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ABSTRACT
The direct transmission of microscopically visible unbalanced chromosome abnormalities (UBCAs) is rare and usually has phenotypic consequences. Here we report four families in which a normal phenotype was initially found in one or more family members. Each UBCA was interpreted with regard to overlapping examples and factors previously associated with transmitted imbalances including incidental ascertainment, low gene density, benign copy number variation (CNV) content and gene relatedness. A 4.56 Mb deletion of 8p23.1-p23.2 was thought to be causal in the affected proband but showed incomplete penetrance in her mother and sibling (Family 1). Incomplete penetrance was also associated with a 10.88 Mb duplication of 13q21.31-q22.1 (Family 3) and dosage insensitivity with a 17.6 Mb deletion of 22pter-q11.21 (Family 4) that were both ascertained at prenatal diagnosis and each found in 4 unaffected family members. The 22pter-q11.21 deletion is part of a region with high benign CNV content and supports the mapping of cat eye syndrome to a 600 kb interval of 22q11.1-q11.21. Low gene densities of less than 2.0 genes/Mb were found in each of these three families but only after segmentally duplicated genes were excluded from the deletions of 8p and 22q. In contrast, gene density was average and variable expressivity associated with a 3.59 Mb duplication of 8p23.1 incidentally ascertained for paternal infertility (Family 2). Our results indicate that a greater degree of direct parental transmission, incomplete penetrance and variable expression are features of both sub-microscopic CNVs and UBCAs with relatively low gene and high benign CNV content.
Keywords: deletion; duplication; directly transmitted imbalance; gene density; incomplete penetrance; variable expressivity; dosage insensitivity; cat eye syndrome; Chromosome Anomaly Collection. 
INTRODUCTION
In a review of the world literature on cytogenetically visible, directly transmitted unbalanced chromosome abnormalities (UBCAs) and euchromatic variants (EVs) [Barber, 2005], there were only 27 families in which there were no apparent phenotypic consequences in the parents or children. Of these 27, 14 were deletions, 7 duplications and 6 unbalanced translocations. A further 30 families had affected children with normal parents of which 7 were deletions, 19 duplications and 4 unbalanced translocations. These 57 and another 77 families with affected parents and children were gathered on-line as the Chromosome Anomaly Collection. Features of the imbalances in families with normal family members included ascertainment at prenatal diagnosis for maternal age, reproductive problems or other incidental reasons [Barber, 2005], low gene density [Barber 2005; Daniel et al., 2007], a high degree of benign CNV content [Daniel et al., 2007] or a high proportion of genes from related gene families [Barber et al., 2005; Li et al., 2002]. Most were single family reports that, even if they contained multiple unaffected family members, only provided precedents for the lack of phenotypic effect in a particular family. Several unaffected families with deletions of e.g. the gene-poor G-dark band 16q21 have subsequently been described [Kowalczyk et al., 2013] but it remains uncertain whether other transmitted imbalances would be consistently haplosufficient or triplo-insensitive if multiple unrelated families could be found. In addition, incomplete penetrance and variable expressivity have been associated with classical cytogenetic imbalances [Barber, 2008] and become a striking feature of many microdeletion and microduplication syndromes [Yobb et al., 2005; Sharp, 2009; Mefford et al., 2010; Girirajan et al., 2010; Rosenfeld et al., 2013].
Here we report four remaining examples of directly transmitted microscopically visible UBCAs that have been analysed at a single institution and not already reported elsewhere. All four imbalances are greater than the arbitrary 3 Mb ceiling used by the Database of Genomic Variants (DGV). We compare each imbalance with previously reported overlapping imbalances, assess factors previously associated with directly transmitted UBCAs and consider whether each family is likely to be an example of incomplete penetrance, variable expressivity or dosage insensitivity.
CLINICAL PATIENT REPORTS
Family 1: Distal 8p interstitial deletion
The female proband was reviewed in the genetics clinic throughout childhood due to short stature, developmental delay, profound sensorineural deafness, pulmonary stenosis and an unsteady gait.


She had been born at 34 weeks’ gestation following a pregnancy complicated by oligohydramnios and IUGR. Her mother had been mildly unwell after exposure to a contact with rubella at around 20 weeks of pregnancy. Her birth weight was 1.4 kg (2nd centile). At 5 days of age she had bloody mucus in her stools and grade B streptococcus was found on rectal and umbilical swabs but not in blood cultures. IgM was raised but her TORCH screen was negative.

