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Abstract

We present a formal specification and analysis of a haemodialysis machine
(HD machine) in Event-B using the Rodin Toolset. The medical device domain
is a particularly complex multidisciplinary field involving disparate branches of
engineering, biological and medical fields as well as a critical patient-machine in-
terface. Requirements include safety properties, process steps, human-machine
interfaces, timing constraints, dynamic control algorithms, and design features.
Our aim is to demonstrate that the Event-B based modelling, verification and
validation tools deal with the variety of requirements involved in a typical med-
ical device. We utilise ProR for structuring and tracking requirements. We
model the HD machine using iUML-B state-machines and class diagrams, and
build a corresponding BMotion Studio visualisation. For verification, we use
both theorem proving and model checking techniques. We validate the design
of the system using (i) diagrams to aid the modelling of the sequential properties
of the requirements, and (ii) ProB-based animation and visualisation tools to
explore the system’s behaviour. Some of the safety properties involve dynamic
behaviour which is difficult to verify in Event-B. For these properties we use
(iii) co-simulation tools to validate against a continuous model of the physical
behaviour. We conclude that the Event-B based modelling tools are particularly
rich in verification and validation techniques and with the help of supporting
tools for requirements tracking, are able to address the different kinds of re-
quirements in a medical device.
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1. Introduction

This paper describes our approach to modelling formally the requirements
and design of a haemodialysis machine (HD machine) [1]. The HD machine
is used for patients with kidney failure to remove waste products from their
blood. We identify how we deal with the requirements that are defined for the
HD machine [1]. Since the requirements document goes further than functional
requirements and describes how an HD machine should consist of various sub-
components and how those sub-components interact, we view this as lower-level
or design requirements.

We use Event-B [2], a formal method for system development, and structure
our model using refinements to deal with complexity. Since the HD machine’s
requirements involve extensive sequencing and user interactions as well as dy-
namic interaction with the HD machine, we use diagrams to aid the modelling
of the sequential properties of the requirements. Where appropriate we use the
proof capabilities of Event-B to verify safety constraints. For temporal proper-
ties related to timing constraints, we use ProB model checker [3]. Furthermore,
to validate the model, we extensively use ProB-based animation, visualisation
and simulation tools to explore the behaviour of our models.

Our contribution is to demonstrate how different kinds of requirements can
be traced and verified or validated using the tools available. The medical device
domain is a particularly complex multidisciplinary field involving contributions
from a large range of engineering branches, highly skilled and expert medi-
cal practitioners as well as the sensitive and somewhat unpredictable patient-
machine interface. Given this diverse group of stakeholders, we believe a range
of validation techniques are essential to facilitate concensus amongst stakehold-
ers that the requirements and design are safe, sensible and useful. For exam-
ple, biologists and control engineers may confer over dynamic models of the
interaction between the HD machine and the patient’s cardiovascular system
while medical practitioners and domain expert software engineers might utilise
state-machine animations and visual simulations to agree on the procedural and
operator interface aspects of the device.

The hypothesis of the case study is that the Event-B based modelling, veri-
fication and validation tools are sufficient to deal with all types of requirement
involved in a typical medical device such as the HD machine. To be more pre-
cise, the reason for modelling is to provide re-assurance that the requirements
and design are sensible (i.e. well-formed and non-conflicting) and useful (i.e.
subjectively desirable based on expert domain knowledge) within the context of
the device’s purpose. Hence requirements are sufficiently dealt with if they can
be modelled in a way that supports verification and validation activities that are
appropriate to the requirement’s nature, and that these verification and valida-
tion activities provide stakeholders with a reasonable mechanism for accepting
or rejecting the requirements/design. We also require this process to be reason-
able in the sense that it should be tractable, efficient and within the stakeholders
expected capabilities albeit with appropriate training where necessary. The re-
quirements include safety properties, process steps, human-machine interfaces,
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timing constraints, dynamic control algorithms, and design features. We utilise
a range of Event-B modelling techniques and tools to test the hypothesis and
perform a literature study to assess other methods for comparison.

The criteria for judging the result of the case study are (i) whether all kinds
of requirement can be handled by the available Event-B tools, and (ii) an as-
sessment of the appropriateness of the way each kind of requirement is handled.
The latter will necessarily be somewhat subjective. For example, a safety prop-
erty should be rigorously verified whereas a user interface should be validated
by animation.

To do this we provide (i) a model of the HD machine using iUML-B [4, 5,
6] state-machines and class diagrams, (ii) a BMotion Studio visualisation for
the developed Event-B model, (iii) a co-simulation of the closed-loop parts of
the controller with a continuous domain model of the environment. On the
one hand, we use (1) the built-in theorem provers of the Rodin platform [7]
to discharge the proof obligations related to safety invariants, and (2) ProB
model checker to verify temporal (liveness) properties. On the other hand,
the graphical model and visualisation enable us to analyse and validate the
behaviour of the HD machine. Finally, to track the system requirements to the
formal models, we use ProR [8] which allows us to attach elements of the formal
models to the requirements.

This paper is built on the work reported in [9]. Compared to the previous
work, we explicitly model the timing constraints of the system and make use
of the ProB model checker to verify the consistency of the model, in particu-
lar, checking temporal liveness properties. As a result, our model covers the
requirements more completely compared to [9], where the timing constraints
are still abstracted. Furthermore, we have utilised the ProR tool for structuring
and tracking the requirements and recording the validation/verification methods
used for each requirement.

The rest of the paper is structured as follows. Section 2 gives some back-
ground on the methods and tools that we use. The main content of the paper
is in Section 3 describing the development of the HD machine, verification and
validation of its requirements and design using iUML-B, ProB, BMotion Stu-
dio, and co-simulation. At the same time, we also show how we use ProR for
requirements tracing. Finally, we summarise and conclude in Section 5.

2. Background

In this section, we first present some background information on the HD
machine case study (Section 2.1). In subsequent (sub-)sections, we review ProR
for managing requirements (Section 2.2), the Event-B modelling method (Sec-
tion 2.3), iUML-B graphical front-end for Event-B (Section 2.4), BMotion Stu-
dio for visualising Event-B models (Section 2.5), and finally the co-simulation
framework that we used (Section 2.6).
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2.1. The HDMachine Case Study

The HD machine case study is introduced in [1]. The HD machine is used
for patients with kidney failure to remove waste products from their blood. The
schematic view of the HD machine can be seen in Figure 1. The scope of our
study is the control system which interfaces with the user via the User Interface
(UI) and also monitors and controls the functions of the HDMachine. Here we
distinguish between the “patient” who receives treatment from the HD machine
and the “user” who operates the HD machine.

Figure 1: Schematic view of the HD machine [1]

The blood is extracted and returned to the patient through an Extracorpreal
Blood Circuit (EBC) using peristaltic pumps. The overview of the EBC can be
seen in Figure 2 on the following page.

A haemodialysis therapy session contains 3 main phases: preparation, initi-
ation, and ending. Each phase contains smaller sub-steps. The overview of the
main phases is as follows.

1. Preparation. The preparation phase allows the user to prepare for the
therapy, including testing the control functions, preparing the tubing sys-
tems and setting various parameters for the therapy.

2. Initiation. The first step of this phase is to connect the patient to the HD
machine. When the patient is connected successfully, the therapy starts.
During the therapy, the HD machine monitors various conditions such as
the blood pressure (using blood monitors) and the blood flow, and stops
the machine if some unexpected problem occurs.

3. Ending. When therapy finishes, the machine starts the reinfusion process
and disconnects the patient from the HD machine. After emptying the
dialyzer and cartridge, the machine displays the summary of the therapy.
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Figure 2: Overview of the EBC of the HD machine [1]

The safety requirements of the HD machine are separated into general re-
quirements (that specify the overall behaviour of the system) and software re-
quirements (more specific requirements about the controller’s behaviour for each
functional area of the system, e.g., arterial bolus application, controlling blood
pump, monitoring blood-side entry pressure, etc.). We will not repeat the full
set of requirements here and instead refer the readers to [1], however, through-
out the paper, we will show particular requirements relevant to understanding
the paper.

