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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by [Frederik Auffenberg

In this thesis, we introduce a novel |heating, ventilation and air conditioning (HVAC)|

agent that maintains a comfortable thermal environmant for its users while minimising

energy consumption of the [HIVAC] system and incorporating [demand side management]
signals to shift|[HVAC]|loads towards achieving more desirable overall load profiles.

To do so, the agent needs to be able to accurately predict user comfort, for example

by using a termal comfort model. Existing thermal comfort models are usually built
using broad population statistics, meaning that they fail represent individual users’

preferences, resulting in poor estimates of the users’ preferred temperatures. To address

this issue, we propose the |bayesian comfort model (BCM)\ This personalised thermal

comfort model using a Bayesian network learns from a user’s feedback, allowing it to
adapt to the users’ individual preferences over time. We further propose an alternative
to the ASHRAE 7-point scale used to assess user comfort. Using this model, we create an
optimal [IVAC] control algorithm that minimizes energy consumption while preserving
user comfort. We extend this algorithm to incorporate DSM] signals into its scheduling,
allowing it to shift [HIVAC]| loads towards more desirable load profiles, reduce peaks or
make better use of energy produced from renewable sources. Through an empirical
evaluation based on the ASHRAE RP-884 data set and data collected in a separate
deployment by us, we show that our comfort model is consistently 13.2% to 25.8%
more accurate than current models and that the alternative comfort scale can increase
our model’s accuracy. Through simulations we show that when using the comfort model
instead of a fixed set point, our [HIVAC] control algorithm can reduce energy consumption
of the system by 11% while decreasing user discomfort by 17.5%, achieve a load
profile 39.9% closer to a specified target profile and efficiently reduce peaks in the load
profile.
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Latent Variables are variables that cannot be observed directly and
need to be inferred.

Observed Variables are variables that can either be observed directly
or calculated using variables without further relevance for the model.
Model Parameters are variables that directly describe user preferences
and are learned by the model. Model parameters are modelled as a
Gaussian with a prior mean and precision. The priors for the mean have a
Gaussian distribution, the priors for the precision a gamma distribution.
Noisy Variables are expected to be noisy due to their user-centric na-
ture. To compensate for such noise, Gaussian noise with a fixed precision
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Chapter 1

Introduction

One of the biggest challenges of the 215 century is to fulfil the growing demand for
energy while at the same time reducing global emissions to mitigate the adverse effects
of global warming and the dwindling supply of fossil fuels. Numerous governments
have agreed on common targets as defined in the Kyoto Protocol or specified by the
International Energy Agency. As part of the Climate Change Act (Department of Energy
and Climate Change, 2008 the UK government for example agreed to reduce emissions
in the UK by at least 80% by 2050 compared to the levels of 1990. In June 2017,
the UK achieved a 42% reduction of COy emissions as compared to levels of 1990,
with the most recent reductions being achieved by a reduction of energy generated
from coal (Commitee on Climate Changel 2017). With current efforts continued, the
Commitee on Climate Change (2017) predicts that the UK will not meet its 2030 and
2050 targets and will only achieve half the reduction required to meet the goal for
2030. To be able to meet the 80% goal, electricity generation has to continue to move
away from fossil fuels towards renewable energy sources such as wind energy or solar
energy. Furthermore, other sectors heavily relying on fossil fuels such as heating and
transport need to be electrified (Department of Energy and Climate Changel 2013]).
According to the UK Energy Consumption Report (Department of Energy and Climate
Changel [2016)), heating and transport account for the largest part of the overall end-use
energy consumption in the UK. In 2015, both together accounted for about 82.7% of
the overall end-use (domestic and industrial combined) energy consumption in the UK
(heating: 42.8%, transport: 39.9%). Consequently, the electrification of these sectors will
introduce a high rise in demand for electric energy in the future. Across industrialised
countries heating alone accounts for 12% of the overall energy consumption (Gadonneix
et al., 2013).

Moving towards renewable energy sources and the electrification of heating and transport
will require significant changes to the electricity grid. The output of most renewable
energy sources depends on the weather, making it hard to plan and introducing a lot

of variation in output over time and location. This leads to peaks and troughs in
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2 Chapter 1 Introduction

production. During times of peak production, large amounts of energy need to be
distributed through the grid and excess energy needs to be stored for times of low
energy production. This variability poses a significant challenge for ageing electricity
distribution networks (Strbac, |2008). In addition to that, the electrification of heating
and transport will lead to a significant increase in electricity demand, especially during
peak hours in the evening. Since the grid’s capacity needs to be at least as big as
the peak demand to guarantee a stable electricity supply (Strbac, 2008), the increased
peak demand poses the risk of exceeding the grid’s current capacity, requiring costly
investments for increasing capacity. An alternative to these investments is to make
better use of the existing infrastructure, for example by spreading out peaks into troughs
or by controlling demand on the network to follow variations in energy production.
The smart grid addresses this challenge by adding an additional communication layer
to the network, enabling real-time communication between consumers and providers.
This communication layer can be used for [DSM] to reschedule consumer demand to
match instantaneous supply and reduce peak consumption. Transport, heating and
existing loads from [air conditioning (AC)| offer great potential for (Strbac, 2008;

Ramchurn et al., [2011) due to their flexible nature. So far, research has focused on how

to intelligently plan the charging of electric vehicles (Valogianni et al., [2015) or how to
utilise their batteries as distributed energy storage (Galus and Andersson, 2008). In
the field of heating and air conditioning, [DSM] technologies such as smart thermostats
have only been utilised recently (Wernstedt et al., 2007; |Erickson and Cerpay, 20105 Ll
2012; |Ramchurn et al., 2011 and there is still a lot of research to be done on how to
incorporate typical measures such as variable price rates for energy into heating

and air conditioning.

Apart from its potential utilisation in [DSM] smart heating and air conditioning also
has the potential to reduce energy consumption as well as emissions in general. So far,
most efforts to reduce energy consumption are focusing on improving the insulation of
buildings or switching to more efficient or cleaner sources of heat, such as ground source
heat pumps. While this approach has been proven to be very efficient, it usually is
very expensive to improve insulation for a whole house or to change the whole heating
and air conditioning system. A more accessible approach is to optimise heating and air
conditioning schedules. This approach can be used regardless of the underlying heating
or cooling system and the building’s insulation. In non-domestic buildings where [HVAC]
accounts for around 48% of the overall energy consumption (Pérez-Lombard et al., 2008)),
this is done to some extent already. In such buildings, the [ HVAC| system is usually fully
automated, keeping the temperature within narrow bounds and potentially switching
the [HVAC] off outside of working hours. The domestic sector, which makes up about
30% of the total energy consumption in the UK (Department of Energy and Climate
Changel 2016|) has been ignored in this field for a long time. Accounting for 42% - 68% of

domestic energy consumption (Pérez-Lombard et al., 2008; Palmer and Cooper, 2013,
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domestic heating and air conditioning offers great potential to reduce overall energy

consumption.

One major limitation when trying to reduce energy consumption of heating and air
conditioning is user comfort. People usually only have a very limited range of temper-
atures that they consider to be comfortable (Peeters et al. 2009). The system
should constrain its set-point to lie within this range of temperatures. Determining
this temperature range however is complicated as it depends on a multitude of factors
such as activity levels and clothing of occupants or the thermal environment (ASHRAE
55). Based on that information, rich models to describe occupants’ thermal comfort
have been developed in the past, of which some have been standardised in ASHRAE 55
and approved by the [American National Standards Institue (ANSI)| Using these mod-

els, given the thermal environment, a set-point temperature satisfying the majority of
a group of people can be calculated. Using broad population statistics and building
just a single, static model however can be problematic. Thermal comfort tends to be
a very individual metric with preferences varying strongly between different individuals
(Chappells and Shove, [2005; |Clear et al., [2013; Daum et al.l 2011; |Peeters et al., [2009).
Research therefore has to move away from ‘one size fits all’ comfort models towards

more flexible models taking individual preferences into account.

To be able to optimise energy consumption as well as user comfort, these objectives
need to be quantified. While energy savings can easily be estimated and quantified (for

example in kWh), thermal comfort is harder to assess. The most common quantifica-

tions for thermal comfort are the [predicted mean vote (PMV)|and [predicted percentage]

[dissatistied (PPD)|proposed by [Fanger| (1970), which have since been further improved

and standardised as a measure for thermal comfort in ASHRAE 55| The main principle
behind the [PMV] and [PPD|is to simulate how a group of people would rate the thermal
environment using the ASHRAE 7-point scale. The 7-point scale asks users how they

would rate their current thermal environment. Values range from -3 (cold) to 3 (warm)
with 0 (neutral) being considered most comfortable. While this scale might provide valid
ratings about how users perceive their thermal environment, it is not clear whether these
values accurately represent users’ preferences. For example, some users might have a
general preference for warmer environments. For such users, a value of 1 (slightly warm)

might represent the most comfortable environment.

In addition to maximising user comfort, smart heating systems offer significant promise
in optimising grid load. As mentioned earlier, electrification of heating and existing
electric [AC] offers great potential for DSM] Heating and cooling are generally slow and
very predictable. While modern systems can heat up/cool down a place fairly
quickly, even in houses with poor insulation it will take several hours for the temperature
to get back to its starting point. This property can be utilised to shift and spread out
the heating process in response to predicted or current demand. For example to shift the

load forwards by an hour, the house can be heated up to a slightly higher temperature
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an hour earlier. Several approaches try to utilise [ HVAC] systems for DSM. Some focus
on using occupancy prediction to reduce the energy consumption of the HVAC system
and reduce peaks (Erickson and Cerpa) 2010]). Other approaches use direct load control,
where a central controller controls the HVAC system in different houses (Lu, 2012).
Wernstedt et al.| (2007) model distributed heating systems as a multi-agent system and
give an outlook on how DSM goals can be achieved with self-interested agents (Wernstedt
et al. [2007). Ramchurn et al.| (2011)) build upon this idea, extending it with an adaptive
stabilising mechanism preventing agents from causing new peaks through reactive crowd

behaviour.

However, these approaches typically use oversimplified thermal comfort models which
are static (Hubert and Grijalva, 2011 |Lu, 2012; [Ramchurn et al.| 2011) or represent
general population preferences rather than individual users (Erickson and Cerpa, 2010)).
Especially in the domestic sector, where the number of occupants of a building is small,
individual users’ preferences are likely to deviate from general population preferences.
Often these approaches also rely on centralised controllers to perform calculations (Lul,
2012)) which can become intractable when dealing with thousands of households. In
addition, it requires households to send potentially sensitive information, such as heating
schedules and comfort profiles revealing home occupancy as well as individual user’s
preferences to a central server. Preserving users’ privacy and guaranteeing cybersecurity,
however, is important for a successful implementation of the smart grid (Liu et al.,
2012a).

A main factor in achieving aforementioned objectives is the control hardware at
home or in the office. Recently, smart thermostats that interact closely with the occu-
pants have received a lot of attention from industry and the research community. Such
systems can be categorised into two systems: manually scheduled systems and heating
agents. Manually scheduled systems rely on the user to specify to what temperature to
keep at a given point in time. Heating agents introduce some degree of automation to
the heating and cooling scheduling. Such agents could for example learn users’ prefer-
ences and automatically decide on set point temperatures and when to switch the [ HVAC]

system off.

While the number of smart thermostats on the market is growing rapidly, most of them
only implement manually controlled systems (for example the Hive active heatingﬂ Heat
Genius thermostat EI or different Honeywell thermostats) or offer only a very small de-
gree of automation. The Nest learning thermostatE] (shown in Figure is an example
of a smart thermostat supporting a higher degree of automation. It gives users the
option to learn their heating schedules from previous temperature adjustments. Based

on these learned schedules, the thermostat can then automatically adjusts the set point

Hive Active Heating™ ( http://www.britishgas.co.uk/products-and-services/
hive-active-heating.html)

“Genius Thermostat (https://www.geniushub.co.uk/)

3Nest — The Learning Thermostat (https://nest.com)


http://www.britishgas.co.uk/products-and-services/hive-active-heating.html
http://www.britishgas.co.uk/products-and-services/hive-active-heating.html
https://www.geniushub.co.uk/
https://nest.com
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IN 20 MIN

23

Figure 1.1: An example of a smart thermostat (the Nest learning thermostat)

temperature over different times of the day and week. However, in practice, this mech-
anism often fails to provide satisfactory results, either leaving users confused about the

set point chosen by the thermostat, creating uncomfortable conditions or by actually

increasing energy consumption (Yang and Newman| 2012} 2013)).

There is ongoing research on how to address these problems. Some approaches focus on

maximising user comfort (Sarkar et all 2016|) while others aim to ensure a comfortable

environment while reducing energy consumption simultaneously (Shetty et al., |2015;
[Zhou et al., 2016; Ghahramani et al. 2014} Purdon et al. 2013)). Other approaches
further try to optimise energy consumption with regards to the smart grid
[Seukenl, [2013, 2014} [Alan et al., 2016} [Shann et al., [2017; [Hubert and Grijalval, [2011};
2012} Ramchurn et al., 2011} [Erickson and Cerpa, [2010)). While achieving good results in

some areas, most approaches show some flaws in other areas. A number of approaches

for example overly simplify their comfort models. In some cases, important thermal
comfort indicators such as humidity (Sarkar et al.l 2016} Shann and Seukenl, 2013}, [2014])
or outdoor temperature (Sarkar et al. 2016) are neglected. Other approaches require
a lot or frequent feedback (Shetty et al. [2015; [Purdon et al., 2013, do not account

for individual user’s preferences (Zhou et al., 2016)) or neglect that user preferences can

change over time (Ghahramani et al., 2014)).

Addressing these shortcomings, the aim of this work is to develop an individual-centric,
comfort-based [HVAC]| agent that is able to learn and adapt to individual users’ prefer-
ences using only a minimum amount of feedback, minimize energy consumption while
retaining a comfortable environment for its users and that offers capabilities for shifting
[HVAC] loads for [ DSM] The main goal of the agent is to keep a comfortable environment
for the user at any time. In addition to that, the agent aims to reduce energy consump-
tion and shift [HVAC]loads as much as possible while staying within the comfort bounds
if its users. The purpose of the agent is to create a semi-automated [IVAC] system that
automatically optimises heating and cooling schedules on the user’s behalf while retain-

ing a comfortable environment for the user. To do so, the heating agent requires both
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a learning, personalised thermal comfort model as well as an algorithm to optimise the

actual heating and cooling schedules with respect to different objectives.

1.1 Requirements

From the challenges described in the previous section, we can derive requirements for the
[HVAC] agent and its underlying comfort model. A comfort-based [HVAC| agent should

fulfill the following requirements:

1. Accurate Comfort Model To be able to automate parts of the [IVAC|system, the
[HVAC] agent needs a precise way to model and predict individual user’s thermal
comfort. Deviations between predicted comfort temperatures and actual comfort
temperatures need to be minimal. |[de Dear and Brager| (1998) suggest that devia-
tions by up to 2.5°C to either side are acceptable in naturally ventilated buildings,
deviations of up to 1.2°C in [HVAC}equipped buildings respectively. The agent’s
predictions should therefore on average deviate by less than 2.5°C with a pre-

ferrable deviation of less than 1.2°C.

2. Comfort Constrained User comfort needs to be the [IVAC| agent’s highest pri-
ority. To maximise acceptance of the [IVAC]| agent by the user and get them to
voluntarily hand over some control to the agent, at no point in time should the
agent compromise comfort for other goals, unless explicitely asked for by the user.
This also means that in an environment with multiple occupants, the agent needs
to be able to find compromises for different user’s preferences and decide a set-point

temperature that satisfies as many occupants as possible.

3. Energy Aware Next to user comfort, the agent should also aim to reduce energy
consumption of the [IVAC] system. These reductions however can not go at the

cost of user comfort as this would violate requirement 2.

4. Unobtrusiveness To further increase acceptance by the users, the [HVAC| agent
needs to be as unobtrusive as possible. This means that it should be able to op-
erate autonomously most of the time. The agent should operate on a minimum
amount of feedback from the user and keep the information burden (such as vary-
ing energy price rates throughout the day) low for the user. However, to keep the
system transparent to the user, user feedback should always override the set-point
decided by the agent. Further, the agent should only require a minimum amount
of unobtrusive sensors, with only one set of easily hideable sensors (such as tem-
perature and humidity sensors) per room. Complex sensors that need to be placed
openly in the room (such as anemometers) could potentially interfere with a user’s

daily routine and should therefore be avoided.
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5. Quick Adaptation As user engagement can be expected to diminish over time
(Hargreaves et al., 2013} |[Snow et al., |2013), the agent should be able to quickly
learn and adapt to individual users’ preferences. The initial training phase should
take no longer than two weeks and should only require daily feedback at most. Af-
ter this initial training period, the agent should be able to fulfill the aforementioned

accuracy requirement.

6. Scalability Typical smart thermostats only feature small computing units (for ex-
ample an ARM Cortex A8 in the Nest). Since the agent might have to evaluate
the user’s preferences frequently, this process should be very simple and take no
longer than a few seconds on such processors. This requirement also holds for a

scenario where calculations are carried out remotely in a datacenter.

7. Smart Grid The agent needs to be able to process typical [DSM] signals and react
accordingly, for example by pre-heating or cooling to achieve more desirable load
profiles. This means that the agent needs to be able to plan ahead and create
[VAC schedules in advance.

8. Decentralised Especially with regards to its integration into the smart grid, to
scale to a large number of buildings, the agent needs to be able to work as part
of a decentralised collective of independent agents. To minimise computational
complexity, each agent should be able to optimise its schedules independently from
other agents. In aggregate, the sum of each individual agent’s efforts should achieve
results close to those achievable by a centralised agent controlling all buildings

simultaneously.

9. Stable and Predictable With regards to the smart grid, the decentralised col-
lective of [HVAC] agents needs to react in a stable, predictable manner to [DSM]
signals, meaning that effects such as the rebound effect (Palensky and Dietrich,
2011)) should are prevented.

1.2 Research Challenges

In this section we evaluate a number of existing [IVAC| agents against our research
requirements. We give a brief overview over different approaches and their main focus
areas. Based on the evaluation against our research requirements, we derive several

research challenges.

The first [HVAC|agent is the auto scheduler of the Nest thermostatﬂ The auto scheduler
does not utilise a thermal comfort model but tries to achieve thermal comfort by learning

the schedule of a user’s favoured set point temperatures at different times of the week

4Nest Auto Schedule (http://support.nest.com/article/How-does-Auto-Schedule-learn)
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and day. Energy consumption is reduced by only turning on the heating or cooling when
necessary. In conjunction with other Nest hardware, the thermostat is further able to

measure home occupancy to save energy.

Another agent is the adaptive home heating agent by Shann and Seuken| (2013,
2014)). This agent incorporates a two-layer user model. The first, lower layer models
the user’s optimal comfort temperature. The optimal comfort temperature is defined
by a positive linear relationship between comfort temperature and outside temperature
following up on research by [Peeters et al. (2009). The second layer models the user’s
personal trade-off function between energy savings and comfort. This layer enables the

agent to incorporate variable energy price rates, a typical [DSM] measure.

There is a number of other [IVAC|agents that strongly focus on providing capabilities for
incorporating smart grid signals. Ramchurn et al.|(2011) for example build an adaptive
[HVAC] agent that incorporates dynamic energy pricing signals The agent includes an
adaptive mechanism that uses past load profiles to learn how to prevent rebound effects.
Lu/ (2012)) propose a centralised agent that remotely controls systems to
follow load balancing signals. Both of these approaches use a static comfort model of
a fixed set point temperature and acceptable deviations from it. |[Erickson and Cerpal
(2010) build an agent that utilizes occupancy prediction to react to signals

and reduce energy consumption.

Another group of approaches strongly focuses on using thermal comfort modelling to
reduce energy consumption. |Zhou et al. (2016) for example investigate how humidity
influences user comfort and build an agent that is able to reduce [HVAC] energy con-
sumption by manipulating indoor humidity levels. (Ghahramani et al.| (2014) introduce
an energy aware, comfort driven agent that learns users’ comfort ranges and uses this
information to minimise thermal discomfort. Participatory approaches utilise live feed-
back from occupants to adjust set point temperatures. [Shetty et al.| (2015]) for example
regularly ask occupants about their current comfort levels and based on this feedback
identify the main factors influencing the thermal comfort of the occupants. [Purdon et al.
(2013)) introduce an agent that tries to achieve an even balance between feedback stating
that it is too hot and feedback stating that it is too cold.

Table shows how the existing approaches meet the requirements specified in the
previous section. In Section of Chapter [2] of this work, the most relevant models are

discussed in more detail.

As shown in Table none of the existing agents match all requirements (see Sec-
tion for further discussion). Most of the existing agents lack a fitting thermal
comfort model. Those who have accurate ways to represent user comfort do so by incor-
porating continuous, frequent user feedback, violating the unobtrusiveness requirement.
A possible explanation for the lack of unobtrusive, accurate thermal comfort models is

the amount of different factors that need to be taken into account. Usually, the more
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complex a comfort model gets, the more data points are needed to let it adapt to an in-
dividual user’s preferences. The need for many data points however conflicts with both,
the unobtrusiveness requirement as well as the requirement for quick adaptation. While
most [HVAC]| agents fulfill the scalability requirement, the majority does so because of
the simplicity of the comfort model used. Most agents are able to fulfill the scalability
requirement by either using precomputed thermal comfort models that do not adapt to
individual users (Zhou et al.l [2016; |Ramchurn et al., 2011; Lu, [2012) or stop learning
from then early on (Ghahramani et al., 2014), by only relying on live feedback (Erickson
and Cerpal, [2010; [Shetty et al., 2015; [Purdon et al., [2013)) or by using simplified thermal
comfort models (Nest, [Shann and Seuken| (2013))). A more accurate, unobtrusive, adap-
tive model can be expected to be more complex and therefore more costly to evaluate

and train. From these points, the first research challenge can be derived:

The creation of an [HVAC| agent that correctly, accurately and efficiently
learns and predicts users’ preferences using only a minimal amount of data

that can be easily obtained from user feedback.

The majority of agents are energy aware, meaning that they aim to minimise energy
consumption of the [HVAC] system. While most of them are comfort-constrained at the
same time, only [Shetty et al.| feature an accurate comfort model. In addition, only
some approaches leverage properties of their comfort models such as the influence of
humidity on user comfort to save energy (Zhou et al. [2016). From that, a second

research challenge can be derived:

The creation of an agent that leverages properties of user comfort to
reduce the[HVAC]|system’s energy consumption while retaining a comfortable

environment for the occupants.

