
Online Concurrent Workload Classification for
Multi-core Energy Management

Basireddy Karunakar Reddy, Geoff V. Merrett and Bashir M. Al-Hashimi
University of Southampton, United Kingdom
{krb1g15,gvm,bmah}@ecs.soton.ac.uk

Amit Kumar Singh
University of Essex, United Kingdom

a.k.singh@essex.ac.uk

Abstract—Modern embedded multi-core processors are orga-
nized as clusters of cores, where all cores in each cluster operate
at a common Voltage-frequency (V-f). Such processors often
need to execute applications concurrently, exhibiting varying
and mixed workloads (e.g. compute- and memory-intensive)
depending on the instruction mix and resource sharing. Runtime
adaptation is key to achieving energy savings without trading-
off application performance with such workload variabilities.
In this paper, we propose an online energy management tech-
nique that performs concurrent workload classification using the
metric Memory Reads Per Instruction (MRPI) and pro-actively
selects an appropriate V-f setting through workload prediction.
Subsequently, it monitors the workload prediction error and
performance loss, quantified by Instructions Per Second (IPS) at
runtime and adjusts the chosen V-f to compensate. We validate
the proposed technique on an Odroid-XU3 with various combina-
tions of benchmark applications. Results show an improvement in
energy efficiency of up to 69% compared to existing approaches.

I. INTRODUCTION AND MOTIVATION

To achieve energy efficiency, modern embedded multi-core
platforms support dynamic voltage and frequency scaling
(DVFS) which enables on-the-fly linear reduction of frequency
(f) and voltage (V), yielding a cubic reduction in dynamic
power consumption (∝ V 2f). Considering the complexity of
hardware design, such architectures with a fixed number of
cores are organized as clusters, where all cores in a cluster
operate at the same V-f (cluster-wide DVFS) [1], [2].

Multi-cores often execute applications concurrently, where
each application exercises the hardware differently based on
its instruction mix. This, coupled with resource sharing results
in varying and mixed workloads (compute-intensive, memory-
intensive, etc.). Managing such workload variations on multi-
core architectures supporting cluster-wide DVFS is a chal-
lenging task, as each core may execute a different type of
workload, and thus an appropriate V-f for the entire cluster
has to be determined.

Fig. 1 shows the variation in workloads when multiple ap-
plications are run in two different configurations - individually
(left) and concurrently (right) on the A15 cluster of the Odroid-
XU3 platform. Here we consider three applications having dif-
ferent workload profiles from SPEC CPU 2006: astar, lbm and
mcf, and their various combinations astar-lbm, astar-mcf, lbm-
mcf and astar-lbm-mcf. Further, a metric called Memory Reads
Per Instruction (MRPI = last level cache misses/instructions
retired) is derived for classifying the workload. The reason

0.00

0.02

0.03

0.05

1 6 11 16 21

M
R

P
I

Time interval (x10-1 seconds)

astar-lbm astar-mcf
lbm-mcf astar-lbm-mcf

0.00

0.01

0.02

0.04

1 6 11 16 21

M
R

P
I

Time interval (x10-1 seconds)

astar lbm mcf

Fig. 1: Variation in MRPI for individual (left) and concurrent (right)
execution of applications.

for using MRPI as opposed to the commonly used CPU
cycles, Instructions Per Cycles (IPC), or utilisation [3]–[5]
is as follows. CPU cycles, utilisation and IPC are usually
affected not only by number of memory accesses but also
by other statistics, such as lower-level cache misses, branch
mispredictions, etc., whose penalty (measured in cycles) does
not get affected by frequency scaling. Therefore, to efficiently
select the V-f setting based on the memory-intensiveness of
the application, the MRPI metric is chosen. A high load on
the processing core indicates a low MRPI and vice versa.

It can be observed from Fig. 1 that the different workload
types (of the applications astar, lbm and mcf) can clearly
be classified (e.g. memory-or compute-intensive) when run
individually, which is completely different in the case of
concurrent execution having greater workload variability. This
necessitates an efficient online classification of concurrent
workloads to understand the above effects and select an
appropriate V-f setting for achieving energy efficiency. To this
end, this paper makes the following contributions:

1) An approach for workload selection, prediction and clas-
sification that proactively controls the V-f ;

2) A low overhead technique for identifying cores, executing
no application, to avoid selection of a high V-f ;

3) Implementation and validation of the proposed approach
on a real hardware platform, the Odroid-XU3 [1].

