Analysing Acceleration for Motion Analysis
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Abstract—Previous research in motion analysis of image
sequences has generally not considered the basic nature of higher
orders of motion such as acceleration. In this work, we
disambiguate different types of motion, and in particular focus on
acceleration. First, we show acceleration can be computed in a
principled manner by extending Horn and Schunck’s algorithm
for global optical flow estimation. We then demonstrate an
approximation of the acceleration field using an alternative
established optical flow technique, since most real motions violate
the global smoothness assumption of Horn and Schunck.
Furthermore, we decompose acceleration into radial and
tangential components for greater depth of understanding of the
motion. As a general motion descriptor, we show how acceleration
provides the capability for differentiating different types of motion
in video sequences.
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I. INTRODUCTION

An image is a snapshot in which all motions are frozen in
time. This implies that video involves many motions which
coalesce to form the image sequence. Nowadays, computer
vision approaches can differentiate objects in motion from those
which are static, but little more [1], [2]. In actuality, there are
many different types of motion: in the simplest sense, there are
objects that move with velocity and some that move with
acceleration; many objects have more complicated motions.
This paper describes a new approach designed to disambiguate
different types of motion starting with the detection of objects
moving with acceleration via established computer vision
techniques.

Fig. 1. Different types of motion.
(from: http://news.stanford.edu/ and http://www.wisegeek.com/)

Fig. 1 illustrates the diversity of motion, the man in the left
image is walking with constant velocity in general and the
athlete on the right is speeding up, or accelerating. Each part of
both men is experiencing different types of motion, especially

their legs. Consider a walking person: the body is approximately
at a constant velocity, and one of the legs is stationary to support
the body while the other one is swinging forward like a
pendulum, as shown in Fig. 2. These motions can be identified
by acceleration because once the status of an object has changed,
there must be acceleration. Therefore, we hypothesise that we
can find the legs of a person’s body and discriminate between
them by extracting their acceleration features.

Apart from identifying behaviours, acceleration also offers
an alternative approach to understand image content. For
examples in autonomous driving, the acceleration of other cars
can help a computer to make correct decisions about other
vehicles’ motion trajectories.
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Fig. 2. A walking cycle [12].

Beyond our previous work [3], the new contributions are
summarized below:

e  We extend the original Horn Schunck method optical
flow technique to focus on acceleration.

e  Our analysis shows the constraints to be too stringent
for application in real-world video footage, so we then
explore the use of the other state of art optical flow
algorithms as basis approximating acceleration with
wider applicability in general video.

e We show generalised application of acceleration
detection in a richer selection of imagery for not only
the new approach but also the new basis, on synthetic
and on real image sequences.

e  We compared the capability of discriminating motion
characteristics between velocity and acceleration flow
and show the advantages of acceleration.

This paper is arranged as follows: Section 2 presents the
algorithm for estimating acceleration from optical flow and
shows experimental results both on synthetic and real-world
image sequences. Section 3 shows how acceleration can be
decomposed into radial and tangential components as well as
experimental results, and demonstrates the ability of
acceleration that disambiguate different types of motion. Section
4 discusses and provides conclusions of this work.



II. ESTIMATION OF ACCELERATION FLOW

There has been little work as yet analysing acceleration
before we determined gait events through acceleration flow in
our earlier work [3]. Beyond that, [4] differentiated the velocity
field without considering an analytic solution for isolating
acceleration whereas [5] extended the brightness constraint to
three frames and solved the problem in an extremely complex
manner. Our own previous work [3] did not include the
following differential basis and was focused more on the
analysis of human gait detecting in particular the heel strikes.
Our new approach in this paper retains the elegance of the
original Horn Schunck formulation with an approach that
isolates only acceleration, thus allowing more detailed analysis
of complex motion fields, and we provide a more general
experimental analysis.

A. Recovering Acceleration Flow from Optical Flow

Our new algorithm is inspired by Horn and Schunck’s work
[6], the earliest variational approach for recovering optical
flow. If I(x, y, t) denotes the image intensity on (x,y) at time
t, we extend the initial hypothesis that the image intensity is
constant during three frames:

I(x — 6x1,y — 6y, t — 8t) =1(x,y,t)
=1(x + 6x3,y + 6y,, t + 8¢t) (1)

Expanding (1) by Taylor expansion:

L(=6xy) + 1,(=8y,) + I.(=6t)

where the higher order terms are ignored. Dividing (2) by ¢, the
gradient constraint is yielded:

VI-Vi_se + 150 = VI Vigse + Lot 3)

(a) Synthetic image

(b) Acceleration field when Mequon is
undergoing non-acceleration motion.

