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Joint Wireless Positioning and Emitter Identification
in DVB-T Single Frequency Networks

Liang Chen, Lie-Liang Yang, Jun Yan and Ruizhi Chen

Abstract—Digital television (DTV) signal has been recognized
as a promising signal for navigation and positioning. However,
due to the single frequency network (SFN) transmission within
the European standard digital video broadcasting terrestrial
(DVB-T) system, emitter confusion problem occurs in navigation
and positioning, resulting in that a receiver is unable to know
from which emitter a received signal comes. In this paper,
we consider the wireless positioning with emitter confusion
problem in DVB-T SFN networks. A joint wireless positioning
and emitter identification algorithm is proposed, which is based
on the expectation maximization (EM) method. The proposed
algorithm is tested in a scenario, where signals are received
from 3 to 5 emitters. Simulation results show that, relying on
more than 3 emitters used in the tests for 2D positioning, the
EM assisted positioning algorithm is feasible to achieve accurate
positioning results in the existence of the emitter confusion
problem. Our studies show that the performance achieved by the
proposed algorithm approaches the Cramér-Rao bound (CRB).
Furthermore, the proposed algorithm is effective to identify the
DTV emitters, and the positioning performance is robust to
the emitter identification error. Additionally, our methodology
is general, and can be employed for time of arrival (TOA) based
positioning in any SFNs.

Index Terms—DVB-T, single frequency network (SFN), expec-
tation maximization (EM), Cramér-Rao Lower bound (CRLB),
wireless positioning

I. INTRODUCTION

Terrestrial television signals have been designed for both
indoor and outdoor reception. Recently, wireless positioning
using digital television (DTV) signals has attracted a growing
interest after the DTV systems have been put into operation
for massive users. It has been recognized that the DTV signals
have a range of advantages for positioning, when compared to
the Global Navigation Satellite Systems (GNSS) [1]. Based
on the DTV signals, wireless positioning benefits from a
higher transmission power [2], larger signal transmission band-
width [3], less Doppler effects and ionosphere disturbance [4],
and lower carrier frequency, hence resulting in better diffrac-
tion performance and better receiving quality for urban and
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indoor propagation [5]. Furthermore, it is cost effective, due
to the reuse of existing DTV facilities [6]. The principles and
recent progress in research about the DTV signal assisted
navigation and positioning have been overviewed in detail
in [7], [8].

Among all the terrestrial DTV standards, the European
standard DVB-T [3] has been employed in most countries
worldwide. In the DVB-T based systems, multiple emitters are
deployed to cover a region by transmitting the same signals on
the same frequency band, which is hence called as the single
frequency network (SFN) [3]. The SFN is efficient in terms of
the use of frequency resource. However, in positioning, SFN
generates the emitter confusion problem that a positioning
receiver is unable to know which DTV stations it receives
signals from.

The emitter confusion problem has been addressed in some
literature [9], [10], [11], [12]. Specifically, the watermarking
techniques have been proposed for the emitter identification
in DTV systems, which include the systems based on the Ad-
vanced Television Systems Committee (ATSC) standards [9]
and that on the DVB-T2 standards [10]. However, applying
the watermarking techniques has to change the structure of the
transmitted DTV signals, which leads to extra cost for updating
the whole DTV system. By contrast, the authors of [11] have
proposed a reverse positioning technique, while the authors
in [12] have proposed to use mobile velocity information, in
order to avoid the emitter confusion problem. However, these
techniques are only suitable for the positioning receivers in
moving, but not suitable for the static positioning receivers.

In this paper, we propose a novel approach, namely the
expectation maximization assisted positioning (EMP) algo-
rithm, which jointly estimates a user’s position and identifies
the DTV emitters. Our EMP algorithm iteratively identifies
the DTV emitters and estimates the position of the receiver,
with the aid of the pseudo-ranges measured by the receiver
based on its received signals from the different DTV stations.
In comparison with the existing approaches [9], [10], our
proposed method does not require to modify the structure
of the existing DTV signals. Hence, it is suitable for both
static and mobile receivers to carry out their positioning.
Additionally, we should note that, although our method is
derived and analyzed in the context of the DVB-T systems, the
methodology is in fact very general, which may be employed
in any SFN based systems for the time of arrrival (TOA) based
positioning.