2.2. ProR

ProR is an Eclipse editor and GUI for managing requirements in accordance
with the Requirements Interchange Format (ReqIF) standard [10]. ProR uses
the Eclipse Requirements Modelling Framework (RMF)1 which is an Eclipse
Modelling Framework (EMF) based implementation of ReqIF. ProR allows users
to structure requirements and insert links in order to trace requirements either
to more detailed requirements or to other artefacts such as model elements and
ultimately implementation. In our case we are interested in linking the HD
machine requirements to our iUML-B model elements.

ProR supports extension of the requirements model and editor so that users
may configure the tool to describe new attributes of their requirements or new
kinds of artefacts involved in the requirements management process. Since Re-
qIF is a standard data exchange format for requirements, ProR allows require-
ments to be exchanged with other tools including IBM Rational DOORS2.

1http://www.eclipse.org/rmf/
2http://www-03.ibm.com/software/products/en/ratidoor
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Figure 3 shows the general safety requirements for the HD machine from [1]
entered into ProR.

Figure 3: General safety requirements for the HD machine using ProR

2.3. Event-B

Event-B [2] is a formal method for system development. Main features of
Event-B include the use of refinement to introduce system details gradually
into the formal model. An Event-B model contains two parts: contexts and
machines. Contexts contain carrier sets, constants, and axioms constraining
the carrier sets and constants. Machines contain variables v , invariants I(v)
constraining the variables, and events. An event comprises a guard denoting its
enabled-condition and an action describing how the variables are modified when
the event is executed. In general, an event e has the following form, where t are
the event parameters, G(t , v) is the guard of the event, and S(t , v) is the action
of the event.

e =̂ any t where G(t , v) then S(t , v) end (1)

In the case where the event has no parameters, we use the following form

e =̂ when G(v) then S(v) end , (2)

and when the event has no parameters and guard, we use

e =̂ begin S(v) end . (3)
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The action of an event comprises of one or more assignments, each of them has
one of the following forms.

v := E(t , v) (4)

v :∈ E(t , v) (5)

v :| P (t , v) (6)

Assignments of the form (4) are deterministic, assign value of expression E(t , v)
to v . Assignments of the forms (5) and (6) are non-deterministic. (5) assigns
any value from the set E(t , v) to v , while (6) assigns any value satisified pred-
icate P (t , v) to v . Note that invariants I(v) are inductive, i.e., they must be
maintained by all events. This is more strict than general safety properties
which hold for all reachable states of the Event-B machine. This is also the
difference between verifying the consistency of Event-B machines using theorem
proving and model checking (e.g., ProB) techniques: model checkers explore
all reachable states of the system while interpreting the invariants as safety
properties.

A machine in Event-B corresponds to a transition system where variables
represent the states and events specify the transitions. More information about
Event-B can be found in [11]. Event-B is supported by the Rodin Platform
(Rodin) [7], an extensible toolkit which includes facilities for modelling, verifying
the consistency of models using theorem proving and model checking techniques,
and validating models with simulation-based approaches.

In this paper, we use several Event-B modelling “patterns” for developing
the HD machine model. The patterns are Event-B model templates that can be
instantiated to the actual system. We present templates as Event-B model frag-
ments, i.e., a set of variables, events, etc. Each pattern addresses some common
modelling aspects that occured during the development of the HD machine, e.g.,
controlling physical equipment (Section 3.2.3) or capturing timing contraints
(Section 3.3.1). In particular, the pattern for controlling physical equipment
consists of machines at different level of refinement, i.e., a refinement pattern.

2.4. iUML-B

iUML-B provides a diagrammatic modelling notation for Event-B in the
form of state-machines and class diagrams. The diagrammatic models are con-
tained within an Event-B machine and generate or contribute to parts of it. For
example a state-machine will automatically generate the Event-B data elements
(sets, constants, axioms, variables, and invariants) to implement the states while
Event-B events are expected to already exist to represent the transitions. Tran-
sitions contribute further guards and actions representing their state change, to
the events that they elaborate. A choice of two alternative translation encod-
ings are supported by the iUML-B tools. State-machines are typically refined
by adding nested state-machines to states. Class diagrams provide a way to
visually model data relationships. For the HD machine we use state-machine
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diagrams extensively to model the sequential processes and exploit both Event-
B encodings. We used class diagrams to model environmental interfaces but do
not show this here.

Figure 4 shows an example of a state-machine, named SM. Here we show a

Figure 4: An example iUML-B state-machine SM

translation of state-machine SM using the enumeration encoding, where each
state is encoded as a constant from an enumerated set SM STATES . Variable
SM , which represents the current state of the state-machine, is initialised to
S1 . Events e and f change the value of SM according to the transitions in the
state-machine. The Event-B translation can be seen below.

sets : SM STATES constants : SM NULL,S1 ,S2

axioms :
partition(SM STATES ,SM NULL,S1 ,S2 )

variables : SM
invariants :
SM ∈ SM STATES

INITIALISATION :
begin
SM := S1
end

e :
when
SM = S1
then
SM := S2
end

f :
when
SM = S2
then
SM := SM NULL
end

2.5. BMotion Studio

In this paper we have used the new version3 of BMotion Studio [13] to create
a domain specific visualisation (DSV) of our Event-B model of the HD machine.
BMotion Studio comes with a graphical environment including a visual editor
that provides various graphical elements to create a visualisation of the model.
A graphical element is based on Scalable Vector Graphics (SVG) and HTML,
two markup languages which support widgets like shapes, images, labels, tables
and lists. Moreover, observers are used to link the model with the visualisation.
For instance, the tool provides a formula observer that binds a formula (e.g. an
expression or a variable) to a graphical element and allows the tool to compute

3Originally BMotion Studio was developed as a separate plug-in for Rodin [12].
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a visualisation for any given state by changing the properties of the graphical
element (e.g. the colour or position) according to the evaluation of the formula in
the respective state. Finally, event handlers can be attached to the visualisation
to provide interactive functionalities, such as an execute event handler that binds
an Event-B event to a graphical element and executes the event when the user
clicks on the graphical element.

2.6. Co-Simulation

The Rodin tools and plug-ins are aimed at modelling discrete state-changing
events; they are not so good at validating continuous behaviour. Despite this
we often need to model the requirements for a system that periodically controls
some continuous dynamic behaviour of the environment. Modelling tools such
as Dymola [14] are available and are able to simulate dynamic properties and
their discrete controllers but they do not provide the refinement and verification
techniques of Event-B. In order to validate such models a MultiSim plug-in [15]
was developed by Savicks et al. The plugin allows an Event-B model and a
continuous model to be simulated synchronously. Typically the Event-B part
will model a cyclic control system that monitors process variables from the con-
tinuous model and calculates a controlled output variable. The Event-B model
is animated using ProB and the continuous model is a Functional Mock-up Unit
(FMU) [16] which has been exported from a continuous domain modelling tool
such as Dymola. The exported FMU is a program that can be run independently
of the source modelling tool in order to provide a simulation of the continuous
domain model. The plug-in controls the coordination and communication be-
tween the co-operating simulations repeating the following sequence:

• animate the Event-B until a designated event is reached where the control
outputs are available,

• set these control output values as inputs in the FMU ,

• run the FMU simulation for a fixed period of time,

• read the FMU output values,

• set these output values in some designated monitoring variables of the
Event-B.

3. Development

In this section, we give some highlights of our formal development of the HD
machine. The requirements and design of the HD machine are given in [1] and
we will not repeat those requirements in this paper. We suggest that readers
study this section together with the requirements document [1] and the formal
model available from the web site http://eprints.soton.ac.uk/401360/.