While some of the [IVAC]| agents provide means to operate in the smart grid, due to
simplistic comfort models, none of these agents provide satisfactory results with regards
to user’s comfort levels. Further, some approaches rely on dynamic pricing rates which
can be hard to control or pose the risk of introducing mass reactive behaviour, i.e.

rebound effects (Palensky and Dietrich) 2011). This raises a third research challenge:

The creation of a[HVAC| agent that incorporates DSM]signals into its sched-
uler to shift the [HVAC] system’s energy consumption to more preferrable

times without having to compromise user comfort.

The[HVAC| agent presented in this work fully addresses all three of these challenges. The
[HVAC| agent present in this work however does not address challenges such as predicting
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room occupancy in order to switch off the [HVAC] system while a room is unoccupied
or distinguishing between different types of spaces such as kitchens, bathrooms or bed-
rooms. Further, this work only provides simple means of aggregating preferences of

multiple users.

1.3 Research Contribution

In order to improve smart thermostats and to address the challenges stated earlier,
this work introduces a personalised thermal comfort model and an [HVAC]| scheduling
algorithm that together form a smart [HVAC| agent. To be able to evaluate the ther-
mal comfort model, we further introduce two new studies examining peoples’ thermal
comfort levels. The agent presented in this work focuses on predicting user’s thermal
comfort and using this information optimises the [HVAC]| schedule to minimise energy
consumption and incorporate [DSM] signals. It currently does not incorporate signals
such as occupancy, the type of room or specific times of day. Occupancy prediction
could be used to strategically turn off the [HVAC] system when nobody is in the room
to further reduce energy consumption. Incorporating the type of room would allow the
agent to distinguish between different kindns of rooms and react accordingly. Such types
of rooms could for example be rooms that tend to be occupied only for short amounts of
time (i.e. kitchen or bathroom), rooms with longer occupancy (i.e. office or living room)
and rooms where metabolic rate and insulation levels are better known (i.e. bedroom).
When incorporating the time of day as well, this way the agent could for example decide

to only adjust the temperature in the bedroom during the night.

The thermal comfort model is based on existing thermal comfort models that have been
successfully applied in non-domestic environments in the past. We extend those models
to incorporate additional, individual-centric factors. Our model also has been altered
to use input parameters that do not require the installation of complicated, intrusive
sensors. Using prior work done by Rogers et al.| (2012)), most thermal parameters of the
space can be learned using only the interior temperature and the location of the house.
Model inputs that can not be easily measured or estimated and need to be provided by
users, such as feedback about the current thermal environments have been chosen to be
easy to estimate by the user. We design the model to not only provide information about
a single optimal comfort temperature, but to allow inference of multiple parameters that
can be used to estimate a range of temperatures that would be considered comfortable

by the user.

The model has been implemented as a belief network to allow easy integration of prior
knowledge, for example obtained from existing thermal comfort models. Using the ex-
pectation propagation message passing algorithm, the network allows both: efficient

learning of model parameters based on feedback of the user as well as quick inference
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of hidden variables. The network is evaluated against data from the free ASHRAE RP-
884 data set, a standard thermal comfort modelling data set previously used for models
standardised in ASHRAE 55, and data from our own thermal comfort studies. We show
that the model generally outperforms existing approaches from [ASHRAE 55| after about
5 observations or less and converges to its final solution quality after about 10 observa-
tions. On average, the comfort model provides 13.2% - 25.8% more accurate predictions
of user’s thermal thermal preferences than the existing ASHRAE 55| approaches. We

further propose a novel feedback scale and show its potential to improve model accuracy.

The comfort model has been published at the following venues:

e “A Personalised Thermal Comfort Model using a Bayesian Network” at the Inter-
national Joint Conference on Artifcial Intelligence (IJCATI 2015) (Auffenberg et al.,
2015a). This publication introduces the comfort model described in Chapter |3| of
this work and evaluates it against the ASHRAE RP-884 data set.

e “A Comfort-Based Approach to Smart Heating and Air Conditioning” in the Ur-
ban Intelligence special issue of ACM Transactions on Intelligent Systems and
Technology (TIST) (Auffenberg et al., [2017, in press). This publication contains
a more detailed discussion of the comfort model discussed in Chapter [3| and an
evaluation of the model against the ASHRAE RP-884 data set and our own data
set introduced in Chapter Furthermore, this publication introduces our semi-

autonomous HVAC agent discussed in Chapter [4]

The [HVAC] scheduling algorithm utilises the thermal comfort model and its outputs to
(1) minimise energy consumption of the system and (2) shift loads to
fit a specified target profile. The algorithm is constrained to always stay within the
user’s comfort range if the weather conditions allow it to. Within the bounds of the
comfort range, the algorithm is able to achieve optimal results with regards to energy
saving. We extend the algorithm to also incorporate [DSM]signals. To maximise control
over the algorithm’s behaviour, we use target profiles specifying the actual shape of the
preferred load profiles rather than dynamic energy pricing profiles. Further, we design

the algorithm to allow full control over how much extra energy can be used to achieve

the [DSM] target.

The [HVAC] scheduling algorithm has been implemented as a [Mixed Integer Quadratid]
[Program (MIQP)| which offers optimal results. To make the computation of [HVAC

schedules tractable for any number of households and to protect users’ privacy, we

provide a distributed version of the algorithm as well. Through simulations based on
real data, we show that when using the [BCM] as opposed to a single fixed set point, the
algorithm is able to achieve load profiles 29.8% to 39.9% closer a given target profile.

We further show that the distributed, locally optimal version of the algorithm achieves
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results close to the globally optimal centralised version, which reduces the deviation

from a given target profile by another 12.8% as compared to the distributed version.

1.4 Report Outline

The remainder of this report is structured as follows:

Chapter [2 reviews background literature on the topic. It explains what an [HIVAC| agent
is and what [HVAC] scheduling involves. Existing thermal comfort models introduced
earlier are presented in detail and compared to each other. A brief introduction to
[DSM] is given and common [HVAC}based [DSM] approaches are explained. The chapter

then gives an introduction to belief networks and expectation propagation, the core

technology used for the thermal comfort model presented in this work. The chapter

concludes with a summary and discussion of the described technologies.

In Chapter 3] the technical details of the thermal comfort model are presented (published
in Auffenberg et al. (2015a) and |Auffenberg et al| (2017, in press|)). The model is split
into two separate parts, one representing elements of classic static models and one con-
taining elements related to adaptations by the user. The model is then evaluated using
real world data. For the evaluation, we use data from the ASHRAE RP-884 database
and data from two studies conducted as part of this research which are explained in

detail in this chapter. This chapter addresses the first research challenge.

Chapter [ introduces a simple [HVAC]| agent that utilises the thermal comfort model
introduced in Chapter [3| to minimise energy consumption for the heating system with-
out compromising user comfort (published in |Auffenberg et al| (2017, in press)). We
introduce and evaluate different strategies for finding compromise comfort ranges for
different users at the same time. This is followed by a simulation-based evaluation of
the [IVAC] agent’s energy saving potential based on the different comfort compromising

strategies. This chapter addresses the second research challenge.

Building upon the [HVAC]| agent introduced in Chapter @, Chapter [f] introduces an al-
gorithm to incorporate [DSM] signals into the [HVAC| agent. The algorithm incorporates
target profiles defining the most desirable load shape into its [HVAC] scheduler. Since
a centralised execution of this algorithm will quickly become intractable, we propose
a distributed version of the algorithm that executes in constant time regardless of the
number of participating households. Using real data-based simulations of users and
households, the load shifting potential of this algorithm is evaluated. We evaluate how
the algorithm’s performance changes when using the thermal comfort model introduced
in Chapter [3| as opposed to a fixed set point approach. In addition, we compare how the
distributed version compares to the globally optimal centralised version of the algorithm.

This chapter addresses the third research challenge.
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Chapter [6] summarises the findings of this research and provides an outline of planned

research following this work.



Chapter 2
Background

This chapter reviews existing literature and key technologies of this research. First,
general challenges of space heating and cooling are described and existing approaches
to address those challenges are introduced. This is followed by an analysis of existing
thermal comfort models. We then introduce and discuss existing[DSM|approaches. After
that, a short introduction to belief networks, a key tool that we will use in our work,
and how to perform inference and parameter learning on them is given. The chapter

concludes with a summary discussing the technologies presented in this chapter.

2.1 Smart Home Heating and Cooling

Smart home heating and cooling refers to automated [HVAC] systems that go beyond
simple set points and minimalistic scheduling. The heating and cooling system includes
every appliance that is part of the space climatisation process. This includes for example
radiators, [AC| units, thermostats or boilers. A smart heating and cooling system usually
offers some additional functionality to automate the process. Some systems might even
act autonomously as an intelligent agent, making own, autonomous decisions without a
user telling it to do so. In this section, we list the factors that influence smart home

heating and cooling and present enabling or existing technologies.

Smart home heating and cooling systems consist of three main components: (i) a suitable
infrastructure that allows automatic control of components of the system, (ii) the
thermal environment and (iii) the control mechanism itself. As this work focuses on the
control mechanism, which is mainly dependent on the thermal environment, only a brief

summary of existing infrastructure solutions is given.

Smart heating and cooling systems normally require a special infrastructure. There are
already several manufacturers that offer their own solutions. Often, these are part of

complete home automation solutions. However, most of these products are proprietary

15
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and only allow interaction through products by the manufacturer or using software
provided by the manufacturer. Z-Waveﬂ is one of the more open approaches with open
communication protocols available to the general public. Z-Wave primarily describes a
wireless communication technology through which devices can communicate with each
other. Besides the wireless communication technology, Z-Wave also defines standardised
protocols that define how to interact with Z-Wave devices. These standardised protocols

allow easy interaction with the devices from other sources.

In the following sections, the thermal environment component and control mechanisms

are going to be described.

2.1.1 Thermal Environment

For a smart heating and cooling system to function, it needs to be aware of its thermal
environment. For a smart thermostat that only performs simple scheduling with fixed
set points and predefined heating intervals, Rogers et al. (2011) state that the thermal
environment of a house is sufficiently described by the thermal output of the heater
and the leakage rate depending on other parameters such as the thermal capacity of the
home and mass of air inside it. |Rogers et al.| develop a simple model to represent the
thermal environment, which gives a good approximation to the actual thermal environ-
ment using only heater output and leakage rate as parameters. They also describe how
those parameters can be learned from a set of measurements of interior temperature
and outside temperature. As warming and cooling follow similar rules in the simplified,
learned model, the model can be extended to account for [AC]|systems by adding a cooler

output variable that acts similar to the heater output.

While leakage rate, heater output and cooler output may suffice to describe the thermal
environment for a thermostat that only needs to be able to heat to specific temperatures
at given times, thermal comfort models require additional parameters to describe the
thermal environment. Instead of working with the air temperature (also called dry bulb
temperature — the temperature usually measured by normal thermometers), thermal
comfort models usually work with the operative temperature that is composed from the
mean radiant temperature (MRT)[ and air temperature. The describes the tem-

perature experienced from radiation. Typical sources of radiant heat are radiators and

the sun. The operative temperature gives a better estimate of the temperature experi-
enced by an individual in the room. In addition, as for example defined in ASHRAE 55/,

factors such as humidity and draught need to be taken into account as well.

From that, the following list of parameters defining the thermal environment for a smart

thermostat including a thermal comfort model can be derived:

17-Wave Home Control http://www.z-wave.com
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Heater output

Cooler output

Leakage rate of the house

Operative temperature

Inside humidity

Draught

In the following, we define these variables in detail and describe how to measure or

calculate them.

2.1.1.1 Heater Output, Cooler Output and Leakage Rate

Using only heater output and leakage rate, Rogers et al. (2011) are able to predict
temperature changes in the house. |[Rogers et al.| define the heater output as the expected
increase of air temperature due to heating and leakage rate as the expected decrease of
air temperature due to leakage. By combining a heater output R € Rt (°C/hr), and
leakage rate ® € Rt (1/hr), Rogers et al. define a simple equation to predict changes
of air temperature for a given time slot:

Tt =T + | Rk, — (T}

air air air

- Th)| At (2.1)

Tt+1

. . . . . t . . .
ni is the expected inside air temperature for time ¢ + 1, T}, the expected inside air

t

temperature at time ¢t and T, the outside temperature at time ¢. The variable 1},

defines whether the heating is switched on (1on = 1) or off (7on = 0) at a given time ¢.

To learn leakage rate and heater output, the error between predicted temperature and

actual temperature is minimised. The error is calculated using the following equation:

Y (Th — Taer)? (2.2)

teT

where T, is the expected and T} is the actual measured air temperature at time ¢. As
T is the same and therefore |T'| stays the same it is sufficient to compare the aggregate

square error rather than the mean squared error.

As mentioned earlier, the model can easily be extended to account for [AC| The cooling
process achieved by the can be expressed by a cooler output C' € R~ (°C/hr) that
acts similar to the heating output. The cooling effect achieved by the [AC| can therefore
be described by the following term:

ATac(At) = ClonAt (2.3)
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where C' describes by how much the [AC] can reduce the temperature per hour and (op
describes whether the is switched on ({on = 1) or not ({on = 0). Adding this to
equation [2.1] yields the full equation for predicting the indoor temperature for a time
step t + 1:

T = T+ [Ruy + CCly — BT — Thoo)| A (24)

air
2.1.1.2 Operative Temperature

The operative temperature is a temperature used to more accurately describe the per-
ceived temperature by an individual. It combines different temperatures together, the
most dominant being air temperature and radiant temperature. In addition, air move-
ment can be taken into account as well, as it changes the input of air or radiant temper-
ature on the actual temperature perception of a person. The air temperature describes
the actual temperature of the air in the room. A regular thermometer — if used properly
— usually measures the air temperature. The radiant temperature describes a tempera-
ture caused by radiated heat. Usually, hot surfaces do not only heat up the air touching
them, but also radiate heat in the form of infrared radiation. Radiated heat has a domi-
nant impact on a person’s perception of temperature (ASHRAE 55) and therefore needs

to be taken into account when calculating thermal comfort.

The operative temperature cannot be measured directly and the exact calculation can
be very complex. Therefore, the operative temperature is often approximated. The

ASHRAE 55| standard defines the following approximation of the operative temperature:
Top = AT + (1 — A) Thnre (2.5)

where T,;, represents the air temperature, T+ the mean radiant temperature and A a
factor depending on the air velocity or draught. Table shows how A is defined in
ASHRAE 55.

AIR VELOCITY A
<02m/s 0.5

0.2 to 0.6 m/s 0.6

0.6 to 1.0 m/s 0.7

Table 2.1: Factor A depending on Air velocity as defined by ASHRAE 55

This approximation however still requires a value for the radiant temperature, which is
hard to measure in regular households. To represent the radiant temperature in a room,
the mean radiant temperature of all surfaces is normally used. A simple approximation
of the mean radiant temperature can be calculated by taking the average surface tem-

perature relative to surface area as described in chapter 9 of the ASHRAFE Fundamentals
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Handbook (2009):
ZSES TsAs

Tmrt =
ZSES AS

(2.6)

where Ti,;¢ is the mean radiant temperature, T is the temperature of surface s, S is
the set of all surfaces in the room and A, is the surface area of surface s. To get a
more precise estimate, the relative angle between surface and a person can be taken into
consideration as well. However, for this the comfort model the exact dimensions of a
room and the exact position of a person in the room would need to be known at any time.
As a person’s position can be expected to change frequently, the simple approximation
which does not consider relative angles is used in practice. In Chapter [3] we will describe

further how the radiant temperature is estimated in the model presented in this work.

2.1.1.3 Interior Humidity

Humidity describes the amount of water vapour in the air and is normally measured

using a psychrometer or hygrometer. A common way to describe the relative humidity

is to take the ratio of the [actual vapor density (Ayq)| and the [saturation vapor density|

(Sva(T))l The describes the actual amount of water vapor in the air, the |S,q(7)

describes the upper bound of how much water vapor the air can hold at air temperature

T. The fraction of these two values yields the relative humidity h:

. Avd
Svd (T)

(2.7)

2.1.1.4 Draught

In the terminology of thermal comfort, draught describes the cooling effect caused by
air movement. Draught can result from multiple sources such as open or poorly closed
windows or doors and from the so-called stack effect. The stack effect describes draught
caused by temperature differences between the inside of the house and the outside (Klote
(1991), The Engineering Toolbox| (2014)). If the air inside the house is warmer and
therefore the density of the air inside is lower, the air will move upwards inside of the
house. If the air inside is colder than outside, the higher density of the air inside of
the house causes the air to move downwards. The natural draught induced by the
stack effect can be calculated using thermodynamics (Klotel 1991]). These calculations
however require several variables like hydraulic diameter or the minor loss coefficient
that are complex to measure and hard to estimate for normal users. Hydraulic diameter

for example also depends on how widely a door or window is opened.

In the scope of thermal comfort, [ASHRAE 55 only defines a rough threshold for the
values of draught. The standard suggests that for air temperatures below 22.5°C, the
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draught should not exceed 0.15™ /4 if it is not under the occupants’ direct control. In a
comfort model that takes a user’s preferences and the current state of the environment
into account, a more precise estimate of the influence of draught can be made. As
draught has a cooling effect that grows with the velocity of the air, it correlates with the
thermal comfort temperature. That means that as air velocity (or draught) rises, the
temperature felt by a user drops. Therefore, the optimal air temperature that maximises

comfort needs to be higher (rises with the draught).

2.1.2 HVAC scheduler

The [HVAC] scheduler can be seen as the core component of a smart [HVAC| system.
The scheduler coordinates where and when to turn on the heating or air conditioning
in order to regulate the temperature in different rooms. Conventional thermostats have
very limited scheduling abilities. Usually such thermostats define a comfort band and
monitor the temperature. As soon as the temperature leaves the comfort band, the
thermostat takes actions. Some thermostats might allow the configuration of different
comfort bands for different times of the day. Smart thermostats offer more powerful
scheduling options. The scheduler in a smart thermostat might for example consider the
thermal environment, changing comfort bands, home occupancy and other factors when
deciding when to turn on the heat. The Nest learning thermostat for example learns
the heating properties of the house to be able to switch the heating on early enough and
can use additional sensors to track occupancy and switch the heating off accordingly.
[HVA(] schedulers of existing smart thermostats can be categorised into two types of
schedulers: [HVAC]| agents and manually configured schedulers. [HVAC] agents usually
work autonomously. That means that schedules are created and changed autonomously
by the agent without the need for manual inputs by a user. An[HVAC] agent does not
neet to operate fully autonomously, it is also possible to have a collective between the
[HVAC|agent and users, where users for example provide feedback about the temperatures
or take over control every now and then. Manually configured schedulers require the
user to configure an exact, complete schedule. This work aims to minimise user input
to ensure unobtrusiveness (research requirement 4) and is therefore focusing on
agents rather than manually configured schedulers. Of the existing smart heating and
cooling approaches introduced in Section [1.2] all can be categorised as[HVAC|agents. In

the following sections, the schedulers of those systems will be explained in more detail.

2.1.2.1 NEST scheduler

The Nest learning thermostatﬂ can be used as both a manual [HVAC|scheduler and as an
[HVAC]| agent. The [HVAC]| agent tries to maximise thermal comfort solely by learning a

2Nest learning thermostat (https://nest.com/uk/)


https://nest.com/uk/
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precise set point schedule from the user. When used as an agent, the creation of schedules
is based on two input variables: a general set point schedule learned from user inputs
and home occupancy. If the home is occupied, the scheduler will follow the general set
point schedule. When unoccupied, the scheduler will turn the temperature down to an
away set point defined by the user. The manufacturer only provides minimal information
about the underlying mechanisms in the auto scheduler. The following explanations of
the underlying scheduling mechanisms are therefore based on information given on the
manufacturer’s website and on a study by Yang and Newman (2012)) evaluating the Nest

thermostat.

To determine home occupancy, the Nest [HVAC| agent uses a combination of activity
sensors and special purpose algorithmﬂ If multiple Nest products are installed in the
home, those can communicate with each other to cover more areas with their activity
sensors. After a week of learning, the thermostat creates a model of when the house
is usually occupied. It is not stated how the model works or how the learning process

functions.

While the exact algorithms for generating the set point schedule are not described,
some descriptions of the general mechanics and influence of user inputs are given on the
manufacturer’s Websiuﬂ The learning of schedules works as a two step process. The
first step is a quick learning phase that starts immediately after installing or resetting
the thermostat and will end when a basic schedule has been learned. During that time,
the thermostat will remember every manual user input and repeat it during the next
days. After a basic schedule has been learned, the thermostat switches to the second
phase during which it is less sensitive to user inputs. During this phase, to make lasting
changes to the schedule, a repeating pattern of at least two similar changes is needed.

There are different possible patterns:

Weekdays If the same change was made during two weekdays (excluding weekends) in

a row, the schedule will be adjusted to repeat this input for every weekday.

Weekend The weekend day change is similar to the weekdays change. However, instead
of requiring the same changes during two weekdays in a row, the changes are
required for the two weekend days. Likewise, the schedule will only apply the

changes to weekend days.

Full Week The full week change combines the weekdays and weekend change: if the
same adjustment happens on a weekday and a weekend day, the schedule will be

altered for all seven days of the week.

3Nest Auto-Away (http://support.nest.com/uk/article/What-is-Auto-Away)
“Nest Auto-Scheduler (http://support.nest.com/uk/article/How-does-Auto-Schedule-learn)


http://support.nest.com/uk/article/What-is-Auto-Away
http://support.nest.com/uk/article/How-does-Auto-Schedule-learn
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Single Weekday If the same change occurred twice on the same weekday (e.g. Mon-
day), the thermostat will adjust the schedule to repeat this change only on this

particular weekday.

The learning capabilities described so far are only used to determine to what temperature
the thermostat should heat or cool the home at a given point in time. To ensure that
the correct temperature is reached in time, the Nest agent also learns how long
it takes the heating system of the house to heat it up to a certain temperature. Again,

the exact underlying mechanisms are not open for the public.

As the Nest learning thermostat does not utilize a detailed thermal comfort model to
determine set points, it fails to meet the first research requirement of providing accurate
estimates of users’ comfort levels. Studies (Yang and Newman, 2012} 2013; |[Yang et al.,
2014)) show that frequent user input and slight variations in the daily schedule can lead
to schedules with frequently varying set point temperatures that are hard to understand
by the user and that prohibit energy savings. Varying inputs from multiple users with
different preferences will likely increase this problem, making the Nest learning thermo-
stat particularly unsuitable for environments with multiple occupants participating in

the system.