The rest of the paper is organized as follows. Section II
presents the system model and formulates the problem of
DTV-based positioning without knowledge about emitter la-



bels. In Section III, we detail the solution to the problem.
Section IV shows the testing results and provides correspond-
ing discussion. Finally, in Section V, the conclusions from
studies are summarized.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. TOA Estimation with DVB-T signals

The DVB-T standard uses the OFDM (orthogonal frequency
division multiplexing) modulation to achieve robust transmis-
sion in multipath scenarios. In DVB-T systems, OFDM signals
are specified by three parameters, namely, the number of
subcarriers or the FFT (fast Fourier transform) size, the length
of cyclic prefix (CP) and the sampling period. The options
(or modes) for setting up these parameters are provided in the
ETSI DVB-T standard [3]. In DVB-T systems, signals are con-
tinuously transmitted and every OFDM symbol is transmitted
within a fixed duration of time. The pilot subcarriers in each
OFDM symbol are given by a known Pseudo-Random Binary
Sequence (PRBS) with boosted power. From the perspective
of wireless positioning, the good autocorrelation property of
the PRBS with boosted power and the continuous transmission
are helpful to accurately acquire and track the signals for TOA
estimation. Moreover, in DVB-T systems, multiple emitters are
suggested to be coordinated to the GPS time and simultane-
ously transmit the same DVB-T signals in the same frequency
band, forming the so-called SFN transmission. Therefore,
multiple emitters supported by network synchronization make
the timing-based estimation required for wireless positioning
available.

In our previous work [7], a software defined DVB-T receiver
has been developed to estimate the TOA of DVB-T signals for
positioning. The results obtained from the field test campaign
show that the TOA tracking on real DVB-T signals is capable
of achieving good ranging accuracy, with the estimation error
within 1 - 4 meters depending on the practical signal to noise
ratio (SNR).

B. System Model

We consider a user that can simultaneously receive signals
from M DVB-T stations located within an area covered by a
DVB-T SFN network. The east-north (X-Y) coordinates of the
user location is expressed as xxx = [xr yr]

T , and the coordinates
of the ith DVB-T station is expressed as ccci = [xi yi]

T ,
{i ∈ 1, 2, . . . ,M}. In DVB-T networks, the distance between
a DVB-T station and a user can be measured by the TOA
estimation [7]. Let di denote the distance between the user at
xxx and the ith DVB-T station at ccci, which can be expressed as

di
4
= hi(xxx) = ‖ccci − xxx‖, i = 1, 2, . . . ,M (1)

For the sake of simplicity, let us consider only the line-of-sight
(LOS) transmission environments. In this case, the distance
measurement is only corrupted by the system measurement
noise expressed as ni for the ith DVB-T station, which can be
modeled as an independent and identically distributed (i.i.d.)
white Gaussian noise N(0, σ2

i ) with zero mean and a variance
of σ2

i . Consequently, when M DVB-T stations are considered,
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Fig. 1. Illustation of positioning confusion in DVB-T SFN.

the vector collecting the measurements of the distances from
the M DVB-T stations to xxx can be written as

zzz = hhh(xxx) +nnn (2)

where zzz = [z1, z2, · · · , zM ]T , hhh(xxx) =
[h1(xxx), h2(xxx), · · · , hM (xxx)]T and nnn = [n1, n2, · · · , nM ]T .
As ni ∼ N(0, σ2

i ), we have nnn ∼ N (000,ΣΣΣ), where
ΣΣΣ = diag{σ2

1 , σ
2
2 , · · · , σ2

M} is a diagonal matrix.
In DVB-T networks, the DVB-T stations’ coordinates are

fixed and can be assumed to be known to the positioning
receiver by saving them in its memory. However, due to the
property of the SFN, the label of a DVB-T station is not nec-
essarily transmitted. Consequently, even though a positioning
receiver knows the coordinates of the DVB-T stations invoked,
it may be unable to identify from which DVB-T stations
the signals are received, generating the emitter confusion
problem. For example, in Fig. 1, when given the M distsnces
from the M DVB-T stations to a positioning receiver, there
may possibly exist M ! DVB-T distributions yielding these
distances, when we consider all the possible combinations of
the distances from the DVB-T stations. Therefore, one of the
important tasks in DVB-T based positioning is to identify the
DVB-T stations, in order for a receiver to know from which
DVB-T stations it receives signals and, ultimately, to calculate
accurately its own location. Based on the above discussion, our
positioning problem is formulated as follows.