We first give an overview of the development strategy that we have applied
for this formal model in Section 3.1. Subsequently, we highlight the key impor-
tant modelling decisions using iUML-B (Section 3.2). In Section 3.3, we show
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how we model timing constraints and the use of ProB for verifying temporal
liveness properties of our model. We illustrate how we use BMotion Studio
to validate our model (Section 3.4). For dynamic properties that cannot be
expressed in Event-B, we show how co-simulation helps us to validate such
properties (Section 3.5). Finally, in Section 3.6, we present the links between
the requirements and our formal model using ProR.

The work-flow involved in our formal development process may be sum-
marised as follows.

• The requirements are arranged and structured in ProR. This allows us to
allocate the appropriate modelling, verification and validation methods to
each requirement as well as structure the requirements into categories and
levels.

• We choose an initial abstraction of the system that represents the highest
level requirements as an overview of what the system achieves and then
make new versions of the model in refinements to incorporate further
details and requirements from ProR.

• For each refinement step

– We model this refinement step using iUML-B class diagrams and
state-machines.

– We verify and validate the requirements incorporated in this level of
the model according to the selected methods noted in ProR.

1. When a requirement involves continuous domain behaviour we
co-simulate the discrete Event-B control model with a continuous
domain model of the controlled phenomenon.

2. When a requirement specifies a safety property we use theorem
provers to verify that the property is upheld.

3. When a requirement specifies a sequential process we use anima-
tion to validate that the process is modelled correctly.

4. When a requirement specifies timing properties we use the model
checker to verify LTL temporal properties.

– For traceability, we record in the ProR system, a reference to the
model element that represents each ProR requirement.

• To validate the completed model we create an animated visualisation of
the model using BMotion Studio.

3.1. Development Strategy

The haemodialysis process is highly sequential with several sub-processes.
In the design described in [1], the HD machine’s control system contains two
parts: a top-level and a low-level control system, working independently. The
top-level control system manages the communication with the users, and trans-
mits data from/to other modules. The low-level control system manages the
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HD machine while interacting with the top-level control system. Our formal
model reflects this design of the control system: the top-level one manages the
overall haemodialysis process, interacting with the users, while the low-level one
controls the sub-processes by monitoring and regulating the behaviour of the
HD machine. The patient interacts with the machine in two ways.

1. Discrete actions of the patient and operator in response to outputs of the
machine. This is modelled by a sequence of transitions, one to output the
instruction from the machine and the next to respond to the completion
of the patient’s action.

2. Once the machine is connected and running, the patient’s blood pressure is
affected by the blood pump. This interaction with the patient is modelled
via the low level control system’s blood pump controller responding to
the dynamic behaviour of the patient’s blood pressure. The patient is
modelled using a continuous domain modelling tool which is co-simulated
with the control model.

We omitted requirements related to Ultra Filtration (UF), the Safety Air Detec-
tor (SAD), the temperature of the HD machine, and loss of main power. These
can easily be incorporated via refinements using similar modelling techniques.

Refinement strategy in Event-B is often influenced by the correctness proofs.
It is sometimes necessary to choose small refinement steps to make it easier
to discharge proof obligations. However, in this case, there are no difficult
proofs and this is not a driving factor for the choice of refinement strategy.
Despite this, we still choose to introduce details in incremental refinement steps
so that the model is easier to understand and communicate. For example, the
abstract levels could be animated to explore the top level processes before going
on to animate levels that incorporate more details about setting parameters
and making patient connections. Hence our refinement strategy follows the
abstraction levels of the sequential steps of the system. This strategy also fits
the nested state-machine architecture in iUML-B.

m00: Models the main phases of the haemodialysis process for the top-level
control system, i.e., Preparation, Initiation, and Ending

m01: Models the sub-processes within each main phases for the top-level control
system.

m02: Models the user’s interaction with the HD machine to turn the machine
on and off.

m03: Models the low-level control’s automatic testing of control functions.

m04: Models the actual (physical) result of testing the HD machine’s control
functions.

m05: Model the message passing communication between the low-level control
system and the HD machine for testing control functions.
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m06: Models the set of signals.

m07: Models the signal for indication of control function testing result.

m08: Models the connection of concentrate to the HD machine.

m09: Models the setting of rinsing parameters.

m10: Models the sequence of connecting patient

m11: Models the physical connection of the patient (arterially and venously).

m12: Models the three pressure monitors and the system normal/abnormal
states.

m13: Models various abnormal blood-side pressures.

m14: Models the blood pump, actual blood flow and abnormal situations when
monitoring the blood flow.

m15: Models arterial bolus.

m16: Models heparin bolus.

3.2. Modelling using iUML-B

3.2.1. Modelling Sequential Processes

The haemodialysis process contains three main phases: preparation, ini-
tiation, ending. Each main phase is composed of several sequential steps.
Using iUML-B state-machines, it is straight-forward to model such sequen-
tial processes/sub-processes. Furthermore, the notion of nested state-machines
(which can be naturally introduced via refinement) fits perfectly for refining
the processes further into smaller sequential steps. Figure 5 on the next page
illustrates how we model the sequential processes in m00 and m01. Fig-
ure 5a shows the main phases of the haemodialysis process (with the additional
TL STANDBY state). In m01, we introduce nested state-machines for states
TL PREPARATION , TL INITIATION , TL ENDING to model the sequen-
tial sub-steps of each main phase. Figure 5b gives an example of the nested
state-machine for TL PREPARATION .

The incoming/outgoing transitions of the super-state TL PREPARATION
in m00, i.e., TL Prepares and TL Initiates, are respectively refined to TL TestsCF
and TL ConnectsPatient in m01. Using the encoding where each iUML-B state
is represented by a constant from an enumerated carrier set, TL Prepares and
TL TestsCF are straightforwardly translated into Event-B as follows. Here, vari-
able TopLevel indicates the current state of the top-level state-machine, and the
current state of the nested state-machine in state TL PREPARATION is rep-
resented by variable TL PREPARATION sm.
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(a) State-machine TopLevel in m00

(b) Nested state-machine for state TL PREPARATION in m01

Figure 5: Modelling sequential processes with state-machines

TL Prepares :
when
TopLevel = TL STANDBY
then
TopLevel := TL PREPARATION
end
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TL TestsCF :
when
TopLevel = TL STANDBY
then
TopLevel := TL PREPARATION
TL PREPARATION sm := TL TESTING CF
end

3.2.2. Top-level vs. Low-level Control Systems

The top-level control system, which maintains the sequential haemodialysis
process and its sub-steps, is modelled in a single state-machine. The low-level,
responsible for direct control of the HD machine to perform certain tasks, is
modelled using several state-machines each corresponding to a particular task.
Figure 6 illustrates the state-machine LowLevel TestingCF for the low-level con-
trol system performing testing of Control Functions (CF) in m03.

Transitions LL TestsCF and LowLevel StandsBy of the LowLevel TestingCF
state-machine are guarded accordingly, to ensure that they can only be carried
out in the correct phases as specified in the top-level control state-machine
TopLevel .

LL TestsCF :
when
. . .
TL PREPARATION sm = TL TESTING CF
then
. . .
end

LL TestsCF :
when
. . .
TopLevel = TL STANDBY
then
. . .
end

The top-level control system can only move from state TL TESTING CF to
the next state, i.e., TL CONNECTING CONCENTRATE , when the CF testing
is successful. Using the Event-B encoding for state-machine LowLevel TestingCF

Figure 6: Low-level control system for CF testing in m03
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where each state is represented by a constant, this is modelled by a guard on
the transition TL ConnectsConcentrate in state-machine TopLevel (Figure 5b on
page 13) stating that

LowLevel TestingCF = LL TESTING CF OK .

