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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

Aerodynamics and Flight Mechanics

Doctor of Philosophy

INVESTIGATION OF TURBULENT FLOW OVER IRREGULAR ROUGH SURFACES

USING DIRECT NUMERICAL SIMULATIONS

by Manan Thakkar

Incompressible turbulent flow in irregular rough channels is investigated using a finite-

difference direct numerical simulation code which includes an iterative embedded boundary

treatment to resolve the roughness. Seventeen industrially relevant rough surfaces with

a wide variation in surface topography are considered. Various studies are conducted to

understand the flow physics and the relationship between key flow parameters and surface

topography. Studies at low values of friction Reynolds number, Reτ , for a single surface,

show that the flow is laminar up to Reτ = 89 and begins to develop quasi-periodic fluc-

tuations at Reτ = 89.5. Fluctuations in the three velocity components continue to grow

until Reτ = 91, and the flow is turbulent for Reτ ≥ 92. Transition depends on the surface

topography as some roughness peaks trigger fluctuations before others. For all the surfaces,

mean and turbulent flow statistics are computed at Reτ = 180, for which the flow is fully

turbulent but transitionally rough. All surfaces are scaled to the same physical roughness

height. Nevertheless, a wide range of roughness function, ∆U+, values is obtained, indi-

cating that it depends not only on the roughness height but also on the detailed roughness

topography. Other mean and turbulence flow statistics also vary considerably depending

on the surface topography. Next, based on the simulation results database at Reτ = 180, a

newly formulated method, that determines which surface topographical properties are im-

portant and how new properties can be added to an empirical model, is tested. Optimised

models with several roughness parameters are systematically developed for ∆U+ and pro-

file peak turbulent kinetic energy. In determining ∆U+, besides the known parameters of

solidity and skewness, it is shown that the streamwise correlation length and rms roughness

height are also significant. The peak turbulent kinetic energy is determined by the skewness

and rms roughness height, along with the mean forward-facing surface angle and spanwise

effective slope. A Reynolds number dependence study is conducted for a single surface,

wherein the roughness height in viscous units, k+, is varied from the transitionally rough

to the fully-rough regime in the range 3.75 ≤ k+ ≤ 120. Excellent agreement with the ex-

perimental data of Nikuradse (Laws of flow in rough pipes, NACA Technical Memorandum

1292, 1933) is observed. The value of equivalent sand-grain roughness height, k+
s,eq, thus

obtained is close to the mean peak-to-valley height.
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Nomenclature

uτ = friction velocity of the fluid

δ = mean channel half-height

ν = kinematic viscosity of the fluid

Reτ = friction Reynolds number = uτδ/ν

∆U+ = roughness function

k = roughness height of a given surface sample

ks,eq = equivalent sand-grain roughness height

For a given flow quantity, φ,

φ = instantaneous quantity

φ = time-averaged quantity

φ′ = fluctuations from the time average = φ− φ
〈φ〉 = time- and spatially-averaged (in the streamwise and spanwise

directions) quantity

φ+ = non-dimensionalisation by viscous (or wall) units, uτ if φ is a

velocity or ν/uτ if φ is a length

x, y, z = streamwise, spanwise and wall-normal directions

M , N = number of data points discretising the rough surface samples

in streamwise and spanwise directions

∆s = uniform spacing of points discretising the rough surface sam-

ples in streamwise and spanwise directions

kx, ky = streamwise and spanwise components of the 2D wave vector

kc = Fourier filter cut-off wave number

h(x, y), hi,j = rough surface heights after filtering

Lx, Ly, Lz = streamwise, spanwise and wall-normal computational domain

lengths

kcLx = maximum streamwise wave number

∆x, ∆y = grid spacings in streamwise and spanwise directions

∆zmin, ∆zmax = minimum and maximum grid spacings in the wall-normal di-

rection

λmin = smallest Fourier wavelength in the rough surface topography



Nomenclature vii

nx, ny, nz = number of grid points in the streamwise, spanwise and wall-

normal directions

ψ = embedded boundary signed distance function

femb = embedded boundary forcing function

nΓ = embedded boundary normal vector (pointing into the solid

boundary)

u, v, w = instantaneous streamwise, spanwise and wall-normal velocities

p = instantaneous pressure

ρ = density of the fluid

t = flow time unit

h = mean roughness height of a given surface sample = 0

Rough surface topographical properties

Sz,5×5 = mean peak-to-valley height

Sa = average roughness height

Sq = root-mean-square (rms) roughness height

Ssk = surface sample skewness

Sku = surface sample flatness (or kurtosis)

Sz,max = maximum peak-to-valley height

Lcor
x = streamwise correlation length

Lcor
y = spanwise correlation length

Ssl = longest correlation length

Sal = shortest correlation length

Str = surface texture aspect ratio = Ssl/Sal

Sflow
tr = flow texture ratio = Lcor

y /Lcor
x

ESx = streamwise effective slope

ESy = spanwise effective slope

S = surface sample planform area

Sf = frontal area of roughness elements

Sw = wetted area of roughness elements

Sf/S = solidity

Λs = Sigal-Danberg parameter

α = mean streamwise forward-facing surface angle

αrms = root-mean-square (rms) of the streamwise surface angle

Ub = mean streamwise bulk velocity

U+
c = mean centreline velocity

U+ = mean streamwise velocity profile

u′2, v′2, w′2 = streamwise, spanwise and wall-normal Reynolds stress fields

−u′w′ = Reynolds shear stress field

〈u′2〉, 〈v′2〉, 〈w′2〉 = streamwise, spanwise and wall-normal Reynolds stress profiles



viii Nomenclature

−〈u′w′〉 = Reynolds shear stress profile

(Reτ )crit = critical Reynolds number for transition

(Reτ )trans = transition Reynolds number

〈u′rms〉, 〈v′rms〉, 〈w′rms〉 = root-mean-square (rms) streamwise, spanwise and wall-normal

Reynolds stress profiles

P (u < 0) = volume fraction of negative time-averaged streamwise velocity

bi,j = Reynolds stress anisotropy tensor

ũ2, ṽ2, w̃2 = streamwise, spanwise and wall-normal dispersive stress fields

ũw̃ = dispersive shear stress field

〈ũ2〉, 〈ṽ2〉, 〈w̃2〉 = streamwise, spanwise and wall-normal dispersive stress profiles

−〈ũw̃〉 = dispersive shear stress profile

κ = von Kármán constant

Ruu, Rvv, Rww = velocity two-point correlations for the streamwise, spanwise

and wall-normal velocities

Abbreviations
DNS direct numerical simulation

LES large-eddy simulation

RMS root mean square

IBM immersed boundary method

TKE turbulent kinetic energy
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1 and filed 2 samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.21 Reτ = 180 results - variation of 〈ũ2〉max with Lcor
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composite 2, gritblasted and ground samples . . . . . . . . . . . . . . . . . 105

7.1 Surface parametrisation - dependence of roughness function on the surface

skewness and the RMS roughness height . . . . . . . . . . . . . . . . . . . . 107

7.2 Surface parametrisation - dependence of roughness function on the equivalent

sand-grain roughness of Flack and Schultz [2010] . . . . . . . . . . . . . . . 107

7.3 Surface parametrisation - dependence of the roughness function on stream-

wise effective slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Surface parametrisation - comparison of the variation of ∆U+ with ESx for

the current study, Napoli et al. [2008] and Schultz and Flack [2009] . . . . . 109

7.5 Surface parametrisation - dependence of the roughness function on the gen-

eralized Sigal-Danberg parameter . . . . . . . . . . . . . . . . . . . . . . . . 110

7.6 Surface parametrisation - improvement of the fit by shifting the outliers in

the horizontal direction by introducing Str and Sflow
tr . . . . . . . . . . . . . 113

7.7 Surface parametrisation - ∆U+ against Φ . . . . . . . . . . . . . . . . . . . 115

7.8 Surface parametrisation - linear fits to the DNS data, correlating the rough-

ness function, ∆U+, with different parameters . . . . . . . . . . . . . . . . . 117

7.9 Surface parametrisation - linear fits to the DNS data, correlating the peak

TKE, with different parameters . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.10 Variation of the mean forward-facing surface angle, α, with ∆U+ . . . . . . 121

8.1 Reynolds number dependence - data showing low Reynolds number effects . 124

8.2 Reynolds number dependence - surface plots showing the tiling procedure for

k+ = 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



List of Figures xiii

8.3 Reynolds number dependence - mean streamwise velocity profiles . . . . . . 126

8.4 Reynolds number dependence - mean streamwise velocity defect profiles . . 126

8.5 Reynolds number dependence - variation of ∆U+ with k+ . . . . . . . . . . 128

8.6 Reynolds number dependence - comparison of the current Reynolds number

range data with the study of Ligrani and Moffat [1986] . . . . . . . . . . . . 130

8.7 Reynolds number dependence - the log-region velocity profile parameter of

Nikuradse [1933], A, compared between his experiments and the current data 132

8.8 Reynolds number dependence - data characterisation for the Reynolds num-

ber range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.9 Reynolds number dependence - contours of instantaneous flow velocities, u

and w, at z+ = 0 for k+ = 15 and 7.5 . . . . . . . . . . . . . . . . . . . . . 136

8.10 Reynolds number dependence - contours of instantaneous wall-normal flow

velocity, w, at z+ = 180 for k+ = 15 and 7.5 . . . . . . . . . . . . . . . . . . 136

8.11 Reynolds number dependence - contours of time-averaged flow velocities, u

and w, at z+ = 18 for k+ = 30, 15 and 7.5 . . . . . . . . . . . . . . . . . . . 137

8.12 Reynolds number dependence - contours of w at z+ = 180 . . . . . . . . . . 137

8.13 Reynolds number dependence - contours of time-averaged flow velocities, u

and w, spatially averaged in the streamwise direction for k+ = 30, 15 and 7.5 138

8.14 Reynolds number dependence - two-point correlations (spanwise separations),

Ruu, Rvv and Rww, of time-averaged flow velocity, spatially averaged in the

streamwise direction, for k+ = 30 . . . . . . . . . . . . . . . . . . . . . . . . 139

8.15 Reynolds number dependence - two-point correlations (spanwise separations)

for k+ = 30 at z/δ = 0.1 (z+ = 18) from Figure 8.14 . . . . . . . . . . . . . 140

8.16 Reynolds number dependence - two-point correlations (spanwise separations),

Ruu, Rvv and Rww, of time-averaged flow velocity, spatially averaged in the

streamwise direction, for k+ = 15 and 7.5 . . . . . . . . . . . . . . . . . . . 141

8.17 Reynolds number dependence - non-normalised two-point correlation (span-

wise separations), Ruu, Rvv and Rww, of time-averaged flow velocity, spatially

averaged in the streamwise direction, for k+ = 7.5 . . . . . . . . . . . . . . 142

8.18 Reynolds number dependence - instantaneous wall-normal velocity, w, and

corresponding spanwise two-point correlation at x = Lx/4 for k+ = 30, 15

and 7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.19 Reynolds number dependence - standard deviation of w for each z/δ, nor-

malized by the spatially-averaged u . . . . . . . . . . . . . . . . . . . . . . . 144

B.1 Rough surface simulation procedure - the full gritblasted surface showing the

optimum section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.2 Rough surface simulation procedure - gritblasted sample showing unfiltered

and filtered data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

B.3 Rough surface simulation procedure - schematic of the channel showing var-

ious wall-normal meshing parameters . . . . . . . . . . . . . . . . . . . . . . 160



List of Tables

3.1 Rough surface samples - naming convention . . . . . . . . . . . . . . . . . . 39

3.2 Rough surface samples - topographical properties of all samples . . . . . . . 49

4.1 Validation - simulation parameters for the smooth-wall simulations . . . . . 51

4.2 Validation (mesh resolution) - domain size and simulation parameters . . . 53

4.3 Validation (domain size) - simulation parameters . . . . . . . . . . . . . . . 55

4.4 Sensitivity to channel blockage ratio - simulation parameters . . . . . . . . 59

5.1 Laminar to turbulent transition of flow over a rough surface sample - surface

sample topographical properties . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Laminar to turbulent transition of flow over a rough surface sample - domain

extents and meshing parameters . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Laminar to turbulent transition of flow over a rough surface sample - final

mean centreline velocities, 〈U+
c 〉, for the laminar solutions . . . . . . . . . . 69

5.4 Laminar to turbulent transition of flow over a rough surface sample - val-

ues of rms wall-normal fluctuations at the maximum roughness height and

corresponding Reynolds number along with k+ . . . . . . . . . . . . . . . . 74

6.1 Reτ = 180 results - simulation parameters . . . . . . . . . . . . . . . . . . . 80

7.1 Surface parametrisation - percentage relative errors for all samples between

∆U+ (DNS) and ∆U+ (fit) . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Surface parametrisation - Str and Sflow
tr values for the 4 outlier samples . . . 112

7.3 Surface parametrisation - parameters required to solve equation (7.6) for the

4 outlier samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Surface parametrisation - values of the fitting coefficients and fit quality

parameters for the six 2-point combinations from the 4 outlier data points . 114

7.5 Surface parametrisation - percentage relative errors for all samples between

∆U+ (DNS) and ∆U+ (fit) obtained using Φ . . . . . . . . . . . . . . . . . 115

7.6 Surface parametrisation - mathematical forms of properties tested during the

fitting process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7 Surface parametrisation - best fit parameters for λ0, λ1, λ2 and λ3 for ∆U+ 119

7.8 Surface parametrisation - best fit parameters for λ0, λ1, λ2 and λ3 for TKE 121



List of Tables xv

8.1 Reynolds number dependence - simulation parameters . . . . . . . . . . . . 124

8.2 Reynolds number dependence - values of ∆U+, mean centreline and mean

streamwise bulk velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Reynolds number dependence - values of k+, k+
s,eq and ∆U+ . . . . . . . . . 129

8.4 Reynolds number dependence - values of k+, k+
s,eq and the log-region velocity

profile parameter of Nikuradse [1933], A . . . . . . . . . . . . . . . . . . . . 132

8.5 Reynolds number dependence - best fit parameters for data characterisation

in the Reynolds number range . . . . . . . . . . . . . . . . . . . . . . . . . . 134





Declaration of Authorship

I, Manan Thakkar, declare that the thesis entitled Investigation of turbulent flow over

irregular rough surfaces using direct numerical simulations and the work presented in the

thesis are both my own, and have been generated by me as the result of my own original

research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at this

University;

• where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;

• where I have consulted the published work of others, this is always clearly attributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: Thakkar et al. [2017] and Busse et al. [2016]

Signed:.......................................................................................................................

Date:..........................................................................................................................





Acknowledgements

The last three-and-half years have been a roller coaster ride! My PhD journey, which

began with eagerness and excitement, had its fair share of indifferences, breakthroughs and

setbacks, and overall highs and lows, has taught me a lot of good things. This incredible

journey would not have been completed without the support of the following people. Firstly,

I would like to thank my supervisor, Prof. Neil Sandham; his guidance throughout the PhD

was extremely helpful and his demanding approach always kept me on my toes for the

next problem. Secondly, I would like to thank Dr. Angela Busse, whose research laid the

foundation for my work. I am very grateful for her ad hoc guidance and unceasing patience

in answering all my questions. Thirdly, Dr. Roderick Johnstone, whose initial support led

to a deeper understanding of the work. I also acknowledge the IRIDIS high performance

computing facility and associated support services at the University of Southampton, and

the UK National Supercomputing facility, ARCHER, access to which was provided by the

UK Turbulence Consortium. Both the above facilities were absolutely crucial to the research

and aided in timely completion of the work. The feedback provided by my internal examiner,

Dr. Zhengtong Xie, and second supervisor, Prof. Bharathram Ganapathisubramani, during

the official PhD reviews and in general, motivated me to constantly better my work.

A PhD is not just about doing research in one’s chosen field, the mind must be constantly

stimulated and developed. Hence, my colleagues and friends must be mentioned here. I

thank the ‘office dudes’, Arslan, Rafa, Saba, Jaime and Jorge, for those highly interesting

brainstorming sessions, discussions and debates during lunch, which kept me sharp.

Lastly, none of this would have been possible without the support of my parents. Their

untiring encouragement to focus on my ‘goal’ helped me tremendously, especially during

the tough times.





Chapter 1

Introduction

The current work aims to investigate the turbulent fluid flow over irregular industrial

rough surfaces using direct numerical simulations (DNS), with the aid of a previously devel-

oped code. This introductory chapter lays down the theoretical foundation and background

for the rest of the thesis. A literature review, which describes the contribution of previous

researchers in the field of fluid flow over roughness, follows. The review is followed by a

description of the objectives of the work.

1.1 Theory and literature review

Rough surfaces are encountered in a large number of applications; from roughness in

conjunction with industrial heat exchangers (Ligrani et al. [2003]), turbomachinery (Bons

et al. [2001], Acharya et al. [1986]), ship propellers and hulls (Kirschner and Brennan [2012],

Townsin [2003], Wahl [1989]) to roughness induced by plant canopies and structures in an

urban environment exposed to atmospheric flows (Arnfield [2003], Finnigan [2000]). Accord-

ing to Wahl [1989], any solid surface in a marine environment will be affected by fouling.

Marine fouling, which is caused by the accumulation of organic molecules, microorganisms,

plants and animals on a body submerged in the water (Kirschner and Brennan [2012]),

leads to an increase in roughness of the hull and hence its hydrodynamic drag. The drag

penalty causes a decrease in ship speed and maneuverability and an increase in fuel con-

sumption. Propeller fouling, although a small part of the fouling on the marine vehicle, is

also important from the point of view of increased friction and fuel consumption which in

turn hampers performance. Due to extended periods of service, turbines, compressors and

other turbomachinery devices are adversely affected by roughness since their surface qual-

ity degrades due to phenomena such as erosion, corrosion and deposition (Acharya et al.

[1986]). Heat exchangers utilise roughness to improve their efficiency (Ligrani et al. [2003])

as the increase in wall friction causes an increase in wall shear stress which enhances the

heat transfer rate. Within the urban environment, roughness at different spatial scales is

seen (Britter and Hanna [2003]). Increasing in size from the smallest roughness features,

atmospheric flows are affected by the presence of trees, lawns and gardens, paved areas and

streets, buildings and entities in between adjacent buildings, city blocks, neighbourhoods
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and ultimately entire cities (Arnfield [2003]). The nature and topography of all these el-

ements affects the aerodynamic characteristics of the air flow and energy transfer around

them in a profound manner and their study is important in city planning. Urban rough-

ness modelling is also useful in studies of pollutant dispersion (Bottema [1997]). Vegetation

canopies play an important role in scalar exchange in the atmosphere due to winds (Finnigan

[2000]). Many industrial surface finishing processes produce materials that are classified as

rough. Examples of such processes include grinding, shotblasting, spark-erosion, casting etc.

Previous work has been mostly limited to numerical and experimental studies on regular

rough surfaces made from systematic arrangements of cubes, bars, cylinders, rods, spheres,

etc. possessing a small number of characteristic length scales and whose surface properties

could be easily evaluated. The main objective of the current work is to conduct direct nu-

merical simulations of a range of well-characterised, scanned irregular rough surfaces seen

in practical applications, to study the physics of the fluid flow and to methodically relate

their surface parameters to various flow properties.

Studies of flow over rough walls have been undertaken since the mid-1800s when Darcy

[1857] and Hagen [1854] performed the first experiments of flows through rough pipes. Many

later researchers studied rough pipes of different materials, having circular cross section

(with different diameters) and also rectangular pipes or channels with different channel

widths and depths. These early studies culminated in the work of Nikuradse [1933], which

is considered as one of the most comprehensive set of rough pipe flow experiments to date.

For a range of Reynolds numbers, Nikuradse [1933] conducted measurements and analyses

of water flow through circular pipes of different diameters. The roughness was introduced by

coating the internal pipe surfaces with sand grains of uniform size. Experiments were also

carried out for different grain sizes. Geometrical similarity between different pipe diameters

was maintained by keeping a constant ratio of r/k where r was the pipe radius and k was the

size (i.e. diameter) of the sand grains. Observations were made on the loss of head, velocity

and pressure distributions, quantity of discharge and water temperature. The Reynolds

number was defined as Re = ud/ν, where u was the average fluid velocity, d was the pipe

diameter and ν was the fluid kinematic viscosity. Nikuradse [1933] also defined a resistance

factor,

λ =
dp

dx

d

q
,

where dp/dx was the pressure drop per unit length of the pipe and q = ρu2/2 was the

dynamic pressure of the average flow, with ρ being the fluid density. It was observed

that, depending on the Reynolds number, there existed three ranges of the flow over the

roughness. In the first range, which existed at low Reynolds numbers, the roughness had no

significant effect on λ. According to Nikuradse [1933], this was because the thickness of the

laminar boundary layer was large compared to the roughness height and hence the value of

λ was comparable to that of a smooth pipe. In the second range, which occurred at higher

Reynolds numbers and which was termed as the transition range, the influence of roughness

became more noticeable. An increase in Re led to an increase in λ. This was because

the boundary layer thickness now became comparable to the roughness height. Within the
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third range, which occurred at even higher Reynolds numbers, λ became independent of Re.

Within this range the thickness of the boundary layer was so small that all the roughness

projections extended through it. This classification exists till today and the ranges are

termed as the hydraulically smooth regime, transitionally rough regime and fully rough

regime respectively, denoting the first, second and third ranges of Nikuradse [1933]. One

of the most important relations proposed was the generalised velocity distribution, given in

the notation of the current work as

u

uτ
= A+B log

(z
k

)
,

where u/uτ was the streamwise velocity normalised by the fluid friction velocity and z was

the wall-normal coordinate. In the fully rough regime, A = 8.48 and B = 5.75 whereas in

other regimes A and B depended on the non-dimensional quantity uτk/ν. Although the

experiments were fairly comprehensive, the roughness considered was only of sand grain

type, which does not apply to all engineering applications. However, the experimental data

have served and continue to serve as benchmark for subsequent roughness studies.

The primary effect of roughness is an increase in the surface friction compared to a

smooth wall, which is seen as a downward shift in the logarithmic region of the mean

streamwise velocity profile when plotted in wall-units (refer Figure 1.1). This downward

shift was first defined by Clauser [1954, 1956] as the roughness function, ∆U+, also known

as the roughness effect. Based on the smooth-wall log-law profile, this velocity deficit can
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Figure 1.1: An example mean streamwise velocity profile showing the downward shift due
to wall roughness. U+ = U/uτ is the mean streamwise velocity in wall-units,
∆U+ is the roughness function and z+ is the wall-normal direction in wall-units.
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be represented as

U+(z+) =
1

κ
ln(z+) +A−∆U+(k+), (1.1)

where ‘+’ superscripts indicate viscous (wall) units, z+ and k+ are the wall-normal distance

and roughness height in wall-units, κ is the von Kármán constant and A is the additive

constant. Jiménez [2004] recommends κ ≈ 0.4 and A ≈ 5.1.

In general, the roughness effect depends on the surface topography and Reynolds num-

ber, which means ∆U+ ∼ k+. For relatively low k+, ∆U+ ≈ 0 and the flow is hydraulically

smooth. Beyond a threshold value of k+, the flow is considered to be fully rough, where

∆U+ follows a universal behaviour, as mentioned by Jiménez [2004]. In between the hy-

draulically smooth and fully-rough regimes, the transitionally rough regime is observed,

wherein the roughness function strongly depends on the nature of the surface and flow

parameters.

Rough surfaces can be broadly classified as regular or irregular. A detailed review of

previous studies is given below.

1.1.1 Studies on regular roughness

Regular roughness includes elements usually made up of a regular or periodic arrange-

ment of known shapes such as spheres, cylinders, cones, cubes etc. on a surface. Such rough

surfaces typically possess a small number of characteristic length scales and their surface

properties such as roughness heights and spacing can be easily evaluated. It is also fairly

simple to design or reproduce regular rough surfaces for the purpose of experimentation or

computational simulations. Regular roughness is exhibited by heat exchanger applications

(Ligrani et al. [2003]), some marine applications (for example, roughness introduced on ship

hull panels due to rivets as studied by Schlichting [1936]) and may be seen in some types of

urban flows where regularly spaced blocks of houses act as the roughness features (as seen

in the field experiments of Dobre et al. [2005]).

Antonia and Krogstad [2001] conducted wind tunnel experiments to study the structure

of turbulent boundary layers on two types of rough surface geometries: a regular three-

dimensional mesh consisting of woven stainless-steel wire and an arrangement of circular

rods aligned in the spanwise direction placed at regular intervals in the streamwise direction.

The second geometry was considered two-dimensional. The experimental conditions were

set up to obtain a similar value for the roughness function, ∆U+, for both geometries.

The Reynolds number based on the boundary layer displacement thickness (at a specific

downstream distance) for the wire mesh and circular rods was Reθ = 12800 and 4810

respectively, whereas the ratio of the boundary layer thickness to roughness height was

δ/k ≈ 54.35 and 46.25 respectively. Their main aim was to study differences in the boundary

layer outer region Reynolds stresses for surfaces with similar ∆U+. The agreement between

the two geometries was good only for the streamwise components of Reynolds stress, whereas

the wall-normal and shear stress components showed relatively poor agreement. They noted

that the spanwise and shear stress showed the most significant differences, which implied

that the wall-normal motion was most affected by the type of surface. Thus, ∆U+ was
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Figure 1.2: Schematic of the regular rough surface geometries (top view) used in the DNS
of Orlandi and Leonardi [2006], in the form of aligned cubes (left) and staggered
cubes (right). Flow is from left to right in both arrangements.

found to be useful in describing the effect of surface roughness only in the inner layer of the

turbulent boundary layer. Also, relative to a smooth wall, flow over the wire mesh geometry

exhibited a more isotropic behaviour compared to the circular rod geometry. They also

concluded that the small scales of motion were more or less isotropic for three-dimensional

roughness (based on their wire mesh geometry) as compared to two-dimensional roughness

(their circular rod geometry) or a smooth wall.

In the context of two- and three-dimensional roughness, Orlandi and Leonardi [2006]

conducted DNS studies on turbulent channels comprising of aligned and staggered cubes

(Figure 1.2). Their focus was on closely spaced roughness elements because in such cases

the shape of the roughness elements strongly influenced ∆U+ and the emphasis was on the

region close to the rough surface. Comparisons were made with a smooth channel and two

basically two-dimensional (2D) geometries, consisting of transverse and longitudinal square

bars. The Reynolds number based on the channel half-height and centreline velocity was

Re = 4200. All cases had a streamwise separation to roughness height ratio of 1 (which

was generally representative of the basic geometrical structure in urban areas) and channel

half-height to roughness height ratio of δ/k = 5. Detailed investigations of the near-wall

flow physics were conducted by studying the velocity and vorticity. Also, the roughness

function was parametrised with the rms of the wall-normal velocity on the crest plane of

the cubes with a satisfactory collapse. The selection of the rms of wall-normal velocity

was based on its more general validity compared to geometrical parameters (which are

generally used to parametrise ∆U+). It was concluded the parametrisation could be used

in micro-meteorological applications.

Ashrafian and Andersson [2006] carried out DNS of a turbulent channel flow comprising

of square rods aligned in the spanwise direction (Figure 1.3). The Reynolds number based

on the friction velocity was Reτ = 400, for which the flow was in the upper transitionally

rough regime. The ratio of rod streamwise separation to height was 7 and of channel half-

height to rod height was δ/k ≈ 29.5. They investigated higher order statistics and the

effect of roughness on the larger scales of motion away from the wall. Increased vorticity

fluctuations were observed in the roughness sublayer (the layer of flow close to the wall where

the flow is directly influenced by the roughness). Also, highly disrupted vortical structures

in the near-wall regions recovered away from the wall to attain coherence similar to smooth
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Figure 1.3: Schematic of the regular roughness geometry in the DNS studies of Ashrafian
and Andersson [2006]. Lx,Ly and Lz are the domain lengths in the streamwise,
wall-normal and spanwise directions respectively. Flow is from left to right the
streamwise direction.

walls. The Reynolds stress anisotropy was unaffected in the outer layer (thus resembling

the outer layer flow in the case of a smooth wall), whereas it was significantly reduced in the

roughness sublayer. Overall, it was concluded that the nature of the flow in the vicinity of

the rough wall did not significantly alter the flow in the outer regions and hence satisfied the

wall-similarity hypothesis of Townsend [1976]. It was also concluded that factors such as

geometry of the roughness elements and their arrangement as well as geometry of the flow

itself (whether it was channel or boundary layer flow) might be responsible in producing

different roughness effects.

To study the effects of dimensional differences between 2D and 3D roughness on wall-

similarity, Lee et al. [2011] conducted direct numerical simulations of a spatially developing

turbulent boundary layer over a wall roughened with regularly spaced staggered cubes

of uniform size (Figure 1.4). Reynolds number based on the boundary layer momentum

thickness varied from the inlet to outlet as Reθ = 300 − 1300 and the ratio of boundary

layer thickness to cube height varied from δ/k ≈ 6− 19. Cube streamwise separation was 8

times the cube height whereas spanwise separation was twice the cube height. Comparisons

were made with DNS results of a turbulent boundary layer over an essentially 2D geometry

Figure 1.4: Schematic of the regular roughness geometry (top view) in the form of staggered
cubes in the DNS studies of Lee et al. [2011]. Flow is from left to right.



Chapter 1. Introduction 7

consisting of an array of square rods aligned in the spanwise direction, with δ/k ≈ 8− 22.

The effects of the 3D roughness on the mean velocity distribution were weaker than those of

the 2D roughness as the roughness function was lower for the 3D roughness compared to 2D.

Mean velocity defect profiles for both types of roughness showed good collapse in the outer

layer. The profile magnitudes of streamwise Reynolds stresses were similar for both 3D and

2D roughness in the outer layer but had larger values compared to the smooth wall. For

the Reynolds wall-normal, spanwise and shear stresses, the 2D roughness exhibited higher

values than the 3D roughness compared to the smooth wall. Overall, a lack of outer-layer

similarity was observed for both types of roughness, thus proving its independence from

dimensional variation. The differences between their findings and previous ones, which

suggested wall-similarity for such cases, were attributed to differences in Reynolds number

and strong blockage effects that created active upward motions.

Busse and Sandham [2012] studied channel-flow regular roughness by introducing an

extra forcing term in the governing equations. The force term consisted of two parameters,

related to the density and height of the roughness and a shape function that regulated the

effect of the forcing term with respect to distance from the channel wall. The force term

was meant to account for the additional pressure drag induced by the roughness elements.

The effects of this forcing term on turbulent channel flow were investigated using a large

number of parameter combinations and shape functions using direct numerical simulations

at a friction Reynolds number of Reτ = 180. A selection of six shape functions was used

to model different types of roughness. These included functions based on i) a box profile,

ii) a triangular profile, iii) a parabolic profile, iv) an exponentially decaying profile, v) a
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Figure 1.5: Shape function profiles used in the simulations of Busse and Sandham [2012].
Top row (left to right) - box profile, triangular profile and parabolic profile.
Bottom row (left to right) - exponentially decaying profile, Gaussian profile and
orbital profile. z = wall-normal coordinate, h = roughness height, F = shape
function.
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Gaussian profile and vi) an orbital profile, as shown in Figure 1.5. The main aims were

to contribute to the development of a numerical model for rough surface flows and the

classification of rough surfaces by the quantification of different parameters in the model.

Qualitative comparisons were made, mainly in the near-wall regions, regarding the nature

of the mean flow and roughness function, ∆U+, and turbulent flow behaviour, especially

pertaining to flow anisotropy. All cases except for the extremely rough ones showed a good

collapse of the mean flow in outer layer scaling. Analysis of the Reynolds stress anisotropy

and velocity two-point correlations suggested that with increasing wall-normal distance

in the roughness sublayer the turbulence structure changed from rod-like to disc-like and

showed a more mixing-layer-like behaviour. To justify the practical applicability of the

approach, detailed quantitative comparisons were also made with fully-resolved rough wall

data, with satisfactory agreement.

Chan et al. [2015] conducted investigations into various aspects of sinusoidal roughness

in pipes (Figure 1.6) using DNS. Simulations were conducted at Reτ = 180 − 540, for

which the flow was in the transitionally rough regime. Effects of the systematic variation of

roughness height and wavelength on the flow were studied, thus enabling an understanding

of the influence of surface solidity and effective slope. It was observed that the average

roughness height had a more significant influence on ∆U+ than the effective slope. To

further study the variation of ∆U+ with effective slope and the average roughness height

(in viscous units), a simple linear relation was proposed, which showed a satisfactory fit

to their data and several other studies. For all cases, profiles of velocity defect, radial,

azimuthal and streamwise turbulence intensities and Reynolds shear stress (including those

at the highest roughness height), collapsed in the outer layer. Hence, their results showed

strong support for the outer-layer similarity hypothesis of Townsend [1976].

Figure 1.6: Schematic cross-section of the sinusoidal pipe roughness geometry in the DNS
studies of Chan et al. [2015]. Flow is into the plane of the paper.
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It can be seen that a large amount of work on regular roughness has been done and

knowledge in the field has increased considerably in the past few decades. Experiments

and computational simulations even on simple geometries such as cubes or square rods

etc., which have been popular in the past decade or so, have given a fairly detailed insight

into the fluid flow behaviour in terms of the effects on mean flow and roughness function,

Reynolds stresses and its anisotropies as well as the skin friction drag of rough surfaces.

However, in most practical applications regular roughness is the exception and not the

norm. They bear limited resemblance to their irregular counterparts and as such studies of

only regular rough surfaces are not able to provide a complete picture of roughness.

1.1.2 Studies on irregular roughness

Most engineering rough surfaces seen and used in industrial applications exhibit irreg-

ular roughness distribution. Roughness seen in ship hull and propeller fouling phenomena,

industrial finishing processes (such as gritblasting, spark-erosion, shotblasting) and most

urban and plant canopy flows is irregular.

Far fewer studies on irregular rough surfaces exist compared to regular rough surfaces.

These studies have mostly been dominated by experimental work and only recently have

computational studies begun to be published. One of the most comprehensive and detailed

experimental studies on irregular rough surfaces was conducted by Nikuradse [1933] as

already mentioned at the beginning of Section 1.1. These experiments have served as a

benchmark for many future studies and an analog to his definition of sand-grain roughness,

called the equivalent sand-grain roughness, ks,eq, is still used today to characterise rough

surfaces. Effectively, ks,eq gives the size of the uniformly distributed sand grains that would

obtain the same skin friction coefficient as the rough surface under consideration (as defined

by Schlichting [1936]). Many researchers after Nikuradse performed similar experiments in

order to understand the nature of irregular rough surface flows.

Grass [1971] conducted water channel flow experiments using special visualisation tech-

niques to study the nature of the fluid flow over hydraulically smooth, transitionally rough

and fully rough geometries. The hydraulically smooth geometry consisted of a polyurethane

varnished marine plywood material, while the transitionally rough geometry was represented

by sand grains of approximately 2mm diameter and the fully rough geometry consisted of

pebbles of approximately 9mm diameter. The flow depth was maintained at 50mm and

hence δ/k varied from approximately 6 (for the pebbles) to 25 (for the sand grains). The

Reynolds number based on the average flow velocity and flow depth in the channel was

approximately 7000 in all experiments. One of the primary objectives of the study was

to obtain detailed turbulent velocity fluctuation measurements close to the roughness in

order to study the flow physics. It was noted that there were intermittent phases of fluid

transfer from the regions close to the wall to those away from it (fluid ejection) and vice

versa (fluid inrush). It was quantitatively confirmed that fluid ejections corresponded with

the transfer of low momentum fluid outwards from the boundary whereas fluid inrush was

associated with transfer of higher momentum fluid towards the boundary. This cycle also
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contributed a great deal to the Reynolds stresses and hence turbulent energy production

close to the walls. It was also noted that the fluid transfer from regions close to the walls

to regions away from it provided a dominant positive contribution to the Reynolds stresses

in the outer regions. One of the important conclusions was the idea that an apparently

universal ejection type momentum transport mechanism, possibly extending across the en-

tire thickness of the boundary layer, existed in rough wall flows. An experimental study

at similar δ/k ratio was carried out recently by Mohajeri et al. [2015], using particle image

velocimetry (PIV) on gravel beds in an open channel, with δ/k ≈ 7.5 to 10.8. Longitudi-

nal low- and high-momentum regions in the time-averaged velocity field, likely induced by

secondary currents, were observed. Velocity cross-correlations suggested that upward and

downward motions of the fluid were associated with upstream and downstream faces of the

gravel particles. The relatively high δ/k ratio affected the wall-normal turbulence intensity

the most.

Wu and Christensen [2007] conducted high-resolution PIV experiments and statistical

analysis on an irregular rough geometry replicated from a turbine blade damaged due to the

deposition of foreign materials, which consisted of a broad range of topographical scales.

Experiments were conducted on a zero-pressure-gradient turbulent boundary layer at a

Reynolds number, Reθ = Ueθ/ν ≈ 13000, where Ue was the freestream velocity and θ

was the boundary layer momentum thickness. Studies were conducted on two rough wall

geometries, the roughness height of the first being twice that of the second. The main aim

was to assess the validity of the wall-similarity hypothesis of Townsend [1976]. Comparisons

were made with a corresponding smooth wall geometry and results indicated outer layer

similarity in the turbulence structure. Data for the mean velocity defect profiles as well

as Reynolds normal and shear stresses collapsed away from the rough wall. A similar

collapse was observed when quadrant analysis was used to compute the contributions from

various Reynolds stress producing events to the overall mean Reynolds shear stress. It

was concluded that a roughness sublayer thickness of approximately 3 − 5k (where k was

the average peak-to-valley height), as proposed by previous studies on idealised regular

roughness, agreed well for more irregular roughness commonly seen in practical applications.

Outer layer similarity was noted in both their roughness geometries despite one of them

having δ/k = 28 (where δ was the boundary layer displacement thickness) which was less

than the criterion proposed by Jiménez [2004] (δ/k ≥ 40 for universal behaviour). However,

in terms of δ/ks,eq, both geometries satisfied Jiménez’s criterion. Thus it was stated that in

some cases δ/ks,eq might be more important than δ/k while assessing whether outer layer

similarity should be expected in rough wall flow.

Mejia-Alvarez and Christensen [2010] conducted PIV experiments to study the be-

haviour of a zero pressure gradient developing and developed turbulent boundary layer.