C. Problem Formulation

Assume that the receiver knows a set of M surrounding
emitters expressed as {Tx}, from which the signals are
received. Define the set of permutations generated by {Tx}
as S , {sss1, · · · , sssL}, where L is equal to the factorial
of the total M emitters in {Tx}, i.e., L = M !. For a
permutation sssj = [s1

j , s
2
j , · · · , sMj ], j ∈ {1, · · · , L}, a number

i ∈ {1, · · · ,M} is transformed to a number sij , i.e. sssj(i) = sij ,
where sij ∈ {1, · · · ,M}. Accordingly, the pseudo range
measurement zi between the imaginary DVB-T station at cccsij
and the receiver is

zi = ‖cccsij − xxx‖+ ni (3)

As we know, within the set sss, there is only one permutation,
say sssj , which corresponds to the actually received pseudo-



ranges zzz. Thus, the positioning problem in the DVB-T SFN
consists of the sub-problem of finding the right permutation of
sssj , and the sub-problem of estimating xxx based on the pseudo
range measurements zzz.

In this paper, we propose a method, which jointly identifies
the DTV emitters and estimates the receiver’s location by max-
imizing the likelihood of the observed range measurements.
Furthermore, an EMP algorithm is designed in order to find
the solution, as formulated as follows.

III. EXPECTATION MAXIMIZATION ASSISTED
POSITIONING

Based on the observed pseudo-range vector zzz, as shown
in (2), the maximum likelihood estimation (MLE) can be
applied, which estimates the receiver’s position xxx according
to the optimization of

x̂xx = arg max
xxx

p(zzz|xxx) (4)

where

p(zzz|xxx) =
1

(2π)M/2|ΣΣΣ|1/2
e−

1
2 (zzz−hhh(xxx))TΣΣΣ−1(zzz−hhh(xxx)) (5)

Taking the logarithm on both sides of (5) and neglecting the
additive constants, it is explicit that the maximization of (5)
is equivalent to the optimization of

x̂xx = arg min
xxx

{
(zzz − hhh(xxx))TΣΣΣ−1(zzz − hhh(xxx)

}
(6)

However, in our problem, the labels of the DVB-T emitters
are unknown, making the receiver unable to distinguish the
signals received from the different emitters. In this case, even
the receiver has the knowledge of the distances from the M
surrounding DVB-T emitters, it is still unable to calculate its
position directly, when considering that there are in total L
possible permutations for a set of the measurements zzz.

In order to solve the problem, we introduce the permutation
variable sss as the missing data in the MLE. Then, the logarithm
of p(zzz|xxx) can be rewritten as [13] ,

log p(zzz|xxx) = log p(zzz,sss|xxx)− log p(sss|zzz,xxx) (7)

Upon taking the expectations on both sides with respect
to the distribution log p(sss|zzz,xxxold), where xxxold is the current
estimation of the position, we obtain

log p(zzz|xxx)=
∑
sss

p(sss|zzz,xxxold) log p(zzz,sss|xxx)−
∑
sss

p(sss|zzz,xxxold) log p(sss|zzz,xxx)

= Eold(log p(zzz,sss|xxx))−Eold(log p(sss|zzz,xxx))
(8)

where Eold is the expectation of sss with respect to the distri-
bution p(sss|zzz,xxxold). Note that, in (8) the left-hand side is the
same as that in (7), as it does not depend on sss. According
to the Gibbs’ inequality, the last term of Eold(log p(sss|zzz,xxx))
on the right side of (8) is maximized at xxx = xxxold. There-
fore, if we choose xxx to improve Eold(log p(zzz,sss|xxx)) be-
yond Eold(log p(zzz,sss|xxxold)), log p(zzz|xxx) will be similarly im-
proved beyond log p(zzz|xxxold). In other words, the term of

Eold(log p(zzz,sss|xxx)), viewed as the expected complete-data log-
likelihood [13], can be used as the cost function for maximiza-
tion of log p(zzz|xxx), which for simplicity can be denoted as

QQQ(xxx,xxxold) =
∑
sss

p(sss|zzz,xxxold) log p(zzz,sss|xxx) (9)

According to [14], with the aid of the missing data sss, the
EM algorithm is capable of converging to a local maximum
of the log-likelihood function QQQ(xxx,xxxold).

