
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2857446, IEEE
Transactions on Computational Imaging

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 1

A Joint Row and Column Action Method for
Cone-Beam Computed Tomography

Yushan Gao, Thomas Blumensath

Abstract—The inversion of linear systems is fundamental
in Computed Tomography (CT) reconstruction. Computational
challenges arise when trying to invert large linear systems, as
limited computing resources mean that only part of the system
can be kept in computer memory at any one time. In linear
tomographic inversion problems such as x-ray tomography, even
a standard scan can produce millions of individual measurements
and the reconstruction of x-ray attenuation profiles typically
requires the estimation of a million attenuation coefficients. To
deal with the large data sets encountered in real applications and
to efficiently utilise modern graphics processing unit (GPU) based
computing architectures, combinations of iterative reconstruction
algorithms and parallel computing schemes are increasingly
applied. Whilst different parallel methods have been proposed,
individual computations currently need to access either the entire
set of observations or estimated x-ray absorptions, which can be
prohibitive in many realistic applications. We present a fully
parallelizable CT image reconstruction algorithm where each
computation node works on arbitrary partial subsets of the
data and the reconstructed volume. We further develop a non-
homogeneously randomised selection criterion which guarantees
that sub-matrices of the system matrix are selected more fre-
quently if they are dense, thus maximising information flow
through the algorithm. We compare our algorithm with block
alternating direction method of multipliers (block ADMM) and
show that our method is significantly faster for CT reconstruc-
tion.

Index Terms—CT image reconstruction, parallel computing,
gradient descent, coordinate descent, linear inverse problems.

I. INTRODUCTION

IN transmission computed tomography (CT), standard scan
trajectories, such as rotation based or helical trajectories,

allow the use of efficient analytical reconstruction techniques
such as the filtered backprojection algorithm (FBP) [1], [2] and
the Feldkamp Davis Kress (FDK) [3], [4] method. However, in
low signal to noise settings, if scan angles are under-sampled
or if nonstandard trajectories are used, then less efficient,
algebraic reconstruction methods can provide significantly
better reconstructions [5]–[8]. These methods model the x-ray
system as a linear system of equations [9]–[11]:y1...

yr

 =

a11 . . . a1c
...

...
...

ar1 . . . arc


x1...
xc

+

e1...
er

 , (1)

Manuscript received September 01, 2017. This work was supported by EP-
SRC grants EP/K029150/1 and EP/R002495/1, a University of Southampton
PGR scholarship, a Faculty of Engineering and the Environment Lancaster
Studentship and the China Scholarship Council.

Y. Gao and T. Blumensath are with the Faculty of Engineering and Envi-
ronment, University of Southampton, Southampton, SO17 1BJ, UK (email:
yg3n15@soton.ac.uk; Thomas.Blumensath@soton.ac.uk).

where y = [y1, · · · , yr]T ,x = [x1, · · · , xc]T and e =
[e1, · · · , er]T are projection data, reconstructed image vector
and measurement noise respectively. The system matrix A ∈
Rr×c, with non-negative elements acd (1 ≤ c ≤ r,1 ≤ d ≤ c),
can be computed by Siddon’s method [12]. In reality, industrial
CT is often used in cases where y and x can have millions
of entries each [13] and where A, even though it is a sparse
matrix, can have billions of entries. In these situations, solving
Eq.1 directly by calculating A−1 is infeasible. More feasible
approaches use A and AT directly (instead of their inverse)
to iteratively find an approximate solution of Eq.1.

There are many mature and efficient algorithms to solve
Eq.1, including the conjugate gradient (CG) method and
LSQR. These methods can be applied in small scale CT
reconstructions when the system matrix A can be stored in
computer memory [14], [15]. When A is too large to be kept
in memory, it is often more efficient to re-compute it on the fly
during each iteration, which can be done relatively efficiently
using modern graphical processor unit (GPU). However, GPUs
have limited internal memory. A thus has to be broken into
smaller subsets so that the GPU only operates on a subset
of the data at a time. Whilst it is possible to sequentially
process all data in this fashion, this requires constant data
transfer to the GPUs internal memory. An alternative is the use
of optimisation algorithms that only work on subsets of the
matrix A at any one time. The CG and LSQR methods, whilst
having their own block forms [16], [17], do not work with a
single subset of A per iteration. As a result, other algorithms
for CT reconstructions have been proposed. Currently, most of
these methods can be divided into two categories: row action
methods, which operate on subsets of the observations y at a
time and column action methods, which operate on subsets of
the voxels x at a time [18]–[22].

Row action methods divides the matrix A into several row
blocks and the system equation thus becomesyI1

...
yIM

 ≈
AI1

...
AIM

x, (2)

where AIi ∈ Rmi×c is the row block of system matrix A
and yIi ∈ Rmi×1 is the block of projection y. The total block
number is M and

∑M
i=1mi = r. The general iteration scheme

in row action method can be summarised as

xk = xk−1 +R(yI −AIx), (3)

where xk is the kth iteration result, R is a relaxation matrix to
control the iteration step length and I ∈ {Ii}Mi=1. In CT recon-
struction, most mature methods are row action methods. These

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2857446, IEEE
Transactions on Computational Imaging

2 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING

include the classical Kaczmarz family of algorithms (also
known as the Algebraic Reconstruction Technique (ART))
[7], [23]–[25], the Simultaneous Algebraic Reconstruction
Technique (SART) [19], [26], [27], the Simultaneous Iterative
Reconstruction Technique (SIRT), [28]–[31] and component
averaging (CAV) and its block form (BICAV) [32]–[34].

Column action methods, as a counterpart of row action
method, divide the system matrix A into several column
blocks. Eq.1 thus is divided as

y ≈
[
AJ1 · · · AJN

] xJ1

...
xJN

 , (4)

where AJj ∈ Rr×nj is the column block of system matrix
A and xJj ∈ Rnj×1 is the block of reconstructed vector x.
The total block number is N and

∑N
j=1 nj = c. The general

iteration scheme in column action methods is of the form

xk
J = xk−1

J +Rr

r = r−A(xk
J − xk−1

J),
(5)

where J ∈ {Jj}Nj=1 and the initial r = y. The application of
column action methods in CT reconstruction can be traced
back to 1990s [35]–[37]. The preliminary column action
method updates one voxel each time and it is easy to extend
the preliminary method into group form [38]–[43]. Similar to
row action methods, the selection criteria on which column
blocks to update can be randomised either uniformly [44],
[45] or based on specific probability [46], [47].

Row and column action methods also allow for parallel
computation. For parallel row action methods, each processor
(or node) needs to store the whole reconstructed image vector
x since each update is on the entire image, whilst for column
action methods, each node needs to store all of y. As a
result, the largest volume they can reconstruct is limited by the
storage capacity of the computation nodes. An important ex-
ception to this is discussed in [48], where a row action method
SIRT is discussed in which each node only requires parts of
the reconstructed image vector x. However, this method only
works for circular scan trajectories and its scalability is limited
due to the requirement that overlap between projections of
adjacent image blocks should be small.