3.2.3. A Pattern for Controlling Physical Equipment

A common pattern that we used in modelling the HD machine is to for-
malise how the controller interacts with the physical equipment in the envi-
ronment. The pattern involves two refinement levels. At the abstract level,
the controller and the physical equipments can have access to the states of the
other components. In the refinement, this direct access is refined by message
passing communication. This pattern is similar to the action/reaction patterns
in [2, Chapter 3] and we extended with refinement and applied them to iUML-B
state-machines. We show below how we incorporate the physical testing of CF
into the formal model.

Recall the low-level control system for CF testing in Figure 6. In m04,
a variable HDM TestingCFOK is introduced to denote the result of the HD
machine’s CF test and a new event HDM TestsCF is allowed to set this variable
non-deterministically representing the result of the test. The guard of the event
ensures that the physical tests are carried out only when the low-level controller
is in the testing state, i.e., LL TESTING CF .

HDM TestsCF :
when
LowLevel TestingCF = LL TESTING CF
then
HDM TestingCFOK :∈ BOOL
end

Transitions LL TestsCFOK and LL TestsCFKO of state-machine LowLevel TestingCF
are directed by the actual result of the test: they are guarded to select a pass/fail
response according to HDM TestingCFOK .

LL TestsCFOK :
when
. . .
HDM TestingCFOK = TRUE
then
. . .
end

LL TestsCFKO :
when
. . .
HDM TestingCFOK = FALSE
then
. . .
end

In the next refinement m05, we introduce the communication between the
controller and the HD machine. Two new variables LL 2 HDM TestsCF and
HDM 2 LL TestsCFFinished are introduced to model the message exchange.
Flag LL 2 HDM TestsCF is set in event LL TestsCF and unset in HDM TestsCF.
Invariant

LL 2 HDM TestsCF = TRUE⇒ LL TestsCF = TRUE
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Figure 7: Invariant on the TL INITIATION state of state-machine TopLevel in m03

allows us to refine HDM TestsCF’s guard to

LL 2 HDM TestsCF = TRUE .

Similarly, HDM 2 LL TestsCFFinished is set in HDM TestsCF and unset in
LL TestsCFOK and LL TestsCFKO. At the same time, the guards of the two
events are strengthened by adding the condition stating that the actual CF
testing has been finished, i.e.,

HDM 2 LL TestsCFFinished = TRUE .

3.2.4. Safety Properties as State-machine Invariants

An important feature of iUML-B is state-invariants. They can be used to
express safety properties that must hold in a certain state. A state-invariant is
translated into an Event-B machine invariant by having an additional condition
stating that the state-machine is in the corresponding state. For example, as-
suming that we use the enumeration encoding for state-machine SM (i.e., each
state is encoded as a constant from an enumerated set), we have a variable SM
represents the current state of the state-machine. A state-invariant P (v) of the
state S of SM is then translated into Event-B as follows:

SM = S ⇒ P (v) .

Consider the state-machine TopLevel in m03. We wish to ensure that when the
system is in the TL INITIATION phase, the CF should have been successfully
tested. We add an invariant

LowLevel TestingCF = LL TestsCFOK

to state TL INITIATION as shown in Figure 7. The translation of the state-
invariant in Event-B is, as expected, i.e.,

TopLevel = TL INITIATION ⇒ LowLevel TestingCF = LL TestsCFOK .

To prove the above invariant, an invariant is added to the TL PREPARATION
state stating that if the system pass the TL TESTING CF state, then the CF
have been tested successfully, i.e.,

TL PREPARATION sm 6= TL TESTING CF ⇒
LowLevel TestingCF = LL TestsCFOK .
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3.2.5. Animation/Model Checking to Validate Requirements

Consider m11, we introduce a state-machine to model the physical connec-
tions/disconnections of the patient to the HD machine arterially and venously
(Figure 8). The patient is connected to the machine in the first step of the
TL INITIATION phase and disconnected from the machine in the first step of
the TL ENDING phase. Requirements S-1 and S-5 from [1] are directly related
to the connections status of the patient and are as follows.

S-1 Arterial and venous connectors of the EBC are connected to the patient
simultaneously.

S-5 The patient cannot be connected to the machine outside the initiation
phase, e. g., during the preparation phase.

Initially, we model S-1 as an invariant

USR ConnectingPatient 6= USR DISCONNECTED ⇒
USR ConnectingPatient = USR CONNECTED BOTH .

and S-5 as state-invariants for states TL PREPARATION and TL ENDING
specifying that

USR ConnectingPatient = USR DISCONNECTED .

Attempts to prove these invariants lead to failure. We use the ProB model
checker to find counter-example traces and iUML-B state-machine animation to
visualise the obtained traces. The visualisation helps us to identify the cause
of the problems and how to fix them. In this case, the requirements are clearly
too strong and contradict other requirements. On the one hand, during the
preparation phase, i.e., when TopLevel is TL PREPARATION , the patient is
connected first arterially and then venously contradicting S-1. On the other
hand, the patient is still connected both arterially and venously when the re-
infusion step starts, i.e., outside the initiation phase contradicting S-5. We
therefore weaken the requirements S-1 and S-5 as follows.

S-1’ Arterial and venous connectors of the EBC are both connected to the
patient during therapy.

Figure 8: Patient connections to the HD machine
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S-5’ The patient cannot be connected to the machine outside the initiation and
reinfusion phases.

3.2.6. Modelling Abnormal Behaviours

During haemodialysis treatment, an important part of the HD machine is
to monitor the various aspects of the patient and the machine, and raise the
alarm when abnormal behaviours are detected. This includes low/high blood
pressures, incorrect blood flow directions, etc. We have developed a pattern for
modelling such behaviour. An abstract state-machine for the low-level control
system is added in m12 (Figure 9a). When we introduce the pressure monitor
in m13, various abnormal conditions can be detected. The events modelling
such detection are a refinement of the abstract event LL Abnormal (Figure 9b).
Note that we still keep the abstract event LL Abnormal to be able to detect more
abnormal behaviours in future refinements.

(a) State-machine LowLevel Status in m12

(b) State-machine LowLevel Status in m13

Figure 9: Modelling Abnormal Behaviours

3.3. Modelling Timing Constraints

A majority of the software requirements for the HD machine are timing con-
straints. Inspired by [17], we develop patterns for modelling timing constraints
such as deadline, expiry, and delay. Instead of using a natural number to rep-
resent a global time in the machine, we define a specific“timer” variable for
each timing constraint in order to model the relationship between occurrences
of events. We first abstractly present our modelling patterns for the different
timing problem before applying them to the HD machine case study.
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3.3.1. Timing Contraint Modelling Patterns

Our presentation of the timing modelling patterns focuses on a single trig-
gering event Trigger and a single responding event Response. However, the
patterns can be extended to multiple triggering/responding events. Moreover,
for simplification, we present Trigger and Response without any parameters.

For each pattern, we use a variable timer to present the timer. We use
special value −1 for the timer to denote that it is deactivated. Otherwise, i.e.,
when it is active, the timer will be a natural number, representing the number of
remaining clock ticks until the timer is expired. A Time event, representing the
clock, adjusts the timer accordingly. We assume that Time can advance the clock
some arbitrary d ticks (without taking into account the timing constraints), i.e.,
it is of the following form.

Time =̂ any d where d ∈ N1 ∧ . . . then . . . end

The additional guards (conditions on timer) and actions (update to timer) of
the Time event depending on the actual patterns. Furthermore, all the timing
modelling patterns contribute to the same Time event. In the following presen-
tation of the patterns, the omitted guards and actions (for Trigger, Response,
and Time) are from the actual system under development or from other timing
patterns.

Delay. We want to model a delay by duration D , i.e., after the occurrence of
Trigger, the next occurrence of Response (if any) must be after D clock ticks.
We denote this timing constraint as Delay(Trigger,Response,D). The following
Event-B pattern is used to model the delay.