II. RELATED WORK

Various energy optimization approaches have been adopted
for single and multiple applications executing individually
by controlling the V-f setting with respect to workload be-
haviour [6]–[8]. A simulation based approach for energy
savings due to the reduced cache miss penalties at lower clock
frequencies is proposed in [6]. Compile-time techniques, such
as [7], have exploited the stall periods. On the other hand, on-
line algorithm utilizing the hardware PMCs is proposed in [8]
to achieve energy saving without recompiling the applications.

The aforementioned approaches consider single application at
a time and thus cannot be applied to concurrent applications.
Moreover, they are applicable for per-core DVFS based multi-
core architectures. Identification of V-f setting on per-core
DVFS based multi-cores is relatively simple compared to
cluster-wide DVFS multi-cores, as V-f of one core does not
affect the workload running on another core.

Approaches proposed in [9], [10] consider cluster-based ar-
chitectures. Kong et al. [9] proposed energy-efficient schedul-
ing of real-time tasks and identification of appropriate V-f
setting, which was validated on a simulation platform. In [10],
an offline regression-based technique for task mapping and
DVFS is proposed for concurrent applications. However, this
approach heavily depends on offline analysis results, which
is non-scalable. Furthermore, none of the aforementioned
approaches consider online concurrent workload classification
and the V-f level is not adjusted during execution, which is
beneficial for adapting to workload variations.

III. PROPOSED APPROACH

The proposed approach addresses the following problem:
Given a set of concurrent applications and a multi-core

platform supporting cluster-wide DVFS
Optimize energy consumption while maximizing the per-

formance by selecting efficient V-f setting
An overview of the proposed approach is shown in Fig. 2

having the following stages:
(a) workload selection and prediction
(b) workload classification and frequency selection
(c) performance evaluation and compensation

A detailed discussion on each stage is presented in the
following sections. As the device firmware automatically ad-
justs the voltage for a selected frequency, we refer to V-f and
frequency interchangeably throughout the paper.

A. Workload Selection and Prediction

An appropriate V-f setting depends on the application
workload. When applications execute individually, V-f setting
is mostly guided by a single workload [3]. However, for
concurrent execution, it depends on multiple workloads. It is
important to note that, for concurrently executing applications
on a cluster-based multi-core, V-f of each cluster should be
chosen in such a way that all the applications meet their perfor-
mance requirements. Furthermore, these applications generate
varying and mixed workloads due to resource sharing (e.g.
cache and memory). Therefore, a representative V-f setting has
to be chosen for achieving energy efficiency without degrading
application performance.

1) Workload Selection: Let us assume that there are N con-
currently executing applications on a multi-core and mrpini

be the MRPI of an application n for time interval ti−1 →
ti. There will be N different workloads at every time interval
of the execution. The workload is quantified by the MRPI,
where a low value represents a high load on the processing
core and vice versa. Due to limited resource availability, con-
current execution of applications creates contention on shared

(A) Workload Selection and Prediction

(B) Workload Classification and Frequency

Selection

(C) Performance Evaluation (IPS)

 ti-1 ti ti+1

Performance

Loss?
No Change Compensate

YesNo

Design Space Exploration

f-tab

MRPI Frequency

W1

W2

...

Wk

f1

f2
...

fk

Fig. 2: Proposed online energy management technique.

resources, especially on memory, impacting performance of
individual application, i.e. increases the execution time.