General sub-block methods are proposed in machine
learning (ML). There has been interest in the development of
methods that use more general updates, updating subsets of x
with only subsets of y at a time [49], [50]. In this paper, these
algorithms will be called “stochastic block coordinate descent”
(SBCD). In particular, [51] and [52] independently proposed
similar SBCD algorithms and both explored the application
of variance reduction technique [53] to further accelerate the
convergence rate. [54] proposed a semi-stochastic coordinate
descent method to combine the stochastic gradient method
and coordinate descent method to minimise a strongly convex
problem. [55] mathematically proved the convergence rate
of SBCD when the step length is decreasing and when the
update strategy adopts a Gauss-Seidel type approach (updating
the current column block depends on the previously updated
column block), showing that the SBCD method has the same

convergence rate as stochastic gradient methods when the
objective function is convex. [50], [56] separately proposed the
optimal sampling method in the SBCD method by randomly
selecting column blocks and selecting row blocks based on a
calculated probability.

The partition of A in SBCD is the same as our method. To
define this, we partition A into M × N blocks. Let Ii(1 ≤
i ≤M) be an index set that indexes mi (

∑M
i=1mi = r) rows

in A and Jj(1 ≤ j ≤ N) be an index set that indexes nj
(
∑N

j=1 nj = c) columns in A . The matrix AJj
Ii

thus is a sub-
matrix of A with row indexes Ii and column indexes Jj . Thus
we can divide the linear system into M ×N blocks:yI1

...
yIM

 ≈
A

J1

I1
· · · AJN

I1
...

...
...

AJ1

IM
· · · AJN

IM


xJ1

...
xJN

 ≡
AI1

...
AIM

x. (6)

Note that the index sets can be arbitrary partitions of the
columns and rows and do not necessarily have to be consecu-
tive. To facilitate the latter discussion, we also define residual
r = y−Ax and let block residual rI be the subset of r defined
as yI −AIx, where I ∈ {Ii}Mi=1.

With this notation, the general update scheme is

xJ = xJ − µ · ∇JfI(x), (7)

where J ∈ {Jj}Nj=1 , µ is the step length and fI(x) = ‖yI −
AIx‖22, where the ‖ · ‖ is the l2 norm of a vector. Thus the
gradient ∇JfI(x) = −2(AJ

I)T (yI −AIx).
There are two difficulties when applying SBCD in large

scale CT reconstructions. The first one is that the step length
µ is determined by calculating the Lipschitz constant of the
gradient ∇JfI(x), which is computationally challenging. The
second issue is that the computation of the gradient in SBCD
requires the calculation of the block residue rI = yI − AIx,
which needs the whole of x. In other words, the system matrix
A is not actually separable in column direction due to the need
to calculate rI . This drawback makes the SBCD algorithm
difficult to apply in a totally distributed network where each
computation node only has partial access to both x and y.

Another method that can be used for linear systems is the
multisplitting (MS) method [57]. If MS method only partitions
the A into column blocks [58], it always converges as long as
A is of full column rank. However, If MS method partition
the A into both row and column blocks. it becomes only
applicable when A meets certain conditions. For example,
when A is an “H-matrix” [59] or is a positive definite matrix
[60]. The system matrix A in CT reconstruction does not meet
these requirements and MS dividing A in both dimensions
did not work in initial experiments we conducted for CT
reconstruction.

Our CT reconstruction setting leads to a convex optimiza-
tion problem. The alternating direction method of multipliers
(ADMM) is a popular tool in the parallelization of convex
optimization probelms as it allows the decomposition into
several smaller sub-problems [61]. Several versions of ADMM
were designed to work on small subsets of either x or y
[62]. In [63], a block ADMM method was proposed that
works by breaking the problems into small subsets of x and

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2857446, IEEE
Transactions on Computational Imaging

GAO et al.: A PARALLELIZABLE SUBVOLUME-BASED STEEPEST GRADIENT DESCENT APPLICATION FOR CONE-BEAM COMPUTED TOMOGRAPHY 3

y. This version of block ADMM introduces three sets of
additional nuisance variables and each sub problem requires
the solution to a smaller linear inverse problem, that can
often be solved approximately using a small number of CG
iterations. The new nuisance variables increase the overall
storage requirements and the requirement for each node to
solve a linear inverse problem in each iteration leads to
relatively slow convergence and a high computation burden
in large scale CT reconstruction, which will be illustrated in
our paper.

II. INTRODUCTION OF CSGD

In this paper, we consider large scale CT reconstruction
problems in a distributed networks, where each computation
node only has limited access to both y and x. Inspired
by SBCD and block ADMM, our goal here is to develop
a parallelisable algorithm that works with generic x-ray to-
mographic scanning trajectories and that is faster and more
memory efficient than block ADMM. Our novel algorithm,
called coordinate-wise stochastic gradient descent (CSGD),
also introduces nuisance variables, but we use fewer variables
than block ADMM. Furthermore, CSGD simplifies the step
length calculation as well as the residue update scheme of
SBCD type algorithms and thus enables a full column decom-
position for A. The algorithm is scalable so that it can be run
on a range of computing platforms, including low memory
GPU clusters and high performance CPU based clusters.

A. Derivation of the algorithm

The proposed CSGD is similar to SBCD. The main goals
of CSGD are to find a simpler strategy to compute the step
length µ and to efficiently approximate the residue rI without
having to compute the product AIx in each iteration.

Similar to SBCD, after selecting a row block I ∈ {Ii}Mi=1,
CSGD operates on the object function

fI(x) = ‖yI −AIx‖2, (8)

with gradient

g = ∇fI(x) = −2(AI)T (yI −AIx) = −2(AI)T rI . (9)

A coordinate descend update scheme is adopted and only
those elements whose indices are in the set J ∈ {Jj}Nj=1 are
updated, so that the descent operator is

g̃ =

[
gJ

0

]
=

[
(AJ

I)T rI
0

]
. (10)

Along with this new modified direction, the update on
voxels becomes

xk = xk−1 + µg̃→

{
xk
J = xk−1

J + µgJ

xk
Ĵ

= xk−1

Ĵ
,

(11)

where µ is the gradient step length, Ĵ is the complement to
the set J and gJ is a sub set of − 1

2g. The steepest descent
idea is to make the direction of ∇fI(xk) perpendicular to the
direction of g̃, i.e.

((AI)T (yI −AIx
k))T g̃ = 0. (12)

Use the fact that xk = xk−1 + µg̃ and AI g̃ = AJ
I gJ , the µ

leading to the maximum descent is

µ =
gJ

T (AJ
I)T rI

gJ
T (AJ

I)TAJ
I gJ

=
gJ

TgJ

gJ
T (AJ

I)TAJ
I gJ

. (13)

This calculation does not require the corresponding computa-
tion node to have access to the whole row or column block
of matrix A and does not have to calculate the Lipshitz
constant to determine the step length. When the matrix A
cannot be stored and need to be generated on the fly, CSGD
iteration only requires to use a sub matrix AJ

I and its transpose.
Furthermore, GPUs can calculate the forward projection AJ

I gJ

and backward projection (AJ
I)T rI very efficiently to achieve

GPU-accelerated projection operations [64], [65].
The step size derived from Eq.13 is chosen to reduce ‖rI‖

instead of ‖r‖. We observed experimentally that our choice of
µ can lead to instability in the algorithm. One method to avoid
this is to introduce an additional relaxation parameter β < 1,
which led CSGD to converge to a precision level similar to
that of SIRT and CAV. The alternative of using a constant step
length µ also led to convergence, but required a careful choice
of step length (thus making parameter tuning difficult) and led
to relatively slow convergence.

rI plays an important role in CSGD since it determines the
update direction of x. If we had access to all xj , then we could
simply compute rI = yI−

∑
j xj . In our setting, the node only

has access to one xj , thus the above computation is not pos-
sible. Instead, each node computes a quantity zjI = A

Jj
I xJj .