(Delay)Trigger :
when
timer = −1
. . .
then
timer := D
. . .
end

(Delay)Response :
when
timer ≤ 0
. . .
then
timer := −1
. . .
end

(Delay)Time :
any d where
d ∈ N1

. . .
then
timer := max({−1, timer − d})
. . .
end

Variable timer is set by Trigger, where the guard of Response ensures that it
cannot execute where the timer has not yet expired. The Time’s action ensures
that it decreases the timer by d but cannot go below −1. Note that the timer
can be reset by both Response and Time.
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Expiry. We want to model an expiry duration D , i.e., after the occurrence
of Trigger, the next occurrence of Response (if any) must be before D clock
ticks. We use Expiry(Trigger,Response,D) to denote this timing constraint.
The following Event-B pattern is used to model the expiry.

(Expiry)Trigger :
when
timer = −1
. . .
then
timer := D
. . .
end

(Expiry)Response :
when
timer ≥ 0
. . .
then
timer := −1
. . .
end

(Expiry)Time :
any d where
d ∈ N1

. . .
then
timer := max({−1, timer − d})
. . .
end

Similar to the previous pattern, timer is set by Trigger. The guard of Response
ensures that it cannot execute where the timer has already expired. The action
of Time ensure that it decreases the timer by d but cannot go below −1. Here,
timer can be reset by both Response and Time.

Deadline. We want to model a deadline of D , i.e., after the occurrence of Trigger,
within D of clock ticks, Response must occur. We denote this timing constraint
as Deadline(Trigger,Response,D). The following Event-B pattern is used to
model the deadline.

(Deadline)Trigger :
when
timer = −1
. . .
then
timer := D
. . .
end

(Deadline)Response :
when
timer ≥ 0
. . .
then
timer := −1
. . .
end

(Deadline)Time :
any d where
d ∈ N1

(timer 6= −1 ⇒ d ≤ timer)
. . .
then
timer := max({−1, timer − d})
. . .
end
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Similar to the Expiry pattern, timer is set by Trigger and the guard of Response
ensures that it cannot execute where the timer has already expired. The action
of Time ensure that it decreases the timer by d but cannot go below −1. The
difference with the previous pattern is an additional guard to Time. This ensures
that in the case where the timer is currently active, i.e., timer 6= −1, the
advancement duration d is no more than the current timer value. As a result,
the timer cannot be deactivated by Time: timer is reset only when there is an
occurrence of Response.

3.3.2. Timing Constraints in the HD machine

As an example for Deadline pattern, we consider the user’s action of turning
on/off the HD machine. Let maxUserCommDelay be a constant correspond-
ing to the maximum communication delay between the user’s action and the
response from the HD machine. In other words, the response of the HD ma-
chine has a deadline represented by maxUserCommDelay after an occurrence
of the user’s actions. We model the user’s action in m02 using two events
User PressesOn and User PressesOff. The corresponding events of the HD ma-
chine is TL TestsCF and TL StandsBy, to start testing control functions and to
put the machine in stand-by mode, respectively. Using the notation introduced
earlier, the timing constraints between these events can be denoted as

Deadline(User PressesOn,TL TestsCF,maxUserCommDelay) and (7)

Deadline(User PressesOff,TL StandsBy,maxUserCommDelay) . (8)

Applying the Deadline pattern to the first timing constraint (7) results in the
following events.

User PressesOn :
when
TopLevel = TL STANDBY
User PressesOnTimer = −1
then
User PressesOnTimer := maxUserCommDelay
end

TL TestsCF :
when
TopLevel = TL STANDBY
User PressesOnTimer ≥ 0
then
User PressesOnTimer := maxUserCommDelay
end
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Time :
any d where
d ∈ N1

(User PressesOnTimer 6= −1 ⇒ d ≤ User PressesOnTimer)
. . .
then
User PressesOnTimer := max({−1,User PressesOnTimer − d})
. . .
end

Other applications of the timing patterns are related to monitoring the situ-
ation during the operation of the HD machine. Consider requirement R-9 from
the requirement document [1] as follows.

R-9 While connecting the patient, if the software detects that the pressure at
the VP transducer exceeds +450mmHg for more than 3 seconds, then the
software shall stop the BP and execute an alarm signal.

To capture requirement R-9, we introduce state-machine LowLevel CP VPStatus
as shown in Figure 10. Focus on the transitions LL CP VPHigh, LL CP VPNormal,

Figure 10: State-machine for monitoring VP during connecting patient

and LL CP VPAbnormal. Transition LL CP VPHigh happens when the low-level
system detects that the VP pressure is too high (exceeding 450mmHg). Transi-
tion LL CP VPNormal is executed when the VP pressure becomes normal within
3 seconds. Finally, transition LL CP VPAbnormal takes place when the VP pres-
sure stays for more than 3 seconds. As a result, we have the following timing
constraints between the events.

Expiry(LL CP VPHigh, LL CP VPNormal,VP CP MAX TIME ) (9)

Deadline(LL CP VPHigh, LL CP VPAbnormal,VP CP MAX TIME ) (10)

Delay(LL CP VPHigh, LL CP VPAbnormal,VP CP MAX TIME ) (11)

The first constraint (9) ensures that the system can only go back to state
CP VP NORMAL within the expiry time VP CP MAX TIME (3 seconds)
since the system detects that the VP pressure is too high, i.e., the last oc-
currence of CP VP HIGH . The constraints (10) and (11) specify that the
system will go to the CP VP ABNORMAL state (exactly) when the deadline
VP CP MAX TIME passed since the last occurrence of CP VP HIGH .
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Applying the modelling patterns from Section 3.3.1, we obtain the following
Event-B events.

LL CP VPHigh :
when
LL CP VPTimer = −1
. . .
then
LL CP VPTimer := VP CP MAX TIME
. . .
end

LL CP VPNormal :
when
LL CP VPTimer ≥ 0
. . .
then
LL CP VPTimer := −1
. . .
end

LL CP VPHigh :
when
LL CP VPTimer = 0
. . .
then
LL CP VPTimer := −1
. . .
end

Time :
any d where
d ∈ N1

(LL CP VPTimer 6= −1 ⇒ d ≤ LL CP VPTimer)
. . .
then
LL CP VPTimer := max({−1,LL CP VPTimer − d})
. . .
end

Note that we have used the same timer variable LL CP VPTimer for all the
timing constraints. Moreover the guard LL CP VPTimer = 0 of LL CP VPHigh
is a combination of the effect of the Deadline and Delay patterns.

Other requirements involving timing constraints are captured using a similar
approach and omitted here.

3.3.3. Using ProB for Verifying Temporal Properties

With the introduction of the timing constraints, we are able to specify the
temporal relationships between the different events of the system. An important
point for us is to ensure that the model of the timing constraints for our model
is consistent, in particular with respect to the temporal liveness properties [18].
With respect to our timing patterns, one of the most important consistency
properties is to ensure the progression of time, i.e., occurrences of event Time
cannot be blocked infinitely. In particular, for the Deadline pattern, the Time
event is guarded, restricting its availability. In general, we want to verify that
under reasonable assumptions, Time appears infinitely often, which is a liveness
property.

While safety properties, i.e., something (bad) will not happen, are usually
modelled by invariants, liveness properties stating that something (good) must
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happen are not part of Event-B [19]. In this case, we make use of the capability of
the ProB model checker to verify LTL temporal properties. Using the temporal
language supported by ProB, we want to verify the following properties:

SF(Time) ⇒ G F[Time] . (12)

The full ProB-supported syntax of the LTL temporal logic can be seen in [20].
Without going into the semantical details of ProB-supported LTL, we present
the meaning of some operators that are used is as follows.

• Gφ (globally): (temporal) property φ always holds.