They utilised the same turbine surface geometry as Wu and Christensen [2007] but used

singular value decomposition (SVD) to obtain lower order models of the geometry. SVD was

used to decompose the highly inhomogeneous surface geometry into a set of topographical

basis functions. The lower order models consisted of 5 and 16 SVD modes, respectively
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containing about 71% and 95% of the surface content of the full rough surface. Their aim

was to address the importance of the large scales of roughness over smaller scales in the

context of flow over irregular rough surfaces. Hence only the most dominant topographi-

cal basis functions were considered to reconstruct the geometry, which meant that larger

scale features were retained, whereas the smaller (and possibly less important) scales were

removed. The Reynolds number was Reθ = Ueθ/ν ≈ 15000 for developing and ≈ 13000 for

developed flow (where Ue was the freestream velocity and θ was the boundary layer momen-

tum thickness). For the case of developing flow, the 16-mode model accurately reproduced

the flow characteristics of the full surface, including mean velocity profiles, Reynolds normal

and shear stresses, probability density functions and quadrant contributions to the mean

Reynolds shear stress. The 5-mode model, however, failed to reproduce these characteris-

tics. For the case of developed flow, both 16- and 5-mode models satisfactorily reproduced

the flow characteristics of the full surface outside the roughness sublayer, which meant the

wall-similarity hypothesis of Townsend [1976] was satisfied. This implied that the smaller

roughness scales (which had been removed from the geometries) had a relatively minor

impact on the outer layer flow. However, neither model could reproduce bulk flow charac-

teristics of the full surface, such as the value of the roughness function, ∆U+. Within the

roughness sublayer, both models showed differences with the full surface flow, especially

in predicting the values of streamwise Reynolds stresses and contributions of intense ejec-

tion and sweep events. This meant that the smaller roughness scales played a small but

measurable role in the development of the flow in the roughness sublayer.

Pailhas et al. [2008] conducted detailed wind tunnel experiments of developing turbulent

boundary layers subject to adverse and zero pressure gradients over irregular rough surfaces.

The Reynolds numbers based on the momentum thickness were in the range Reθ = 2200

to 5800 for the adverse pressure gradient cases and 3200 to 3800 for the zero pressure

gradient cases. Their surface geometries included two types of sandpaper (with differing

grain density), which consisted of roughness elements distributed in an inherently random

manner. One of their main objectives was to look into the importance of the equivalent

sand-grain roughness height, ks,eq, in flows over rough surfaces. The goal was to assess the

relevance of ks,eq and determine if it depended only on the geometrical surface parameters

or on the parameters of the flow regime as well. It was observed that ks,eq was not constant

for a given rough surface but varied depending on the flow regime (zero or adverse pressure

gradient flow). Their main conclusion was that the equivalent sand-grain roughness height

must take into account the surface geometrical parameters (such as roughness height and

density) as well as the nature of the fluid flow (such as roughness regime and pressure

gradient condition) and that the classical definitions of ks,eq, which took into account mainly

surface geometrical quantities, may not be justified for all types of rough surface flows.

De Marchis et al. [2010] analysed irregular 2D rough surfaces using wall-resolved large-

eddy simulations (LES). A total of eight surfaces were constructed by superposing sinusoids

with random amplitude and four different wavelengths, with simulations being carried out

at Reτ = 395. The main goal was to check whether literature results over regular roughness
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could be extended to irregular roughness. Peak streamwise and wall-normal velocity rms

fluctuations showed a decrease with an increase in roughness height. High values of stream-

wise and wall-normal fluctuations were observed in similar regions around the roughness.

A significant contribution from dispersive shear stress due to inhomogeneities introduced

by the roughness was observed. An increase in roughness height produced a corresponding

increase in the Reynolds and dispersive shear stress but a decrease in the viscous shear

stress. This was attributed to the recirculation of flow beyond the roughness height which

promoted vertical mixing and hence a reduction in the viscous contribution. A reduction

in the streamwise turbulent intensity with a corresponding increase in the spanwise and

wall-normal components indicated a tendency towards isotropy of the near-wall turbulence.

This tendency also increased with increasing roughness height. Overall, results satisfied the

wall-similarity hypothesis of Townsend [1976]. Although many observations agreed with

those seen for regular roughness, a unique length scale representing the irregularity of the

roughness was not found because the flow was greatly influenced by individual roughness

elements. The detailed analysis conducted in this study makes it an important reference

for the flow physics studies in the current work (especially in Chapter 6).

In a recent work, Cardillo et al. [2013] studied a zero pressure gradient turbulent bound-

ary layer over irregular roughness using DNS at Reynolds numbers based on the boundary

layer momentum thickness of Reθ = 2077 to 2439. The irregular rough surface was a

24-grit sandpaper with the roughness height (based on the mean peak-to-valley height)

in wall-units, k+ = kuτ/ν ' 11, which was in the transitionally rough regime, and the

inlet δ/k = 71. Fourier transforms were utilised to determine which wavelengths of the

surface contributed most to the overall spectrum. In order to reduce computational cost,

only the most dominant wavelengths of the surface topography were considered whereas

the remaining were filtered out. Comparisons were made with smooth wall DNS as well as

laser Doppler anemometry experiments performed on similar geometries under similar con-

ditions. Mean velocity profiles, Reynolds stresses and flow parameters such as skin friction

coefficient, boundary layer and momentum thicknesses showed good agreement with the ex-

periments. Iso-contours of the instantaneous velocity field quantitatively demonstrated that

the surface roughness caused the turbulent boundary layer to thicken overall. Roughness

also caused improved mixing of fluid across the boundary layer and hence changes in the

velocity field were seen throughout. It was also noted that effects of roughness for the Reθ

considered were scale-dependent, whether inner or outer scaling units were considered. Peak

values of Reynolds stresses increased when considering outer units whereas they decreased

when considering inner units. However, significant differences were observed between the

smooth and rough wall cases in the outer regions of the boundary layer for the Reynolds

wall-normal and shear stresses.

Some of the irregular rough surfaces studied in the current work were first studied in

a conference paper by Busse et al. [2013]. The aim was to perform simulations of realistic

surfaces commonly seen in engineering applications in industry (as opposed to artificially

constructed surfaces which have been extensively studied in previous fundamental research
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Figure 1.7: Rough surface samples considered in the studies of Busse et al. [2013]: carbon-
carbon composite (top left), graphite (top right), ground steel (bottom left) and
shotblasted steel (bottom right). Surfaces coloured by roughness height, k/δ.

of flow over rough walls). A three-step numerical methodology, consisting of surface scan-

ning, pre-processing (Fourier filtering) and DNS of rough channel flow, was developed. An

immersed boundary method was used to resolve the roughness. Simulations were conducted

at Reτ = 180 with δ/k = 6, where k was the mean peak-to-valley height. Four irregular

rough surfaces were considered: graphite, carbon-carbon composite, shotblasted and ground

steel (surface plots shown in Figure 1.7), which are typical of industrial applications. De-

spite all surfaces being scaled to the same roughness height, the roughness function, ∆U+,

varied significantly, thus proving that, along with the roughness height, the roughness to-

pography also had a significant influence on roughness effects. It was also observed that

∆U+ roughly increased with surface skewness, Ssk and the streamwise effective slope, ESx.

It was concluded that numerous surface parameters affected the aerodynamic behaviour of

rough surfaces and recommendations were made on conducting future studies of a larger

number of surfaces to establish reliable correlations relating the surface parameters to rough-

ness effects. Busse et al. [2015] explained the numerical methodology in further detail and

conducted a more thorough study on the graphite sample, including numerical validation

studies for the mesh resolution, computational domain size and variation of Fourier filter

width.

1.1.3 Studies on roughness correlations

Formulating correlations relating roughness topography to flow properties, such as skin

friction, has been a topic of extensive research. Flack and Schultz [2010], in their review of

roughness correlations, state that, “The most important unresolved issue regarding surface
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roughness in fluids engineering practise is how frictional drag (for external flows) or pressure

drop (for internal flows) relates to the particular roughness topography. In other words,

which roughness scales best typify a surface hydraulically?” The main aim of such work

is usually to characterise irregular roughness based purely on geometrical considerations.

According to van Rij et al. [2002], industrial benefits of this include reduction in design

uncertainties, lower costs of parts and increased life of components, as well as providing a

useful reference to formulate other numerical roughness prediction models. Unlike regular

roughness, which usually contains a small number of geometric length scales that can be

easily defined, characterising irregular roughness is a non-trivial task due to the presence of

a large number of length scales. A single parameter is hardly ever able to fully define the

topography of an irregular rough surface. Hence researchers have made numerous attempts

to formulate a robust set of topographical parameters and relate them to flow properties.

The earliest benchmark study on roughness correlations, which also laid the foundation

for many future studies, was carried out by Schlichting [1936]. A series of experiments on

regular rough surfaces, that included staggered arrangements of spheres, spherical segments,

cones and angular plates, in the fully rough regime, were performed. The experiments were

carried out in rectangular channels at Re = ud/ν = 4.3×105 where u was the mean velocity

of the flow and d was the channel hydraulic diameter. One of the most important objectives

of the study was to develop a model to predict the surface friction for rough surfaces

similar to those used in the experiments but at other Reynolds numbers and roughness

ratios, k/rh, where k was the absolute height of the roughness elements from the plate on

which they were mounted and rh was the hydraulic radius. This involved determining an

equivalent sand-grain roughness, ks,eq, which was the equivalent size of sand grains as used

in the experiments of Nikuradse [1933] that had the same resistance as the geometry under

consideration. Schlichting proposed that the surface resistance depended not only on the

relative roughness, rh/k, but also on the roughness density, Sf/S, where Sf was the total

projected area of the roughness elements on a plane normal to the direction of the flow

(or the frontal area of the roughness elements) and S was the surface area of the plate

on which the roughness elements were mounted. The quantity Sf/S is also known as the

solidity. He also proposed a resistance coefficient for rough surfaces as Cf = 2Wr/(ρu
2
kSf ),

where Wr = W −Wg was the resistance due to the roughness elements alone, W was the

total resistance of the rough plate, Wg was the resistance of the smooth areas between the

roughness elements and uk was the velocity at a distance from the wall y = k. It was

found that Cf was independent of Sf/S for small values of roughness density and decreased

rapidly for large values of roughness density.

The equivalent sand-grain roughness, ks,eq, of Nikuradse [1933], subsequently became

the “universal currency of exchange”, as mentioned by Bradshaw [2000], in the study of

rough surfaces and many researchers have aimed at its prediction by using correlations

to surface parameters. Sigal and Danberg [1988, 1990] conducted a study to determine a

suitable geometric correlation relating to the roughness density effect. Their relation was

based on a database of results consisting of the experimental data of Schlichting [1936] and
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twelve other regular roughness studies (refer Sigal and Danberg [1988, 1990] and references

therein). The new parameter was given as

Λs =

(
S

Sf

)(
Af
As

)−1.6

, (1.2)

where S was the planform area of the corresponding smooth surface, Sf was the total

frontal area of all roughness elements (S and Sf were equivalent to those used by Schlichting

[1936]), Af was the frontal area of a single roughness element and As was the wetted area of

a single roughness element. Within this correlation, (S/Sf ) represented a roughness density

parameter and (Af/As) represented a roughness shape parameter. A relation between Λs

and ks,eq for 2D roughness was proposed as

ks,eq
k

=


0.003215Λ4.925

s , 1.4 ≤ Λs ≤ 4.89

8.0 , 4.89 ≤ Λs ≤ 13.25

151.71Λ−1.1379
s , 13.25 ≤ Λs ≤ 100.0


and for 3D roughness as

ks,eq
k

= 160.77Λ−1.3376
s , 16.0 ≤ Λs ≤ 200.0,

where k was the absolute height of the roughness elements from the surface on which they

were mounted (which was the same as that used by Schlichting [1936]). The scarcity of

data for three-dimensional roughness prevented the authors from developing a completely

general model and as such their parameter is known to be better suited for two-dimensional

roughness.

Through a series of channel flow experiments on smooth, patterned rough and completely

rough surfaces, van Rij et al. [2002] proposed a more generalized form of the Sigal-Danberg

parameter which could be applied to three-dimensional irregular roughness. In case of

irregular three-dimensional roughness, Af/As is replaced by Sf/Sw, the ratio of the total

frontal area to the total wetted area for all the roughness elements. Hence, the modified

version of the parameter was given as

Λs =

(
S

Sf

)(
Sf
Sw

)−1.6

, (1.3)

where Sw was the total area of all forward-facing roughness elements wetted by the flow and

the other parameters are same as in equation (1.2). A modified equation for the equivalent

sand-grain roughness was also proposed as

ks,eq
k

=


1.583× 10−5Λ5.683

s , Λs ≤ 7.842

1.802Λ0.03038
s , 7.842 ≤ Λs ≤ 28.12

255.5Λ−1.454
s , 28.12 ≤ Λs

 , (1.4)

where k was the average roughness element height of the surface (Sa in the notation of the
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current work, refer Appendix A for definition).

The work of Bons [2005] is important in the field of turbomachinery roughness corre-

lations as he defined a streamwise forward-facing surface angle, αi, of roughness elements

(refer Appendix A for definition). Based on experimental data for six types of turbine blade

roughness, he also proposed a correlation as

ks,eq
k

= 0.0191α2 + 0.0736α, (1.5)

where k was again the average roughness element height of the surface and α was the average

streamwise forward-facing surface angle (in degrees).

Napoli et al. [2008] conducted wall-resolved LES in channels comprising of irregular

two-dimensional roughness at Reτ = 395. The rough surface geometries were formulated

by superposition of sinusoidal functions with differing wavelengths and random amplitudes.

A variety of irregular roughness was constructed by using a combination of different am-

plitudes, wavelengths and number of sinusoids. It was noted that the roughness function,

∆U+, depended not only on the roughness height but also on the density of the roughness

features and its variations across the geometry. In order to take into account both the

roughness height and density variations, a new parameter, called the effective slope, ES, of

wall corrugations was introduced as

ES =
1

L

∫
L

∣∣∣∣∂h∂x
∣∣∣∣ dx, (1.6)

where L was the domain length and ∂h/∂x was the gradient of a roughness element, both

in the streamwise direction (h represented the roughness element height and x represented

the streamwise direction). It was identified that ∆U+ depended on ES irrespective of the

specific geometry under consideration. ∆U+ increased linearly up to ES ≈ 0.15, then

followed a non-linear trend for larger values up to ES ≈ 0.55 and then weakly decreased. It

was concluded that, despite the rough surfaces being characterised by features of different

amplitudes and spatial density of corrugations, they exhibited similar behaviour in terms of

the shift in the mean velocity profile, ∆U+, if they had similar values of effective slope. The

effective slope has subsequently become an important rough surface topography parameter

and has been studied by many researchers (for example, Schultz and Flack [2009], Yuan

and Piomelli [2014]), including in the current work.

The review by Flack and Schultz [2010] on previously proposed roughness correlations

in various roughness regimes covered many experiments on different types of regular rough-

ness, including mesh, spheres, pyramids and square bars, and irregular roughness including

different types of sandpaper, honed surfaces, uniform sand and turbine blades subject to

pitting and corrosion. It was suggested that correlations proposed in the past were useful

only for a subset of rough surfaces and could not be applied to roughness in general, espe-

cially irregular roughness. Hence, the aim was to propose a suitable new correlation that

could be used more generally and that could be applied to a wider selection of irregular

and three-dimensional rough surfaces and hence provide a method to enable drag predic-
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tion based solely on the surface topography. Flows mainly in the fully-rough regime were

considered, due to the availability of a large quantity of experimental results. A statistical

analysis on various roughness scaling parameters indicated that the rms roughness height,

Sq, and the skewness, Ssk, of the surface elevation probability density function correlated

strongly with ks,eq. The proposed correlation was given by

ks,eq ≈ 4.43Sq(1 + Ssk)
1.37. (1.7)

This relation accurately predicted ks,eq values for most of the surfaces considered by the

authors, although complete generality was not achieved with it.

Flack et al. [2016] conducted an experimental investigation of the skin-friction for grit-

blasted surfaces (blasted with different grades of grit) in turbulent channel flow. The

Reynolds number based on the bulk mean velocity and channel height was in the range

Rem = 10000 to 300000. A total of fifteen surfaces were tested, out of which six reached

the fully-rough regime. Subsequently, based on the data for the six surfaces, a correlation

for the equivalent sand-grain roughness height based on Sq and Ssk was formulated as

ks,eq ≈ 2.91Sq(2 + Ssk)
−0.284. (1.8)

Although this correlation showed a good collapse for the surfaces considered, it did not

work nearly as well when applied to compute ks,eq for the remaining nine surfaces. To

obtain a ∆U+ collapse in the entire Reynolds number range, the surfaces that did reach

the fully-rough regime were assigned the experimentally measured value of ks,eq whereas

the remaining surfaces were assigned an effective length scale that gave the best collapse

in the transitionally rough regime. In order to predict the roughness function in the entire

range, it was concluded that more complex models incorporating additional scales would be

required. However, when combined with the model of Flack and Schultz [2010], the above

model did a remarkable job of predicting ks,eq for many of the considered surfaces.

There have been other notable contributions in the study of hydrodynamic drag pre-

diction using surface property correlations. Musker [1980] proposed a new relation for an

effective roughness height and correlated it with the roughness function using seven sur-

faces representative of a variety of ship-hull roughness. The surface geometric properties

included in the relation were the rms roughness height, surface skewness, kurtosis and the

average slope of roughness elements. Waigh and Kind [1998] formulated relations for the

roughness effect, based on 16 experimental studies comprising of various types of regular

roughness geometries of differing shape and distribution in the fully-rough regime. Their

relations included a roughness spacing parameter, ratio of the roughness height to spanwise

length for a single element and ratio of the wetted area to frontal area of a single roughness

element. In the field of urban roughness and the atmospheric boundary layer, Wieringa

[1993] and Grimmond and Oke [1998] have provided a number of empirical correlations.

It must be noted that all studies mentioned above were experimental. More recently,

it has been possible to conduct numerical simulations that complement the experimental
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database. Yuan and Piomelli [2014] conducted studies to estimate and predict the roughness

function and ks,eq on realistic surfaces. They carried out large-eddy simulations in turbu-

lent open-channel flows over sand-grain roughness and realistic roughness replicated from

hydraulic turbine blades. Both transitionally rough and fully rough regimes were covered

by considering different roughness heights at two Reτ = 400 and 1000. They evaluated the

performance of three existing correlations, proposed by van Rij et al. [2002], Bons [2005]

and Flack and Schultz [2010], to predict ks,eq. These correlations have already been dis-

played in equations (1.4), (1.5) and (1.7) respectively above. Data collapse was obtained

for the first two correlations, which are slope-based whereas the third correlation, which is

moment-based, showed data scatter. The reason for this scatter was that moments did not

contain slope information and thus did not scale with ks,eq in cases where surface slope was

an important parameter. Surface slope was influential in the studies of Yuan and Piomelli

[2014] because their surfaces were in the waviness regime (as described by Schultz and Flack

[2009]), which meant there was a dependence of ∆U+ on the effective slope, ES.

Yang et al. [2016] carried out extensive LES studies on rectangular-prism roughness with

the aim of examining the mean flow in the roughness layer (which was defined as the region

between the surface and top of the roughness elements). An exponential form for the mean

velocity profile in the roughness layer was assumed as

U(z)

Uh
= exp

[
a
( z
h
− 1
)]
, (1.9)

where U(z) was the spatially/temporally averaged fluid velocity, z was the wall-normal

distance, h was the height of the roughness elements and Uh was the velocity at z = h.

The attenuation factor, a, depended on the density of the roughness element distribution

and details of the roughness distribution on the wall. Simulation results showed validity

of the assumption and it was subsequently used to formulate an analytical model for the

effective drag exerted by an array of rectangular-prism roughness elements on the flow. Wake

interactions among roughness elements were also accounted for by using the concept of flow

sheltering, which meant the model would perform reasonably well for different solidities

of roughness. Results from the model showed reasonable agreement with studies from

literature when applied to aligned and staggered cube arrays, transverse ribs and rectangular

roughness with non-uniform and Gaussian distribution. Although this study formulates a

model based on an assumed velocity profile behaviour, which is different from the others

described above (wherein flow parameters were directly related back to the rough surface

topography), it gives an insight into another approach to rough surface characterisation.

1.2 Objectives

The foundation of the current work lies in the work carried out by Busse et al. [2015]

and Busse et al. [2013]. An incompressible turbulent channel flow DNS code with an

immersed boundary method to resolve roughness was formulated and validated. Studies

were conducted on a selection of irregular industrially relevant rough surfaces and a small
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database consisting of surface topographical properties and simulation results was prepared.

Broadly, the goals of the current work relate to expanding this database by performing

several other irregular rough-wall simulations using the above mentioned code. Overall, the

objectives of the present work are:

(1) To develop a database of rough surface flows based on simulations covering surfaces with

a wide range of topographical properties. All surfaces are replicas of realistic industrial

roughness seen in engineering applications.

(2) Based on the above database, to develop a method that relates key flow properties to the

surface topographical properties which will also enable studying the varying influence

of different properties on the roughness effects.

(3) To investigate laminar to turbulent transition of flow over a typical irregular rough

surface.

(4) To study the Reynolds number dependence of the flow and to show that a Reynolds

number sweep using direct numerical simulations over a typical irregular rough surface

is feasible.

1.3 Thesis outline

The thesis is organized into 9 chapters. Chapter 1 above has provided an introduction,

with a fairly extensive literature review of work already done in the field. Chapter 2 gives

a detailed explanation of the numerical methodology adopted to conduct a rough surface

simulation. This includes pre-processing (Section 2.2), a description of the geometry and

boundary conditions (Section 2.3.1), an explanation of meshing (Section 2.3.2) and an

overview of the DNS code and immersed boundary method (Section 2.4). Chapter 3 gives

a detailed description of the rough surface samples studied in the current work, along with

their surface topographical properties (Section 3.2). Validation studies with respect to the

computational mesh resolution, domain size and sensitivity to the channel blockage ratio are

carried out in Chapter 4. Due to the large number of rough-wall simulations conducted, the

results are split into four chapters: Chapter 5 describes the laminar to turbulent transition

of the flow over a single rough surface sample, Chapter 6 describes the results of simulations

conducted at Reτ = 180 (for all seventeen samples), along with the variation of certain flow

quantities with certain surface properties, Chapter 7 describes a method to conduct full

surface property parametrisation (of all seventeen samples) with key flow quantities, and

Chapter 8 describes results of a Reynolds number sweep from the transitionally rough to

the fully-rough regime for a single surface sample. Finally, the thesis is summarised along

with important conclusions in Chapter 9 and recommendations for future work are provided

in Section 9.3.
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1.4 Standard practises and conventions

The following standard practises and conventions are obeyed throughout the thesis,

unless alternative descriptions are provided otherwise.

1.4.1 Representation of the roughness height, k

The roughness height, k, is represented by the mean peak-to-valley height, Sz,5×5. To

compute this quantity, a surface is first partitioned into 5× 5 sections of equal size and the

maximum and minimum roughness height for each section is computed. Sz,5×5 is then the

difference between the mean of the maxima and mean of the minima (Appendix A).

1.4.2 Non-dimensionalisation of velocities

Velocity terms in the governing equations for DNS are non-dimensionalised by the fric-

tion velocity, uτ . Hence, all velocity quantities, mentioned throughout the thesis (in the

text, figures, tables and captions), are non-dimensional. For convenience, however, the

denominator signifying non-dimensionalisation is skipped. For example, the time-averaged

streamwise velocity is denoted as u instead of u/uτ , the spanwise Reynolds stress is denoted

as v′2 as opposed to (v/uτ )′2, and so on.

1.4.3 Computing ∆U+

The roughness function, ∆U+, is generally computed as the vertical shift in the log

region of the mean streamwise rough-wall velocity profile from the corresponding smooth-

wall profile, plotted on a semilogarithmic scale. However, many studies in this work are

conducted at relatively low Reynolds number, and hence no clearly defined log region is

present. ∆U+ is thus computed by subtracting the centreline velocity for a given rough-

wall simulation from the corresponding smooth-wall centreline velocity (as in Busse and

Sandham [2012]). Although some studies are conducted at higher Reynolds numbers (for

example, Chapter 8), for consistency, the same method to compute ∆U+ is maintained

throughout.

It is also important to note that for all simulations conducted in this work, statistics

are obtained after considerably large durations of time averaging. Hence, the uncertainty

in the value of ∆U+ is small.

1.4.4 Computing dispersive stresses

In general, for rough walls, unlike smooth walls, the flow is locally statistically inhomo-

geneous in wall-parallel planes. The instantaneous velocity vector may thus be decomposed

as (Coceal et al. [2006]),

ui = Ui + ũi + u′i,

where Ui = 〈ui〉 is the temporally (overbar) and streamwise-spanwise spatially averaged

(triangular bracket) velocity and u′i represents the turbulent fluctuations. ũi represents the
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spatial variation of time-averaged velocity and is given as ũi = ui − Ui. The total stress

tensor, τij , thus comprises of three terms (Coceal et al. [2006]),

τij = −〈u′iu′j〉 − 〈ũiũj〉+ ν
∂〈ui〉
∂xj

,

The terms on the right hand side represent the Reynolds, dispersive and viscous stresses

respectively. The dispersive stresses arise due to the inhomogeneity of the flow in each wall-

parallel plane and represent transport of momentum by spatial variations in the horizontal

planes.

1.4.5 Computing the mean streamwise bulk velocity, Ub

In the current work, the mean streamwise bulk velocity, Ub, is computed for a smooth

wall as

Ub =
1

2δ

∫ 2δ

0
〈u〉 dz,

where δ is the channel half-height and 〈u〉 is the time- and spatially-averaged (in the stream-

wise and spanwise directions) streamwise velocity, and for a rough wall as

Ub =
1

Hchan

∫ (hmin)tw

(hmin)bw

〈u〉 dz,

where Hchan = (hmin)tw − (hmin)bw, with (hmin)bw as the minimum roughness height of the

bottom channel wall and (hmin)tw as the minimum roughness height of the top channel wall.
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Numerical methodology

This chapter describes the numerical methodology adopted for the rough surface simu-

lations in the present work. A three-step methodology, as formulated by Busse et al. [2015]

and detailed here for completeness, is used to conduct the simulations. The first step in-

volves obtaining data from the physical roughness sample using a variable focus microscope

and is called surface data acquisition. The second step involves pre-processing (section

selection, section scaling and filtering) which makes the data suitable for simulation. The

third and final step involves conducting DNS of the flow over the rough surface sample.

2.1 Surface data acquisition

A number of techniques exist for surface data acquisition, ranging from contact measure-

ments using stylus instruments, electron microscopes and non-optical comparators (Sher-

rington and Smith [1988a]) to optical instruments (Sherrington and Smith [1988b]). The

data acquisition technique used for a particular surface depends on its material surface

properties. The surface data for all samples in this work has been obtained using an Ali-

cona Infinite Focus microscope which measures the surface height by focus variation. The

data is obtained in the form of a height map of surface z coordinates (i.e. roughness heights

from the mean reference plane) as a function of its x and y (lateral) coordinates. Also, the

surfaces in this work are such that data contains no overhangs i.e. for each (x, y) coordinate,

there is one z coordinate. All surfaces were scanned during the work of Busse et al. [2015]

and Busse et al. [2013] and no new scans were generated as part of the current work.

2.2 Surface data pre-processing

For all rough surfaces, the surface scan is obtained as a discrete height map on a regular

cartesian grid in x and y; x = 0,∆s, 2∆s, . . . , (M−1)∆s and y = 0,∆s, 2∆s, . . . , (N−1)∆s

where ∆s is the spacing of the measurement points as obtained during the scan and M and

N are the number of data points in the streamwise and spanwise directions respectively.

Two pre-processing steps need to be performed on the surface data before it can be used

as a rough boundary in DNS: section selection and filtering.
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2.2.1 Section selection

The sample for simulation is obtained as a smaller subsection of the scan. In order

to select a sample which is representative of the rough surface under consideration, the

physical size of the subsection is initially determined based on a visual inspection of the

surface scan. The subsection, which maintains a fixed 2 : 1 (streamwise to spanwise domain

width) aspect ratio, must be chosen to retain sufficient roughness features, but taking

into account the computational cost. After selection, the subsection is checked, and if

necessary re-selected, so that it maintains adequate roughness correlation lengths within the

streamwise computational domain and (since the simulations are conducted in channels)

adequate domain size in terms of channel half-heights. The smallest streamwise domain

lengths have an extent of approximately 5 times the mean channel half-height. As was

shown by Busse et al. [2015], this is sufficient to obtain domain size independent rough-wall

mean flow and Reynolds stress statistics. The described technique can be adopted as the

surfaces in the current study exhibit a reasonably homogeneous distribution of roughness

features. The location of the subsection on the scan is determined based on rms errors in
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Figure 2.1: Roughness height contour plot of a full surface scan (top view) showing the
optimum subsection selected on the basis of minimum RMS errors at the sub-
section boundaries. Subsection size in terms of streamwise and spanwise indices
is also shown. Plot coloured by absolute roughness height. Colourbar: black to
yellow - lower to higher roughness heights.
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roughness heights at the lateral boundaries. In order to minimize non-periodicity in the

lateral boundaries, the subsection with least rms errors in roughness heights between its

streamwise boundaries and between its spanwise boundaries is selected. A combined error

for the streamwise and spanwise boundaries is used to determine the best subsection. This

process takes into account information only at the subsection boundaries and no information

in the interior is used. Figure 2.1 shows an example surface sample with the optimum sub-

section.

It is important to note that the measurement technique used to obtain the surface data

does at times obtain spurious roughness features such as spikes, which may be unphysical

and may not actually be part of the surface sample. Hence these spikes need to be eliminated

during section selection by rejecting sections containing them. Spikes are determined on the

basis of the gradient between neighbouring measurement points, and sections with these

gradients above a certain threshold are rejected. Although spikes may be smoothed out

during the process of filtering (Section 2.2.2), removing them at the section selection stage

will ensure no spurious features are part of the section. The section may have a mean slope

across its length and/or width and a mean reference plane is subtracted before proceeding

toward spike detection so that the mean height and slope of the section are zero.

After selecting a suitable subsection from the full surface sample, it needs to be scaled

up from the physical domain into the computational domain, thus determining the compu-

tational domain extents. This scaling relates the roughness height and streamwise domain

extent as
kcomp

kphys
=

(Lx)comp

(Lx)phys
,

where k is a measure of the roughness height, given by the mean peak-to-valley height,

Sz,5×5 (refer Appendix A for its definition), Lx is the streamwise domain extent and the

subscripts ‘comp’ and ‘phys’ represent quantities in the computational and physical domain

respectively. kphys and (Lx)phys can be evaluated from the subsection in the physical domain

and kcomp is usually known in terms of the channel half-height, δ. Thus, the above equation

can be solved for (Lx)comp, which then gives the computational streamwise domain length.

The computational spanwise domain length is then simply given as, (Ly)comp = (Lx)comp/2

(refer Section 2.3.1).

2.2.2 Filtering

The scaled subsection in its raw form is unsuitable for simulation and the surface data

needs to be filtered. Filtering is done in Fourier space and is essentially a smoothing step,

which needs to be carried out for the following reasons.

• The surface scan usually contains a finite amount of measurement noise which is

typically on small spatial scales (Sherrington and Howarth [1988]). It is essential to

remove this noise through filtering.

• Due to computational constraints, it is not possible to resolve all the length scales

of roughness. From an aerodynamic perspective, the smallest roughness scales are
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usually not relevant (Mejia-Alvarez and Christensen [2010]) and according to Jiménez

[2004], the effect of roughness is known to be dominated by the largest features of a

rough surface. Filtering removes the smallest scales, below a user-defined threshold.

• Periodic boundary conditions are used in the streamwise and spanwise directions to

reduce computational cost and perform efficient simulation in reasonably small com-

putational domains. Filtering makes the rough surface sample periodic. In the case

of non-periodic boundary conditions, very large domains would be required in order

to ensure independence of the flow parameters from the inlet and outlet boundary

conditions, which would significantly increase computational cost. Also, in the case of

non-periodic boundary conditions, there is a likelihood of the occurrence of unphysical

jumps at the streamwise and spanwise boundaries.

The surface data is hence filtered in Fourier space using a low-pass filter to obtain an

approximate model of the 3D surface topography. The discrete Fourier transform of the

raw data is first found using a fast Fourier transform algorithm. The streamwise and

spanwise components of the two-dimensional wave vector are given as

kx =
p

∆sM
,where p = −M

2
,−M

2
+ 1, . . . ,

M

2
− 1,

ky =
q

∆sN
,where q = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1,

where M , N are the number of surface data points in the x and y directions respectively.

In order to remove the contribution of the small scales i.e. high wave numbers, a circular

low-pass filter is applied which removes all contributions above a certain wave number, kc.

fc(kx, ky) =

{
1 for k2

x + k2
y ≤ k2

c

0 for k2
x + k2

y > k2
c

}
.

If the raw data is denoted as h̃raw(kx, ky) then after applying the above mentioned filter it

becomes

h̃(kx, ky) = h̃raw(kx, ky) · fc(kx, ky).

The final filtered data, h(x, y), is the inverse Fourier transform of h̃(kx, ky) and is thus

described by a continuous and differentiable analytic function. Since filtering is done in

Fourier space, the surface topography is essentially reconstructed using sinusoids, which are

periodic over the given domain. Hence the resulting surface is periodic and varies smoothly

across its boundaries. Figure 2.2 shows an example of a rough surface sample before and

after filtering for an example surface. The 2D power spectrum of the unfiltered surface

shown in the left of Figure 2.2 is shown in Figure 2.3. The low wavenumbers (represented

by the small circle in the middle of the plot) have the highest contribution to the spectrum

whereas higher wavenumbers contribute comparatively less.
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Figure 2.2: Example rough surface sample before filtering (left) and after filtering (right).
Plots coloured by roughness height, k/δ. Scale of plots increased in wall-normal
direction for clarity.

It is essential to choose an appropriate value for the cut-off wavenumber, kc, above which

all wavenumbers are filtered out. If kc is too low, the filtered data will be too smooth and

will not be an accurate representation of the original data. If it is too high, a lot of small

and aerodynamically irrelevant scales would be preserved, which would significantly increase

the computational cost. The value of kc depends to a great extent on the topography of

the rough surface and hence no general recommendations can be given. However, studies

conducted by Busse et al. [2015] on one of the samples considered in the present work

showed that a difference of 8% between the filtered and unfiltered values of the average and

Figure 2.3: 2D power spectrum of the unfiltered surface sample shown in the left of Fig-
ure 2.2, coloured by the log of the power spectral density. The circle in the
centre shows the extent of the low-pass filter used to obtain the filtered surface
shown in the right of Figure 2.2.



Chapter 2. Numerical methodology 27

rms roughness heights, Sa and Sq, retained most of the large scale surface topography and

hence resulted in converged statistics. The same criterion is used in the present work to

determine kc, whose value depends on the sample.

Once kc and the domain size are specified, the periodic sample is a precisely-defined

representation of the original surface and can be used together with DNS in a rigorous

manner.

2.3 DNS of turbulent channel flow

The rough-wall simulations are conducted using a channel flow approach, as described

below.

2.3.1 Geometry description and boundary conditions

The rough surface samples are used as no-slip wall boundaries in incompressible turbu-

lent channel flow. The streamwise, spanwise and wall-normal directions in the computa-

tional domain are denoted by x, y and z respectively, with corresponding domain lengths

Lx, Ly and Lz. Considering the cut-off wavenumber criterion, mentioned in the previ-

ous section, in conjunction with the streamwise domain length, the maximum streamwise

wavenumber is given as kcLx. The samples have an aspect ratio of 2 : 1, which means

Lx = 2Ly. The rough surface on the upper channel boundary corresponds to a mirror

image of that on the lower boundary but translated by Lx/2 and Ly/2 in the streamwise

and spanwise directions respectively. This is done to reduce local blockage effects. The

mean surface height is set as the mean reference plane, z = 0 at the bottom boundary and

z = 2δ at the top boundary, where δ is the channel half-height. The channel height of 2δ is

measured as the distance between the bottom and top mean reference planes. The domain

length in the wall-normal direction, Lz, is slightly larger than 2δ to take into account the
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Figure 2.4: Schematic representation of the computational domain in 3D (left) and in the
x−z direction (right). Lx, Ly, Lz are the streamwise, spanwise and wall-normal
domain lengths respectively, 2δ is the mean channel height, red dashed lines rep-
resent the bottom and top mean reference planes, blue dash-dot line represents
the channel centreline. The flow is from left to right.
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height of the roughness features. Figure 2.4 shows a schematic representation of the com-

putational domain. The Reynolds number for channel flow is defined on the basis of the

friction velocity, uτ , and δ, and is also known as the friction Reynolds number.

Reτ =
uτδ

ν
,

where ν is the kinematic viscosity of the fluid.

2.3.2 Meshing

Meshing criteria for the wall-normal and lateral directions are defined in this section.

In the wall-normal direction, a stretched mesh is used. In the region of the roughness

features, min(h(x, y)) ≤ z ≤ max(h(x, y)), uniform mesh spacing (which is also the min-

imum mesh spacing in the wall-normal direction) is used with ∆z+
min < 1 and gradual

stretching is applied towards the channel centre with ∆z+
max ≤ 5 (‘+’ superscripts indicate

non-dimensionalisation with ν/uτ i.e. viscous- or wall-units). Figure 2.5 shows a schematic

diagram of the mesh in an x− z plane.

In the streamwise and spanwise directions, a uniform mesh spacing is used. There are

two criteria governing the mesh, one based on the Reynolds number of the flow and the

other based on the minimum wavelength (after filtering) of the rough surface sample. For

the Reynolds number criterion, the mesh must have ∆x+ = ∆y+ ≤ 5. Thus (considering
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Figure 2.5: Schematic diagram (x− z view) of the wall-normal mesh showing uniform grid
spacing in the region of the roughness features and stretched spacing away from
the walls. Black solid lines (thick) represent the rough surface boundary, red
dashed lines represent the bottom and top mean reference planes and the blue
dash-dot line represents the channel centreline. The schematic is for illustrative
purpose only and does not represent an actual simulation mesh.
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only ∆x+),

∆x+ =
∆x

ν/uτ
≤ 5,

=
Lx/nx
ν/uτ

δ

δ
≤ 5,

=
Lx/nx
δ

Reτ ≤ 5,

nx ≥
Lx/δ

5
Reτ .

ny = nx/2.