2.1.2.2 Adaptive Heating Algorithm by Shann and Seuken

Shann and Seuken (2014) use a [Markov decision process (MDP)| (Bellman, 1957)) to
decide when to turn on the heater. are an extension of Markov chains, where

not only the previous state, but also effects of decisions of participants in the system

are taken into account. |[Shann and Seuken| model states of the system as a tuple of
internal temperature, external temperature and time. Transitions describe the change
of internal and external temperatures between two time steps. The outcome of the
transitions depends on predictions of external temperatures and whether the heating
was on or off during the transition. States are evaluated using a reward function that
calculates the user’s utility based on the internal temperature and subtracts the cost of
heating based on predicted prices. When the heating was not on during the transition,
the cost is zero. The user’s utility function represents the comfort model in this approach
and will therefore be further described in Section[2.2.2] [Shann and Seuken|exploit known
relationships between variables to reduce the computational complexity of the transition
function. When creating a schedule, Shann and Seuken| always calculate a schedule for

the next 24 hours. Energy prices and external temperatures for this interval are predicted

using a [Gaussian process (GP)| (Seeger, 2004)).

Shann and Seuken| compare their MDP}based approach to a simple rule-based heating
policy and two versions of a mixed-integer program. The rule-based heating policy

tries to keep the temperature within a defined comfort band at all times. The first
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mixed-integer program represents the quadratically constrained mixed-integer program
described by Rogers et al| (2011). This approach minimizes heating costs with the
constraint of the discomfort not falling under a pre-defined level. The second mixed-
integer program is a modification of the first one, where the objective function is altered
to maximise the user’s utility. The algorithms are compared by simulating 30 different
days with time intervals of 15 minutes and taking the average cumulative utility of the
algorithms. [Shann and Seuken| show that the average utility of users can be improved

by 20-26% using

In addition to this evaluation, the model was also tested in a real deployment (Alan et al.)
2016; |Shann et al., 2017). For this, a smart thermostat was installed in 30 households for
a period of 30 days. The main goal of this evaluation was to test different user interfaces
for the smart thermostat and to evaluate by how much the thermostat can reduce peak
energy consumption in a real-time pricing scenario. The results show that this approach

is able to reduce peak energy consumption by up to 38%.

The main shortcomings of this approach are the lack of a detailed thermal comfort model
and the direct use of energy prices. |Shann and Seuken| use a modification of the adaptive
comfort model defined in [ASHRAE 55 which will be further described in Section
While Shann and Seuken| parameterise the model and learn the parameters based on user
feedback, the model neglects important factors such as humidity or seasonal adaptations,
meaning that predictions obtained from this model are likely to be inaccurate (violating
research requirement 3). As we will discuss in Section directly incorporating energy
prices into the scheduler can make the system response unstable (for example
by introducing rebound effects) and hard to predict (violating research requirement 9).
The rebound effect describes the situation where a collective of agents reacts similarly
to the same pricing signal (i.e. using more energy when prices are low) which might
introduce new peaks during times of low energy prices. This effect will be discussed in
more detail in Section 2.3.2]

2.1.2.3 Distributed DSM by Ramchurn et al.

Ramchurn et al.| (2011) propose an agent-based control strategy for performing
with [HVAC] loads. In this approach, each individual household is equipped with an
individual agent controlling the system. These agents use a to minimize
both, energy cost of the [HVAC] system as well as discomfort experienced by the user.
The energy cost is further scaled by a weighting factor x that allows for more fine grained
control of the pay-off between cost and comfort. Ramchurn et al. set this value to a very
low value by default to ensure a comfortable environment for the user. User comfort
is assessed as a weighted, quadratic deviation of the indoor temperatuer from a static,
user-specified optimal comfort temperature. Ramchurn et al. further allow to specify

different costs for staying below or above the comfort temperature. This can be used for
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distinguishing between summer and winter times. It is likely that for most users going
above the static comfort temperature is more acceptable during summer than during

winter.

To incorporate capabilities in the agents, Ramchurn et al. use a second objective
of minimising the cost of the [HVAC] system. This objective function calculates the
energy consumed by the [HVAC]system at different time steps and multiplies it with the
energy prices at that time. This way, dynamic energy prices as commonly found in [DSM]
approaches are incorporated into the computation by the agent. During times of low
energy cost, using the [HVAC]| system is penalised less than during times of high energy

cost, causing the agent to shift its energy usage towards times of low energy prices.

Without further corrections, this approach however can be prone to introducing new
peaks during times of low energy prices. This is commonly referred to as the rebound
effect (Palensky and Dietrich), 2011). To address this issue, Ramchurn et al. introduce a
correction parameter a that denotes the probability with which agents should react to
pricing signals. This parameter is adjusted over time based on resulting load profiles. If
a rebound effect is happening, the value for « is reduced, causing fewer agents to follow
the pricing signals. If the response to the pricing signals is too weak and not enough load
is shifted, « is increased, causing more agents to react to the pricing signals. Ramchurn
et al. show that using this mechanism, load peaks in the grid can be reduced by up to
17%.

2.1.2.4 HVAC based load shifting by Lu

Lu/ (2012) presents a direct load control strategy that intelligently schedules when to
switch on the heating in different households to follow different [DSM]signals. [Lul classify
households into two separate groups: those where the heater is currently running and
those where the heater is currently switched off. These two groups are ordered by
different priorities. In the heater on list, houses where the indoor temperature is close to
the upper bound of the thermostat’s temperature band are prioritised. In the heater off
list, houses where the indoor temperature is close to the lower bound of the thermostat’s
temperature band are prioritised. When receiving [DSM] signals, the central controller
determines in which houses the heater can be switched on or off respectively. To do so,
the central controller has to predict the indoor temperature of each separate household.
User comfort is not modelled directly. Instead, a static temperature band is used. |[Lu
test two different widths for this temperature band and evaluate the performance of
the control strategy with both of them. Using simulations based on real load shifting
signals, |Lu| shows that when using the wider (4°C wide) temperature band, the control

strategy successfully shifts demand to follow the provided signal.
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A major drawback of this approach is its reliance on a centralised controller. It is not
clear how well the algorithm scales up with the number of households (research require-
ments 6 and 8). Further, the approach requires potentially sensitive information about
live indoor temperatures in each household to be sent to the central controller. Lastly,
this approach oversimplyfies thermal comfort by just using a static range (violating

research requirement 3).

2.1.2.5 Occupancy based demand response by Erickson and Cerpa

Erickson and Cerpal (2010)) create a model to predict room occupancy in a house. Know-
ing when which room is occupied, the [HVAC]| agent is able to only heat or cool where
necessary, leading to significant reductions in energy consumption. [Erickson and Cerpa
utilise a Moving Window Markov Chain to model room occupancy throughout the day.
To account for multiple occupants, the markov chain does not only model whether a
room is occupied or not, but also how many occupants are occupying a room. Since
room occupancy is highly dependent on the time of day, [Erickson and Cerpal add a
moving window on top of the Markov Chain. The window can move by an arbitrary
amount of minutes and calculates transition probabilities between different occupancy

states based on the last hour.

Based on their occupancy model, |[Erickson and Cerpal develop control strategies for
ventilation as well as the heating and cooling system. Through simulations, |[Erickson
and Cerpalshow that their control strategy is able to reduce annual energy consumption
of the system by about 20%. During the winter months, the energy saving
potential is even higher with up to 26.5% energy savings, suggesting that the proposed

strategies are especially successful in colder climates.

While [Erickson and Cerpal use a sophisticated, general thermal comfort model defined
in ASHRAE 55| to decide set point temperatures, they do not account for preferences of
individual users. Such general models only represent average preferences of large popu-
lations. When dealing with small numbers of occupants, individual users’ prefences may
deviate from these average preferences, meaning that the chosen set point temperatures
might actually cause discomfort to some users (conflicting with research requirement 3).
In addition, |[Erickson and Cerpal do not provide any means to incorporate signals

into their account (research requirement 7).

2.1.2.6 Optimisation friendly thermal comfort model by Zhou et al.

Zhou et al. (2016) define a novel, optimisation friendly thermal comfort model. The
comfort model is built as a convex piecewise linear classifier. Based on different inputs

(such as outdoor temperature and humidity), the classifier creates multiple hyperplanes
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denoting comfort boundaries. Only a point lying in between all hyperplanes is considered

comfortable. The resulting space is convex and therefore allows for easy optimisation.

Zhou et al|] build an[HVAC|agent based on this model and evaluate it using weather data
from Singapore. In the optimisation, [Zhou et al.| however do not focus on just finding
the best combination of set points to reduce energy consumption while maintaining user
comfort. Instead, the [HVAC] agents also considers manipulating other factors such as
humidity. [Zhou et al.| show that in hot climates, manipulating the humidity instead of

using the air conditioning can reduce energy consumption by 12.81%.

Similar to other approaches, [Zhou et al| do not account for individual users’ prefer-
ences, potentially leading to inaccurate predictions for comfort temperatures (violating
research requirement 3). In addition, no means of incorporating signals are pro-

vided (research requirement 7).

2.1.2.7 Participatory approaches

There are a couple of approaches that rely on participatory sensing to control the [HVAC]
system. Such approaches usually utilise a constant stream of feedback about the thermal

environment from the occupants to adjust the set point of the [HVAC] system.

Shetty et al.| (2015) for example propose a participatory control approach that
uses the user feedback to choose appropriate set point temperatures but also to suggest
space allocations based on user preferences. In this approach, a pop up opens up on
the user’s screen every 30 minutes, asking to provide feedback on a simplified version
of the ASHRAE T7-point scale that we will introduce in the next section. Using this
data, a range of of cold, neutral and warm temperatures is determined for each user.
Shetty et al.| propose two strategies for how this data can be used to reduce energy
consumption and maximise user comfort. The first strategy is to choose a set point that
is as close to the outdoor temperature (minimising the temperature gradient between
indoors and outdoors) as possible while still being in the range of neutral temperatures of
all/most occupants. The second strategy is to relocate occupants with lower temperature
preferences to colder parts of the building and occupants with preferences for higher

temperatures to warmer parts respectively.

Purdon et al. (2013) create a model and sensor free agent that relies on live user
votes to determine occupancy and discomfort. [Purdon et al| provide the users with a
smartphone app allowing them to rate the thermal environment as hot, cold or OK. The
general idea is to maximise the amount of OK votes and balance the amount of hot and
cold votes. To be able to reduce energy consumption, |[Purdon et al.| rely on occupancy
prediction and a concept they call drift. Occupancy prediction is determined by a lack of
user votes. If no feedback is provided for a certain amount of time, the [ HVAC|is switched

off, reducing energy consumption. Further reductions are achieved by letting the indoor
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temperature drift towards the outdoor temperature as much as possible. Once a user
provides feedback going against the drift (for example a cold vote when the temperature
is drifting down), the [HVAC| agent stops the drift. Using simulations, |Purdon et al.

show that energy savings of up to 65% can be achieved.

Ghahramani et al.| (2014)) go beyond the aforementioned approaches by modelling in-
dividual users. |Ghahramani et all allow users to rate their thermal environment on a
scale from -5 (“prefer cooler”) to 5 (“prefer warmer”). Using pattern recognition on the
users’ votes and the respective indoor temperature, an individual comfort range per user
is computed. Using the comfort ranges of all users, each day a new set point minimising
discomfort and reducing energy consumption is chosen. |Ghahramani et al| show that

using their approach, significant reductions in airflow rates can be achieved, improving
the efficiency of the [HVAC] system.

While participatory approaches generally perform well with respect to achieving a com-
fortable environment for the users, this usually comes at the cost of being very intrusive,
requiring users to provide feedback frequently (violating research requirement 4). Fur-
ther, the reliance on live feedback of participatory approaches complicates tasks that
require the system to plan ahead, as is the case in most scenarios (violat-
ing research requirement 7). As set point temperatures or comfort ranges are generally
determined just-in-time based on user feedback, it is difficult for the scheduler
to for example pre-heat or cool a room in response to higher or lower energy prices
during certain intervals. To be able to plan ahead, the [IVAC]| scheduler needs to utilise

a thermal comfort model.

2.2 Thermal Comfort Models

Thermal comfort models can generally be categorised into two different categories: static
thermal comfort models and adaptive thermal comfort models. Static models are usually
designed for [HVAC] equipped buildings and assume static activity levels and clothing
of occupants. Adaptive models assume that occupants have more individual control
over their thermal environment and take adaptive measures of occupants into account.
Typical adaptive measures are for example opening of windows or turning on a fan.

As many, especially larger [HVAC]| equipped buildings prevent occupants from using such

measures, adaptive models are mostly used for naturally ventilated (NV)[buildings. Due

to the increased interest of the research community in domestic heating, more advanced
adaptive models have been created recently. Such models do not only consider adaptive
measures of occupants, but also account for individual preferences of occupants. The
solution proposed in Chapter [3| of this work combines findings from classic, established
models with recent findings of individualised models to create a new, more robust and

accurate, individualised thermal comfort model.
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In the following, the two categories are explained in detail and examples for comfort

models of those categories are given and discussed.

2.2.1 Static Thermal Comfort Models

The most widely used static thermal comfort model is the model by |Fanger| (1970).

Fanger’s model defines two main measures for thermal comfort: the [predicted mean|

and the [predicted percentage dissatistied (PPD)| The describes how a

group of people would rate their perception of the current thermal environment. Ratings
are based on the 7-point scale shown in Table According to |ASHRAE 55| the
thermal environment can be seen as comfortable if the [PMV] lies within the limits of
(=0.5 < PMV < 0.5).

VOTE THERMAL SENSATION

3 Hot

2 Warm

1 Slightly Warm
0 Neutral

-1 Slightly Cool
-2 Cool

-3 Cold

Table 2.2: 7-point thermal sensation scale

The predicts the percentage of people whose thermal sensation lies outside the
comfort limits. When designing buildings and deciding temperatures, one generally
alms to minimise the After ASHRAE 55| the needs to be below 20% to

achieve thermal comfort.

The calculations of [PMV] and [PPD] are based on human heat-balance. Based on empir-

ical studies, Fanger| (1970) defines very specific limits for skin temperature and sweat

secretion. Within those limits, heat-balance is achieved, resulting in thermal comfort.
Skin temperature and sweat secretion are calculated based on the following six factors:
air temperature, mean radiant temperature, relative humidity, air speed, metabolic rate

and clothing.

Static thermal comfort models have several limitations. The biggest limitation origi-
nates from the nature of the data that is needed to evaluate the model. Factors such
as air speed, mean radiant temperature and relative humidity require specific sensors or
detailed knowledge of the thermal environment. If present at all, such sensors or knowl-
edge usually only exists for buildings that are equipped with modern systems.
This limits the applicability of such models greatly as many buildings — especially in
the domestic sector — are not equipped with such systems. The second limitation is due

to the focus on metabolic rate and clothing. Static models assume that metabolic rate
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and clothing are not subject to changes. While this assumption may hold in some spaces
(i.e. office spaces with strict regulation on clothing), there are many situations where
individuals are able to influence their thermal environment through adaptive means such
as changing their clothing or moving around. These limitations led to the development

of adaptive thermal comfort models, described in the next section.

2.2.2 Adaptive Thermal Comfort Models

Adaptive thermal comfort models account for individual adaptations of occupants to the
thermal environment. As described by |Liu et al.| (2012b), there are three main categories
of adaptations that can take place: physiological adaptation, behavioural adaptation and

psychological adaptation.

Physiological Adaptation describes adaptations to the environment by the human
body. One has to distinguish between genetic adaptation which takes several gen-
erations and acclimatisation. In the field of thermal comfort special attention has
to be paid to acclimatisation. Typical measures for acclimatisation is adjustments

to the skin blood flow, shivering or sweating.

Behavioural Adaptation describes behaviours performed by an individual to adapt
to the thermal environment. One distinguishes between three categories of be-
havioural adaptation: personal adaptation, technological adaptation and cultural
responses. Personal adaptive measures are for example taking off an item of cloth-
ing. Typical technological measures are turning on a radiator or air conditioning.
Cultural responses incorporate measures such as having breaks during the hottest

hours of the day.

Psychological Adaptation describes altered perception of and reaction to temper-
atures as a reaction to the past and expectations of the thermal environment.
de Dear and Brager| (1998) and [Paciuk (1990) for example analysed how the per-
ception of having control influences people’s thermal comfort. They found that
occupants are more likely to accept certain disturbances to their thermal environ-

ment when they believe they are still in charge of them.

Adaptive thermal comfort models are usually aimed at buildings. This is due to the
fact that in buildings occupants usually have more control over their thermal envi-
ronment. Buildings equipped with sophisticated [ HVAC|systems are often office buildings
where occupants are not able or allowed to simply open windows or turn on fans. In
addition, as shown by |de Dear and Brager| (1998), the effects of psychological adap-
tations are stronger in buildings. The relation between outdoor temperature and
comfort temperatures is for example twice as strong in [NV]buildings. As a result, many

adaptive thermal comfort models use the outdoor temperature as the main indicator
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for the comfort temperature. The best known adaptive comfort model is based on the
findings of de Dear and Brager| (1998) and has been included into ASHRAE-55 in 2004.
The model however is based on average values from a large number of households and
thus is mainly applicable to spaces with large groups of occupants. It fails to adapt to
the preferences of individual users and is therefore likely to produce unsatisfying results
in many cases. More recent approaches therefore shift the focus on learning relation-
ships specific to individual users. In the following, we introduce a typical learning based

approach.

Shann and Seuken| (2013]) model thermal comfort with respect to cost and comfort. The
overall utility function subtracts the cost for heating to a given inside temperature from

the comfort value of that temperature for the user.

Similar to de Dear and Brager| (1998)), Shann and Seuken! focus on the relation between
outside temperature and comfort temperature. [Shann and Seuken| model this as a linear
relationship with a base temperature 7™ and a slope m. The base temperature describes
the user’s optimal comfort temperature for an outside temperature of 0°C. This results
in the following equation:

Toref(Tout) =T +mTpu (2.8)

where Tpref(Tout) is the preferred temperature T, ¢ for a given outside temperature Thy;.
To determine a user’s utility for a given interior temperature, [Shann and Seuken| use the
quadratic deviation of the interior temperature from the optimal comfort temperature
of a user. To account for higher sensitivity to temperature deviations caused by outside
temperatures below 0°C as described by Peeters et al.| (2009)), Shann and Seuken| scale
the utility with the term be~¢7out. The variable b represents the user’s sensitivity at 0°C
and ¢ describes how much the user’s sensitivity changes when the outside temperature

changes. The complete utility function is described in the following equation:

2

(T, Tow) = a — be ¢ Tout ((T* +mTout) — T) (2.9)

where T is the actual interior temperature and « is the user’s base utility for the optimal
temperature.

The cost of heating is calculated using the following equation:

C(pa T) Tout) - p|T - Tout| (210)

where p represents the current price for heating, 1" represents the desired interior tem-
perature and 7T,,; the outside temperature. [Shann and Seuken| base this function on
the fact that heating costs are proportional to the temperature difference of inside and

outside temperature.
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Putting everything together, the user’s utility can be described as follows:
u(pa T, Tout) = U(Ta Tout) - C(pa T, Tout) (2‘11)

The optimal interior temperature is found by maximising the utility with respect to 7.

To adapt to the user’s preferences, Bayesian learning is used to learn the parameter
vector (b,c,T*,m), which describes the user’s preferences in this model. |Shann and
Seuken| define a Gaussian prior for this vector, which gets updated using Bayes’ theorem

whenever the user provides feedback.

While the adaptive thermal comfort model by [Shann and Seuken| tries to adapt to
users’ preferences, the underlying model is rather simple and neglects other factors
defined by static thermal comfort models. As a result, certain limitations in the accuracy
of predictions of user’s comfort temperatures can be expected. Especially in varying
weather conditions beyond outside temperature (for example in humidity) we expect

some accuracy losses, violating the requirement of an accurate comfort model.

2.3 Demand Side Management

[Demand side management (DSM)| describes the control of loads on the electricity grid

caused by end-users. Another common term in this field is |[demand response (DR)|
which describes a subcategory of focuses on designing incentives (for exam-

ple financial savings through variable pricing) for customers to participate voluntarily

(Gelazanskas and Gamage, 2014)). There are a couple of existing problems and challenges
which can be addressed by [DSM]

One of them is to flatten peaks in demand. To ensure supply stability and avoid black-
outs, the grid and generation capacities need to be large enough to cover the maximum
expected demand. As a result, this infrastructure is working below its maximum capac-
ity most of the time. As stated by Farhangi (2010), 20% of power generation capacity
only exists to deal with peaks in demand. This capacity is only used 5% of the time,

meaning that suppliers are investing in infrastructure that is rarely used.

Another factor is the optimal utilisation of renewable energy sources. Many renewable
energy sources such as wind or solar energy are beyond human control and therefore
not plannable. As a result, there may be overproduction at some times and not enough
energy during other times. A straightforward approach to overcome this problem would
be to store energy during times of overproduction and release it during times when the
actual production does not suffice anymore. However, to this day such large storage
capacities are not yet available. [DSM] can be utilised to compensate for fluctuations in
supply by reshaping demand to use more energy while production is high and less when

production is low.
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In both applications the problems are solved through load shaping. As the name suggests,
load shaping describes a process in which the load profile on the grid over a course of
time is modified to fit certain requirements. There are six different types of load shaping
(Gelazanskas and Gamage, [2014)):

Peak Clipping describes a form of load shaping in which demand is limited to not go
over a certain threshold during peak times. This results in a profile where the top
of the peak is “cut off” at a certain level (Figure [2.1al).

Valley Filling means that during times of low demand (valleys), the demand is in-
creased, evening out the dip in the load profile (Figure [2.1b)).

Load Shifting refers to the process of moving parts of the load to a different time

interval. Loads occurring during a peak can be for example shifted to time intervals
before and after the peak (Figure [2.1c)).

Strategic Conservation aims to reduce energy consumption in general, for example
to bridge times of low production due to lack of wind or sun (Figure [2.1d).

Strategic Load Growth is the opposite of strategic conservation. Instead of reducing
the overall demand, demand is increased to for example make best use of renewable

energy sources at times of high production such as very windy and sunny days

(Figure [2.1€]).

Flexible Load Shaping is often a combination of all other types. Flexible load shap-
ing tries to modify the load to fit any kind of predefined profile (for example filling
valleys, clipping peaks and grow load during times of high supply at the same

time) (Figure [2.11).

In practice there are currently two main ways to approach load shaping: price-based
and incentive-based approaches (Wang et al., [2013). Price-based approaches are based
on the assumption that in order to save money, end-users are willing to adjust their
energy consumption behaviour. By having variable prices, user behaviour is altered to
change demand in a certain way. Incentive-based approaches usually do not rely on the
assumption made in price-based [DSM]but rather use other means of controlling load and
provide incentives such as general rebates or bonuses for the user to hand over control

over their appliances.