• Fφ (finally): (temporal) property φ holds eventually.

• SF(e) (strong fairness for event e): if e is enabled infinitely often then
eventually e is is executed.

• [e] (occurrence of event e): Event e is executed.

Property (12) states that under strong-fairness assumption of Time, Time
executes infinitely often. The verification using ProB for Time event from m02
can be seen in Figure 11.

Figure 11: Verification of (12) using ProB in m02

Another important temporal property is related to the Deadline pattern. For
the Expiry and Delay patterns, occurrences of Response are optional. However,
for the Deadline pattern, Response must be executed before the deadline is
over. While the guard of the (Deadline)Response ensures that Response can
only occur when the timer is not expired, there is nothing to guarantee that
Response will indeed occur. The temporal property that we are interested in
this case has the following form:

SF(Response)⇒ G([Trigger]⇒ F[Response]) . (13)

This states that under strong-fairness assumption of Response, (it is always the
case) if Trigger happens then eventually Response is executed. Consider the
deadline property (7), we want to verify the liveness property:

SF(TL TestsCF)⇒ G([User PressesOn]⇒ F[TL TestsCF]) . (14)

The verification result using ProB for this property from m02 can be seen in
Figure 12.

Note that while Event-B refinement preserves safety properties, it does not
preserve liveness ones. As a result, we verify these properties using ProB in
each refinement.
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Figure 12: Verification of (12) using ProB in m02

3.4. Validating using BMotion Studio

We use BMotion Studio to create a Domain-Specific Visualisation (DSV)
of our iUML-B/Event-B model of the HD machine. The DSV consists of two
views: a view of the user interface (UI) and a view of the environment of the HD
machine. The description of the DSV is supported by listings in which observers
and event handlers are described using JavaScript. However, the visual editor
of BMotion Studio also provides a graphical user interface for creating observers
and event handlers.

3.4.1. Visualising the UI display panel

Figure 13a demonstrates the DSV of the UI display panel. Each dialysis
parameter is represented using simple graphical elements to display its descrip-
tion, unity and current value. In addition, for pressure parameters, the width
and thresholds of the limits window are shown with the current value being
represented by a horizontal dashed line.

Each dialysis parameter binds a formula observer that observes the respec-
tive state variable of the parameter. For instance, Listing 13b shows the formula
observer for the blood flow parameter. Line 1 and 2 state that we register a new
formula observer on the graphical element that matches the selector “#blood-
Flow” (The prefix “#” is used to match a graphical element by its ID.4) Line
3 states that the observer should observe the variable bloodFlow during the an-
imation. In lines 4 to 6 we define a trigger function that is called whenever a
state change occurs. The reference to the matched graphical element (e) and
the state values of the observed formulas (v) are passed as arguments to the
trigger function. In line 5 we define the action which is made on the label when-
ever a state change occurs: the observer sets the text content of the label to
the current value of the state variable bloodFlow (val[0]). We have defined the
observers for the other dialysis parameters in a similar fashion.

The visualisation of the UI display panel also contains graphical elements and
observers for the automated self test signal lamp (see lower left side of Fig. 13a),
which is represented by a circle. The corresponding observer is responsible
for indicating whether the automated self test has been successfully completed
(change the signal lamp to green) or not (change the signal lamp to red) based
on the observed formula signal status(CF TESTING SIGNAL).

4See jQuery selector API : http://api.jquery.com/category/selectors/.
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(a) UI display panel visualisation

1 bms.observe("formula", {
2 selector: "#bloodFlow",
3 formulas: ["bloodFlow"],
4 trigger: function(e, v) {
5 e.text(v[0]);
6 }});
7

8 bms.executeEvent({
9 selector: "#bt_power",

10 events: [
11 {name: "User_PressesOn"},
12 {name: "User_PressesOff"}
13 ]});

(b) Blood flow observer and on/off but-
ton execute event handler

Figure 13: Domain specific visualisation of UI display panel

We have used the execute event handler feature of BMotion Studio to add
interactive components to our visualisation. As an example, Listing 13b (lines
8 to 13) shows the execute event handler for the HD machine on/off button
(#bt power) that wires the events User PressesOn and User PressesOff. In case
of hovering the graphical element with the mouse a tooltip with the available
events will be shown as demonstrated in Fig. 13a.

3.4.2. Visualising the environment of the HD machine

The DSV of the HD machine provides a second view that visualises the HD
machine’s environment as shown in Fig. 14. The objective of this view is to show
how the different parts of the system are connected together. For instance, it
contains graphical elements and observers that represent the dialysis pressure
parameters (arterial-, venous-, and blood entry pressure) and their connection
to the environment.

The visualisation is subdivided into SVG groups, where each group rep-
resents a different refinement level. Furthermore, each group binds a refine-
ment observer that is responsible for showing or hiding the group depending
on whether the observed refinement is part of the running animation or not.
For instance, the group for refinement m11 that contains the dialysis pressure
parameter graphical elements, binds a refinement observer that observes refine-
ment m11. Whenever m11 is part of the running animation the observer sets
the visibility attribute of the group to the value “visible” otherwise to “hidden”.
We have also created similar refinement observers for the UI display panel view.
This helped us to focus on relevant parts of the system while validating a specific
refinement level.
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Figure 14: Domain specific visualisation of the environment of the HD machine

3.4.3. Application of the DSV

The benefits of more effective validation of the HD machine’s Event-B model
justify the extra effort required to develop a DSV. The visualisation helped us
reach a common understanding about the model and to identify faulty behaviour
and errors during development. This is particularly valuable when the formal
model becomes complex in later refinement levels. Animation tools with only
textual representation of the state are insufficient for validation purposes. In the
case of the HD machine, requirements such as S-2–S-4, R-5–R-13 are modelled
by the enabled-ness of iUML-B transitions (ultimately events). Such properties
are cumbersome to formulate as a proof obligation in Event-B but can be readily
demonstrated via BMotion Studio. Hence in many cases we use BMotion Studio
to validate whether the requirements have been adequately taken into account.
BMotion Studio also helped us to discover problems with our model during its
development, especially mistakes leading to liveness problems, where the HD
machine cannot make any progress.

The DSV also enables domain experts to validate our formal model in terms
of user interactions. This can be compared with prototyping techniques.

3.5. Validating using Co-simulation

Safety requirements S-8, S-9 and S-10 concern adjustments to the Blood
Flow Rate (BF). S-8 requires the demanded BF to be lowered if Arterial Pres-
sure (AP) is low. We conclude that there is an inverse relationship between
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BF and AP. S-8 also states that the AP to BF relationship is affected by the
fistula needle type. S-9 indicates that low AP can result in reduced BF. Hence
the achieved BF should be monitored and treatment time adjusted accordingly.
S-10 requires that BF should be optimal (presumably after consideration of S-8
and S-9). We assume that this means as close to the user selected BF as possi-
ble and that a stable closed loop control of the blood pump is needed. In order
to validate the specification of a suitable control system we use the continuous
domain modelling tool Dymola to create a model of the environment which we
co-simulate with the Event-B model of the control system (Figure 15), which is
extracted from the formal model developed in Section 3.2.

Figure 15: iUML-B model of BF and AP control cycle

Figure 16 shows the continuous domain Dymola model of the physical in-
teraction between BF and AP. This detail of the environment being controlled
was not given in the specification and we have been unable to find any reference
that describes such properties. We have invented an example behaviour, based
on typical pump suction properties, for the purposes of illustration. In order to
validate this model we also developed a Dymola model of the control system.
Once the environment model behaved as desired it was exported as a FMU
which allows it to be run as a simulation outside of the Dymola tool. We then
imported the FMU into the Rodin co-simulation tool, linked its I/O with our
Event-B model of the control system and co-simulated the combined models.