Throughout childhood she remained small for her age, and she had an unsteady gait with mild right hemiplegia and some motor delay (first walked aged 2 years). She attended a mainstream school until the age of 8 then moved to a specialist school for deaf children. She left at the age of 17 having taken her General Certificate of Secondary Education examinations. She relied mainly on British sign language for communication. She subsequently worked with disabled young people. 

She was diagnosed with hypothyroidism aged 25 and was re-reviewed in the genetics clinic aged 31. On examination, she had no obvious dysmorphic syndrome. She had small ears with slight posterior rotation, and slender hands with small fifth fingers. Her head circumference was 51.7cm (0.4th centile) and her height was 152cm (2nd centile).

She had an MRI of her brain and internal auditory meati which showed that the cochlea and membranous labyrinth were within normal limits. Patchy signal change was seen within juxta-cortical white matter on both sides. Her eye review noted hypoplastic irises and ‘salt and pepper’ retinopathy. Her electroretinogram was normal so her ophthalmic features were felt to be due to infection.

Her carrier mother was reviewed in the eye genetics clinic and did not have similar eye findings or overlapping clinical features. Her carrier brother was seen in the genetics clinic in his twenties and did not report any similar medical problems to the proband. He has since had two children about whom there are no concerns.
Family 2: Interstitial 8p23.1 duplication
The male proband was referred from fertility services at the age of 35 with a low sperm count. He had no problems in his early life and attended normal schools. He required grommets age 5 years and heart block and a leaky aortic valve were diagnosed around this time. A pacemaker was fitted at age 24 and he subsequently had aortic valve replacement. He also had a severe scoliosis. He had one child, a 10 year old son with moderate learning difficulties. This boy was born at term weighing 3.0 kg. Early milestones were normal but speech delay was detected age 3 and he attended a school for Special Educational Needs from the age of 7. He reads simple books, is sociable and has no health problems, particularly no scoliosis or heart problems.
Family 3: Interstitial 13q21.31q22.1 duplication
This family was ascertained when a woman of 30 was referred for prenatal diagnosis following a 3.6mm nuchal translucency detected on ultrasound scan and a combined risk for Down syndrome of 1 in 4. All three adult carriers were phenotypically normal. The parents also have two normal children aged 3 and 5 who have not been tested for the presence of the duplication and about whom there were no concerns.
Family 4: proximal 22q deletion from unbalanced 9;22 translocation 
This family was ascertained when a woman of 37 was referred for prenatal diagnosis on account of her age. All 3 carriers were phenotypically normal and healthy and there were no reported problems in the fetus at term. 

MATERIAL AND METHODS

G-banded chromosomes were prepared using standard methods and dual color bacterial artificial chromosome (BAC) fluorescence in situ hybridisation (FISH) was carried out as previously described [Barber et al., 2008]. Oligonucleotide aCGH (oaCGH) was used for Family 1 with test and pooled sex matched control DNA using a customised 4x44K array (National Genetics Reference Laboratory (Wessex) Constitutional Array CGH V1 design # 015543 (Agilent Technologies, Santa Clara, CA, USA) as previously described [Barber et al., 2008]. For Families 2-3, oaCGH was carried out with Oxford Gene Technologies (OGT, Oxford, UK) 60-mer oligonucleotide arrays, customized by the International Standard Cytogenomic Array Consortium (ISCA) [Baldwin et al., 2008], printed in an 8x60K configuration and analyzed with OGT CytoSure Interpret Software. For Family 4, oaCGH was performed with an 8x60K OGT CytoSureTM Constitutional v3 oligo array and analysed with CytoSure Interpret version 4.8.32. For consistency, base pair co-ordinates have been converted to hg19 using the University of California Santa Clara (UCSC) lift over tool where necessary. For Family 1, additional Multiplex Ligation-dependent Probe Amplification analysis (MLPA) was carried out with probe sets P023, P036 and P139 using the standard protocol of MRC-Holland [Schouten et al., 2002] and the connexin 26 gene (GJB2)  was screened by direct sequencing using GenBank accession NM_004004 with nucleotide one counted as the first nucleotide of the translation initiation codon. MLPA PCR products were separated on an Applied Biosystems 3100 Sequencer (ABI, Santa Clara CA, USA), analysed using ABI Genotyper version 2.0 and the results collated with an Excel spreadsheet as previously described [Bunyan et al., 2004].

