage (‘Does the bird have a blue belly?’) and the

shape of the bird’s beak (‘Does the bird have a beak that is conical in shape?’). Extracting such

features from a natural scene is a task that is notoriously difficult for machine-based systems;

however, it is a task that is relatively easy for humans to perform (at least when the task does

not require any specialist knowledge or ability). The result is that the feature extraction sub-task

is one that can be delegated to the human elements of the larger system. The delegation task

itself, however, is one that is far from straightforward. In particular, the efficiency of the larger

classification process is one that depends on the intelligent coordination of the feature extraction

sub-routine. There is, for example, no point in attempting to solicit information about beak shape

if the machine-based components of the larger system can already infer that the beak can only

be of one particular shape. Feature selection is thus something of a knowledge-intensive task in

its own right, one that requires an ability to calculate the relative optimality (in an information

theoretic sense) of different sequences of feature-oriented questions. This is a task that is highly

amenable to machine-based processing, and it is for this reason that the task of feature selection

is one that ends up being assigned to the machine-based components of the larger information

processing ensemble (see Figure 5b).

The upshot of all this is that we can view the system described by Branson et al. as a bona fide

knowledge machine. The system is clearly a socio-technologically hybrid system that interleaves

the activity of multiple human agents with the processing routines of a technological system. It

is, moreover, a system that succeeds in delivering an epistemic outcome precisely as a result of

the hybridity of the information processing loops. There is, in addition, no good reason to deny

that the system is a genuine knowledge-based system, especially since the machine elements of

the system trade in explicit encodings of the sort of knowledge that we might have otherwise

expected to elicit from a human ornithological expert (e.g., knowledge relating to the optimal

organization of the feature extraction task).

Branson et al.’s system thus provides us with a concrete example of a knowledge machine.

It is moreover, a form of knowledge machine that we can (and should) recognize as the modern

equivalent of a classical expert system. The key difference between the two kinds of system, in this

case, lies not so much in the functional organization of their respective computational economies;

neither is the difference to be found in the extent to which the two kinds of system rely on

explicit encodings of domain-relevant knowledge. Instead, the primary difference relates to the

way in which Branson et al.’s system relies on the human social environment as a source of readily
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Figure 5 The classification of images based on the species of bird shown in the image is a task that
is difficult for both humans and machines (a). The larger task can, however, be broken down into a
series of smaller steps and assigned to the human and machine elements of a functionally-integrated
socio-technical system (b). The result is a hybrid knowledge-based system that relies on the distinctive
(and, in this case, complementary) capabilities of the human and machine elements.

available task-relevant knowledge. Thus rather than attempt to embody all the knowledge that is

required to perform the task in advance of the task actually being performed, here we can see that

the machine-based system is instead treating the human social environment as a form of remote

‘knowledge service’, one that can be factored into the system’s own computational routines as and

when the need arises. The persistent presence of the human social environment, as established

by the advent of the Web, thus yields new approaches to the development of knowledge-based

systems, enabling us to treat the socio-technical ecology of the Web as a real-time source of

epistemically-potent information.11

7 Reliable Mechanisms

When it comes to knowledge, issues of reliability are all-important. This is reflected in the fact

that reliability lies at the heart of contemporary conceptions of knowledge within mainstream

epistemology. A variety of conceptions of knowledge thus fall under the banner of what is known as

reliabilism (Goldman 2012, Comesaña 2011). These include process reliabilism (Goldman 1986),

virtue reliabilism (Greco 2010, 2012), and modal reliabilism (Pritchard 2009, chap. 2). In one way

or another, all these forms of reliabilism appeal to the idea that knowledge-producing mechanisms

are required to operate in a reliable manner; i.e., in a manner that yields an overall preponderance

of true (rather than false) beliefs.