The transition cnt readinputs obtains new values provided by the Envi-
ronment FMU simulation. The transition cnt updateProgress subtracts the
achieved BF for the cycle period from the total blood volume required to be pro-
cessed. If the total has been processed, cnt therapyFinished sets the demanded
BF to 0. Otherwise, cnt bfap calculates the demanded BF which is the user
configured BF adjusted for AP (i.e. in accordance with S8). This adjustment is
implemented as a simple linear interpolation function from (0,0) to (70,initial
BF) which is limited outside this domain. Transition cnt bf adjusts the output
commanded BF to adjust for the achieved BF using a proportional error control.
This final adjustment corresponds to control of the Blood Pump (BP) speed to
achieve the desired BF except that we abstracted from BP units for simplicity.
We chose to model AP in % of some nominal initial AP and BF in ml/min with
a control cycle period of 100ms. The initial BF is set 30ml/min in the following
analysis.

Our initial co-simulation results (Figure 17) showed that the AP was cor-
rectly controlled to a steady value of 72% by lowering BF to below 20ml/min.
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Figure 16: Dymola model of interaction between BF and AP

However, the initial response is very unstable. It is interesting to note that
we did not see this instability when we first tested the environment model in
Dymola only (i.e. using a Dymola model of the control in place of the Event-B
model). We believe this is because we did not accurately model the discrete
periodic cycle and therefore the response rate of the Dymola version of the con-
trol was fast enough to mask the problem. This demonstrates the advantage of
testing the actual Event-B model which is inherently discrete. To improve sta-
bility we decreased the gain of the proportional control. This improved stability
but resulted in a degraded AP of approx. 55%. This is due to a larger residual
offset error which is an inherent problem of proportional controllers. A possible
solution would be to introduce an integral term to the controller which would
remove the residual offset.

3.6. Requirements Tracing with ProR

We use ProR for structuring the requirements, linking the requirements to
the formal model and identifying the verification/validation status of the re-
quirement. This provides traceability to ensure that all requirements have been
addressed and verified/validated in the model. The default configuration of
ProR provides a generic requirements management tool that has no support for
linking to model elements such as iUML-B. However, since ProR is an EMF

29



(a) Unstable control of BF (b) Unstable control of AP

(c) Stable control of BF (d) Stable control of AP

Figure 17: Co-simulation plots showing unstable and stable control of BF and AP

based implementation of ReqIF, it can be configured to support linking to any
kind of object that has EMF-based tool support.5 In order to link to iUML-B
model elements we configured ProR by adding an additional specification object
type called iUML-B Element with new attributes as shown in Figure 18.

The iUML-B Element spec object has the following attributes. A Descrip-
tion attribute is used to give a user readable note about the model element; the
type of the modelling element is given in Model Type; the Proxy URL attribute is
the machine readable reference to the model element and the methods by which
the requirement has been verified and/or validated are given in the attribute
V&V Method. New table columns are configured to display these attributes.

Figure 19 shows the complete general safety requirements being managed
by ProR. iUML-B Element objects are attached to each requirement. A range

5We envisage utilising this facility, in the future, to encompass other development artifacts.
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Figure 18: Configuring ProR to support new features

Figure 19: Using ProR to manage requirements
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Figure 20: Using ProR to manage requirements - software requirements

of different V&V methods are shown. Generally requirements that are mod-
elled using state invariants are verified by proof, although the ProB model
checker is often also used to check these. Requirements that are modelled by a
State-machine or an individual transition are validated using (iUML-B State-
machine) Animation and (BMotion Studio) Visualisation or, for S-8 to S-10,
co-simulation. Where requirements were found to need corrections (e.g. S-1 and
S-5 could not be proved and required weakening as explained in section 3.2.5)
the original requirement was retained with an explanation as well as the new
version that is linked to a iUML-B Element. Note that the red annotations,
INCONSISTENT and REVISED, were manually entered into the requirements
based on the results of the v&v tools. Requirement S-7 is a manual intervention
and therefore was not modelled. For completeness we added a dummy iUML-B
Element that explains the reason for not modelling.

Figure 20 shows some of the software requirements that are modelled by
State-Machine Transitions. This figure also illustrates that some requirements
have dependency links where R-10 and R-11 are derived (and modelled by)
R-6 and R-8 respectively.

ProR enables us to keep track of the requirements and how they are mod-
elled. It provides documented evidence that the requirements have been ad-
dressed and provides a record of issues that have been discovered in the require-
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ments during the modelling process as well as recording the verification and/or
validation performed for each requirement. We consider that the primary pur-
pose of our modelling is the early discovery of problems in the requirements.
Therefore it is essential to have a mechanism and good tool support for manag-
ing the requirements in a close integration with the modelling tools.

4. Related Work and Comparison

The HD machine is a form of Active Medical Device (AMD), a health-care
device whose operation depends on a source of electrical energy or any source
of power other than that directly generated by the human body or gravity and
which acts by converting this energy [21]. Due to the important impact of
embedded AMD software, according to the latest directive 2007/47/EC of the
EU concerning medical devices [22], standalone software can also be considered
as an AMD. Recently safety of such software has become a challenge. Several
incidents have been reported that were caused by medical software faults [23]
and therefore medical software-related recalls are increasing [24].

The standards for AMD validation [25, 26, 27, 22] are mainly dedicated
to the physical and electrical components of a device. Two main references
concerning medical software development are the standard IEC 62304 [28] (In-
ternational Electrotechnical Commission) and the “General Principles of Soft-
ware Validation” [29] established by the the US Food and Drug Administration
(FDA). These documents provide general guidelines for software engineering.
There is a gap to address methods and techniques to ensure safety of AMD
software.

Jetley and Iyer [30] highlight the role of model-based design and hence formal
methods, as mathematical-based techniques, in ensuring safety and reliability
of medical software to satisfy regulatory agencies such as FDA and Singh [31]
highlights the benefits of using formal methods, particularly Event-B, in medical
devices to ensure safety of medical protocols.

Several research efforts have been dedicated to the application of formal
methods in medical devices. Singh et al. [32] present a general view of the field
of medical devices and certification issues through the pacemaker challenge and
include a discussion of the formalisation of a cardiac pacemaker in Event-B.
Gehlot and Sloane [33] propose developing a prototype formal verification and
validation toolkit to improve safety in wireless medical device networks. Some
of this work is dedicated to the HD machine.

Arcaini et al. [34] present formal modelling and verification of the HD ma-
chine using Abstract State Machines (ASM). The ASM model is incrementally
built through refinement. The refinement correctness proof is done by hand or,
for a particular kind of refinement, using the SMT-based tool ASMRefProver.
The model is validated by interactive simulation using the simulator AsmetaS
and scenario-based validation which requires a manual set of scenarios using the
textual notation Avalla. The model is verified by means of the model checker
AsmetaSMV. Requirement traceability is given by the relation between abstract
and refined models, at each refinement step.
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Banach [35] examines the HD machine case study in Hybrid Event-B, an
extension of Event-B that supports continuously varying behaviour as well as the
usual discrete changes of state. The model, including refinement and invariant-
preserving verification is presented. However tool support for Hybrid Event-B
is lacking, and the work is based on hand proofs.

Fayolle et al. [36] present a specification of the HD machine by a coupling
of Algebraic State-Transition Diagrams (ASTD) and B-like methods. Event-B
allows the data model and the safety properties of the system to be captured
whereas ASTD is used to specify the ordering of actions and to constrain the
execution of the events. The model is incrementally developed using extended
refinement of both methods. The authors believe that for some of the refinement
steps, the B-method and ASTD refinement definitions are restrictive and they
propose to use a new refinement definition in future work. The work mainly
focuses on the specification of the general behaviour of the machine, safety
requirements are dealt with at the last steps of the specification. Also it does
not report on verification/validation techniques.