VI(v, — aét) + I,_s5, = VI(v, + aét) + I, 5 (4)

where v, denotes the velocity vector at time t and the
acceleration vector a is composed by horizontal and vertical
components (a,, a,)T. Differentiating (4) with respect to time,
we can obtain the Optical Flow Constraint Equation (OFCE) of
acceleration:

Vi-2a+1I,=0 (5)

where I;; indicates the second order of image intensity respect
time.

Acceleration also has similar smoothness characteristics to
velocity in that neighbouring pixels tend to have similar
acceleration. This shows a natural linkage between velocity and
acceleration analysis in image sequences. By following a similar
solution to Horn Schunck, we can determine the acceleration
flow in images. We now have the basis for detecting
acceleration, we shall now move to evaluating this approach to
determine whether we can indeed detect acceleration from
image intensity.

B. Analysing Synthetic Image Sequences

We evaluate our new approach first on synthetic images to
assess performance before analysis on real images to show
application capability. The advantage of synthetic images is that
the input signal is without noise, specularity, or other types of
noise. Also, the motion field and scene properties can be
manipulated as required. This image sequence involving linear
motion is synthesized by using images from the Middlebury
database [7]. A subpart of a frame from Mequon (the block of
two faces in Fig. 3 (a)) in Middlebury is embedded in a frame
from the Wooden images. The Mequon sub-frame shifts along a
linear trajectory to the lower right corner at speed 1/4
pixel/frame, both on horizontal and vertical axes. Sub-pixel
motion is achieved by down-sampling the images.
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(c) Acceleration field when Mequon is
accelerating.

Fig. 3. The detection results of synthetic images.

ox
components (u, v)7.

a 9 . . .
where V= (—,5), and v consists of horizontal and vertical

If the acceleration is dynamic from frame to frame, then this
become an ill-posed problem. More commonly, motion is
smooth which means acceleration is usually constant during a
small period. Here, we assume that the acceleration does not
change during three consecutive frames. Then velocity can be
presented by vy + adt from Newton’s laws:

Fig. 3. (a) shows one example frame of the synthetic
sequence, (b) and (c) shows the acceleration detection results
under the motion without and with acceleration respectively.
When Mequon moves without acceleration, there is little
acceleration  flow  detected, except random noise.
Encouragingly, as opposed to the uniform motion the new
algorithm detected evenly distributed acceleration flow in the
right hand frame. We would have liked to compare performance
with the other acceleration technique [5] but the implementation
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Fig. 4. The experimental result on Yosemite.

is unavailable for that complex technique whereas [4] lacks the
analytical basis here.

We also evaluated our new algorithm on the Yosemite image
sequence which is a challenge for fundamental optical flow
algorithms since the velocities of different areas vary and the
edges are occluded between the mountains. The upper right
corner translates to the right with a speed of 2 pixels/frame and
the speed in the lower left area is about 4 to 5 pixels/frame [8].
The non-uniform motion is caused by the asymmetrical

projection of 3-D motion onto the 2-D image surface. Our
acceleration measurement produces a poor result as shown in
Fig. 4 since Horn and Schunck’s algorithm assumes global
smoothness and sub-pixel motion which is violated in this case.

For more precise, TABLE I reports the performance
measures of our acceleration estimation algorithm on
Middlebury optical flow benchmark data. We computed the
average Angular Error (AE) and Standard Deviation (SD)
between the experimental results and pseudo ground truth. Since
the ground truth flow can be accessed from the Middlebury
optical flow database is only between two frames in the dataset,
we use the acceleration flow estimated based on MDP-Flow?2 [9]
by (6) as the pseudo ground truth. MDP-Flow2 is a highly-rated
optical flow estimation algorithm on the Middleburry evaluation
website!. The results in Table I show that the new acceleration
estimation algorithm is not accurate enough to be used as a
motion descriptor because of the stringent constraints. Fig. 5.
shows the colour map of the pseudo ground truth and estimated
acceleration flow of data “Backyard” and “Walking”. In the
pseudo ground truth, the falling ball in (c) and the walking legs
in (e) has more acceleration than other motion areas. The
acceleration field illustrates detection of features consistent with
acceleration features, which velocity analysis lacks.