However, as discussed later, we might not compute all zjI in
each iteration. In this case, we use an older versions of zjI
to approximate rI = yI −

∑N
j=1 z

j
I . For smoothly varying

cost functions, using old residual information when calculating
gradients is similar to the use of old gradients in parallel
methods that can often be shown to converge [66], [67].

The pseudo-code of the basic computation blocks is shown
in the Fig.1.

Algorithm 1 The algorithm for the computation performed at
each node

Initialization: select system matrix’s row index I ∈ {Ii}Mi=1

and column index J ∈ {Jj}Nj=1

gJ = (AJ
I)T rI

µ = β (gJ)
T gJ

(gJ)T (AJI)
TAJI gJ

xk
J = xk−1

J + µgJ

zjI = AJ
I x

k
J

To parallelize the algorithm, we do not have to update all
sub-blocks before updating r. We define percentages α and γ
to specify the faction of row and column blocks to be updated.
The algorithm is shown in Algo.2. In the following discussion,
when operations from line 4 to line 16 are performed for one
time, the algorithm is said to perform for “one epoch”.

B. Comparison CSGD with block ADMM

Block ADMM has the same parallel computing architecture
as CSGD. To facilitate the comparison, we briefly present the

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2857446, IEEE
Transactions on Computational Imaging

4 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING

Algorithm 2 CSGD algorithm which parallelize both row and
column blocks.

1: Input: y, α, β, γ, {Ii}Mi=1 and {Jj}Nj=1.
2: Initialisation: x = 0, (i.e., {xJj}Nj=1 = 0), {x̂i}Mi=1 = x,
{zj}Nj=1 = 0 and r = y.

3: while stopping criterion is not met do
4: for j̃=1,2,. . .,γN in parallel (J loop) do
5: randomly draw J from {Jj}Nj=1 with replacement
6: x̂i(1 ≤ i ≤M) = 0
7: for ĩ=1,2,. . .,αM in parallel (I loop) do
8: randomly draw I from {Ii}Mi=1 with replacement
9: gJ = (AJ

I)T rI

10: µi
j = β (gJ)

T gJ
(gJ)T (AJI)

TAJI gJ

11: x̂i
J = xJ + µi

jgJ

12: zjI = AJ
I x̂

i
J

13: end for
14: end for
15: r = y −

∑
j z

j

16: for all updated J , xJ =
∑

i(x̂
i
J)/(αM)

17: end while
18: xsolution = [xJ1

, ...,xJN]T

basic operation of block ADMM algorithm [63], as shown in
Algo.3. Here avg is the element-wise averaging operator. The

Algorithm 3 Block ADMM iteration.
1: Input: y, ρ, {Ii}Mi=1 and {Jj}Nj=1.
2: Initialisation: x = x̃ = 0, z = z̃ = 0, {xi}Mi=1 = 0,
{zj}Nj=1 = 0

3: for k=1,2,. . .,kmax do
4: xk+ 1

2 = xk − x̃k

5: zk+
1
2 = 1

1+ ρ
2
y + 1

2
ρ+1

(zk − z̃k)

6: for j̃=1,2,. . .,N in parallel (J loop) do
7: randomly draw J from {Jj}Nj=1 with replacement
8: for ĩ=1,2,. . .,M in parallel (I loop) do
9: randomly draw I from {Ii}Mi=1 with replacement

10: (xi
J
k+ 1

2 , zjI
k+ 1

2) = ΠAJI
(xk

J − (x̃i
J)k, zjI

k
+ z̃kI)

11: end for
12: end for
13: xk+1 = avg(xk+ 1

2 , {xik+
1
2 }Mi=1)

14: (zk+1, {zjk+1}Nj=1) = exch(zk+
1
2 , {zjk+

1
2 }Nj=1)

15: x̃k+1 = x̃k + xk+ 1
2 − xk+1

16: x̃i)k+1 = x̃i)k + xik+
1
2 − xk+1

17: z̃k+1 = z̃k + zk+
1
2 − zk+1

18: end for
19: xsolution = xkmax+

1
2

Π projection is a linear operator

ΠAJI
(c, d) =

[
Id (AJ

I)T

AJ
I −Id

]−1 [
Id (AJ

I)T

0 0

] [
c
d

]
(14)

where Id is an identity matrix whose size is determined by
the size of AJ

I . To solve this equation, the CG method can be
used. Standard techniques to speed up block ADMM include

the early termination of the CG iteration and a variable ρ-
update scheme [61]. The exchange operator exch(c, {cj}Nj=1)
is given by

zjIi = cj +
(c−

∑N
j=1 cj)

N + 1

zIi = c−
(c−

∑N
j=1 cj)

N + 1

(15)

When applying block ADMM and CSGD in a distributed
network, they share the same architecture. For M = N = 2,
parallel block ADMM is shown diagrammatically in Fig.1.
Here, each computation node (ovals) stores one image block

xJ1,yI1

 avg: J1 column block

xJ1,yI2

xJ2,yI1

xJ2,yI2

avg: J2 column block

 exch: I1 row block

 exch: I2 row block

Fig. 1. One parallel implementation of block ADMM. Computation nodes
(ovals) compute Π projection and master nodes (square boxes) compute
“avg” and “exch”.

xJ (J ∈ {Jj}Nj=1) and one data block yI (I ∈ {Ii}Mi=1).
There are two types of master node (square boxes). One type
performs the “avg” procedure for column blocks and the
other type performs the “exch” procedure for row blocks.
One set of master nodes stores x

k+ 1
2

J , xk
J and x̃k

J and the
other set of master nodes stores y

k+ 1
2

I , yk
I and ỹk

I . The same
distributed architecture of Fig. 1 is also suitable for CSGD
with α = γ = 1. For each J , CSGD requires the exchange
and summation of zjI (i.e. over columns in Fig.1) and for
each I , CSGD requires the exchange and summation of x̂i

J

(i.e. over rows in Fig.1). These operations are similar to the
“avg” and “exch” procedure of ADMM respectively. Note
that these operations can be implemented efficiently using a
message passing approach.

The storage demand is different between block ADMM and
CSGD. Overall, CSGD requires storage of vectors y ∈ Rr×1,
r ∈ Rr×1 and x ∈ Rc×1 and of the set of N vectors {zj}Nj=1 ∈
Rr×1, so the total memory requirement for CSGD is (N +
2)r + c. Block ADMM requires more storage, as it requires
storage of x, x̃, z, z̃, y and the M vectors {xi}Mi=1 and {x̃i}Mi=1

and the N vectors {zj}Nj=1, leading to a total storage demand
of (N + 3)r + (2M + 2)c.

C. Partition methods in CT case

In our CT reconstruction problem, the partition of A along
columns is equivalent to the partition of the image. Two
examples of column partition are 1) to cut the image along
one dimension and 2) to cut the image along all dimensions.
Two 2D examples are shown in Fig.2.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2857446, IEEE
Transactions on Computational Imaging

GAO et al.: A PARALLELIZABLE SUBVOLUME-BASED STEEPEST GRADIENT DESCENT APPLICATION FOR CONE-BEAM COMPUTED TOMOGRAPHY 5

(a) (b)

Fig. 2. (a) shows the partition that along with one dimension for a 16-pixel
image, (b) shows a partition that along both image dimensions.