For the minimum wavelength criterion, the mesh must have ∆x = ∆y ≈ λmin/12, where

λmin is the smallest wavelength of the rough surface after filtering, defined as the inverse of

the filter cut-off wavenumber, kc. Thus (considering only ∆x),

Lx
nx
≤ Lx/(kcLx)

12
,

nx ≥ 12(kcLx).

ny = nx/2.

where kcLx is the maximum streamwise wavenumber (which is essentially the number of

Fourier modes used to reconstruct the surface topography). Depending on the rough surface

sample, either the Reynolds number criterion or the minimum wavelength criterion would

be dominant. The mesh resolution criteria have been formulated and validated by Busse

et al. [2015] on the basis of a mesh refinement study and further details are given there.

In summary, for the wall-normal mesh; ∆z+
min < 1 and ∆z+

max ≤ 5 and for the mesh in

the streamwise and spanwise directions; ∆x+ = ∆y+ ≤ 5 and ∆x = ∆y ≈ λmin/12, taking

the criterion which gives the more stringent grid spacing. The procedure to generate a valid

mesh for an example rough surface sample is described in Appendix B.

2.4 Overview of the immersed boundary method (IBM) and

DNS code

The DNS code is of finite-volume type, has been written in Fortran and parallelized

using the message passing interface (MPI) standard during the work of Busse et al. [2015],

Busse et al. [2013] and Busse and Sandham [2012]. The important features of the code are

given below.

2.4.1 Immersed boundary method

Immersed boundary methods (IBMs) fall into a category of meshing techniques called

non-boundary conforming methods in which the mesh does not necessarily align with the

solid boundary. In such techniques, flow variables in the grid cells close to solid bound-
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aries need special treatment to capture the effect of the boundary on the flow and they

are generally employed in the case of highly complex geometries where it is usually diffi-

cult to obtain good quality body-fitted meshes. The basic idea behind immersed boundary

methods is to represent the effect of an object on the flow through a set of body forces, as

was first proposed by Peskin [1972]. These methods have the advantage of straightforward

implementation into existing codes. However, a drawback is that the forcing function is

spread over several grid cells close to the solid boundary and the need for a smooth tran-

sition between fluid and solid regions leads to blurring. This may decrease the accuracy

near the solid region or increase resolution requirements. A class of methods that does

not suffer from blurring are called cut-cell methods where the solid boundary is tracked as

an interface and the grid cells at this interface are modified depending on their intersec-

tions with the underlying cartesian grid. The disadvantage of these methods for complex

geometries is the presence of very small and irregularly shaped cells which may adversely

affect the conservation and stability properties of the solver. To overcome these problems,

a new method has been formulated recently by Fadlun et al. [2000], which is known as an

embedded-boundary method. This method has features of both immersed boundary and

cut-cell methods; it incorporates a forcing approach to enforce boundary conditions and

involves a local reconstruction of the solution close to the solid boundary. The current work

uses the embedded-boundary method of Yang and Balaras [2006], as modified by Busse

et al. [2015].

In this method, grid points are differentiated depending on their location inside or

outside the solid boundary. All grid points within the solid region are called solid points,

grid points in the fluid region with no direct neighbour in the solid region are called bulk

points and points in the fluid region with one or more direct neighbours in the solid region

are called forcing points. The solid boundary is implicitly defined as the zero level-set, Γ,

of a signed distance function, ψ(x, y, z). The solid points have ψ < 0 whereas the bulk (and

forcing) points have ψ > 0. Points located on the solid boundary have ψ = 0. Thus, forcing

points are defined in terms of ψ as points with ψ > 0 that have at least one neighbour with

ψ < 0. Values of ψ(x, y, z) are obtained using a minimization algorithm which computes

the minimum distance for each wall-normal plane from the rough wall. Powell’s method

from Press et al. [2007] as modified by Brent [1973] is used for this purpose. This is done

after filtering but before the actual DNS. Figure 2.6 shows a schematic diagram of the

immersed boundary and related terminology, using a 2D example for clarity. A forcing

function, femb, that enables correct enforcement of boundary conditions is added to the

governing equations. At the bulk points, the original governing equations without the

forcing function are applied and femb = 0. At the solid points, the forcing is obtained after

setting the velocity to zero. At the forcing points, velocities (and other fluid quantities) are

computed based on a linear interpolation from the three nearest points in the fluid domain

and the velocity at the projection of the forcing point on the boundary (which in the context

of this study is 0).

An important concept in this method is the normal vector to the solid surface, which
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ψ > 0

ψ < 0

n
Γ

Figure 2.6: Schematic diagram of the immersed boundary mesh. Black solid line - rough
surface boundary, blue squares - bulk points, black circles - solid points, red
asterisks - forcing points. nΓ is the normal vector to the surface and ψ is the
signed distance function with values in the fluid and solid regions as shown. A
2D example is shown for clarity.

is crucial to performing the interpolation at the forcing points. If nΓ is the normal vector

pointing into the solid boundary then −nΓ is the normal vector pointing out of the solid

boundary and into the fluid domain. To obtain the interpolation weights for linear recon-

struction at a given forcing point, the system of linear equations formed by the bulk points

in x, y and z immediately neighbouring the forcing point in the direction of −nΓ and the

projection of the given forcing point on the solid boundary along nΓ is solved. Figure 2.7
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Figure 2.7: Schematic diagram showing regular interpolation stencil for a forcing point (left)
and an ambiguous stencil wherein one of the neighbouring points is also a forcing
point (right). Colour scheme of points same as Figure 2.6.
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(left) shows a schematic representation of the interpolation stencil in 2D. Let the concerned

forcing point be denoted as Pf (xf , yf ), its projection on the solid boundary as PΓ(x0, y0)

and its two neighbouring points as P1(x1, y1) and P2(x2, y2). A flow quantity at the given

forcing point, φf , can be represented in 2D as a linear combination of its coordinates as

φf = w0 + w1xf + w2yf , (2.1)

where w0, w1 and w2 are the interpolation weights. The values of φ at P0, P1 and P2 are

known (as φ0, φ1 and φ2 respectively) and hence we get the following system of equations.

φ0 = w0 + w1x0 + w2y0, (2.2)

φ1 = w0 + w1x1 + w2y1, (2.3)

φ2 = w0 + w1x2 + w2y2, (2.4)

which in matrix-vector form givesφ0

φ1

φ2

 =

1 x0 y0

1 x1 y1

1 x2 y2


w0

w1

w2

 , (2.5)

which is of the form

φ = Aw

w = A−1φ. (2.6)

Let

A−1 =

a00 a01 a02

a10 a11 a12

a20 a21 a22

 .
Substituting A−1 in equation (2.6) gives on expansion

w0 = a00φ0 + a01φ1 + a02φ2, (2.7)

w1 = a10φ0 + a11φ1 + a12φ2, (2.8)

w2 = a20φ0 + a21φ1 + a22φ2 (2.9)

and when these equations are substituted in equation (2.1),

φf = (a00 + a10xf + a20yf )φ0 + (a01 + a11xf + a21yf )φ1

+ (a02 + a12xf + a22yf )φ2,

φf = W0φ0 +W1φ1 +W2φ2 (2.10)

is ultimately obtained and W0, W1 and W2 are the updated interpolation weights. Hence

φf is obtained as a linear combination of its neighbours, φ0, φ1 and φ2. Extension of the
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above procedure to three dimensions is straightforward and equation (2.5) becomes
φ0

φ1

φ2

φ3

 =


1 x0 y0 z0

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3



w0

w1

w2

w3

 (2.11)

and the same steps as described above are followed.

Since the values of interpolation weights depend only on the coordinates of the forcing

point, its projection on the solid boundary, and its neighbouring points (through the matrix

A−1), they need to be computed only once at the beginning of the program execution.

During the interpolation of velocity at the forcing points, the no-slip condition is implicitly

imposed on the wall as u(x, y, z) = v(x, y, z) = w(x, y, z) = 0 at PΓ.

The above case shows a scenario where both the neighbouring points, P1 and P2 are bulk

points. However, there may be a scenario where one of the neighbouring points is also a

forcing point. This is shown in Figure 2.7 (right), where P1 is a forcing point. In such cases,

although the interpolation weights are not recomputed, computation of fluid quantities (for

example, velocity) is iterated for all forcing points until the maximum resulting change in

the concerned quantity between consecutive iterations is below a user-defined threshold,

ε. A value of ε = 1 × 10−8 has been used in this study. To simplify the code, however,

this approach is used for all forcing points, irrespective of the neighbouring points (bulk or

forcing) of a given forcing point.

2.4.2 Governing equations and numerical schemes

The governing equations for fluid flow are the incompressible Navier-Stokes equations.

They are non-dimensionalised by δ and uτ , after which they take the form (Busse and

Sandham [2012]),

∂uj
∂xj

= 0, (2.12)

∂ui
∂t

+
∂

∂xj
(uiuj) = δ1i −

∂p

∂xi
+

1

Reτ

∂

∂xj

(
∂ui
∂xj

+
∂uj
∂xi

)
+ femb, (2.13)

where the i index denotes directionality; x, y or z and the j index denotes summation

over the three directions. The pressure gradient is split into the constant mean streamwise

component, −δ1i (which is the Kronecker delta), which drives the channel-flow, and the

fluctuating component ∂p/∂xi. The friction velocity and length scales are based on the

mean streamwise pressure gradient,

u2
τ = −δ

ρ

dP

dx
= 1,

which is in dimensional form, and where ρ is the fluid density. This expression comes

essentially from a streamwise force balance, equating the force due to the pressure difference
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across a given control volume with the friction force due to shear stress in the rough wall.

femb is the embedded-boundary forcing function.

The governing equations are solved in space using a standard 2nd order central finite

difference scheme which operates on a staggered cartesian grid. The time integration is

carried out using a 2nd order Adams-Bashforth method.

2.4.3 Code flowchart and explanation

Figure 2.8 shows a flowchart depicting various stages in the DNS Fortran code. It shows

only the most important stages and does not cover the details of each stage (for example,

details of the multigrid method). The code was not significantly modified in this work

and hence only an overview of each stage is given. It must be noted that since the code

uses MPI, each stage in the flowchart after computational domain and mesh decomposition

(which is done at the ‘Initialise MPI’ stage just after ‘START’) is carried out by every MPI

process.

The stages in the flowchart are mostly self-explanatory but a short description follows.

The code consists of roughly two phases: initialisation and time integration. Initialisation is

a preparatory phase wherein a number of parameters required for the second phase, of time

integration, are set up. The first stage is MPI parallel environment initialisation, where

sections of the computational domain and mesh are assigned to each MPI process. The

next five stages consist of reading files containing various input parameters (such as the

time step length, number of time steps), computing global x-, y- and z-coordinates based

on the domain and mesh sizes, assigning the global boundary conditions (such as no-slip

walls and periodicity), allocating memory for the various global fields that will be required

in the next phase and reading the initial flow field file (which contains time, velocity and

pressure data). The next stage consists of immersed boundary initialisation, wherein the

mesh points are classified as solid, forcing or bulk (for appropriate treatment in subsequent

stages), computing the interpolation weights for the forcing points (which is done only once,

at this stage) and computing the bulk volume of the rough channel. The first phase ends

after immersed boundary initialisation.

The next phase is time integration. The code in this phase starts by computing the fluid

advection and diffusion terms from the governing equations. The mean pressure gradient

term (which drives the channel flow) is added in the next stage. This leads on to the stages of

the pressure solver which form a large part of the time integration phase. The first two steps

in the pressure solver perform a time integration step to obtain a provisional velocity and

apply the velocity boundary conditions in the fluid domain. The next step involves applying

the immersed boundary forcing function to compute the velocities at the forcing points,

which is an iterative procedure. After the iterative procedure has converged, the velocity

boundary conditions must be re-applied in the fluid domain. At this stage, the velocities

of points inside the solid domain are also set to zero. The pressure Poisson equation is

solved in the next stage, using a multigrid method and the iterative Stabilised Bi-Conjugate

Gradient (BiCGStab) method. Applying a pressure correction after convergence of this
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Figure 2.8: Flowchart showing the various stages in the DNS code. Only the most important
stages are shown. BCs stands for boundary conditions.
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iterative process signifies the end of the pressure solver. The velocity boundary conditions

in the fluid and solid domain are then re-applied. The next stage involves computation and

output of various flow diagnostics (such as mean forces and velocities, velocity correlations,

spatially averaged profiles), after which the first loop of time integration comes to an end.

The time integration phase is carried out in a loop which repeats for a given number of

time steps. The loop ends when the set number of time steps is reached.

After the end of the time integration loop, the next two stages of the code are closing

stages, wherein a restart field file is written out to serve as the initial flow field for the next

simulation run and output of time spent in various important sections of the code (such

as the immersed boundary forcing, pressure solver) is displayed. The last stage consists of

finalising the MPI parallel environment after which the code comes to an end.

2.5 Time averaging procedures and Convergence

In the study of turbulent flows, ultimately the quality of the statistics determine the

reliability of the final solution. Statistically averaged flow quantities are obtained through

field time averaging. An initial transient phase is usually present in the flow, wherein

the flow properties develop towards a statistically steady state. Field time averaging is

performed after the transient phase has passed. The flow time, t, is non-dimensionalised by

the ratio δ/uτ as

t =
t∗

δ/uτ
,

where t∗ is the dimensional time.

For the current study, a number of spatially-averaged flow quantities are studied in order

to gauge the passage of the initial transient phase. Examples include the mean mass flow

rate, mean streamwise velocity and mean and rms pressure. The mean mass flow rate is

a bulk flow quantity and hence its evolution with time is studied. In most cases, it either

rises or falls with time in the early stages of the simulation and eventually oscillates about

a mean value, which indicates the flow has attained a statistically steady state. Figure 2.9

(top left) shows the time history of the mean mass flow rate for an example rough-wall

simulation. It is observed that the initial transient lasts until t ≈ 30.

In case of other flow quantities, profiles in the wall-normal direction are studied. These

profiles, which are spatially averaged in the streamwise and spanwise directions, are accu-

mulated from t = 0. This, however, is done only for the purpose of transient phase check and

these statistics are not used in the final results. If the profiles between consecutive runs show

only small differences, it is an indication of the flow reaching a statistically steady state.

Figure 2.9 (top right, bottom left and bottom right) show profiles of time- and spatially-

averaged streamwise velocity, 〈u〉, pressure, p/(ρu2
τ ) and rms pressure, [p/(ρu2

τ )]rms between

two consecutive runs. For all three quantities, both profiles show small differences, which

indicates the flow has reached a statistically steady state. The pressure profiles show differ-

ences in the near-wall region, which is regarded as normal for rough wall simulations. These
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Figure 2.9: Various checks performed to gauge passage of flow initial transient phase. Time
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Figure 2.10: Check for flow statistical convergence using profiles of streamwise Reynolds
stress, 〈u′2〉, in the wall-normal direction between two consecutive runs. z/δ is
the wall-normal distance.
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differences are observed for most rough-wall simulations in the current work and are un-

derstood to have an insignificant impact on the process of the flow reaching its statistically

steady state.

For the studies conducted in this work, the initial transient phase for a typical case lasts

for (20 − 30)t, after which field time averaging is performed for a further (80 − 100)t. In

order to check for statistical convergence, profiles of turbulent flow quantities (for example,

streamwise Reynolds stress) spatially-averaged in the streamwise and spanwise directions

for consecutive runs are plotted against the wall-normal coordinate. If the profiles show

only small differences and also exhibit symmetry about the channel centre, it is an indica-

tion of statistical convergence. Figure 2.10 shows profiles of time- and spatially-averaged

streamwise Reynolds stress, 〈u′2〉, between two consecutive runs for an example rough-

wall simulation. Both profiles show small differences and are symmetric about the channel

centre, which indicates that the flow has reached a statistically converged state and the

statistics are no longer expected to vary significantly.



Chapter 3

Rough surface samples

Since one of the main goals of this work is to build a database of commonly seen industrial

rough surfaces along with their surface properties and simulation results, a study dedicated

to the description of the surfaces is presented in this chapter. A total of seventeen rough

surface samples have been considered in this work. A physical description of the samples

is given first, followed by a description of some of their important surface topographical

properties.

3.1 Description of the surface samples

The database includes two carbon-carbon composite surfaces, a concrete surface, a

graphite surface, as well as surfaces subject to the processes of casting, hand filing (2

cases), gritblasting, grinding, shotblasting, spark-erosion (5 cases) and replicas of two ship

sample type

s1 cast
s2 composite 1
s3 composite 2
s4 concrete
s5 filed 1
s6 filed 2
s7 graphite
s8 gritblasted
s9 ground
s10 ship-propeller 1
s11 ship-propeller 2
s12 shotblasted
s13 spark-eroded 1
s14 spark-eroded 2
s15 spark-eroded 3
s16 spark-eroded 4
s17 spark-eroded 5

Table 3.1: Rough surface sample naming convention.
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Figure 3.1: A standard roughness comparator showing patches of different grades of rough-
ness (increasing from left to right).

propeller surfaces eroded by periods of service. In order to simplify naming, samples are

assigned names as given in Table 3.1. These are the names used henceforth. Samples s2, s7,

s9 and s12 were simulated by Busse et al. [2013] and the data, along with data for samples s4

and s13, were kindly provided by Dr. Angela Busse. The remaining samples were simulated

in the present work. The composite and graphite samples (supplied by Gas Dynamics Ltd.,

UK) were exposed to arc-heating in order to simulate the environment experienced by space

vehicles while re-entering the atmosphere. The cast, filed, gritblasted, ground, ship pro-

peller, shotblasted and one of the five spark-eroded samples (spark-eroded 5 from Table 3.1)

were taken from standard roughness comparators. The remaining four spark-eroded sam-

ples were taken from a spark-eroded surface provided by an industrial third-party. These

four samples were selected as different subsections from the same larger rough surface scan.

The concrete sample was taken from a larger block of concrete. Standard roughness com-

parators have been obtained from Rubert & Co. Ltd.∗. A roughness comparator for one of

the samples is shown in Figure 3.1. In general, a comparator consists of five to eight patches

of the surface with different roughness grades. Although scans for each roughness grade for

each surface have been obtained, grades representative of the roughness of each sample have

been selected for the simulations. This means the non-dimensional RMS roughness height,

Sq/δ, for the samples lies in the range 0.03 to 0.05.

Marine phenomena cause the surface of ship propellers to undergo various changes dur-

ing extended periods of service and this increases their roughness (Kirschner and Brennan

[2012], Townsin [2003], Wahl [1989]) due to, for example, corrosion. The ship propeller

samples, s10 and s11, are replicas of such propeller surfaces. The two samples have similar

average roughness height, Sa, but show differences in other surface properties (refer Ta-

ble 3.2). The spark-eroded samples s13 to s16 were obtained as different subsections from

the same larger surface scan. s13 was obtained by visual inspection of the roughness height

∗Rubert & Co. Ltd. (Precision Engineers), Cheadle, Cheshire, England.
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Figure 3.2: Contour plot of the full spark-eroded surface scan showing the placement of
s13 (black dashed lines) and s14 (black solid lines). Plot coloured by abso-
lute roughness height. Colourbar: black to yellow - lower to higher roughness
heights.
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Figure 3.3: Contour plot of the full spark-eroded surface rotated by 90◦ showing the place-
ment of the s15 (black solid lines) and s16 (black dashed lines) samples. Plot
coloured by absolute roughness height. Colourbar: black to yellow - lower to
higher roughness heights.
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contour plot of the full surface scan whereas s14 was obtained by the automated section

selection method based on minimum RMS errors in roughness heights at the section bound-

aries (as described in Section 2.2.1). The placement of s13 and s14 on the full surface scan

is shown in Figure 3.2 for comparison. The s15 and s16 samples are obtained by rotating

the full spark-eroded surface scan by 90◦ and then applying the automated section selection

method. These two samples differ in terms of their topographical properties, especially in

values of their surface skewness, with s15 showing a positive whereas s16 showing a negative

value of skewness (refer Table 3.2). The placement of s15 and s16 on the rotated full surface

scan is shown in Figure 3.3.

Surface plots of all 17 rough surface samples are shown in Figures 3.4 and 3.5. The

composite and filed samples have strong directional alignment of their roughness features.

In order to study this phenomenon, two samples of each are evaluated, with one having

features aligned in the streamwise direction and the other having features aligned in the

spanwise direction. Figures 3.4 (b) and (c) show the composite samples (s2 and s3), with

features aligned in the streamwise and spanwise directions respectively and Figures 3.4

(e) and (f) show the filed samples (s5 and s6), with features aligned in the spanwise and

streamwise directions respectively. The ground sample, s9 also shows strong directional

alignment of features in the spanwise direction, as shown in Figure 3.4 (i).

3.2 Surface topographical properties of the samples

Mainsah et al. [2001] describe a large number of parameters that can be used to charac-

terise rough surfaces. Table 3.2 (at the end of the chapter) displays a broad list of parameters

for the current dataset of seventeen samples, whose description and computation is given

in Appendix A. Since simulations are performed on smaller subsections of the full surface

samples, surface properties of only those subsections are computed. The mean reference

plane of a sample is set at z = 0 and hence the mean roughness height of the sample, h, is

zero.

h =
1

MN

M,N∑
i,j

hi,j = 0,

where hi,j are the coordinates of the roughness height obtained after filtering and M,N are

the number of points discretising the surface in x, y respectively.

Since the surface roughness height, k, has the strongest influence on the aerodynamic

fluid flow parameters, the surfaces are scaled to the same roughness height (unless stated

otherwise), which is represented by mean-peak-to-valley height, Sz,5×5. It must be noted

that k is always represented by Sz,5×5 unless stated otherwise. The value chosen for Sz,5×5

for the current study (unless stated otherwise) is

k = Sz,5×5 =
δ

6
or

δ

k
=

δ

Sz,5×5
= 6.

Sz,5×5 has also been used as a measure of roughness height in the studies of Schultz and
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(a) s1 sample (b) s2 sample

(c) s3 sample (d) s4 sample

(e) s5 sample (f) s6 sample

(g) s7 sample (h) s8 sample

(i) s9 sample (j) s10 sample

Figure 3.4: Surface plots for samples s1 to s10. Plots coloured by roughness height, k/δ.
Refer Table 3.1 for naming convention. All plots have the same colourbar, shown
at the bottom.
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(a) s11 sample (b) s12 sample

(c) s13 sample (d) s14 sample

(e) s15 sample (f) s16 sample

(g) s17 sample

Figure 3.5: Surface plots for samples s11 to s17. Plots coloured by roughness height, k/δ.
Refer Table 3.1 for naming convention. All plots have the same colourbar, shown
at the bottom.
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Flack [2007], Wu and Christensen [2006] and Bons [2002]. The aerodynamic roughness

flow parameters are most influenced by the highest features of the rough surface. In order

to study universal roughness behaviour, k should be small compared to the channel half-

height, δ and Jiménez [2004] recommends a ratio of δ/k (where k is based on the equivalent

sand-grain roughness height) in excess of 40. In order to achieve a significant roughness

effect for δ/k > 40, very high Reτ , in excess of 1000, would be required. This in turn would

lead to extremely dense meshes as the small scales of motion, especially close to the rough

walls, would need to be resolved. These factors lead to a prohibitively high computational

cost. Hence a relatively low δ/k = 6 is used, which leads to a clear roughness effect at

relatively low Reynolds number, for example, Reτ = 180. Although this may be an obstacle

to studying universal behaviour, studies at low δ/k are important, for example, in cases

of water flow over gravel beds (Mohajeri et al. [2015], Grass [1971]) and flows in urban

environments (Orlandi and Leonardi [2006]) and tree canopies (Sadeh et al. [1971]). It is

also important to note that the reason for scaling all surfaces to the same roughness height

is to enable a study of the influence of other surface characteristics, for example, skewness

and correlation lengths, on the roughness effects.

An important geometrical parameter that is used to characterise the surfaces in this

work is the generalised Sigal-Danberg parameter, Λs, as modified by van Rij et al. [2002],

Λs =

(
S

Sf

)(
Sf
Sw

)−1.6

, (3.1)

as also described in equation (1.3). Details of how to compute this parameter are described

in Appendix A. S/Sf can be regarded as the inverse of the solidity which is defined as the

total projected frontal roughness area per unit wall-parallel projected area. Λs provides

information about the roughness density, shape as well as direction with respect to the

mean flow.

According to Flack and Schultz [2010], skewness, Ssk is a quantitative way of describing

whether a rough surface has more pronounced peaks or valleys. A negative value of skewness

indicates that the surface is pitted, for example, due to corrosion or surface wear whereas a

positive value indicates roughness due to isolated large peaks, for example, due to deposition

of foreign materials (as in biological fouling). A surface skewness value close to zero indicates

a more or less homogeneous distribution of peaks and valleys. The s1, s2, s7, s14 and s15

samples have a positive value of skewness whereas all other samples have a negative value.

Also, s15 has a skewness value close to zero. The spark-eroded samples, s13, s14, s15 and

s16, although taken from the same larger surface scan, show significantly different skewness

values. Their values are −0.30, 0.43, 0.05 and −0.17 for s13, s14, s15 and s16 respectively.

Hence a wide range of skewness, which means differing distributions of peaks and valleys,

is obtained for these samples.

The largest correlation lengths are exhibited by the s5, s6 and s9 samples in their

respective spanwise, streamwise and spanwise directions. This is attributed to the strong

anisotropy of their roughness features, which can clearly be seen from the surface plots
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(refer Figure 3.4 (e), (f) and (i)). The directionality of the features of a given rough surface

can be obtained from the surface texture aspect ratio, Str, which is given by the ratio of

the shortest to longest correlation lengths of the sample; Str = Sal/Ssl. If Str > 0.5 then

the sample is regarded as statistically isotropic whereas anisotropic samples have Str < 0.3

(refer Appendix A). All samples with the exception of s2, s3, s5, s6, s9 and s10 have Str > 0.5

and hence are statistically isotropic. The s10 sample has Str = 0.41 and can be considered

weakly anisotropic. Both the composite samples, s2 and s3, are anisotropic with Str = 0.28

for s2, with its dominant features oriented in the streamwise direction, and Str = 0.21

for s3, with its dominant features oriented in the spanwise direction (refer Figure 3.4 (b)

and (c)). A major difference between s2 and s3 is observed in the surface skewness, their

respective values being 0.24 and −0.19, indicating that s2 is peak dominated whereas s3 is

valley dominated.

A parameter called the flow texture ratio, Sflow
tr , which depends on the streamwise and

spanwise correlation lengths of the samples, has been defined as Sflow
tr = Lcor

y /Lcor
x . This

parameter is another indicator of the anisotropy of the roughness features. If Sflow
tr � 1, for

example, Sflow
tr = 29.9664 for the s5 sample, its roughness features have strong directional

preference in the spanwise direction (refer Figure 3.4 (e)) and if Sflow
tr � 1, for example,

Sflow
tr = 0.0345 for the s6 sample, its roughness features have strong directional preference in

the streamwise direction (refer Figure 3.4 (f)). For values of Sflow
tr close to 1, the roughness

features of the sample have a relatively homogeneous distribution and no specific directional

preference is seen.

The effective slope, ES, as introduced by Napoli et al. [2008], represents the overall

gradient of the roughness elements of an irregular rough surface. Higher values of ES

indicate dense roughness whereas lower values are obtained for relatively sparse roughness.

In the case of three-dimensional roughness, the effective slope is computed in the streamwise

and spanwise directions and denoted by ESx and ESy respectively. From Table 3.2, most

surfaces have similar values of ESx and similar values of ESy. Based on these values, s4,

s7 and s8 can be considered relatively more densely rough whereas s9, s11 and s12 can be

considered relatively sparsely rough. Another indication of roughness density is the solidity,

Sf/S. According to Jiménez [2004], roughness is considered dense if its Sf/S > 0.15

and sparse otherwise. Based on this criterion, only one sample from the database, s4

(Sf/S = 0.16), is dense. A closer look at the values of Sf/S and ESx from Table 3.2

shows that 2 × Sf/S ≈ ESx for the current dataset. This relation was also pointed out

by Napoli et al. [2008] from their studies on random 2D roughness and hence could be

considered applicable to different types of roughness. Figure 3.6 (left) shows a plot of the

two quantities and clearly establishes this relationship as all points fall on the straight line

given by 2× Sf/S = ESx. A relationship is also observed between Λs and ESx (Figure 3.6

(right)), as (Sf/S)−1 is an integral part of Λs (equation (3.1)).

Bons [2005] mentioned that the mean streamwise forward facing surface angle, α, is

geometrically related to the Sigal-Danberg parameter. This is observed from Figure 3.7

(top left), which shows a semilogarithmic plot of the two quantities for the samples in this
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Figure 3.6: Variation of Sf/S with ESx (left), with the straight line representing 2×Sf/S =
ESx, and variation of Λs with ESx (right).

study. From this, it is logical to follow that Sf/S is also related to α, Figure 3.7 (top right).

The root-mean-square of the streamwise surface angle, αrms, was proposed by Acharya et al.

[1986] as an important parameter characterising real roughness in the context of turbine

blades. Also established are relationships between αrms and Λs (Figure 3.7 (bottom left))

and αrms and Sf/S (Figure 3.7 (bottom right)). These relationships confirm that the
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streamwise forward facing surface angle is approximately linearly related to the solidity of

the roughness elements. It is also worth noting that tan(α) ≈ ESx, the tangent of the mean

streamwise forward facing surface angle approximately represents the streamwise effective

slope.

The above observations establish that ESx, α and αrms are all closely linked to the

solidity, Sf/S, for the current set of samples and as such cannot be regarded as independent

parameters. This is particularly important for the parametric fitting studies conducted in

Chapter 7 as, if one of the four properties enters the fit at a certain stage, none of the other

three would provide any more useful information at a later stage.

It is also essential to note that the relationships depicted in Figures 3.6 (right) and 3.7

apply only to the current set of rough surfaces and may or may not be generalised to other

types of roughness.
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Chapter 4

Validation studies and smooth-wall

simulations

The immersed boundary DNS code was first validated during the work of Busse et al.

[2015] by performing dependence tests pertaining to the streamwise and spanwise mesh

resolution, computational domain size and Fourier filter cut-off wavenumber. However,

further dependence tests with respect to the mesh resolution and computational domain size

have also been carried out as part of the current work. An additional study, investigating

the sensitivity of the results to the channel blockage ratio, is also carried out by varying

the k/δ ratio of the channel. Validation is performed by studying the mean and turbulent

statistics for the different cases. All simulations in this chapter are performed on the s8

(gritblasted) sample.

The Reynolds number based on the roughness height, k+, is given as

k+ =
kuτ
ν
, (4.1)

where k is the roughness height, represented by Sz,5×5 in this work. In principle, k+ is also

a representation of the roughness height in wall-units. Equation (4.1) can be converted into

a form that includes Reτ .

k+ =
kuτ
ν

δ

δ
,

=
k

δ
Reτ .

For example, when Reτ = 180 and k/δ = 1/6, then from the above, k+ = 30.

4.1 Smooth-wall simulations

Smooth-wall simulations are required for comparison and for computing the roughness

function, ∆U+. These were performed using the same DNS code described in Section 2.4 but

without the embedded boundary treatment. Periodic boundary conditions were enforced in

the streamwise and spanwise directions and a constant mean streamwise pressure gradient
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Reτ ∆x+ ∆y+ ∆z+
min ∆z+

max Ub U+
c

180 8.4 4.2 0.67 4.7 15.77 18.44
240 9.0 4.5 0.68 4.3 16.44 19.11
360 9.6 4.8 0.68 5.0 17.42 20.13
540 10.1 5.1 0.67 5.0 18.48 21.24
720 9.6 4.8 0.67 5.0 19.31 22.10

Table 4.1: Simulation parameters along with mean streamwise bulk velocity, Ub, and mean
centreline velocity, U+

c for all smooth-wall simulations

was applied to drive the flow. The domain size for all smooth-wall simulations was 12δ×6δ×
2δ in the streamwise, spanwise and wall-normal directions respectively. The corresponding

mesh resolution was ∆x+ ≤ 10, ∆y+ ≈ ∆x+/2, ∆z+
min ≈ 0.667 and ∆z+

max ≤ 5. Simulation

parameters along with the mean streamwise bulk velocity, Ub, and mean centreline velocity,

U+
c , are given in Table 4.1. At Reτ = 180, Vreman and Kuerten [2014] conducted extensive

comparisons of different DNS databases for smooth-wall channel flow to assess the accuracy

and reproducibility of data. This Reynolds number is studied extensively in subsequent

chapters. Comparisons of Ub and U+
c from the current work (first row in Table 4.1) with

those of a refined finite difference DNS of Vreman and Kuerten [2014] show differences of

approximately 1%.

4.2 Validation - variation of mesh resolution

This section describes the dependence of the mean and turbulent statistics on the mesh

resolution. It is the aim of this section to test the limit of the mesh resolution against the

requirements mentioned in Section 2.3.2.

Initially for this study, the sample is selected using the section selection procedure as

described in Section 2.2.1. However, for quicker simulation turnaround times, the size of

the physical sample is halved and the procedure of Section 2.2.1 is repeated within the

larger sample. Figure 4.1 shows the full gritblasted surface scan and the position of the two

sections on it. Figure 4.2 shows the final scaled sample in its unfiltered (left) and filtered

(right) form.

Table 4.2 shows the computational domain size and simulation parameters for the study.

All simulations are conducted at Reτ = 180. The mesh resolution is varied in the streamwise

and spanwise directions only and all cases have the same wall-normal mesh parameters;

nz = 288, ∆z+
min ≈ 0.667 and ∆z+

max = 3.46. Three different mesh resolutions, denoted as

fine, medium and coarse, with reducing mesh resolution in that order, are studied. From

the two meshing criteria described in Section 2.3.2, the λmin criterion is dominant for the

current sample at Reτ = 180, giving nx ≥ 12(kcLx), nx ≥ 144, which gives ∆x+ / 3.52.

Hence, the fine mesh satisfies this criterion whereas both the medium and coarse meshes

violate it (by approximately 11% and 33% respectively). In fact, the coarse mesh violates

the Reynolds number criterion as well. Also, the quantity λmin/∆x shows how many cells

are actually present per smallest wavelength of the sample, a value less than 12 indicates
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Figure 4.1: Section selection for the mesh dependence study. The larger box (dashed lines)
represents the initial section whereas the smaller box (solid lines) represents the
final section used in the study. Surface coloured by absolute roughness height.
Colourbar: black to yellow - lower to higher roughness heights.

Figure 4.2: Final scaled sample before filtering (left) and after filtering (right). Surface
plots coloured by scaled roughness height, k/δ.
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Lx/δ Ly/δ Lz/δ kcLx
2.815 1.4075 2.2926 12

name nx ny ∆x+,∆y+ λmin/∆x ∆U+

fine 160 80 3.17 14 5.33
medium 128 64 3.96 11 5.60
coarse 96 48 5.28 8 5.46

Table 4.2: Domain size and simulation parameters for the mesh dependence study. Lx/δ,
Ly/δ and Lz/δ are the domain extents in the streamwise, spanwise and wall-
normal directions while kcLx is the maximum streamwise wavenumber. nx, ny
are mesh sizes in the streamwise and spanwise directions and ∆x+, ∆y+ are the
mesh resolution in wall-units. λmin/∆x represents how many cells are present
per smallest wavelength of the sample.

that the λmin criterion is violated.

4.2.1 Influence on the mean flow statistics

Figure 4.3 (left) shows time-averaged mean streamwise velocity profiles, U+, against

wall-normal distance in wall-units, z+, on semilogarithmic axes for all three cases in the

mesh dependence study. Smooth-wall profiles at Reτ = 180 are also shown for reference.

All three rough-wall profiles show close agreement. Also, from Table 4.2, all ∆U+ values

are within 5% of each other. Figure 4.3 (right) shows the time-averaged mean streamwise

velocity defect profiles against the wall-normal distance, z/δ, for the three rough-wall cases

along with the smooth-wall profile. Overall, the rough-wall profiles are very similar and

show good agreement with each other. Collapse of all three profiles with the smooth-wall

profile is obtained beyond z/δ ≈ 0.1. The medium and coarse case profiles show only a

small deviation for 0.1 ≤ z/δ ≤ 0.4.
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Figure 4.3: Mean streamwise velocity profiles, U+, against wall-normal distance in wall-
units, z+ (left), and mean streamwise velocity defect profiles against wall-normal
distance, z/δ (right). Also shown are smooth-wall profiles for reference. The
legend shows number of mesh cells in the streamwise and spanwise directions
along with the case name in brackets.
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Figure 4.4: Reynolds stress profiles against z/δ: 〈u′2〉 (top left), 〈v′2〉 (top right), 〈w′2〉
(bottom left), −〈u′w′〉 (bottom right) along with corresponding smooth-wall
profiles.

4.2.2 Influence on the turbulent flow statistics

Figure 4.4 shows the Reynolds stress profiles of the streamwise, 〈u′2〉 (top left), spanwise,

〈v′2〉 (top right), wall-normal, 〈w′2〉 (bottom left) and shear stress, −〈u′w′〉 (bottom right),

against z/δ, which collectively depict the turbulent flow statistics. In general, profiles for

the fine and medium mesh show close agreement, whereas profiles for the coarse mesh show

differences. Peak streamwise fluctuations are slightly over predicted by the medium and

coarse meshes whereas peak spanwise and wall-normal fluctuations, as well as the peak

shear stress, are slightly under predicted by the coarse mesh.

From the mesh dependence study, it is seen that a small violation in the λmin criterion

may still give acceptable results, as in case of the medium mesh. However, all simulations

henceforth will respect both meshing criteria from Section 2.3.2, ∆x+ = ∆y+ ≤ 5 and

∆x ≤ λmin/12.

4.3 Validation - variation of computational domain size

This section describes the dependence of mean and turbulent statistics on the size of

the streamwise and spanwise computational domain. It is known that typically a large

enough computational domain size is required for proper flow development to take place.

The domain size requirements are strict for smooth channels, especially in the streamwise

direction, due to the presence of long streamwise streaks (Kim et al. [1987], Kline et al.
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[1967]). In rough channels, however, domain size requirements are slightly less stringent

as the roughness breaks down the streamwise streaks (Ashrafian and Andersson [2006],

Orlandi and Leonardi [2006], Smalley et al. [2002], Antonia and Krogstad [2001]). The

concept of a minimal channel was introduced by Jiménez and Moin [1991] with reference

to a smooth wall and utilised in various studies (for example, Chung et al. [2015], Hwang

[2013]), wherein the basic building block of wall-bounded turbulence was isolated. Although

this is the limiting case for domain size, it serves as a useful comparison for this study.