RESULTS
All the results were confirmed with oaCGH, FISH or conventional chromosome analysis and have been summarised in Table I. 
Family 1: distal 8p deletion
A 4.56 Mb interstitial deletion of 8p23.1 to 8p23.2 (Fig. 1A; Supplementary Fig. S1A) was found in the affected proband, her unaffected mother and her unaffected younger brother. No deletion of the DiGeorge Syndrome region at 22q11.2 was found using MLPA and a mutation screen of the connexin 26 gene (GJB2) by direct sequencing was normal. The 49 kb telomeric breakpoint interval interrupts the 5’ end of the large Cub and Sushi Multiple Domains 1 gene (CSMD1, OMIM 608397) between exons 24 and 28 and the 378 kb centromeric breakpoint is within the telomeric olfactory receptor/beta defensin repeat (REPD) in 8p23.1 (Fig. 2A). An additional 140 kb microduplication of band 17q21.31 was found in the affected proband (Supplementary Fig. S1A) but not in her unaffected mother or unaffected brother. The karyotype of the proband was 46,XX,del(8)(p23.1p23.2)mat. ish del(8)(2205a2+,RP11-336N16+,RP11-16H11-,RP5-991O23-,CTD2629I16-,RP11-211C9+,RP11-112G9+,RP11-589N15+).rsa 8p23.2p23.1(P139)x1,22q11.2(P023)x2.arr [hg19] 8p23.2p23.1 (3,140,569x2,
3,189,276-7,752,527x1, 8,130,630x2),17q21.31(44,210,763-44,351,093)x3. 

Family 2: 8p23.1 duplication
A 3.59 Mb interstitial duplication of the core 8p23.1 duplication syndrome (8p23.1 DS) region and part of the adjacent repeats (REPD and REPP) (Fig. 1B) (Supplementary Fig. S1B) was found in a 35 year old index patient referred for severe oligospermia and his son.  Molecular genetic tests for relevant cystic fibrosis mutations and Y chromosome microdeletions in the index patient were normal. The index patient was subsequently found to have a heart defect and scoliosis and his son had speech delay and moderate learning difficulties but neither the heart defect nor scoliosis found in his father. The karyotype of the son was 46,XY,dup(8)(p23.1p23.1).ish dup(8)(RP11-122N11enh,RP11-211C9++,RP11-589N15++,RP11-24D9enh). arr[hg19] 8p23.1(8,079,912x2, 8,130,572-11,723,203x3, 11,724,938x2)pat. 
Family 3: Interstitial 13q21.31q22.1 duplication
Chromosome analysis of a cultured chorionic villus sample, taken at 13 weeks gestation, identified a duplication of 13q21.31 to 13q22 in all cells examined from multiple cultures (Fig. 1C). OaCGH confirmed a duplication of 10.88 Mb (Supplementary Fig. S1C) with centromeric and telomeric breakpoint intervals of 52 and 80 kb respectively (Fig. 3A). The duplication interval contained 9 genes of which none were OMIM Morbid. The orientation of the duplicated segment was not determined. Parental chromosome analysis showed that the father carried the same duplication and, following counselling, it was established that the duplication had been previously ascertained elsewhere and that at least 4 members of this family carry the duplication including the father’s mother and sister. The fetal karyotype was reported as 46,XX,dup(13)(q21.31q22.1)pat.arr[hg19] 13q21.31q22.1(63,597,788x2,
63,649,669-74,530,509x3,74,610,288x2).
Family 4: proximal 22q deletion from unbalanced 9;22 translocation 
A non-reciprocal translocation in which the long arm of chromosome 22 was attached to the end of the long arm of chromosome 9 was found in amniotic fluid cultures from the proband (Fig. 1D). The same unbalanced tertiary monosomy was found in the mother and two of her sons while the father, a further son and one of the mother’s sisters had normal karyotypes. The maternal grandparents were chromosomally normal consistent with this translocation having arisen de novo in the mother. OaCGH in the mother confirmed a deletion of 653 kb from band 22q11.21 (Supplementary Fig. S1D (Fig. 3B) and normal copy number of the last probe on 9q (hg19 chr9:141,018,917-141,018,976). The terminal nature of this unbalanced translocation implies the deletion of all the ~1.54 Mb of euchromatin (653 kb + 891 kb) between the breakpoint and the centromeric heterochromatin (chr22:16,050,001-17,593,652) (Fig. 3B) as well as the centromere and short arm extending to a total of ~17.6 Mb. FISH with a PCR amplified TTAGGG telomeric probe showed that TTAGGG sequences had been retained on the derived chromosome 9 (data not shown). The euchromatic component contained 15 genes and a high proportion of segmental duplications that are copy number variable in the Database of Genomic Variants (Fig. 3B). A breakpoint interval of 19 kb possibly interrupts the interleukin 17 receptor A (IL17RA) gene which is a candidate for autosomal recessive candidiasis (OMIM 613953) or the cat eye critical region 6 gene (CECR6) for which the array used has no coverage (Fig. 3B). The karyotype of the mother was 45,XX,der(9)t(9;22)(9pter-9qter::22q11.21-22qter)dn.ish der(9)(tel+,p14.1-,D22S181+, tel+).arr[hg19] der(9)(22:16,940,617-17,593,652x1,17,612,950x2). 
DISCUSSION