To understand how partitioning row blocks of A relates to
the tomographic imaging setting, we take the 2D scanning
model shown in Fig.3 as an example. When detector and

Point source：P

2D image

O

K*K pixels

D

F

E

Fig. 3. A standard 2D scanning geometry with a Shepp-Logan phantom,
where the P is the x-ray source, O is the centre of the object and the rotation
centre. D is the centre of the detector. Source and detector rotate around the
centre and take measurements at different angles. The linear detector is evenly
divided into to sub-areas DE and DF , which will be used in importance
sampling discussed later.

source are at a given location, we obtain projections along
a range of paths from the source to the different detector el-
ements. For one source/detector location, these measurements
will be called one “projection”. We could form the row blocks
of A with random projections, but then keep them fixed during
different epochs. A non-random version of this will be called
“deterministic partitioning” in which one row block contains
sequential projections from successive projection angles. We
can further divide the detector into several sub-areas and
treat projections from each sub-area as a “sub-projection”. An
illusion of this in 3D is shown in Fig.4, where one projection is
divided into 4 sub-projections. When forming the row blocks,
different sub-projections from different projection angles can
be grouped together. This will be seen to be advantageous in
the importance sampling strategy discussed next.

D. Importance sampling

When slicing the detector into several sub-areas, we can
also form row blocks dynamically. It means that the sub-areas

Detector plane

Volume block

Point source：P

(a)

Detector plane

Su
b

-a
re

a
1

Su
b

-a
re

a
2

Su
b

-a
re

a
3

Su
b

-a
re

a
4

(b)

Fig. 4. (a) shows a 3D model of the cone beam setup with one block of the
volume being projected on a detector plane. (b) shows the projection area of
the volume block.

forming row blocks are changing for different epochs. Based
on the proposed algorithm, it is straightforward to develop
a random sampling strategy that goes through all projection
views and all detector sub-areas arbitrarily. Looking at Algo.2,
for one image block xJj (1 ≤ j ≤ N), we could randomly
select sub-areas to form one row block Ii(1 ≤ i ≤ M),
with each sub-areas being chosen with equal probability as
long as the sub-area receives x-rays passing through xJj . This
sample method will be called “uniform sampling”. Consid-
ering the sparsity of A, we further develop an importance
sampling strategy. Fig.4 illustrates that the projection of a
sub-image block only intersects a small part of the detector.
When sampling sub-projections for each sub-image block
xJj (1 ≤ j ≤ N), a vector Pj representing the probability of
choosing each detector sub-area is calculated. The calculation
is based on projection areas of xJj on each sub-detector area
at different projection angles. Then α ∗ 100% of the sub-areas
are sampled with probability Pj and are grouped into αM
row blocks. These row blocks are assigned to different nodes
to perform line 9-12 in Algo.2. In this case, the detector sub-
areas receiving more projections from the current sub-image
block xJj are more likely to be chosen.

E. Computational complexity

There are several important aspects when comparing com-
putational efficiency of the methods. The methods are de-
signed to allow parallel computation. We envisage this to be
performed in a distributed network of computation nodes1.
Computation nodes produce two outputs, as displayed in line
11 and line 12 in Algo.2. These are then either sent to larger,
but slow storage or directly to other nodes, where they are
eventually used to compute line 15 and line 16 in Algo.2,
which can be performed efficiently using message passing
interface reduction methods.

Three aspects affect performance:

1) Computational complexity in terms of multiply-adds.
2) Data transfer requirements between data storage and a

processing unit as well as between different processing
units.

1A serial version running on a single computation node where each
computation is done independently, but one after the other, is also possible
and this is how many of the simulations reported here were computed.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2857446, IEEE
Transactions on Computational Imaging

6 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING

3) Data storage requirements, both in terms of fast access
RAM and in slower access (e.g. disk based) data storage.

Each of these costs are dominated by different properties:
1) Computational complexity is dominated by the computa-

tion of matrix vector products involving AJ
I and its trans-

pose, especially as A is not generally stored but might
have to be re-computed every time it is needed. The
computational complexity is thus O(|I| ∗ |J |), though
computations performed on highly parallel architectures,
such as modern GPUs, are able to perform millions of
these computations in parallel.

2) Data transfer requirements are dominated by the need
for each of the parallel computation nodes to receive rI
and xJ and transmit x̂i

J and zjI . Note that the size of
the required input and output vectors are the same, the
data transfer requirement is thus O(|I|+ |J |).

3) Central data storage requirements are dominated by the
need to store the original data and the current estimate of
x. We also need to compute and store averages over x̂i

J

and zjI . These computations can be performed efficiently
using parallel data reduction techniques. Our approach
would mean that each node would thus require O(|I|+
|J |) local memory.

III. SIMULATIONS

The simulations are divided into two parts, the first part
explores the performance of CSGD in CT reconstruction. The
second part compares CSGD with block ADMM.

A. CSGD in CT reconstruction

We used two criteria to evaluate the performance. 1) signal
to noise ratio (SNR): 20log10(‖xtrue‖/‖xtrue − xest‖), 2)
relative distance (RD): 20 log10(‖xlsq‖/‖xlsq − xest‖) . The
xtrue, xest and xlsq are the true phantom image vector,
the reconstructed image vector and the least square solution
respectively.

In the following simulations, we used the Shepp-Logan
phantom and, unless stated otherwise, K in Fig.3 is 16 and
the side length of each pixel is 1mm, the length of OP and
OD are always 100mm. The rotation interval for source and
detector is 10◦. The detector contains 30 pixels of size 1mm.
The e in Eq.1 is Gaussian white noise with variance σ of
0.1 to the simulated observations. The SNR of projection
data y (20log10(‖y‖/‖e‖)) is 25.8 dB. The default partition
method of projection data y uses the static type “deterministic
partitioning”. The default partition in the image domain uses
the method shown in Fig.2a.

B. Comparison to other methods

We start by comparing our method to a range of other
algorithms popular in CT reconstruction. For CSGD we used
M = 8, N = 4, β = 0.23 and α = γ = 1. We compared our
method to CG, steepest gradient descent (GD), SIRT, ART
and CAV. The results are shown in Fig.5. It can be seen
that for noisy observations, the CSGD and the other method
(except for ART method) all obtains nearly the same SNR.

However, whilst CG and steepest GD converge to the least
square solution, CSGD, SIRT, ART and CAV do not. This
indicates that similar to SIRT, ART and CAV, CSGD also
iterates the x towards to a weighted least square solution rather
than the least square solution itself (see our fixed point analysis
in the Appendix).

0 500 1000 1500 2000
epochs

0

5

10

15

20

25

dB

SNR trends

CSGD
CAV
ART
SIRT
steepest GD
CG

(a)

0 500 1000 1500 2000
epochs

0

50

100

150

dB

RD

(b)

Fig. 5. Comparison of CSGD with other methods. The performance of
CSGD, including the final SNR and RD level, is similar to the SIRT and
CAV methods.