Two cases are considered as part of the study: one with a smaller domain size and the

other with a larger domain size. Simulations for both cases are conducted at Reτ = 360,

k/δ = 1/12 and k+ = (k/δ)Reτ = 30. Reτ is higher than the mesh dependence study so

that validation is conducted for a wider range of Reynolds number. The roughness height,

k/δ, scales with the sample computational domain size and the domain is either shrunk or

enlarged depending on the required roughness height. For k/δ = 1/12, the computational

domain size is Lx ×Ly = (2.815δ× 1.4075δ), which in wall-units is (1013.4× 506.7)+. This

is significantly larger than the minimal channel criterion of Jiménez and Moin [1991], which

was approximately (300×100)+. This case is classified as the smaller domain and is referred

to as the ‘untiled’ sample. In order to obtain the larger domain sample, the smaller sample

is simply copied in the streamwise and spanwise directions, thus obtaining 2×2 tiles, and is

referred to as the ‘tiled’ sample. This can be done without issues as the sample is periodic

in the streamwise and spanwise directions. The tiled sample thus has twice the domain

extents of the untiled sample. It is important to note that in the process of tiling, the only

parameters that change are the streamwise and spanwise domain sizes. This tiling process

does not affect the flow field to a significant extent and its effects are discussed in detail

in Chapter 8. Figure 4.5 shows surface plots in plan view of the two samples along with

corresponding domain extents. Table 4.3 shows the simulation parameters for this study,

including the values of ∆U+ obtained for each case. The mesh resolution for the tiled case

Reτ 360 (untiled) 360 (tiled)

Lx/δ 2.8150 5.630
Ly/δ 1.4075 2.815
L+
x 1013.4 2026.8

L+
y 506.7 1013.4

Lz/δ 2.1622 2.1622
nx 384 720
ny 192 360
nz 448 448
∆x+,∆y+ 2.6391 2.8150
∆z+

max 3.7336 3.7336
∆U+ 4.26 4.28

Table 4.3: Simulation parameters for the domain dependence study. Lx/δ, Ly/δ and Lz/δ
are the streamwise, spanwise and wall-normal domain extents, nx, ny and nz are
the streamwise, spanwise and wall-normal mesh sizes, ∆x+,∆y+ and ∆z+ are
the streamwise, spanwise and wall-normal mesh resolutions.
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Figure 4.5: Surface contour plots in plan view for the two samples. Lx/δ and Ly/δ are
the streamwise and spanwise computational domain sizes. Dashed lines denote
tile boundaries. Plot dimensions scaled by corresponding domain sizes. Plots
coloured by roughness height, k/δ. Both plots have the same colourbar.

must remain approximately the same or higher than the untiled case. Both cases have

∆z+
min ≈ 0.667.

4.3.1 Influence on the mean flow statistics

Values of ∆U+ shown in Table 4.3 indicate very good agreement between both untiled

and tiled cases and the difference is minor. Figure 4.6 (left) shows time-averaged mean

streamwise velocity profiles, U+, against wall-normal distance in wall-units, z+ on semilog-

arithmic axes for both cases along with smooth-wall profiles at Reτ = 360. Profiles for

both cases show only minute differences. Close agreement in ∆U+ was also obtained in the

DNS studies of Chung et al. [2015], on modelled and sinusoidal roughness, who showed that

the minimal channel proposed by Jiménez and Moin [1991] was sufficient for predicting the

roughness function. Figure 4.6 (right) shows time-averaged mean streamwise velocity defect

profiles against the wall-normal distance, z/δ, for both the rough-wall cases, along with the

smooth-wall profile. Almost no difference is seen in the profiles for the two rough-wall cases.

Also, overall good agreement with the smooth-wall profile is observed.
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Figure 4.6: Mean streamwise velocity profiles, U+, against wall-normal distance in wall-
units, z+ (left), and mean streamwise velocity defect profiles against wall-normal
distance, z/δ (right). Also shown are smooth-wall profiles for reference.

4.3.2 Influence on the turbulent flow statistics

Figure 4.7 shows the Reynolds stress profiles of the streamwise 〈u′2〉 (top left), span-

wise 〈v′2〉 (top right), wall-normal 〈w′2〉 (bottom left) and shear stress −〈u′w′〉 (bottom

right), against z/δ, which collectively depict the turbulent flow statistics. In general, agree-

ment between the two cases for the turbulent profiles is not as good as the mean profiles,

probably because higher order statistics are more sensitive to the domain size. However,

near-wall agreement of all profiles for both cases is very good, up to z/δ ≈ 0.1, beyond
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Figure 4.7: Reynolds stress profiles against z/δ: 〈u′2〉 (top left), 〈v′2〉 (top right), 〈w′2〉
(bottom left), −〈u′w′〉 (bottom right).
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which differences begin to appear. Jiménez and Moin [1991] made similar observations in

their smooth-wall minimal channel DNS studies and mentioned that the domain size might

be too small to accommodate some of the large structures in the outer layer, thus leading

to discrepancies in that region of the flow. Peak streamwise fluctuations for both cases are

seen at z/δ ≈ 0.05, which was also observed by Hwang [2013] in his smooth-wall minimal

span channel DNS studies. The peak values of 〈u′2〉 for both cases, which are quite similar,

also agree with those of Hwang [2013]. Both these observations are slightly surprising as

the peak of smooth-wall streamwise fluctuations is greater than that of rough walls and is

usually located closer to the wall for a smooth wall. Hwang [2013] also mentioned that using

a minimal span channel affects the spanwise fluctuations the most. In the current study,

the greatest discrepancies are also observed in the spanwise fluctuations, probably, again

due to the domain size constraining the large scale structures. Peak values between the

two cases differ by less than 5% for the streamwise, spanwise and wall-normal fluctuations.

Both cases, however, show excellent agreement in their shear stress profiles.

Busse et al. [2015] conducted a domain dependence study on the graphite sample (s7

from Table 3.1 and Figure 3.4 (g)) in a similar manner as the current section, by tiling the

sample. Their small and large domain extents were (5.25δ × 2.625δ) and (10.5δ × 5.25δ)

respectively. Their results showed almost no differences in the mean and turbulent profiles

between the two cases and it is probable that their small domain was already large enough

to obtain satisfactory results.

From computational studies on cube roughness, Coceal et al. [2007] and Coceal et al.

[2006] showed that relatively small domains were enough to obtain satisfactory mean and

turbulent statistics. It is understood from the above analysis that in the current study,

although the mean profiles show good agreement between the small and large domains,

the small domain constrains the flow to some extent and hence shows discrepancies in the

turbulent statistics, up to a maximum of 5%, compared to the large domain.

4.4 Sensitivity to the channel blockage ratio, k/δ

It is commonly assumed that universal behaviour emerges only when the roughness

height is considerably smaller than the macroscopic length scale of the flow, i.e. for small

k/δ (Jiménez [2004]). The present validation study is conducted in order to check the

sensitivity of the results to k/δ. The Reτ and k/δ are varied but the roughness Reynolds

number, k+ = (k/δ)Reτ , is kept constant for all cases. Since different flows having the same

k+ should produce the same ∆U+ (Krogstad and Antonia [1999]), this study also serves

to validate this statement. The roughness height and blockage ratio are equivalent as k is

always non-dimensionalised by δ. Three Reτ are considered for this study; Reτ = 120, 180

and 360. The Reynolds number is not reduced below Reτ = 120 due to the likely presence

of low Reynolds number effects. Reτ = 180 serves as the reference case and the other cases

are obtained by scaling the sample for this case. The value of k/δ = 1/6 for Reτ = 180

gives a roughness Reynolds number, k+ = (k/δ)Reτ = 30, which remains constant for all

cases. For the same k+, a higher Reτ would require a lower k/δ and hence lead to a smaller
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Reτ 120 180 360

k/δ 1/4 1/6 1/12
k+ 30 30 30
Lx/δ 8.4450 5.6300 2.8150
Ly/δ 4.2250 2.8150 1.4075
Lz/δ 2.4866 2.3244 2.1622
nx 320 320 224
ny 160 160 288
nz 224 288 448
∆x+,∆y+ 3.1669 3.1669 2.6391
∆z+

max 4.3926 3.7235 3.7336
∆U+ 4.74 4.36 4.26

Table 4.4: Simulation parameters for the k/δ sensitivity study. Lx/δ, Ly/δ and Lz/δ are
the streamwise, spanwise and wall-normal domain extents, nx, ny and nz are the
streamwise, spanwise and wall-normal mesh sizes, ∆x+,∆y+ and ∆z+ are the
streamwise, spanwise and wall-normal mesh resolutions.

domain size. Table 4.4 shows the simulation parameters for this study along with values of

∆U+. k/δ at Reτ = 180 is twice the k/δ at Reτ = 360 and two-thirds the k/δ at Reτ = 120,

in order to keep k+ = 30 constant. For all cases, ∆z+
min ≈ 0.667. Surface plots of all cases

in their plan view coloured by roughness height, corresponding streamwise and spanwise

domain lengths along with values of k/δ are shown in Figure 4.8.

The domain extents for k/δ = 1/12, Reτ = 360 may appear too small for proper flow

development. However, it can be seen from Section 4.3 that the small domain size does not

significantly affect the mean flow statistics at this Reynolds number. The turbulent profiles

are affected only slightly.

4.4.1 Influence on the mean flow statistics

On initial inspection, values of ∆U+ from Table 4.4 appear to be quite similar for

all channel blockage ratios. The variance in ∆U+ is approximately 5%, which is small.

Figure 4.9 shows time-averaged mean streamwise velocity profiles in wall-units, U+, against

the wall-normal distance, z+, on semilogarithmic axes. For comparison, this figure also

shows smooth-wall profiles for Reτ = 120, 180 and 360. The profiles for all rough cases are

remarkably similar all the way up to the log region of the corresponding case. The amount

of downward shift in the rough-wall profiles from the corresponding smooth-wall profile also

appears to be similar for all cases. Thus, the mean flow characteristics for all cases show

similarity.

In order to understand the variation of ∆U+ with k/δ, Figure 4.10 shows a plot of ∆U+

against k/δ for all cases. Each symbol represents one case and since Reτ = 180 (k/δ = 1/6)

is the reference case, dashed lines are plotted above and below its ∆U+ value to represent

5% tolerance bands. A 5% difference in ∆U+ is considered reasonable and values falling

within this difference are accepted. It is observed that ∆U+ at k/δ = 1/12 is within the

tolerance. The ∆U+ value at k/δ = 1/4 is slightly outside the tolerance, by approximately
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(a) Reτ = 120, k/δ = 1/4, Lx/δ = 8.445

(b) Reτ = 180, k/δ = 1/6, Lx/δ = 5.63

(c) Reτ = 360, k/δ = 1/12, Lx/δ = 2.815

Figure 4.8: Surface contour plots in plan view for the different samples. Lx/δ is the stream-
wise computational domain size. Plot dimensions scaled by corresponding do-
main sizes. Plots coloured by roughness height, k/δ. All plots have the same
colourbar.

3%. Although this is accepted, the higher value of ∆U+ is likely due to the high channel

blockage of this case. It is also understood that the corresponding Reτ = 120 for this

case may show the presence of low Reynolds number effects, which may be responsible for

the slight disagreement. Despite the small number of cases, convergence in the value of

∆U+ is achieved by k/δ = 1/6. This means, for the same k+, similar values of ∆U+ can

be expected for k/δ ≤ 1/6. Purely on the basis of ∆U+, this ratio is much higher than

that proposed by Jiménez [2004], who proposed k/δ ≤ 1/40 for similarity laws to apply.



Chapter 4. Validation studies and smooth-wall simulations 61

10 0 10 1 10 2

z+

0

2

4

6

8

10

12

14

16

18

20

22

U
+

Re = 120 smooth wall

Re = 180 smooth wall

Re = 360 smooth wall

Re = 120

Re = 180

Re = 360

Figure 4.9: Mean streamwise velocity profiles, U+, against wall-normal distance in wall-
units, z+, along with smooth-wall profiles.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

k/ δ

0

1

2

3

4

5

6

7

8

∆
U

+

k/ δ = 1/4,   Re = 120

k/ δ = 1/6,   Re = 180

k/ δ = 1/12, Re = 360
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Figure 4.11: Mean streamwise velocity defect profiles against z/δ (left) and against z+

(right).

Placidi and Ganapathisubramani [2015] conducted an experimental investigation of block

roughness with k/δ ≈ 0.1. Based on a systematic variation of the frontal and plan solidities,

it was mentioned that the criterion of Jiménez [2004] was unnecessarily restrictive for mean

flow similarity.

Figure 4.11 shows time-averaged mean streamwise velocity defect profiles against the

wall-normal coordinates, z/δ (left) and against z+ (right). From the right plot, it is clear

that profiles at lower k/δ (higher Reτ ) show higher values of velocity defect and hence are

Reτ dependent. From the left plot, profiles differ in the region close to the rough wall

and up to z/δ ≈ 0.2. For z/δ / 0, a lower blockage ratio shows a higher velocity defect,

because for a lower k/δ, the effects of roughness remain closer to the rough wall compared

to a higher k/δ. Also, a higher Reτ causes the mean centreline velocity, U+
c , to be higher.

The profiles then cross over in the region 0.03 / z/δ / 0.04. Above z/δ ≈ 0.04 and up to

z/δ ≈ 0.2, lower k/δ show lower velocity defect values. Also in this region, lower k/δ show

a steeper gradient of decrease in velocity defect. Beyond z/δ ≈ 0.2, profiles for k/δ = 1/4

and 1/6 collapse whereas k/δ = 1/12 shows comparatively higher values. A collapse of all

profiles is obtained for z/δ ' 0.7.

4.4.2 Influence on the turbulent flow statistics

Figure 4.12 shows Reynolds stress profiles (from top to bottom) of the streamwise,

〈u′2〉, spanwise, 〈v′2〉, wall-normal, 〈w′2〉 and shear stress, −〈u′w′〉, against z/δ (left) and

z+ (right), which collectively depict the turbulent flow statistics. A general dependence on

Reτ is observed. When plotted against z+, all profiles for different k/δ show close similarity

up to their peak magnitude, beyond which they start to drift apart, although still remaining

similar. Profile peaks for all k/δ are observed at approximately the same z+ for both the

streamwise and spanwise fluctuations whereas peaks of the wall-normal fluctuations and

shear stress show differences for different k/δ. In general, peak magnitudes for all profiles

show an increasing trend with decreasing blockage (increasing Reτ ). When plotted against

z/δ, peaks move closer to the rough wall with decreasing blockage. Not all profiles collapse

close to the channel centre when plotted against z/δ; the shear stress profiles show the best
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Figure 4.12: Reynolds stress profiles against z/δ (left) and z+ (right). From top to bottom:
〈u′2〉, 〈v′2〉, 〈w′2〉, −〈u′w′〉.
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collapse. As mentioned earlier, Reτ = 120 might show presence of low Reynolds number

effects, which might manifest themselves in the turbulent statistics. It is interesting to note

that all cases also have the same maximum and minimum roughness heights in wall-units;

h+
max ≈ 18.5 and h+

min ≈ −28.6. With reference to these, streamwise fluctuation peaks for

all k/δ are seen at z+ ≈ 20, which is very close to h+
max, whereas peaks of spanwise and

wall-normal fluctuations and shear stress are further away.

Thus, in general, the turbulent statistics show dependence on Reτ and larger variation

with the blockage ratio. This indicates greater sensitivity of higher order statistics. Al-

though the present study does not investigate which parameter, Reτ or k/δ, has a greater

influence on the results, studying that aspect would provide further insight.

In summary, the studies conducted in this chapter have thus served to establish the va-

lidity of the DNS code for subsequent and more in-depth studies of the roughness considered

in this work.



Chapter 5

Laminar to turbulent transition of

flow over a rough surface sample

Before considering fully turbulent flow, this chapter gives a brief overview of the tran-

sition from laminar to turbulent flow over an irregular rough surface. Direct numerical

simulations are performed for a range of relatively low Reynolds numbers and the overall

flow behaviour is studied. A critical Reynolds number, (Reτ )crit, at which the flow exhibits

small and somewhat periodic fluctuations, and sustains an unsteady laminar behaviour, is

identified. Beyond (Reτ )crit, the flow is in a transitional phase after which it becomes tur-

bulent. The Reynolds number at which transition is completed, (Reτ )trans, is also identified.

All studies in this chapter are performed on a modified version of the gritblasted sample

(s8 from Table 3.1).

5.1 Brief description of previous studies

Most of the previous work investigating the influence of roughness on transition has

been done on regular roughness elements. For example, Klebanoff and Tidstrom [1972]

conducted measurements to study the mechanism of transition of a flat plate boundary

layer due to the influence of an isolated 2D cylindrical rod. Emphasis was placed on the

nature of disturbances in the region immediately downstream of the roughness (which was

called the recovery zone), where the mean flow was distorted by the roughness. For a range

of Reynolds numbers, based on measurements of intensity, disturbance spectra, growth

and decay of velocity fluctuations and mean velocity distributions, it was observed that

instabilities in the recovery zone triggered transition. It was concluded that disturbances

introduced by the roughness were not significant enough to trigger transition but that

roughness destabilized the flow in the recovery zone to existing disturbances, which was the

main mechanism of transition.

Floryan [2006] studied three-dimensional instabilities of laminar flow over distributed

roughness in the early stages of transition using linear stability theory. Global stability

criteria for the critical Reynolds number and roughness amplitude were developed in the

context of travelling-wave and vortex instabilities. Roughness was represented using Fourier
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series and included wavy-walls (which required only a single Fourier mode and hence were

the simplest geometry), rectangular grooves (which required many Fourier modes and hence

were the most complex geometry) and triangular grooves (which required an intermediate

number of Fourier modes and were intermediately complex). Truncation of the Fourier series

representing the geometry also had an effect on transition. It was shown that, compared to

the other geometries, rectangular grooves were the most effective in destabilising the flow.

Overall, it was concluded that the flow remained laminar if the global stability criteria were

satisfied.

Downs III et al. [2008] studied boundary layer transition induced by randomly dis-

tributed 3D roughness at different Reynolds numbers. The main goal was to study tran-

sition over realistic roughness and to provide data to develop a theoretical framework.

Experiments were conducted for three Reynolds numbers, all of which exhibited transient

growth of steady disturbances. Plots of mean and fluctuating velocity and disturbance-

energy evolution in the streamwise direction showed that the lower two Reynolds numbers

were laminar whereas the highest Reynolds number was turbulent. The highest Reynolds

number case transitioned downstream of the roughness through a mechanism in which the

unsteady-disturbance growth exceeded the stabilizing relaxation of the steady flow.

Orlandi [2011] conducted DNS over isolated as well as distributed roughness to demon-

strate that the flow becomes turbulent only beyond a threshold value of rms wall-normal

Reynolds stress computed at the crest of the roughness. This value was reached only when

the roughness Reynolds number, k+ = kuτ/ν, was greater than 15. The threshold value

was maintained for a variety of shape, density and distribution of regular wedge roughness.

More specifically, the flow was laminar when the rms wall-normal Reynolds stress at the

roughness crest was less than 0.3, transitional when it was between 0.6 and 1 and turbu-

lent when it was close to 1. Thus an important conclusion was that the rms wall-normal

Reynolds stress at the roughness crest was a fundamental quantity in establishing the status

of wall-bounded flows.

Seddighi et al. [2015] conducted DNS in a transient channel flow with distributed pyra-

mid roughness. An initially stationary turbulent flow was accelerated to a new flow rate

and the transient flow behaviour after acceleration was studied. The equivalent sand-grain

roughness heights for the initial and final flows were k+
s,eq = 14.5 and 41.5 respectively.

Through detailed studies of the near-wall flow physics of vortex formation, propagation and

breakdown, wall shear stress and mean and fluctuating velocities, it was concluded that,

despite the initial flow state being already turbulent, transient behaviour of the acceler-

ated flow from the initial to final state resembled a roughness-induced laminar to turbulent

transition.

The present study considers the transition of a realistic, irregular rough surface by

conducting DNS over a range of Reynolds numbers. The main goal is to determine a

critical Reynolds number, (Reτ )crit, beyond which the flow over the surface shows small

fluctuations which progressively increase with Reynolds number, and a transition Reynolds

number, (Reτ )trans, beyond which the flow is turbulent. Thus, subsequent simulations in
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future chapters, which are all conducted at Reτ > (Reτ )trans can be confidently said to be

in the fully turbulent regime. Care must be taken here to distinguish between the fully

turbulent regime and the fully-rough regime, the latter being achieved only after the flow

is fully turbulent and when k+
s,eq > 70 (Nikuradse [1933]).

5.2 Rough surface sample and simulation parameters

Initially, the sample is selected using the section selection procedure described in Sec-

tion 2.2.1. However, since this chapter is intended to provide only an overall picture of

transition from laminar to turbulent flow, the size of the physical sample is halved with

the procedure of Section 2.2.1 repeated within the larger sample. Consequently, this is the

same sample as selected for the mesh dependence study in Section 4.2. This leads to quicker

simulation turn around times. Figure 5.1 shows the full s8 surface sample and the position

of the two sections on it. Figure 5.2 shows the final scaled sample in its unfiltered (left)

and filtered (right) form.

Table 5.1 shows the topographical properties of the filtered surface sample. The prop-

erties are slightly different from the full s8 sample (Table 3.2). The maximum streamwise

wavenumber, kcLx, is halved, which gives a roughness height, Sz,5×5/δ = 0.1287. The
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Figure 5.1: Section selection for the study on laminar to turbulent transition on the grit-
blasted sample. The larger box (dashed lines) represents the initial section
whereas the smaller box (solid lines) represents the final section used in the
study. Surface coloured by absolute roughness height. Colourbar: black to
yellow - lower to higher roughness heights. (Figure same as Figure 4.1.)
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Figure 5.2: Final scaled sample before filtering (left) and after filtering (right). Plots
coloured by scaled roughness height, k/δ. (Figure same as Figure 4.2.)

sample has a negative value of surface skewness, Ssk, which means it is valley-dominated

(Flack and Schultz [2010]). Its surface texture aspect ratio, Str = 0.4638, is only slightly

less than 0.5, which indicates that it is weakly anisotropic. Also, the flow texture ratio,

Sflow
tr = 1.8974, is slightly greater than 1, which means roughness features have a weak

spanwise directional preference.

Table 5.2 shows the computational domain extents and mesh parameters for all simula-

tions in this study. The smaller domain size permits the use of a coarser mesh, as the priority

here is to run a number of simulations to locate the critical Reynolds number, (Reτ )crit.

The grid spacings are normalised by Reτ as it varies for each simulation. However, for

all Reτ simulated, both streamwise and spanwise grid spacings satisfy the meshing criteria

from Section 2.3.2, i.e. (∆x+, ∆y+) < 5. The wall-normal grid spacings vary depending on

Reτ as 0.3749 ≤ ∆z+
min ≤ 0.7916 and 2.7878 ≤ ∆z+

max ≤ 5.8853. The Reynolds number is

increased from Reτ = 45 to Reτ = 95 in steps of 5.

Cases are presented that start from either a turbulent initial condition (obtained from a

previously run turbulent simulation of the s8 sample), looking at laminarisation or reverse

transition, or from a laminar initial condition (obtained from any of the laminar cases in the

current study), looking at transition. The initial conditions also serve to check for hysteresis

effects. Also, the relatively coarse mesh permits large simulation run times. Each case is

kcLx Sz,5×5 hmax Sa Sq Ssk Sku Sz,max

12 0.1287 0.1038 0.02839 0.03736 -0.6827 3.8018 0.2472

Lcor
x Lcor

y Ssl Sal Str Sflow
tr ESx ESy

0.1833 0.3478 0.3795 0.1760 0.4638 1.8974 0.2564 0.2327

Table 5.1: Surface sample topographical properties. All length scales non-dimensionalised
by δ.

Lx/δ Ly/δ Lz/δ nx ny nz ∆x+/Reτ , ∆z+
min/Reτ ∆z+

max/Reτ
∆y+/Reτ

2.815 1.4075 2.2926 96 48 112 0.02933 0.008333 0.06195

Table 5.2: Domain extents and meshing parameters.
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run up to a maximum of approximately 2000 time units, depending on the development of

the flow.

5.3 Results - variation with Reynolds number

5.3.1 Time history of mean centreline velocity

Figure 5.3 shows time histories of the mean centreline velocity, 〈U+
c 〉, over the range of

Reτ , except Reτ = 50, 60 and 70. All cases up to Reτ = 90 are provided with a turbulent

initial condition obtained from a previous simulation of the full s8 sample at Reτ = 180 and

interpolated onto the current mesh. If 〈U+
c 〉 remains constant with time beyond a certain

time, t, then it indicates a laminar flow solution has been reached. The lower values of

Reτ = 45 and 55 show a monotonic rise in 〈U+
c 〉 and attain a constant laminar value for

large t. The intermediate values of Reτ = 65 and 75 show fluctuations in 〈U+
c 〉 for small

values of t but eventually attain a constant 〈U+
c 〉 for large t. Larger values of Reτ = 80 and

85 show large fluctuations in 〈U+
c 〉 for considerably larger time durations than Reτ = 65

and 75, but still achieve a constant 〈U+
c 〉 beyond t ≈ 500 and t ≈ 1200 respectively. Hence,

all cases up to Reτ = 85 undergo laminarisation. Table 5.3 shows the final laminar solution

centreline velocities for all Reτ except 90 and 95. These final values vary from 〈U+
c 〉 ≈

21 to 26. Hence, if the final 〈U+
c 〉 value for a given case lies in or close to this range, the

simulation has reached a laminar solution. Although Table 5.3 does not show a clear trend

of the final 〈U+
c 〉 with Reτ , the trend seen from Reτ = 45 to 85 is that the time duration

of 〈U+
c 〉 fluctuations increases with Reynolds number, but all cases ultimately laminarise,

with constant 〈U+
c 〉. For Reτ = 90, the initial behaviour of 〈U+

c 〉 is similar to Reτ = 85.

However, beyond t ≈ 900, 〈U+
c 〉 fluctuates about a mean value of approximately 26.8, and

has a very similar rms value, which means the fluctuations are small. If the final 〈U+
c 〉 is

not constant but shows small fluctuations about a mean value, the solution is denoted as

‘unsteady laminar’. To check for hysteresis effects, Reτ = 90 was restarted from t = 0, using

its final solution as the initial condition, but remained unsteady laminar. The laminar initial

condition for subsequent simulations (where required) was obtained from the final solution

of Reτ = 90 above. Reτ = 95 remained turbulent when provided with a turbulent initial

condition. In Figure 5.3, however, Reτ = 95 is provided with a laminar initial condition but

becomes turbulent almost instantly. 〈U+
c 〉 never achieves a constant value and fluctuates

about a mean value of approximately 13.8, which is much less than what is observed for a

laminar solution. Also, the above cases show no evidence of hysteresis.

To confirm the exact value of the critical Reynolds number, simulations closer to Reτ =

90 but in smaller Reynolds number steps, including Reτ = 89, 91 and 92, are conducted.

These cases are provided with a laminar initial condition to check whether the flow becomes

Reτ 45 50 55 60 65 70 75 80 85
final 〈U+

c 〉 21.15 23.17 24.74 25.48 24.86 23.80 23.37 23.92 25.26

Table 5.3: Final mean centreline velocities, 〈U+
c 〉, for the laminar solutions.
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Figure 5.3: Time histories of mean centreline velocity, 〈U+
c 〉, for the range of Reτ .
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Figure 5.4: Time histories of mean centreline velocity, 〈U+
c 〉, for Reτ = 89, 91 and 92.
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c 〉, for Reτ = 89.5 showing quasi-

periodic behaviour.
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turbulent and also to check for hysteresis effects. Time histories of 〈U+
c 〉 for these Reynolds

numbers are shown in Figure 5.4. It is clearly seen that Reτ = 89 remains laminar whereas

Reτ = 92 becomes turbulent beyond t ≈ 200. Reτ = 91, however, becomes turbulent

(around t ≈ 100) and then relaminarises to attain an unsteady laminar behaviour beyond

t ≈ 750. 〈U+
c 〉 fluctuates about an approximate mean value of 27.1, which is close to

Reτ = 90, but the fluctuations appear larger. This can be quantified using the standard

deviation, σ, of the fluctuations in the unsteady laminar part, which gives σ = 0.13 for

Reτ = 90 and σ = 0.31 for Reτ = 91. Hence the unsteadiness has increased from Reτ = 90

to 91, which indicates that the flow is at the start of transition. The above observations

also indicate that (Reτ )trans is between 91 and 92.

Since Reτ = 89 is laminar and Reτ = 90 and 91 are both unsteady laminar, a final

simulation was carried out at Reτ = 89.5. The time history of 〈U+
c 〉 is shown in Figure 5.5.

This case is also provided with a laminar initial condition and attains an unsteady laminar

behaviour. Fluctuations are observed about a mean value of 〈U+
c 〉 ≈ 26.8 with a standard

deviation of 0.11, which is less than at Reτ = 90. The interesting feature of this case is

that 〈U+
c 〉 fluctuations show a somewhat repeating behaviour with time. From Figure 5.5,

the behaviour is described by a gradual rise of 〈U+
c 〉 for approximately 175 time units,

followed by a sharp rise and fall over approximately 25 time units. This is possibly due to

an emerging periodic instability at this Reynolds number. The time period of the instability

is approximately 200 time units. The quasi-periodic behaviour and low standard deviation

indicates that (Reτ )crit is between 89.0 and 89.5. Reτ = 89, 89.5, 91 and 92 also show no

evidence of hysteresis.

5.3.2 Root-mean-square (rms) fluctuations

For the higher Reynolds numbers, Reτ = 89.5, 90, 91, 92 and 95, Figure 5.6 shows

profiles of rms streamwise, 〈u′rms〉, spanwise, 〈v′rms〉, and wall-normal, 〈w′rms〉, Reynolds

stresses, against wall-normal coordinates in wall-units, z+, on semilogarithmic axes. The

statistics have been time-averaged and spatially averaged in the streamwise and spanwise

directions. For the lower Reynolds numbers, up to Reτ = 89, rms fluctuations are negligible

(order of 10−6 or less). Hence these cases can be regarded as laminar. At Reτ = 89.5, small

rms fluctuations in all three components begin to appear close to the channel centre. Their

magnitude progressively increases for Reτ = 90 and 91, with peaks still close to the channel

centre. The appearance of early fluctuations near the channel centre is an indication of a

large scale instability initiating transition. At Reτ = 92 and 95, rms fluctuations for all

three components rise significantly, with peaks now closer to the rough wall. Through DNS

studies on wedge roughness, Orlandi [2011] mentioned that a sudden rise in the magnitude

of wall-normal rms fluctuations, 〈w′rms〉, is an indication of the flow having transitioned to

turbulence. This is consistent with the previous observations that Reτ = 92 and 95 are

turbulent whereas Reτ = 89.5, 90 and 91 are in a transition phase. Figure 5.6 also shows

that 〈u′rms〉 has the highest magnitude.
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Figure 5.6: Profiles of rms streamwise, 〈u′rms〉, spanwise, 〈v′rms〉, and wall-normal, 〈w′rms〉,
Reynolds stresses, for the transitional (Reτ = 89.5, 90, 91) and turbulent (Reτ =
92, 95) cases, against wall-normal coordinates in wall-units, z+ = zuτ/ν.

Orlandi [2011] also characterised the effects of roughness peaks by studying the value

of 〈w′rms〉 at the crests of the wedges as a function of Reynolds number. Since the current

study considers irregular roughness and there is no single roughness crest for all elements, the

above-mentioned quantity is computed at the maximum roughness height, hmax = 0.1038

(from Table 5.1) and is denoted as 〈w′rms〉hmax. A plot of 〈w′rms〉hmax against Reτ is shown
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Figure 5.7: Behaviour of rms wall-normal fluctuations at hmax, 〈w′rms〉hmax, for all Reynolds
numbers (left) and close-up of the transitional region (right).
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Reτ 〈w′rms〉hmax k+

45 0 5.78
50 0 6.43
55 0 7.08
60 0 7.72
65 0 8.37
70 0 9.01
75 0 9.65
80 0 10.30
85 0 10.94
89 0 11.45

89.5 0.0048 11.52
90 0.0065 11.58
91 0.0148 11.71
92 0.1876 11.84
95 0.1946 12.23

Table 5.4: Values of rms wall-normal fluctuations at the maximum roughness height
〈w′rms〉hmax and corresponding Reτ along with k+. 〈w′rms〉hmax values up to
Reτ = 89 are of the order of 10−6 or less and hence are approximated to 0.
The horizontal line below Reτ = 89 splits the laminar and non-laminar (transi-
tional or turbulent) regimes.

in Figure 5.7 (left), with corresponding values in Table 5.4. Also, Figure 5.7 (right) shows a

close-up view of the transition region, which includes Reτ = 89.5, 90 and 91, and shows the

trend in the departure of 〈w′rms〉hmax from the laminar values. A gradual rise is observed

from Reτ = 89 (〈w′rms〉hmax ≈ 10−6) to Reτ = 91, after which 〈w′rms〉hmax shows a steep

rise from Reτ = 91 to 92. A sharp rise in 〈w′rms〉hmax, according to Orlandi [2011], is an

indication of transition to turbulence. The value of turbulent 〈w′rms〉hmax ≈ 0.2 is of the

same order of magnitude as Orlandi [2011], however its value would depend on the type

of roughness. Table 5.4 also shows corresponding values of k+. The flow is laminar for

k+ / 11.45 (Reτ ≤ 89). This dividing k+ value is only slightly different from Orlandi

[2011], who showed for wedge roughness that the flow remains laminar for k+ < 14 and

becomes turbulent for 14 < k+ < 40.

From the above analyses, it is clear that Reτ = 92 and 95 are turbulent whereas

Reτ = 89.5, 90 and 91 are in a state of transition and are classified as unsteady lami-

nar. Fluctuations in the rms Reynolds stresses first begin to appear at Reτ = 89.5 and

progressively increase with Reτ . Thus, it can be confirmed that 89 < (Reτ )crit ≤ 89.5 and

91 < (Reτ )trans ≤ 92.

5.3.3 Flow visualisations

Visualisations of the flow field close to the rough wall explain the influence of roughness

topography on the small scale fluctuations. Figure 5.8 shows slices of wall-normal Reynolds

stress, w′2, at z/δ = 0.1, for the transitional and turbulent cases. Also shown is Reτ = 89,

which is laminar, to confirm that it exhibits fluctuations of negligible magnitude. For this
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Figure 5.8: Slices of wall-normal Reynolds stresses, w′2, for the transitional and turbulent
cases at z/δ = 0.1. From left to right, then top to bottom, Reτ = 89, 89.5,
Reτ = 90, 91, Reτ = 92, 95. Grey regions indicate the rough wall.
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analysis, fluctuations are considered significant if their magnitude is greater than 10−3 and

the colourbars in the figure are adjusted accordingly depending on the Reynolds number.

Small scale wall-normal fluctuations first begin to appear close to the rough wall at Reτ =

89.5. Magnitude of w′2 then continues to increase with Reτ until the flow reaches its

turbulent state at Reτ = 92. Both the turbulent cases, Reτ = 92 and 95, have very similar

magnitudes of wall-normal fluctuations.

The above slices enable a brief analysis of how the wall-normal fluctuations are affected

by the roughness topography. Figure 5.9 (top) shows the Reτ = 90 case from Figure 5.8

along with a surface plot of the rough wall (Figure 5.9 bottom) indicating corresponding

roughness features that are responsible for triggering early small scale fluctuations. Regions

Figure 5.9: Slice of wall-normal Reynolds stress, w′2, for Reτ = 90 (top) at z/δ = 0.1 in-
dicating regions of early fluctuations (within white dashed lines) and the rough
wall (bottom) indicating corresponding features (within black dashed lines) trig-
gering those fluctuations. Numbers indicate the order in which fluctuations are
observed (top plot) and corresponding peaks triggering them (bottom plot).
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showing fluctuations are labelled in the order in which they first appear and are indicated

within dashed lines (top plot), along with corresponding roughness features triggering them

(bottom plot). It is understandable that wall-normal fluctuations are caused by rough-

ness peaks, which protrude into the flow. Although the earliest fluctuations are observed at

Reτ = 89.5, generated by peak 1 in Figure 5.9 (bottom), peak 2 triggers further fluctuations

at Reτ = 90. It is interesting to note that peak 2 represents the maximum roughness height

of the surface (hmax from Table 5.1) but does not trigger the earliest wall-normal fluctu-

ations. Thus, generation of these early small scale fluctuations, and ultimately, transition

to turbulence, depends significantly on the surface topography. As the Reynolds number

increases, the flow reaches its turbulent state, which is then sustained due to continuous

Figure 5.10: Slices of time-averaged streamwise velocity, u, for the transitional and turbu-
lent cases at z/δ = 0.1. From left to right, then top to bottom, Reτ = 89,
89.5, Reτ = 90, 91, Reτ = 92, 95. Grey regions indicate the rough wall.
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Figure 5.11: Profiles of streamwise dispersive stress, 〈ũũ〉, for Reτ = 89 (laminar), Reτ =
89.5, 90, 91 (transitional) and Reτ = 92, 95 (turbulent) cases. The laminar
and transitional cases have been displayed using the same line style.

generation of fluctuations by the roughness peaks.

Figure 5.10 shows slices of time-averaged streamwise velocity, u, at z/δ = 0.1, for Reτ =

89 (laminar), Reτ = 89.5, 90 and 91 (transitional) and Reτ = 92 and 95 (turbulent). The

laminar and transitional cases show comparatively higher u values than the turbulent cases.

In order to sustain turbulence at Reτ = 92 and 95, the fluctuations extract energy from the

mean flow, leading to a decrease in mean streamwise velocity compared to the laminar and

transitional cases. This relatively high streamwise velocity also leads to large streamwise

dispersive stress in the laminar and transitional cases, as seen from the streamwise dispersive

stress profiles, 〈ũũ〉, shown in Figure 5.11. Profiles for the laminar and transitional cases

are displayed using the same line style because they have very similar magnitudes. The

turbulent profiles are almost an order of magnitude less than the laminar and transitional

profiles.

It can thus be concluded that generation of early small scale fluctuations in the transition

process is influenced by the roughness topography and certain roughness peaks trigger

disturbances earlier than others. A large difference between the turbulent and non-turbulent

(laminar or transitional) streamwise dispersive stress is also observed. Due to relatively

large streamwise velocities, the laminar and transitional cases have much higher streamwise

dispersive stress compared to the turbulent cases.
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5.4 Summary

Overall, it can be summarised that all Reynolds numbers up to Reτ = 89 show laminar

behaviour. The earliest fluctuations, generated by a large scale instability close to the

channel centre, are seen at Reτ = 89.5, along with quasi-periodic behaviour of the mean

centreline velocity, 〈U+
c 〉, with time. Thus 89 < (Reτ )crit ≤ 89.5. Beyond Reτ = 89.5

and up to Reτ = 91, there is an increase in the unsteadiness and the flow is in a state of

transition. The flow is turbulent for Reτ ≥ 92. Based on observations for Reτ = 91 and

92, it is confirmed that 91 < (Reτ )trans ≤ 92. Based on a linear stability analysis, Orszag

[1971] proved that for plane Poiseuille flow, the transition Reynolds number based on the

centreline velocity is (Recl)trans = 5772, which gives (Reτ )trans = 107.4. The transition

Reynolds number for the given rough surface sample is lower than this value because the

roughness is more effective at generating small scale disturbances, which leads to earlier

transition. The study also shows that there is no evidence of hysteresis effects.