Contention on memory can be exploited to scale down
the frequency to minimize the wasted cycles. We take this
into account by increasing the MRPI of each core by δ,
calculated at runtime based on the average MRPI of the run-
ning applications. If all the running applications are memory-
intensive, then the value of δ will be high due to increased
memory traffic. Considering the above and to maximize the
application performance, V-f setting for time interval ti−1

→ ti (considering cluster-wide DVFS) is influenced by the
workload with minimum MRPI (mrpitarget_i),

mrpitarget i = min{mrpi1i,mrpi2i, ...,mrpiNi}+ δi (1)

2) Workload Prediction: To adapt to workload variations
and to achieve energy minimization, proactive control of V-f
is of utmost importance. Therefore, the future workload (ti+1)
needs to be predicted at ti to set the appropriate V-f value for
the time interval ti → ti+1. To accomplish this, we use an
exponential weighted moving average (EWMA) filter [11] to
predict MRPI (pi+1) for the time interval ti → ti+1,

pi+1 = γ × ai + (1− γ)× pi (2)

where γ, pi and ai are the smoothing factor, predicted
and actual MRPI values respectively during the interval ti−1

→ ti. It is to be noted that mrpitarget_i computed from
Equation 1 represents the actual workload ai. To minimize
miss-predictions, the predicted MRPI of the interval ti−1 →
ti is compared to the actual MRPI measured from hardware
PMCs. Subsequently, computed prediction error Pe (difference
between actual and predicted MRPI values) is used to improve
the prediction for ti → ti+1. The accuracy of prediction highly
depends on γ and a fixed value of γ would result in frequent
miss-predictions, if there are large workload variations. There-
fore, the value of γ is changed in proportion to pwc (=Pe/pi),

γ = α× Pwc + β (3)

The values of coefficient α and β are given in Section IV.

B. Workload Classification and Frequency Selection

Classification of the predicted workload is important for
identifying an appropriate V-f setting for achieving energy
savings without any performance loss. For online workload
classification, two hardware PMCs (L2 data cache refills and
instructions retired) are used for periodically computing the

MRPI during application execution. The modified perfmon
tool [11] is used for accessing the PMCs.

To minimize the runtime overhead, workload types are
predetermined through a custom program, generating varying
number of memory accesses. The custom program copies vary-
ing amount of data from one memory location to another, like
memcpy(), after doing addition and multiplication operations
on two large arrays. At different number of memory accesses,
the variation in MRPI and execution time is recorded by
sweeping the frequency from 0.2 GHz to 2 GHz on A15 cluster
of Odroid-XU3. The offline profiling results contain MRPI
ranges and corresponding appropriate V-f settings (f-tab in
Fig. 2), which are used at runtime to set the operating fre-
quency to a desired value through the utility cpufreq-set.
The range of MRPI values having little (<1%) or no effect
on execution time for the same frequency are grouped into a
single class (same workload type). Workloads with large MRPI
are assigned to a low frequency and it is decided by the speed
of memory (933 MHz in our case). Similarly, workload having
a significantly low MRPI, i.e. execution time scales linearly
with frequency, is assigned a maximum available frequency.

1) Identification of unused cores: MRPI of unused cores,
i.e. no application is executing on those cores, is usually low
due to fewer memory accesses. As a result, if such cores are
not identified, it gives a miss-impression that the cores are
executing a compute-intensive application, leading to selection
of a high V-f and thus increasing energy consumption. This
becomes prominent when there are more cores than number
of concurrent applications in a cluster. To address this, the
proposed algorithm determines unused cores at runtime using
an IPS threshold. If IPS of a core is below the threshold value,
it is identified as unused core and subsequently, its MRPI is
set to 10 (any value larger than one would be fine as the value
of MRPI usually does not exceed one). This eliminates the
influence of unused cores on V-f setting, which is decided
by the minimum MRPI of the applications (Equation 1). The
IPS threshold value is experimentally identified as 2.9×106

for the cores in A15 cluster of Odroid-XU3, which is used
for experimental validation. Determining unused cores using
IPS does not need extra PMCs as the number of instructions
retired during each time interval is already made available
for computing MRPI. Otherwise, checking unused status with
generally used CPU utilisation [5] needs an extra PMC (num-
ber of active CPU cycles) or accessing /proc virtual file-
system (procfs), leading to increased runtime overhead.

C. Performance Evaluation and Compensation

Considering the dynamic resource availability and inter-
ference between concurrent applications, it is important to
evaluate the performance during execution to ensure that no
application experiences any performance loss. Therefore, we
use instructions per second (IPS) as a metric for quantifying
the runtime performance of each application for every elapsed
time interval Ts. The performance loss is calculated by com-
paring the IPSn for every time interval with the maximum
IPS (IPSmax) achieved by executing the application at the

highest available frequency (fmax). If there is a performance
loss of λ% during the interval ti−1 → ti, the selected V-f is
increased by λ×fmax for subsequent time interval (ti → ti+1)
to compensate it. Furthermore, the frequency is modified only
when λ is significant to minimize the overheads associated
with DVFS. We experimentally verified and set the value of
λ to 1% by taking the variations in PMC data into account.

