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Abstract—Previous research in motion analysis of image 
sequences has generally not considered the basic nature of higher 
orders of motion such as acceleration. In this work, we 
disambiguate different types of motion, and in particular focus on 
acceleration. First, we show acceleration can be computed in a 
principled manner by extending Horn and Schunck’s algorithm 
for global optical flow estimation. We then demonstrate an 
approximation of the acceleration field using an alternative 
established optical flow technique, since most real motions violate 
the global smoothness assumption of Horn and Schunck. 
Furthermore, we decompose acceleration into radial and 
tangential components for greater depth of understanding of the 
motion. As a general motion descriptor, we show how acceleration 
provides the capability for differentiating different types of motion 
in video sequences. 
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I.  INTRODUCTION 
An image is a snapshot in which all motions are frozen in 

time. This implies that video involves many motions which 
coalesce to form the image sequence. Nowadays, computer 
vision approaches can differentiate objects in motion from those 
which are static, but little more [1], [2]. In actuality, there are 
many different types of motion: in the simplest sense, there are 
objects that move with velocity and some that move with 
acceleration; many objects have more complicated motions. 
This paper describes a new approach designed to disambiguate 
different types of motion starting with the detection of objects 
moving with acceleration via established computer vision 
techniques.  

Fig. 1 illustrates the diversity of motion, the man in the left 
image is walking with constant velocity in general and the 
athlete on the right is speeding up, or accelerating. Each part of 
both men is experiencing different types of motion, especially 

their legs. Consider a walking person: the body is approximately 
at a constant velocity, and one of the legs is stationary to support 
the body while the other one is swinging forward like a 
pendulum, as shown in Fig. 2. These motions can be identified 
by acceleration because once the status of an object has changed, 
there must be acceleration. Therefore, we hypothesise that we 
can find the legs of a person’s body and discriminate between 
them by extracting their acceleration features.  

Apart from identifying behaviours, acceleration also offers 
an alternative approach to understand image content. For 
examples in autonomous driving, the acceleration of other cars 
can help a computer to make correct decisions about other 
vehicles’ motion trajectories. 

Beyond our previous work [3], the new contributions are 
summarized below:  

• We extend the original Horn Schunck method optical 
flow technique to focus on acceleration.  

• Our analysis shows the constraints to be too stringent 
for application in real-world video footage, so we then 
explore the use of the other state of art optical flow 
algorithms as basis approximating acceleration with 
wider applicability in general video. 

• We show generalised application of acceleration 
detection in a richer selection of imagery for not only 
the new approach but also the new basis, on synthetic 
and on real image sequences. 

• We compared the capability of discriminating motion 
characteristics between velocity and acceleration flow 
and show the advantages of acceleration.  

This paper is arranged as follows: Section 2 presents the 
algorithm for estimating acceleration from optical flow and 
shows experimental results both on synthetic and real-world 
image sequences. Section 3 shows how acceleration can be 
decomposed into radial and tangential components as well as 
experimental results, and demonstrates the ability of 
acceleration that disambiguate different types of motion. Section 
4 discusses and provides conclusions of this work. 

  
Fig. 1. Different types of motion.                                                         

(from: http://news.stanford.edu/ and http://www.wisegeek.com/) 

    

 
Fig. 2. A walking cycle [12]. 

 



II. ESTIMATION OF ACCELERATION FLOW 
There has been little work as yet analysing acceleration 

before we determined gait events through acceleration flow in 
our earlier work [3]. Beyond that, [4] differentiated the velocity 
field without considering an analytic solution for isolating 
acceleration whereas [5] extended the brightness constraint to 
three frames and solved the problem in an extremely complex 
manner. Our own previous work [3] did not include the 
following differential basis and was focused more on the 
analysis of human gait detecting in particular the heel strikes. 
Our new approach in this paper retains the elegance of the 
original Horn Schunck formulation with an approach that 
isolates only acceleration, thus allowing more detailed analysis 
of complex motion fields, and we provide a more general 
experimental analysis. 