TABLE I. Error analysis of acceleration estimation algorithm

(d) Walking

(b) Backyard pseudo ground truth

(e) Walking pseudo ground truth

Data Army Mequon Schefflera | Backy | Dumptr | Grove2 | RubberW | Walking
AE ard uck hale
Average (°) 10.84 28.3 33.89 17.82 12.36 14.31 9.74 17.82
SD (°) 8.61 20.18 19.77 21.59 17.98 13.82 8.77 19.54
° @

(c) Backyard acceleration

(f) Walking acceleration

Fig. 5. The colour map of acceleration flow: (b), (e) are pseudo ground truth [7] and (c), (f) detection by the new approach on the right.

! http://vision.middlebury .edu/flow/eval/



C. Estimating Acceleration via Other Flow Estimation
Methods

Since the motion in real images is often large we want to
seek more generalized form for recovering acceleration from
image sequences, we opt to use the state of the art optical flow
estimation algorithm to approximate the acceleration than to
use the new algorithm. In this paper, we use DeepFlow [10],
which is a popular new technique with excellent performance
for large displacement estimation and non-rigid matching as our
fundamental technique of our algorithm.

As in our previous work [3], we approximate the acceleration
by differencing the velocity field between frames. By reference
to the same starting position, the time axis is reversed when
estimating the previous velocity v;:

ag = Ve — (—vp) (6)

motion field, which can be found in [7]. We now have the basis
for detecting acceleration and its extension to a more generalized
form that able to detect acceleration under large motions. In real
image sequences, detecting acceleration flow can help
distinguish objects undergoing different motions. In Fig. 7, the
silver car in the front and the red dump truck in the back are
approximately moving in constant velocity. As contrast, the
detection result shows the other two cars are accelerating.

III. TANGENTIAL AND RADIAL ACCELERATION

Acceleration for motion is composed of two components:
tangential and radial acceleration. The tangential component
changes the magnitude of the velocity vector and the direction is
located in the tangent line of the trajectory (increasing or
decreasing the speed). The radial component (also called
centripetal acceleration in circular motion) changes the direction
of the velocity and it points to the centre of the curved path

(a) Moving with constant velocity.

(b) Moving with acceleration.

Fig. 6. The experiment results on Yosemite.

The new results in Fig. 6. show this more general approach
when used to estimate acceleration flow. In (a), the scene is
moving with constant velocity so there is little acceleration flow.
In (b), the pixels in the lower left corner have larger acceleration
than the upper right corner and the whole scene is accelerating
to the upper left corner, which shows the consistency with the
known motion characteristics of the Yosemite sequence. This is
a considerable improvement over Fig. 4 which used the Horn
Schunck formulation.

Since our algorithm is based on an established optical flow
detection technique, the performance of acceleration estimation
depends on the performance of DeepFlow for estimating the
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Fig. 7. Detecting acceleration on real images [7].

(normal to the direction of velocity), as shown in Fig. 8. Motion
is composed of linear or circular motion; therefore, the motion
incorporated in images is either linear or circular if the time
interval is sufficiently small.

Fig. 8. The acceleration of a particle along arbitrary curved path is
composed of radial and tangential component.

A. Decomposing Tangential and Radial Components from
Acceleration

We assume that the moving points which follow the curved
trajectories rotate along the same arc in any three consecutive
frames since three nonlinear points can determine one and only
one circle. The rotation centre can be calculated by the positions
of the pixel in the consecutive frames. Connecting these three
points with straight lines and applying perpendicular bisectors
to them, the centre of the circle is then located at the intersection
of the two perpendicular bisectors.



(a)dx=0,6y=0 (b) 6x = 32,6y =32 (c) da = 10° (d) a = 30°
Fig. 9. Examples of artificial motion.

Linear motion without Linear motion with Circular motion without Circular motion with angular
acceleration acceleration angular acceleration acceleration

Resultant Acceleration Velocity

Radial Acceleration

Tangential Acceleration

Fig. 10. The experimental results of synthetic images.