It is essential to note that the results and corresponding observations in this chapter

are valid for the particular sample (Figure 5.2) at a specific maximum streamwise Fourier

wavenumber, kcLx (Table 5.1), and may change for other samples and values of kcLx. The

results may also differ if a constant mean streamwise mass flow rate is used to drive the

flow instead of a constant mean streamwise pressure gradient (Section 2.4.2).

All simulations in subsequent chapters are conducted at Reτ > (Reτ )trans and are hence

classified as fully turbulent.



Chapter 6

Results - studies at Reτ = 180

One of the primary goals of this work is to prepare a database of industrially relevant

rough surfaces and methodically relate their surface topographical properties to ∆U+. This

chapter describes the physical results for all seventeen samples in the database at Reτ = 180

and δ/k = 6, and is followed by a mathematical treatment of surface properties in Chapter 7.

In general, the influence of roughness topography on the results is significant.

Statistics of the time-averaged mean and turbulent flow quantities will be presented

along with planar visualisations of the flow. Smooth-wall results will be included to serve as

a comparison. Table 6.1 shows simulation parameters, which include computational domain

and mesh sizes in the streamwise, spanwise and wall-normal directions, mesh spacings and

the values of ∆U+ and peak profile turbulent kinetic energy (TKE).

sample Lx/δ Ly/δ Lz/δ nx ny nz ∆x+, ∆y+ ∆z+
max ∆U+ peak TKE

s1 13.00 6.50 2.236 480 240 272 4.8750 4.74 3.39 3.05
s2 9.80 4.90 2.290 384 192 288 4.5938 4.16 2.72 3.10
s3 9.34 4.67 2.287 384 192 288 4.3781 3.65 3.94 3.04
s4 4.92 2.46 2.238 384 192 256 2.3063 4.14 4.95 2.97
s5 10.70 5.35 2.298 448 224 288 4.3007 3.62 4.17 3.11
s6 11.27 5.64 2.292 448 224 288 4.5281 3.66 1.28 3.47
s7 5.25 2.63 2.232 384 192 256 2.4609 4.13 5.02 2.88
s8 5.63 2.82 2.324 320 160 288 3.1669 3.72 4.36 3.06
s9 23.20 11.60 2.292 768 384 256 5.4375 5.06 2.63 3.29
s10 13.48 6.74 2.342 512 256 288 4.7391 4.07 2.84 3.36
s11 15.88 7.94 2.387 576 288 288 4.9631 4.86 2.57 3.95
s12 17.50 8.75 2.308 640 320 256 4.9219 5.02 1.71 3.45
s13 13.30 6.65 2.388 512 256 288 4.6758 4.82 2.82 3.27
s14 11.00 5.50 2.300 512 256 320 3.8672 3.48 3.42 3.00
s15 12.48 6.24 2.248 512 256 288 4.3875 3.58 2.67 3.26
s16 12.65 6.32 2.300 512 256 288 4.4459 3.71 2.77 3.22
s17 7.65 3.83 2.282 320 160 256 4.3054 4.40 4.36 3.33

Table 6.1: Simulation parameters at Reτ = 180. nx, ny and nz are the number of grid cells
in the streamwise, spanwise and wall-normal directions respectively. Also shown
are the values of ∆U+ and peak profile TKE. δ/k = 6 for all samples. Surface
plots of all samples shown in Figures 3.4 and 3.5.
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6.1 Influence of roughness topography on the mean flow statis-

tics

Figure 6.1 shows time-averaged mean streamwise velocity profiles against wall-normal

distance in wall-units, z+, on semilogarithmic axes for all 17 samples. Smooth-wall profiles

at Reτ = 180 have also been shown for comparison. Due to the large number of samples,

results are spread out over 4 figures for clarity. The time-averaged flow field, u, is spatially

averaged in the x and y directions to obtain the profiles, U+. Grid points in the fluid only

are considered during spatial averaging. A clear roughness effect is seen for all samples,

from the downward shift in the mean velocity profiles. ∆U+ values for all samples are

given in Table 6.1. There is a wide range, from ∆U+ = 1.28 (s6 sample) to ∆U+ = 5.02

(s7 sample), despite all samples being scaled to the same roughness height. This is a clear

indication that the roughness function depends not only on the roughness height for a given

sample but also on its detailed roughness topography. The s6 (filed 2) sample has the

smallest roughness function value at ∆U+ = 1.28, probably because the roughness features

of this sample are strongly aligned in the streamwise direction (refer Figure 3.4 (f)) and this

anisotropic topography gives less resistance to the flow. This leads to a comparatively lower

increase in surface friction and hence a smaller value of ∆U+ compared to other samples.

The s7 (graphite) and s4 (concrete) samples show some of the largest values of ∆U+, at
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Figure 6.1: Mean streamwise velocity profiles in wall-units, U+, for the 17 rough surface
samples. z+ = zuτ/ν is the wall-normal distance in wall-units.
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Figure 6.2: Mean streamwise velocity defect profiles for the 17 rough surface samples. U+
c

is the mean streamwise centreline velocity in wall-units, U(z)+ = u(z)/uτ =
U+ are the mean streamwise velocity profile values and z/δ is the wall-normal
distance.

5.02 and 4.95 respectively. This closeness in ∆U+ values between the two is possibly due

to similar values of Lcor
x , Sf/S and Λs (Table 3.2). The ship-propeller samples, s10 and

s11 also exhibit similar values of ∆U+, despite their surface properties showing numerous

differences. Three out of the five spark-eroded samples, s13, s15 and s16 also exhibit similar

values of ∆U+, possibly due to similar Sq and Sf/S.

Figure 6.2 shows time-averaged mean streamwise velocity defect profiles against wall-

normal distance, z/δ for all samples. The behaviour of the velocity defect profiles also

depends strongly on the topography of a given sample. Profiles for most samples decrease

monotonically away from the rough walls. Some samples, such as s9 (ground) and s13

(spark-eroded 1), however, show a clear change in the direction of the profile gradient very

close to their rough walls (z/δ < 0). Close to the rough walls (roughly z/δ ≤ 0.1), all

profiles show differences from each other and from the smooth-wall data. For z/δ > 0.1, all

profiles show good collapse with the smooth-wall data. This indicates that the outer layer

similarity hypothesis of Townsend [1976] is satisfied in terms of the mean flow.
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6.2 Influence of roughness topography on reversed flow

In the context of the mean flow, it is of interest to study reversed flow behaviour close

to the rough walls. As a measure of reversed flow, the volume fraction of the negative

time-averaged streamwise velocity, P (u < 0), is computed for each wall-normal location.

Starting from the first wall-normal coordinate for each sample, the number of solid and

fluid points (based on the value of ψ as mentioned in Section 2.4.1) at each wall-normal

location are computed. At a given wall-normal location, if nf denotes the total number of

fluid points and nf,(u<0) denotes the number of fluid points with u < 0 then the volume

fraction of negative time-averaged streamwise velocity is given as

P (u < 0) =
nf,(u<0)

nf
.

P (u < 0) is computed in this manner for all wall-normal locations.

Figure 6.3 shows the wall-normal variation of P (u < 0) for all samples. It is quite clear

that the presence of reversed flow regions is strongly dependent on surface topography. For

most samples, the volume fraction of reversed flow for z/δ ≤ −0.1, which is deep within

the roughness valleys, is high (almost unity), indicating that areas of recirculating fluid

dominate these regions. As wall-normal distance increases, the effect of roughness features
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Figure 6.3: Volume fraction of negative time-averaged streamwise velocity, P (u < 0), for
the 17 rough surface samples. z/δ is the wall-normal distance.
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on the flow starts to decrease and hence P (u < 0) decreases monotonically for most samples.

Qualitatively, these observations are consistent with Busse et al. [2015]. Some samples,

such as s9 (ground) and s17 (spark-eroded 5), however, show a non-monotonic behaviour

in P (u < 0).

Both filed samples, s5 and s6, are interesting as their volume fraction variation is opposite

to each other. Sample s5, due to its anisotropic topography with features aligned in the

spanwise direction (which evidently promotes flow accumulation and reversal), shows a

high value of P (u < 0) almost up to z/δ = 0, only after which it starts to decrease. The

s6 sample on the other hand, with its features aligned in the streamwise direction, shows

Figure 6.4: Contour plots of negative time-averaged streamwise velocity, −u, at z/δ =
−0.05. The s5 sample (top) shows numerous regions of recirculating flow
whereas the s6 sample (middle) shows almost no regions of recirculating flow.
The s9 sample (bottom) has a very low volume fraction of reversed flow. Grey
regions: rough wall, white regions: regions of non-reversed flow, coloured re-
gions: regions of reversed flow.
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a rapid decrease in P (u < 0) from the lowest wall-normal location itself. The behaviour

of s2 (composite sample with features aligned in the streamwise direction) is similar to

s6. Figure 6.4 shows contour plots of negative time-averaged streamwise velocity, −u, at

z/δ = −0.05 for s5 (top) and s6 (middle). Almost all fluid regions in the s5 sample show

flow reversal whereas almost no fluid regions in the s6 sample show flow reversal.

Sample s9 (ground) has a similar topography to s5, with features aligned in the spanwise

direction. Its volume fraction behaviour, however, is similar to s6 and P (u < 0) at lower

wall-normal locations is even lower. The contour plot of −u at z/δ = −0.05 for s9 is shown

in Figure 6.4 (bottom). Despite s5 and s9 having features aligned in the spanwise direction,

s5 has much more small scale roughness than s9 (refer Figure 3.4 (e) and (i)). This leads to

a comparatively higher Sf/S (s5 roughness is denser than s9), which is possibly responsible

for the above-mentioned volume fraction behaviour.

6.3 Influence of roughness topography on the turbulent flow

statistics

Profiles of second order turbulent statistics are studied in the following. These include

the diagonal components of the Reynolds stress tensor, u′2, v′2 and w′2, termed as the

streamwise, spanwise and wall-normal Reynolds stress respectively, which also represent

fluctuations in the respective coordinate directions. They are also collectively termed as

the Reynolds normal stresses. Also studied are statistics for the Reynolds shear stress,

−u′w′ and turbulent kinetic energy (TKE) given by TKE = (u′2 + v′2 + w′2)/2. The time-

averaged Reynolds stress fields are spatially averaged in the x and y directions to obtain

the profiles. All profiles are plotted against the wall-normal direction normalised by the

channel half-height, z/δ. Contour plots of spatial distribution of the streamwise, spanwise

and wall-normal fluctuations are also studied for representative samples in a plane normal

to the spanwise direction at y = Ly/2.

6.3.1 Influence on Reynolds stresses

Figure 6.5 shows profiles of the streamwise fluctuations, 〈u′2〉. For z/δ ≤ 0, streamwise

fluctuations depend roughly on the streamwise correlation length, Lcor
x , of the corresponding

sample. The variation of streamwise fluctuations at z = 0, 〈u′2〉z=0, with Lcor
x is shown

in Figure 6.6 (left). It appears that 〈u′2〉z=0 roughly increases with Lcor
x , however, the

trend is not clear. Though sample s5 (filed 1) has the smallest Lcor
x = 0.18 and smallest

value of 〈u′2〉z=0 and s6 (filed 2) has the highest Lcor
x = 11.27 and the highest value of

〈u′2〉z=0. Streamwise fluctuations peak at z/δ ≈ 0.15 for all samples, although the peak

magnitudes vary widely. A decrease in the peak streamwise fluctuations, 〈u′2〉max, with an

increased amount of roughness has been noted by previous studies (Busse and Sandham

[2012], De Marchis et al. [2010], Krogstad and Antonia [1999], Grass [1971]). Although

the roughness height is constant in the current study, peak magnitudes show an inverse

dependence on ∆U+ (because in general an increased amount of roughness is characterised
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Figure 6.5: Streamwise Reynolds stress profiles, 〈u′2〉, for the 17 rough surface samples. z/δ
is the wall-normal distance.

by a higher ∆U+), as shown in Figure 6.6 (right). It is also worth noting that all rough

wall peaks are less than the smooth-wall peak. Smooth walls are known to exhibit long

streamwise streaks (Kim et al. [1987], Kline et al. [1967]) that increase the streamwise

fluctuations whereas rough walls are known to break down the turbulence structures close

to walls (De Marchis et al. [2010], Ashrafian and Andersson [2006], Orlandi and Leonardi

[2006], Smalley et al. [2002], Antonia and Krogstad [2001]). Beyond z/δ ≈ 0.4 and closer
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Figure 6.6: Variation of 〈u′2〉z=0 with Lcor
x (left) and ∆U+ with 〈u′2〉max (right). The red

line in right plot shows a fit to the data.
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Figure 6.7: Spatial distribution of u′2 at y = Ly/2, from top to bottom, for the smooth-wall,
s6 (filed 2), s10 (ship-propeller 1) and s7 (graphite) samples. The grey region
represents the wall.

to the channel centre, all profiles collapse with the smooth-wall data.

The spatial variation of streamwise fluctuations, u′2, at y = Ly/2 is shown in Figure 6.7

for the smooth-wall case and three representative rough samples, which include s6 (filed -

2), s10 (ship-propeller 1), and s7 (graphite). From top to bottom, the slices represent

cases with increasing ∆U+. From the figure, streamwise fluctuation peak is confirmed at

z/δ ≈ 0.15. From LES studies on irregular roughness, De Marchis et al. [2010] observed that

with increasing roughness height, high intensity streamwise fluctuation regions close to the

rough walls were progressively spread along the wall-normal direction and their streamwise

length decreased. The same is observed for increasing ∆U+ in the current study (from

top to bottom in Figure 6.7). Also with increasing ∆U+, peak magnitude of u′2 reduces,

which was observed by De Marchis et al. [2010] for increasing roughness height. Close to
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Figure 6.8: Spanwise Reynolds stress profiles, 〈v′2〉, for the 17 rough surface samples. z/δ
is the wall-normal distance.

the channel centre, u′2 shows little variation and is similar to the smooth-wall data.

Spanwise Reynolds stress profiles, 〈v′2〉, are shown in Figure 6.8. For z/δ ≤ 0, spanwise

fluctuations roughly depend on the spanwise correlation lengths, Lcor
y , of the corresponding

sample. Figure 6.9 (left) shows the variation of spanwise fluctuations at z = 0, 〈v′2〉z=0, with

Lcor
y , where 〈v′2〉z=0 roughly increases with Lcor

y , although the trend is not clear. Samples

s7 (graphite) and s8 (gritblasted) have among the lowest Lcor
y and, consequently, the lowest
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Figure 6.9: Variation of 〈v′2〉z=0 with Lcor
y (left) and ∆U+ with 〈v′2〉max (right). The red

line in the right plot shows a fit to the data.
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values of 〈v′2〉z=0. Sample s9 (ground) has the highest Lcor
y = 11.6 and the highest value

of 〈v′2〉z=0. The highly anisotropic topography of s9, with features strongly aligned in

the spanwise direction, is also responsible for high 〈v′2〉z=0. Spanwise fluctuations peak at

z/δ ≈ 0.2. Peak spanwise fluctuations, 〈v′2〉max, vary directly with ∆U+ and hence with

the amount of roughness. This is shown in Figure 6.9 (right), which is the opposite trend

from 〈u′2〉max (Figure 6.6 (right)). The highly anisotropic topography of s6 (filed 2), with

features strongly aligned in the streamwise direction, leads to a relatively low 〈v′2〉max (even

lower than the smooth-wall data) compared to the other samples. Beyond z/δ ≈ 0.4 and

closer to the channel centre, all profiles collapse with the smooth-wall data.

The spatial variation of spanwise fluctuations, v′2, at y = Ly/2 is shown in Figure 6.10

for the smooth-wall case and three representative rough samples, which include s9 (ground),

Figure 6.10: Spatial distribution of v′2 at y = Ly/2, from top to bottom, for the smooth-
wall, s9 (ground), s3 (composite 2) and s7 (graphite) samples. The grey region
represents the wall.
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s3 (composite 1), and s7 (graphite). From top to bottom, the slices represent cases with

increasing ∆U+. Some roughness peaks exhibit high intensity v′2 on their windward faces.

This is caused by the ‘splat’ phenomenon, also noted by De Marchis et al. [2010] and

Ashrafian et al. [2004] (who studied DNS of regularly spaced square bars). This phenomenon

occurs due to splitting of the high speed flow incident on the peaks. Close to the channel

centre, v′2 shows little variation and is similar to the smooth-wall data.

The wall-normal Reynolds stress profiles, 〈w′2〉, are shown in Figure 6.11. For z/δ ≤ 0,

wall-normal fluctuations roughly depend on the average roughness height, Sa, and rms

roughness height, Sq, of the corresponding sample. Figure 6.12 shows the variation of wall-

normal fluctuations at z = 0, 〈w′2〉z=0, with Sa (left) and with Sq (right). 〈w′2〉z=0 increases

with both Sa and Sq. Sample s5 (filed 1) has the lowest Sa and Sq and consequently the

lowest 〈w′2〉z=0 whereas sample s9 (ground) has the highest Sa and Sq and the highest

〈w′2〉z=0. Wall-normal fluctuations peak at z/δ ≈ 0.3. There is no clear trend of ∆U+ with

〈w′2〉max, as seen in the case of peak profile streamwise and spanwise fluctuations. Beyond

z/δ ≈ 0.4 and closer to the channel centre, all profiles collapse with the smooth-wall data,

though there is some disagreement for 0.8 ≤ z/δ ≤ 1. The disagreement, which varies for

different samples, is possibly due to an increase in the instantaneous wall-normal velocity

induced by the roughness peaks that may increase the interaction between the roughness

and the outer flow (De Marchis et al. [2010]).
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Figure 6.11: Wall-normal Reynolds stress profiles, 〈w′2〉, for the 17 rough surface samples.
z/δ is the wall-normal distance.
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Figure 6.13: Spatial distribution of w′2 at y = Ly/2, from top to bottom, for the smooth-
wall, s6 (filed 2), s9 (ground) and s3 (composite 2) samples. The grey region
represents the wall.
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The spatial variation of wall-normal fluctuations, w′2, at y = Ly/2 is shown in Fig-

ure 6.13 for the smooth-wall case and three representative rough samples, which include s6

(filed 2), s9 (ground) and s3 (composite 2). From top to bottom, the slices represent cases

with increasing ∆U+. Sample s6 is very similar to the smooth-wall data. De Marchis et al.

[2010] observed that w′2 increased with increasing roughness height, which in the current

study should roughly translate to increasing ∆U+. However, it is not clear from Figure 6.13

whether w′2 increases with ∆U+. Sample s9 shows larger regions of high intensity w′2 com-

pared to s3 despite its ∆U+ being less than for s3. In general, regions of high w′2 are

observed upstream of larger roughness peaks, which in some cases (for example, sample s9

and s3) may also propagate downstream. Sample s9 shows relatively large regions of high

w′2, which extend up to z/δ ≈ 0.8.

Some general observations are noted for the Reynolds normal stress profiles (Figures

6.5, 6.8 and 6.11) as follows. Within the roughness and up to z/δ ≈ 0.05, Reynolds normal

stresses for all samples are greater than the smooth-wall value. Fluctuations over rough

walls can occur very close to the roughness features, including at and below the mean wall

location, z/δ = 0, which is not possible in the case of smooth walls. In general, an increase

in normal stresses close to the rough walls and a collapse with the smooth-wall data close

the channel centre is observed, which was also noted by De Marchis et al. [2010]. For smooth

walls, Hu et al. [2006] mentioned that peak location of streamwise fluctuations is closer to
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Figure 6.14: Reynolds shear stress profiles, −〈u′w′〉, for the 17 rough surface samples. z/δ
is the wall-normal distance.
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Figure 6.16: Spatial distribution of −u′w′ at y = Ly/2, from top to bottom, for the smooth-
wall, s9 (ground), s5 (filed 1) and s8 (gritblasted) samples. The grey region
represents the wall.
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the wall than for spanwise and wall-normal fluctuations, which is also observed from the

current study for all samples. Streamwise fluctuation peaks are located at z/δ ≈ 0.15 (which

is below the roughness height, k/δ = 1/6) whereas spanwise and wall-normal fluctuation

peaks are located at z/δ ≈ 0.2 and 0.3 respectively. Thus the roughness may interfere more

with the streamwise fluctuations than with the spanwise and wall-normal fluctuations.

The Reynolds shear stress profiles, −〈u′w′〉, are shown in Figure 6.14. In general, the

presence of the rough wall significantly increases the shear stress compared to the smooth-

wall, as observed for z/δ < 0.1. For z/δ ≤ 0, the Reynolds shear stress shows some

dependency on the streamwise effective slope, ESx. Figure 6.15 shows the variation of

shear stress at z = 0, −〈u′w′〉z=0, with ESx. In general, −〈u′w′〉z=0 decreases with ESx.

Shear stress peaks at z/δ ≈ 0.2 and −〈u′w′〉max for all samples is less than the smooth wall

data. Also, there is no clear trend of ∆U+ with −〈u′w′〉max, as seen in the case of peak

profile streamwise and spanwise fluctuations. Away from the rough walls, beyond z/δ ≈ 0.6,

all profiles collapse with the smooth-wall data.

The spatial variation of Reynolds shear stress, −u′w′, at y = Ly/2 is shown in Fig-

ure 6.16 for the smooth-wall case and three representative rough samples, which include s9

(ground), s5 (filed 1) and s8 (gritblasted). From top to bottom, the slices represent cases

with increasing ∆U+. De Marchis et al. [2010] observed that increasing roughness height

caused higher shear stress regions to spread in the wall-normal direction, which is roughly

seen with increasing ∆U+ from top to bottom in Figure 6.16. This is seen as an increase in

thickness of the lower shear stress (green) region immediately adjacent to the rough walls.

With increasing roughness, De Marchis et al. [2010] also observed a change in sign of −u′w′

on roughness peaks. Regions of negative shear stress are observed from Figure 6.16 on some

peaks of the gritblasted sample.

6.3.2 Influence on turbulent kinetic energy (TKE)

Figure 6.17 shows the TKE profiles, (〈u′2〉 + 〈v′2〉 + 〈w′2〉)/2, for all samples. Trends

in the TKE are very similar to trends observed in case of the streamwise fluctuations.

Figure 6.18 (left) shows profiles of streamwise, spanwise and wall-normal fluctuations for

the s8 (gritblasted) sample, as an example, and for the smooth-wall data. This figure shows

the contribution of each component to the TKE. For both s8 and the smooth-wall, the peak

〈u′2〉 is higher than both peak 〈v′2〉 and 〈w′2〉. Also, a higher peak 〈u′2〉 is observed for the

smooth-wall than s8. The above two observations were made for all samples. To quantify

the anisotropy of the velocity fluctuations and hence TKE, the diagonal components of the

Reynolds stress anisotropy tensor, bi,j , are computed at the peak profile value of TKE for

all samples. Hence

bi,j =
〈u′iu′j〉max

2× 〈TKE〉max
− 1

3
δi,j , (6.1)

where δi,j is the Kronecker delta. It is known that −1/3 ≤ bi,j ≤ 2/3 and hence a component

with a positive value of bi,j indicates dominant contribution to the TKE. Figure 6.18 (right)

shows data for b1,1, b2,2 and b3,3 against 〈TKE〉max for all samples, along with associated
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Figure 6.17: Turbulent kinetic energy profiles for the 17 rough surface samples. z/δ is the
wall-normal distance.

linear fits. Firstly, all samples have a positive value of b1,1 and negative value of both b2,2

and b3,3, which indicates that the streamwise component of velocity fluctuations plays a

dominant role in determining the TKE. Secondly, the b1,1 fits show an increasing trend

whereas both b2,2 and b3,3 fits show a decreasing trend with 〈TKE〉max. Hence larger

streamwise fluctuations lead to larger 〈TKE〉max. For the smooth wall data, b1,1 = 0.53,
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for the s8 (gritblasted) sample and smooth wall (left). Diagonal components
of bi,j against 〈TKE〉max (right) with associated linear fits.
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b2,2 = −0.22 and b3,3 = −0.31, which are greater in magnitude than for all rough samples.

Hence, it is also proved that anisotropy for rough walls in all three coordinate directions is

reduced compared to the smooth wall.

6.4 Influence of roughness topography on the dispersive stress

statistics

Section 1.4.4 explained how the dispersive stresses are computed. In this section, disper-

sive stress profiles are discussed in conjunction with contour plots of time-averaged velocity

in x− y planes.

The streamwise dispersive stress profiles, 〈ũ2〉, are shown in Figure 6.19. All samples

show peak streamwise dispersive stress, 〈ũ2〉max, at z/δ ≈ 0.05. The variation of 〈ũ2〉max

is high compared to peak streamwise Reynolds stress, 〈u′2〉max. For all samples, the peak

streamwise Reynolds stress (srs) shows a standard deviation, σsrs ≈ 0.44 whereas peak

streamwise dispersive stress (sds) shows σsds ≈ 2.61. Figure 6.20 (left) shows a compar-

ison of 〈ũ2〉 with the corresponding Reynolds stress for a typical case (for example, s7

(graphite)). It is observed that 〈ũ2〉max < 〈u′2〉max, which in general applies to all samples.

Some samples, such as s2 (composite 1) and s6 (filed 2), however, show greater 〈ũ2〉max

than the corresponding 〈u′2〉max, as shown in Figure 6.20 (right). Both these samples are
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Figure 6.19: Streamwise dispersive stress profiles, 〈ũ2〉, for the 17 rough surface samples.
z/δ is the wall-normal distance.
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(composite 1) and s6 (filed 2) samples (right). z/δ is the wall-normal distance.

streamwise anisotropic with comparatively high values of streamwise correlation lengths,

Lcor
x . The variation of 〈ũ2〉max with Lcor

x shows an increasing trend (Figure 6.21 (left)).

Since σsds > σsrs, a similar trend is observed when the variation of 〈ũ2〉max − 〈u′2〉max with

Lcor
x is studied (Figure 6.21 (right)). These trends explain why samples with streamwise

anisotropic topographies (such as s2 and s6) exhibit relatively high values of streamwise

dispersive stress. However, spanwise anisotropic samples, such as s3 (composite 2) and s9

(ground), with relatively low Lcor
x , also exhibit 〈ũ2〉max > 〈u′2〉max. The spatial variation

of time-averaged streamwise velocity, u, at z/δ = 0.05 is shown in Figure 6.22 for three

representative rough samples, s7 (graphite), s6 (filed 2) and s2 (composite 1). Samples s6

and s2 show relatively large regions of high streamwise velocity compared to s7. This high

streamwise velocity leads to comparatively large dispersive stress. It is evident from Fig-

ure 6.22 that topographies providing little streamwise hindrance to the flow promote higher

streamwise dispersive stress.

0 2 4 6 8 10 12

L
x
cor

0

2

4

6

8

10

12

14

〈ũ
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Figure 6.21: Variation of the peak streamwise dispersive stress, 〈ũ2〉max, with Lcor
x (left)

and variation of the difference between the peak streamwise dispersive stress
and peak streamwise Reynolds stress, 〈ũ2〉max − 〈u′2〉max, with Lcor

x . Red lines
in both plots show fits to the data.
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Figure 6.22: Spatial distribution of time-averaged streamwise velocity, u, at z/δ = 0.05,
from top to bottom, for the s7 (graphite), s6 (filed 2) and s2 (composite 1)
samples. The grey region represents the wall.

The spanwise dispersive stress profiles, 〈ṽ2〉, are shown in Figure 6.23. In general for

all samples, spanwise dispersive stress is significantly less than the corresponding spanwise

Reynolds stress; a comparison for a typical case (s7 graphite) is shown in Figure 6.24. Span-

wise dispersive stress is also much less than the streamwise dispersive stress. The highest

peaks of spanwise dispersive stress, 〈ṽ2〉max, are observed for the s1 (cast), s7 (graphite), s11

(ship-propeller 2) and s17 (spark-eroded 5) samples. The spatial variation of time-averaged

spanwise velocity, v, at z/δ = 0.05 for s1 and s17 (Figure 6.25 (top and middle)) shows

numerous regions of high spanwise velocity, which are responsible for high spanwise dis-

persive stress. The topographies of these samples exhibit closely spaced roughness features

and hence promote spanwise variation of the flow. The lowest 〈ṽ2〉 is observed for the s9
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Figure 6.23: Spanwise dispersive stress profiles, 〈ṽ2〉, for the 17 rough surface samples. z/δ
is the wall-normal distance.

(ground) sample, due to very little spanwise velocity variation, as seen from Figure 6.25

(bottom).

The wall-normal dispersive stress profiles, 〈w̃2〉, are shown in Figure 6.26. In general

for all samples, the wall-normal dispersive stress is significantly less than the corresponding

wall-normal Reynolds stress; comparison for a typical case (s12 shotblasted) is shown in Fig-
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Figure 6.24: Comparison of the spanwise Reynolds stress profiles, 〈v′2〉, with the spanwise
dispersive stress profiles, 〈ṽ2〉, for the s7 (graphite) sample. z/δ is the wall-
normal distance.
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Figure 6.25: Spatial distribution of time-averaged spanwise velocity, v, at z/δ = 0.05, from
top to bottom, for the s1 (cast), s17 (spark-eroded 5) and s9 (ground) samples.
The grey region represents the wall.

ure 6.27 (left). Wall-normal dispersive stress is also much less than both the streamwise and

spanwise dispersive stress. All samples show peak wall-normal dispersive stress, 〈w̃2〉max,

at z/δ ≈ 0.1, with most samples exhibiting 〈w̃2〉max ≈ 0.1. Sample s9 (ground), however,

has 〈w̃2〉max more than twice this value. The variation of 〈w̃2〉max with the corresponding

spanwise correlation length, Lcor
y , shown in Figure 6.27 (right). Although it appears that

〈w̃2〉max increases with Lcor
y , the trend is not clear. The spatial variation of time-averaged

wall-normal velocity, w, at z/δ = 0.1 for s3 (composite 2), s6 (filed 2) and s9 (ground)

(Figure 6.28) gives further insight into the behaviour of the wall-normal dispersive stress.

Overall the lowest 〈w̃2〉 is observed for the s6 sample because of very little wall-normal ve-

locity variation (Figure 6.28 (middle)). Regions of high w are observed in case of the s3 and
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Figure 6.26: Wall-normal dispersive stress profiles, 〈w̃2〉, for the 17 rough surface samples.
z/δ is the wall-normal distance.
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spanwise correlation length, Lcor

y (right). z/δ is the wall-normal distance.
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Figure 6.28: Spatial distribution of time-averaged wall-normal velocity, w, at z/δ = 0.1,
from top to bottom, for the s3 (composite 2), s6 (filed 2) and s9 (ground)
samples. The grey region represents the wall.

s9 samples (Figure 6.28 (top and bottom)). Both these samples are spanwise anisotropic

and promote high wall-normal velocity as the flow incident on the windward faces of their

roughness features undergoes an alternating upward and downward motion. The effect is

stronger for s9 than for s3. This observation also justifies Figure 6.27 (right) as both these

samples have comparatively high Lcor
y .

A few common observations are made from the streamwise, spanwise and wall-normal

dispersive stress profiles, respectively shown in Figures 6.19, 6.23 and 6.26. In general,

dispersive stress peaks are located closer to the rough wall than corresponding Reynolds

stress peaks. Also, the rate of decay of dispersive stress with distance from the wall is

higher than the corresponding rate of decay of Reynolds stress. 〈ũ2〉 and 〈ṽ2〉 rapidly
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Figure 6.29: Surface plot of the s9 (ground) sample coloured by roughness height, k/δ (left),
and spatial distribution of its time-averaged wall-normal velocity, w, at y =
Ly/2 (right). The grey region represents the wall.
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〈ũ
w̃
〉

s1

s2

s3

s4

-0.2 0 0.2 0.4 0.6 0.8 1

z/δ

-0.15

-0.1

-0.05

0

0.05

0.1

−
〈ũ
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Figure 6.30: Dispersive shear stress profiles, −〈ũw̃〉, for the 17 rough surface samples. z/δ
is the wall-normal distance.
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decay to zero at a relatively short distance from the rough wall. However, the same is not

observed for 〈w̃2〉. Some samples, such as s2 (composite 1), s9 (ground) and s14 (spark-

eroded 2), show relatively large values of wall-normal dispersive stress up to the channel

centre. A possible cause of this is the relatively small channel half-height to roughness

height, δ/k, ratio for the current study. This affects some samples more than others.

For example, sample s9 (ground) shows the highest values of 〈w̃2〉 away from the wall,

chiefly due to its undulating topography and high spanwise correlation length. A surface

plot of s9, coloured by its roughness height, is shown in Figure 6.29 (left) and a slice of

time-averaged wall-normal velocity, w, at y = Ly/2 is shown in Figure 6.29 (right). The

topography promotes high w and its effects propagate all the way to the channel centre. This

leads to a relatively high wall-normal dispersive stress. Mohajeri et al. [2015] made similar

observations from open channel experiments on gravel beds at relatively high δ/k ≈ 7.5 to

10.8. In their experiments, wall-normal turbulence intensity was affected the most compared

to the streamwise turbulence intensity. The wall-normal dispersive stress, however, rapidly

decreased close to the channel centre.

The dispersive shear stress profiles, −〈ũw̃〉, are shown in Figure 6.30. The behaviour of

−〈ũw̃〉 is more complex than the other dispersive stresses because most samples show the

presence of multiple peaks. Spatial variation of dispersive shear stress for three represen-

tative samples, s3 (composite 2), s8 (gritblasted) and s9 (ground), at z/δ = 0.05 and 0.1,

is shown in Figure 6.31. −〈ũw̃〉 peaks are seen roughly around these wall-normal distances

in Figure 6.30. In general, it is observed that valleys in the samples promote regions of

high dispersive shear stress above them. Regions of low −ũw̃ are observed close to and

above some roughness peaks. Samples s3 and s8 show positive peaks of −〈ũw̃〉, which is

confirmed from the spatial variation (Figure 6.31 (left)) with the presence of more regions

of positive than negative dispersive shear stress. Sample s9 shows a large negative peak of

−〈ũw̃〉, which from Figure 6.31 (left) is seen as large regions of negative dispersive shear

stress. Comparing the spatial variations at z/δ = 0.05 and 0.1 (Figure 6.31 left and right

respectively), it is also observed that dispersive shear stress decreases rapidly with wall-

normal distance for samples s3 and s8. However, it does not decrease as rapidly for sample

s9 (ground). The relatively complex behaviour of the dispersive shear stress is attributed

to the highly irregular topography of the samples with varying heights of roughness peaks.

From LES studies on block roughness, Xie et al. [2008] observed that blocks of random

height gave rise to higher dispersive stresses and larger variations of the flow within the

roughness than blocks of uniform height.

To summarise, this chapter has discussed the mean and turbulent statistics, along with

flow visualisations, at Reτ = 180, for the seventeen rough surface samples. Results show

considerable variation depending on the surface topography. The simulation data along

with surface topographical properties from Table 3.2 form the required database, which is

utilised to conduct rough surface parametrisation in the next chapter.
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Figure 6.31: Spatial variation of dispersive shear stress, −ũw̃, at z/δ = 0.05 (left) and
z/δ = 0.1 (right), from top to bottom, for the s3 (composite 2), s8 (gritblasted)
and s9 (ground) samples. The grey region represents the wall.



Chapter 7

Dependence on surface

topographical properties and

parametrisation at Reτ = 180

The variation of certain flow properties with certain surface topographical properties

has been studied in the previous chapter (for example, Figures 6.6, 6.9 and 6.12). However,

since one of the main aims of this work is to correlate the roughness function, ∆U+, with the

topographical properties of the surface, a more in-depth study on that is carried out here.

Surface properties studied in particular include surface skewness, Ssk (also studied by Flack

and Schultz [2010]), streamwise effective slope, ESx (also studied by Napoli et al. [2008]

and Schultz and Flack [2009]) and the Sigal-Danberg parameter, Λs (also studied by van

Rij et al. [2002]). An extensive and methodical parametrisation of topographical properties,

which takes into consideration all the properties from Table 3.2, is then presented.

7.1 Dependence of roughness function on surface skewness

and effective slope

Skewness, Ssk and effective slope, ES are two properties that have been studied exten-

sively in the past (refer to Flack and Schultz [2010], Napoli et al. [2008], Yuan and Piomelli

[2014]). Flack and Schultz [2010] mentioned that surface skewness, Ssk is an indication

of the distribution of peaks and valleys (as discussed in Section 3.2). Based on numerous

experiments, they also formulated a relation to predict the equivalent sand-grain roughness

based on Ssk and RMS roughness height, Sq, given as,

(ks,eq)FS ≈ 4.43Sq(1 + Ssk)
1.37. (7.1)

In general, ∆U+ is directly proportional to the equivalent sand-grain roughness height

for a particular type of roughness and hence it can be checked whether ∆U+ correlates

individually with Ssk or Sq. Figure 7.1 shows plots of ∆U+ against Ssk (left) and ∆U+
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Figure 7.1: Dependence of ∆U+ on Ssk (left) and on Sq (right).

against Sq (right). The correlation of ∆U+ with both Ssk and Sq is poor. The data is quite

scattered and no clear relationship can be obtained. Additionally, the plot on the left also

shows 3 pairs of samples (data points within dashed black lines) which have approximately

equal ∆U+ but significantly different Ssk. These include s4 and s7 (top pair), s1 and s14

(middle pair) and s2 and s15 (bottom pair). It is thus clear that for the current study,

neither RMS roughness height nor surface skewness on their own are enough to correlate

with ∆U+. Studies of Yuan and Piomelli [2014] also showed poor agreement between ∆U+

and Ssk. They mentioned the reason for that as the skewness not including surface slope

i.e. streamwise effective slope, ESx, in its definition. Hence skewness is not a suitable

parameter for surfaces whose ESx is an important parameter (refer next paragraph), which

include all 17 surfaces in the current study. Referring now to Figure 7.2, which shows

the variation of ∆U+ with the equivalent sand-grain roughness height proposed by Flack

and Schultz [2010] given by equation (7.1), it can be seen that ∆U+ does not correlate

well with (ks,eq)FS either and the expected increasing trend of ∆U+ with the equivalent

sand-grain roughness height is not clearly seen. Flack and Schultz [2010] formulated their

correlation based on experiments conducted in the fully-rough regime whereas all surfaces

at the current Reτ = 180 are in the transitionally rough regime, which may contribute to
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Figure 7.2: Dependence of ∆U+ on (ks,eq)FS
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Figure 7.3: Dependence of ∆U+ on the streamwise effective slope, ESx. The red line shows
a fit to the data.

the data scatter. Also, most surfaces considered by Flack and Schultz [2010] had positive

skewness, whereas the current database contains surfaces with both positive and negative

skewness.