In the following, we will list enabling technologies needed in [DSM] and briefly introduce
and discuss price-based and incentive-based [DSM] approaches. This is followed by a
rough categorisation of different load types and their possible utilisation in [DSM] We
show where [HVAC] fits in these categories and provide a short discussion of the current
state of the art of [HVAC] based on approaches introduced in Section [2.1.2
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Figure 2.1: Different types of load shaping (red: original profile, blue: shaped profile)
as defined by Wang et al. (2013)

2.3.1 Enabling Technologies

Most existing approaches to managing and influencing demand have common underlying
requirements. To be able to evaluate how an approach will perform on a larger scale
with several separate households, a model to calculate the aggregated load on the grid
is required. This is referred to as load modelling. Another requirement is some mean of
managing the energy in the household itself. Existing approaches cover a wide range from
simply telling users to turn appliances on or off to managing appliances autonomously
without any user interaction. This is referred to as an energy management system. In the

following we will give a brief overview over existing technologies for those requirements.

2.3.1.1 Load Modelling

As mentioned before, to evaluate approaches before applying them in the real world
simulations need to be carried out to see how the load is affected by an approach. There
are two different ways of approaching load modelling: bottom-up and top-down (Swan
land Ugursal, 2009)).
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Bottom up models usually create load profiles for individual parts of an area and ag-
gregate those individual profiles into a full load profile for the whole area of interest.
Depending on the model, the granularity for the individual parts can range from in-
dividual household appliances up to individual groups of houses. Within the field of
bottom-up models, one can further distinguish between statistical methods relying on
historical information on energy usage of different appliances or houses and engineering
methods trying to accurately model consumption based on actual energy ratings and

physical calculations (for example thermodynamics).

Top-down modelling is based on historical data and population statistics and does not
model individual end-users. Typically, top-down models use information on macroe-
conomic indicators (gross domestic product, unemployment rates and others), climate
and appliance ownership to estimate the aggregate load for a whole area. Within the
field of top-down models one can further distinguish between econometric models that
focus mainly on price and technological models that are mainly built around housing
attributes such as typical appliance ownership in certain areas. In addition, there exist

hybrids of econometric and technological models.

As top-down models are strongly relying on historical data, predictions given by such
models are usually very precise. This makes top-down models especially suitable to
predict changes in energy usage of a whole area if for example new houses are built or
older houses are refurbished. However, the reliance on historical data also makes such
models harder to apply in many modern approaches for which not much historical
data exists. A major drawback of bottom-up models is that extensive input data and

complex models are required to accurately predict the load.

For this work, which is based on the fairly easily predictable process of heating and
cooling, a combination of both approaches can be used. Based on historical data, a
general load profile for individual households can be created. Using bottom-up calcu-
lations, individual profiles for heating and cooling systems can be created and removed
from the overall household profile. To evaluate how a heating/cooling based ap-
proach affects the overall load, new heating and cooling profiles resulting from said

approach can be created and factored back into the overall household profile.

2.3.1.2 Energy Management Systems

To be able to use algorithms in practice, means to control (for example whether
to turn them on or off) appliances in a household are required. For private homes this is
referred to as alhome energy management system (HEMS)l The main task of a{HEMS|is

to schedule when to turn on and off appliances in the household. There are two common

ways of controlling the appliances: by getting a real person to control appliances or by

controlling them automatically through specialised infrastructure (Wang et al., [2013)).
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While at first glance, getting a person to control the appliances seems like an easy task,
existing research shows that getting the users to actually participate and keep them
involved in the system can be very challenging (Murtagh et all 2014bja; Hargreaves
et al., [2013; Snow et al., [2013). A typical implementation of a that relies on
the user is to have in-home displays showing information about current energy prices,
energy consumption and maybe even suggestions of which appliances to turn on or off.
As shown by various researchers (Murtagh et al., 2014a; Hargreaves et al.l [2013; Snow
et al., 2013)), users are often not very interested in this information and therefore quickly
stop participating. For example, in the study conducted by Murtagh et al,| (2014b),
only 20% of participants had a positive attitude towards in home displays, 60% had
no preference and 20% saw them as annoyance. Murtagh et al.| (2014b) further found
that especially that only provide the user with information about current energy
prices and energy usage ask too much from the user. Users disliked the fact that they

had to think and decide themselves when to turn which appliances on or off.

Automatically controlled appliances on the other hand often take away too much control
from the user (Murtagh et al., 2014b)) and require investments for upgrading existing or
buying new appliances. Further, recent research suggests that users should be kept in
the loop to some extent to avoid creating apathetic, disengaged users. As a result, hybrid
approaches where some appliances are manually and some automatically controlled are

often applied.

2.3.2 Price-based DSM

Price-based refers to techniques that use variable energy prices to influence
demand. Such approaches are based on the assumption that in order to save money,
users are willing to change their behaviour. In practice that means that users will reduce
their energy consumption when prices are high and increase it when prices are low.
This can be through manual control or through automated systems trying to optimise
energy usage on the users behalf. Typically, prices would be higher during times of peak
energy consumption or low energy production and low during times of excess production
from renewable sources. Further, prices could reflect regional differences, taking into
consideration weather constraints for renewables as well as cost of delivering the energy
to a particular region. There are three main categories for how prices can be changed
(Wang et al. 2013):

Time-of-use there are fixed prices for different time intervals. Typical setups define

hourly prices for a 24 hour period.

Real-time pricing prices constantly change depending on different factors (wholesale
price for electricity, demand and more). Changes are usually announced an hour

or day ahead.
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Critical peak pricing similar to time-of-use pricing but under certain circumstances

(peak demand, low supply) much higher real-time rates can be applied.

In practice, price-based [DSM] is not well understood yet and yields mixed results.
Thorsnes et al.| (2012) for example show that during winter, time-of-use pricing can
consistently reduce peak consumption on average by 10-15%. Over the course of the
whole year however, time-of-use pricing had no significant effect on the overall daily
consumption or peak consumption. Further, while off-peak consumption correlates with
off-peak prices, higher peak prices had no significant effect on peak consumption. There
is also a risk of introducing a so called rebound effect (Palensky and Dietrichl 2011)).
As the number of participating households increases, there is a growing risk that a
large number of households reacts in a similar fashion to pricing signals. This mass be-
haviour could lead to new peaks, for example during times when energy prices are very
low. Lastly, as mentioned in Section users are not always keen to participate
(Murtagh et al.l |2014a,b; Hargreaves et al., [2013; Snow et al., 2013)).

2.3.3 Incentive-based DSM

Incentive-based [DSM] describes approaches that set different incentives to motivate users
to participate or hand over control to a[DSM]system. Similar to price-based approaches,
a typical incentive is saving money. However, instead of letting the system regulate itself
through variable prices, incentive-based approaches usually utilise rewards, rebates and
possibly penalties. Users could be granted rebates for handing over some control to their
[DSM]system. Handing over control can be in the form of the system restricting usage for
certain appliances during certain times (for example using the washing machine would
only be allowed during non-peak hours). Some approaches even go as far as modelling
homes as suppliers that autonomously store and sell back energy to the grid (for example

using their electric vehicles as storage) (Kahrobaee et all 2013).

A major downside of many incentive-based approaches is that they often are fairly

intrusive, demanding control over appliances. In|direct load control (DLC)|for example,

appliances can be switched off remotely if required. As shown by |[Murtagh et al.|(2014b)),
most users dislike the fact of not being in control as it can interfere with their personal
schedules. In reaction to this, incentive-based approaches usually focus on loads that are
not interfering with the user’s schedules, such as thermal loads, which will be explained

further in the next section.

2.3.4 Load types

As mentioned earlier, there are different kinds of loads that can be utilised differently
in Ramchurn et al.| (2011) define three categories of loads in a household:



Chapter 2 Background 37

Shiftable static loads include appliances that are not linked to heating or cooling but
could still be controlled by a[DSM]system. Washing machines, tumble dryers and
dishwashers belong to this category.

Thermal loads include appliances that are linked to heating or cooling. Such loads
are usually considered shiftable and include appliances such as water and space

heating but also fridges or freezers.

Non-shiftable loads include appliances that cannot or should not be controlled by
the [DSM] system. This includes appliances such as lights, oven, kettle, microwave

and many others.

It can be seen that the only categories of loads that can be utilised in are shiftable
static loads and thermal loads. In theory, shiftable static loads can be shifted without
disrupting a user’s daily life. Whether the dishes are cleaned in the evening or during the
night will not make a big difference for the user. However, there are certain limitations.
As [Holyhead et al. (2015) suggest, static shiftable loads can usually be only shifted
backwards as they have to be loaded manually by the user first. To overcome this issue,
users could be prompted to prepare appliances by the [DSM]|system or have to notify the
system in advance about planned usages. This however would mean several disruptions
and changes to the user’s daily routines. There are other constraints like the amount
of laundry or dirty dishes to fill a machine. Usually one would wait until the machines
are filled before turning them on. A study by Costanza et al. (2014) on automating the
laundry using agents confirmed several of these points and also highlighted that trying
to control such loads can in fact increase load rather than shifting it. Some users for
example noticed that in reaction to low prices they were doing the laundry more often
with only partly filled machines, resulting in overall higher energy consumption of the
household.

As opposed to shiftable static loads, thermal loads can be shifted fairly easily with only
minor interference with the user’s schedules. This is due to the fact that heating and
cooling is an inert process, meaning that for example the water in a boiler will stay warm
for some time after turning off the heating module. Further, these appliances mostly
work in the background already without the need of manual control (Du and Lu, 2011]).
So as long as the water is always warm enough, rooms stay at a comfortable temperature
and the fridge stays cold enough, users are generally not concerned with details of when

those appliances are actually turned on and off.

2.3.5 HVAC and DSM

As mentioned earlier, in theory thermal loads offer great potential for (Ramchurn

et al.;|2011)). In practice there are a couple of challenges. In case of controlling a fridge for
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example, hardware to remotely control cooling cycles of the fridge needs to be developed
and added to the existing infrastructure. For water and space heating or cooling this
particular challenge has been addressed already. In most households, water and space
heaters are already controlled by a thermostat. By replacing existing thermostats with
smart thermostats, full control over these appliances can be obtained. Another issue is
that in many countries, only the minority of households use electric heaters at this point
(according to Ramchurn et al. (2011) only 7% of UK houscholds use electric heaters).
However, this is expected to change as production of electricity becomes cleaner due to
the growing share of renewables. Heating is expected to move away from fossil fuels to
use this clean energy (Department of Energy and Climate Changel, 2013)). In combination

with already electrified air conditioning units, significant electric loads are accumulated.

Another major challenge of [DSM] on [HVAC] loads is user comfort. Shifting [IVAC]loads

usually means to switch off or lower the heating or cooling during certain timese, resulting

in higher or lower temperatures. These temperatures need to be in accordance with
users’ preferences. To predict users’ preferences, one can utilise a thermal comfort
model. However, as discussed in Section amongst other shortcomings, existing
thermal comfort models usually only provide single comfort temperatures or very narrow
bounds. As the temperature in a room will decay towards the outside temperature as
soon as the heating or [AC| is turned off, these loads can only be shifted in fairly short
intervals. As a result, many approaches focusing on [DSM] have so far avoided space
heating or cooling or accepted comfort trade-offs to achieve good results in [DSM] Du
and Lu (2011) for example only focus on controlling the boiler and avoid space heating
and cooling completely. Even though Ramchurn et al. (2011) emphasize heating in their
approach, they do not define how the user’s optimal comfort temperature used in their

model can be obtained.

2.4 Belief Networks

[Belief networks (BNs)| (sometimes also called Bayesian Networks or graphic models) are

probabilistic models first introduced by [Pearl (1986) that allow easy integration of prior
knowledge. In case of the model presented in this work this means that findings from
established comfort models can easily be incorporated to speed up the learning process.
Probabilistic models are used to model complex relationships between numerous random
variables. are directed acyclic graphs in which nodes represent latent variables,
unknown parameters or hypotheses. Edges represent the relationships between nodes.
Unconnected nodes are conditionally independent. are based on Bayesian statistics
that in contrast to frequentist statistics model degrees of beliefs in certain states of

the system. Bayesian statistics allow constant updating of beliefs as additional data is
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acquired. Beliefs are updated using Bayes’ theorem:

P(B|A)P(A)

P(AIB) = =5

(2.12)

where P(A) is the prior, representing the initial belief in A and P(A|B) is the posterior
belief in A given B. P(B|A)/P(B) is the support or likelihood for A given by B.

In systems with many latent variables, calculating exact conditional probabilities re-
quires the evaluation of integrals of high dimensions. Computational complexity can be
greatly reduced by considering dependencies of variables. Assume for example a system
with four latent variables x = {z1,x2,x3,24}. The normal chain rule would result in

the following equation:
P(x1, 29,23, 74) = P(x4|71, 22, 73) P(23|71, 22) P(22|21) P(21) (2.13)

Evaluating probabilities conditioned on many variables is costly. If some variables are
known to be independent, this knowledge can be incorporated. Assume for example that
x4 is known to be independent from z; and xo and consider z; and x5 to be completely
independent. Using that knowledge, Equation simplifies to:

P(xy1,x9,x3,24) = P(x4|x3)P(x3|21,22)P(22)P(271) (2.14)

In the simplified equation, x4 for example only depends on one additional variable (x3)

which greatly simplifies the calculation.

However, this notation is very unintuitive and becomes harder to read as more variables
are introduced. Graphical representations such as can be used to express such

equations in a more readable format. The resulting [BN| for Equation [2.14] is shown in

Figure

Figure 2.2: Simple example of a Belief Network

2.4.1 Inference

One of the main operations performed in is to infer unobserved variables. In a ther-

mal comfort model, such a variable could be the comfort temperature or the expected
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vote by the user on the temperature. Even with the reduced computational complexity
achieved by incorporating dependencies between variables, the task of calculating exact
probabilities is very complex (NP-hard). Therefore, numerous algorithms to perform in-
ference more efficiently have been developed. There are two different kinds of algorithms:
stochastic and deterministic algorithms. Stochastic algorithms use sampling methods

to get good approximations of variables to be inferred. Deterministic algorithms use

specific update schemes to infer variables. This work focuses on the [expectation prop-|

agation (EP)|algorithm by Minka (2001)) due to its fast convergence, good support for
continuous variables and accurate results.

[EP]is a message passing algorithm that extends the max-sum algorithm to support dis-
crete and continuous variables at the same time. Such algorithms iteratively update
their beliefs in variables by sending messages to other nodes with their current belief
in other nodes. To make the computation tractable, the messages often only repre-

sent approximations of the actual distribution that minimize some divergence measure.

As all message passing algorithms, is a subclass of [power expectation propagation|

(power-EP )| Tt differs from in the choice of divergence measure (Minka 2005]).
While uses general a-divergence, minimizes the [Kullback-Leibler diver-|

lgence (KL divergence)| — a special case of a-divergence where o = 1 — between the

actual probability function p and its approximation q.

[EP)] is usually performed on factor graphs. Factor graphs are bipartite graphs where
nodes can either be variables or factors. In a factor graph, factor nodes can only be
connected to variable nodes and vice versa. Variable nodes represent random variables
while factors model the relationship between different random variables. Factor graphs
are used for message passing as they result in an intuitive interpretation of passing
messages between factors or, in case of a fully factorised graph, messages between nodes
and factors. The basic algorithm describes the joint probability distribution p as the
product of all factors f:

p(x) =] fax) (2.15)

The structure of the network is defined by the set of variables each single factor depends
on. With mixed distributions for different factors, calculating this product would result
in hard to calculate integrals of high dimensionality. To overcome this problem, Minka
proposes to approximate the factors with distributions of the same exponential family.
The reason for constraining the approximations to members of an exponential family is
closure under multiplication. The product of two distributions of the same exponential
family results in another distribution of the same exponential family, simplifying the
multiplication. Using approximations, the approximate joint probability ¢ is described

as follows:

g(x) =[] fa(x) (2.16)
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Finding a good approximation for each factor is a challenging task by itself as the
approximation should be chosen in respect to the joint probability. In[EP]this happens
under the premise that all other factors already have good approximations and therefore
it is sufficient to use those as a reference for the full joint distribution. As a result,

an approximation for a factor f, can be found by minimising the divergence between
fa(x)g\*(x) and fo(x)g\*(x)

As a further simplification, the graph can be approximated by a fully factorised graph.
In that case, approximations of factors are calculated as the product of all messages the

factor sends to its neighbouring nodes:

fa(x) = Hma—n’(‘ri) (2.17)

Those messages represent the conditional probability of the distribution of the factor
conditioned on the expectations for all other neighbouring nodes. This conditional is
again projected to an exponential family to allow easy multiplication. Expectations of
nodes are calculated as the product of all incoming messages from neighbouring factors

except for the targeted factor. A message to a factor f, is calculated as follows:

Misa(®;) = H Mp—i(2;) (2.18)
b#a

One can see that for calculating one type of message, its counterpart is needed, leading
to a chicken-and-egg problem. This is overcome by initialising mq—;(x;) to some initial
distributions. The algorithm then iterates over the different factors and recalculates its
messages based on the updated messages of the other factors until all messages eventually
converge. Once the algorithm converged, variables can easily be inferred by multiplying

all incoming messages from its neighbouring factors.

2.4.2 Parameter Learning

Another big task performed on is to learn their parameters. A common way to learn
parameters is to model them as additional variables in the network and infer them based
on observations of other variables in the network. Since parameters are treated as normal
variables of the network, they can be inferred using the same methodologies explained in
the previous section. Those additional nodes however introduce additional complexity,
making the network harder to understand and generally slowing down operations on
the network. It is therefore advised to only use this approach on smaller networks.

For more complex networks, there are numerous other approaches that for example use

lexpectation maximization (EM)| (Bauer et all [1997)) or evolutionary algorithms (Myers
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et al., [1999). Such approaches do not require the model parameters to be modelled as

additional variables.

In this work, model parameters are learned by modeling them as additional variables
in the network and inferring them using the same inference algorithm also used for
inferring normal variables of the network. Evaluations of the model showed that the
network presented in this work is small enough to make this approach feasible. Even

with the additional complexity, the scalability requirement is met.

2.5 Summary

The introduction of smart thermostats into smart homes is one of the next logical steps
for the future to meet agreed energy saving goals. Existing approaches however fail to
meet all requirements for a smart [IVAC]| system. Most approaches neglect the user’s
preferences by either relying too strongly on manual configuration or over-simplifying
their models. Some other approaches on the other hand focus too much on user comfort
that they either become a burden to the user by requiring constant feedback or neglect

other parts of a smart [HVAC]| system such as load shifting capabilities.

One reason for that is that existing comfort models are often not applicable to domestic
spaces due to their focus on the average satisfaction, or fail to incorporate important
factors that determine thermal comfort found by previous studies. Comfort models that
focus on individuals’ preferences usually base their calculations of comfort temperatures
solely on the current outside temperature. This model of adaptive thermal comfort is
based on the assumption that not much about other variables such as humidity is known.
However, as static thermal comfort models show, those variables have a major influence
on thermal comfort as well and should therefore be also considered in adaptive mod-
els. In addition, only behavioural adaption of individuals is covered by this approach.

Acclimatisation and psychological adaption are ignored completely.

While research in [DSM]is very active and thermal loads offer great potential, only few
approaches deal with [HVAC] specifically. Of these approaches, even less are concerned
with space heating and cooling. This is mainly due to the fact that maintaining user
comfort can be a very challenging task using existing thermal comfort models due to
the shortcomings mentioned before. Further, a number of existing approaches rely on a
constant stream of feedback provided by the users which in practice is hard to maintain.
Lastly, some approaches operate in a centralised manner, raising concerns about privacy

of users and scalability of such approaches.

The next chapter introduces a novel approach to a personalised thermal comfort model
that combines findings from static thermal comfort models with adaptive thermal com-

fort models and adds effective learning capabilities. As a result of using belief networks,
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generalised parameters for the model can be learned. The model is designed to work
with a minimal set of sensors required. The outputs of the model are chosen in a way

to integrate well with existing approaches to smart thermostats.






Chapter 3

The Bayesian Comfort Model

In this chapter we introduce a[BCM|and evaluate it against real world data. We start by
introducing the model itself as a Bayesian network. We split the model into two parts:
the general, core comfort model and the part of the model containing adaptive parts.
We show how optimal comfort temperature, user votes and the user’s comfort ranges
can be calculated from the model and how inference and learning is performed. This
is followed by an evaluation of the model. Apart from using real world data available
from the ASHRAE RP-884 database, we also include data obtained from a deployment
conducted by us. We explain the experimental setup of the deployment and how the data
was processed. We evaluate the model’s accuracy in comparison to the standard models
defined in ASHRAE 55, Other models based on the user’s optimal comfort temperature
rather than the user’s optimal vote were not evaluated since this temperature is not
provided with the evaluation data set and therefore no training data for these models

can be generated.

3.1 The Comfort Model

We now introduce our personalised thermal comfort model. Our model uses a Bayesian
network to learn users’ preferences in order to predict their optimal comfort temperature
and comfort vote at any given time. The model can be trained to use any numeric scale
for the comfort vote (for example the ASHRAE 7-point scale) as long as a zero on the
scale expresses maximum comfort or total absence of discomfort. As opposed to existing
models, our model combines the human-body centered approach of static models with
the outdoor environment based approach of adaptive models. In more detail, our model
consists of three components: one to calculate the user’s optimal comfort temperature
based on a range of different factors, one to translate the comfort temperature into a
vote on the current thermal environment and one that calculates the current influence

of adaptations on the user’s optimal comfort temperature. The outputs of the model

45
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SYMBOL MEANING

O Latent Variables are variables that cannot be observed directly and
need to be inferred.
O Observed Variables are variables that can either be observed directly
or calculated using variables without further relevance for the model.
! Model Parameters are variables that directly describe user preferences
and are learned by the model. Model parameters are modelled as a
Gaussian with a prior mean and precision. The priors for the mean have a
Gaussian distribution, the priors for the precision a gamma distribution.
Noisy Variables are expected to be noisy due to their user-centric na-
ture. To compensate for such noise, Gaussian noise with a fixed precision
is added to such variables.
[] Factors define the operation which is used to calculate a variable (out-
going edge) based on the factor’s inputs (incoming edges).
Plates denote sets of variables and their respective observations. The
number of observations is denoted by the letter in its bottom right corner.
Yvar Variables named Yy, describe the user-specific scaling for variable “var”.
var, The user-adjusted value of variable “var” that has been scaled with its
Yvar counterpart.