Let us factorize the complete-data likelihood as

p(zzz,sss|xxx) = p(zzz|sss,xxx)p(sss|xxx) (10)

where p(sss|xxx) acts as the a-priori knowledge about the true
positions of the DVB-T stations. However, due to the lack
of this knowledge, we assume the uniform a-priori of sss.
Meanwhile, we can assume that the selection of the possible
permutation sss is independent of xxx, i.e. p(sss|xxx) = p(sss). Then,
QQQ(xxx,xxxold) in (9) can be further factorized as

QQQ(xxx,xxxold) =
∑
sss

p(sss|zzz,xxxold) log p(zzz|sss,xxx) +
∑
sss

p(sss|zzz,xxxold) log p(sss)

= QQQ1(xxx,xxxold) +QQQ2

(11)

where by definition, QQQ1(xxx,xxxold) =∑
sss p(sss|zzz,xxxold) log p(zzz|sss,xxx), and QQQ2 =∑
sss p(sss|zzz,xxxold) log p(sss). Explicitly, QQQ2 is a constant, as

it is not depended on xxx. Consequently, the maximization
of Q(xxx,xxxold) with respect to xxx is equivalent to maximizing
QQQ1(xxx,xxxold).

A. Derivation of Algorithm

The EMP algorithm is divided into an E-step and an M-step,
which are detailed below.

1) E-step: Given the current estimate of the position xxxold,
the conditional distribution of p(sss|zzz,xxxold) can be obtained by
Bayes theorem as:

p(sss|zzz,xxxold) ∝ p(zzz|sss,xxxold)p(sss|xxxold) (12)

In (12), when we assume the uniform distribution of sss, then
we have p(sss|xxxold) = p(sss). According to the measurement
model of (2), when given a permutation sss, p(zzz|sss,xxxold) obeys a
Gaussian distribution with the mean of hhhsss(xxxold) and covariance
matrix ΣΣΣ. Furthermore, let us define γold

sss = p(sss|zzz,xxxold),
which represents the weight coefficient of the permutation of sss
obtained from the current estimate xxxold and the measurements
zzz. Thus, for the E-step, we have

QQQ1(xxx,xxxold) =
∑
sss

γold
sss log p(zzz|sss,xxx) (13)

where it can be shown that

γold
sss =

1

L
N
(
xxxold;hhhsss(xxx

old),Σ
)

(14)



2) M-step: Given the weight coefficient γold
sss derived from

the E-step, the maximization step (M-step) is to find xxx, so that

xxx = arg max
xxx

Q1(xxx,xxxold) (15)

Upon substituting (5) into (13) and then into (15), taking
the logarithms as well as neglecting the additive constants, it
is explicit that the maximization of (15) is equivalent to the
optimization problem of

x̂xx = arg min
xxx

{∑
sss

(
zzz − hhhsss(xxx)

)T
(Σ/γold)

sss )−1
(
zzz − hhhsss(xxx)

)}
(16)

Let us define eeesss(xxx) = zzz − hhhsss(xxx), eee(xxx) =
[eeeTsss1(xxx), · · · , eeeTsssL(xxx)]T , and a covariance matrix

W = diag
{(

Σ/γold
sss1

)−1

, · · · ,
(

Σ/γold
sssL

)−1}
. Then, the

optimization problem of (16) is equivalent to minimize the
objective function of

fff(xxx) = ‖eee(xxx)TWeee(xxx)‖ (17)

The minimum value of fff(xxx) occurs at the point with the
gradient being zero, i.e. ∂fff(xxx)

∂xxx = 0. Since the function (17)
includes both the independent variable and the parameters, the
closed form solution to the gradient is not straightforward to
derive. Alternatively, by directly approximating the nonlinear
hhhs(xxx) by a Jacobi matrix, i.e. Hsss(xxx) = ∂hhhsss(xxx)

∂xxxT = cccsss−xxx
‖cccsss−xxx‖ ,

an iterative weighted least square method (IWLS) [15] can be
implemented to solve the optimization problem. The IWLS
method is numerically robust, which can easily make use of
almost any kind of measurement for the purpose of positioning
in mobile location setting [15]. A disadvantage of the IWLS
method is that it requires an initial guess of the position.
Poor setting of the initial position may cause the algorithm
to converge to a local maximum value of the likelihood,
resulting in a location divergent from the real position, which
corresponds to the global maximum value of the likelihood.

B. Initial Value Settings

For the lack of the a-priori information about the position
of xxx, the initial estimation of position xxx0 can be taken
as the average of all the estimated positions from different
permutations, i.e., x̂xx0 = E(x̂xxsss), where the expectation is in
terms of all the possible permutations of the emitters sss. Given
that there are in total L permutations, we have xxx0 = 1

L

∑
sss x̂xxsss.