C. Influence of algorithm parameters

Our algorithm has three parameters that have to be set, α,
β and γ. Due to space constraints we only discuss α and β
and set the γ ≡ 1. Smaller γ lead to similar results to those
observed with smaller α. We start by an empirical evaluation
of β. To determine the range of suitable parameters β, we
explored the performance by varying M , N and β. To show
the largest value of β that can be used for different values of
N and M , we run the algorithm for 800 epochs for different
values of β. The results are shown in Fig. 6 where we see
that the largest β value leading to highly accurate solutions is
approximately 1

N . Increasing N reduces the β range, and there
is also a relationship on M which is less clear. We next turn

0 0.5 1
-

0

5

10

15

20

25

dB

SNR after 800 epochs,M=8,<=0.1

N=2
N=4
N=8
N=16

(a)

0 0.5 1
-

0

5

10

15

20

25

dB

SNR after 800 epochs,N=2,<=0.1

M=2
M=4
M=8
M=12
M=24

(b)

Fig. 6. SNR value after 800 epochs for different values of β and for different
N and M . Increasing the M or N reduces the acceptable β range and the
range is influenced more by N value instead of M . In this simulation, the
α ≡ 1.

to the influence of the α. Reducing α reduces the computation
of CSGD within one epoch as only some of the updates are
computed. We set M=12 and N=2 and generated the data as
before. Simulation results show that reducing α increase the
acceptable β range, as shown in Fig.7.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2857446, IEEE
Transactions on Computational Imaging

GAO et al.: A PARALLELIZABLE SUBVOLUME-BASED STEEPEST GRADIENT DESCENT APPLICATION FOR CONE-BEAM COMPUTED TOMOGRAPHY 7

0 0.5 1
-

0

5

10

15

20

25

dB

SNR after 2000 epochs

,=1
,=10/12
,=8/12
,=6/12
,=4/12
,=2/12
,=1/12

Fig. 7. When M = 12, N = 2, the β value range for different α. Unless that
α is too small (1

12
), decreasing α generally enlarges the range of acceptable

β.

Convergence speed is influenced by α, β, M and N . In
general, convergence is slower for larger values of N and M
and for smaller β and α. The comparisons of β and M are
shown in Fig. 8. It can be seen that in general, increasing β
was found to lead to faster convergence, up to a point where
the algorithms started to diverge. When the β is constant,
increasing the M (or N , which is not provided here) slows
down the convergence speed. We here also provide the steepest
GD results as a reference to show that CSGD can obtain the
same precision level as steepest GD does.

0 100 200 300 400
epochs

0

5

10

15

20

25

dB

SNR trends, M=8,N=2,,=1,<=0.1

-=0.06
-=0.1
-=0.2
-=0.4
-=0.5
Steepest GD

(a)

0 100 200 300 400
epochs

0

5

10

15

20

25

dB

SNR trends,-=0.25,N=2,,=1,<=0.1

M=2
M=4
M=8
M=12
M=24
Steepest GD

(b)

Fig. 8. (a) shows that within the acceptable β range, increasing the β is found
to lead to faster convergence, up to a point where the algorithms is about to
diverge. (b) shows that when N is fixed, increasing M slows down the total
convergence rate.

Before discussing the influence on convergence speed
caused by α, we introduce a new concept “effective epoch”.
The number of sub-matrices AJj

Ii
(in Eq.6) that CSGD used per

epoch is proportional to the parameter α. As the computational
speed is dominated by matrix vector products, when we
compare the difference in convergence speed for methods
using different αs (for example, α = 1 and α = 0.5), we
took account of the reduction in computational effort when
using smaller α. The epoch count is multiplied by α and
is called as the effective epoch. As a result, for different
α, the computation amount after one “effective epoch” is
the same with each other. We need to point out that the
“effective epoch” does not consider the data transfer influence.
When α is small, one “effective epoch” includes more epochs,
which means more data transfer between nodes. Here we
mainly focus on cases when the data transfer is much more
efficient than calculating matrix-vector multiplications and
thus is negligible. The comparison of convergence speed with
different α is shown in Fig.9. Interestingly, by looking at
effective epochs, we see that CSGD can converge faster than
gradient descent for smaller α.

0 100 200 300 400
epochs

0

5

10

15

20

25

dB

SNR trend, M=12,N=2,-=0.5,<=0.1

,=1
,=10/12
,=6/12
,=4/12
,=2/12
Steepest GD

(a)

0 50 100 150 200
effective epochs

0

5

10

15

20

25

dB

SNR trend, M=12,N=2,-=0.5,<=0.1

,=1
,=10/12
,=6/12
,=4/12
,=2/12
Steepest GD

(b)

Fig. 9. (a) shows that when β is fixed, reducing the α to around 0.5 increases
the convergence speed. However, when the α is reduced too small as 2

12
, the

convergence speed is slowed down. (b) shows that from “effective epoch ”
point of view, reducing the α is always helpful to increase the convergence
speed and the increased convergence speed can be similar to the steepest GD
when α ≤ 0.5.

D. Partitioning the image and the detector
In this section, larger simulations are conducted. The CT

scanning geometry still uses the form shown in Fig.3, but
with K = 64. The length of OP and OD is set to 115mm.
The rotation interval for the point source and the detector is
3◦. The detector contains 130 pixels. The e in Eq.1 is Gaussian
white noise with variance σ of 1 to the simulated observations.
The SNR of projection data y (20log10(‖y‖/‖e‖)) is 33.8 dB.
In the following section, the partition of the image follows
Fig.2b. We here compare the partition of the linear detector
into one or two areas, as shown in Fig.3. We also compare
uniform sampling and importance sampling. The algorithm
is performed for 20 epochs and the SNR value for different
β values at this point is shown in Fig.10 (a)-(b) and two
typical SNR trend in Fig.10 (c)-(d). Under different α, the
uniform sampling strategy always obtains higher SNR after
the same epochs than deterministic partitioning. Besides, the
uniform sampling method has an even wider β range than
deterministic partitioning, which is easier for parameter tun-
ing. The uniform sampling method can be further improved
when the detector is sliced into two sub-areas. This method
avoids choosing the sub-detector areas which do not receive
any projections from the currently selected sub-image block.
However, when α = 1, the two sub-detector situation does not
increase the convergence rate. This is because that those sub-
detectors which do not receive projections from the current
sub-block still have to be selected since the α is too large.
When the α decrease to a value (e.g. 6

24) that guarantees
all selected sub-detectors are those who receive projections,
slicing the detector area into two sub-areas obtains higher
SNR than not slicing situation. Furthermore, when α is small,
the importance sampling strategy can obtain higher SNR than
uniform sampling method at the initial iterations.

E. Comparison of CSGD and block ADMM
As discussed previously, block ADMM allows for the same

partitioning of A. To compare CSGD and block ADMM,
a random system matrix A256×128 and a random vector
x128×1 are used to reduce the computation requirements in
our simulations. The linear system is a noise free model here.