Table 3.1: Notions in the model

are the user’s optimal comfort temperature Tjp¢, describing the temperature at which
the user feels most comfortable, the user’s vote Tyote, quantifying how dissatisfied a user
is with the thermal environment and the user’s thermal sensitivity v,, describing how

sensitive a user is to deviations from the optimal comfort temperature.

Our model combines the static model, stripped down to reliable, easily obtainable inputs
(namely the operative temperature and humidity), with an extension of the adaptive
model to account for behavioural adaptations as well as seasonal adaptations (de Dear
and Brager, 2002). To transform it into a Bayesian network we simplify relationships
between variables to those that either increase or decrease the comfort temperature. As a
result, the comfort temperature is calculated by adding and subtracting different factors
from a neutral temperature of exposition denoting the user’s preferred temperature when

all other influencing factors are eliminated.

For simplicity, the model has been broken down into two parts: the general comfort
model (Figure and its adaptive parts (Figure . The general comfort model
contains the main equation for calculating the comfort temperature as well as the trans-
formation of the comfort temperature into a user vote and will be discussed in detail
in Section The adaptive parts of the model show the detailed calculation of the
influence of adaptive measures and are explained in Section [3.1.2] Table lists the

different types of nodes and variables in the figures and explains their meanings.
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3.1.1 The General Comfort Model

The general comfort model, shown as a factor graph in Figure [3.I] contains variables
which directly influence the user’s optimal comfort temperature and the resulting votes.
It consists of the calculation of the user’s optimal comfort temperature 75, and the re-
sulting comfort vote Tyote. The optimal comfort temperature represents the temperature
at which a user feels most comfortable and is comparable to the temperature calculated
with adaptive models. The model has two different plates, K and N. Plate N contains
all training observations that include user feedback. These are used to train the model
and learn its parameters. In practice, a training observation would be created as soon
as the user provides feedback (for example by manually adjusting the set point). Plate
K contains observations used for inferring other variables. These are created by the
heating system itself when it has to decide on a set point temperature. As opposed to

training observations, inference observations do not include user feedback.

The general model can be split up into two different parts: the part calculating the
optimal comfort temperature and the part calculating the resulting vote by the user.
The former consists of all variables and factors above Tgp¢, the latter consists of all

variables on the same level or below Topy.

3.1.1.1 Calculating the optimal comfort temperature

The optimal comfort temperature, Typt, is calculated as a combination of the base tem-
perature, T, adaptations by the user, a,, and effects of humidity, h,. The base tempera-
ture, T%, describes the user’s comfort temperature in neutral conditions where influences
of other factors are either negligible or cancel each other out. Humidity lowers the com-
fort temperature as the higher the humidity, the less efficiently the body’s natural cooling
mechanism through evaporation of sweat works. As for adaptations, there are two cases:
those to gain heat and those to lose heat. The former (e.g. adding clothing or increasing
activity) allow a lower operative temperature. In contrast, the latter (e.g. turning on
a fan) allow higher operative temperatures. The two different kinds of adaptations are

represented by positive (heat gain) and negative (cooling) values of a,.

The three parameters, T, hy and ay, are user-specific. While 7™ is a standalone variable,
adaptation, a,, and humidity, h,, are scaled with user-specific scale factors (y, and vy,
respectively) of their observed or calculated counterparts (a and h respectively). The
unscaled adaptation value a is based on a general adaptation formula that will be further
described in Section [3.1.2l The unscaled humidity h describes the measured relative

humidity inside the room.

According to existing thermal comfort models, there are other factors influencing a user’s

thermal comfort. In the static comfort model, metabolic rate, clothing level, operative
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Figure 3.1: The general comfort model

temperature, humidity and air velocity (draught) are identified as influences (Fanger),
1970). Adaptive models name the outside temperature as the main influence (de Dear!
and Brager, 1998). In our model, metabolic rate, clothing level and air velocity are
omitted when calculating the user’s comfort temperature. Farhan et al. (2015) further
states that age and gender play an important role in determining a person’s thermal
comfort level. However, since these variables are unlikely to change or change very slowly,
they were not included directly into the model. These variables are therefore better
suited for determining more accurate and individualised priors for the hyperparameters
of the model.

For thermal comfort modelling, metabolic rate describes how much heat is produced
through a person’s metabolism. The clothing level defines the amount of insulation
provided by the clothes a person is wearing. Together, those variables can be used to
calculate the current heat loss of a person’s body. However, these variables may be
subject to frequent changes. Further, these variables are hard to measure or estimate.
While modern portable fitness trackers measuring a user’s heart frequency could be used
to create a rough estimate of a user’s metabolic rate, the clothing level is very hard to

measure. Because of that, the clothing level was omitted in our model. For the metabolic
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Figure 3.2: Accuracy of our model with and without accounting for the metabolic rate
(with 20 confidence intervals)

rate, we ran additional evaluations comparing how including the metabolic rate affects
the accuracy of predictions of user’s votes obtained from the model. For the evaluation,
we used data about user’s metabolic rates provided with the ASHRAE RP-884 data
base. To include the metabolic rate into the model, we added a variable denoting a
user’s metabolic rate. The metabolic rate was scaled with a user-specific scaling factor
learned from user feedback (similar to the y factors in the model). The resulting user
specific metabolic rate variable denoted by how many °C the users metabolism lowers the
optimal comfort temperature. The calculation of the optimal comfort temperature was
adjusted to also subtract he user specific metabolic rate from the base temperature T,
meaning that higher metabolic rates would lower the user’s optimal comfort temperature
Tops- Figure @ shows the accuracy of the model’s predictions of users’ votes with and
without metabolic rates. One can see that including the metabolic rate has no significant
effect on the accuracy of the predictions. As a result, we omitted the metabolic rate in

our model.

Moving air can have a cooling effect on the perceived temperature and can therefore
have great influence on a person’s thermal comfort. This cooling effect grows with the
air velocity, which is why this variable is usually included into thermal comfort models.
While anemometers can be used to measure air velocity, in practice this task turns out
to be quite challenging as air velocities can vary greatly within a single room. To get
a good idea of air movement in a room, several anemometers would have to be placed
in a room, which would likely interfere with the occupant’s normal life. Apart from
measuring air velocities directly, one could try to calculate them. There are several

possible sources of draught, such as open windows or doors or the stack effect described
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Figure 3.3: Accuracy of our model with and without accounting for draught (with 20
confidence intervals)

in Section To calculate the air flow caused by these sources, detailed knowledge
of room geometry and other variables is required. Estimating these parameters or letting
user’s input them seems impractical as most of these parameters would require precise
measurement and basic knowledge and understanding of thermodynamical terminology.
In addition, as people move around in a room, previous assessments of thermal comfort
based on air velocity are obsolete. Due to these problems, air velocity was excluded
from our model. Experiments using data from the ASHRAE RP-884 data base, which
contains data on air velocity, further showed that including these measurements had no
significant effect on the predictive quality of our model. Figures [3.3] and [3.2] show that
as soon as the model converges, the differences between a model accounting for draught

or metabolic rate and a model not accounting for these factors are insignificant.

3.1.1.2 Calculating the user’s vote and comfort range

Thermal comfort is assessed as the deviation of the actual temperature from the user’s
optimal comfort temperature as suggested by Rogers et al.| (2011)). The vote Tyote On the
current thermal environment is therefore based on the deviation Ty;s of the operative
temperature 75, from the optimal comfort temperature Ty,;. The operative tempera-
ture is preferred in thermal comfort modelling as it incorporates radiated heat. It can
be calculated as a combination of air temperature and mean radiant temperature. The
absolute deviation is translated into a vote by multiplying it with a scaling factor de-
scribing the user’s thermal sensitivity v,, which can be learned from data. By manually

setting the scaling factor, various common scales, such as the ASHRAE 7-point scale,
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can be supported by the model. By learning it, the model can compensate for different

thermal sensitivities of users.

Depending on the scale used, the thermal sensitivity v, in conjunction with the optimal
comfort temperature 75, can be used to calculate the user’s comfort range. The ability
of inferring a comfort range rather than a single comfort temperature is crucial to our
heating algorithm, which utilizes said ranges to reduce energy consumption of the HVAC
system. In case of the ASHRAE 7-point scale, the range of comfortable temperatures is
defined as all temperatures where the predicted mean vote (equivalent to Tyote) lies be-
tween —0.5 and 0.5. We can rearrange the calculations shown in Figure [3.1] to calculate

the operative temperature Ty, depending on the desired user’s vote:

Tvote
Yo

Top = + Topt (3.1)
The lower bound [b of the comfort range can be obtained by setting Tyote = —0.5.
Respectively the upper bound ub can be obtained by setting Tyote = 0.5.

3.1.2 Adaptive Components

To cover a variety of adaptations by the user, the model includes a detailed section for
adaptations (see Figure . As opposed to existing adaptive models, our model ac-
counts for both psychological and behavioural adaptations. Physiological adaptations by
the human body are not modelled separately. This is because some physiological adap-
tations like shivering are reactions to extreme conditions which should not occur when
using our model to control the HVAC system. Other physiological factors (e.g. sweating)

are already covered by the human-body centered approach of the static model.

Psychological adaptations are hard to quantify (Liu et al., [2012b]). Because of this,
we restrict psychological adaptations to seasonal adaptations ag, which reflect different
expectations for the thermal environment by the user depending on the current season.
For example, during the colder seasons, people are expecting colder temperatures and are
therefore more willing to accept them (de Dear and Brager, |[2002). Further, as Auliciems
(1981)) suggest, repeated exposure to certain thermal environments, such as changing
weather during different seasons, reduces the thermal sensitivity to these conditions.
This is modelled by equation , which takes the current day of the year t, as an

argument:
27ty

365

During colder seasons, the equation yields negative values up to —1, while during warmer

(3.2)

Qs = COS

seasons it yields positive values up to values of 1. To adjust for conditions in the south-
ern hemisphere, the result can be multiplied with —1. As the amplitude of this effect

might vary between different people and latitudes, the values are scaled with a learned
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Figure 3.4: Adaptive part of the comfort model

IS

factor y,,. For example, in tropical regions where temperatures stay fairly constant
throughout the year we expect this scaling factor to assume a low value. This equation
only represents a simple approximation to represent different seasons. In practice, more
accurate equations (for example based on the hottest or coldest day of the year; devi-
ation of the average temperature; etc.) could be used. However, since the evaluation
data set does not span multiple seasons for single users, we did not focus on optimising

this equation.

Behavioural adaptations are modelled similar to how existing adaptive models do this:
as a linear relationship with the outside temperature Ty,¢. In contrast to existing mod-
els, the slope vy,, of this relationship is learned from user feedback. Further, the base

temperature is omitted, as it is already included in the core model as T™.

The overall adaptation a is calculated by adding up both user-corrected parts for seasonal

adaptations a,, and behavioural adaptations ay,.

3.2 Evaluation

In this section, we evaluate the accuracy of predictions made by the Bayesian Comfort
Model (BCM). The model’s accuracy is evaluated using data sets from the publicly
available ASHRAE RP-884 database and data collected in a deployment carried out by
us. The thermal properties of a typical house and HVAC system are chosen based on
data presented by Rogers et al.| (2013)).



Chapter 3 The Bayesian Comfort Model 53

3.2.1 Experimental Setup

To show the validity of our comfort model and emphasise the need for more personalised
models, we empirically evaluate it and, using simulations, we demonstrate our [HVAC]
algorithm’s energy saving potential when using the comfort model. We use data from
existing longitudinal studies from the ASHRAE RP-884 project and from a deployment
conducted by us. The ASHRAE RP-884 database is a standard database used to eval-
uate and create thermal comfort models. In the studies we chose, users were asked to
provide consecutive feedback on their thermal comfort using the ASHRAE 7-point scale.
Since the BCM works with continuous feedback scales, in our own deployments, we use
a modified version of the 7-point scale that uses continuous values ranging from -3 to 3
rather than discrete values. In an attempt to improve the interaction with the [IVAC]
system for the user and get more accurate feedback, we further introduce and test an
alternative comfort scale. Rather than asking users how they feel, potentially disregard-
ing that some users might prefer to feel slightly warm or cold, our desired change scale

asks users how they would like the temperature to change.

In addition to information about indoor climate conditions and user votes, the model
also requires data about outdoor weather conditions. To obtain this data, historical
records for the locations of the studies were downloaded from Weather Underground}
If no historical records for the year and location of a study were present, averages of
other years were used. This was the case for most data points in the Pakistan and Athens
data sets. For both, historical records from 2001 to 2014 were used. If no records for the
exact hour were present, we performed a linear interpolation using the previous and next
data point available. This was mainly the case for the city of Quetta in the Pakistan

data set where for most dates only data for every six hours was available.

We test the model’s accuracy with respect to the amount of training observations. Over-
all, we test our model on 576 different individuals in 10 different cities. The parameters
of each data set are shown in Table Overall, these studies cover a wide range of

scenarios like different seasons, ventilation systems and space types.

In the following sections we introduce the used data sets in more detail and explain the

design and setup of our deployment.

3.2.1.1 The ASHRAE data sets

Since many studies in the ASHRAE RP-884 data set were not concerned with consecutive
feedback of occupants, we can only use a small subset of the overall data. Overall, there
are three different studies that contain multiple data points per individual: a study

conducted in different cities in Pakistan, a study conducted in Athens, Greece and a

Weather Underground - http://wunderground. com


http://wunderground.com
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PAKISTAN ATHENS BAy ArRea, CA  SOUTHAMPTON

Subjects (s, w) 16, 15 31,0 271,220 11, 12
Observations 50-150 65 up to 7 up to 20
Time-span 1 week 10 - 60 days 5 days 14 - 28 days
Separate days 5-7 up to 10 up to 5 up to 5
Consecutive days yes some yes some
Feedback scale ~ {—3..3} {-3..3} [—3, 3] [—3, 3]
Ventilation NV HVAC NV & HVAC NV & HVAC
Space type both office office office

Table 3.2: Description of the different data sets. The Pakistan, Athens and Bay Area
data sets were taken from the ASHRAE RP-884 database, the Southampton dataset
was collected as part of this research and will be introduced in Section Subjects
means the number of occupants during summer (s) and winter (w), observations the
observation count for each occupant, separate days describes on how many separate
days data was taken for each user and space type the usage of the building (office or
domestic).

study conducted in the Bay Area, California, USA. The Pakistan data set contains
data for the cities of Karachi, Peshawar, Multan, Quetta and Saidu (Nicol et al., [1994).
We have omitted data from Saidu due to extreme values (e.g. indoor temperatures of
14°C during winter) that should not occur when using an automated or semi-automated
[HVAC] system. The Bay Area data set contains data for five different cities in the area:
San Francisco, Berkeley, Palo Alto, San Ramon and Walnut Creek. In each data set,
the indoor thermal environment is described by multiple values, of which we used the
operative temperature, relative humidity inside the building, date and time. Due to the
low observation count per individual but high number of different individuals, the Bay
Area data set was mainly used to show the general applicability for a wide range of

different users rather than to assess its final solution quality.

3.2.1.2 Thermal Comfort study in Southampton

To gather more data and be able to test our alternative feedback scale, in collaboration
with Stephen Snow, we conducted a deployment at the University of Southampton, UK,
to measure people’s thermal comfort levels. This study was approved by the Univer-
sity’s ethics department (ERGO number 20302). For this study, we developed posters
inviting people to log how they feel about their thermal environment. On each poster,
we attached a temperature logger measuring the temperature periodically, every 4-10
minutes. We deployed a total of 172 of these posters at various locations around (1)
a university library and (2) several offices on one floor of a naturally ventilated office
building. Each poster featured the title “How is the temperature?”, a large QR code and
a URL address unique to each different poster (see Figure . Scanning the QR code
or entering the URL into a browser linked the user to a simple web-interface, shown in
Figure where they could log their thermal comfort.
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How is the temperature?

I'm feeling fine
[

I want it to stay as it is
Poster ID: 100

i ?
HOW IS the Temperature : Do any of the following factors currently cause you

We want to know about your thermal comfort, discomfort?
Scan the QR code or visit the URL below to provide feedback on

temperatures in this building Cold draft

Heat from radiators

Heat from the sun

Other:

http://comfort.tips/uos/100

Please note that this form is for feedback related to

heating and thermal comfort only!
emperature Logger
For optimal results of this study we encourage you to
e provide feedback on a regular basis (at least 1 hour
apart).
By clicking submit you participate in this study and agree
to our cookie policy

Submit

If you have any questoins regarding this study contact email@email.con

(a) The poster encouraging to provide feed- (b) The web interface used to provide feed-

back. back

Figure 3.5: The user interface of the study

The user interface of the feedback page featured two different sliders showing both
feedback scales simultaneously. The first slider represented the ASHRAE 7-point scale,
the second our own desired change scale. As the users moved the sliders, the label above
the slider would adjust to the respective value on the scale. In case of the ASHRAE scale,
these labels were: I'm feeling [very cold, cold, slightly cool, neutral/fine, slightly warm,
warm, hot]. Under the assumption that some people might like it to be slightly warm or
cold, we added the desired change scale, asking users how they want the temperature to
change. This scale uses the following labels: I want it to [be much colder, be colder, be
a bit colder, stay as it is, be a bit warmer, be warmer, be much warmer|. Similar to the
ASHRAE scale, labels correspond to values between -3 and 3. Note that compared to
the ASHRAE scale, the desired change scale is inverted, meaning that negative values
roughly correspond to positive values on the ASHRAE scale and vice versa. In addition
to the temperature feedback, we allowed users to list other things affecting their thermal
comfort. Namely, those things were cold draught, heat from radiators and heat from the
sun. In addition to that, users were also given a comment box where they could write
what else caused them discomfort. Feedback was linked to individual users by assigning
each user an anonymous, unique ID with their first feedback that was stored in a cookie

in the browser used to provide feedback.

Leaving the decision when to report feedback to the participants likely biases the data
towards only containing users that were unhappy with the thermal environment. As a

result, user’s feedback tends to be on the more extreme end (values lower than -0.5 or
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higher than 0.5). This was especially the case in the library deployment as we will discuss
in the next two paragraphs. Due to this bias, the data collected in these studies should
not be used to assess the general satisfaction of occupants with the thermal environment.
However, since this bias is likely to occur in a real deployment of a smart thermostat
(where people only report feedback or manually adjust the temperature when they are
uncomfortable), this data provides a realistic scenario for the evaluation of our comfort

model.

Office deployment In the office deployment, we positioned 29 posters and three
humidity sensors in 8 offices and 3 hallway locations around a single floor of a natu-
rally ventilated office building with occupant-controlled windows and normal radiators.
Some of the smaller offices further featured portable, manually controlled air condition-
ing units. Posters were deployed over a two-week period between February and March
2016. Occupant numbers in offices ranged from 2 people (1 office) to 4-10 people (4 of-
fices) to more than 20 (3 large open plan offices). The offices were occupied by university
administrative workers, who had been informed by email in advance of the deployment.
Following the deployment, we further conducted semi-structured interviews with some
of the occupants to find out more about their experience with thermal comfort, the
deployment and its user interface. Since the interviews were mainly conducted by our
collaborator Stephen Snow and focused mainly on the user experience rather than the
actual comfort model the results are not included in this work. A more detailed de-
scription of the interview process and anlaysis of the results can be found in the original
publication (Snow et al., [2017).

Library deployment In the library deployment, we positioned 143 posters over all
5 floors of the library. At the time of the deployment, the library was mostly ventilated
with forced natural ventilation with some small areas being equipped with air condi-
tioning. The deployment lasted for 5 weeks between May and June 2016. Posters were
positioned to reach a representative geographic coverage for temperature and to be suf-
ficiently visible and accessible to occupants in most parts of the library. Similar to the
office deployment, three posters were equipped with humidity loggers. These posters
were positioned on the first, third and fifth floor of the library. The library was mostly
occupied by students, who due to ethical restrictions and wishes of the library were not
approached directly or informed via email about the study. For the same reasons, no

interviews were conducted following the library deployment.

Processing of results In order to use the data obtained from these deployments
for validating our comfort model, we had to process parts of it first. Since the model
requires multiple observations per user, we discard all users that did not provide enough

feedback to provide meaningful results. We set this threshold to be five observations or
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OFFICE LIBRARY

Votes logged 167 990
Overall Users 57 688
Eligible Users 12 23

Processable Users 12 11
Processable Votes 98 61

Table 3.3: Statistics of votes and users in the deployments

more. This value was decided based on evaluations on the ASHRAE data set, in which
our model requires around four training observations to outperform the other models.
Having five or more observations per user allows to train the model to that point while
still leaving at least one additional observation for evaluation. Users who have provided

five or more observations are considered to be eligible users.

In case of the library deployment, some additional filtering was required as it coincided
with both a heat wave in the UK as well as exam periods. The unusually high outdoor
temperatures together with high occupancy due to students preparing for their exams
lead to very high temperatures (28°C and higher) in some parts of the library. As a
result, a lot of users only provided extreme votes of 3 (ASHRAE scale) or -3 (desired
change scale). Such situations should not occur in a system controlled using our
algorithm and comfort model, since the model would likely suggest lower set points
after the first extreme vote. We therefore only considered users where extreme votes
would make up 50% or less of the feedback. Some users further provided feedback too
frequently, with votes just being minutes apart from each other, potentially leading the
algorithm to overfit to these conditions. We therefore average all votes that are less
than 15 minutes apart from each other. Users with five or more remaining votes after
this reduction are considered to be processable users. Table gives an overview over
how many users participated in each deployment, how many votes were logged and how

much of the data was processable in the end.

3.2.2 Evaluation Results

We benchmark our model’s prediction accuracy against the existing, standardised ASHRAE
comfort models described in Section

e Fanger’s static comfort model (PMV)

e The adaptive model

The approaches were compared based on the [root mean square error (RMSE)| of their
predictions for Tyote. While the PMV (similar to Tyete) for the static model was provided

with the data sets, for our own deployment we manually computed it using the equations
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provided in the ASHRAE standard. We chose values of 1.1 for the metabolic rate,
corresponding to the activity of “typing”. For the office deployment, the clothing level
was set to 1.0 (typical winter indoor), for the library deployment to 0.5 (typical summer
indoor). We use the model’s default value of 0.1 m/s for the air velocity, as this was not
measured in our deployment. As the adaptive model only outputs an optimal comfort
temperature Tip, instead of a vote Tyote, We need to calculate the vote. To do so,
we multiply the difference between the operative temperature 75, and optimal comfort

temperature T, by a thermal sensitivity (see equation .
Tvote = O'29(1—‘0p - Topt) (33)

We chose a value of 0.29 for the thermal sensitivity, which corresponds with values

learned by our model as well as values found by |de Dear and Brager| (1998)).