Suppose the coordinates of a point in three consecutive
frames are: p;(x;,y;)i € (t—1,t,t+1), mo,no are the mo - p,_;P; = N0 * PPrsq 7
perpendicular bisectors of p;_;p; and psPs+1, and 0(x,,y,)
denotes the center of the circular motion, hence: then the coordinate of 0 can be obtained by:



o' =05 -y (8)
where,

[xt — Xt
Xe+1 — X

Ve = Ve-1 [xt2 — Xt Y- }’t—12]
7 Wy = C©)]
Ye+1 Yt] Xepr? = X2+ Yeer® — V2

Weuse a = (x; + a,, y;: + a,,) to present the coordinates of
acceleration vector in image plane. The positions of tangential
acceleration tan(u, v) and radial acceleration rad (u, v) can be
estimated by:

tan” = [f(-6) g(-0)]"[p.-f(6) a-g®)]1" (10)
rad” = [f(-0) g(-6)]"[a-f(6) p;-g(O)]"
where 6 is the angle between op, and the horizontal
axis f(8) = (cos0, sinf), g(8) = (—sinb, cosh).

We now have the basis for detecting acceleration and its
extension to a more generalized form. In the next section, we

evaluate these approaches to determine whether we can indeed
detect acceleration from image sequences.

B. Deploying Decomposed Algorithm on Synthetic Image
Sequences

We evaluate the decomposed approach first on synthetic
images to assess performance before analysis on real images to
show capability in real applications. We manipulate Mequon
sequence by rotating around its centre in the synthetic sequence
to form circular motion. Examples of test image are illustrated
in Fig 10.

The experiments are classified into 4 groups: linear shift with
constant velocity, linear shift with acceleration, rotation in
constant angular velocity and rotation with angular acceleration.
We detected velocity, resultant acceleration, radial and
tangential fields for each group separately and illustrate the
results in Fig. 10.

In the example of linear shift, there is little radial acceleration
because the direction of trajectory does not change and the
tangential component only appears when the object is
accelerating. The resultant acceleration field shows similar
features with tangential acceleration since it only contains the

(b) Velocity flow on a walking.

Fig. 11. Analysing acceleration and velocity flow on real images.



tangential component in linear displacement. Velocity appears
in both situations however.

In the rotation examples, radial acceleration appears both
under rotation with constant angular velocity, and under angular
acceleration, due to the direction of motion changing all the
time. The magnitude of radial acceleration is increasing with the
angle of the object rotated. All the radial acceleration field points
to the Mequon sub-frame centre since the sub-frame rotates
about it. The directions of tangential components are along the
tangent of rotating trajectory showing a result consistent with
expectations. Simultaneously, the velocity field does not show
any obvious distinction. There appears to be some noise around
the edge of the moving object; this is mainly caused by
discontinuous motion in that area. Our estimated detection of
acceleration shows expected results on artificial scenes. We
have used our new technique to detect heel strike for gait
analysis in our previous work [3].

C. Deploying the Algorithm on Real Images

We also provide a new example of our approach detecting
acceleration on images of a subject walking in a chroma key
laboratory [11], in Fig. 11. Acceleration is detected mainly only
around the limbs of walking subject and is maximum around
the leg which is swinging forward when the other leg is in the
stance phase, since the limbs appear to have pendulum-like
motion when people are walking [12]. We also detect the outer
parts of the upper thorax, which is consistent with its inverted
pendulum motion. In contrast, the velocity flow is distributed
all over the body without notable difference, so the detected
acceleration is consistent with the above analysis. Comparison
was not possible with [5] due to lack of implementation and [4]
used Horn Schunck violating primary assumption as in our new
algorithm.

I'V. DISCUSSION AND CONCLUSION

Previous research in motion analysis mostly focused on the
displacement between frames, without considering the diversity
of motion. Acceleration is a more distinct feature than
displacement. Presenting motion by acceleration can help for
better understanding the scene. There has been little study on
revealing acceleration from optical flow however they lack an
analytic solution. In this paper, we derive acceleration from the
basis of Horn Schunck but we found most real motion violates
the basic global smoothness assumptions made in the Horn
Schunck formulation. We show another way to approximate an
acceleration field which is more accurate and able to handle
most situations, and appears improved over the Horn Schunck
technique on the standard Yosemite test sequence. The
acceleration is decomposed into constituent parts allow greater
depth in the understanding of the motion. The experiments on a
variety of image sequences illustrate the ability of acceleration
that discriminate different motion whereas velocity did not show
any obvious difference. Clearly, acceleration is likely to be more

sensitive to noise though the experiments show that this is not a
sever limitation and in fact radial acceleration error estimates are
encouragingly low. The ability of the new technique is also
demonstrated by its capability to achieve radial and tangential
acceleration analysis, providing a completely new way to
understand and disambiguate motions in image sequences.
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