IV. EXPERIMENTAL RESULTS

The proposed approach is validated on an Odroid-XU3
platform running Ubuntu Linux Kernel 3.10.96. The Odroid-
XU3 has eight cores, which are organized into big and LITTLE
clusters with four A15 and A7 cores respectively, and 2
levels of cache hierarchy. Moreover, each cluster operates in a
different power domain. As part of our experiments, the A15
cluster only is considered, which supports 19 V-f pairs (200
MHz - 2000 MHz with 100 MHz steps). However, without
the loss of generality, similar experiments can be carried out
on LITTLE cluster and any other cluster-based architectures.

To show the effectiveness of the proposed approach, ap-
plications lbm (lb), milc (mi), mcf (mc) and bwaves (bw)
from SPEC CPU2006 [12], and swaptions (sw) and freqmine
(fr) from PARSEC [13] are considered. These applications
are executed concurrently in single, double and triple com-
binations. The power is measured from the on-board power
sensors of Odroid-XU3 every 100ms. The proposed technique
is compared against Linux’s conservative, ondemand and inter-
active power governors, which are implemented on millions of
smartphones, making them competitive baselines [14]. These
governors come under utilisation-based approaches as they
scale the frequency based on utilisation threshold. Further, we
also considered IPC-based [5] and exhaustive search-based,
similar to [10], approaches for the comparison. For exhaustive
search-based approach, each application scenario is executed
at all available frequencies and the one with minimum energy
consumption is selected while having the same or better
performance than the proposed approach. Energy consumption
values of evaluated approaches are normalized to the energy
consumption obtained by running the proposed approach.

A. Energy Savings

Energy consumption of various approaches for single, dou-
ble and triple application scenarios is shown in (a), (b) and (c)
of Fig. 3 (A), respectively. In case of single application sce-
nario, proposed approach achieves up to 68% energy savings
compared to reported approaches.

The proposed approach efficiently adapts to concurrent
workload variations compared to existing techniques and se-
lects an appropriate V-f setting, as shown in Fig. 3 (B). Further,
it also considers the latency due to memory contention through
δ (Equation 1), whose value is experimentally identified as
4.5% of average MRPI of all the cores in a cluster. For multi-
application scenario, proposed approach improves the energy
efficiency by up to 69% when compared with the existing
techniques.

0

500

1000

1500

2000

0.00

0.01

0.01

0.02

1 3 5 7 9 11 13 15 17

Fr
eq

u
en

cy
 (

M
H

z)

M
R

P
I

Time interval (x10-3 seconds)

MRPI Utilisation-based IPC-based MRPI-based

0

0.5

1

1.5

2

2.5

3

3.5

lb mi mc bw lb-mi mi-mc mc-bw sw-mi lb-mi-mc mi-mc-bw mc-bw-sw fr-mi-bw

N
o

rm
al

iz
e

d
 E

n
er

gy

C
o

n
su

m
p

ti
o

n

Application Scenario

Conservative Ondemand Interactive IPC-based Exhaustive Search Proposed

(a) (b) (c)

(A) (B)

Fig. 3: Comparison of proposed approach with the existing approaches. (A) Normalized energy consumption for single, double and triple
application scenarios. (B) MRPI and frequency at different time intervals of the application scenario lb-mi.

0

0.01

0.02

1 11 21 31 41 51 61 71 81 91

M
R

P
I

Time intervals

Actual Predicted

Fig. 4: Workload prediction for the application scenario mi-mc.

B. Application Performance

The application performance is evaluated for various appli-
cation scenarios by computing the average execution time over
several runs. The proposed technique continuously monitors
the application performance in terms of IPS for every time
interval and consequently, modifies the chosen frequency if
there is a significant performance loss (> 1%). As a result, the
proposed approach achieves significantly better energy savings
with a little performance loss. The average execution time
for the proposed approach, considering different application
scenarios, is 4.85%, 3.62%, 3.10%, 3.22% and 0.9% slower
compared to interactive, conservative, ondemand, IPC-based
and exhaustive search-based approaches, respectively.