The data was divided by single individuals into separate subsets. For those subsets,
cross validation was performed using each single data point as an inference observation
in separate evaluation runs, using random data points from the remaining data as train-
ing observations. For each evaluation run, different amounts of training observations,
increased in steps of 1, were tested. For data sets with many data points per individual
(Pakistan and Athens), up to 20 training observations were used. For the Bay Area and
Southampton, the amount was increased up to the maximum possible observation count

of a user (number of observations - 1).

The evaluation for a single data point consisted of two steps. First, the model was
trained using the training observations. Following this, feedback for different evaluation
points was inferred and the squared error between the prediction and actual feedback
was logged. From all single results, the RMSE] and standard error o were calculated,

which will be discussed in the next section.

Figure shows the accuracy for predictions of Tyote achieved by our model, the [PMV]
and the adaptive model. One can see that after 3-5 observations, our model starts
outperforming existing approaches. The poor performance when having less than three
observations can be explained by inaccurate priors that were estimated manually by
us after the first initial simulations (see Table for the values chosen for the priors).
Table [3.4] compares shows absolute and relative accuracy gains obtained by our model
(after converging) compared to the and adaptive model. One can see that apart
from the Pakistan data set (see Figure , our model achieves significant accuracy
gains (7-55% smaller prediction error for Tyete) in comparison to the other approaches
(Figures and . A possible explanation for the low accuracy gains on the
Pakistan data set is that it contains many spurious 0 votes regardless of the thermal
environment, possibly due to the participants misunderstanding the trial protocol, which
hinders the learning process. A closer look at individual results further revealed that the

Pakistan data set contains single individuals for which the performance is extremely poor
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Figure 3.6: Prediction error for single individuals in Quetta (winter) dataset.

DATA SET PMV ADAPTIVE
Pakistan 27% (0.39) 5% (0.055)
Athens 31.2% ( ) 25.9% (
Bay Area (s) 23.8% (0.259) 29.2% ( )
Bay Area (w) 18% (0.216) 7.2%  (0.076)
(0.931) (0.406)
( (0.529)
( (

Southampton (ASHRAE scale) 45.8% 27%
Southampton (our scale) 55.4% (0.87) 43.1%
Overall 25.8% (0.314) 13.2%

Table 3.4: Accuracy gains (difference of the RMSE in parentheses) for the predicted
Tyote of our model vs. PMV and adaptive models after up to 20 observations

of Tyote from Tiore > 2), while for the remaining individuals the performance is
good. Figure shows single individuals of the Quetta data set. One can see that due
to the generally lower numbers in our model, the outlier has a much greater effect on the
average than with the other models. Looking at the actual data for such outliers revealed
that in similar conditions (often only a couple of minutes apart), these individuals often
only provided either extreme votes (-3 or 3) or zero votes. This indicates that there
might have been a misunderstanding of the trial protocol or some techincal errors in the

recording of users’ votes.

Further, our model seems to benefit from the continuous scale used in the Bay Area
data set. Despite having very limited data per participant (only 4-5 observations for the
majority of participants), the model reaches a similar solution quality (see Table
to the other data sets which required 10 or more observations to converge to similar
solution qualities (see Figure . In general, our model typically converges after 10
observations (see Figure , but starts outperforming the other models after 2 - 4

observations.

Figure [3.8] shows the different histograms of the final model parameters for different
subjects. Table shows the means and variances of the parameters and the priors
we chose for the variables. As convergence cannot be observed on the Bay Area and
Southampton data sets and therefore no final parameters can be determined, data from

these data sets has been excluded from the histograms.
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Figure 3.7: RMSE of the predicted vote depending on observation count (with 20 con-
fidence interval)

PARAMETER VALUE RANGE pu o PRIOR
T [19.86,25] 2202 099 21
Y» [0.006,0.96] 0.29 023 0.3
Y [2.6,3.37] 2.9 0.135 3
Ya [0.034,0.91] 0.61 025 0.5
Ya. [0.93,1.32] 1.04 0.046 1
Ya, [—0.43,0.063] -0.29 0.116 -0.3

Table 3.5: Learned parameter statistics (u = average, o = standard deviation)

Figure shows that the base temperatures 7™ ranges between values from 19°C to
25°C. The distribution of the learned parameters for T roughly resembles a Gaussian
distribution with a mean around 22°C. Those results indicate that while there seems to
be a general trend towards a neutral temperature of 22°C, many users still deviate from

this, making it worth learning this parameter.

In contrast to this, the influence of adaptive measures vy, does not seem to follow a
general trend but is distributed more evenly with values ranging between 0 and 1 with
a tendency to values of y, > 0.5 (see Figure [3.8b)). This underlines the importance
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Figure 3.8: Histograms of learned model parameters

of learning user specific values for this parameter as different users can be more or less
effective in adapting to their thermal environment. The influence of seasonal adaptations
Ya, does not vary a lot between different users in the data sets used. The learned
parameters’ values all lie in the narrow range between 0.95 and 1.1 (see Figure |3.8¢]).
This may be due to the strict separation of seasons in the used data sets where for
each individual only data for a single season is available. Behavioural adaptations v, ,
which were modelled with respect to the outside temperature Tg,, seemed to play a
more significant role with values mainly ranging between -0.4 and 0 (see Figure .
The mean, which is around -0.3, complies with values used in existing adaptive models,
where the factor is often chosen to be between 0.3 and 0.33. The negative values in our
model originate from the subtraction of the value from adaptive measures from the base

temperature, which inverts the factor.

With values ranging from 2.6 to 3.3 (see Figure , the influence of humidity yp
also underlies significant variations among different individuals. The same holds for the
users’ thermal sensitivities y,. Overall the values range between values of 0 and 1 with
an average of 0.29 (see Figure. Using the equation Tyote = Tyift- Yo With the average
value, one can calculate that one step on the ASHRAE 7 point scale is on average equal to
a deviation Ty of about 3.5°C of the actual temperature 75, from the optimal comfort
temperature Tpp. This is similar to the average of comfort bands for [NV] and [HVAC]
buildings defined by de Dear and Brager| (1998). Most thermal sensitivities however lie

in the interval [0.1, 0.4], which means that the temperature range for a single step on the
7 point mostly varies between 2.5°C and 10°C. This big range underlines the importance

of learning individual thermal sensitivities.
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Figure 3.9: Comparison of prediction error on Southampton data set by feedback scales
(with 20 confidence interval)

In addition to the general evaluation of the prediction accuracy of our model, we also
evaluate the effect different feedback scales have on the prediction’s accuracy. Fig-
ure [3.9] shows the model’s prediction accuracy using the standard ASHRAE 7-point
scale (Figure as well as using the desired change scale described in Section
(Figure . Despite the low number of participants and resulting large error, one can
see that using our desired change scale seems to lead to much lower prediction errors
in all comfort models. Our scale leads to reductions in prediction error of up to 22.7%
lower for the PMV, 18.4% lower for the adaptive model and 36.4% lower for our comfort

model.

A possible explanation for this is that, as explained in Section [3.2.1.2] the ASHRAE
scale does not correct for general users’ preferences of finding slightly warm or cold
temperatures preferable to a neutral environment. On average, the differences of users’
votes between the scales was 0.54, suggesting that users often don’t necessarily aim for

a “neutral” environment.

3.3 Summary

This chapter introduced the [Bayesian comfort model (BCM), a novel approach to a

personalised thermal comfort model that combines static comfort models with adap-
tive thermal comfort models and extends them to model the users more accurately.
The model was realised as a belief network, which allows to incorporate prior knowl-
edge and enables the model to adapt efficiently to the users’ preferences. The model
presented consists of a core network with components directly related to the optimal
comfort temperature, additional standardised components and additional individual-
centric components. The standardised components represent factors defined by static

thermal comfort models. Those factors are the operative temperature and humidity.
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The individual-centric parts represent adaptive thermal comfort but instead of focusing
just on the outside temperature, they also take seasonal adaptations and acclimatisation

into account.

Through empirical evaluations we showed that the [BCM]is able to adapt quickly and
efficiently to a user’s preferences. Predictions of a user’s votes on their thermal comfort
are overall 13.2% - 25.8% more accurate than those of established thermal comfort
models. We further proposed the desired change scale, an alternative scale for assessing
users’ thermal comfort levels to the established ASHRAE 7 point scale. Based on a
novel study of individual thermal comfort in work environments, we showed that the

desired change scale greatly improves the accuracy of the BCM]

The [BCM] introduced in this chapter has been published at the International Joint
Conference on Artifcial Intelligence (IJCAI 2015) (Auffenberg et al., [2015a). A deeper
discussion of the [BCM] the desired change scale and our own study on users’ thermal
comfort has been accepted for publication in the next special issue on Urban Intelligence
in ACM Transactions on Intelligent Systems and Technology (TIST) (Auffenberg et al.,
2017, in press).

In the next chapter, we introduce an [HVAC] agent that utilises the BCM] to minimise
energy consumption of the [HVAC] system while keeping a comfortable environment for
the occupants. To do so, we introduce a simple mechanism to aggregate the thermal
comfort preferences of different users. Using simulations partially based on real data,

we show the theoretical energy saving potential of the [IVAC] agent.






Chapter 4
A semi-autonomous HVAC agent

In this chapter we introduce a semi-autonomous agent that utilises the person-
alised thermal comfort model introduced in Chapter [3| to ensure a comfortable environ-
ment for the user. We show how this agent can utilise the comfort model to minimise
energy consumption of the system without trading off user comfort. We first
introduce a novel scheduling algorithm used by the agent to schedule the
based on energy consumption and users’ comfort ranges in Section We model the
problem as a linear program, allowing us to compute globally optimal schedules.
In a realistic scenario, the algorithm will usually have to satisfy several occupants simul-
taneously. Thus, in Section we introduce and compare two simple mechanisms to
aggregate the comfort ranges of multiple users. In Section using simulations based

on real data, we evaluate how much energy the [HVAC] agent is able to save.

4.1 An Optimal HVAC Control Algorithm

We now introduce our optimal HVAC control algorithm that uses the Bayesian Comfort
Model (BCM) introduced in Chapter [3| to minimise energy consumption of the HVAC
system while maximising user comfort. We model the HVAC scheduling problem as a
linear programming problem of creating a profile of set-point temperatures for different
time-slots of the day that minimises energy consumption. Using linear programming, we
are able to calculate optimal HVAC schedules that require as little energy as possible.
The set-point temperatures are constrained to stay within the users’ comfort ranges to
guarantee a comfortable environment. The algorithm makes use of forecast weather data

to predict comfort ranges and indoor temperatures.
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4.1.1 Modelling Heating and Cooling Dynamics of the House

To accurately plan set-point temperatures, the HVAC control algorithm needs to be able
to predict how switching on the heating or air conditioning affects the room temperature.
We built upon the simple model by Rogers et al|(2013) introduced in Section
In this model, the HVAC system and room are described by a leakage rate ® € R™ (in
1/hr) and a heater output R (in °C/hr). The leakage rate ® describes the rate at which
the indoor temperature adjusts to the outdoor temperature To,t. The heater output
describes by how many °C the indoor temperature increases per hour when the heater
is running at full power. Rogers et al. limit their model to heating only. To support
air conditioning as well, we added a third variable, the cooling rate C' (in °C/hr), which
describes by how many °C the indoor temperature decreases per hour when the air

conditioning is running at full power.

Most modern thermostats control the HVAC system by switching it on and off at varying
frequencies to achieve different intensities. For computationally more efficient optimisa-
tion, we simplify this behaviour and allow the HVAC system to run at fractions of its
full power. We therefore introduce a heating ratio p. € [0, 1] and cooling ratio pt. € [0, 1],
describing at what fraction of their maximum output the heating and air conditioning
are running. In practice, for a system where the heater or AC can either run or be
switched off, a ratio of 0.3 in a time interval would mean that the heater/AC runs for
30% of the time and is switched off for 70% of the time, effectively meaning that in
practice the heater AC is running at approximately 30% of its full capacity. As a result,
the indoor temperature T;l'f Lin the house at time ¢ + 1 with a heater output R and

cooler output C is calculated as follows:

air air

T =Th + [Pf« R—p, C—®(Th ~ chut)} At (4.1)

4.1.2 Formalization as a Linear Program

The main task of the [HVAC] control algorithm is to create an [HVAC]| schedule that
minimises the energy consumption of the [HVAC]|system, while keeping the indoor tem-
perature within the user’s comfort range to ensure a comfortable environment. We use
linear programming for this optimisation since it provides globally optimal results in

polynomial time, at the cost of having to express the problem as a linear combination.

For the formulation as a linear program, we add to the operative indoor
temperature Tgp, limiting its values to stay between the lower bound /b and upper bound
ub of the comfort range.

Ib <T,, <ub (constraint 4.2)
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By including user comfort in the form of a constraint rather than adding it as an ob-
jective on its own, the overall objective of the algorithm reduces to minimising only
the energy consumption. Modelling user comfort as a constraint rather than a second
optimisation objective prevents the algorithm from compromising comfort regardless of
how much it could improve the objective. In addition, it greatly simplifies the optimisa-
tion problem itself. To actually calculate the user’s discomfort, we would have to assess
the indoor temperature at any point ¢ in the optimisation. The indoor temperature at
point ¢ however depends on every previous indoor temperature, introducing recursive
calculations into the objective function. This is avoided when only minimising energy
consumption as the actual indoor temperature does not need to be evaluated at each

time step.

To be able to minimise the energy consumption, the algorithm needs to calculate the
energy usage of the HVAC system. The energy consumption is mostly proportional to
the heating ratio and cooling ratio. When heating at 50% of its maximum capacity,
the energy usage can be expected to be close to 50% of the heater’s maximum power
consumption as well. We therefore model the energy consumption as the heating ratio
or cooling ratio, multiplied by the maximum power consumption of the heater (£ in
kW) or air conditioner (£¢ in kW). The overall energy consumption y* (in kWh) in a

time-slot of length At ending at time ¢ is calculated as follows:

7= ok &+l £°) At (4.3)

In some cases, it can be beneficial or even necessary for the algorithm to plan ahead
and look at several time slots simultaneously. For example, when dealing with large
temperature gradients between inside and outside, the [IVAC]system might not be pow-
erful enough to keep the indoor temperature within the user’s comfort range. This issue
can be addressed by pre-heating or pre-cooling the house at an earlier time. Another
example are variable hourly price rates for energy that are becoming more common
due to the development of the smart grid. The algorithm should be able to pre-heat
or pre-cool the house during times when energy is cheap. To allow the algorithm to
plan ahead, we consider several time slots simultaneously and minimise the aggregated

energy consumption. The resulting objective is shown in equation

min(z Yt) (4.4)
t=0

While the algorithm currently only factors in user comfort and energy savings, it can be
easily extended to incorporate other measures such as space occupancy or variable energy

prices. Space occupancy can easily by incorporated by removing the comfort constraints
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for the indoor temperature at times when the space is predicted to be unoccupied. To
allow the algorithm to factor in variable energy prices, it is sufficient to multiply each
single energy consumption with the energy price p; at that time slot. The objective

function for minimising cost is shown in equation

min(z Yt Pt) (4.5)
t=0

By design, the algorithm only considers a single comfort range, regardless of the number
of occupants. In the next section, we introduce different mechanisms for aggregating

multiple users’ preferences into a single comfort range for the algorithm.

The full linear program looks as follows:

n

min(3" (oL € + gt €) A) (4.6)
t=0
vt,Ib <T, (fp < ub (constraint 4.7)

where T¢, = T}, and T}

air air

is calculated as shown in equation

4.2 Aggregating preferences of multiple occupants

In practice, most houses will be occupied by multiple occupants simultaneously. Each of
these occupants will have their own configuration of the comfort model, resulting in each
occupant having their own personalised comfort range. As the algorithm only optimises

for a single comfort range, we need to merge all occupants’ comfort ranges. We evaluate

two simple comfort compromisers that aggregate comfort ranges: the joverlap comfort]

[compromiser (OCC)|and the javerage model parameter compromiser (AMPC)|

The main aim of the[OCC]is to maximise user comfort, regardless of energy usage. The
[OCC] uses the minimum of the upper bounds and the maximum of the lower bounds
to get the area in which all comfort ranges overlap. If there is no clear overlap (lower
bound > upper bound), the next closest value to the respective bounds are taken until
the lower bound is less than the upper bound. If the overlap is smaller than 0.5°C, we
expand the comfort range evenly on both sides to a width of 0.5°C. This is to aid the
algorithm with the optimisation, as wider comfort ranges allow for more pre-heating or
pre-cooling. Algorithm [1| shows how the lower bound 1b and upper bound ub of the

compromise comfort range are calculated with the [OCC|
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Algorithm 1 Pseudocode for calculating [OCC]|
LB <« users.lowerBounds()
UB < users.upperBounds()
Ib = max LB
ub = min UB
while lb > ub do
LB + LB\ {Ib}
UB < UB\ {ub}

Ib = maxLB
ub = min UB
end while

if ub —1b < 0.5 then
Ib = mean(lb, ub) — 0.25
ub = mean(lb, ub) + 0.25
end if

The aggregates user parameters by creating a single comfort model for all users.
In our simulations, this is done by creating a new instance of the and setting
the model parameters to the average of all occupants’ model parameters. However,
in practice, a similar result could be obtained by simply having all occupants provide
feedback to a shared comfort model instead of a single comfort model per occupant.
The further gives some degree of control over the energy usage vs comfort trade-
off. When the thermal sensitivity /user vote factor v, is increased, the resulting comfort
range gets narrower and user comfort increases. Decreasing the factor leads to greater

energy savings at the cost of users’ comfort levels.

4.3 Evaluation

To assess the theoretical energy savings achievable by our algorithm in combination
with the comfort model and different comfort compromisers, we simulate households
and their [HVAC]| systems. We evaluate two main metrics: energy consumption and user
discomfort. Energy consumption is calculated as the product of running times of the
heater and air conditioning, multiplied by the maximum energy consumption of the
heater and air conditioning (similar to equation [£.3)). We chose values of " = 8kW and
&€ = 12.5kW for the maximum energy consumption of the heater and air conditioning
respectively. These values were chosen to match real energy consumption values observed
in the Pecan Street data set, a data set that provides ousehold energy data disaggregated

by various appliances. The algorithm was implemented using the CPLEX solver.

Running times are calculated by multiplying the heating and cooling ratios (p% and p') at
time t with the length of a time step At. User discomfort is calculated as the aggregated
discomfort of each user over each time step of the simulation. More specifically, user

discomfort for a time interval ¢ is calculated by multiplying the deviation of the indoor
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temperature from the user’s comfort range with the length of the time interval A¢. We
simulate 1000 households. We vary the amount of occupants per household between
values of 1 occupant to 6 occupants per household. We add an extra value of 2.4
occupants per household, which is the average number of occupants per household in
OECD countrie&ﬂ The fractional value of 2.4 occupants per household is achieved by
simulating 60% of the households with 2 occupants and the remaining 40% of households

with 3 occupants.

Users are simulated using random configurations of our comfort model. In more detail,
the parameters are drawn from the distributions shown in Table [3.5] To cover a variety
of climates, houses were placed in different parts of the world and weather of that par-
ticular location was used. Specifically, households were simulated in the following cities:
Austin, Texas, USA; Brussels, Belgium; Cape Town, South Africa; Moscow, Russia;
San Francisco, CA, USA; Seattle, WA, USA; Shanghai, China; Sydney, Australia. The
simulation covers the time period between 15 of January 2014 to the 315 of December

2015, covering all seasons.

We define two main benchmarks for our model: a [fixed set point (FSP)[|HVAC] system
and a [fixed comfort range (FCR)|system. The emulates a typical thermostat that

keeps the indoor temperature as close as possible to a user defined set point. As real

thermostats usually fluctuate slightly around the set point temperature, we allow the
indoor temperature to deviate by up to 0.2°C from the set point temperature. This
is realised by defining this as the lower and upper bounds (Ib and ub) of the comfort
range (see Section . The is mainly used to demonstrate the benefits of
using a (wider) range of temperatures (such as comfort ranges) over a single set point
temperature. Similar to the [FSP] the [FCR] is implemented by setting the lower and
upper temperature bounds of the algorithm to static values. For the we allow a

0.5°C deviation from the base temperature.

The set point temperature for an individual household is the daily average of the tem-
perature maximising user comfort. That means that for each day, we calculate a single
set point maximising the comfort of the household’s users. This is done using a linear
program similar to the one introduced earlier in this chapter. This set point is calculated
for each day of the simulation. The household’s set point for the actual evaluation is set
to the average of the daily optimal set points. We use the average of each day since it

is computationally not tractable to optimise the set point for the whole year.

4.3.1 Results

Figure[d.T|shows the evaluation of the[HVAC|agent’s energy saving potential and comfort

achievements with respect to the number of occupants in the building. One can see that

"Numbers taken from the OECD family database http://www.oecd.org/els/family/database.htm
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the energy saving potential of the [DCC| highly depends on the number of occupants
(see Figures and . The more occupants, the lower the energy savings. In case
of cooling, with 4 or more occupants the [DCC]| even uses more energy than the [FCR]
This can be explained with the shrinking size of the resulting comfort range. With more
occupants, overlaps between all their comfort ranges are likely to be smaller, limiting
the algorithm’s ability to let the indoor temperature follow the outdoor temperature.
The [AMP(] is more stable with regards to the number of occupants. This is because
the average thermal sensitivity/vote factor, which directly determines the width of the
comfort range is unlikely to vary significantly as more occupants are added. For two
or more occupants, the AMPC] therefore saves significantly more energy than the other

approaches.

When comparing the discomfort with different comfort compromisers (see Figure m
one can see that compromisers utilising the comfort model can lead to
significant reductions of discomfort when only a single occupant is present. Discomfort
in this case is defined as the average hourly deviation of the indoor temperature from a
user’s comfort range. When only dealing with a single occupant, the hourly discomfort
is reduced to almost zero. One can see that discomfort is slightly higher (0.0161°C'/h)
for a single occupant with the m (Figure as compared to the This is
most likely due to the artificial expansion of the comfort range to be at least 0.5°C wide.
Starting from 2 or more occupants, the OCC| however outperforms the AMPC| In a real
setting this difference is likely too small to be noticeable by users. As the number of
occupants grows, the[AMPC|even causes more discomfort than the static [FCR]and [F'SP]
As we show in Section this can be controlled by modifying the thermal sensitivity

parameter.