The results from the individual families are discussed before the combined implications of ascertainment, gene density, gene families, haploinsufficient genes and transmission bias.
Family 1: distal 8p deletion
When compared with overlapping distal 8p deletions that have been mapped using molecular methods [Burnside et al., 2013 Patient 3; Bosse et al., 2004; Giglio et al., 2000 Case 1] (Fig 2A; Supplementary Table SI), the proband in this family shares developmental delay and short stature as a child with two probands (Burnside et al., 2013 Patient 3;  Bosse et al., 2004) and unsteady gait as a child with one (Burnside et al., 2013,  Patient 3) but differs in having CHD, sensorineural deafness, microcephaly and no dysmorphic features. These are not features normally associated with distal 8p deletions that have a mild and variable phenotype that can be compatible with normal cognition [Gilmore et al., 2001] or a normal phenotype [Reddy, 1999]. There are no corresponding deletions in the DECIPHER [Bragin et al., 2014] or ClinVar databases [Landrum et al., 2014] and, like Patient 3 of Burnside et al. [2013], most of the multiple overlapping deletions are larger, terminal, classified as pathogenic or likely pathogenic and associated with developmental delay and other features. 


The additional 140 kb microduplication of 17q21.31 in the proband is common and benign. It corresponds to the larger beta copy number polymorphism (CNP205) that affects the promoter and first exons of KANSL1 and is associated with H1 (non-inverted) haplotype of the segmental duplications that flank the Koolen-de Vries Syndrome (KdVS) gene KANSL1 [Koolen et al., 2015]. The absence of most features of KdVS in the proband are consistent with this microduplication of 5’ KANSL1 being a benign polymorphism and an unlikely phenotypic modifier [Girirajan and Eichler, 2010].
The present interstitial deletion might have been a dosage insensitive region because (1) the same deletion is present in the unaffected mother and unaffected brother; (2) excluding REPD in 8p23.1, only five RefSeq genes are deleted of which none have a high likelihood of being haploinsufficient [Huang et al., 2010]; (3) cytogenetically visible duplications of band 8p23.2 have been described as benign variants [Harada et al., 2002; Engelen et al., 2000] and other large overlapping copy number gains that interrupt CSMD1 are common (Fig. 2A) [Zarrei et al., 2015; DGV]; (4) REPD itself is known to be copy number variable in the normal population and to predispose to traits rather than congenital anomalies [Hollox et al., 2008]. 

However, one of the five RefSeq genes is microcephalin 1 (MCPH1, OMIM 607117, 606858, and 251200) and recessive truncating mutations of this gene are a cause of severe primary microcephaly [Jackson et al., 2002]. Microcephaly has not been reported in heterozygous parents but copy number variations (CNVs) involving upstream parts of MCPH1 have been found in three families with autism spectrum disorder (2) [Ozgen et al., 2009] or cerebral palsy (1) [McMichael et al., 2014] and otitis media has been associated with Mcph1 deficiency in mice [Chen et al., 2013]. It is therefore conceivable that the deletion may have unmasked a recessive allele or that heterozygous deletion of MCPH1 has resulted in microcephaly in this case and that rare complications of undetected otitis media might have had a role in the sensorineural deafness in the proband. 
In conclusion, some of the phenotypic features in the proband are consistent with those in other patients with deletions of distal 8p and heterozygous deletion of MCPH1 as a cause of microcephaly and/or deafness cannot be entirely excluded. These features may have had an alternative cause but the mild or normal phenotypes in members of this and other families indicate the incomplete penetrance and variable expressivity of distal 8p deletions. 
Family 2: 8p23.1 duplication