C. Weight Threshold

In order to accelerate the computing, a weight threshold
γthreshold can be introduced to decide whether a permutation sssj
is to be considered for further computing. Specifically, after
an E-step, when the weight γold

sssj , as seen in (14), satisfies
γold
sssj < γthreshold, we may assume that the permutation sssj has a

very small probability to match the current estimate xxxold and
the measurements zzz. Therefore, sssj can be deleted from the
candidate permutation list for further consideration.

TABLE I
TESTING SCENARIOS

Emitter cite Longitude Latitude Altitude Tx power (W)
1 Grande Etoile 43.38368 N 5.42607 E 582 10 k -100 k
2 La Mille 43.27815 N 5.49003 E 260 36
3 Super Rouviere 43.25051 N 5.57462 E 206 6
4 Promegues 43.27443 N 5.30804 E 55 3500
5 Mont Des Marseille 43.35890 N 5.57462 E 610 20

D. Algorithm Description

In summary, our EMP algorithm can be stated as follows,
which jointly identifies the DVB-T SFN emitters and estimates
the position of the receiver.

Algorithm 1 EMP algorithm

Initialization: the initial mobile positioning x̂xx0 is set based
on Section III-B, set the stopping error tolerance threshold to
δ, and set the maximum number of iterations to Nmax ;
for k = 1, · · · , Nmax,

1) compute the weights γold
sssj of the permutations according

to (14);
2) delete the permutations having small weights, according

to what stated in Section III-C;
3) update the estimate x̂xxk according to (16);
4) If ‖x̂xxk − x̂xxk−1‖ > δ and k ≤ Nmax, set k = k + 1 and

return Step 2). Otherwise, stop and return the estimate
to the mobile position.

end for

IV. TESTS RESULTS

A. Test Scenario

The scenario used to test the EMP algorithm is selected
in the city of Marseille in Southern France. According to
the public information released by the Conseil Supérieur de
L’audiovisuel (CSA) [16], there are five emitters covering
the DVB-T SFN in the area. Table I lists the information
of all the five emitters. From Table I, we can know that the
emitter of the Grande Etoile is the main transmitter in the area.
The signals are transmitted in terms of the Effective Radiated
Power (ERP) in the range of 10 KW to 100 KW for different
channels. The transmitter in Promegues is the second most
powerful one in the area with an ERP of 3.5 KW. There are
three emitters in the suburban of the city, whose transmission
power is relatively small and in the range from 6 W to 36 W.

In [7], a TOA estimation approach has been proposed, which
is capable of tracking weak DVB-T signals for the purpose of
ranging, even in the case that the received signals are not
strong enough to meet the requirement for the quasi error
free (QEF) demodulation. This is because the TOA estimation
method in [7] exploits the pilots of DVB-T signals for tracking,
which are transmitted with boosted power in comparison to
the signals for payload data. As an example, Fig. 2 shows one
snapshot of the channel acquisition in one of the field tests
provided by the software defined DVB-T receiver developed
in [7]. In this test, the receiver is located in a parking place
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Fig. 2. Snapshot of the channel acquisition from one field test in Marseille,
where the receiver is located in a parking place near the Notre Dame de
la Garde and the acquired signals are transmitted in the frequency band of
Channel 30.

near the Notre Dame de la Garde, having the two dimensional
(2D) coordinate of [43.28481 N, 5.371708 E] and the altitude
of 129 meters, according to a GPS receiver. Additionally, the
central carrier frequency of the acquired signal is 546.1667
MHz, which is the central frequency of Channel 30.

B. One Realization of the Test

To evaluate the performance of our EMP algorithm, we
assume that there is a receiver, which is located within the line
of sight (LOS) region of the four DVB-T SFN emitters noted
in Table I and Fig. 3. The measurement noise is assumed to
be the white Gaussian noise distributed with zero mean and a
variance of σ2

n = 10 m2. This assumption is in consistent with
the field test results in high signal-noise ratio (SNR) region,
as shown in [7]. In Fig. 3, we show a one-step realization
of the EMP algorithm, when the initial position is randomly
distributed within the considered area. By contrast, in Fig. 4,
we depict the 3D surface of the likelihood evaluated from (5).
In our evaluation for Fig. 4, all the possible permutations in
SSS for a specific grid xxxi are considered. For the lack of the
knowledge, equal a-priori probability of p(sss = sssj) = 1/L is
assumed to compute the likelihood.

From Fig. 3 and Fig. 4, it is observed that in high SNR
region, positioning is very reliable with small evaluation error,
meaning that all the emitters can be correctly identified.
Comparatively, when the SNR decreases, some of the emitters
might not be correctly identified, as shown in Fig. 5, where
the noise variance is 100 m2. However, as shown in Fig. 5, the
position of the receiver estimated by the EMP algorithm still
converges to the actual position of the receiver, even though
more iterations are required, and when some of the emitters
are not correctly identified by the EMP algorithm.