4.3.2 Controlling comfort vs energy savings with the AMPC

One advantage of the [AMPC] is that it offers simple control over the prioritisation of
comfort vs energy savings. This can be done by scaling the thermal sensitivity/vote
factor v, of the comfort model. Reducing the factor results in wider comfort ranges
which increase discomfort but reduce energy consumption. Increasing the factor results
in narrower comfort ranges, decreasing discomfort at the cost of an increase in energy
consumption. Figure shows how the energy consumption changes with different
scaling factors. We set the occupant count to a fixed value of 2.4, which represents
the average number of occupants in OECD countries. One can see that especially for

heating, the increase in energy consumption appears to flatten out for larger values.

Figure [4.3] compares the running times of heater and cooler of the compared to
the other compromisers. One can see that the [AMPC]| has consistently lower running
times than the and [FCR] Compared to the[OCC] heating and cooling running times

are lower up to a scaling factor of 1.3.
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Figure 4.1: Evaluation of the HVAC agent’s performance using different comfort com-
promisers

108 106
1 | | | |
§ —eo— Heater /g
é 095 | | Cooler -7 g
E )
-6
£ 09 g
& &
o0 5 oo
.2 0.85 g
: :
= = =
0.8 | =
g g
I~ F3 9
< 0.75 3
I T T T T T T T

T T
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
v, scaling factor

Figure 4.2: HVAC running times depending on the vote factor for +, (with 2.4 occupants)



Chapter 4 A semi-autonomous HVAC agent 73

1 1 1 1 1 1

InocclarsPlInFCR liocclirFsPIOFCR
Q [ 9}
i e
= =
60 o0
g =
2 ‘g
g =
3 3
~ ~
£ 2
= =
= =

0.6 0.8 1 1.2 1.4 0.6 0.8 1 1.2 14
7, scaling factor 7, scaling factor
(a) Heater (b) Cooler

Figure 4.3: Heater and cooler running times of the AMPC relative to the other ap-
proaches

|
) IrocclirsploFCR

14 - - 3 |
< &
o) =
0.8 -8
+ 2

3 A 2 a
£ 06| L
g =
5 [5]

0.4 | | Qﬁ 1 .

]
T T T T T
0.6 0.8 1 1.2 14 0.6 0.8 1 1.2 14
7o scaling factor v, scaling factor
(a) Discomfort vs vote scaling (b) Discomfort relative to AMPC

Figure 4.4: Evaluation of [AMPC|with varying -, scaling factors

Figure shows how the vote scaling influences the discomfort levels of the occupants.
One can see that, as expected, higher vote scaling factors reduce discomfort. However,
the discomfort seems to flat out with higher values. Figure[4.4b|shows how the discomfort
achieved with the [AMPC| compares with the other compromisers. One can see that for
[FSP|and [FCR] a factor of about 1 is needed to achieve similar discomfort levels. For the
[OCC] parity is achieved with a factor of about 1.3. With scaling factors greater than
1.3, the[AMPC]is able to outperform even the[OCC|but at the cost of higher heater and
cooler running times (see Figure . Figure shows how the scaling factor influences
the discomfort with respect to the occupant count. One can see that lower scaling factors
have a significant impact with three occupants and less. With three or more occupants,

the impact of the scaling factor stays nearly constant.
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4.4 Summary

In this chapter we introduced an [HVAC| agent that utilises the [BCM] introduced in
Chapter [3] and an optimal [HVAC] control algorithm to minimise energy consumption
while retaining a comfortable environment for the occupants. The control algorithm
models the problem of scheduling heating and cooling times as a linear problem. This
allows the solver to find a globally optimal solution to the problem, meaning that the
heating schedules obtained from the algorithm are optimal with respect to our objective
function. To allow for efficient optimisation and the representation as a linear problem,
we limit the objective to simply reducing energy consumption. Instead of adding a
second objective for user comfort, we add a constraint limiting the indoor temperature

to stay within the comfort range.

To be able to handle multiple occupants simultaneously, we introduce two comfort com-

promisers that aggregate different occupants’ comfort preferences. The
[fort compromiser (OCC)| aggregates different occupants’ comfort ranges by finding the

biggest overlap between different comfort ranges. The |average model parameter compro-|
[miser (AMPC)| utilises the to aggregate preferences. Instead of only aggregating

comfort ranges, it aggregates different occupants’ comfort models directly into a single

comfort model adjusted to the needs of all occupants. This is done by taking the average
of all occupants’ model parameters and feeding those into a new instance of the
In a real-world setting where it might be difficult to collect and store each user’s model
parameters, a similar effect could be achieved by letting all occupants submit feedback

to the same model instead of a single model for each occupant.

Based on simulations, we show the energy saving potential of the algorithm in combi-

nation with the [BCM] and the aforementioned comfort compromisers. We show that
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both comfort compromisers outperform traditional strategies such as the
(FSP)| and [fixed comfort range (FCR)| with respect to both, energy saving and user

comfort in most cases. In addition, we show how that when using the [AMPC] scaling

the vote factor 7, of the can be used to control the user comfort vs energy savings
payoff.

The contents of this chapter have been accepted for publication in the next special
issue on Urban Intelligence in ACM Transactions on Intelligent Systems and Technology
(TIST) (Auffenberg et al., 2017, in press).

In the next chapter, we extend the [HVAC] control algorithm to incorporate [DSM| mea-
sures into its optimisation to shift heating and cooling times to approximate arbitrary

load profiles.






Chapter 5

Comfort-Based Load Shifting

In this chapter, we extend the agent introduced in the previous Chapter [ to
incorporate signals into its computation and perform load shifting based on these
signals. We first introduce a centralised version of the algorithm that is able to calculate
globally optimal results. Due to scalability issues with the centralised algorithm, we
introduce a distributed version of the algorithm. Based on simulations using real data,
we evaluate the load shifting potential of both versions of the algorithm. We do so with

respect to energy usage, number of occupants and peak reduction capabilities.

5.1 Comfort-based load shifting

Our comfort-based load shifting approach consists of three separate steps, which are

carried out on a daily basis:

1. Collecting households’ estimated profiles: Using the[BCM] households assess
their comfort ranges, estimate their [HVAC| usage for the next day and send the

resulting expected load profiles to the grid operator.

2. Creating a target profile: Using the profiles from step 1, the grid operator
creates a target profile denoting a desirable profile meeting desirable characteristics

like maximising renewable energy use or reducing peaks.

3. Optimising HVAC schedules: Using the target profile, either the grid operator
(centralised version) or the households (decentralised version) run the algorithm
presented in this work to calculate adjusted [HVAC]| schedules. The schedules are
optimised to approximate the target profile while still ensuring indoor tempera-

tures to stay within comfort ranges calculated in step 1.

7



78 Chapter 5 Comfort-Based Load Shifting

This work mainly covers steps 1 and 3. Since in practice the creation of target profiles
will depend on a multitude of grid operator specific objectives, we only provide a simple
approach for step 2 (see section . This approach calculates target profiles that
aim to achieve a flat load profile which allows maximum utilisation of existing grid
infrastructure. In the remainder of this section we introduce our comfort-based load
shifting algorithm for HVAC loads. This algorithm can be used to estimate a globally
optimal baseline HVAC load profile minimising energy consumption for each household

(step 1) as well as to optimise the HVAC schedule to fit a given target profile (step 3).

We model the demand response problem as an [MIQP] optimising the predicted interior
temperature of each house to keep energy usage below a certain level and to minimise
the quadratic deviation from the target profile provided by the energy supplier. Using
the quadratic deviation ensures that going over the target is penalised equally to staying
below. This allows target profiles to be tuned to, for example, maximise utilisation of
renewable energy sources as opposed to only reducing peak energy consumption. Interior
temperatures are modelled using the same, modified version of the model by [Rogers et al.
(2013) introduced in Section Similar to the algorithm introduced in Section
the optimiser is constrained to keep the interior temperature within occupants’ comfort
ranges. Further, the maximum temperature change per time interval is limited by the

maximum output power of the heating and AC systems used in a house.

In the following, we first describe the role of target profiles, which are central to our
algorithm. We then formalise the algorithm as an [MIQP| and show how to run the

algorithm in a distributed manner, locally for each household.

5.1.1 Target Profiles

Our algorithm uses target profiles instead of penalty profiles. As opposed to a penalty
profile defining different penalties (such as higher energy prices) for each time slot, a
target profile w defines a specific target w! for each time slot t. These targets represent
the most desirable actual load during a slot ¢, accounting for factors such as renewable

energy production or grid and production capacities.

As opposed to penalty profiles, target profiles give more direct control over the resulting
load profile. As pointed out by Ramchurn et al. (2011), penalty profiles have the risk
of not scaling well. For example, if all households react similarly to the same pricing
incentives, a rebound effect can develop, creating new peaks at times when energy is
cheap (Palensky and Dietrich} 2011)). Finding penalty profiles/pricing rates that prevent
rebound effects can be challenging. Target profiles can prevent rebound effects since
deviations from the target in either direction (going over or staying under) are penalised
equally in the utility function. As a result, target profiles are easier to control since one

can always expect the algorithm to get as close as possible to the given target.
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VAR DESCRIPTION
74 energy consumption of house h at time ¢
I'¥  aggregated energy consumption at time ¢
G aggregated energy consumption
Gmin lowest possible aggregated energy usage
w target profile
wt  target load at time ¢
Aw!  aggregated quadratic deviation at time slot ¢
Q) aggregated quadratic deviation from target
l; aggregated load of target profile w
I, aggregated load of house h
b extra energy usage scaling factor
T ,’; indoor temperature in house h at time ¢
b}, lower bound of comfort range in house h at time ¢
ubz upper bound of comfort range in house h at time ¢
Tt outdoor temperature at time ¢
pl heating ratio at time ¢
pt cooling ratio at time ¢
®;, leakage rate of house h
R;,  heater output of house A
C},  cooler output of house h
»  heater power consumption
£, AC power consumption

Table 5.1: Nomenclature

Further, target profiles are more flexible with respect to the load. With target profiles,
different types of loads or even appliances can be provided with different target profiles.
This means that the profile can take limitations of load type or appliances into account.
While target profiles for [HVAC] loads are relatively unrestricted due to the possibility
of highly automating the process, target profiles for manually used appliances such as
dishwashers, washing machines and tumble dryers can be tailored towards accommodat-
ing the users (for example by not asking for an increase during the night), increasing

the likelihood of users actually following the profile.

The main downside of target profiles is that they usually require forward-planning (for
example for the next 24 hours). This planning requires accurate forecasts of energy
produced (especially by renewable sources) and expected demand. Inaccuracies in these
forecasts can lead to undesireable load profiles when using target profiles. Other ap-
proaches, such as variable price rates with real-time pricing genreally allow for more

rapid adjustments to current conditions.
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5.1.2 Modelling HVAC-based DSM as an MIQP

In this section we introduce our[DSM]algorithm. We first describe how heating dynamics
in the house are modelled. This is followed by a formalisation of the DSM problem as an
The formalisation shows a centralised version that provides an optimal solution
to the DSM] problem. We then show a mechanism to distribute this algorithm.

5.1.2.1 Centralised MIQP formulation

The main task of the DSM algorithm is to compute heating and cooling ratios for each
house at every time step ¢t so that the deviation from the target profile is minimised.
To guarantee a comfortable environment for the user, the indoor temperature T is con-
strained to stay within the comfort range. The comfort range of a household A at time
t is defined by a lower bound Ib} and upper bound ub},, together describing the temper-
ature band that is considered to be comfortable for the user. The indoor temperature

T, ;i of a house h is constrained as follows:
b}, < T} < ubl, (constraint 5.1)

In addition to keeping the indoor temperature within the comfort range, the [DSM]
algorithm should try to choose heating and cooling ratios that minimise the overall
energy consumption. To calculate the actual energy usage of a house h for a time
interval At ending at time t, the heating and cooling ratios get multiplied with the
respective maximum energy usage of the heater or air conditioning unit. The maximum
energy usage of the heater is described by &} (in kW), the maximum energy usage of
the air conditioning by &f (in kW). The energy consumption between two time steps for

house h is therefore calculated as follows:

Vi = (Pl &, + oL &) At (5.2)

The overall energy consumption I'* (in kWh) across all households for an interval ending

at time step ¢ is defined as the sum of all households’ consumption-values:
=>4 (5.3)
h

To assess how close the resulting profile I' is to the target w, we calculate the deviation
Aw' (in kWh) between the two profiles. The deviation at a time step ¢ can be calculated
as follows:

Aw' = |w' — I‘t} (5.4)

Using these calculations, we can formulate two objectives for the optimiser, the overall

energy consumption and the overall deviation from the target profile. The overall energy
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consumption G (in kWh), shown in Equation is the sum of the energy consumption
of all time steps. We define the overall deviation from the target profile  (in (kWh)?) as
the sum of the quadratic deviation from all time steps (see Equation . The quadratic
deviation is used to penalise larger deviations from the target more and to simplify the

optimisation. The resulting objective for the optimiser is shown in equation [5.7]
G=> T (5.5)
t
Q=3 Awt (5.6)
t

min (G + Q) (5.7)

There are a couple of issues with this objective function. The first issue is that these two
objectives tend to be conflicting. Approximating a target profile will require some pre-
heating or cooling which usually goes against the outdoor temperature. This however
increases the temperature gradient between indoor and outdoor environment. Larger
gradients mean increased heat transfer between outdoor and indoor environment, in-

creasing the amount of energy required to maintain the indoor temperature.

Since the base profile minimizes energy consumption, adding the objective of minimising
the target deviation will likely increase energy consumption. A simple way to control
extra energy used for load shifting is to take a weighted sum of the objectives. This
however can be troublesome due to the two objectives scaling differently. While the
energy consumption (in kWh) scales linearly, the target deviation scales quadratically
(in (kWh)?). This means that different scales (e.g. different number of households in-
volved) require different weighting factors. Another issue is that the algorithm’s ability
to approximate the target profile is influenced by other factors, such as the outside tem-
perature. This means that the same weighting of the objectives might yield different
results depending on these factors. This bears the risk of unexpected, large increases in

energy consumption during some days.

To address these issues, we modify the objective function to only minimise the devia-
tion from the target profile. Energy consumption is controlled by adding a constraint
restricting it to stay below a fixed threshold. The threshold is computed relative to the
energy consumption of the profile with the lowest possible energy consumption Gip.
This gives full control over how much extra energy can be used for load shifting, regard-
less of the conditions. The minimum energy profile Gy, can be calculated by running a

separate optimisation where the target deviation is removed from the objective function:
Grmin = min(G) (5.8)

Using this, the load shifting optimisation problem can be simplified to reducing just the
target deviation (min(€2)) while energy consumption is controlled using |constraint 5.9
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which ensures that energy consumption stays below the specified bounds. The bound
is specified by variable b (> 1), which defines how much energy can be used relative to
Gmin- A value of b = 1 for example implies an equal amount of energy while b = 1.05

implies a 5% increase in the maximum consumption.

Z 't < b Guin (constraint 5.9)
t

5.1.2.2 Distributed MIQP formulation

While the algorithm presented so far gives optimal results, its runtime and memory
requirements scale exponentially with the number of households involved. To have a
real impact on grid load, demand side management however has to be applied to a
large number in the range or several thousands to hundreds of thousands of households,
rendering the centralised algorithm infeasible. Along with scalability issues, a centralised
algorithm also requires sensitive user information like individual comfort preferences to
be collected. These issues can be addressed by distributing the algorithm to individual
households.

A simple way of distributing the algorithm is to let households optimise their own load
profiles individually. While only giving locally optimal results for each single household,
the aggregated results of the distributed algorithm get close to the optimal solution as we
will show in Section To run the algorithm for a single household, the target profile
needs to be scaled down to match the household’s consumption. The target is scaled by
the ratio between the aggregated predicted load of a household [;, and the aggregated
load of the target I; (see equation . The aggregated predicted load is obtained by
multiplying the aggregated load of a house’s minimum energy profile (similar to Gyin)
with the extra energy usage factor b (see equation . The optimisation objective for
a household h can be expressed as shown in equation subject to (constraint 5.13]).

=) o (5.10)
Ih=1b min(Z*yZ) (5.11)

min<z (ll’tlwt - 7;;)2) (5.12)

t

Z h<b min( Z ’y};> (constraint 5.13)
t t

5.2 Empirical Evaluation

To evaluate how our [DSM] algorithm performs in different areas, we empirically test

it using simulations based on real data. We use the CPLEX optimiser for solving the
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[MIQP] Household energy usage data is taken from the Pecan Street Dataport. This
data set contains usage data for several hundred households in the United States over a
period of several years. The data features minutely intervals with energy usages being
broken down by different appliances. Data is aggregated into intervals of 15 minutes
length. We chose 15 minute intervals to allow for fine-grained control while taking into
account slow room response to changes in [HVAC] control. In addition to aggregated

intervals, the overall usage excluding the usages for heating and cooling is calculated.

Users’ comfort ranges are modelled using the thermal comfort model described in Chap-
ter [l Different users are generated by drawing model parameters randomly from the
distributions mentioned in Table For most of our evaluations, we use the
(see Section with a vote scaling factor of 1.3. The scaling factor was chosen to
produce comfort levels similar to the [OCC]

5.2.1 Benchmark

We compare our [DSM] algorithm to two benchmarks. The first benchmark is the [HVAC]
agent introduced in Chapter [ Load profiles obtained from this agent minimise energy
consumption without performing any load shifting. This benchmark is used to obtain
the lower bound of energy consumption to evaluate the relationship between load shifting
capabilities of our algorithm and extra energy usage. The second benchmark compares
state-of-the-art approaches using a (Hubert and Grijalva, [2011} |Lu, 2012; Ramchurn
et al.; 2011). The set point is set to 23°C. We allow the temperature to deviate by 0.2°C
in either direction. We assess how using the [BCM] changes the energy consumption and

its effect on the peak reduction capabilities of our algorithm.

5.2.2 Simulation Setup

Our algorithm and the effects of different comfort models, occupant counts and en-
ergy consumptions are evaluated by simulating individual households and their [IVAC]
systems. A household h is defined by the parameters listed in Table with values
randomly drawn from the uniform distributions shown in Table These values were
chosen so that simulated [HVAC| energy consumptions match up with real [IVAC| energy

consumption data found in the Pecan Street data set.

The simulation covers the time span from January 2014 until the end of December 2014
to include all seasons. The time resolution is 15 minutes. The algorithm runs on a
daily basis, each time planning ahead the next 24 hours. This means that each day,
per household 96 different set point temperatures are calculated. Since the majority
of households in the Pecan Street data set are located in Austin, TX, we base our

simulations on this area. To get realistic consumption data, we only consider households
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VARIABLE MEANING DISTRIBUTION
Ry, heater output U([1.75,2.25])
Ch, cooler output U([1.25,1.75])
o} leakage rate U (]0.02,0.03])
& heater power (kW) U([6,8])

& AC power (kw) U(]9.5,15.5])

Table 5.2: Thermal properties of a house

with electric HVAC] systems, which leaves a total of 225 different households. Weather

data for this area was downloaded from Weather Underground[ﬂ

To create realistic scenarios for the simulation, target profiles are created based on real
usage data of the simulated households. The target profile for HVAC loads is chosen to
complement the profile of non-HVAC loads so that the combined profile approximates a
flat line. This is done by creating a flat profile where each value is equal to the maximum
energy usage of the real usage data. We then subtract the real usage data from this flat
profile. The resulting profile is then scaled so that the integral of this profile matches

the expected overall energy consumption of the HVAC systems in the simulation.

5.2.3 Evaluation Results

We evaluate the performance of the algorithm in a number of ways. First, we investigate
how the extra energy usage factor b influences the algorithm’s ability to approximate
the target profile. We then evaluate the influence of the number of occupants per
household on the algorithm’s ability to reduce the target deviation. This is followed
by an evaluation of the algorithm’s ability to reduce peaks in demand. We then assess
seasonal effects on the algorithm’s load shifting potential, followed by a brief example

showing how to use target profiles to improve the utilisation of renewable energy sources.

5.2.3.1 Extra Energy Usage

The two objectives of minimising energy consumption and minimising the target devia-
tion are conflicting as pre-heating or cooling the house usually increases the temperature
gradient between inside and outside, resulting in higher losses to the environment. Con-
sequentially, to be able to perform load shifting, more energy needs to be used. It is
likely that at one point the drawbacks of increasing the energy consumption will out-
weigh the benefits of shifting demand. To be able to decide on a suitable upper bound
for the amount of extra energy used to shift loads, knowledge about the relationship

between the two objectives is required.

"Weather Underground http://www.wunderground. com/
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Figure p.1]shows the algorithm’s load shifting capability with respect to the extra energy
usage factor b. The minimum energy baseline (b = 1) is equal for the distributed and
centralised case as the energy consumption objective is additive with respect to indi-
vidual households, resulting in identical profiles between the centralised and distributed
version. This means that results with respect to the extra energy usage factor b are

directly comparable between the centralised and distributed version.

The results show that allowing the algorithm to consume more energy greatly increases
its ability to reduce the target deviation. The improvement rate however reduces with
growing values for b. The algorithm further benefits from using the more sophisticated

[BCM]as opposed to the simple[FSP| Using the on average the distributed version
leads to 39.9% (up to 53% in some cases) closer approximations of the target profile, the

[OCC]to 29.75% (up to 40% in some cases) respectively. The in general performs
slightly better than the[OCC|] We believe that this might be due the generally smoother
changes of comfort ranges. In some cases, for example when comfort ranges stop to
overlap, the comfort ranges between two consecutive time steps can change significantly.
Such jumps in the comfort range can limit the algorithm’s ability to pre-heat or cool

the house.

One can see that the distributed version in general achieves slightly worse results than the
centralised version. The centralised version using the gets 12.8% (up to 15.4% in
some cases) closer to the target than the distributed version. For the the average
gap between centralised and distributed version is a bit smaller with the centralised
version getting 8.9% closer to the target than the distributed version. We believe that
this is because the central algorithm cannot exploit different comfort ranges. On a hot
day, for example, the centralised algorithm can exploit the fact that some houses can be
pre-cooled further than others. With the the main difference between households
are the thermal properties of the house. However, one can see that using the [FSP} the
centralised version benefits more from larger values for b. With a value of b = 1.2, the

centralised version gets 19.75% closer to the target than the distributed version.