The ascertainment of the father of this family for infertility was regarded as incidental because infertility is not usually a feature of 8p23.1 DS [Barber et al., 2013]. The duplication included 32 genes of which 2 (TNKS and GATA4) have a high likelihood of being haploinsufficient and a third (SOX7) has been implicated in the 8p23.1 DS phenotypes (Fig. 2B) [Barber et al., 2015]. Direct transmission of four similar duplications [Barber et al., 2008 Families 1 and 2; Barber et al., 2010 Case 3; Yu et al., 2011 Patient 3] and a deletion of the core 8p23.1 DS region [Guimiot et al., 2013] have been recorded in 5 families with  transmitting parents that have been more or less affected in each case. The partial 8p23.1 DS subsequently found in the father and son provide further evidence of the variable expressivity of 8p23.1 DS [Barber et al., 2013; Barber et al., 2015] and other recurrent genomic conditions [Rosenfeld et al., 2013].

Family 3: Interstitial 13q21.31q22.1 duplication
This interstitial duplication lies within an extensive 38 Mb region that has a low gene density of 3.1 genes/Mb [Daniel et al., 2007] and contains at least 6 examples of directly transmitted UBCAs [Couturier et al., 1985; Liehr et al., 2002; Filges et al., 2009; Lopez-Exposito et al., 2008; Daniel et al., 2007; Mathijssen et al., 2005]. Four of these have been mapped using molecular cytogenetic methods (Fig. 3B) including three duplications [Lopez-Exposito et al., 2008; Daniel et al., 2007; Mathijssen et al., 2005] and a deletion with no relevant phenotype [Filges et al., 2009] to which another deletion in an unaffected individual can be added [Roos et al., 2008] (Fig. 3A). Of the three overlapping duplications, the first was a 10.6 Mb duplication ascertained in a boy with autistic spectrum disorder and found in his unaffected mother and grandfather [Daniel et al., 2007]; the second was an ~12 Mb triplication ascertained in an affected boy and duplicated in his two brothers, father and grandfather who, on closer retrospective examination, had a mild phenotype including some facial dysmorphism, delayed tooth eruption and adult onset hearing loss [Lopez-Exposito et al, 2008]; the third was a much larger 21.1 Mb duplication in 6 members of a three generation pedigree associated with a mild phenotype [Matthijsen et al., 2005] that overlaps with that in in the duplicated family members of Lopez-Exposito et al. [2008]. Our results suggest that the common features of hearing loss and delayed tooth eruption can be mapped to the ~5.5 Mb interval between the proximal extent of the duplications in Lopez-Exposito et al. [2008] and the present family (Fig 3A). 

The duplication in Family 3 includes the Dachshund Homolog 1 (DACH1; OMIM 603803) and Kruppel-like Factor 5 gene (KLF5; OMIM 602903) genes, both of which have a high likelihood of being haploinsufficient (Table I) but neither of which have an established pathology in humans. The telomeric breakpoint interval of 80 kb results in a 3’ partial copy of the Kruppel-like Factor 12 gene (KLF12, OMIM 607531) which also has a high likelihood of being haploinsufficient (Fig. 3A). Intronic copy number gains of the proto-cadherin 9 gene (PCDH9; OMIM 603581) have been associated with autism spectrum disorder [Marshall et al., 2008] but CNVs of this gene are also found in the DGV 