Figure 7.3 shows a plot of ∆U+ against the streamwise effective slope, ESx. The

dependence of the roughness function on the streamwise effective slope is evident. The

relationship is not linear as seen from the curve fit to the data (red line) also shown. The

effective slope was first identified as an important geometrical parameter by Napoli et al.

[2008] who conducted DNS studies of irregular random rough surface geometries. Their

geometries varied only in the streamwise direction and hence only a streamwise effective

slope existed. On the relationship between ∆U+ and ESx, they mentioned that ∆U+

increases linearly up to ESx ≈ 0.15, then follows a non-linear curve for larger values of ESx

up to ESx ≈ 0.55 and then weakly decreases. Most of these observations can be made from

Figure 7.3 as well, though the maximum value of streamwise effective slope for the current

set of surfaces is ESx ≈ 0.32. A weakly decreasing behaviour in ∆U+ is observed for the

last two data points in Figure 7.3.

Based on experimental studies conducted on close-packed pyramids, Schultz and Flack

[2009] proposed the existence of a surface ‘waviness’ regime where ∆U+ is strongly depen-

dent on ESx. This was also supported by Yuan and Piomelli [2014]. All surfaces in the

current study appear to lie in the waviness regime as Figure 7.3 shows a strong dependence

of ∆U+ on ESx. Surfaces whose ∆U+ is relatively independent of ESx fall under what

Schultz and Flack [2009] termed the surface ‘roughness’ regime. In this regime, ∆U+ scales

solely on the roughness height. Schultz and Flack [2009] also mentioned that there is a
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critical ESx, which may depend on the type of roughness, separating the waviness and

roughness regimes, which in their studies was ESx ≈ 0.35. This is the effective slope at

which ∆U+ becomes approximately constant with respect to ESx. The fact that the current

set of surfaces lies in the waviness regime is also responsible for the significant data scatter

in the plot of ∆U+ against (ks,eq)FS, shown in Figure 7.2 as this relation was intended for

surfaces in the roughness regime.

Figure 7.4 (left) shows a comparison of the variation of ∆U+ with ESx for the current

study with data from Napoli et al. [2008] and Schultz and Flack [2009]. For similar values

of ESx, values of ∆U+ in the current study are in general less than those obtained by

both references. This is probably because the current study comprises of samples only in

the transitionally rough regime, whereas both Napoli et al. [2008] and Schultz and Flack

[2009] studied samples in the transitionally rough as well as the fully-rough regimes. In

order to make a comparison, values of ∆U+ from the current study are scaled up to match

with the other studies shown. The scale factor is determined by the ratio of the highest

∆U+ value of Napoli et al. [2008] to the highest ∆U+ value from the current study and has

an approximate value of 2. This means the higher ∆U+ values are almost half the values

obtained by Napoli et al. [2008]. The resulting plot is shown in Figure 7.4 (right). Also

shown is a vertical dashed line at ESx = 0.35 which separates the surface waviness regime

(on its left) from the surface roughness regime (on its right), as proposed by Schultz and

Flack [2009] for their data. Beyond ESx = 0.35, in the data of Schultz and Flack [2009],

it is clearly seen that ∆U+ remains more or less constant with ESx and scales only with

roughness height. For the same values of ESx, the roughness height increases in the vertical

direction in the data of Schultz and Flack [2009]. The plot also puts data from the current

study in perspective with other studies in the literature and shows the range of effective

slope, comprising a subset of the broad class of irregular roughness.
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Figure 7.4: Comparison of the variation of ∆U+ (left) and scaled values of ∆U+ (right) with
ESx for the current study, Napoli et al. [2008] and Schultz and Flack [2009].
For Schultz and Flack [2009], only cases at their highest Reynolds numbers
have been shown, with increasing roughness height in the vertical direction.
The vertical dashed line represents the critical ESx ≈ 0.35 of Schultz and Flack
[2009].
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7.2 Dependence of roughness function on the Sigal-Danberg

parameter

Next, the dependence of the roughness function on the generalized Sigal-Danberg pa-

rameter, Λs, is studied. Figure 7.5 shows a plot of ∆U+ against Λs on semilogarithmic

axes. This parameter is calculated for all 17 samples from the database using the relations

given in Appendix A. The modified version of the parameter as proposed by van Rij et al.

[2002],

Λs =

(
S

Sf

)(
Sf
Sw

)−1.6

,

is used in this study (refer to equation (3.1) in Section 3.2 or Appendix A for further

details). Λs is heavily dependent on the surface topography and hence a broad range of

values, spanning three orders of magnitude, is obtained. It is clear from the plot that ∆U+

and Λs are inversely proportional to each other. For higher values of Λs, the effect of the

rough surface on the flow decreases. It is observed from Table 3.2 that the wetted area

parameter for the current set of surfaces is about half the planform area, and hence the

value of Λs depends mainly on Sf . Effectively, as the frontal area of the roughness elements

decreases (which means less roughness), Λs increases and hence ∆U+ decreases. Λs takes

into account roughness density, shape and direction with respect to the mean flow and hence

the data scale very well with ∆U+. The minimum least squares error fit given by

∆U+ = log(Λ−1.89
s ) + 8.32, (7.2)
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Figure 7.5: Dependence of ∆U+ on the generalized Sigal-Danberg parameter, Λs. Outlier
data points shown in red.
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is also shown on the plot. The goodness of fit is given by the root mean squared error,

σ = 0.3753 and coefficient of determination, R2 = 0.8836. This is a reasonably good fit

and is an indication of the importance of this parameter, despite a few outlier data points.

On visual inspection, four samples; s3, s6, s9 and s10 (whose data points are coloured red),

appear to be vertically furthest away from the fit. Hence, although the initial fit is good,

its quality could be improved if the error in the outlier data points could be reduced. An

initial attempt describing a simple mathematical procedure to achieve this follows.

7.2.1 Improving the correlation between ∆U+ and Λs

Before the relationship between ∆U+ and Λs can be improved, a means of quantifying

the error in the values of ∆U+ based on the fit must be decided. Values of Λs, ∆U+ from

the simulations (denoted as ∆U+ (DNS)), ∆U+ from equation (7.2), (denoted as ∆U+ (fit))

and the percentage relative errors between the two ∆U+ values are shown in Table 7.1. The

% relative error in the above table is calculated as,

% relative error =
|∆U+(DNS)−∆U+(fit)|

∆U+(DNS)
× 100

As a first attempt, samples with relative error greater than 10% are selected as candidates

for improvement. These include s3 (with relative error = 12.2509%), s6 (69.6037%), s9

(18.1736%) and s10 (20.9501%), as also mentioned previously based on visual inspection.

The s1 sample with relative error = 10.7218% is regarded as being on the borderline and

not selected.

The idea is to formulate a new parameter which will be a combination of Λs and other

sample Λs ∆U+ (DNS) ∆U+ (fit) % relative error

s1 639 3.4 3.02 10.7218
s2 919 2.7 2.72 0.7161
s3 378 3.9 3.45 12.2509
s4 48 4.9 5.14 4.9480
s5 116 4.2 4.42 6.2061
s6 1830 1.3 2.15 69.6037
s7 66 5.0 4.88 2.3788
s8 99 4.4 4.55 4.3176
s9 1890 2.6 2.13 18.1736
s10 390 2.8 3.49 20.9501
s11 1153 2.6 2.53 1.0491
s12 2960 1.7 1.76 3.4858
s13 696 2.8 2.95 5.2667
s14 537 3.4 3.16 8.3957
s15 832 2.7 2.80 5.2995
s16 734 2.8 2.90 5.2114
s17 190 4.4 4.01 7.7435

Table 7.1: Percentage relative errors for all samples between ∆U+ (DNS) and ∆U+ (fit).
Boxed rows represent the outlier samples.
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sample Str Sflow
tr

s3 0.21 4.6666
s6 0.07 0.0345
s9 0.08 11.7172
s10 0.41 1.5641

Table 7.2: Str and Sflow
tr values for the 4 outlier samples; s3, s6, s9 and s10.

surface topographical properties such that a plot of ∆U+ and the new parameter will give

a better fit to the data than the initial fit, equation (7.2), obtained from Figure 7.5. Based

on all 17 samples, it is not trivial to select the topographical properties to formulate a new

parameter. Hence attention is focussed on the properties of the four outliers selected above.

From values of Str and Sflow
tr , all four samples are observed to be statistically anisotropic, as

shown in Table 7.2. The s6 and s9 samples are strongly anisotropic with features aligned in

the streamwise and spanwise directions respectively, s3 is anisotropic with features aligned

in the spanwise direction and s10 is weakly anisotropic with features somewhat aligned in

the spanwise direction as well. The four samples are outliers possibly due to the nature of

these properties. The above observations immediately suggest Str and Sflow
tr as candidate

surface properties to add to the new parameter along with Λs. An initial attempt is made

at formulating a new parameter comprising of Λs, Str and Sflow
tr .

The basic idea of improving the fit is to bring the outliers closer to the fit line. The

procedure used to incorporate this will undoubtedly change the fit equation but if the

relative errors between ∆U+ (DNS) and ∆U+ (fit) for all samples are less than the previous

fit, then an improvement will have been satisfactorily obtained. Since ∆U+ will not change

for the samples and a new parameter will be plotted on the x-axis, the outliers will shift

in the horizontal direction to improve the fit. A graphical representation of this process is

shown in Figure 7.6. The previous fit line has been greyed out because it will change after

the procedure is complete. Although the new parameter will be formulated based only on

the outliers, its value will be different from Λs for all samples. Hence, not only the outliers

but all points in Figure 7.6 will be shifted in the horizontal direction, although some points

will shift more than others.

Several previous studies have formulated surface property correlations based on a power

law (for example, Flack and Schultz [2010], van Rij et al. [2002]) and this approach is also

used in the current study. However, the surface properties may also be combined using

other mathematical approaches, for example, an algebraic relationship (for example, Bons

[2005]). Let the new parameter be called Φ and be represented as

Φ = Λs(Str)
a(Sflow

tr )b, (7.3)

where a and b are fitting constants that need to be evaluated based on the available outlier

data points. When this approach is applied to all data points, they will shift from their

original locations in Figure 7.5 by an amount which will differ for each point. This amount

is given by the ratio of the Λs obtained from equation (7.2) to the original Λs. It is clear
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Figure 7.6: Improvement of the correlation between ∆U+ and Λs by introducing Str and
Sflow
tr . Shifting of only the outliers is shown.

that

(Λs)fit = −exp(∆U+ − 8.32)

1.89
, (7.4)

from equation (7.2). Hence the above-mentioned ratio is given as (Λs)fit/Λs. Hence equa-

tion (7.3) can also be written as

Φ = Λs
(Λs)fit

Λs
. (7.5)

Then comparing equations (7.3) and (7.5),

(Str)
a(Sflow

tr )b =
(Λs)fit

Λs
. (7.6)

Str, S
flow
tr , (Λs)fit and Λs are known and hence equation (7.6) can be solved to obtain the

values of a and b. Since, in this initial attempt, only the outlier points mentioned above are

desired to be improved, only their surface properties will be used to compute a and b, and

hence Φ.

The parameters required to solve equation (7.6) for the four outliers are given in Ta-

ble 7.3. Equation (7.6) has only two unknowns but four data points (corresponding to the

four outliers) are available to solve it. Values of a and b were determined using all possible

2-point combinations from the four points, and the data was fitted with Φ on a new ∆U+

against Φ curve for each 2-point combination. The values of a and b that obtained the

best fit, determined from the lowest value of σ and highest value of R2, were selected. A

comparison of the relative errors between ∆U+ (DNS) and ∆U+ (fit) was also made for the

final best fit. There are six 2-point combinations from the four data points to determine
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sample Str Sflow
tr Λs (Λs)fit (Λs)fit/Λs

s3 0.21 4.6666 378 210.26 0.5562
s6 0.07 0.0345 1830 5372.28 2.9357
s9 0.08 11.7172 1890 1062.81 0.5623
s10 0.41 1.5641 360 803.09 2.2308

Table 7.3: Parameters required to solve equation (7.6) for the 4 outlier samples; s3, s6, s9
and s10.

a and b. Values of a and b along with σ and R2 for the six combinations are provided in

Table 7.4. The lowest value of σ = 0.3313 and the highest value of R2 = 0.9093 are obtained

on utilising the surface properties of the s6 and s9 samples. Φ thus obtained is given as

Φ = Λs(Str)
−0.0472(Sflow

tr )−0.2824. (7.7)

A plot of ∆U+ against Φ is shown in Figure 7.7 with the corresponding equation of the new

fit line, given as

∆U+ = log(Φ)−1.677 + 7.699. (7.8)

The plot shows the new fit as well as the previous fit (from equation (7.2)) to gain a visual

understanding of how the fit has changed. The new values of σ and R2 are an improvement

(approximately 12% in σ and 3% in R2) over the previous values and hence it can be

conclusively said that an overall improvement in the fit is obtained.

The relative errors in ∆U+ for all samples obtained from the new fit are given in Ta-

ble 7.5. The errors for the four outlier points have reduced compared to Table 7.1. Since

the properties of s6 and s9 ultimately obtained the best fit, their relative errors show the

greatest decrease. This is also seen from the plot as the data points for s6 and s9 have

moved horizontally closer to the new fit line. Although most samples other than the four

outliers show an increase, albeit slight, in their relative errors, the final best values of σ and

R2 indicate an acceptable improvement in the fit.

Thus a procedure to improve the fit of ∆U+ against Λs by introducing Str and Sflow
tr to

formulate a new parameter, Φ = Λs(Str)
−0.0472(Sflow

tr )−0.2824, has been described. Although

the procedure is crude and uses elementary mathematical concepts, an overall improvement

sample a b σ R2

s6, s9 -0.0472 -0.2824 0.3313 0.9093
s9, s10 -2.1112 -2.4006 0.7520 0.5327
s3, s9 -6.3109 -6.7107 0.8669 0.3790
s6, s10 -0.7598 0.2842 0.7200 0.5716
s3, s6 0.0339 -0.3468 0.3781 0.8819
s3, s10 -2.2106 -2.5980 0.7650 0.5164

Table 7.4: Values of a and b along with σ and R2 for the six 2-point combinations from the
4 outlier data points. The boxed row represents the combination giving the best
values of σ and R2.
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sample Λs ∆U+ (DNS) ∆U+ (fit) % relative error

s1 639 3.4 2.98 11.9152
s2 919 2.7 2.43 10.0704
s3 378 3.9 3.64 7.3725
s4 48 4.9 4.82 1.4492
s5 116 4.2 4.84 16.4627
s6 1830 1.3 1.44 13.6449
s7 66 5.0 4.73 5.3615
s8 99 4.4 4.40 0.9588
s9 1890 2.6 2.62 0.9126
s10 390 2.8 3.41 20.6798
s11 1153 2.6 2.68 4.6108
s12 2960 1.7 1.86 9.5759
s13 696 2.8 2.98 6.2553
s14 537 3.4 3.07 10.8857
s15 832 2.7 2.68 0.8661
s16 734 2.8 2.87 3.9504
s17 190 4.4 3.92 9.9230

Table 7.5: Percentage relative errors for all samples between ∆U+ (DNS) and ∆U+ (fit)
obtained using Φ. Boxed rows represent the outlier samples.
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of the fit is ultimately obtained, which shows the method is effective. However, a more

robust and systematic method (which takes into account all properties of all samples and not

just selected properties of the outliers) that correlates ∆U+ with the surface topographical

properties needs to be developed in order to have further confidence in the results.

7.3 Full parametrisation of topographical properties

This section describes a procedure that utilises all the available DNS simulation data and

surface topographical properties of all 17 samples from the database to obtain parametric

models that relate the effects of roughness on the flow to surface topography. The method

has been published in Thakkar et al. [2017].

Although a general solution to the roughness problem must be delayed until a more

complete dataset is available for fully rough cases and including a wider Reynolds number

range, it seems sensible to try to make as much progress as possible with the present set

of restricted data, first of all to find out the issues that arise in formulating a general

empirical model and, secondly, to guide the next set of simulations to best exploit the

available computational resources. As can be seen from Table 6.1, there is a large variation

in the roughness function ∆U+ that must be due to other parameters, besides the height,

that govern the surface topography. To obtain surface properties that possibly influence

the roughness function, a fitting process is employed whereby ∆U+ is plotted against a

combination of surface properties and the quality of the fit is improved by successively

adding other properties. Additions are made based on a systematic testing of all available

properties using specific mathematical forms (algebraic, exponential, logarithmic or power)

and selecting the property and form that gives the best possible fit. In Table 7.6, all forms

tried for this process are listed for an example surface property, p. The particular form for a

property may not necessarily be optimal, since only the above-mentioned four mathematical

forms are tested and there may be other forms which might influence the fitting process.

Combinations of surface parameters are denoted by λn, where n = 0 for a baseline model,

n = 1 for a 1-parameter model and so on. An example for n = 2 could be

λ2 = ln

(
Sf
S

)(
4Sq
Sz,5×5

)c1
e(c2Ssk),

where c1 and c2 are fitting constants.

To measure the success of the method, the root-mean-square error, σ, between the

data and a straight-line curve fit using the derived parameter, as well as the value of the

coefficient of determination, R2, of the fit are used. In order to maximise the number of

name of form algebraic exponential logarithmic power

equation of form 1 + (c · p) ec·p 1 + c · ln(p) pc

Table 7.6: Mathematical forms of properties tested during the fitting process. c is a fitting
constant and p is the value of a given surface property.
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property combinations tested, fits giving the 3 lowest values of σ (which means the 3 highest

values of R2) are retained for further improvement. This means, for example, in case of

n = 0 (or the baseline model), where ∆U+ is fitted with a single surface property, fits of

those properties which obtain the 3 lowest values of σ are selected for further improvement

by addition of more properties. However, in the following description, only the best fits are

reported. The reason for selecting multiple property combinations is also because a given

property combination that gives the lowest value of σ for n = 1, for example, may not

necessarily give the lowest σ value for n = 2 because of the interactions between different

surface properties. Parameters are continued to be added until no significant improvement

of the fit is obtained and the fit with the final lowest value of σ is selected as the best.

As a start, for n = 0 to fit ∆U+, the performance of a solidity parameter, expressed

here in logarithmic form, is considered as

λ0 = ln

(
Sf
S

)
. (7.9)

Using just this parameter, the best fit to the data is ∆U+ = aλ0 + b, with a = 2.0438 and

b = 8.9035 and with σ = 0.3807 and R2 = 0.8802. The resulting straight line is plotted in

Figure 7.8 (top left) and already a reasonable fit to the data can be seen. Given the success
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Figure 7.8: Linear fits to the DNS data, correlating the roughness function, ∆U+, with dif-
ferent parameters λ0 (top left), λ1 (top right), λ2 (bottom left) and λ3 (bottom
right), corresponding to equations (7.9), (7.11), (7.12), (7.13) in the text.
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of the simplest measure, the strategy is to introduce modifications to the definition of λ0

based on additional surface properties as shown in Table 3.2.

Extensions to the solidity parameter have already appeared in the literature and, for

irregular surfaces, van Rij et al. [2002] redefined the parameter introduced by Sigal and

Danberg [1990], previously given in equation (3.1). A generalisation of this approach is to

set

λSD = ln

[
Sf
S

(
Sf
Sw

)β]
, (7.10)

where Sw is the wetted area of the forward-facing elements of the surface and Sigal and

Danberg [1990] used β = 1.6 (note that Sigal and Danberg [1990] used the inverse of this

parameter whereas the current study uses a definition where λ can be interpreted as the

solidity or density of the roughness). However, using this value of β in the present study led

to no improvement in the standard error. A separate exercise was undertaken to optimise

the value of the exponent, giving β = 0.18, but with a barely measurable increase in R2. The

reasons for the failure of this additional term are clear from Table 3.2, since for the types of

roughnesses considered the wetted area parameter is always about half the planform area

i.e. there is an approximate symmetry (of forward-facing and rearward-facing roughness

elements) in the roughness samples. Thus the term Sf/Sw introduces no additional useful

information. One could continue using (7.10) as the reference parameter and get the same

results, but this study prefers only to use parameters that are justified by the data and

hence the simple solidity, λ0, is taken as the baseline property.

The next step is to test each of the potential surface parameters as modifications to λ0.

The best two, with almost identical performance, were the streamwise correlation length

parameter, Lcor
x /Sz,5×5, and the flow texture ratio, Sflow

tr . The success of both suggests that

the spanwise correlation length is less important and the best-performing parameter, with

a single optimised coefficient for n = 1, is retained to give

λ1 = λ0

[
1 + 0.067 ln

(
Lcor
x

Sz,5×5

)]
. (7.11)

The improved fit to the data is shown in Figure 7.8 (top right), with σ = 0.3073 and

R2 = 0.9220. It is interesting that a streamwise correlation length enters as the next-

most important parameter after the solidity since this type of parameter doesn’t appear

in many correlations. The parameter is additionally intriguing since dense roughness cases

will have low values of Lcor
x /Sz,5×5 and from the correlation this would lead to lower λ1

and hence lower ∆U+, which is indeed what is observed (Jiménez [2004]). The absence of

dense roughness cases (Sf/S > 0.15) from the current sample set means that this cannot

be tested fully, and addressing this point would be a priority for future simulations.

The process is continued to define the best models for n = 2 and 3. The best model for

n = 2 is found to include the relative rms roughness height parameter, Sq, as

λ2 = λ0

[
1 + 0.09 ln

(
Lcor
x

Sz,5×5

)](
4Sq
Sz,5×5

)−0.50

, (7.12)
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parameter a b σ R2

λ0 2.0438 8.9035 0.3807 0.8802
λ1 1.4988 7.8221 0.3073 0.9220
λ2 1.5150 8.1607 0.1806 0.9731
λ3 1.4699 8.0394 0.1383 0.9842

Table 7.7: Best fit parameters for λ0, λ1, λ2 and λ3, corresponding to equations (7.9),
(7.11), (7.12), (7.13) in the text. ∆U+ = aλn + b, where a = slope of the
fit and b = y-axis intercept. σ = rms error of the fit and R2 = coefficient of
determination.

with σ = 0.1806 and R2 = 0.9731. The best model for n = 3 includes the skewness, Ssk, as

λ3 = λ0

[
1 + 0.09 ln

(
Lcor
x

Sz,5×5

)](
4Sq
Sz,5×5

)−0.44

e(−0.074Ssk), (7.13)

with σ = 0.1383 and R2 = 0.9842. Figure 7.8 (bottom left) and (bottom right) show the

continued improvements seen with the λ2 and λ3 representations. The largest remaining

errors in the fit to the data are less than 0.1uτ . Additional parameters were tested, but

with no significant further improvements found. Fit parameters for λ0, λ1, λ2 and λ3

are summarised in Table 7.7. Tests were also run by removing parameters individually,

confirming that a ranking in order of importance is (i) solidity, (ii) streamwise correlation

length non-dimensionalised by the mean peak-to-valley height, (iii) rms roughness height

non-dimensionalised by the mean peak-to-valley height and (iv) skewness. Note that the

roughness height is not one of these parameters since all the cases were run for the same

Sz,5×5. Had the simulations been in the fully-rough regime, the equivalent sand-grain

roughness, k+
s,eq, would be determined as a constant (dependent on all the above parameters)

multiplied by some suitable measure of the roughness height, for example S+
q or S+

z,5×5. Both

rms roughness height and skewness are part of the model formulated by Flack and Schultz

[2010] and Flack et al. [2016] so it is no surprise to see them here. Also, it has been pointed

out in Section 3.2 that the streamwise effective slope, mean and rms streamwise forward-

facing surface angles are proportional to the solidity for these surfaces, and hence cannot

be considered as independent parameters.

A point of caution is that the above analysis is only the first step. As more samples are

added covering different types of roughnesses (dense, for example) it is expected that addi-

tional parameters might be required. What is important is that we now have a systematic

method to incorporate additional parameters. It is important to note that the models in

equations (7.9) to (7.13) should not be used for k+
s,eq since the current data were all taken

in the transitionally rough regime. Nevertheless, a number of parameters that contribute

significantly to the roughness function in this regime have been identified and it is likely

that the same parameters contribute to the determination of k+
s,eq. The same numerical

coefficients would only be found if all the samples followed the same path through the

transitionally rough regime, which is unlikely.

A similar approach as above was also utilised to fit surface property data to the value
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of peak TKE from Table 6.1. Different parameters are seen to appear in the model as

the fluctuations behave differently with property combinations as compared to ∆U+. The

various models obtained for this process are given below.

n = 0:

λ0 = ln(α). (7.14)

n = 1:

λ1 = λ0e
(0.38Ssk). (7.15)

n = 2:

λ2 = λ0e
(0.24Ssk)

[
1 + 0.70 ln

(
4Sq
Sz,5×5

)]
. (7.16)

n = 3:

λ3 = λ0e
(0.19Ssk)

[
1 + 0.64 ln

(
4Sq
Sz,5×5

)]
(1− 0.70ESy). (7.17)

The fits for the above models are shown in Figure 7.9 (λ0: top left, λ1: top right, λ2: bottom

left and λ3: bottom right) and fit parameters are summarised in Table 7.8. Although fits

are reported only up to n = 3, further improvements, following the same systematic fitting

approach as described for ∆U+, are seen up to n = 5. Values up to σ = 0.0244 and

R2 = 0.9820 are obtained when the average roughness height, Sa, in its algebraic form and
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Figure 7.9: Linear fits to the DNS data, correlating the peak TKE, with different param-
eters λ0 (top left), λ1 (top right), λ2 (bottom left) and λ3 (bottom right),
corresponding to equations (7.14), (7.15), (7.16) and (7.17) in the text.
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parameter a b σ R2

λ0 -0.3004 3.7568 0.1897 0.6169
λ1 -0.3074 3.7498 0.0966 0.8048
λ2 -0.3901 3.8716 0.0653 0.8681
λ3 -0.5765 4.1149 0.0352 0.9288

Table 7.8: Best fit parameters for λ0, λ1, λ2 and λ3, corresponding with equations (7.14),
(7.15), (7.16), (7.17), in the text. Peak TKE = aλn + b, where a = slope of the
fit and b = y-axis intercept. σ = rms error of the fit and R2 = coefficient of
determination.

shortest correlation length, Sal, in its power form (both properties non-dimensionalised by

Sz,5×5) are included in the model. However, due to the relatively small size of the sample

database for fitting purposes, the influence of these properties is probably not as significant

as the ones seen up to n = 3. For n < 3, property combinations other than equation (7.16)

may give lower values of σ. But since equations (7.15) and (7.16) finally lead to equation

(7.17), which ultimately gives the lowest σ value of all final fits tested, it is selected as the

best fit and is discussed here. The baseline parameter is the mean forward-facing surface

angle, α, which is an angle parameter as opposed to Sf/S, which is an area parameter,

seen in the case of ∆U+. However, it has been shown in Figure 3.7 that Sf/S and α are

approximately linearly related. Also, higher values of α in general correspond to a higher

roughness effect (from higher values of ∆U+, refer Tables 3.2 and 6.1 and Figure 7.10) and

hence its influence on the fluctuations would be significant. Other baseline parameters that

gave σ values comparable to α include αrms, Sf/S, and ESx, all in logarithmic form. This is

not too surprising as the four parameters are interrelated. Surface skewness, Ssk, is the next

important parameter and after that comes the rms roughness height non-dimensionalised

by the mean peak-to-valley-height, Sq/Sz,5×5, both of which also appear in λ1 and λ2

respectively for the other baseline parameters, albeit in different forms. Spanwise effective

slope, ESy, is the next parameter to enter the fit, the appearance of which could relate to

how the streamwise flow navigates around the roughness features. It would be interesting
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Figure 7.10: Variation of the mean forward-facing surface angle, α (degrees), with ∆U+.
The red line shows a fit to the data.
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in the future to understand why certain parameters enter the fit as opposed to others,

which is not considered in this study. The baseline TKE fit is not as good as the fit for

∆U+ but significant improvement is obtained until λ3. A separate fitting study conducted

for the profile peak streamwise fluctuations, 〈u′2〉max, alone also gave the same properties

influencing the fit, although in a slightly different order.

Thus a methodical procedure to correlate the roughness function, ∆U+, and peak TKE

to the surface topography has been described. Although the procedure does not achieve

complete generality due to the simulation data being in the transitionally rough regime and

the relatively low effective slope of the samples, it does give a very good indication of which

topographical properties influence roughness effects. Extension to the fully-rough regime

is straightforward but requires larger computational resources. Increasing the size of the

dataset by introducing more surfaces having different properties would serve to increase the

generality of the fitting process.



Chapter 8

Results - Reynolds number

dependence

It is common to carry out experimental studies for a given rough surface or a selection of

rough surfaces over a range of Reynolds number, Reτ . In some cases, the Reynolds number

spans the entire range of roughness regimes: hydraulically smooth, transitionally rough and

fully-rough. The best known example of such an experimental investigation is the extensive

study carried out by Nikuradse [1933] on sand-roughened pipes. More recent studies include

experiments by Ligrani and Moffat [1986] on close-packed spheres, Schultz and Flack [2009]

on pyramids, Shockling et al. [2006] and Schultz and Flack [2007] on honed roughness and

Flack et al. [2016] on gritblasted surfaces. Only a few computational studies exist in this

area and the most recent one is the DNS work of Chan et al. [2015] for sinusoidal roughness

in pipes.

To show that a Reynolds number sweep using numerical simulations is possible for a

highly irregular rough surface, the gritblasted sample (s8 from Table 3.1 and Figure 3.4

(h)) is subject to DNS for a wide Reynolds number range, where 180 ≤ Reτ ≤ 720 and

the roughness Reynolds number, 3.75 ≤ k+ ≤ 120. The mean flow statistics are studied for

all cases. Also studied is the behaviour of the roughness function with varying k+, which

then leads to a characterisation of the surface in the entire Reynolds number range. A

similar study was also performed on the graphite sample (s7 from Table 3.1 and Figure 3.4

(g)) by Busse et al. [2016] but with the lowest k+ = 15 and with a focus on near-wall flow

physics, where a comparative study of the results for the graphite and gritblasted samples

was conducted.

8.1 Simulation parameters and sample construction

Table 8.1 shows the simulation parameters for the Reynolds number dependence study.

The lowest Reynolds number simulated is Reτ = 180, as the presence of low-Reynolds

number effects is seen at lower Reτ . For example, simulations were conducted at Reτ = 120

(k+ = 20) and Reτ = 90 (k+ = 15). The plot of ∆U+ against k+ on semilogarithmic

axes showed a different trend at these lower k+ and the expected behaviour of ∆U+ → 0
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k+ 3.75 7.5 15 30 40 60 90 120

Reτ 180 180 180 180 240 360 540 720
k/δ 1/48 1/24 1/12 1/6 1/6 1/6 1/6 1/6
tiles 8× 8 4× 4 2× 2 1× 1 1× 1 1× 1 1× 1 1× 1
nx 2304 1152 640 320 320 432 720 864
ny 1152 576 320 160 160 216 360 432
nz 192 192 288 288 352 576 864 1056

∆x+,∆y+ 0.4398 0.8797 1.5834 3.1669 4.2225 4.6917 4.2225 4.6917
λmin/∆x 12 12 13 13 13 18 30 36
∆z+

max 3.2827 3.7635 2.3095 3.7235 4.7549 4.3628 3.7239 4.7556

Table 8.1: Simulation parameters for the Reynolds number dependence study.

as k+ → 0 was not seen. This is shown in Figure 8.1 which also shows the Colebrook

interpolation formula and the data of Nikuradse [1933] for reference. Hence Reτ = 120 and

90 were discarded and lower k+ values were obtained by an alternative tiling method.

The computational domain size for the s8 sample is (5.63δ × 2.815δ) for k/δ = 1/6,

which gives k+ = 30 at Reτ = 180. To increase k+ beyond this value, Reτ is simply

increased, while maintaining k/δ = 1/6. However, to obtain lower values of k+ < 30,

while keeping a minimum Reτ = 180, the roughness height must be decreased. Since the

roughness height scales with the domain size, a lower k/δ is obtained through a smaller

domain. However, in order to maintain a minimum domain size (in conjunction with the

streamwise domain requirement of at least 5δ, as mentioned in Section 2.2.1), the smaller

domain for a particular k/δ is tiled (or replicated) in the streamwise and spanwise directions

to obtain the minimum required domain size. For example, to obtain the sample for k+ = 15,

the sample at k+ = 30 (Figure 8.2 (left)) is shrunk to half its domain size to reduce the

roughness height from k/δ = 1/6 to k/δ = 1/12 and is then replicated to obtain 2 × 2

tiles (Figure 8.2 (right)). Hence, the new sample domain size is (5.63δ × 2.815δ) and has

k+ = 15 at Reτ = 180. The same approach is adopted to obtain samples for lower k+.

The ‘tiles’ parameter, along with k/δ, from Table 8.1 shows how each sample is constructed
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Figure 8.1: ∆U+ data for the Reynolds number dependence study showing low Reynolds
number effects at k+ = 20 and 15 (data points indicated by vertical dashed
lines).
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Figure 8.2: Surface plots showing the tiling procedure; original sample for k+ = 30 (left)
and tiled sample for k+ = 15 (right). The dashed lines denote tile boundaries.
Samples coloured by roughness height, k/δ. Scale of plots increased in the
wall-normal direction for clarity.

for the corresponding k+. This approach is possible because the sample is periodic in the

streamwise and spanwise directions and hence no discontinuity will be present at the tile

boundaries.

From the meshing criteria described in Section 2.3.2 and values of ∆x+ and λmin/∆x

in Table 8.1, it is observed that for k+ ≤ 30, the minimum wavelength meshing criterion is

dominant whereas for k+ > 30, the Reynolds number meshing criterion is dominant. The

fact that the sample at k+ = 30 is dominated by minimum-wavelength meshing is inherent in

its topography. However, the minimum Fourier wavelength of the sample decreases propor-

tionately due to shrinking and tiling; for example (λmin)k+=15 = (λmin)k+=30/2 and hence

all samples for k+ < 30 are also dominated by the minimum-wavelength mesh requirement.

8.2 Influence on the mean flow statistics

It is known that, in general, the effect of roughness, and hence ∆U+, increases with

k+. Table 8.2 shows the values of ∆U+ along with mean centreline velocity, U+
c , and mean

streamwise bulk velocity, Ub, for all cases in the Reynolds number dependence study. The

current ∆U+ values have been computed based on smooth-wall simulations with domain

size 12δ×6δ (as mentioned in Section 4.1). As roughness decreases (lower k+) and the flow

approaches smooth-wall conditions, statistics may become more sensitive to computational

domain size. Hence, for the three smallest k+ = 15, 7.5 and 3.75, which are all at Reτ = 180,

k+ 0 3.75 7.5 15 30 40 60 90 120

Reτ 180 180 180 180 180 240 360 540 720
U+
c 18.44 18.09 17.65 16.32 14.08 13.84 13.61 13.32 13.38
Ub 15.77 15.21 14.48 12.75 9.97 9.79 9.59 9.38 9.39

∆U+ 0 0.35 0.79 2.12 4.36 5.28 6.52 7.92 8.72

Table 8.2: ∆U+ values along with mean centreline, U+
c , and mean streamwise bulk, Ub,

velocities for the Reynolds number dependence study. The smooth-wall data,
k+ = 0, has been obtained using a domain size of 12δ × 6δ (refer Section 4.1)
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Figure 8.3: Mean streamwise velocity profiles, U(z)+, for the Reynolds number dependence
study. z+ = zuτ/ν is the wall-normal distance in wall-units and k+ = kuτ/ν is
the roughness Reynolds number.
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Figure 8.4: Mean streamwise velocity defect profiles for the Reynolds number dependence
study. U+

c is the mean streamwise centreline velocity in wall-units, z/δ is the
wall-normal distance and k+ = kuτ/ν is the roughness Reynolds number.
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∆U+ was also computed based on a smooth-wall simulation with the same domain size as

the rough sample under consideration, 5.63δ × 2.815δ. Other parameters for this smooth-

wall simulation were: nx × ny × nz = 128 × 128 × 224 with ∆x+ = 7.92, ∆y+ = 3.96,

∆z+
min = 0.667 and ∆z+

max = 4.6979, U+
c = 18.46 and Ub = 15.83. A comparison with

Table 8.2 shows a 0.02 difference in U+
c , which, although changes ∆U+ by the same amount,

does not have a significant impact on the results.

From Table 8.2, for the two highest k+ (90 and 120), Ub is very similar, with the

difference being approximately 0.1%. This is an indication that the effective friction factor

for these cases is approximately independent of k+ and hence Reτ , thus confirming their

presence in the fully-rough regime (Busse et al. [2016]).

Figure 8.3 shows time-averaged mean streamwise velocity profiles, U(z)+, against wall-

normal distance in wall-units, z+, on semilogarithmic axes. Also shown for reference is the

smooth-wall profile for Reτ = 180. A clear roughness effect is seen at all k+, except k+ =

3.75 where the downward shift in the profile is almost unnoticeable. This is also evident

from its value of ∆U+ = 0.35 (Table 8.2). The downward shift increases progressively with

k+. Figure 8.4 shows time-averaged mean streamwise velocity defect profiles, U+
c −U(z)+,

against wall-normal distance, z/δ. Also shown for reference is the smooth-wall velocity

defect profile at Reτ = 180. Profiles for k+ ≥ 30 show a similar trend throughout. The

effect of smaller roughness height for k+ ≤ 15 is seen in the lower part of the profiles as larger

values of velocity defect are observed. All profiles collapse for z/δ ≥ 0.1, which indicates

that outer-layer similarity is preserved and the Townsend [1976] hypothesis is satisfied for

the mean flow. This is observed even for k+ ≥ 30, where all cases have a relatively small

value of δ/k = 6.