As each CSGD iteration and each block ADMM iteration
require different amounts of computational effort, we here do

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2857446, IEEE
Transactions on Computational Imaging

8 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING

0 0.5 1
-

0

5

10

dB
SNR after20epochs,,=1

DP
US(Detector area=1)
US(Detector area=2)
IS(Detector area=2)

(a)

0 0.5 1
-

0

5

10

dB

SNR after20epochs,,=6/24

(b)

0 20 40 60
epochs

0

5

10

15

dB

SNR trends,,=1,-=0.4

(c)

0 20 40 60
epochs

-5

0

5

10

15

dB
SNR trends,,=6/24,-=0.6

(d)

Fig. 10. Comparisons of different sample methods. The M = 24, N =
2, σ = 1.“DP” is deterministic partitioning (defined in II-C), “US” is uniform
sampling method (defined in II-D) and “IS” is importance sampling method
(defined in II-D). The uniform sample or importance sampling both show
faster convergence speed and wider acceptable β range than previous de-
terministic partitioning. Importance sampling methods outperform the others
when α is 6

24
.

not compare SNR after each epoch. Instead, we plot SNR
against the number of times the algorithm has computed a
matrix-vector product involving the sub-matrices of A, as this
is the dominating computational cost here. Both CSGD and
block ADMM use all subsets of the matrix A and are stopped
when their solutions reach 80 dB SNR. For block ADMM, we
determined the best parameter values for variable ρ and also
stopped the CG method after as few iterations as possible to
allow algorithm convergence to the required level.

The convergence comparison for CSGD and block ADMM
are shown in Fig.11. The results demonstrate the significant
speed advantage offered by CSGD, which requires signifi-
cantly fewer matrix-vector multiplications compared to block
ADMM. Furthermore, the fully distributed form of CSGD
used here, i.e. α = 1, is not the optimal use of CSGD.
According to the previous simulations, setting α < 1 can
further increase convergence speed.

We have also compared CSGD and block ADMM on the
CT simulation of the previous simulation data with K = 64
and a detector with 130 pixels. The image was partitioned
again as in Fig.2b. Both methods were stopped once the
SNR of the reconstructed image had reached 20 dB. The
reconstructed images under noise free situation are shown
in Fig.12. Although the SNR of both images is the same,
the ADMM reconstruction in Fig.12b shows much clearer
artefacts along with the boundaries of adjacent sub-image
blocks whilst the CSGD results in Fig.12a do not show these
effects.

0 2 4 6
Usage of sub matrix #104

0

50

100

dB

SNR,M=2,N=2

CSGD
ADMM

0 2 4 6 8
Usage of sub matrix #105

0

50

100

dB

SNR,M=4,N=4

CSGD
ADMM

Fig. 11. Under noise free assumption, CSGD uses much fewer matrix-vector
multiplications to achieve predefined SNR. The β used in CSGD is 1

2N
.

(a) (b)

Fig. 12. Comparison of reconstruction results using CSGD (a) and block
ADMM (b). Although the SNR of both images is the same, (b) shows much
clearer inner artefacts than (a).

IV. CONCLUSION

CSGD was designed for a distributed reconstruction of
cone beam CT data under arbitrary scan trajectories. In the
distributed network, each node is assumed to have limited
storage capacity and thus all nodes operate with limited access
to the projection data and reconstructed volume. Whilst the
method does not converge to the least squares solution, the
solution is found empirically to be comparable in quality to
those found with other common tomographic reconstruction
algorithms, such as SIRT and CAV, but at a significant
computational advantage. The parallel architecture is the same
as that of block ADMM, which is a general algorithm for
separable convex optimization. However, for large scale CT
reconstruction, block ADMM is less attractive compared to
CSGD. One advantage of CSGD is that it requires less storage
compared to block ADMM. Another significant advantage of
CSGD is that it converges with significantly fewer matrix
vector products as it avoids the calculation of matrix inverses.
This means that CSGD converges much faster compared to
block ADMM.

We have furthermore developed an importance sampling
strategy, that has been shown to further increase initial conver-
gence. A theoretical analysis of the algorithm’s convergence
properties is ongoing and so is the inclusion of regularisation
terms in the method.

APPENDIX

Whilst we do not have a formal convergence proof of CSGD
yet, it is instructive to analyse the fixed points of the algorithm.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2857446, IEEE
Transactions on Computational Imaging

GAO et al.: A PARALLELIZABLE SUBVOLUME-BASED STEEPEST GRADIENT DESCENT APPLICATION FOR CONE-BEAM COMPUTED TOMOGRAPHY 9

We here look at the deterministic version of the algorithm with
α = 1.

The algorithm updates two quantities, x and z. Let
(xk+1, zk+1) = T (xk, zk) define one iteration of the al-
gorithm. Let x? and z? be fixed points of the operator
T (x, z) defined by (x?, z?) = T (x?, z?). Similar results to
the once derived here for the deterministic algorithm can also
be obtained for the randomised versions and for α < 1 if
we look at points for which (x?, z?) = E{Tr(x?, z?)}, where
E{·} is the expectation with respect to the random iteration
operator Tr(x, z), given the current state. In the following
demonstration, I and J are arbitrarily selected from {Ii}Mi=1

and {Jj}Nj=1.
The deterministic version of the algorithm computes updates

of the form

xk+1
J =

1

M

M∑
i=1

xi
J

k+1

=
1

M

M∑
i=1

(xk
J + µi

jg
i
J)

= xk
J +

1

M

M∑
i=1

µi
j(A

J
Ii)

T (yIi − zkIi),

(16)

and

zk+1
I =

N∑
j=1

zjI
k

=

N∑
j=1

A
Jj
I (xk

Jj + µi
jg

i
Jj)

=

N∑
j=1

A
Jj
I (xk

Jj + µi
j(A

Jj
I)T rkI)

= AIx
k +

N∑
j=1

µi
jA

Jj
I (A

Jj
I)T (yk

I − zkI)

= AIx
k + SI(yk

I − zkI),

(17)

where SI =
∑N

j=1 µ
i
jA

Jj
I (A

Jj
I)T .

This implies that, at the fixed point x? and z?, we have

z?I = (I + SI)−1AIx
? + (I + SI)−1SIyI (18)

and
M∑
i=1

µi
j(A

J
Ii)

T (yIi − z?Ii) = 0. (19)

Eq.18 can be expanded into the whole z

z? = (I + ST)−1Ax? + (I + ST)−1STy, (20)

where ST is a block diagonal matrix:

ST =


SI1 0 · · · 0
0 SI2 · · · 0
...

...
...

...
0 0 · · · SIM

 (21)

Note that (I + ST) is a positive semi-definite matrix if the
µi
j are positive. Define a diagonal matrix Dj with diagonal

entries µi
j where Dj(h, h) = µi

j if h ∈ Ii. Eq.19 can thus be
written as

(DjA
J)T (y − z?) = 0 (22)

Combine Eq.20 and Eq.22 gives

0 = (DjA
J)T (y − (I + ST)−1Ax? − (I + ST)−1STy)

= (DjA
J)T (I + ST)−1(y −Ax?).

(23)
This equation has to hold for all J . As Dj is a diagonal matrix,
this implies that

0 = AT (I + ST)−1(y −Ax?), (24)

which shows

x? =
(
AT (I + ST)−1A

)−1
AT (I + ST)−1y (25)

is a weighted least squares solution.

REFERENCES

[1] Y. Sagara, A. K. Hara, and W. Pavlicek, “Abdominal CT: comparison
of low-dose CT with adaptive statistical iterative reconstruction and
routine-dose CT with filtered back projection in 53 patients,” Am. J.
Roentgenol., vol. 195, no. 3, pp. 713–719, Sep. 2010.

[2] E. J. Hoffman, S. C. Huang and M. E. Phelps, “Quantitation in
positron emission computed tomography: 1. Effect of object size,” J.
Comput. Assist. Tomo., vol. 3, no. 3, pp. 299–308, Jun. 1979.