11Such claims establish a useful point of contact with work in the cognitive sciences, especially work that
emphasizes the role of ‘just-in-time’ action as a means of exploiting the extra-organismic environment
for cognitively-relevant purposes (Clark 2008, Myin & O’Regan 2009).
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It seems, therefore, that in order to be an acceptable producer of epistemic goods and services,

the mechanisms associated with a knowledge machine will need to be reliable. Of course, in the

case of knowledge machines the mechanisms of interest are not ones that are located (solely)

within the head of a single human individual. This is something that marks an important

difference with the majority of views in mainstream epistemology. For the most part, the various

forms of reliabilism presented above tend to focus on the individual human agent rather than

a larger systemic organization consisting of both social and technological elements. In spite of

this, the role of reliability in resolving issues of positive epistemic standing does seem to be

applicable to mechanisms that subtend the social and technological realms. Goldman (2011), for

example, discusses the importance of reliability in relation to what he dubs ‘epistemic systems’.12

Similarly, Palermos and Pritchard (2013) propose a social epistemological extension to virtue

reliabilism, in which it is the reliability of the knowledge-producing social mechanisms (as

opposed to a collection of intra-individual cognitive mechanisms) that represents the main focus

of epistemological interest. Finally, Michaelian (2014) has proposed the notion of distributed

reliabilism as a means of extending the reach of reliabilist theory to the socio-technical realm.

Distributed reliabilism, as defined by Michaelian, is thus an epistemological position that allows:

...the process the reliability of which determines the epistemic status of a subject’s

belief to extend to include not only processing performed by other subjects but also

processing performed by non-human technological resources. (p. 316)

This particular form of reliabilism, with its emphasis on socio-technical systems, is clearly one

that is sympathetic to the general notion of social machines functioning as knowledge-producing

entities (i.e., as knowledge machines).

Setting aside the epistemological debates, reliability is clearly an issue of practical concern for

those interested in knowledge machines. In general, we expect the mechanisms housed within

a knowledge machine to operate in an epistemically-desirable manner; i.e., we expect them

to produce outcomes that meet a range of epistemic desiderata, the most important of which

is undoubtedly truth (see Goldman 2002). In other words, the mechanisms associated with

a knowledge machine should be organized in such a way as to yield informational outputs

that are typically true. In addition to this, we might expect the larger system to modify its

operation in the face of uncertainty. Ideally, the information processing economy of a knowledge

machine should thus be sufficiently robust in the face of situations where the truth status

of its outputs is at risk of being undermined, perhaps as the result of poor quality data or

the sub-optimal performance of one or more of its constituent elements. In such situations,

we might expect a knowledge machine to refrain from making any output (e.g., to suspend

judgement). Alternatively, we might expect a knowledge machine to take remedial action and

actively (re)configure its information processing economy so as to minimize the possibility of

false outputs, perhaps soliciting additional contributions from the human social environment or

switching to an alternative form of algorithmic processing.

The upshot of all this is an interest in the mechanisms that support the reliable operation

of knowledge machines. When it comes to the kinds of systems that are discussed in the social

machine literature, an important array of reliability-enhancing mechanisms come to light.13 These

include, but are not necessarily limited to, the following:

12According to Goldman (2011), epistemic systems are “social system[s] that [house] social practices,
procedures, institutions, and/or patterns of interpersonal influence that affect the epistemic outcomes of
its members” (p. 18). This is a concept that is broadly compatible with the idea of a knowledge machine.
In particular, Goldman sees the epistemic standing of a social system as tied to the operation of one or
more social mechanisms that are housed within the system. This much is clear from the emphasis that
Goldman places on the role of organizational structure and patterns of inter-agent communication in the
generation of epistemic outcomes.
13See Weld et al. (2015) and Steyvers and Miller (2015) for a useful overview of some of the mechanisms
that can be used to enhance the reliability of socio-computational systems.
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• Human Ability: Some systems attempt to measure the ability of human agents with respect

to a particular task and then weight user contributions accordingly. In the case of Galaxy

Zoo, for example, Lintott et al. (2008) discuss the use of a weighting method that assigns

greater weight to users who consistently agree with the majority of users. Another approach

to human ability assessment is to measure the performance of human agents with respect to a

set of problems for which the correct outputs are already known (see Weld et al. 2015). Such

problems provide something of a ‘gold standard’ that provides insight into the performance

capabilities of particular individuals.