8.3 Influence on the roughness function

Figure 8.5 (top) shows the variation of ∆U+ with k+ on semilogarithmic axes along

with the data of Nikuradse [1933], the fully-rough asymptote, given by

∆U+ =
1

κ
ln(0.3k+

s,eq) (8.1)

and the Colebrook interpolation formula, given by Jiménez [2004] as

∆U+ =
1

κ
ln(1 + 0.3k+

s,eq). (8.2)

In both the above equations, κ = 0.4 and ks,eq is the equivalent sand-grain roughness height.

The physical explanation of the behaviour in Figure 8.5 (top) is as follows. With increas-

ing k+, in general, the effect of roughness on the flow increases, as seen by the increase in

∆U+. In the hydraulically smooth regime, k+ is so small compared to the thickness of the

viscous sublayer of the turbulent boundary layer that the flow does not feel any effect of the

roughness. The drag in this regime is dominated by the viscous component. As k+ increases

with respect to the boundary layer thickness and the flow reaches the transitionally rough
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Figure 8.5: Variation of ∆U+ with k+ (top) and with k+
s,eq ≈ 0.87k+ (bottom). Also shown

are the fully-rough asymptote, Colebrook formula and the data of Nikuradse
[1933].

regime (covered by data points 3.75 ≤ k+ ≤ 90 in Figure 8.5 (top)), the roughness has an

increasing effect on the flow. In this regime, drag introduced by the roughness elements

(which is a combination of viscous and pressure drag) progressively increases with k+ and

∆U+ depends on k+ as well as the roughness topography. As k+ further increases, the

flow reaches the fully-rough regime, where the rate of increase of ∆U+ with k+ becomes

constant (k+ > 90 in Figure 8.5 (top)). In general, the drag in this regime is dominated by
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k+ 3.75 7.5 15 30 40 60 90 120

k+
s,eq ≈ 0.87k+ 3.2625 6.525 13.05 26.1 34.8 52.2 78.3 104.4

∆U+ 0.35 0.79 2.12 4.36 5.28 6.52 7.92 8.72

Table 8.3: k+, equivalent sand-grain roughness height, k+
s,eq and ∆U+ values for the

Reynolds number dependence study.

pressure drag. However, for the current gritblasted surface, Busse et al. [2016] also observed

an appreciable viscous drag component at the highest values of k+. LES studies on irregular

roughness conducted by De Marchis et al. [2010] also showed non-negligible viscous effects

in their fully-rough cases at high k+. It is clear that with increasing k+, pressure drag

increases whereas the viscous drag falls. Similar observations were first made by Nikuradse

[1933] from his pipe-flow experiments on sand-grain roughness, based on the friction factor.

According to Jiménez [2004], ks,eq is a geometric property of a given rough surface,

related to its skin-friction in the fully-rough regime. It can be used to characterise the

Reynolds number of the flow and guarantees collapse of roughness functions for all types

of roughness in the fully-rough regime which, according to Jiménez [2004], is reached when

k+
s,eq ≥ 50. However, Nikuradse [1933] observed fully-rough conditions for k+

s,eq ≥ 70. This

is the fully-rough flow criterion followed in the current study as the work of Nikuradse

[1933] serves as an important comparison. Hence, for the current data, it leads to a second

indication of k+ = 90 and 120 clearly being in the fully-rough regime (refer k+
s,eq values in

Table 8.3), along with the Ub criterion mentioned in Section 8.2. Also, the ∆U+ for k+ = 90

and 120, which are greater than 7, can be considered as a third indication of the fully-rough

regime (Busse et al. [2016]). The fact that ks,eq collapses the roughness functions in the

fully-rough regime can be used to compute the equivalent sand-grain roughness height for

the gritblasted sample. To compute k+
s,eq from k+, the sample data can be shifted in the

horizontal direction to match with the reference curves in the fully-rough regime,

k+
s,eq ≈ 0.87k+, (8.3)

as shown in Figure 8.5 (bottom). Values of k+
s,eq are displayed in Table 8.3, along with

k+ and ∆U+. Thus, ks,eq is approximately the same as the roughness height, k, for the

gritblasted sample. This is a strong indication that the mean peak-to-valley height, Sz,5×5,

is a good measure of the roughness height as opposed to the average or rms roughness

height, Sa or Sq (which have been used in previous studies on irregular roughness, for

example Flack and Schultz [2010]).

Figure 8.6 shows the current data for the gritblasted sample along with the fully-rough

asymptote, the Colebrook formula and the data of Nikuradse [1933]. Additionally, data

from Ligrani and Moffat [1986], who conducted channel-flow experiments on roughness

comprising of close-packed spheres, have been shown for comparison. Their data points have

been scaled to have log-law constants that are consistent with the current study (κ ≈ 0.4

and A ≈ 5.1, from Jiménez [2004]). The gritblasted sample data show similar behaviour as
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Figure 8.6: Comparison of the current Reynolds number range data with the study of
Ligrani and Moffat [1986] (digitized from Jiménez [2004]). Data scaled to have
consistent log-law constants with the current study.

Ligrani and Moffat [1986] in the upper part of the transitionally rough regime (k+
s,eq ≥ 26.1).

Both sets of data also reach the fully-rough regime at about the same k+
s,eq. In fact, the

behaviour of the current data, the data of Ligrani and Moffat [1986] and Nikuradse [1933] all

appear to be similar. Nikuradse [1933] used a single sand-grain size for a given experiment

and, on careful consideration, it is understood that the sand grains can be approximated as

spheres (though strictly speaking, Nikuradse’s roughness is not classified as regular). Sphere

diameter in the experiments of Ligrani and Moffat [1986] was 1.27mm with δ/k ≈ 35.

The closest experiment of Nikuradse [1933] comprised of a sand-grain size of 1.6mm at

r/k = 30.6 (where r is the pipe radius), so the difference is small. This similarity in the

roughness of Nikuradse [1933] and Ligrani and Moffat [1986] is partially responsible for the

similar behaviour of ∆U+. The current data are also similar to both the above studies and

in particular follow the Nikuradse [1933] data very closely. Although it is not completely

clear exactly why the gritblasted sample data behave in this way, one reason could be the

similarity between the Fourier filtering (Section 2.2.2) and the process of application of

lacquer to hold the sand grains in place in Nikuradse’s experiments. Since the lacquer was

applied multiple times, to obtain better adherence of sand grains, it may have acted to

effectively smooth out and hence eliminate the extremely small scales of roughness. The

gritblasted sample data follow the data of Nikuradse [1933] remarkably well throughout the

Reynolds number range, which is an important observation. This means that for the first

time, roughness closely resembling Nikuradse’s sand grains has been investigated from the

hydraulically smooth to the fully-rough regime using DNS. The graphite sample study by

Busse et al. [2016] also showed similar agreement with the Nikuradse [1933] data down to
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k+ = 30.

The length of the transitionally rough regime for the current data is quite wide, from

k+
s,eq ≈ 3.26 to k+

s,eq ≈ 78.3, which is similar to that observed by Nikuradse [1933] (k+
s,eq ≈ 5

to k+
s,eq ≈ 70). The regular spherical roughness of Ligrani and Moffat [1986] showed a

comparatively narrow transitionally rough regime, from k+
s,eq ≈ 15 to k+

s,eq ≈ 55. The reason

for this was attributed by Ligrani and Moffat [1986] to the uniformity of the spheres, which

caused a quicker change from smooth to fully-rough behaviour. An irregular distribution of

sand grains would cause a more gradual transition with a wider transitionally rough regime

and the same applies to the irregular gritblasted sample as well. According to Ligrani and

Moffat [1986] and Flack et al. [2012], in general, the onset of roughness effects (beginning

of the transitionally rough regime) as well as the beginning of the fully-rough regime are

strongly dependent on the roughness type and topography.

Schultz and Flack [2007] conducted experiments on a honed surface which was geometri-

cally similar to the honed pipe roughness of Shockling et al. [2006]. For a range of Reynolds

number, comparisons were made with the data of Shockling et al. [2006], Nikuradse [1933]

and Colebrook’s interpolation formula. Schultz and Flack [2007] observed that their data

displayed a Nikuradse-type behaviour, showing ∆U+ ≈ 0 for low k+
s,eq (hydraulically smooth

regime) with a slightly inflectional trend in the transitionally rough regime, similar to the

behaviour observed by Shockling et al. [2006]. Flack et al. [2016] investigated skin-friction

behaviour through experiments on surfaces grit-blasted with various grades of grit. Their

data also showed Nikuradse-type behaviour in the Reynolds number range considered. The

behaviour of the current gritblasted sample data is very similar to that observed in all three

of the above studies. Bradshaw [2000] suggested that realistic surfaces should exhibit more

Colebrook-type rather than Nikuradse-type behaviour owing to the large range of length

scales present compared to the sand grains of Nikuradse [1933]. However, as observed by

the three above mentioned studies and the current results, recent studies have contradicted

this.

To further compare the current data and the experiments of Nikuradse [1933], a plot

of Nikuradse’s log-region velocity profile parameter, A, against the equivalent sand-grain

roughness is shown in Figure 8.7. The experimental data has been digitised from Nikuradse

[1933], Figure 16, whereas for the current data, A is computed using equation (16b) from

Nikuradse [1933], which for channel flow takes the form

Uc
uτ

= A+ 5.75 log

(
δ

ks,eq

)
. (8.4)

The values are tabulated in Table 8.4. To compare the data, A is plotted against log(k+
s,eq),

just like in Nikuradse [1933], Figure 16. Physically, A is the Nikuradse [1933] analogue of

∆U+. Depending on the behaviour of the curve, Nikuradse divided the plot into five dif-

ferent regions (indicated by vertical dashed lines in Figure 8.7), comprising three regimes.

For log(k+
s,eq) ≤ 0.55, the flow was classified in the hydraulically smooth regime whereas

for log(k+
s,eq) > 1.83, the flow was in the fully-rough regime. The transitionally rough
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Figure 8.7: The log-region velocity profile parameter of Nikuradse [1933], A, compared be-
tween his experiments (data digitised from Nikuradse [1933], Figure 16) and
the current data. Black vertical dashed lines indicate hydraulically smooth
(log(k+

s,eq) ≤ 0.55), transitionally rough (0.55 < log(k+
s,eq) ≤ 1.83) and fully-

rough regimes (log(k+
s,eq) > 1.83). Grey vertical dashed lines indicate further

divisions of the transitionally rough regime, depending on the value of A, (0.55 <
log(k+

s,eq) ≤ 0.85), (0.85 < log(k+
s,eq) ≤ 1.15) and (1.15 < log(k+

s,eq) ≤ 1.83).

k+ 3.75 7.5 15 30 40 60 90 120

k+
s,eq ≈ 0.87k+ 3.2625 6.525 13.05 26.1 34.8 52.2 78.3 104.4

log(k+
s,eq) 0.5136 0.8146 1.1156 1.4166 1.5416 1.7177 1.8938 2.0187

A 8.0702 9.3610 9.7642 9.2581 9.0116 8.7848 8.5011 8.5608

Table 8.4: k+, k+
s,eq and the log-region velocity profile parameter of Nikuradse [1933], A, for

the Reynolds number dependence study.

regime, 0.55 < log(k+
s,eq) ≤ 1.83, was further divided into three regions, depending on

whether the value of A increases (0.55 < log(k+
s,eq) ≤ 0.85), remains mostly constant

(0.85 < log(k+
s,eq) ≤ 1.15) or decreases (1.15 < log(k+

s,eq) ≤ 1.83). Excellent agreement of A

with the experimental data is observed, which further strengthens the agreement of ∆U+

(Figure 8.6). Also, the fully-rough regime criterion of Nikuradse [1933], log(k+
s,eq) > 1.83,

was based solely on k+
s,eq. This adds further confirmation that the last two points in the

current data (k+
s,eq = 78.3 and 104.4) are in the fully-rough regime.

8.4 Data characterisation

Since ∆U+ has been obtained for the entire range of Reynolds number, from hydrauli-

cally smooth to the fully-rough flow regime, the next logical step is to characterise the data

by studying its behaviour and trends in the different regimes. Although the lowest value of

∆U+ = 0.35 at k+
s,eq ≈ 3.26 is still not low enough to be classified as hydraulically smooth,

a reference point in this regime is available as ∆U+ = 0 at k+
s,eq = 0 (which means no

roughness). A similar approach as was adopted by Nikuradse [1933] is taken here, though
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the limited amount of data in the current study limits the generality of the predictions to

an extent. The data of Nikuradse [1933] were a result of studies at six different relative

roughness ratios, r/k (where r was his pipe radius), each subject to a range of Reynolds

number (refer Figure 15 in Nikuradse [1933]), which is extremely extensive compared to the

current data set consisting of 8 data points. The relatively small number of points, how-

ever, are enough to make an investigation based on DNS data over the complete Reynolds

number range. Also, the data for each Reynolds number have been statistically averaged

for large times (refer Section 2.5), which makes the uncertainty in ∆U+ small.

The data are characterised using least-squares curve fitting, using the plot of ∆U+

against k+
s,eq on semilogarithmic axes. For fitting purposes, the data are classified into

three sections: the lower transitionally rough regime, the upper transitionally rough regime

and the fully-rough regime. Two separate fits, with different lower bounds on the upper

transitionally rough regime, are made. The fully-rough regime, which is probably physically

reached between k+
s,eq ≈ 52.2 and 78.3 (in agreement with the value of Nikuradse [1933],

k+
s,eq ≥ 70), is taken as k+

s,eq > 78.3 for both fits. Bounds are forced to lie on available

data points, though possibilities may exist where they lie in between points. Data points

in the lower transitionally rough regime are fitted such that the curve can be extended

into the hydraulically smooth regime to give ∆U+ = 0 at k+
s,eq = 0. The quality of the

fit is determined by the rms error, σ, between the data points and the fit as well as the

coefficient of determination, R2. In general, a number of different types of curves (for

example, polynomials, exponentials etc.) were fit for each section and those with the lowest

value of σ, hence highest value of R2 were selected.

Plots of both curve fits are shown in Figure 8.8, with corresponding equations for the
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Figure 8.8: Data characterisation for the Reynolds number range showing the gritblasted
sample data along with curve fits in three different regimes. In the left fit,
f1, the lower and upper transitionally rough regimes are 0 ≤ k+

s,eq ≤ 26.1
and 26.1 < k+

s,eq ≤ 78.3 respectively whereas in the right fit, f2, they are
0 ≤ k+

s,eq ≤ 13.05 and 13.05 < k+
s,eq ≤ 78.3 respectively. The fully-rough regime

is k+
s,eq > 78.3 in both fits. The fully-rough (FR) asymptote is also shown for

comparison.
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regime section σ R2

lower transitionally rough 0 ≤ k+
s,eq ≤ 26.1 0.1288 0.9966

upper transitionally rough 26.1 < k+
s,eq ≤ 78.3 0.0461 0.9994

fully rough k+
s,eq > 78.3 - 1

regime section σ R2

lower transitionally rough 0 ≤ k+
s,eq ≤ 13.05 0.0446 0.9988

upper transitionally rough 13.05 < k+
s,eq ≤ 78.3 0.0378 0.9998

fully rough k+
s,eq > 78.3 - 1

Table 8.5: Best fit parameters for the curve fits, f1 (top), shown in Figure 8.8 (left) and
f2 (bottom), shown in Figure 8.8 (right). σ = rms error of the fit and R2 =
coefficient of determination.

left fit, f1, as

0 ≤ k+
s,eq ≤ 26.1 : ∆U+ = 0.11(k+

s,eq)
1.14, (8.5)

26.1 < k+
s,eq ≤ 78.3 : ∆U+ = 3.22 ln(k+

s,eq)− 6.17, (8.6)

k+
s,eq > 78.3 : ∆U+ = 2.78 ln(k+

s,eq)− 4.21 (8.7)

and for the right fit, f2, as

0 ≤ k+
s,eq ≤ 13.05 : ∆U+ = 0.063(k+

s,eq)
1.37, (8.8)

13.05 < k+
s,eq ≤ 78.3 : ∆U+ = 3.22 ln(k+

s,eq)− 6.15, (8.9)

k+
s,eq > 78.3 : ∆U+ = 2.78 ln(k+

s,eq)− 4.21. (8.10)

The best fit parameters are shown in Table 8.5. Both fits in the lower transitionally rough

regime, equations (8.5) and (8.8), satisfy the condition ∆U+ = 0 at k+
s,eq = 0. In both plots,

the data in the lower transitionally rough regime follow a power law behaviour whereas

in the upper transitionally rough regime they follow a log-law behaviour. In the upper

transitionally rough regime, f1 and f2 show very similar fitting coefficients (and hence

similar quality) but they differ in the lower transitionally rough regime where the fit quality

of f2 is better than that of f1 (Table 8.5), reducing the fit rms error by approximately

65%. Also, equations (8.5) and (8.8) depict the variation in fitting coefficients in the lower

transitionally rough regime depending on section bounds. The data of Nikuradse [1933] in

the range 14.13 ≤ k+
s,eq ≤ 67.61 gave ∆U+ = 1.79 ln(k+

s,eq) − 6. Although equations (8.6)

and (8.9), which are in a similar range, have a different slope than the preceding equation,

the two data sets show good agreement in the range as seen from Figure 8.6. In the fully-

rough regime, the last two data points are simply connected and hence the fits do not have

any rms error and give R2 = 1 (Table 8.5). The slope of the fully-rough asymptote is

1/κ = 1/0.4 = 2.5, whereas the fits in the fully-rough regime, equations (8.7) and (8.10)

both give a slope of 2.78, a difference of approximately 11%.

Bradshaw [2000] was unconvinced by the notion of a “critical roughness height” above

which roughness effects start to appear, and stated that a power-law behaviour of the de-
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parture of the smooth-wall additive constant, i.e. ∆U+, was also plausible. On the basis

of Stokes flow and Oseen’s approximation, for sparse spherical roughness, he postulated

that ∆U+ may vary as (k+
s,eq)

2 for low values of equivalent sand-grain roughness. Although

a specific regular roughness was considered in this approximation, in general, it could be

applied to any type of roughness at low k+
s,eq and sufficiently high δ/k. As seen from equa-

tion (8.5), ∆U+ = 0.11(k+
s,eq)

1.14, and equation (8.8), ∆U+ = 0.063(k+
s,eq)

1.37, in the region

of low k+
s,eq, a power-law behaviour is indeed supported by the curve fits to the DNS data.

However, the behaviour is closer to linear than quadratic in nature, as seen from the power

of k+
s,eq in both equations. The differing behaviour may be due to several reasons. Firstly,

Bradshaw [2000] made many simplifying approximations in his postulation: he assumed

regular roughness, in the form of spheres, which were sparsely distributed, and also men-

tioned that his argument would be questionable for denser roughness. The current rough

surface sample, although not strictly dense according to Jiménez [2004] (because its solidity

is less than 0.15, from Table 3.2), is nevertheless denser than the roughness of Bradshaw

[2000] and has a highly irregular topography (Figure 8.2 (left)) with a large number of

length scales. Also, the argument of Bradshaw [2000] was entirely theoretical and, although

based on well-established theories, could possibly be unreliable for more practical cases.

The current data are based on DNS (the code for which has been thoroughly validated)

and are considered very reliable. Secondly, and possibly more importantly, it is likely that

the behaviour of ∆U+ for low k+
s,eq depends on the rough surface under consideration. For

15 ≤ k+ ≤ 120, Busse et al. [2016] compared DNS results of the graphite sample (s7 from

Table 3.1 and Figure 3.4 (g)) and the current gritblasted sample and observed differences in

∆U+ between the two. The differences were possibly due to differing surface sample skew-

ness; the graphite sample being positively skewed (peak-dominated) whereas the gritblasted

sample being negatively skewed (valley-dominated). Based on surface skewness and other

topographical properties (as shown in Table 3.2), it may be possible for different samples

to exhibit differing behaviour in ∆U+ at low k+
s,eq. Although Busse et al. [2016] did not

study the graphite sample at k+ = 3.75 and 7.5, doing so and performing a similar data

characterisation as the current section may be able to confirm the above-mentioned possibil-

ity. For irregular roughness, an experimental study on the onset of roughness effects in the

transitionally rough regime conducted by Flack et al. [2012] suggested that the behaviour

of ∆U+ in the transitionally rough regime is topography dependent. Although they did not

study the departure behaviour of ∆U+ from its smooth-wall value, it is speculated that the

preceding observation could have an influence on it.

8.5 Effects of tiling

In this section, the influence of sample tiling (to obtain k+ < 30, as described in Sec-

tion 8.1) on the flow is studied. Initially, the flow field is examined qualitatively. Since the

sample is periodic in the streamwise and spanwise directions, the domain boundaries are

also tile boundaries. These effects are studied for the 2×2 and 4×4 tiled cases, i.e. k+ = 15

and 7.5 respectively. Figure 8.9 shows contours of instantaneous streamwise, u (left), and
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Figure 8.9: Contours of instantaneous flow velocities, u (left) and w (right), at z+ = 0 for
k+ = 15 (top) and k+ = 7.5 (bottom). Grey regions indicate the rough surface.
Dashed lines denote tile boundaries in all plots. Flow is from left to right.

Figure 8.10: Contours of instantaneous wall-normal flow velocity, w, at z+ = 180 for k+ =
15 (left) and k+ = 7.5 (right). Dashed lines denote tile boundaries in all plots.
Flow is from left to right.

wall-normal velocities, w (right), at z+ = 0 for k+ = 15 (top) and k+ = 7.5 (bottom). On

close examination of individual tiles (for either k+), the flow field shows some qualitatively

similar features in each tile. However, this effect disappears at higher z+, as seen from plots

of w at the channel centre, z+ = 180 (Figure 8.10). This will be quantified using velocity

two-point correlation plots in subsequent paragraphs.

The time-averaged flow field behaves slightly differently. Figure 8.11 shows contours

of time-averaged streamwise, u (left), and wall-normal velocities, w (right), at z+ = 18

for k+ = 30 (top), k+ = 15 (middle) and k+ = 7.5 (bottom). Since only a qualitative

analysis is conducted at this stage, the colourbar range for each plot is adjusted to make

the flow features clearly visible. For a given tiled case, the main features of the flow field on

each tile appear to be similar to all other tiles for that case and resemble the flow features

for k+ = 30. This is seen quite clearly for w and the effect is stronger than seen in the

instantaneous flow field (Figure 8.9). This is understandable, as the roughness topography

of each tile for a tiled case is same as the roughness topography for k+ = 30 (which is not

tiled). The flow field in each tile also appears to be individually periodic in both streamwise

and spanwise directions (especially for w). The time-averaging interval for k+ = 30, 15 and
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Figure 8.11: Contours of time-averaged flow velocity, u (left) and w (right), at z+ = 18 for
k+ = 30 (top), k+ = 15 (middle) and k+ = 7.5 (bottom). Dashed lines denote
tile boundaries in all plots. Flow is from left to right.

7.5 was also modified to check its effect on the flow field but the same time-averaged flow

features were observed at z+ = 18 irrespective of the averaging time (which in all cases was

large enough to obtain converged statistics). These effects of tiling, however, also disappear

for higher wall-normal distances. For example, Figure 8.12 shows plots of w at the channel

centre, z+ = 180, for k+ = 15 (left) and k+ = 7.5 (right). The flow field no longer appears

to be similar in all tiles for a given k+ and the individual tile periodicity appears to be seen

only in the streamwise direction. Despite velocity variations being small, Figure 8.12 also

shows streamwise coherent structures, which appear to be similar to the low momentum

regions observed by Lee et al. [2011] in the outer regions of the rough-wall boundary layer

from DNS studies over cubes.

Figure 8.12: Contours of time-averaged wall-normal velocity, w, at z+ = 180 for k+ = 15
(left) and k+ = 7.5 (right). Dashed lines denote tile boundaries in all plots.
Flow is from left to right.
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Contour plots of the time-averaged flow field, spatially averaged in the streamwise di-

rection, are studied to indicate any secondary flow features that might be caused due to the

tiling, especially near the tile boundaries. Figure 8.13 shows u (left) and w (right), both

spatially averaged in the streamwise direction for k+ = 30 (top), k+ = 15 (middle) and

k+ = 7.5 (bottom). The colourbar range for w is adjusted to make the flow features clearly

visible. Plots of u resemble smooth-wall flow with decreasing k+ but there is no evidence

of any secondary flow features near tile boundaries. Plots of w show certain flow features

near tile boundaries for k+ = 15 and 7.5, which may at first appear to be secondary flow

features due to tiling. However, for a feature to be regarded as a direct effect of tiling, it

must be present at all tile boundaries in a plot of time- and spatially-averaged velocity. The

above-mentioned flow features, although qualitatively present at all tile boundaries, differ

Figure 8.13: Contours of time-averaged flow velocities, u (left) and w (right), spatially av-
eraged in the streamwise direction for k+ = 30 (top), k+ = 15 (middle) and
k+ = 7.5 (bottom). Dashed lines denote tile boundaries in all plots. Flow is
into the page.
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in size and magnitude. Hence they cannot be regarded as a direct effect of tiling and are

simply flow features arising due to the roughness.

Plots of the velocity two-point correlation are studied in order to obtain further insight

into the effect of tiling. If f is an array consisting of N elements then, in general, its

two-point correlation with itself for separation index ∆, is given as

Rff (∆) =

N−∆∑
i=1

(fi − f)(fi+∆ − f)

N∑
i=1

(fi − f)2

, (8.11)

where fi is the ith element of f and f is the arithmetic mean of f , given by f = 1
N

N∑
i=1

fi.

In the following, for all separation indices, ∆ = [0 N ], equation (8.11) is computed for each

row of a two-dimensional flow field in a y − z plane. Hence only spanwise separations are

considered. Each row will thus provide an array of values for the two-point correlation,

which are then stacked to obtain a matrix. The spanwise periodicity of the flow must also

be taken into account. This matrix is used to visualize a two-dimensional contour plot of

the two-point correlation. The contour plot is thus a collection of one-dimensional two-point

correlations because only a single type of separation, i.e. spanwise, is considered.

Figure 8.14 shows contour plots of the above-mentioned two-point correlation for k+ =

Figure 8.14: Two-point correlation (spanwise separations) of time-averaged flow velocity,
spatially averaged in the streamwise direction, for k+ = 30. Ruu (top left),
Rvv (top right) and Rww (bottom).
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Figure 8.15: Two-point correlations (spanwise separations) for k+ = 30 at z/δ = 0.1 (z+ =
18) from Figure 8.14. Since the flow field is periodic in the span, only half the
total number of separations, ∆y, are shown.

30. For the time-averaged flow velocity, spatially averaged in the streamwise direction,

it is computed considering spanwise separations. Since this case is not tiled, it serves as

reference for comparison when similar plots will be made for k+ = 15 and 7.5. Additionally,

Figure 8.15 shows two-point correlations for the same case but at z/δ = 0.1 (z+ = 18), which

is very close to the roughness peak for this sample. It is observed that the correlations do

not drop to zero, which may suggest the computational domain size is small for the given

case. However, it was mentioned in Section 4.3 on domain size validation that domain

restrictions for rough walls are less stringent than smooth walls as roughness is known to

produce relatively more isotropic turbulence near the wall. Relatively small domain sizes

have also been used in the computational studies of the graphite sample (s7 from Table 3.1

and Figure 3.4 (g)) by Busse et al. [2015] and of cube roughness by Coceal et al. [2007]

and Coceal et al. [2006]. An important conclusion of these studies was that relatively small

domains are enough to study mean and turbulent statistics, which is the main purpose of

this study. The comparative study of Busse et al. [2016] as well as the surface correlations

study of Thakkar et al. [2017] also used the gritblasted sample with the same domain extents

as used in the current chapter (Figure 8.2 (left)). Relatively small domains have also been

used in smooth-wall simulations in the past, for example, Lozano-Durán and Jiménez [2014]

used a domain size (Lx/δ × Ly/δ) of (π × π/2).

According to Kim et al. [1987], who carried out smooth-channel numerical studies at

Reτ = 180, the spanwise separation at which the minimum Ruu occurs provides an estimate

of the mean separation between high- and low-speed fluid. The mean spanwise spacing

between vortical streaks should be about twice this distance. From Figure 8.15, minimum
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Ruu occurs at ∆y ≈ 0.425 or ∆y+ ≈ 76, which means the spanwise streak spacing should

be roughly ∆y ≈ 0.85 or ∆y+ ≈ 153. This is confirmed by all plots in Figure 8.14 with

higher correlation value (green) regions visible at approximately 0 ≤ z/δ ≤ 0.5. It is worth

noting that streak spacing in the spanwise direction and distance from the wall are also

governed by the roughness height and topography. Kim et al. [1987] also mentioned the

spanwise separation at which the minimum of Rww occurs gives the mean diameter of the

streamwise vortical structure. From Figure 8.15, minimum Rww occurs at ∆y ≈ 0.319 or

∆y+ ≈ 57. This approximate vortex diameter is confirmed by the Rww plot in Figure 8.14

with higher correlation value (green) regions visible around ∆y = 1 and 0 ≤ z/δ ≤ 0.5.

Figure 8.16 shows similar contour plots for k+ = 15 and 7.5. The observations that

follow are made for all Ruu, Rvv and Rww. In general, since the flow is periodic in the

Figure 8.16: Two-point correlations (spanwise separations) of time-averaged flow velocity,
spatially averaged in the streamwise direction for k+ = 15 (left) and 7.5 (right).
Ruu (top), Rvv (middle) and Rww (bottom). Dashed lines denote tile bound-
aries in all plots.
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span, the two-point correlations are symmetrical about the half-span separation (which is

also a tile boundary). Additionally, since the individual tile periodicity is preserved up to

a certain wall-normal distance, the two-point correlation appears symmetrical about tile

boundaries up to z/δ ≈ 0.25 for k+ = 15 and z/δ ≈ 0.125 for k+ = 7.5. This means high

values of correlation are observed near tile boundaries up to these wall-normal distances.

A comparatively strong tiling effect is seen for k+ = 7.5 at half-span separation, which

appears to be sustained up to relatively large wall-normal distances (up to approximately

the channel centre for Ruu and up to z/δ ≈ 0.5 for Rww). These tiling effects, however,

can be regarded as relatively small, as their presence is seen only in two-point correlation

plots whereas the time-averaged velocity plots spatially averaged in the streamwise direction

(Figure 8.13) do not show any significant effects. Also, near-wall flow features in each tile

at k+ = 15 and 7.5 are similar to those observed at k+ = 30 (Figure 8.14). These features,

however, decrease in size with decreasing k+ and appear to be merging with each other.

Plots in Figure 8.16 also show a lack of symmetry in the z−direction, which is stronger

for k+ = 7.5 than k+ = 15. The normalisation of the two-point correlation could lead to

this phenomenon. Variations in velocities used to obtain the plots in Figure 8.16 are small

and when normalised by the variance, in equation (8.11), could amplify the asymmetry.

As a check, Figure 8.17 shows plots of the non-normalised two-point correlations, Ruu (top

left), Rvv (top right) and Rww (bottom), for k+ = 7.5, which show better symmetry in z

Figure 8.17: Non-normalised two-point correlations (spanwise separations) of time-averaged
flow velocity, spatially averaged in the streamwise direction for k+ =7.5. Ruu
(top left), Rvv (top right) and Rww (bottom). Dashed lines denote tile bound-
aries in all plots.
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Figure 8.18: Instantaneous wall-normal velocity, w (left), and corresponding spanwise two-
point correlation (right) at x = Lx/4 for k+ = 30 (top), k+ = 15 (middle)
and k+ = 7.5 (bottom). Flow is into the page. Grey regions in the left plots
denote the rough surface. White regions in the right plots denote areas with
non-existent correlation values due to zero velocities. Dashed lines denote tile
boundaries in all plots.

compared to Figure 8.16.

Similar plots are also made for the instantaneous wall-normal velocity. Figure 8.18 shows

contour plots of w (left) and the corresponding two-point correlation (right) at x = Lx/4 for

k+ = 30 (top), 15 (middle) and 7.5 (bottom). Individual tile periodicity in the correlation

is observed for k+ = 15 and 7.5, again up to a certain wall-normal distance. This distance

(z/δ ≈ 0.05 for both k+ = 15 and 7.5), however, is much smaller compared to that observed

in the two-point correlations of Figure 8.16. This effect is seen, again, only in the correlation

plots and not in the instantaneous velocity plots and hence can be regarded as small.

Although the w flow field is plotted at different flow times for the three cases, this fact
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Figure 8.19: Standard deviation of w for each z/δ, normalized by the spatially-averaged u.
The red dashed line denotes a 5% threshold.

should not have a significant influence on the observations made above.

The final part of this section relates tiling effects to the dispersive stresses and hence

thickness of the roughness sublayer. Busse et al. [2016] studied the thickness of the rough-

ness sublayer by computing the standard deviation of w in each wall-normal plane, and

normalising it by the time- and spatially-averaged streamwise velocity on the same plane.

A similar approach is adopted here and the plot is shown in Figure 8.19 for k+ = 15 and 7.5.

The quantity on the y-axis, w̃/U+, which is a representation of the wall-normal dispersive

stress, decreases to below 5% close to the maximum roughness height for both cases. It

drops to below 1% at z/δ ≈ 0.3 for k+ = 15 and z/δ ≈ 0.15 for k+ = 7.5. Effects of

tiling are seen up to similar wall-normal distances for corresponding k+ (as seen from the

two-point correlation plots of Figure 8.16).

From this section, it can be concluded that, although tiling does affect the flow, the

effects are confined to the near-wall regions close to tile boundaries and do not have a sig-

nificant influence on the overall flow field. This is qualitatively demonstrated by the absence

of secondary flow features near tile boundaries from plots of time-averaged streamwise and

wall-normal velocity, spatially averaged in the streamwise direction. Close to the rough

wall, the flow field is qualitatively periodic in each tile and this effect causes the velocity

two-point correlation to be symmetric about tile boundaries. The time-averaged flow field

is affected up to a greater wall-normal distance than the instantaneous flow field. Finally,

plots of wall-normal dispersive stress for the time-averaged flow field at k+ = 15 and 7.5

show that tiling effects are restricted to within the roughness sublayer.
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Closing remarks

9.1 Summary and conclusions

A direct numerical simulation study, investigating the physics of incompressible turbu-

lent flow over irregular industrially relevant rough surfaces using an immersed boundary

code, has been presented. A three-step numerical methodology, comprising surface data

acquisition (which involves surface scanning using a variable focus microscope), surface pre-

processing (which involves section selection, scaling and Fourier filtering) and conducting

DNS of flow over the surface sample, is utilised. Seventeen rough surface samples with a

wide range of topographical properties are considered.

Studies in the range 45 ≤ Reτ ≤ 95 for the gritblasted sample indicate that the flow

is laminar up to Reτ = 89. At Reτ = 89.5, small velocity fluctuations and quasi-periodic

behaviour of the mean centreline velocity, 〈U+
c 〉, with time, are observed. Thus the critical

Reynolds number is in the range 89 ≤ (Reτ )crit ≤ 89.5. Fluctuations in the three velocity

components continue to grow until Reτ = 91 and the flow is turbulent for Reτ ≥ 92. Thus

the transition Reynolds number is in the range 91 ≤ (Reτ )trans ≤ 92. Transition depends

on the surface topography as some roughness peaks trigger fluctuations before others. The

earliest wall-normal fluctuations close to the rough wall are not generated by the highest

peak of the surface. Simulations are carried out with laminar and turbulent initial conditions

and there is no evidence of hysteresis effects.

Following on, simulations for all seventeen surface samples are conducted at Reτ = 180,

for which the flow is fully turbulent but transitionally rough. Investigations are carried

out into the rough-wall flow physics, along with studies of the variation of selected flow

properties with a range of surface topographical properties. All samples are scaled to

the same physical roughness height such that δ/k = 6. Nevertheless, a wide range of

roughness function, ∆U+, values is obtained, such that 1.28 ≤ ∆U+ ≤ 5.02. Thus it is

concluded that the roughness effect depends not only on the roughness height but also on the

detailed surface topography. Mean streamwise velocity defect profiles for all samples collapse

with the smooth-wall data away from the rough wall, thus satisfying the wall-similarity

hypothesis of Townsend [1976] for the mean flow. Most samples show complete flow reversal

deep within their roughness valleys, as indicated by the volume fraction of negative time-
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averaged streamwise velocity. Some samples such as s6 (filed 2) and s9 (ground), however,

do not show this behaviour because of their highly anisotropic topography. Second order

statistics show considerable variation depending on the surface topography. ∆U+ decreases

with 〈u′2〉max but increases with 〈v′2〉max. At z/δ = 0, wall-normal fluctuations show an

increasing trend with both, average and rms roughness heights, Sa and Sq. Close to the

rough walls, 〈u′2〉, 〈v′2〉 and 〈w′2〉 are greater than the corresponding smooth-wall values

because rough wall fluctuations can occur very close to the roughness features, including

for z/δ ≤ 0, which is not possible for the smooth wall. Roughness increases the shear

stress significantly and the Reynolds shear stress profiles at z/δ = 0 show a decreasing

trend with the streamwise effective slope, ESx. Behaviour of the turbulent kinetic energy

(TKE) profiles is very similar to that of 〈u′2〉. Values of normal components of the Reynolds

stress anisotropy tensor, bi,j , at peak values of 〈TKE〉 and 〈u′iu′j〉 show that the streamwise

fluctuations have the greatest contribution to the TKE. Comparison with the corresponding

smooth-wall values of bi,j shows reduced flow anisotropy for all rough surface samples. Most

samples have dispersive stresses that are less than the corresponding Reynolds stresses.

Streamwise anisotropic samples, such as s2 (composite 1) and s6 (filed 2), however, show

much higher values of streamwise dispersive stress compared to streamwise Reynolds stress

because they promote large regions of high u. Peak streamwise dispersive stress, 〈ũ2〉max,

shows an increasing trend with Lcor
x Samples such as s2 (composite 1) and s9 (ground) show

relatively large values of wall-normal dispersive stress, 〈w̃2〉, at the channel centre, possibly

due to the relatively low δ/k ratio and their anisotropic topography. Results at Reτ = 180

along with respective surface topographical properties form the simulation database of rough

surface samples.

Further studies on the variation of flow properties with surface topography at Reτ = 180

show that ∆U+ correlates well with the Sigal-Danberg parameter of van Rij et al. [2002].

An improvement in the fit is obtained by formulating a new parameter based on the surface

properties of four outlier data points. Subsequently, based on all topographical properties

from the simulation database, a thorough surface parametrisation is conducted for ∆U+

and 〈TKE〉max. A newly formulated method, that determines which surface topographical

properties are important and how new properties can be added to an empirical model, is

tested. Optimised models with several roughness properties are systematically developed.