[3] T. Rodet, F. Noo, and M. Defrise, “The cone-beam algorithm of
feldkamp, davis, and kress preserves oblique line integrals,” Med. Phys.,
vol. 31, no. 7, pp. 1972–1975, Jun. 2004.

[4] L. Feldkamp, L. Davis and J. Kress, “Practical cone-beam algorithm,”
JOSA A, vol. 1, no. 6, pp. 612–619, Jun. 1984.

[5] A. Gervaise, B. Osemont, and S. Lecocq, “CT image quality im-
provement using adaptive iterative dose reduction with wide-volume
acquisition on 320-detector CT,” Euro. Radio., vol. 22, no. 2, pp. 295–
301, Feb. 2012.

[6] G. Wang, H. Yu, and B. De Man, “An outlook on x-ray ct research and
development,” Med. Phys., vol. 35, no. 3, pp. 1051–1064, Feb. 2008.

[7] J. Deng, H. Yu, and J. Ni, “Parallelism of iterative ct reconstruction
based on local reconstruction algorithm,” J. Supercomput., vol. 48, no. 1,
pp. 1–14, Apr. 2009.

[8] M. J. Willemink, P. A. Jong and T. Leiner, “Iterative reconstruction
techniques for computed tomography Part 1: technical principles,” Eur.
Radiol, vol. 23, no. 6, pp. 1623–1631, Jun. 2013.

[9] M. Soleimani and T. Pengpen, “Introduction: a brief overview of iterative
algorithms in x-ray computed tomography,” May. 2015.

[10] X. Guo, “Convergence studies on block iterative algorithms for image
reconstruction,” Appl. Math. Comput., vol. 273, pp. 525–534, Jan. 2016.

[11] M. Beister, D. Kolditz, and W. A. Kalender, “Iterative reconstruction
methods in x-ray CT,” Phys. Medica, vol. 28, no. 2, pp. 94–108, Apr.
2012.

[12] F. Jacobs, E. Sundermann, B. De Sutter, and M. Christiaens, “A fast
algorithm to calculate the exact radiological path through a pixel or
voxel space,” J. CIT., vol. 6, no. 1, pp. 89–94, Mar. 1998.

[13] J. Ni, X. Li, T. He, and G. Wang, “Review of parallel computing
techniques for computed tomography image reconstruction,” Curr. Med.
Imaging Rev., vol. 2, no. 4, pp. 405–414, Nov. 2006.

[14] M. Zibetti, C. Lin and G. Herman,“Total variation superiorized conjugate
gradient method for image reconstruction,”Inver. Prob. vol. 34, no. 3,
pp. 1–26, Jan. 2018.

[15] M. Chillaron, V. Vidal, D. Segrelles, I. Blanquer and
G. Verdu,“Combining grid computing and docker containers
for the study and parametrization of CT image reconstruction
methods,”Procedia Comput. Sci. vol. 108, pp. 1195–1204, Jun. 2017.

[16] S. Karimi, F. Toutounian, “The block least squares method for solving
nonsymmetric linear systems with multiple right-hand sides,”Appl. Math.
Comput. vol. 177, no. 2, pp. 852–862, Jun. 2006.

[17] P. Dianne, O. Leary, “The block conjugate gradient algorithm and related
methods,”Linear Algebra Appl. vol. 29, pp. 293–322, Feb. 1980.

[18] J. Hsieh, B. Nett, and Z. Yu, “Recent advances in CT image reconstruc-
tion,” Cur. Radio. Repor., vol. 1, no. 1, pp. 39–51, Mar. 2013.

[19] J. Bilbao-Castro, J. Carazo, J. Fernández, and I. Garcia, “Performance
of parallel 3D iterative reconstruction algorithms,” WSEAS Trans. on
Bio. and Biomedi., vol. 1, no. 1, pp. 112–119, Jan. 2004.

[20] Y. Censor, “Row-action methods for huge and sparse systems and their
applications,” SIAM Rev., vol. 23, no. 4, pp. 444–466, Jun. 1981.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2018.2857446, IEEE
Transactions on Computational Imaging

10 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING

[21] D. W. Watt, “Column-relaxed algebraic reconstruction algorithm for
tomography with noisy data,” Appl. Opt., vol. 33, no. 20, pp. 4420–
4427, Sep. 1994.

[22] T. Elfving, “Block-iterative methods for consistent and inconsistent
linear equations,” Numer. Math., vol. 35, no. 1, pp. 1–12, Mar. 1980.

[23] J. Kole and F. Beekman, “Parallel statistical image reconstruction for
cone-beam x-ray CT on a shared memory computation platform,” Phys.
Med. Biol., vol. 50, no. 6, pp. 1265–1272, Mar. 2005.

[24] T. Li, T. J. Kao, and Isaacson, “Adaptive kaczmarz method for image
reconstruction in electrical impedance tomography,” Physiol. Meas.,
vol. 34, no. 6, p. 595, May. 2013.

[25] Y. Censor, P. P. Eggermont, and D. Gordon, “Strong underrelaxation
in kaczmarz’s method for inconsistent systems,” Numer. Math., vol. 41,
no. 1, pp. 83–92, Feb. 1983.

[26] A. H. Andersen and A. C. Kak, “Simultaneous algebraic recon-
struction technique (SART): a superior implementation of the ART
algorithm,” Ultra. Imag., vol. 6, no. 1, pp. 81–94, Jan. 1984.

[27] Y. Censor, “Parallel application of block-iterative methods in medical
imaging and radiation therapy,” Math. Program., vol. 42, no. 1, pp. 307–
325, Apr. 1988.

[28] J. Gregor and T. Benson, “Computational analysis and improvement of
SIRT,” IEEE Trans. on Med. Ima., vol. 27, no. 7, pp. 918–924, Jun.
2008.

[29] N. D. Tang, N. De Ruiter, J. Mohr, and A. P. Butler, “Using algebraic
reconstruction in computed tomography,” in 27th Conf. IVCNZ, Dunedin,
New Zealand, pp. 216–221, ACM, Nov. 2012.

[30] T. M. Benson and J. Gregor, “Framework for iterative cone-beam micro-
CT reconstruction,” IEEE Trans. Nucl. Sci., vol. 52, no. 5, pp. 1335–
1340, Oct. 2005.

[31] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction
using ordered subsets of projection data,” IEEE Trans. Med. Imag.,
vol. 13, no. 4, pp. 601–609, Dec. 1994.

[32] Y. Censor, D. Gordon, and R. Gordon, “Component averaging: An
efficient iterative parallel algorithm for large and sparse unstructured
problems,” Parallel Comput., vol. 27, no. 5, pp. 777–808, May. 2001.

[33] Y. Censor and T. Elfving, “Block-iterative algorithms with diagonally
scaled oblique projections for the linear feasibility problem,” SIAM. J.
Matrix Anal. and Appl., vol. 24, no. 1, pp. 40–58, Jul. 2002.

[34] Y. Censor, D. Gordon, and R. Gordon, “BICAV: A block-iterative
parallel algorithm for sparse systems with pixel-related weighting,” IEEE
Trans. Med. Imag., vol. 20, no. 10, pp. 1050–1060, Oct. 2001.

[35] K. Sauer and C. Bouman, “A local update strategy for iterative recon-
struction from projections,”IEEE Trans. Signal Process, vol. 41, no. 2,
pp. 534–548, Feb. 1993.