Gomes and Butterfield [37] present a formal model of some aspects of the HD
machine case study using the Circus specification notation. Due to the lack of
automated verification tools for Circus, the model is manually translated into
machine-readable CSP (CSPm) so that the FDR3 refinement-checker can be
used. The work does not include validation techniques.

UPPAAL is an integrated tool environment for modelling, simulation and
verification of real-time systems [38]. Systems are modelled as networks of
timed automata which would suit some of the requirements of the HD machine.
The use of UPPAAL for AMD applications is illustrated by Guo et al. [39]
who present an approach that transforms medical best practice guidelines to
state chart models using UPPAAL and Daw et al. [40] who verify the UML
model of a medical device using the UPPAAL model checker. Kamali and
Petre [41] provide a comparison of UPPAAL and Event-B. UPPAAL provides
clock variables to model timing behaviour of real-time systems whereas Event-B
has no in-built support for timing and, consequently, it has to be dealt with by
explicitly modelling a clock with variables and events. UPPAAL lacks support
for refinement, particularly data refinement, compared to Event-B. UPPAAL
does not support verification of continuous behaviours whereas in this paper we
have reported using co-simulation with Event-B and elsewhere advances have
been made in ways to model hybrid (discrete and continuous) behaviour within
Event-B [42, 35]. Some attempts have been made to combine the advantages of
both UPPAAL and Event-B. For example, Berthing et al. [43], Vain et al. [44]
and Siavashi et al. [45] combine Event-B behaviour with UPPAAL timing and
use this combination to support refinement of timed specifications.

In summary, there are many alternative modelling techniques which could
or have been used for AMD. However, we have not found any that can compete
in the range of techniques and strength of tool support that we are able to draw
upon in the Rodin, Event-B based modelling environment. In particular, we
highlight the following strengths of our approach:
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• the range of Verification & Validation (V&V) methods: we used ProR for
requirement tracing, ProB to verify the temporal (liveness) properties and
to animate and simulate our models, theorem proving for verification and
co-simulation for validation of dynamic properties.

• the range of visualisation techniques: the preparation for haemodialy-
sis is a complex sequential process with sub-process branches, and hence
highlights the need for visualisation techniques to illustrate the process.
In addition, supporting graphical views can help medical experts to vali-
date the specification. Our work benefits from different visualisation tech-
niques: iUML-B contributes as a graphical modelling language with
automatic generation of Event-B and BMotion Studio provides a more
concrete visualisation of the behaviour of the model.

• integrated tool support: the Rodin toolset is an integrated platform both
for modelling and proving. The V&V and visualisation techniques are
integrated in Rodin as plug-ins.

5. Conclusion

The HD machine is predominantly a sequential process of user interactions
with few safety properties that can be expressed as constraints on state. During
the therapy stage the machine controls the dynamic properties of AP and BF. At
first sight it appeared that this case study would not illustrate the strengths of
our modelling tools very well since Event-B verifies the preservation of invariant
properties over discrete state-changing events. However, the case study gave us
an opportunity to focus on (1) verification of temporal properties using ProB
and (2) validation tools that we use to develop useful models and (3) tracing of
requirements into the formal model using ProR.

In order to model timing constraints, we develop modelling patterns to cap-
ture the relationship between events. The introduction of timing constraints
required the model to be verified against not only safety but also liveness prop-
erties. We have utilised the capability of ProB for model checking LTL temporal
properties to verify the consistency of our model with timing constraints.

Verification may result in a consistent model but we need user validation
to ensure the usefulness of our models. For this case study, we therefore used
the validation tools to drive a manual assessment of the model. iUML-B state-
machine modelling tools map readily to the process steps of the requirements and
their animation enables us to ‘see’ the sequential flows of the model. BMotion
Studio visualisation tools link the process to a more realistic representation of
the HD machine which allows us to disassociate ourselves from the model giving
a stronger validation. For validation of the dynamic control of AP versus BF
we use a continuous domain model of the controlled parameters to co-simulate
with our iUML-B/Event-B models to provide a strong validation of the stability
and effectiveness of the modelled control scheme.

The summary of the requirements (from [1]) that have been modelled and
verified/validated within our development is as follows.
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• Invariant Proofs: S-1’, S-5’, S-6, S-11

• Simulation Validation: S-2, S-3, S-4, R-1–R-15, R-17–R-19, R-22

• Co-simulation: S-8, S-9, S-10

Many requirements are validated using simulation/animation techniques. One
exception is requirement R-16: “while connecting the patient, the software
shall use a timeout of 310 seconds after the first start of the BP. After this
timeout, the software shall change to the initiation phase ”. An attempt to
model this requirement leads to an invalid iUML-B state-machine. We found
that the requirement is inconsistent: while connecting patient, the system is
already in the initiation phase. It is not clear to us what the intended meaning
of the requirement is.

In order to aid our modelling, we have use some Event-B modelling patterns
in our development. The summary of the pattern can be seen in Table 1. The
patterns provide the modelling templates that are systematically instantiated
to model the HD machine. In the future, we plan to collect more modelling pat-
terns and provide consistent descriptions including templates for both iUML-B
and the corresponding Event-B translation.

Pattern name When to use

Controlling equipment The controller issues command for the equip-
ment to perform some task and proceed accord-
ingly to the outcome of the task.

Delay (timing) The responsing event can only occur after a cer-
tain delay from the occurence of the triggering
event.

Expiry (timing) The responsing event can only occur within a
certain duration after the occurence of the trig-
gering event.

Deadline (timing) The responsing event must occur within a cer-
tain duration after the occurence of the trigger-
ing event.

Table 1: Summary of the Event-B modelling patterns

Overall, our model has 17 levels of refinement with a total of 664 proof
obligations. With the standard settings for the built-in automatic provers, 590
obligations (89%) are automatically proven. Upon inspection of the remaining
proof obligations, it is clear that the standard automatic provers are unable
to resolve the various state enumerations generated by the state-machines and
nested state-machines. As a result, we enabled the SMT plugin for Rodin [46]
which uses various SMT solvers as back-ends for discharging proof obligations.
With SMT solvers, 650 obligations (98%) are automatically proven, while the
remaining 14 obligations (2%) are proved manually. Note that the high per-
centage of automatic proofs for this development is partly due to there being
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no complex safety properties. Furthermore, other types of properties, such as
liveness, are validated and verified using other means than proofs, e.g., model
checking and simulation. The model was developed by 3 experts working on
different parts of the development: modelling the process using iUML-B, devel-
oping the co-simulation, and validating the model using BMotion Studio. We
estimate that a total of 2 person-months was spent on developing the model.

In order to verify liveness properties, we have utilised the ProB model
checker. In particular, due to the fact that refinement in Event-B does not
preserve liveness properties, the verification has to be repeated at each level of
refinement. A future research direction is to investigate the use of liveness-
preserving refinement approaches such as TLA+ [47], Unit-B [48]. Existing
work linking Event-B and TLA+ such as [49, 50] will be investigated.

In the future, we will continue to develop the BF control using co-simulation
to improve its accuracy without degrading stability and responsiveness. We plan
to investigate ways to provide validation records that might be used as evidence
in a safety case. For example, BMotion Studio could be enhanced to provide
and replay traces of animations. We also want to extend the ProR configuration
to include traceability links to Verification & Validation (V&V) evidence, i.e.,
link to proof obligations and/or recorded animation/visualisation trace. Finally
we are interested in providing tool support for assisting the modelling of timing
constraints. In particular, given some timing patterns, we could automatically
generate (similar to iUML-B) the Event-B data elements, such as guards and
actions, to complement the existing Event-B elements.

During the case study we have shown that the Event-B based modelling
tools are able to address adequately all of the different kinds of requirements
in the HD machine in appropriate ways. While other methods have strengths
in particular areas, none benefit from such an integrated platform of tools. We
conclude that the hypothesis is supported.
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