The consequences of duplication are usually milder than deletion but, in the present family, a large gene poor duplication with no reported phenotypic consequences in 4 family members overlaps with duplications that have a mild phenotype and deletions with no phenotype. Our results extend by ~ 5.3 Mb the interval in which duplication is compatible with a normal phenotype but, despite the overlapping imbalances, we cannot yet be certain whether the incomplete penetrance in this family indicates a dosage insensitive region of 13q.
Family 4: proximal 22q deletion from unbalanced 9;22 translocation
Brief details of this unbalanced translocation case were previously reported [Barber, 2005]  and an analogous unbalanced translocation with a 16.4 Mb deletion of 22pter-q11.21 (Fig. 3B)  and an intact 18p sub-telomere was found in a girl ascertained for speech difficulties by Damatova et al. [2009] (45,XX,der(18)t(18;22)(p11.32;q11.21).arr[hg19] der(18)(22:1-18,040,148x1,18,045,846 x2)). Both are further examples of the tendency for translocations to be formed at or near the low copy repeats on chromosome 22q11.2 and the telomeric bands of partner chromosomes [Spiteri et al., 2003]. The speech difficulties in the patient of Damatova et al [2009] were thought to be secondary to moderate unilateral conductive hearing impairment and she also had premature thelarche. Rather than reduced dosage of the genes involved, Damatova et al. [2009] suggested that the deafness in their patient was due to a dominant mutation or the unmasking of a recessive allele among six candidate genes. Of these six, only CECR2 was deleted in their patient as well as the overlapping 143 kb deletion in DECIPHER patient 648 (Fig. 3B) who also had hearing impairment (as well as intellectual disability and microcephaly at the age of 5). This, and the role of Cecr2 in neurulation and inner ear development [Dawe et al., 2011], provides further support for CECR2 as a candidate hearing impairment gene. 

The deletions in Family 4 and the patient of Damatova et al. [2009] overlap the triplo-insensitive region of proximal 22q deduced from multiple patients with two or three extra copies of this region collected in the small supernumerary marker chromosome database [Liehr, 2014] (Fig. 3B). The deletion in Family 4 also overlaps the proximal type 1 cat eye syndrome (OMIM 115470) critical region (CESCR), contains one of the six CESCR genes (CECR7) and possibly interrupts another (CECR6) (Fig. 3B). If CES is the result of triplication or quadruplication of dosage sensitive genes within the CESCR, deletion of part of the same region might be expected to have significant phenotypic consequences but none were found in the four deleted individuals in this family. 
We conclude that the incomplete penetrance in Family 4 reflects a high proportion of heterochromatin and copy number variable segmentally duplicated euchromatin.  This large deletion covers most of a region that is likely to be dosage insensitive despite containing the CECR6 gene which is thought to be haploinsufficient. The deletions in Family 4 and that of Damatova et al. [2009] imply that the CESCR can be reduced to the ~1 Mb between CECR2 and the LCR22A repeat (Fig. 3B) which contains the ~600 kb directly transmitted triplication found by Knijnenberg et al. [2012] in a three generation family with many of the features of CES. These results support the idea that CES can result from the increased dosage of just the three genes CECR2, SLC25A18 and ATP6V1E1 (Fig. 3B).

Ascertainment, gene densities, gene families, haploinsufficient genes and transmission bias
Ascertainment for incidental reasons such as prenatal diagnosis for maternal age or miscarriages was a feature of families with directly transmitted UBCAs and unaffected family members [Barber, 2005]. This applies to three out of four of the present families assuming that the oligoasthenospermia in Family 2 and raised nuchal transparency in Family 3 were unrelated to the 8p23.1 and 13q21.31-q22.1 duplications respectively.

A low average gene density of 2.51 genes per Mb [Barber 2005; Daniel et al., 2007], a high degree of benign CNV content [Daniel et al., 2007] or dosage compensation by genes in related gene families [Barber et al., 2005] have also been associated with large transmitted UBCAs with unaffected family members. Compared to the genome average of 9 [Daniel et al, 2007], only Family 3 with the 13q duplication had a very low gene density of 1.65 genes per Mb (Table I). Gene densities similar to or greater than the genome average were found in Families 1 and 4 (Table I) but, if the 32/37 (86%) genes within copy number variable segmental duplications in Family 1 are excluded (Fig. 2A), the density of the remaining deleted genes in 8p is also very low at 1.1 genes per Mb. In the same way, if the 12/15 segmentally duplicated genes are excluded from the 1.54 Mb euchromatic component of the deletion of 22q in Family 4 (Fig. 4), a gene density of 9.6 is reduced to 1.9 genes per Mb which is less than the range of 2.03-2.99 previously found in most other families with UBCAs and unaffected family members (within 95% confidence levels) [Daniel et al., 2007]. In contrast, 9.19 genes per Mb are present in the duplication of 8p23.1 in Family 2 that usually gives rise to the 8p23.1 duplication syndrome (8p23.1 DS). It is possible that modification by other network members of the key SOX7 and GATA4 transcription factors  [Barber et al., 2015] might explain the variable expression of 8p23.1 DS in the father and son. The 3:1 ratio of maternal to paternal transmission in our 4 families was similar to the excess of maternal transmission observed before among 130 families with transmitted imbalances [Barber, 2005].