A. Recovering Acceleration Flow from Optical Flow 
Our new algorithm is inspired by Horn and Schunck’s work 

[6], the earliest variational approach for recovering optical 
flow. If 𝐈(𝑥, 𝑦, 𝑡) denotes the image intensity on (𝑥, 𝑦) at time 
𝑡, we extend the initial hypothesis that the image intensity is 
constant during three frames: 

	𝐈 𝑥 − 𝛿𝑥+, 𝑦 − 𝛿𝑦,, 𝑡 − δ𝑡 = 𝐈 𝑥, 𝑦, 𝑡  
																																																			= 𝐈 𝑥 + 𝛿𝑥,, 𝑦 + 𝛿𝑦,, 𝑡 + δ𝑡 1  

Expanding (1) by Taylor expansion: 

𝐈1(−𝛿𝑥+) + 𝐈2 −𝛿𝑦+ + 𝐈3 −𝛿𝑡  
                                               = 𝐈1𝛿𝑥, + 𝐈2𝛿𝑦, + 𝐈3𝛿𝑡          (2) 

where the higher order terms are ignored. Dividing (2) by	𝛿𝑡, the 
gradient constraint is yielded: 

∇𝐈 ∙ 𝐯3893 + 𝐈3893 = ∇𝐈 ∙ 𝐯3:93 + 𝐈3:93 3  

where ∇= <
<1
, <
<2

, and 𝐯  consists of horizontal and vertical 
components (𝑢, 𝑣)?. 

If the acceleration is dynamic from frame to frame, then this 
become an ill-posed problem. More commonly, motion is 
smooth which means acceleration is usually constant during a 
small period. Here, we assume that the acceleration does not 
change during three consecutive frames. Then velocity can be 
presented by 𝑣@ + 𝑎𝛿𝑡 from Newton’s laws: 

∇𝐈 𝐯3 − 𝐚𝛿𝑡 + 𝐈3893 = ∇𝐈 𝐯3 + 𝐚𝛿𝑡 + 𝐈3:93 4  

where 𝐯3  denotes the velocity vector at time 𝑡  and the 
acceleration vector 𝐚  is composed by horizontal and vertical 
components (𝑎D, 𝑎E)?. Differentiating (4) with respect to time, 
we can obtain the Optical Flow Constraint Equation (OFCE) of 
acceleration: 

∇𝐈 ∙ 2𝐚 + 𝐈33 = 0 5  

where 𝐈33 indicates the second order of image intensity respect 
time. 

Acceleration also has similar smoothness characteristics to 
velocity in that neighbouring pixels tend to have similar 
acceleration. This shows a natural linkage between velocity and 
acceleration analysis in image sequences. By following a similar 
solution to Horn Schunck, we can determine the acceleration 
flow in images. We now have the basis for detecting 
acceleration, we shall now move to evaluating this approach to 
determine whether we can indeed detect acceleration from 
image intensity. 

B. Analysing Synthetic Image Sequences 
We evaluate our new approach first on synthetic images to 

assess performance before analysis on real images to show 
application capability. The advantage of synthetic images is that 
the input signal is without noise, specularity, or other types of 
noise. Also, the motion field and scene properties can be 
manipulated as required. This image sequence involving linear 
motion is synthesized by using images from the Middlebury 
database [7]. A subpart of a frame from Mequon (the block of 
two faces in Fig. 3 (a)) in Middlebury is embedded in a frame 
from the Wooden images. The Mequon sub-frame shifts along a 
linear trajectory to the lower right corner at speed 1/4 
pixel/frame, both on horizontal and vertical axes. Sub-pixel 
motion is achieved by down-sampling the images.  

Fig. 3. (a) shows one example frame of the synthetic 
sequence, (b) and (c) shows the acceleration detection results 
under the motion without and with acceleration respectively. 
When Mequon moves without acceleration, there is little 
acceleration flow detected, except random noise. 
Encouragingly, as opposed to the uniform motion the new 
algorithm detected evenly distributed acceleration flow in the 
right hand frame. We would have liked to compare performance 
with the other acceleration technique [5] but the implementation 

 
(a) Synthetic image 

 
(b) Acceleration field when Mequon is 

undergoing non-acceleration motion. 

 
(c) Acceleration field when Mequon is 

accelerating.  