C. Statistical Performance

Fig. 6 depicts the root mean square errors (RMSE) per-
formance of the EMP algorithm, when different numbers of
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Fig. 4. 3D surface of the values related to the likelihood evaluated by (5).
In order to have a good view of the global minimum in the 3D surface, the
coordinate of z axis increases from the top to the bottom.

emitters are deployed. The results were obtained from the
average of 2000 Monte Carlo realizations. In our simulations,
the position of the receiver is randomly generated within the
area of interest. In order to compare the performance of the
EMP algorithm, the Cramér-Rao lower bound (CRLB) [17],
[18] was computed and also shown in Fig. 6. We should
note that, the CRLB was computed under the ideal knowledge
that the receiver knows which signal is received from which
emitter. Therefore, the CRLB is an over-optimistic estimation
for the problem considered in this contribution.

From the results of Fig. 6, we observed that when only 3
emitters are used for positioning, the positioning error is much
higher than the CRLB. By contrast, when there are four or five
emitters available for positioning, the positioning performance
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Fig. 5. One realization of the EM assisted positioning under large measure-
ment noise, where the variance of measurement noise is 100 m2. In this test,
the positioning error is 10.1 m and the two emitters of Etoil and Mille are
not correctly identified.

is close to the CRLB.
As shown in Fig. 6, when the number of emitters increases,

the performance of positioning improves. In contrast to the
significant performance improvement when the number of
emitters is increased from three to four, there is only marginal
improvement, when the number of emitters is increased from
four to five. Therefore, our proposed EMP algorithm is a
highly effective positioning algorithm even when the receiver
experiences the emitter confusion problem. Furthermore, con-
sidering the complexity-performance trade-off, in practice, it
is desirable for the EMP algorithm to work with four emitters,
as evidenced by the results shown in Fig. 6.

In Fig. 7, we show the error rate of the emitter identification,
when three, four or five emitters are employed by the EMP
algorithm. Explicitly, when the test uses 3 emitters, the error
rate of the emitter identification is the largest among the three
test scenarios. This is because, in this case, there are not
enough pseudo-ranges provided for the EMP algorithm. By
contrast, when four or five emitters are used in the tests,
the error rate of emitter identification decreases significantly.
However, it is interesting to find that the error rate of emitter
identification in the case of 5 emitters is slightly larger than
that in the case of 4 emitter. In fact, this is because, when more
emitters are used in the tests, the emitter confusion problem
becomes severer, resulting in the increased error rate of emitter
identification. Nevertheless, as shown in Fig. 6, the slightly
larger error rate of the emitter identification has little effect on
the final positioning accuracy, which is inferred by the EMP
algorithm. This is due to the fact that the objective function
of the EMP algorithm is to minimize the positioning error,
while the labels of the emitters are the hidden variables to be
identified. Therefore, from the results of Fig. 6 and Fig. 7, we
are implied that the EMP algorithm is robustness to the errors
of emitter identification. Furthermore, the results of Fig. 6 and
Fig. 7 suggest that it is highly efficient for the EMP algorithm
to work with four emitters, especially when we also take the
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implementation complexity into account.

V. CONCLUSIONS

This paper has studied the wireless positioning in DTV
networks. Due to the SFN property in DTV networks, the
receiver cannot identify the specific emitter where a received
signal comes. Therefore, an EMP algorithm has been proposed
to jointly estimate the receiver position and identify the labels
of the emitters. To evaluate the algorithm, a test scenario in
the city of Marseille has been considered, where the positions
of five emitters are set according to the official information
published by the Authority in France. The performance of
the EMP algorithm has been studied by considering different
issues. Our studies and simulation results show that, in the
case of 4 or 5 emitters, the EMP algorithm is highly effective
to achieve good positioning performance, even in the existence
of the emitter confusion problem. When 4 or 5 emitters are
available, the statistical performance shows that the EMP
algorithm is capable of achieving the performance approaching



the CRLB that is only achievable with full emitter information.
Furthermore, with 4 or 5 emitters, the EMP algorithm is
also effective to identify the DTV emitters. Additionally, our
simulation tests show that the EMP algorithm is robust to the
tolerance for the errors of emitter identification. Note that, the
methodology proposed in this work is general, which may be
applied in the other SFNs for TOA based positioning.
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