• Process Monitoring: Some systems attempt to monitor the behaviour of human users and

adjust their operation to accommodate departures from behaviors that are deemed truth

conducive. One example is ‘The Milky Way Project’, which forms part of the Zooniverse

collection of citizen science projects. In this case, the system monitors the digital tools used by

individual users and discounts contributions from users who fail to use all the tools provided

(Simpson et al. 2012). Another form of process monitoring occurs in relation to systems that

record the specific steps that are taken by an individual information processing element (e.g.,

a human agent) to perform a particular task. Here we see one of the virtues of socio-technical

hybridization: by situating human action in a technological space that provides opportunities

for the detailed monitoring of specific action sequences, we are provided with an opportunity

to assess the reliability of the individual human ‘components’ of the larger system. One

example of this particular form of micro-monitoring comes from a study by Rzeszotarski

and Kittur (2012). They describe a system called CrowdScape, which is designed to monitor

the detailed behaviour of human agents as they engage in online tasks. Such capabilities

are deemed to provide a ‘digital fingerprint’ of a task that can be used for the purposes of

reliability assessment and quality evaluation.

• Adaptive Coupling: Adaptive coupling mechanisms are mechanisms that support the

active reconfiguration of a knowledge machine’s information processing architecture so as to

improve its chances of producing a veridical outcome. These mechanisms come in a variety of

flavors. They include the adaptive routing of information to specific individuals at particular

points in time (see Smart et al. 2010), as well as the intelligent (knowledge-driven) assignment

of individuals to particular tasks (see Kamar et al. 2012). Shadbolt et al. (2016) also hint at a

form of adaptive coupling when they note that “Current experimental work at the Zooniverse

projects...pairs people who are gifted in particular tasks with others with complementary skills

to achieve higher accuracy and task completion efficiency” (Shadbolt et al. 2016, p. 110).

• Ecological Assembly: An important means of improving the reliability of knowledge-

relevant mechanisms is to limit the material constitution of the mechanisms to those elements

that are likely to yield the best overall level of performance.14 This kind of reliability-

enhancing mechanism differs from adaptive coupling in the sense that it features the proactive

selection of elements that will be involved in the performance of a particular task. Ecological

assembly is thus concerned with the initial formation of a knowledge-related mechanism, as

opposed to the adaptive configuration of an existing mechanism. Typically, a system will

attempt to recruit those elements (e.g., human agents) that are most suited to the task in

question. Crowd building (see Demartini 2015, p. 9) is one example of ecological assembly.

In this case, the recruitment process is directed solely to the social realm and involves the

attempt to evaluate the skills and expertise of particular human individuals (see also Bozzon

et al. 2013).

14It should be noted that there is a potentially important parallel here with the notion of ecological
assembly in the cognitive sciences. The focus in a cognitive scientific context is typically on the
mechanisms that enable a particular cognitive agent to select and assemble a set of extra-organismic
resources into some larger problem-solving whole. Clark (2008) provides a useful characterization of the
idea in the form of the ‘Principle of Ecological Assembly’. According to this principle, “the canny cognizer
tends to recruit, on the spot, whatever mix of problem-solving resources will yield an acceptable result
with a minimum of effort” (Clark 2008, p. 13).
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• Social Verification: One of the benefits of large-scale social participation is that the social

environment can sometimes be relied on to support the verification of uncertain information.

Examples of this occur in the case of Wikipedia, where the user community participates in

the corrective editing of online factual content. Another example comes from Ushahidi, a

crisis management and disaster relief platform (Gao et al. 2011, Okolloh 2009). In this case,

users of the system are able to click on a verification button in order to confirm the accuracy

of existing reports (Gao et al. 2011). This feature is essential in disaster relief situations,

where a variety of factors (including the changing nature of the situation itself) conspire to

undermine the validity of previously submitted information.

• External Verification: Resources external to a knowledge machine can sometimes be

used for the purposes of checking and verifying task-relevant information. A particularly

interesting example of this is provided by Lehmann et al. (2012). They discuss the use of

DBpedia (a resource derived from Wikipedia) to check the validity of Wikipedia content.