                                                                                            Fig. 3. The detection results of synthetic images. 



is unavailable for that complex technique whereas [4] lacks the 
analytical basis here.  

We also evaluated our new algorithm on the Yosemite image 
sequence which is a challenge for fundamental optical flow 
algorithms since the velocities of different areas vary and the 
edges are occluded between the mountains. The upper right 
corner translates to the right with a speed of 2 pixels/frame and 
the speed in the lower left area is about 4 to 5 pixels/frame [8]. 
The non-uniform motion is caused by the asymmetrical 

                                                             
1 http://vision.middlebury.edu/flow/eval/ 

projection of 3-D motion onto the 2-D image surface. Our 
acceleration measurement produces a poor result as shown in 
Fig. 4 since Horn and Schunck’s algorithm assumes global 
smoothness and sub-pixel motion which is violated in this case. 

For more precise, TABLE I reports the performance 
measures of our acceleration estimation algorithm on 
Middlebury optical flow benchmark data. We computed the 
average Angular Error (AE) and Standard Deviation (SD) 
between the experimental results and pseudo ground truth. Since 
the ground truth flow can be accessed from the Middlebury 
optical flow database is only between two frames in the dataset, 
we use the acceleration flow estimated based on MDP-Flow2 [9] 
by (6) as the pseudo ground truth. MDP-Flow2 is a highly-rated 
optical flow estimation algorithm on the Middleburry evaluation 
website1. The results in Table I show that the new acceleration 
estimation algorithm is not accurate enough to be used as a 
motion descriptor because of the stringent constraints. Fig. 5. 
shows the colour map of the pseudo ground truth and estimated 
acceleration flow of data “Backyard” and “Walking”. In the 
pseudo ground truth, the falling ball in (c) and the walking legs 
in (e) has more acceleration than other motion areas. The 
acceleration field illustrates detection of features consistent with 
acceleration features, which velocity analysis lacks.  

Fig. 4. The experimental result on Yosemite. 

TABLE I. Error analysis of acceleration estimation algorithm  

           Data        
AE 

Army Mequon Schefflera Backy
ard 

Dumptr
uck 

Grove2 RubberW
hale 

Walking 

Average (°) 10.84 28.3 33.89 17.82 12.36 14.31 9.74 17.82 
SD (°) 8.61 20.18 19.77 21.59 17.98 13.82 8.77 19.54 

 

   
(a) Backyard (b) Backyard pseudo ground truth (c) Backyard acceleration 

   
(d) Walking (e) Walking pseudo ground truth (f) Walking acceleration 

Fig. 5. The colour map of acceleration flow: (b), (e) are pseudo ground truth [7] and (c), (f) detection by the new approach on the right. 



C. Estimating Acceleration via Other Flow Estimation 
Methods 
Since the motion in real images is often large we want to 

seek more generalized form for recovering acceleration from 
image sequences, we opt to use the state of the art optical flow 
estimation algorithm to approximate the acceleration than to 
use the new algorithm. In this paper, we use DeepFlow [10], 
which is a popular new technique with excellent performance 
for large displacement estimation and non-rigid matching as our 
fundamental technique of our algorithm. 

As in our previous work [3], we approximate the acceleration 
by differencing the velocity field between frames. By reference 
to the same starting position, the time axis is reversed when 
estimating the previous velocity 𝐯3:  

𝐚3 = 𝐯3:+ − −𝐯3 6  

The new results in Fig. 6. show this more general approach 
when used to estimate acceleration flow. In (a), the scene is 
moving with constant velocity so there is little acceleration flow. 
In (b), the pixels in the lower left corner have larger acceleration 
than the upper right corner and the whole scene is accelerating 
to the upper left corner, which shows the consistency with the 
known motion characteristics of the Yosemite sequence. This is 
a considerable improvement over Fig. 4 which used the Horn 
Schunck formulation.  

Since our algorithm is based on an established optical flow 
detection technique, the performance of acceleration estimation  
depends on the performance of DeepFlow for estimating the 

motion field, which can be found in [7]. We now have the basis 
for detecting acceleration and its extension to a more generalized 
form that able to detect acceleration under large motions. In real 
image sequences, detecting acceleration flow can help 
distinguish objects undergoing different motions. In Fig. 7, the 
silver car in the front and the red dump truck in the back are 
approximately moving in constant velocity. As contrast, the 
detection result shows the other two cars are accelerating.  