C. Workload Prediction

The values of α and β in Equation 3 were experimentally
obtained by sweeping them between 0 and 1, and observing
the corresponding workload miss-predictions (under/over) for
various application scenarios. Finally, a value of 0.3 and
0.6 are chosen as it resulted in relatively accurate workload
prediction. Fig. 4 shows the actual and predicted MRPI for
the application scenario mi-mc at different time intervals.
The average error in workload prediction, considering all
application scenarios used in evaluation, is 4.2%.

D. Runtime Overheads

Fig. 5 shows the runtime overhead of the proposed tech-
nique for various application scenarios as a percentage of
application execution time. A maximum overhead of 0.35% is
observed for mi-mc-bw, having a long execution time of 111
seconds. This shows that proposed approach has negligible
runtime overhead.

V. CONCLUSIONS

We have proposed an online energy minimization approach
for concurrently executing applications on a multi-core plat-
form using workload classification and prediction for appropri-

0

0.2

0.4

mi bw mc-bw sw-mi mi-mc-bw fr-mi-bw

%
 O

ve
rh

ea
d

 (
w

.r
.t

.
A

p
p

 E
xe

c.
 T

im
e)

Application scenario

Fig. 5: Runtime overhead of the proposed approach.

ately selecting the V-f setting. Validation on a real multi-core
hardware platform for various application scenarios shows an
improvement of up to 69% in energy efficiency compared to
existing approaches. Our future work includes incorporating
task mapping and DVFS techniques for concurrent multi-
threaded applications on heterogeneous architectures.

ACKNOWLEDGEMENTS

This work was supported in parts by the EPSRC
Grant EP/L000563/1 and the PRiME Programme
Grant EP/K034448/1 (www.prime-project,org).
Experimental data used in this paper can be found at
http://doi.org/10.5258/SOTON/D0308.

REFERENCES

[1] “Odroid-XU3,” www.hardkernel.com/main/products.
[2] “Mediatek helio X20,” http://www.96boards.org/product/mediatek-x20/.
[3] A. Das, B. M. Al-Hashimi, and G. V. Merrett, “Adaptive and hierarchical

runtime manager for energy-aware thermal management of embedded
systems,” ACM TECS, vol. 15, no. 2, p. 24, 2016.

[4] V. Pallipadi and A. Starikovskiy, “The ondemand governor,” in Proc. of
the Linux Symposium, vol. 2. sn, 2006, pp. 215–230.

[5] A. S. Bischoff, “User-experience-aware system optimisation for mobile
systems,” Ph.D. dissertation, University of Southampton, 2016.

[6] D. Marculescu, “On the use of microarchitecture-driven dynamic voltage
scaling,” in Workshop on Complexity-Effective Design, vol. 42, 2000.

[7] C.-H. Hsu and U. Kremer, “Compiler-directed dynamic voltage scaling
for memory-bound applications,” Technical Report DCS-TR-498, De-
partment of Computer Science, Rutgers University, 2002.

[8] A. Weissel and F. Bellosa, “Process cruise control: event-driven clock
scaling for dynamic power management,” in Proc. of CASES. ACM,
2002, pp. 238–246.

[9] F. Kong, W. Yi, and Q. Deng, “Energy-efficient scheduling of real-time
tasks on cluster-based multicores,” in DATE. IEEE, 2011, pp. 1–6.

[10] A. Aalsaud et al., “Power-aware performance adaptation of concurrent
applications in heterogeneous many-core systems,” in Proc. of ISLPED.
ACM, 2016, pp. 368–373.

[11] S. Sinha et al., “Workload-aware neuromorphic design of the power
controller,” IEEE JETCAS, vol. 1, no. 3, pp. 381–390, 2011.

[12] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[13] C. Bienia et al., “The parsec benchmark suite: Characterization and ar-
chitectural implications,” in Proc. of intl. conf. on Parallel architectures
and compilation techniques. ACM, 2008, pp. 72–81.

[14] “XDA-developersforums,” https://forum.xda-developers.com/general/
general/ref-to-date-guide-cpu-governors-o-t3048957.