5.2.3.2 Occupant Count

As opposed to algorithms using a [FSP| algorithms using personalised thermal comfort
models are affected by the number of occupants in a household. The more occupants,
the harder it becomes to find a compromise between keeping users comfortable, saving
energy and shifting demand. We evaluate what impact the amount of occupants per
household has on the algorithm’s load shifting ability depending on the comfort model
and compromiser used. For the evaluation, we vary the occupant count between 1
and 5 in steps of 0.5. Half counts are achieved by letting half of the households have
x occupants and the other half z 4+ 1. For example, to obtain an occupant count of

2.5, half the households will be assigned 2 occupants whereas the other half will be
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Figure 5.1: Reduction of target deviation compared to energy optimal profile (with 20
confidence intervals)

assigned 3. As the energy consumption is based on the minimum energy consumption,
energy consumption scales similarly as for the [HVAC| agent introduced in Chapter [4]
See Section for an evaluation of energy consumption with respect to the comfort

compromiser used and occupant count.

As shown in Figure the number of occupants has varying effects the algorithm’s
ability to reduce the target deviation depending on which comfort model or comfort
compromiser is used. In case of the AMPC], the amount of occupants seems to have no
significant effect on the algorithm’s load shifting ability. In contrast, when using the
[OCC] the algorithm’s performance suffers the more occupants are present. We believe
that this is due to the same effect described in the previous section. As more occupants
need to be satisfied at the same time, jumps in the comfort ranges resulting from the
[OCC] become more likely.

5.2.3.3 Peak Reduction

To assess the algorithm’s peak reduction capability, we measure by how much the time
the load goes over a certain threshold can be reduced. We define peaks as intervals with
unusually high loads compared to other intervals during the same day. This definitions
allows to class peaks by percentiles. For example, 99th percentile peaks describe the 1%
of intervals with the highest load. A 10% reduction in the 99th percentile would mean
that the aggregated load of intervals in the 99th percentile was reduced by 10%.
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Figure 5.2: Influence of occupant counts on the load shifting potential for b = 1.1 (with
20 confidence intervals)

We set the threshold to different percentiles of the actual load values. Actual load values
are non{HVAC] loads plus [HVAC]| loads resulting from the minimum energy profile Gpin
without load shifting. We compare the peak reduction capabilities of the distributed
algorithm using [AMPC]| with a vote scaling of 1.3 and a [FSP} Figures and
show that using the more sophisticated comfort model with the AMPC] allows for much
greater peak reductions. The increased peak reduction capability is mainly due to the
larger comfort ranges and the resulting larger load shifting capabilities. One can see
that while greatly reducing the 99th and 95th percentiles, reductions decrease in lower
percentiles. When using the [AMPC] usage in the 70th percentile actually increases,
indicating that the algorithm’s capability to reduce peaks is exhausted at this point as

loads from higher percentiles are shifted into this area.

When comparing the results of the [AMPC]| and [FSP| one can see that the extra energy

usage factor b has a greater influence on the algorithm’s peak reduction performance

when using the [AMPC| This dependence however scales differently in different per-
centiles. With higher percentiles the effect is limited only to the lower value range of
b (1 <b < 1.05). For lower percentiles, this value range tends to be larger. This is
because for the higher percentiles, only relatively small loads during short time periods
need to be shifted.
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Figure 5.4: Reduction of target deviation by month using the]AMPC|(with 20 confidence

intervals)

5.2.3.4 Seasonal effects on load shifting potential

Since space heating and cooling is highly dependent on the outside temperature, we
expect the algorithm’s performance to vary throughout the year. To assess these varia-
tions, we measure the algorithm’s performance separately for each month. In addition,
we compare three different upper energy bounds. We compare a rather small value of
1.04, a medium value of 1.12 and a large value of 1.2. The algorithm was configured to

use the AMPC] with a vote scaling of 1.3. The average occupant count was set to 2.5.

The results are shown in Figure With a small upper energy bound, the algorithm’s
performance is limited during the summer months. Increasing the upper energy bound
however reverses this effect and the algorithm performs much better during summer than
during winter. This stark difference between summer and winter can be explained by the
location of our simulations. In the generally warm climate in Austin, Texas, the [IVAC]
system plays a much more important role during the hot summer months where the [AC]
is running most of the time than during winter when outside temperatures are fairly
moderate. The larger temperature gradient between inside and outside during summer
increases the energy required to pre-heat and cool the house. This extra energy however,
can be spread out more easily, improving load shifting capabilities. This suggests that
in colder climates, the algorithm will benefit more from higher energy bounds during

winter.
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Figure 5.5: Example profile with solar radiation target

5.2.3.5 Incorporating Renewable Energy Sources

In this section we illustrate how to maximise utilisation of renewable energy sources by
using target profiles and our [DSM] algorithm. To do so, we create a target profile that
incorporates the expected production from renewable energy sources for the next day.
In the example shown in Figure [5.5| we use solar radiation measurements obtained from
Weather Underground for the 15* of August 2014 in Austin, Texas to create the target
profile. As this is an illustrative example, for simplicity’s sake, we assume that solar
radiation and production from solar panels are directly correlated. The target profile
therefore represents the solar radiation profile, scaled up to match the integral of b Gpin

scaled by an upper energy bound of b = 1.1.

One can see that the algorithm successfully approximates the target profile, maximising
the utilisation of energy from renewable energy sources. Most of the loads from the
evening are shifted into the period between 12pm and 7pm. The algorithm however
successfully preserves the dips around 12pm and 3pm. While most of the loads after
8pm are shifted to earlier periods, a base load remains. This is because houses cannot

be pre-cooled indefinitely as this would cause discomfort to the occupants.

5.2.4 Discussion

The results presented in the previous sections lead to several implications for how to

deploy our algorithm in practice. If peak reduction is the main target, not much extra
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HouseHoLD CouNT | 100 | 200 | 300 | 400
EXECUTION TIME (S) | 8 30 | 60 | 230
MEewMm. CoNsuMmPTION (GB) | 0.8 | 2 3.5 | 5.5

Table 5.3: Execution times and memory consumption of the centralised algorithm for a
single day

energy needs to be used. A value of b < 1.06 for the extra energy usage factor is likely
to suffice. When approximating the exact shape of a target profile, for example when
trying to maximise the utilisation of energy produced from renewable sources, larger
values between 1.06 and 1.14 for b might be more suitable. Values larger than 1.14 only
provide minor improvements on peak reduction and target approximation. Such values
could be advisable during times of very high [HVAC| utilisation, such as the hot summers
in Texas. During times of usual [HVAC] utilisation, the extra energy used does not lead

to significant improvements in the algorithm’s load shifting capabilities.

While a centralised execution of the algorithm generally offers better results, the dis-
tributed version provides a good balance between scalability and performance. Table|5.3
shows execution times and memory consumption of the centralised algorithm on our test
system (Intel Core i5-3570, 8GB RAM). Since solving a scales exponentially with
the number of variables, and each household adds a number of new variables to the
problem, the centralised version scales exponentially with the number of households. As
[DSM] tends to happen on larger scales from several thousand to hundreds of thousands
of households, the centralised version therefore quickly becomes infeasible. Solving the
[MIQP)| for a single household however only took between 1-2ms on our test system,
suggesting that it can also be solved in acceptable time (less than a minute) on typi-
cal smart thermostat hardware (e.g. ARM Cortex A8 in the Nest thermostat). Apart
from potential bandwidth and network latency bottlenecks, for example when collecting
estimates of baseline profiles from households to calculate suitable target profiles, the

distributed algorithm scales independently from the number of households.

5.3 Summary

In this chapter we introduced an extension to the [HVAC]| agent to incorporate [DSM]
signals to shift [HVAC| demand. The [DSM] algorithm is based on target profiles instead
of commonly used dynamic energy price profiles. This helps to prevent rebound effects
from happening and allows for more direct control over the resulting load profiles. We
model the problem of optimising [HIVAC] schedules with respect to user comfort, energy
usage as well as deviation from the target profile as a[MIQP] allowing to compute optimal
solutions to the problem. Since solving the [MIQP|scales exponentially with the number

of households, we provide a simple mechanism to run the algorithm in a distributed
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manner. This way, the algorithm scales independently from the number of households

involved.

Using simulations based on real energy usage data, we evaluated the load shifting poten-
tial of the [DSM] algorithm. We showed that using the BCM] depending on the comfort
compromiser used, the algorithm is able to achieve load profiles 29.75% to 39.9% closer
to the target as compared to using a simple [FSP} as it is common in most regular
thermostats. We further investigated how the number of occupants influences the per-
formance of the algorithm depending on the comfort compromiser used. We showed
that when using [AMPC| or [FSP}, the algorithm’s performance is mostly unaffected by
the number of occupants. Using the [OCC] the algorithm’s ability to shift loads however
suffers the more occupants are present. Regarding peak reduction capabilities, using the
[AMPC] the algorithm was able to almost completely flatten out peaks in the 99th and

95th percentiles. For lower percentiles, the algorithm’s performance strongly depended

on how much extra energy can be used to shift loads. Evaluations of the algorithm’s
performance throughout the year revealed that especially during times of high [HVAC]
utilisation, the algorithm benefits from the ability to use more energy. Lastly, we gave
an outlook how target profiles can be used to maximise utilisation of energy produced

from renewable sources.

One of the shortcomings of the agent presented in this chapter is that the load shifting
actually increases energy usage. In order to motivate users to participate and accept
an increase in energy consumption, certain incentives must be set. There are a number
of ways to address this. Energy suppliers could for example offer financial incentives
in the form of a general rebate on the final bill for participants that opt in to load
shifting. Opting in in this case means that they agree to hand over control to the
[HVAC] agent, allowing it to increase their energy consumption if necessary. The rebate
would be financed by savings through better utilisation of renewable energy sources
as well as savings in grid infrastructure. Another approach could be to only sell the
agent with [DSM] capabilities activated. The main incentive for consumers would still
be to save energy and therefore money since the agent most likely would still reduce
energy consumption as compared to a regular thermostat. More research needs to be
done on how to incentivise consumers. However, this would go beyond the scope of this

dissertation.
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Conclusions and Future Work

This work introduced the [bayesian comfort model (BCM)| a novel approach to a person-

alised thermal comfort model that unifies static and adaptive thermal comfort models,
extends them and adds learning capabilities to adapt to users’ preferences. Such a model
can be used to increase user acceptance of autonomous smart heating systems by accu-
rately predicting the optimal comfort temperature or range of acceptable temperatures
for its users. This work further introduced an [HVAC| agent that uses information about
users’ ranges of acceptable temperatures to optimise the usage of the [IVAC|system. The
agent can optimise solely for minimising the energy consumption of the [HVAC] system,

but is also able to incorporate DSM]signals to optimise the load profile generated by the

HVAC] system.

6.1 Discussion

In the following section, we discuss the outcomes of this research. We start by discussing
the We then include a short discussion of the thermal comfort study and lessons
learned from the deployments. This is followed by a discussion of both [HVAC] agents:
the energy-centric agend and the [DSM}centric agent.

6.1.1 The Bayesian Comfort Model

In comparison to existing thermal comfort models, the [BCM] includes a detailed user
model to account for a wide variety of circumstances such as changing weather and dif-
ferent seasons and provides several possible outputs. The model was implemented as a
belief network, which allows easy incorporation of prior knowledge about the problem
and adds learning capabilities to constantly refine the model and adapt to the user’s
preferences. As a result, the BCM]is more accurate than existing thermal comfort mod-

els. However, this accuracy comes at the cost of complexity, meaning that calculating
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users’ comfort levels with the BCM]is in general more computationally expensive than

evaluating user comfort with existing, more simplistic models.

Through an empirical evaluation, we showed that using a belief network to learn user’s
preferences enables our model to give 13.2% to 25.8% more accurate results than existing
models. Next to user comfort data from the ASHRAE RP-884 database, we conducted
our own deployment in which we assessed thermal comfort of occupants in shared work
spaces. In this deployment, we further tested an alternative to the ASHRAE T7-point
thermal comfort feedback scale. Instead of asking for the user’s current perception of the
thermal environment, the desired change scale asks how the user wants the temperature
to change. Using this scale, our model gives up to 55.4% more accurate predictions of
user comfort as compared to existing models. While actual deviation from the optimal
comfort temperature could not be assessed due to the lack of such data, the accuracy
gains for predictions of user votes indicate that our model outperforms existing models
on the research requirement of providing an accurate comfort model. These accuracy
gains are achieved after about 8 observations. In a scenario where a user provides
feedback every one or two days, this would equal an initial learning phase of roughly
one to two weeks. This lies within the bounds defined for the unobtrusiveness and quick

adaptation requirements.

One benefit of the constant learning in belief networks is that each new observation will
most likely improve the quality of the predictions immediately. This means that even
if the results are not optimal during the initial learning phase, a user should be able

to see constant improvements, motivating the user to keep interacting with the system.

Using the [expectation propagation (EP)| algorithm, we showed that the frequent task

of performing inference on the model for predicting the user’s current optimal comfort
temperature is simple enough to be executed on small, inexpensive computers with low
computational power or on remote servers. The scalability requirement can therefore be

considered to be met.

6.1.2 Thermal Comfort study in Southampton

While the thermal comfort study in Southampton resulted in a sizeable data set that
proved useful for the evaluation of the BCM] some lessons can be learned. A major issue
was that the majority of feedback had to be discarded. The main reasons for this were
that the feedback was either too one-sided or that single participants had not provided

enough data points for a per-individual evaluation.

The large amount of one-sided, extreme feedback has several causes. In both deploy-
ments (office and library), interior temperatures were rather high, resulting in votes
being skewed towards values indicating too hot. In case of the office deployment, the

building was known to be warmer than other buildings. As a mitigation, the study was
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carried out early in the year when outside temperatures were still low. However, despite
low outside temperatures, the interior temperature often went above 25°C. For future
deployments, we therefore would recommend a more thorough assessment of what tem-
peratures to expect during the duration of the deployment. This would have also helped
with the library deployment. The high temperatures in the library deployment can be
accounted to two different factors: high occupancy due to students studying for exams
and a heatwave coinciding with the time of the deployment. The time of the study was
deliberately chosen to be during the exam period in order to maximise the number of
feedback received by students. To mitigate the effect of unusual occurences such as heat
waves, we chose a longer time frame for the library deployment. However, by the time
the heat wave was over, the exam period was close to its end as well and participation

dropped significantly.

Apart from amplifying the effect of the heat wave in the data set, the drop in participa-
tion also resulted in a large amount of unusable data. By the time particpation dropped
(roughly 10 days after the start of the study), the majority of participants had only
provided feedback between 1-4 times, strongly limiting the usability of these partici-
pants’ feedback for the evaluation of the model’s learning capabilities. This effect was
less pronounced in the office deployment, where despite having more than 10 times less
participants, more useable feedback was collected. We believe that this is due to the
office participants being more involved in the study. In the office deployment, occupants
of affected offices were made aware of the study and its aims beforehand via email. Fur-
ther, most occupants were present when the posters were deployed. Many occupants

took this opportunity to ask questions about the study and the study design.

The qualitative analysis of the thermal comfort study is not in the scope of this dis-
sertation. See Snow et al. (2017) for a more in-depth discussion of the studies and a

quantitative analysis.

6.1.3 Reducing energy consumption of the HVAC system

Based on the BCM] we further created an [HVAC|agent that minimises energy consump-
tion of the [HVAC] system while keeping a comfortable environment for the occupants at
the same time. This agent utilised information about occupants’ comfort ranges obtained
from the to autonomously decide and change set point temperatures. In compar-
ison to most existing [HVAC] agents, our agent uses a detailed thermal comfort model
with learning capabilities and puts a hard constraint on the set point temperature to
stay within the users’ acceptable bounds. The problem of computing such [HVAC] sched-
ules was modelled as a linear program, enabling the agent to compute optimal [HVAC]

schedules with respect to its optimisation goals.
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In a realistic scenario, most of the time there will be multiple occupants to satisfy.
This means that the agent either needs to incorporate multiple users’ preferences at
the same time or aggregate their preferences first. We proposed two simple approaches

to a comfort compromiser that try to aggregate different users’ preferences. The first

compromiser is the |overlap comfort compromiser (OCC)| that tries to find the biggest

overlap between different users’ comfort ranges. The second compromiser is the
lage model parameter compromiser (AMPC)| that creates a new instance of the

configured with the parameters set to the average of all users’ model parameters.

Using simulations, we empirically evaluated the energy saving potential of our [HVAC]
agent. We compared the using both comfort compromisers against a simple
iset point (F'SP)| and [fixed comfort range (FCR)| The evaluation showed that using
the can lead to energy savings of around 8% for heating and 24.3% for cooling,

satisfying the research requirement of the agent being energy aware, while significantly

reducing discomfort (by about 17.5%) at the same time, showing that agent is comfort
constrained. We further investigated the effects the amount of occupants has on the
algorithm’s performance depending on the different compromisers and showed that while
with the[OCC]the performance suffers as more occupants need to be satisfied, the[AMPC]|

seems mostly unaffected by it.

6.1.4 Performing HVAC-based load shifting

We extended the [IVAC] agent presented in the previous section to incorporate [DSM]

signals into its scheduling algorithm and perform load shifting based on these signals.

By modelling the [HVAC] scheduling problem with respect to signals as a [Mixed]
[Integer Quadratic Program (MIQP)| we were able to obtain optimal schedules. The

scheduler uses target profiles describing a desirable load profile instead of dynamic en-
ergy pricing profiles, making it more stable and plannable while minimising the chance
of rebound effects happening. We further increased the plannability of the algorithm
by only optimising the deviation of the resulting load profile from the target profile.
User comfort and energy usage were included as constraints rather than optimisation
objectives. This ensures that the algorithm keeps the indoor temperature within the
comfort range at all times. We constrained the energy consumption based on a scalar
of the minimum possible energy consumption. In doing so, we provided full control over
how much extra energy can be used by the algorithm to shift [IVAC| loads. To allow
the algorithm to scale independently from the number of households, we modified the

algorithm to run in a decentralised manner, independently in each household.

We empirically evaluated the algorithm’s ability to shift [IVAC] loads. We used real
world household energy consumption data to simulate multiple households and their
[HVAC] consumption. Based on these simulations, we evaluated how increasing energy

consumption aids the load shifting process. We showed that the distributed version
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generally yields results close to the optimal results obtained from the centralised version
of the algorithm, with the centralised version on average achieving load profiles 12.8%
closer to the target than the distributed version. In addition, we showed that using the
increases the algorithm’s load shifting capabilities by 29.7% to 39.9%. Evaluations
with varying numbers of occupants showed that the load shifting capabilities of the [OCC]|
decrease with a growing number of occupants, the [AMPC]scales independently from the
number of occupants. In the scope of peak reduction, our evaluations showed that
using the [BCM] our algorithm is able to almost completely remove peaks in the 99th
and 95th percentiles. We further investigated how the algorithm’s load shifting abilities
vary within the year and gave an outlook how target profiles can be used to maximise

utilisation of renewable energy sources.

6.2 Limitations and Future Work

While we have presented two different comfort compromisers in this work, further work
needs to be done on this topic. Currently, both comfort compromisers are easily game-
able by the users. For instance, if someone generally prefers a warmer environment, this
person could always provide feedback asking for a warmer environment/stating that it
is too hot instead of reporting truthful feedback. This would bias this user’s model to-
wards learning more extreme parameters, leading it to suggest generally warmer comfort
ranges for this user. For the[AMPC]|this would mean that the average of the parameters
would be skewed towards the manipulative user’s parameters due to their more extreme
values. In case of the [DCC] the warmer comfort range of the manipulative user would
cause the overlap with other user’s comfort ranges to be minimised and shifted towards

warmer temperatures.

For the AMPC] a simple way to address this issue would be to use the median of all
parameters instead of the average. This way, parameters of manipulative users are
likely to take more extreme values at the edge of the general value range would not have
any influence on the final parameters. However, this approach only works well with
larger number of occupants. For example, with just two occupants finding the median
becomes problematic. Just choosing the parameters of one of the two users would likely
cause a uncomfortable environment for the other user. Taking the average of these
two user’s parameters would open the system back up to manipulations by the users.
There is promising work by |Gupta et al.| (2015) on finding strategyproof mechanisms to
aggregate different users’ comfort preferences, in which each user’s agent is given a fixed
budget that can be used to bias the temperature towards its user’s comfort temperature.

In future, a similar mechanism based on comfort ranges could be incorporated into our

[FIVAQ agent.
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More work needs to be done towards evaluating the accuracy of the[BCM|and the agent’s
abilit to save energy and shift [HVAC|loads. While the accuracy of the was already
evaluated using real data, we believe further evaluations based on real deployments of
the comfort model are required to provide deeper insights into the model’s ability to
keep a comfortable environment for its users at all times. Such deployments could also
be used to collect data on actual comfort range profiles, providing useful data for more
realistic simulations of the algorithm. In addition, such deployments would provide
useful insights into learning rates and how the learning and resulting increased accuracy

of the model changes the user’s interaction with the thermostat.

Similar to the BCM] we believe that a more thorough evaluation of the [HVAC]| agent
is required. At this point, while driven by real data, evaluations of possible energy
savings and load shifting are purely based on simulations. To evaluate the actual energy
savings and load shifting capabilities, long term deployments of the [HVAC| agent in
actual households need to be conducted. Ideally, such deployments should take place in
buildings where energy usage is already monitored (for example houses from the
Pecan Street data port). This would allow for an easy assessment of energy savings by
our [HVAC] agent. Alternatively, additional data on energy usage needs to be collected,
for example by letting the [IVAC]| agent act like a conventional thermostat. The same
deployment could be used for experiments to assess the agent’s load shifting capabilities.
As a first step, the reaction of single households to different target profiles should be
assessed. If households react similarly to how the simulations suggest, the number of
households to be sent target profiles can be increased, with an increasing number of

households receiving similar target profiles.

Another limitation of the[HVAC|agent presented in this work is its focus on only using the
user’s comfort ranges for optimising the set-point temperature. While this optimisation
alone already yields good results, further improvements could be achieved. As a next
step, the [HVAC] agent could for example take room occupancy into account to only
adjust the [HVAC]| in rooms that are actually occupied. in addition to that, the [IVAC]
agent should also be able to distinguish between different types of rooms. In its current
form, it is mainly tailored towards spaces of long, sedentary occupancy such as living
rooms or office spaces. However, especially in a domestic setting, there are a number of
other room types with very different needs. A kitchen for example is usually only for
relatively short periods of time, while being fairly active. Such rooms should generally be
kept colder by the [HVAC] agent. In addition, such rooms have more regular occupancy
patterns, meaning that occupancy prediction could achieve significant savings in such
rooms Another type of room are bedrooms which are usually unoccupied during the day
and follow very predictable usage patterns during the night. For such rooms, it would be
useful to take the time of the day into consideration. While the time of day is partially
reflected in the through outside temperatures (being lower during the night), for
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rooms like bedrooms very clear times could be specified during which the room is very

likely to be inactive.
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