[36] C. Bouman and K. Sauer, “A unified approach to statistical tomography
using coordinate descent optimization,”IEEE. Trans. Signal Process,
vol. 5, no. 3, pp. 480–492, Mar. 1996.

[37] J. Thibault, K. Sauer, C. Bouman and J. Hsieh, “A threedimensional
statistical approach to improved image quality for multislice helical
CT,”Med. Phys., vol. 34, no. 11, pp. 4526–4544, Oct. 2007.

[38] T. M. Benson, B. K. De Man, L. Fu, and J.-B. Thibault, “Block-based
iterative coordinate descent,” in NSS/MIC,2010 IEEE, pp. 2856–2859,
IEEE, 2010.

[39] D. Kim and J. A. Fessler, “Parallelizable algorithms for x-ray CT image
reconstruction with spatially non-uniform updates,” Proc. 2nd Intl. Mtg.
on image formation in x-ray CT, pp. 33–36, 2012.

[40] K. Sauer, S. Borman and C. Bouman, “Parallel computation of sequential
pixel updates in statistical tomographic reconstruction,”IEEE. ICIP, Oct.
1995.

[41] J. Fessler, “Grouped-coordinate ascent algorithms for penalized-
likelihood transmission image reconstruction,”IEEE. Trans. Med. Ima.,
vol. 16, no. 2, pp. 166–175, Apr. 1997.

[42] J. Zhang, S. Saquib and K. Sauer, “Parallelizable Bayesian tomography
algorithms with rapid, guaranteed convergence,”IEEE. Trans. Ima. Pro.,
vol. 9, no. 10, pp. 1745–1759, Oct. 2000.

[43] J. Fessler and D. Kim,“Axial block coordinate descent (ABCD) algo-
rithm for x-ray CT image reconstruction,”Proc. Fully Three-Dimensional
Image Reconstruct. Radiol. Nucl. Med., Jul. 2011.

[44] C. Hsieh, K. Chang and C. Lin, “A Dual Coordinate Descent Method
for Large-scale Linear SVM,”ICML. pp. 408–415, Jul. 2008.

[45] K. Chang, C. Hsieh and C. Lin, “Coordinate Descent Method for Large-
scale L2-loss Linear Support Vector Machines,”J. Mach. Learn. Res.
vol. 9, no. 2, pp. 1369–1398, Jul. 2008.

[46] Z. Yu, J. B. Thibault, C. A. Bouman, K. D. Sauer, and J. Hsieh, “Non-
homogeneous updates for the iterative coordinate descent algorithm,” in
Electronic Imaging 2007, San Jose, CA, United States, pp. 64981B1–
64981B12, International Society for Optics and Photonics, Feb. 2007.

[47] Z. Yu, J.-B. Thibault, C. A. Bouman, and K. D. Sauer, “Fast model-
based x-ray CT reconstruction using spatially nonhomogeneous icd
optimization,” IEEE Trans. Image Process, vol. 20, no. 1, pp. 161–175,
Jan. 2011.

[48] W. J. Palenstijn, J. Bédorf, and K. J. Batenburg, “A distributed SIRT im-
plementation for the ASTRA toolbox,” in Proc. Fully Three-Dimensional
Image Reconstruct. Radiol. Nucl. Med., pp. 166–169, Jun. 2015.

[49] J. Chen and Q. Gu, “Accelerated Stochastic Block Coordinate Gradient
Descent for Sparsity Constrained Nonconvex Optimization,”UAI Proc.
pp. 132–141, Jun. 2016.

[50] A. Zhang and Q. Gu, “Accelerated Stochastic Block Coordinate De-
scent with Optimal Sampling,”Proc. of the ACM SIGKDD Inter. Conf.
pp. 2035–2044, Aug. 2016.

[51] H. Wang and A. Banerjee, “Randomized block coordinate descent for
online and stochastic optimization,”arXiv preprint arXiv:1407.0107 Jul.
2014.

[52] T. Zhao, M. Yu, Y. Wang, R. Arora and H. Liu, “Accelerated Mini-batch
Randomized Block Coordinate Descent Method,”NIPS pp. 3329–3337,
Dec. 2014.

[53] R. Johnson and T.Zhang, “Accelerating Stochastic Gradient Descent
using Predictive Variance Reduction,”NIPS pp. 315–323, Dec. 2013.

[54] J. Konecny, Q. Zheng and P. Richtarik, “Semi-stochastic coordinate
descent,”Optim. Methods Sofw. vol. 32, no. 5, pp. 993–1005, Mar. 2017.

[55] Y. Xu and W. Yin,“Block Stochastic Gradient Iteration for Convex and
Nonconvex Optimization,”SIAM J. Optim vol. 25, no. 3, pp. 1686–1716,
Aug. 2015.

[56] Z. Lu and L. Xiao, “On the complexity analysis of randomized block-
coordinate descent methods,”Math. Program vol. 152, no. 1, pp. 615–
642, Aug. 2015.

[57] M. Neumann and R. Plemmons, “Convergence of parallel multisplitting
iterative methods for M-matrices,”Numer. Linear Algebra Appl. vol. 88,
pp. 559–573, Apr. 1987.

[58] R. Renaut, “A parallel multisplitting solution of the least squares
problem,”Numer. Linear Algebra Appl. vol. 5, no. 1, pp. 11–31, May,
1998

[59] A. Frommer, G. Mayer, “Convergence of relaxed parallel multisplitting
methods,”Linear Algebra Appl vol. 119, pp. 141–152, Jul. 1989.

[60] R. Wen and H. Duan, “A parallel multisplitting method with self-
adaptive weightings for solving H-matrix linear systems,”J. Inequal.
Appl. vol. 2017, no. 1, pp. 95–105, Jun. 2017.

[61] S. Boyd, N. Parikh, E. Chu, B. P and J. Eckstein, “Distributed opti-
mization and statistical learning via the alternating direction method of
multipliers,”Foundations and Trends in Machine Learning vol. 3, no. 1,
pp. 1–122, Jul. 2011.

[62] W. Deng, M. Lai, Z. Peng and W. Yin, “Parallel multi-block ADMM
with o (1/k) convergence,”J. Sci. Comput. vol. 71, no. 2, pp. 712–736,
May. 2017.

[63] N. Parikh and S. Boyd, “Block splitting for distributed optimiza-
tion,”Mathm. Prog. Comput. vol. 6, no. 1, pp. 77–102, Mar. 2014.

[64] W. Aarle, W. Palenstijn, J. Beenhouwer, T. Altantzis, S. Bals, K. Baten-
burg, J. Sijbers, “The ASTRA Toolbox: A platform for advanced al-
gorithm development in electron tomography,”Ultramicroscopyvol. 157,
pp. 35–47, May 2015.

[65] A. Biguri, M. Dosanjh, S. Hancock, and M. Soleimani,“TIGRE: a
MATLAB-GPU toolbox for CBCT image reconstruction,”Biomed. Phys.
Eng. Express vol. 2, no. 5, pp. 055010, Sep. 2016.

[66] J. Langford, A.J. Smola and M. Zinkevich, “Slow learners are
fast,”Advan. in Neu. Info. Proc. Sys. pp. 2331–2339, 2009.

[67] A. Alekh and J.C. Duchi,“Distributed delayed stochastic optimiza-
tion,”Advan. in Neu. Info. Proc. Sys. pp. 873–881, 2011.