Given that DBpedia is amenable to various forms of machine-based processing, including

logical consistency checking, it is able to detect semantic anomalies that appear in the

original Wikipedia articles. Consider, for example, the unfortunate state-of-affairs in which

an individual’s date of birth is entered erroneously so that it is represented as occurring after

the individual’s death. Here we have a rather delightful example of a situation in which a

derivative knowledge resource (i.e., DBpedia) can be used to check the epistemic integrity of

the resource from which it derives (i.e., Wikipedia).

• Agent Agreement: Agent agreement mechanisms rely on the consensus that is established

by participants as a result of performing a task. One example of agent agreement comes

in the form of what is called ‘output agreement’. This occurs in situations where common

responses are taken to be an indication of output validity. The ESP image labeling game

is one example of output agreement (von Ahn & Dabbish 2004). An alternative to output

agreement is (you’ve guessed it!) ‘input agreement’ (Law & von Ahn 2009). This is used

when the chances of multiple individuals converging on a common response is undermined

as a result of high levels of descriptive entropy (i.e., the target resource can be described in

many different ways). Input agreement relies on the ability of agents to determine whether

they are processing the same resource based solely on the descriptive information that is

supplied by other agents. An example of output agreement comes in the form of a system

called TagATune whose aim is to solicit descriptive tags in respect of online audio resources

(Law & von Ahn 2009).

Note that many of these reliability-enhancing mechanisms are ones that themselves span

the social and technological domains. It is thus not simply the individual human or machine

components that contribute to the reliability of the larger system—i.e., the knowledge machine.

Instead, in many cases, it is the interplay between the human and machine elements that

determines the truth status of the system’s epistemic outputs. In this sense, a knowledge machine

may be said to possess an epistemically-relevant ability that is of a genuinely hybrid nature. In

other words, the exercise of the ability that is attributed to the knowledge machine is one that,

in many cases, depends on the joint operation of both its constituent social and technological

elements. This emphasis on systemic abilities and epistemic outcomes is one that establishes

direct contact with recent work in epistemology, especially that which goes under the heading of

virtue epistemology (Greco 2007, 2010, Palermos & Pritchard 2013).

8 Mechanical Links, Epistemic Connections

For the most part, the focus of the paper up to this point has been on systems that function

in isolation from one another. There is no attempt, for example, to integrate or embed the

functionality of Branson et al.’s (2014) bird classification system within a larger economy of

online systems, services and applications. Despite this, we can clearly imagine situations in which
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Figure 6 The flow of data through an information processing pipeline assembled from multiple
knowledge machines and other online resources. (1) Geotagged photos are captured using a smartphone
device and posted to an online repository. (2) The photos are classified using a variant of Branson et
al.’s (2014) bird classification system. (3) Classified images are interpreted as ‘sighting’ data and imported
into eBird. (4) eBird data is combined with other data assets to test specific research hypotheses.

such forms of integration could occur. Consider, for example, the hypothetical state-of-affairs

depicted in Figure 6. Here we have a form of distributed processing that combines multiple

knowledge machines into a functionally-integrated information processing pipelines. In the initial

stages of the depicted process, geotagged photos, as collected by the general public, are passed

to Branson et al.’s classification system in order to determine the species of bird depicted in the

photo (see Section 6). The resulting body of annotated photos is then made available to the eBird

system (see Section 3) for assimilation into the eBird database. Finally, the content of the eBird

database is itself made available in a format that permits flexible forms of integration, combination

and juxtaposition with a range of other data-driven applications and services. Such a capability

would clearly be of tremendous value in respect of a broad range of epistemic endeavors. Imagine,

for example, that you want to examine the impact of meteorological factors on avian population

dynamics. In this case, an ability to juxtapose data regarding (e.g.) seasonal precipitation records

with bird sighting density could be of crucial epistemic importance. Indeed, the statistical analysis

of such data could lead to new hypotheses concerning the nature of the underlying mechanisms

that are responsible for the observed correlations. Perhaps, for example, low precipitation is

associated with an increase in wild-fires, and this destroys the breeding habitat of a given species.

Given access to appropriate bodies of data, you can go on to test this hypothesis, integrating

data (from eBird) concerning seasonal fluxes in avian population dynamics with data obtained

from fire mapping agencies (e.g., the ‘Active Fire Mapping Program’15).