III. TANGENTIAL AND RADIAL ACCELERATION 
Acceleration for motion is composed of two components: 

tangential and radial acceleration. The tangential component 
changes the magnitude of the velocity vector and the direction is 
located in the tangent line of the trajectory (increasing or 
decreasing the speed). The radial component (also called 
centripetal acceleration in circular motion) changes the direction 
of the velocity and it points to the centre of the curved path 

(normal to the direction of velocity), as shown in Fig. 8. Motion 
is composed of linear or circular motion; therefore, the motion 
incorporated in images is either linear or circular if the time 
interval is sufficiently small.  

A. Decomposing Tangential and Radial Components from 
Acceleration 
We assume that the moving points which follow the curved 

trajectories rotate along the same arc in any three consecutive 
frames since three nonlinear points can determine one and only 
one circle. The rotation centre can be calculated by the positions 
of the pixel in the consecutive frames. Connecting these three 
points with straight lines and applying perpendicular bisectors 
to them, the centre of the circle is then located at the intersection 
of the two perpendicular bisectors.  

 
Fig. 7. Detecting acceleration on real images [7]. 

 
(a) Moving with constant velocity. 

 
(b) Moving with acceleration. 

Fig. 6. The experiment results on Yosemite. 

 
Fig. 8. The acceleration of a particle along arbitrary curved path is 
composed of radial and tangential component. 



 Suppose the coordinates of a point in three consecutive 
frames are: 𝐩J 𝑥J, 𝑦J 	𝑖 ∈ 	 (𝑡 − 1, 𝑡, 𝑡 + 1) , 𝐦𝐨, 𝐧𝐨  are the 
perpendicular bisectors of 𝐩38+𝐩3  and 𝐩3𝐩3:+ , and 𝐨(𝑥P, 𝑦P) 
denotes the center of the circular motion, hence: 

𝐦𝐨 ∙ 𝐩38+𝐩3 = 𝐧𝐨 ∙ 𝐩3𝐩3:+ 7  

then the coordinate of 𝐨 can be obtained by: 

 

 

(a) 𝛿𝑥 = 0, 𝛿𝑦 = 0 

 

(b) 𝛿𝑥 = 32, 𝛿𝑦 = 32 

 

(c) 𝛿𝛼 = 10° 

 

(d) 𝛿𝛼 = 30° 

 Fig. 9. Examples of artificial motion. 

 Linear motion without 
acceleration 

Linear motion with     
acceleration 

Circular motion without 
angular acceleration 

Circular motion with angular 
acceleration 
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Fig. 10. The experimental results of synthetic images. 



𝒐? = 0.5 ∙ 𝚽8+𝚿 8  

where, 

	𝚽 =
𝑥3 − 𝑥38+ 𝑦3 − 𝑦38+
𝑥3:+ − 𝑥3 𝑦3:+ − 𝑦3 𝚿 = 𝑥3, − 𝑥38+, + 𝑦3, − 𝑦38+,

𝑥3:+, − 𝑥3, + 𝑦3:+, − 𝑦3,
9  

 
We use 𝑎 = (𝑥3 + 𝑎D, 𝑦3 + 𝑎E) to present the coordinates of 

acceleration vector in image plane. The positions of tangential 
acceleration	𝑡𝑎𝑛(𝑢, 𝑣) and radial acceleration 𝑟𝑎𝑑(𝑢, 𝑣) can be 
estimated by:  
 

𝒕𝒂𝒏? = 𝐟 −𝜃 		𝐠 −𝜃 ? 𝐩3 ∙ 𝐟 𝜃 				𝐚 ∙ 𝐠 𝜃 	 ?

𝒓𝒂𝒅? = 𝐟 −𝜃 		𝐠 −𝜃 ? 	𝐚 ∙ 𝐟 𝜃 				𝐩3 ∙ 𝐠 𝜃 ? 10  

where 𝜃  is the angle between 𝐨𝐩3  and the horizontal 
axis	𝐟(𝜃) = cos𝜃, sin𝜃 , 𝐠(𝜃) = −sin𝜃, cos𝜃 .  