In conclusion, low average gene density with a high proportion of segmentally duplicated or related genes may help explain the relatively benign consequences of deletion and duplication in most but not all families with large directly transmitted imbalances. High proportions of genes from related gene families were not found in the present deletions and duplications (Table 1). All 8 carriers from Families 3 and 4 had a normal phenotype despite the presence of genes with a high likelihood of being haploinsufficient in the 13q21.31-q22.1 duplication and 22pter-q11.21 deletion.
Limitations

Mosaicism has not been excluded by grandparental analyses and only a single tissue (peripheral blood) has been sampled in each individual. Arrays have been run on single members of Families 2, 3 and 4 so an alteration in the size of a UBCA during transmission cannot be excluded [Yobb et al., 2005; South et al., 2010]. Subtle effects on cognitive phenotypes have not been excluded by formal developmental assessment of affected and unaffected family members. 
Conclusions
We have found large directly transmitted segmental imbalances in 4 families in which 10/13 individuals were phenotypically normal. Ascertainment was regarded as incidental in 3 out of 4 families (Families 2, 3 and 4) and, after segmentally duplicated genes were excluded, gene density was low in all three families showing incomplete penetrance or dosage insensitivity (Families 1, 3 and 4). Gene density was average in the one family showing variable expressivity (Family 2). A high degree of gene relatedness was not found in any of the four families but genes with a high likelihood of being haploinsufficient were present in two of the apparently benign imbalances (Families 3 and 4).

Our result bear out previous evidence that microscopically visible segmental imbalances with relatively low gene or high benign CNV content can display features that are more common among sub-microscopic CNVs including a greater frequency of direct parental transmission, incomplete penetrance and variable expression [Rosenfeld et al., 2013]. The study of families such as those reported here may help identify further regions that are segmentally dosage insensitive, modifiers of other structural variation or subject to incomplete penetrance and variable expressivity. 
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FIGURE LEGENDS
FIG. 1. A-D: Partial karyotypes from Families 1-4 with the regions of interest arrowed on the abnormal chromosomes for Families 1, 2 and 3 and the normal chromosomes in Family 4. A: The 8p23.1-p23.2 deletion from Family 1; B: The 8p23.1-p23.1duplication from Family 2; C: The duplication of 13q21.31-q22.1 from Family 3; D: The derived (der) chromosome 9 from the unbalanced translocation between the 9q sub-telomere and 22q11.12 from Family 4.
FIG. 2. A and B: Idiograms above and screenshots below of the results in Families 1 and 2  from the UCSC web browser (hg19) with the minimum extent of each imbalance indicated by solid black horizontal bars and vertical dashed lines, breakpoint intervals by kb numbers and segmental duplications (made up of stretches of DNA that are at least 1,000 bases in length and share a sequence identity of at least 90%) by shaded grey blocks. A: An idiogram of chromosome 8 with 1-8.25 Mb from bands 8pter-p23.1 in the oblong box; the square dotted line illustrates the possible maximum extent of the deletion in Family 1 and the square dotted and dashed line illustrates the benign copy number gains reported by Harada et al. [2002]; genes discussed in the text are named and circled; REPD stands for REPeat Distal; solid black horizontal bars underneath the screen shot represent the minimum extent of the telomeric deletions in relevant patients from the literature. B: An idiogram of chromosome 8 with 7.9-12.3 Mb from band 8p23.1 in the oblong box; the black horizontal bar indicates the minimum extent of the duplication in Family 2; genes discussed in the text are named and circled with percentage figures for those with a high likelihood of being haploinsufficient [Huang et al., 2010]; REPD stands for REPeat Distal and REPP for REPeat Proximal. 
FIG. 3. A and B: Idiograms above and screenshots below of the results in Families 3 and 4  from the UCSC web browser (hg19) with the minimum extent of each imbalance indicated by solid black horizontal bars and vertical dashed lines, breakpoint intervals by kb numbers, segmental duplications by shaded grey blocks (that are made up of stretches of DNA that are at least 1,000 bases in length and share a sequence identity of at least 90%) and genes discussed in the text named and circled with percentage figures for those with a high likelihood of being haploinsufficient [Huang et al., 2010]. A: An idiogram of chromosome 13 with 63-76.1 Mb from bands 13q21.31-q22.1 in the oblong box; solid black horizontal bars and vertical dashed lines represent the minimum extent of the interstitial duplication in Family 3 and other relevant duplications and deletions from the literature with arrows indicating those that extend beyond the screenshot. B: An idiogram of chromosome 22 with the 2.8 Mb euchromatic segment of band 22q11.21 from 16–18.8 Mb in the oblong box; the  solid black horizontal bars and vertical dashed lines illustrate the minimum extent of the interstitial deletion in Family 4 and a similar deletion from the literature [Damatova et al., 2009]; solid black horizontal bars and vertical dashed lines underneath the screenshot represent the minimum extent of the interstitial deletion in patient 648 from the DECIPHER database, the 600 kb interstitial duplication in the family of Knijnenberg et al. [2012], the triplo- and tetra-dosage insensitive region identified by Liehr et al., [2014] and the CES type 1 interval from the centromere to the chromosome 22 Low Copy Repeat A (LCR22A).