15See http://activefiremaps.fs.fed.us/
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The idea of linking otherwise independent online systems together to form ever-larger and

more useful problem-solving organizations is one that is sometimes encountered in the literature

on technology-mediated social participation (see Michelucci & Dickinson 2016). It is also an

idea that lies at the heart of Hendler and Berners-Lee’s (2010) vision of the problem-solving

potential of future social machines. Hendler and Berners-Lee note that today’s social machines

are somewhat limited with respect to their ability to exchange data across individual system

boundaries. In response to this, they suggest that we should move towards an era in which social

machines are poised to participate in ever-larger information processing economies, serving as

the loosely-coupled constituents of systems that are dynamically assembled to meet the needs of

specific problems.

Central to this vision of flexible integration and the ad hoc construction of special-purpose

information processing pipelines is the idea of Web-optimized data formats that provide built-in

support for knowledge-oriented processing. This, of course, is an idea that lies at the heart of

the vision of the Semantic Web (Berners-Lee et al. 2001), and it is precisely for this reason that

Hendler and Berners-Lee (2010) advocate the use of Semantic Web technologies as part the effort

to build future social machines (see also Gruber 2008). The value of being able to effortlessly

and automatically transfer data between physically and functionally disparate systems should

not be underestimated here. Such forms of fluid informational exchange are often seen as relevant

to the effort to maximally exploit the latent potential of so-called big data assets. Interestingly,

data itself has come to be viewed as a form of commodity, on a par perhaps with the more

conventional commodities (e.g., coffee, oil and copper) that fuel the global economy. It is for this

reason that data is sometimes presented as the ‘new oil’. Such a metaphor no doubt appeals

to our intuitions regarding the potential economic value of big data. But there is, I suggest, an

alternative way to view this oil-related metaphor. In this case, we can view data as a form of

lubricant that helps to ease the inevitable friction that occurs at the points of contact between

the mechanical elements of a complex, dynamic and articulated information processing engine.

Data, in this sense, is the thing that enables individual knowledge machines to be assimilated into

much larger computational organizations, some of which may themselves function as knowledge

machines in their own right. None of this should force us to renege on the basic vision of knowledge

machines as distinct, bounded systems that are able to function independently of other (online)

systems. It does, however, serve as a useful reminder of the fact that knowledge machines can

have a parallel existence as the material elements—the components, if you will—of much larger

information processing mechanisms. It is in this sense, perhaps, that we can begin to appreciate

the value of a commitment to standardized, semantically-expressive data formats. For it is at this

level—the level where individual knowledge machines are merged into larger mechanisms—where

we see a role for such formats in lubricating the mechanical linkages between the pumps, pistons

and pulleys of ever-larger and more powerful forms of knowledge processing machinery.

9 Conclusion

Knowledge machines are a specific form of social machine that is concerned with the socio-

technical realization of a broad range of knowledge processes. These include processes that are the

traditional focus of the discipline of knowledge engineering, for example, knowledge acquisition,

knowledge modeling and the development of knowledge-based systems.

In the present paper, I have sought to provide an initial overview of the knowledge machine

concept, and I have highlighted some of the ways in which the knowledge machine concept can be

applied to existing areas of research. In particular, the present paper has identified a number of

examples of knowledge machines (see Section 3), discussed some of the mechanisms that underlie

their operation (see Section 5), and highlighted the role of Web technologies in supporting the

emergence of ever-larger knowledge processing organizations (see Section 8). The paper has also

highlighted a number of opportunities for collaboration between a range of disciplines. These
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include the disciplines of knowledge engineering, WAIS, sociology, philosophy, cognitive science,

data science, and machine learning.