We now have the basis for detecting acceleration and its 
extension to a more generalized form. In the next section, we 

evaluate these approaches to determine whether we can indeed 
detect acceleration from image sequences.  

B. Deploying Decomposed Algorithm on Synthetic Image 
Sequences 
We evaluate the decomposed approach first on synthetic 

images to assess performance before analysis on real images to 
show capability in real applications. We manipulate Mequon 
sequence by rotating around its centre in the synthetic sequence 
to form circular motion. Examples of test image are illustrated 
in Fig 10.  

The experiments are classified into 4 groups: linear shift with 
constant velocity, linear shift with acceleration, rotation in 
constant angular velocity and rotation with angular acceleration. 
We detected velocity, resultant acceleration, radial and 
tangential fields for each group separately and illustrate the 
results in Fig. 10.  

In the example of linear shift, there is little radial acceleration 
because the direction of trajectory does not change and the 
tangential component only appears when the object is 
accelerating. The resultant acceleration field shows similar 
features with tangential acceleration since it only contains the 

     
(a) Acceleration flow on a walking person. 

 

     
(b) Velocity flow on a walking. 

 
Fig. 11. Analysing acceleration and velocity flow on real images. 

 



tangential component in linear displacement. Velocity appears 
in both situations however.  

In the rotation examples, radial acceleration appears both 
under rotation with constant angular velocity, and under angular 
acceleration, due to the direction of motion changing all the 
time. The magnitude of radial acceleration is increasing with the 
angle of the object rotated. All the radial acceleration field points 
to the Mequon sub-frame centre since the sub-frame rotates 
about it. The directions of tangential components are along the 
tangent of rotating trajectory showing a result consistent with 
expectations. Simultaneously, the velocity field does not show 
any obvious distinction. There appears to be some noise around 
the edge of the moving object; this is mainly caused by 
discontinuous motion in that area. Our estimated detection of 
acceleration shows expected results on artificial scenes. We 
have used our new technique to detect heel strike for gait 
analysis in our previous work [3].  
C. Deploying the Algorithm on Real Images  

We also provide a new example of our approach detecting 
acceleration on images of a subject walking in a chroma key 
laboratory [11], in Fig. 11. Acceleration is detected mainly only 
around the limbs of walking subject and is maximum around 
the leg which is swinging forward when the other leg is in the 
stance phase, since the limbs appear to have pendulum-like 
motion when people are walking [12]. We also detect the outer 
parts of the upper thorax, which is consistent with its inverted 
pendulum motion. In contrast, the velocity flow is distributed 
all over the body without notable difference, so the detected 
acceleration is consistent with the above analysis. Comparison 
was not possible with [5] due to lack of implementation and [4] 
used Horn Schunck violating primary assumption as in our new 
algorithm.  

IV. DISCUSSION AND CONCLUSION 
Previous research in motion analysis mostly focused on the 

displacement between frames, without considering the diversity 
of motion. Acceleration is a more distinct feature than 
displacement. Presenting motion by acceleration can help for 
better understanding the scene. There has been little study on 
revealing acceleration from optical flow however they lack an 
analytic solution. In this paper, we derive acceleration from the 
basis of Horn Schunck but we found most real motion violates 
the basic global smoothness assumptions made in the Horn 
Schunck formulation. We show another way to approximate an 
acceleration field which is more accurate and able to handle 
most situations, and appears improved over the Horn Schunck 
technique on the standard Yosemite test sequence. The 
acceleration is decomposed into constituent parts allow greater 
depth in the understanding of the motion. The experiments on a 
variety of image sequences illustrate the ability of acceleration 
that discriminate different motion whereas velocity did not show 
any obvious difference. Clearly, acceleration is likely to be more 

sensitive to noise though the experiments show that this is not a 
sever limitation and in fact radial acceleration error estimates are 
encouragingly low. The ability of the new technique is also 
demonstrated by its capability to achieve radial and tangential 
acceleration analysis, providing a completely new way to 
understand and disambiguate motions in image sequences. 
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