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at the publisher’s web-site.
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Supplementary Table SI. Distal 8p Deletions with Common Features Highlighted in Bold
	
	Giglio et al., 2000 Case 1
	Bosse et al., 2004
	Burnside et al., 2013

Patient 3
	Family 1 (Proband)



	Abnormality
	6.5 Mb terminal deletion
	6.8 Mb terminal deletion
	7 Mb terminal deletion
	4.56 Mb interstitial deletion

	Inheritance
	Maternal; normal mother.
	de novo
	de novo
	Maternal; normal mother and brother.

	Sex
	-
	Male
	Male
	Female

	Age and ascertainment
	Neonate
	
	At age 8.5 for developmental delays;

As a teenager for short stature;

At age 26 
	On day 6 for CHD (PS and PDA);
at 6 months for hearing problems;
at 2 years for developmental delay, slow growth, sensorineural deafness and congenital heart disease.

	Development
	-
	Developmental & speech delay
	Developmental, speech & language delay; mild executive function deficits.
	Developmental delay and slow growth at age 2


	Schooling
	-
	
	Regular classes at school;

now attends community college. 
	Normal school until age of 8; special school for deaf children from 8 to 17. 

	Lifestyle
	-
	
	Holds part time employment;

lives at home with parents.
	Works with disabled young people;
takes great pride in her appearance;
lives at home with her parents; able to go out and about independently.

	Gait
	-
	
	Unsteady gait as a child that improved with age
	Unsteady gait as a child that improved with age

	Neurology
	-
	
	Seizures
	Mild right hemiplegia

	CHD
	-
	
	Heart murmur but normal echocardiography
	Pulmonary stenosis; patent ductus arteriosus.

	Hearing 
	-
	
	-
	Sensorineural deafness

	Stature
	-
	Growth retardation/

short stature
	Short but adult height 162.8 cm

(10th to 25th centile) 
	Small with poor weight gain as an infant; short stature as an adult with height of 152cm (2nd centile).

	Behaviour
	-
	Aggressive
	Aggression; anxiety.
	-

	Dysmorphism
	Coarse face in  mother
	Dolichocephaly; supraorbital fullness; upslanting palpebral fissures; epicanthal folds; bulbous nasal tip; ear abnormalities.
	High skull with prominent parietal regions; upslanting and short palpebral fissures; bilateral mild epicanthal folds; slightly anteverted nares with a thickened nasal tip;

mild retrognathia with a somewhat pointed chin.
	Not dysmorphic but small ears with slight posterior rotation; microcephaly with adult OFC of 51.7 cm (0.4th centile). 


	Other
	
	Widely spaced nipples;

talipes planus.
	
	Streaky humeri; mildly prominent sternum; normally spaced nipples; hypothyroidism at age 25; salt and pepper’ retinopathy (secondary to infection).
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