Given that our success as a species is, at least to some extent, predicated on our ability

to manufacture, represent, communicate and exploit knowledge (see Gaines 2013), there can

be little doubt about the importance and relevance of knowledge machines as a focus area for

future scientific and philosophical enquiry. In addition to their ability to harness the cognitive

and epistemic capabilities of the human social environment, knowledge machines provide us

with a potentially important opportunity to scaffold the development of new forms of machine

intelligence. Just as much of our own human intelligence may be rooted in the fact that we

are born into a superbly structured and deliberately engineered environment (see Sterelny

2003), so too the next generation of synthetic intelligent systems may benefit from a rich and

structured informational environment that houses the sum total of human knowledge. In this

sense, knowledge machines are important not just with respect to the potential transformation of

our own (human) epistemic capabilities, they are also important with respect to the attempt to

create the sort of environments that enable future forms of intelligent system to press maximal

benefit from the knowledge that our species has managed to create and codify.
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Gómez-Pérez, A., Fernández-López, M. & Corcho, O. (2004), Ontological Engineering, Springer,

London, UK.

Good, B. M. & Su, A. I. (2011), ‘Games with a scientific purpose’, Genome Biology 12(135), 1–3.

Greco, J. (2007), ‘The nature of ability and the purpose of knowledge’, Philosophical Issues

17(1), 57–69.

Greco, J. (2010), Achieving Knowledge: A Virtue-Theoretic Account of Epistemic Normativity,

Cambridge University Press, Cambridge, UK.



24 p. smart

Greco, J. (2012), ‘A (different) virtue epistemology’, Philosophy and Phenomenological Research

85(1), 1–26.

Gruber, T. (2008), ‘Collective knowledge systems: Where the Social Web meets the Semantic

Web’, Web Semantics: Science, Services and Agents on the World Wide Web 6(1), 4–13.

Hart, A. (1986), Knowledge Acquisition for Expert Systems, Kogan Page, London, UK.

Hayes-Roth, F., Waterman, D. A. & Lenat, D. B. (1983), Building Expert Systems, Addison-

Wesley, Reading, Massachusetts, USA.

Hedström, P. (2005), Dissecting the Social: On the Principles of Analytical Sociology, Cambridge

University press, Cambridge, UK.

Hedström, P. & Ylikoski, P. (2010), ‘Causal mechanisms in the social sciences’, Annual Review

of Sociology 36, 49–67.

Hendler, J. & Berners-Lee, T. (2010), ‘From the Semantic Web to social machines: A research

challenge for AI on the World Wide Web’, Artificial Intelligence 174, 156–161.

Heylighen, F. (2016a), ‘Stigmergy as a universal coordination mechanism I: Definition and

components’, Cognitive Systems Research 38, 4–13.

Heylighen, F. (2016b), ‘Stigmergy as a universal coordination mechanism II: Varieties and

evolution’, Cognitive Systems Research 38, 50–59.

Hoffman, R. R. & Lintern, G. (2006), Eliciting and representing the knowledge of experts, in

K. A. Ericsson, N. Charness, P. Feltovich & R. R. Hoffman, eds, ‘Cambridge Handbook of

Expertise and Expert Performance’, Cambridge University Press, New York, New York, USA.

Hutchins, E. (1995), Cognition in the Wild, MIT Press, Cambridge, Massachusetts, USA.

Kamar, E., Hacker, S. & Horvitz, E. (2012), Combining human and machine intelligence in large-

scale crowdsourcing, in ‘11th International Conference on Autonomous Agents and Multiagent

Systems’, Valencia, Spain.

Khatib, F., Cooper, S., Tyka, M. D., Xu, K., Makedon, I., Popović, Z., Baker, D. & Foldit Players
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Pichova, I., Thompson, J., Popović, Z., Jaskolski, M. & Baker, D. (2011), ‘Crystal structure of

a monomeric retroviral protease solved by protein folding game players’, Nature Structural &

Molecular Biology 18(10), 1175–1177.

Kidd, A. L., ed. (1987), Knowledge Acquisition for Expert Systems: A Practical Handbook, Plenum

Press, New York, New York, USA.

Kohl, N. E., Emini, E. A., Schleif, W. A., Davis, L. J., Heimbach, J. C., Dixon, R. A., Scolnick,

E. M. & Sigal, I. S. (1988), ‘Active human immunodeficiency virus protease is required for viral

infectivity’, Proceedings of the National Academy of Sciences 85(13), 4686–4690.
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