In determining ∆U+, besides the known properties of surface solidity, Sf/S, and skewness,

Ssk, it is shown that the streamwise correlation length, Lcor
x , and rms roughness height, Sq,

are also significant. Although the models cannot currently be used to predict the equivalent

sand-grain roughness height, ks,eq, since the underlying data are in the transitionally rough

regime, they determine precisely which properties influence ∆U+, and it is likely that

the same properties contribute to the determination of ks,eq in the fully-rough regime.

〈TKE〉max is determined by Ssk and Sq, along with the mean forward-facing surface angle,

α, and spanwise effective slope, ESy.

Lastly, to show that a Reynolds number sweep of a highly irregular rough surface is

feasible using DNS and to subsequently determine the equivalent sand-grain roughness
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height, simulations are conducted on the gritblasted sample for a range of Reynolds number,

such that 180 ≤ Reτ ≤ 720, while the roughness height in viscous units varies in the range

3.75 ≤ k+ ≤ 120. ∆U+ increases with k+ and it is shown that the fully-rough regime is

reached between k+ = 60 and 90. Excellent agreement of the simulation data with the

experimental data of Nikuradse [1933] is observed, with k+
s,eq ≈ 0.87k+. Thus, for the first

time, roughness closely resembling the sand-grain roughness of Nikuradse [1933] has been

investigated using DNS in the entire Reynolds number range, from hydraulically smooth to

the fully-rough regime. The data is characterised in the range using high quality curve fits.

Behaviour of the data for low k+
s,eq differs from that speculated by Bradshaw [2000] and

it is postulated to be dependent on the surface topography. Sample tiling used to obtain

k+ ≤ 15 affects the flow field very mildly. Qualitatively, very close to the rough wall, the

flow in each tile is individually periodic (in both the streamwise and spanwise directions).

This effect, however, is observed only at tile boundaries, is significant only in the velocity

field two-point correlations compared to the velocity field itself, and is stronger for the time-

averaged flow than the instantaneous flow. The effect rapidly disappears with increasing

wall-normal distance. It is also shown that the effects of tiling are observed up to about

the same distance from the rough wall as the wall-normal dispersive stress.

Outer-layer similarity of the mean flow is observed for all results, including cases at

relatively low δ/k = 6. This is an indication that the criterion proposed by Jiménez [2004],

δ/k ≥ 40 for universal behaviour, might be too stringent for the mean flow (as also men-

tioned by Placidi and Ganapathisubramani [2015], who also studied roughness at relatively

low δ/k ≈ 10). Overall, the objectives set out in Section 1.2 have been achieved. Further-

more, the extensive amount of data generated at Reτ = 180 could also be used in future

studies or as validation data for other studies on roughness.

9.2 Key achievements

The key achievements of the current work are summarised as follows.

• With respect to laminar to turbulent transition over a selected rough surface sample,

the critical Reynolds number at which earliest fluctuations are observed lies in the

range 89 < (Reτ )crit ≤ 89.5 and the transition Reynolds number at which the flow is

turbulent lies in the range 91 < (Reτ )trans ≤ 92. Thus the flow is laminar for Reτ ≤ 89

and turbulent for Reτ ≥ 92.

• An extensive database of direct numerical simulation results (at Reτ = 180) and sur-

face topographical properties has been developed, covering a relatively wide range of

irregular, realistic and industrially relevant roughness, consisting of seventeen surface

samples.

• A deeper understanding of irregular rough-wall flow physics has been achieved, in-

cluding:

– Complete flow reversal is observed deep within the roughness valleys.
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– ∆U+ decreases with the peak streamwise fluctuations whereas it increases with

the peak spanwise fluctuations.

– Samples with streamwise anisotropic topographies exhibit streamwise dispersive

stress values higher than corresponding streamwise Reynolds stresses.

– Peak streamwise dispersive stress shows an increasing trend with the streamwise

correlation length of the samples.

• The key surface properties influencing ∆U+ (in decreasing order of influence) are

surface solidity, Sf/S, streamwise correlation length normalized by the mean peak-

to-valley height, Lcor
x /Sz,5×5, rms roughness height normalized by the mean peak-to-

valley height, Sq/Sz,5×5 and surface skewness, Ssk.

• The key surface properties influencing peak profile turbulent kinetic energy, 〈TKE〉max,

(in decreasing order of influence) are mean forward-facing surface angle, α, skewness,

Ssk, rms roughness height normalized by the mean peak-to-valley height, Sq/Sz,5×5

and spanwise effective slope, ESy.

• Remarkable agreement is found between the data of the gritblasted sample and that of

Nikuradse [1933], in terms of ∆U+ and Nikuradse’s log-region velocity profile param-

eter, A. This implies that, for the first time, roughness closely resembling Nikuradse’s

sand grains has been investigated in the entire Reynolds number range using direct

numerical simulations.

• An understanding of the behaviour of ∆U+ with the equivalent sand-grain roughness

height, k+
s,eq, through data characterisation over the entire Reynolds number range

(from hydraulically smooth to the fully-rough regime), with excellent quality curve

fits throughout.

• A collapse of the velocity defect profiles away from the wall with the corresponding

smooth-wall data is seen for all simulations (including cases at relatively low channel

half-height to roughness height ratio of δ/k = 6), thus satisfying the wall-similarity

hypothesis of Townsend [1976] for the mean flow.

9.3 Future work

Based on the outcomes of the present work, the following ideas are recommended for

further work in the future.

• A straightforward extension of the work would be to expand the simulation results

database (Chapter 6) with more number of rough surfaces and, especially, with cases

in the fully-rough regime. Since the current database of 17 surfaces represents a

relatively small class of roughness, the addition of further types of roughness, with

an even wider range of topographical properties, would serve to establish further

confidence in the surface parametrisation (Chapter 7). Additional results could be
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numerical as well as experimental and need not be restricted to irregular roughness.

For example, the studies of Flack et al. [2016] and De Marchis et al. [2010] could

be valuable additions. New surfaces could also be obtained by artificially modifying

surface properties, as done previously by Yuan and Piomelli [2014], or by construct-

ing entire surfaces artificially, as done by Napoli et al. [2008] and by most studies

on regular roughness. Additionally, conducting systematic parametric studies of cer-

tain surface properties, which have been proved important in literature (for example,

surface solidity, skewness and effective slope), would provide a useful insight into the

topographical aspect of roughness. These studies would serve to establish the impor-

tance of specific properties over others in the relevant context, most importantly in

influencing the equivalent sand-grain roughness height. Such studies, among others,

have been conducted by Placidi and Ganapathisubramani [2015] (who systematically

varied the solidity), Chan et al. [2015] (varied the roughness height and wavelength)

and Schultz and Flack [2009] (varied the roughness height and effective slope). Flow

quantities other than ∆U+ and TKE could also be considered (such as other turbulent

statistics, for example, u′2, or w′2 as done by Orlandi and Leonardi [2006]). Carrying

out the above mentioned ideas would lead to a much more robust parametrisation of

roughness.

• Despite advances in the use of massively parallel, high performance computing, limi-

tations on computational cost prevent the application of DNS to industrially relevant

Reynolds numbers. Mesh resolution for DNS scales approximately with the cube of

the Reynolds number and smaller time steps are required as the mesh becomes finer.

An alternative is to use LES which is much cheaper (because only the large scales of

motion are resolved), but leads to challenges in the near-wall region because of the

importance of small scales in that region. Hence many LES in practise end up being

wall-resolved, wherein the mesh resolution requirements are much less stringent com-

pared to DNS but a strong scaling with Reynolds number remains. Another option is

wall-modelled LES, which has better scaling characteristics, but relies heavily on wall

treatment, which must be of reduced order and thus compromises on accuracy. Thus,

LES is also impractical to be routinely applied to industrial problems. To circumvent

the mesh resolution and Reynolds number scaling problems, a new approach, based

on a combination of LES for the bulk flow and an array of non-space-filling quasi-

DNS, which sample the response of near-wall turbulence to large scale forcing, has

been proposed and evaluated by Sandham et al. [2017]. The quasi-DNS blocks are

able to locally respond to changes in the outer-layer, provided by the LES. In return,

the wall shear stress required by the LES as a boundary condition is provided by the

quasi-DNS. The biggest advantage of this method is the reduction in mesh resolution

requirements, as the main flow is treated with a coarse-grid LES, with the near-wall

sampled quasi-DNS acting as wall-functions. The method was formulated and vali-

dated for turbulent incompressible smooth-channel flow at Reτ = 4200 (the current

highest Reτ for DNS of channel flow), using a tiny fraction of the mesh size required
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for conventional DNS at such a high Reynolds number. Extension to rough walls

seems logical due to the abundance of roughness seen in engineering applications. In

order to study universal roughness behaviour, the roughness height must be small

compared to the macroscopic length scale of the flow (channel half-height, for exam-

ple), as suggested by Jiménez [2004]. Combining this with the high Reynolds numbers

required to achieve fully-rough conditions puts strict requirements on the mesh res-

olution, especially in the near-wall region. Additionally, when irregular roughness is

introduced in the mix, the computational cost further rises. Thus, to study univer-

sal roughness behaviour for irregular roughness at fully-rough conditions, the above

method combining LES and quasi-DNS would be quite beneficial.



Appendix A

Parameters for the characterisation

of rough surfaces

A large number of surface parameters are used to characterise the rough surfaces in the

current study. Mainsah et al. [2001] give a very extensive range of metrological parameters

that may be used to describe rough surfaces. The following are computed for the filtered

samples.

The mean reference plane of a sample is set at z = 0 and hence the mean roughness

height of the sample, h, is assumed to be zero.

h =
1

MN

M,N∑
i,j

hi,j = 0,

where hi,j are the coordinates of the roughness height obtained after filtering and M,N are

the number of points discretising the surface in x, y respectively.

A.1 Amplitude parameters

Amplitude parameters are computed based on the distribution of roughness amplitude.

The roughness height in this study is defined by the mean-peak-to-valley height, Sz,5×5. To

compute this quantity, a sample is first partitioned into 5× 5 sections of equal size and the

maximum and minimum height for each section is computed. Sz,5×5 is then the difference

between the mean of the maxima and mean of the minima. In the case of samples that are

comprised of smaller tiled samples (for instance, the sample at k+ = 15 from Chapter 8),

the Sz,5×5 of each tile, which is the same, represents the overall roughness height of the



152 Appendix A. Parameters for the characterisation of rough surfaces

sample. Other common measures for roughness height are,

average roughness height: Sa =
1

MN

M,N∑
i,j

|hi,j |,

RMS roughness height: Sq =

√√√√ 1

MN

M,N∑
i,j

h2
i,j .

The maximum peak-to-valley height is given as

Sz,max = max(hi,j)−min(hi,j).

Other amplitude parameters, which describe the shape of the rough surface, include,

surface skewness: Ssk = S−3
q

1

MN

M,N∑
i,j

h3
i,j ,

surface flatness (or kurtosis): Sku = S−4
q

1

MN

M,N∑
i,j

h4
i,j .

A.2 Spacing parameters

Roughness spacing parameters characterise the spacing of the roughness features. They

are computed from the areal autocorrelation function,

Rh(l,m) = S−2
q 〈hi+l,j+mhi,j〉.

The shortest correlation length is defined as

Sal = min
{√

(l∆s)2 + (m∆s)2|Rh(l,m) ≤ 0.2
}

and the longest correlation length is defined as

Ssl = max
{√

(l∆s)2 + (m∆s)2|Rh(l,m) ≥ 0.2 ∩ (l,m) ∈ central lobe
}
.

The central lobe of the areal autocorrelation function is the simply connected area where

Rh > 0.2 that contains (0, 0). The surface texture aspect ratio, Str is given by the ratio of

the shortest to longest correlation lengths,

Str =
Sal
Ssl

Surfaces with Str ≥ 0.5 are in general regarded as isotropic. Surfaces with Str < 0.3 are

considered anisotropic (refer Mainsah et al. [2001]). The surface correlation lengths are
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given as

streamwise correlation length: Lcor
x = min{l∆s|Rh(l, 0) ≤ 0.2},

spanwise correlation length: Lcor
y = min{m∆s|Rh(0,m) ≤ 0.2}.

A parameter called Sflow
tr , which depends on the streamwise and spanwise correlation lengths,

has been defined as

Sflow
tr =

Lcor
y

Lcor
x

.

A.3 Aerodynamic parameters

In the context of aerodynamics, several other geometric parameters for the character-

isation of rough surfaces have been defined. With respect to two-dimensional roughness,

Napoli et al. [2008] introduced the streamwise effective slope, ES. For three-dimensional

surfaces,

streamwise effective slope: ESx =
1

LxLy

∫ Lx

0

∫ Ly

0

∣∣∣∣∂h(x, y)

∂x

∣∣∣∣ dxdy,
spanwise effective slope: ESy =

1

LxLy

∫ Lx

0

∫ Ly

0

∣∣∣∣∂h(x, y)

∂y

∣∣∣∣ dxdy.
The solidity or frontal area ratio has been used extensively in literature and is an indication

of roughness density. It is given by the ratio of the total frontal area of all roughness

elements to the planform area of the sample, Sf/S. In the context of the present work,

a roughness element is defined as the smallest discretised unit of roughness of the filtered

sample.

The generalised Sigal-Danberg parameter as defined by van Rij et al. [2002] is given as

Λs =

(
S

Sf

)(
Sf
Sw

)−1.6

,

where S = LxLy is the planform area of the corresponding smooth surface. Sf is the total

frontal area of all roughness elements and is given as

Sf =

∫ Lx

0

∫ Ly

0

∣∣∣∣rx∂h∂x + ry
∂h

∂y

∣∣∣∣W (x, y)dxdy.

Hence S/Sf represents the inverse of the solidity. Sw is the total area of all roughness

elements wetted by the flow, given as

Sw =

∫ Lx

0

∫ Ly

0

√√√√[(∂h
∂x

)2

+

(
∂h

∂y

)2

+ 1

]
W (x, y)dxdy.

The function W (x, y) indicates whether or not a local infinitesimal surface element is wetted
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with respect to a given flow direction, r = (r1, r2, 0) (where |r| = 1).

W (x, y) =

{
1 for r · n < 0

0 for r · n ≥ 0

}
, where n(x, y) =

(
−∂h
∂x
,−∂h

∂y
, 1

)
.

Since x is the streamwise direction in this study, r = (1, 0, 0).

For the definition of ESx, ESy and Λs, it has been assumed that an analytic and

differentiable representation of the rough surface, h(x, y), is known, since the expressions

then take a simpler form. The expressions from above can be reformulated for a discrete

rough surface, hi,j , by replacing the integrations with summations and using finite difference

approximations for the derivatives.

Bons [2005] defined a local streamwise forward-facing surface angle, denoted by α. Since

a rough surface sample can be constructed as streamwise traces of roughness height for each

spanwise coordinate, the local streamwise forward-facing surface angle, αj is computed for

each streamwise trace. For roughness elements facing the flow (W (x, y) = 1 from above),

αj = tan−1

(
hj+1 − hj

∆s

)
,

where ∆s is the streamwise spacing of the roughness elements and the required condition for

forward facing elements is hj+1 > hj . The sum of all roughness elements having a definite

value of αj gives the total number of forward-facing elements, nf . The mean streamwise

forward-facing surface angle, α is then given as

α =
1

nf

nf∑
k=1

αk

and its root-mean-square value is given as

αrms =

√√√√ 1

nf

nf∑
k=1

α2
k.



Appendix B

Procedure to carry out a rough

surface simulation using the

immersed boundary DNS code

This appendix describes in detail the steps to be followed in order to conduct a simulation

of a rough surface sample using the immersed boundary DNS code. It has been written to

serve as a step-by-step guide for a new user of the code. A description of the simulation

process along with the relevant parameters will be provided with respect to an example

rough surface. A scanned gritblasted surface is chosen as the example. Steps following the

scanning stage are described. The appendix roughly follows Chapter 2.

A number of Fortran and Matlab routines are required for pre-processing before each

stage of the simulation process. Their names will be written in the courier font for clarity.

They are mentioned at the beginning of each stage below in the order in which they will be

used. For stages 4 and 5, the Fortran source code contains a large number of files and only

the ones requiring user input will be mentioned. Commands will be described for a Linux

environment.

B.1 Stage 1: Raw surface data pre-processing

Fortran routines rewrite wrl.F90

Matlab routines reform.m, read zgrid.m, trim edge.m, substract linear mean -

plane.m

The first stage involves processing of the raw surface data obtained from the microscope,

which is in the form of a .wrl file. The first step is to convert this to a binary, .bin, file

using the rewrite wrl.F90 routine. After compiling the Fortran program (using a suitable

Fortran compiler, gfortran was used for this work) in a Linux terminal, it is executed from

within its directory as

→ ./rewrite wrl input file output file,

where rewrite wrl is the name of the executable after compiling the program, input file
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is the .wrl file (provided with the file extension) and output file is the required .bin file

(provided with the file extension).

The next step is to extract the surface coordinate data from the binary file and save it

as a Matlab .mat file for ease of future access. This is done in Matlab using the reform.m

routine as

→ output data = reform(‘output file’),

where output data is the Matlab structure that can be saved as a .mat file and reform(‘output -

file’) is the Matlab command with the output file binary file from the previous step as a

string input argument. The routines read zgrid.m, trim edge.m and substract linear -

mean plane.m are part of reform.m and are used to perform various auxiliary operations.

The final data after this stage contains raw surface x and y coordinates along with corre-

sponding absolute roughness height values.

EXAMPLE: for the gritblasted surface under consideration, the file obtained from the

microscope is called gritblasted.wrl. The following steps are then performed on it.

(1) In a Linux terminal, after compiling rewrite wrl.F90

(i) ./rewrite wrl gritblasted.wrl gritblasted.bin.

(2) In Matlab

(i) gritblasted data = reform(‘gritblasted’).

(ii) Save gritblasted data as a .mat file, gritblasted data.mat.

B.2 Stage 2: Section selection and filtering

Fortran routines -

Matlab routines select section.m, best section.m, spike detection.m, sub-

stract linear mean plane.m, get coeff.m, write coeff.m,
mean peak to valley height.m

The next stage involves selecting an appropriate subsection from the surface scan, scaling

the data from the physical into the computational domain and filtering the roughness height

data in Fourier space. The only Matlab routine to be run in this stage is select section.m

and all others perform auxiliary functions from within it. The first step is to determine an

appropriate size for the subsection in terms of indices of the surface scan data. This is a

manual process and is done based on the theory described in Section 2.2.1.

The next step is to determine a suitable location for the sub-section on the surface

scan (based on minimum rms error in absolute roughness height at the lateral boundaries),

again in terms of indices of the scanned data. The best section function is utilised for

this purpose. This function also calls spike detection, which detects and discards sections

containing possibly unphysical features, such as spikes. Since spikes are determined based

on the roughness height gradient between neighbouring points, a gradient threshold value

must be provided in spike detection.
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The factor that scales the sample from physical to computational domain is obtained as

the ratio of the computational streamwise domain length to the physical streamwise domain

length.

→ fact = xl target/xl sel,

where fact is the scaling factor, xl target is the computational streamwise domain length

and xl sel is the physical streamwise domain length. In order to obtain the sample in the

computational domain, the lateral coordinates and the roughness heights in physical domain

are multiplied by the scaling factor.

Filtering in Fourier space is the next step. In order to do this, the value of the maximum

streamwise wavenumber (which is also a measure of the Fourier filter width), kcLx must be

decided. Since filtering will directly affect the roughness height, k (which is Sz,5×5), and the

roughness height scales directly with the streamwise computational domain length, Lx/δ,

the maximum streamwise wavenumber must be determined in conjunction with Lx/δ. The

most important criterion to fix the value of kcLx is the difference between the filtered and

unfiltered values of the average and rms roughness heights, Sa and Sq, of the sample, which

should not be greater than 8%. Keeping the streamwise domain length at a reasonable value

(example, Lx/δ = 5 for the example surface), kcLx is fixed to satisfy the above condition.

Then Lx/δ is adjusted such that the required value of the k/δ ratio (computed in the mean -

peak to valley height routine) is obtained. This process may involve some trial and error

with different values of kcLx and Lx/δ to obtain the required set of parameters but with some

experience, the user should be able to accomplish it fairly quickly. The Fourier coefficients

are computed using the get coeff routine. Then using the write coeff routine, they are

written to a file for use in subsequent stages of the simulation process.

A number of other tasks (such as plotting the surface) can be performed in order to

monitor the progress of the routine and check the obtained parameters.

EXAMPLE: the gritblasted data.mat file serves as the start point for following opera-

tions in the select section.m Matlab routine.

(1) The following parameters must be set in select section.m.

(i) Streamwise and spanwise section extents: xsl = 1199 and ysl = 599.

(ii) Streamwise and spanwise domain lengths: xl target = 5.630 and yl target = 2.815.

(iii) Maximum streamwise wavenumber: kxmax = 24.

(2) In spike detection, set the slope threshold as s threshold = 24 for this particular sur-

face. As each rough surface has its own characteristics, this value cannot be generalized

and would be different for each surface considered. Some knowledge of the surface to-

pography in terms of physical roughness heights and gradients would be required to set

this value appropriately.

(3) On running select section.m,

(i) Start indices in x and y of the subsection as obtained from best section are

xst = 743, yst = 1568.
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Figure B.1: Roughness height contour plot of the full gritblasted surface (top view) showing
the optimum section as obtained from the best section Matlab routine. Every
alternate point is plotted. Section size in terms of streamwise and spanwise
indices is also shown. Plot coloured by absolute roughness height. Colourbar:
black to yellow - lower to higher roughness heights.

Figure B.2: Gritblasted sample unfiltered data (left) and filtered data (right). Plots
coloured by roughness height, k/δ. Scale of plots increased in wall-normal
direction for clarity.
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(ii) Fourier coefficients are obtained in the Matlab variable coeff filt, which are then

written to file as

write coeff(‘gritblasted Fouriercoeff.dat’, coeff filt,xl target,yl -

target),

where ‘gritblasted Fouriercoeff.dat’ is the name of the output file (with the

.dat extension) provided as a string input argument to write coeff.

(iii) For ease of future access, the unfiltered and filtered surface data are saved as

Matlab .mat files as sel data.mat and filt data.mat.

(4) The optimum section obtained from best section on the full surface scan is shown in

Figure B.1. Surface plots of the unfiltered and filtered samples are shown in Figure B.2.

B.3 Stage 3: Meshing in the wall-normal direction

Fortran routines -

Matlab routines init zface coor.m, gridfunction.m, stretchalpha.m

The computational mesh is cartesian. In this stage, the wall-normal meshing parameters

are finalised. A uniform mesh is used in the region of the roughness features, min(h(x, y)) <

z < max(h(x, y)) (which is also the minimum mesh spacing) and a stretched mesh is used

away from the rough walls with maximum mesh spacing at the channel centre. A hyperbolic

tangent function is used for stretching.

The main Matlab routine in this stage is init zface coor.m and the others perform

auxiliary functions from within it. The input parameters required for this function are i)

z distance of the lower and upper ends of the computational domain, zmin and zmax, ii) z

distance where the uniform grid spacing terminates at the lower and upper walls, zseam1

and zseam2, iii) the desired minimum grid spacing, dzmin and iv) the number of wall-normal

grid points, nz. All wall-normal distances are measured from the bottom mean reference

plane. The desired grid spacings are ∆z+
min < 1 in the region of roughness features and

∆z+
max ≤ 5 at the channel centre. zmin can be directly obtained from the filtered data as

the minimum roughness height of the lower wall. zseam1 can be obtained from the filtered

data as the maximum roughness height of the lower wall. Since the upper wall is a reflection

of the lower wall and the total non-dimensionalised channel height is 2, the other required

parameters are obtained as zmax = 2+ |zmin| and zseam2 = 2− zseam1 . ∆z+
min = 0.667 for

all cases and hence the parameter dzmin = 0.667/Reτ . After setting these parameters, the

number of grid points, nz are adjusted such that the grid stretching towards the channel

centre obtains a ∆z+
max ≤ 5. The routine is executed from within Matlab as,

→ init zface coor(nz, zmin, zmax, zseam1, zseam2, dzmin).

The wall-normal mesh coordinates are saved in a binary, .bin, file which is subsequently

provided as an input file in the next stage of the simulation process. The wall-normal

domain length is obtained as Lz = zmax + |zmin|. A schematic of the channel with the
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Figure B.3: Schematic diagram (x − z view) of the channel showing various wall-normal
meshing parameters. Black solid lines (thick): rough surface boundary, red
dashed lines: bottom and top mean reference planes, blue dash-dot line: chan-
nel centreline

various wall-normal meshing parameters is shown in Figure B.3. A schematic of the wall-

normal mesh is shown in Figure 2.5.

EXAMPLE: no input files are required for this stage as only the wall-normal meshing

parameters are provided as inputs to init zface coor.

(1) From the filtered data file (saved in the previous stage), we obtain

(i) zmin = −0.1622 and zmax = 2 + |zmin| = 2.1622.

(ii) zseam1 = 0.1052 and zseam2 = 2− zseam1 = 1.8948.

zmin and zseam1 include a small tolerance over the actual values obtained from the

filtered data. This is done to be sure the wall-normal mesh covers the lowest and

highest roughness features.

(2) The simulation will be run at Reτ = 180 and hence dzmin = 0.667/Reτ ≈ 0.00371.

(3) Set nz = 288.

(4) From Matlab, execute the init zface coor function as

init zface coor(288, -0.1622, 2.1622, 0.1052, 1.8948, 0.00371).

After execution, the function provides the maximum wall-normal mesh spacing, ∆zmax =

0.020644. Hence ∆z+
max = ∆zmax ×Reτ = 3.7159 ≤ 5.

This process also generates a zgrid.bin file containing the wall-normal mesh coordinates,

which serves as input in the next stage. Also, the wall-normal domain length is obtained

as Lz = zmax + |zmin| ≈ 2.3244.
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B.4 Stage 4: Streamwise/spanwise meshing and initialisa-

tion of the immersed boundary

Fortran routines incl.F90, user module.F90

Matlab routines -

The streamwise and spanwise mesh spacing is uniform. The two criteria that need to

be satisfied for the mesh in the streamwise and spanwise directions (refer Section 2.3.2) are

• The Reynolds number criterion: ∆x+ = ∆y+ ≤ 5, which gives nx ≥ Lx/δ
5 Reτ .

• The minimum roughness wavelength criterion: ∆x = ∆y ≈ λmin/12, which gives

nx ≥ 12(kcLx).

The two routines which require user input in this stage are user module.F90 and incl.F90

which are part of the immersed boundary initialisation source code. The main input to

user module.F90 is the .dat file containing the list of Fourier coefficients as obtained from

stage 2. The incl.F90 file contains all other input parameters to the simulation; the ones

requiring user input in this stage are: number of mesh cells, domain lengths and domain

decomposition parameters for parallelisation, all in x-, y- and z-coordinate directions. Other

parameters from both these Fortran routines (explained below) can be left at their default

values.

The main Fortran program is called init imb.F90. It must be compiled using a parallel

Fortran compiler (the Intel mpif90 compiler was used in this study) and run in batch mode

on a high performance computing cluster (Iridis4 at the University of Southampton was

used for this study). Using a minimization algorithm, the program computes the signed

distance function for every point in the mesh.

EXAMPLE: The gritblasted Fouriercoeff.dat file generated in stage 2 and the zgrid.bin

file generated in stage 3 serve as input files to initialise the immersed boundary.

(1) Since Lx/δ = 5.63, Reτ = 180 and kcLx = 24,

(i) The Reynolds number criterion gives nx ≥ 203.

(ii) The minimum wavelength criterion gives nx ≥ 288.

Hence the minimum wavelength criterion is dominant. Before finalizing the values of

nx and ny, it is important to note that there are 2 restrictions on their values.

• They must be set in conjunction with the domain decomposition parameters,

(nx)procs and (ny)procs, which represent the number of processor cores in the x-

and y-coordinate directions. nx and ny must be exactly divisible by (nx)procs and

(ny)procs. In this study, (nx)procs = 4 and (ny)procs = 4 (these values are used in

the current stage only and can be changed before execution of the DNS run in the

next stage).
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• Since the code employs a multigrid method to solve the pressure correction equa-

tion, nx and ny should also be exactly divisible by the multigrid preconditioning

parameter (mgpc levels in incl.F90). In this study, 3 coarse grid levels are used

and the mesh size is halved at each level. Hence nx and ny should also be divisible

by 23 = 8.

On combining the above restrictions, nx must be divisible by (nx)procs×23 and ny must

be divisible by (ny)procs× 23. Only the appropriate nx needs to be computed to satisfy

these requirements as ny = nx/2 always. Hence the number of cells in the streamwise

and spanwise directions are finalised as nx = 320, ny = 160. The above restrictions

apply to nz as well but in this stage, domain decomposition in the wall-normal direction

is not permitted by the init imb program. Hence nz = 288 (as finalized in stage 3).

(2) The following parameters are set in incl.F90.

(i) stdouterr verbose = .FALSE. This flag produces an output log from only the

root processor. If output is desired from all processors, set to .TRUE. (normally

done during debugging runs).

(ii) nx = 320, ny = 160, nz = 288.

(iii) nxprocs = 4, nyprocs = 4, nzprocs = 1. These can be changed before the

DNS run in the next stage.

(iv) xl = 5.63d0, yl = 2.815d0, zl = 2.3244d0. These are the domain lengths in

streamwise, spanwise and wall-normal directions.

All other parameters in incl.F90 can be left at their default values.

(3) The following parameters are set in user module.F90.

(i) functional representation = .TRUE. This parameter indicates that the rough

surface is represented by a mathematical function (in this case, a Fourier series).

(ii) function type = 0. This value indicates the function varies in x and y. Set this

value to 1 if the function varies only in x and 2 if the function varies only in y.

(iii) surface configuration = 0. This value indicates mirror symmetry between the

lower and upper rough walls. Set this value to 1 if different functions are used

to represent the lower and upper walls, 2 if only the lower wall is rough (smooth

upper wall) and 3 if only the upper wall is rough (smooth lower wall).

(iv) comp depth = nz. This parameter indicates for which wall-normal mesh coordi-

nates the signed distance function will be computed. In general, for comp depth

≥ nz, the signed distance is computed for all wall-normal mesh coordinates. If

comp depth < nz, the signed distance will not be computed for all wall-normal

mesh coordinates, it will depend on the value of comp depth and surface con-

figuration. A lower value of comp depth will lead to quicker program execution.

However, comp depth must still be assigned such that the signed distance is com-

puted close to the rough wall. In general, comp depth = nz works in all cases.
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(v) offset = (/nx/2,ny/2/). This parameter determines the streamwise and span-

wise shift of the upper rough wall relative to the lower wall, in terms of nx and ny.

It takes effect only if surface configuration = 0. The given values indicate the

upper wall will be shifted by half the total number of streamwise and spanwise

mesh cells relative to the lower wall, which ultimately implies half the streamwise

and spanwise domain lengths.

(vi) In the set user functions subroutine, the call to read fourier series takes

the .dat file containing the Fourier coefficients describing the rough wall as an

input.

call read fourier series(‘gritblasted Fouriercoeff.dat’).

The Fourier series initialisation takes place after this as,

fun lower wall =⇒ fourier series lower,

fun upper wall =⇒ fourier series upper,

where fun lower wall and fun upper wall are Fortran procedure pointers to the

respective functions defining the lower and upper wall. The mean wall location

of the lower wall is set in fourier series lower to 0 and of the upper wall in

fourier series upper to 2, assuming that a0 of the Fourier series is 0.

(4) Compile the init imb program by using the make functionality (a makefile is provided)

for the mpif90 compiler. It is recommended to use make clean before compiling.

(5) Prepare a script file to launch the initialisation procedure in batch mode on an HPC

cluster. The total number of processors provided in the script file must be consistent

with the product nxprocs × nyprocs × nzprocs = 16 (obtained from incl.F90).

In the example script file, init imb.pbs (prepared for Iridis4 at the University of

Southampton), the command defining number of processors is

#PBS -l nodes=1:ppn=16.

(6) The gritblasted Fouriercoeff.dat and zgrid.bin files must be placed within the same di-

rectory.

(7) Submit the batch job. The example script file is submitted on Iridis4 as,

qsub init imb.pbs

After program execution, an imb psi.bin file is obtained which contains the signed distance

function. It also contains normal vectors to the surface, pointing into the solid domain.

B.5 Stage 5: Running the main DNS code

Fortran routines incl.F90

Matlab routines -

Other files par file (for chres da mod.F90), run.log, flow.in, local profiles.in (op-
tional)
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In this stage, a number of different parameters and input files need to be prepared before

the DNS can be run. Hence the table above has an extra row named ‘Other files’. The

incl.F90 file is part of the DNS source code as well. Since many parameters in this file

overlap between stages 4 and 5, it can be simply copied over from the immersed boundary

initialisation source code. The extra parameters requiring input in this file are explained in

the example below. This is the only Fortran file requiring user input in this stage.

The main Fortran program is called flow main.F90. It must be compiled using a parallel

Fortran compiler (the Intel mpif90 compiler was used in this study) and run in batch mode

on a high performance computing cluster (Iridis4 at the University of Southampton was

used for this study).

An initial flow field must be provided to the code for the first run. Subsequent runs

would use the restart file, generated by the previous run, as the initial flow field. The

chres da mod.F90 routine can be used to generate the first initial flow field. It requires a

previously generated restart file, its corresponding zgrid.bin file and the zgrid.bin file for the

current case under consideration. It also requires the meshing parameters and domain sizes

of the previous and current cases. This routine interpolates the flow field from the restart

file onto the new mesh. For the selection of the previous case, it is generally good practise

to select a case with mesh and domain size similar to the current mesh and domain size.

However, this may not always be possible.

The two important run-time files for the simulation are called flow.in and run.log. The

flow.in file contains the value of simulation time step, number of time steps and the frequency

of diagnostics computation and output. The run.log file contains information about whether

the simulation is a first or restart run and the corresponding name of the first flow field or

number in case of restart file. It contains only two lines,

starttype: instrt OR starttype: restrt

restrt no: start.field restrt no: <number>

The version on the left is for the first simulation run where start.field is the name of the

initial flow field whereas the version on the right is for a restart run where <number> is the

corresponding number of the restart file. The starttype keyword is instrt for the first

run and is updated automatically to restrt at the end of the run. It remains the same for

all subsequent runs. At the end of a run, restrt no is also updated to reflect the generated

restart file (for instance, at the end of the very first run, restrt no: 1).

EXAMPLE: From previous stages, the imb psi.bin and zgrid.bin files are required.

(1) The following parameters are set in incl.F90.

(i) stdouterr verbose = .FALSE.

(ii) nx = 320, ny = 160, nz = 288.

(iii) nxprocs = 8, nyprocs = 4, nzprocs = 4.

A check on the domain decomposition and meshing parameters in this stage shows

they are compatible with the restrictions described in stage 4.

(iv) xl = 5.63d0, yl = 2.815d0, zl = 2.3244d0.
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(v) visc = 1.d0/180.d0. Since the governing equations are non-dimensionalised by

δ and uτ , viscosity is reduced to the inverse of Reτ .

(vi) ImmersedBoundary = .TRUE. This flag confirms the use of an immersed bound-

ary initialisation (which is the case for a rough-wall simulation). In case a smooth-

wall simulation needs to be performed, set this flag to .FALSE.

(vii) The following describe parameters for diagnostics.

• ndiagk meanvel = 16. The number of wall-normal locations where the time

series for mean velocity statistics are computed.

• nk corr = 16. The number of wall-normal locations where streamwise and

spanwise velocity correlation field is computed. It is recommended to set this

to the same value as ndiagk meanvel.

• kidx corr = (/16,32,48,64,80,96,112,128,144,174,192,208,224,240,

256,272/). These represent the indices of the wall-normal locations where

streamwise and spanwise velocity correlation field is computed. The number

of values must be consistent with nk corr. A more or less uniform distribution

of indices is used in the current study.

(viii) timeav flag = .FALSE. This flag determines the computation of field time av-

eraging. It should be set to .FALSE. during the start of a simulation and changed

to .TRUE. once the initial transients have passed and a fully developed flow state

is attained.

(ix) The following describe parameters for the multigrid preconditioner.

• mgpc gamma = 2. This parameter defines a W-cycle for multigrid. In case a

V-cycle is required, it must be changed to 1.

• mgpc cycles = 1. The number of multigrid cycles used.

• mgpc levels = 3. The number of coarse multigrid levels.

All other parameters in incl.F90 can be left at their default values.

(2) Compile the flow main program by using the make functionality (a makefile is provided)

for the mpif90 compiler. The LAPACK library is required (loaded on Iridis4 as module

load intel/mkl/2013.2 for this study). It is recommended to use make clean before

compiling.

(3) In order to obtain an initial flow field, chres da mod.F90 must be provided with the

input file par file. It contains the following parameters.
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zgrid files zgrid OLD.bin zgrid.bin

infile field.012.bin

domain(input) 5.63d0 2.815d0 2.3244d0

resolution(input) 320 160 288

outfile start.field

domain(output) 5.63d0 2.815d0 2.3244d0

resolution(output) 320 160 288

boundary cond 1 1

where,

- zgrid files: the previous and current zgrid.bin files,

- infile: name of the previous restart file,

- domain(input): domain size of the previous case in x, y and z,

- resolution(input): mesh size of the previous case in x, y and z,

- outfile: name of the initial flow field output file,

- domain(output): domain size of the current case in x, y and z,

- resolution(output): mesh size of the current case in x, y and z,

- boundary cond: boundary condition on lower and upper wall. 1 indicates no slip.

The field.012.bin and both zgrid.bin files must be present in the directory. Compile the

chres da mod.F90 program using a serial Fortran compiler (gfortran was used in this

study) and execute it as

./chres da mod par file

where chres da mod is the name of the executable after compiling. A number of tem-

porary files (.tmp extension) will be produced (which may be deleted) along with the

start.field file, which is the initial flow field.

(4) The run.log file is prepared as follows.

starttype: instrt

restrt no: start.field

(5) The flow.in file is prepared as follows.

time step 3.d-4

numberofsteps 32000

Meandiagnostic 20

Detaileddiagnostic 20 1600

meanpressuregrad 1

gradp -1.d0 0.d0 0.d0

zwallbc 1 1 1 1

zwallslen 0.d0 0.d0 0.d0 0.d0

where,

- time step: the simulation time step,

- numberofsteps: number of time steps in the current run,

- Meandiagnostic: frequency of calls to the mean flow diagnostics (every 20th time

step),
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- Detaileddiagnostic: frequency of calls to the profile and correlation statistics (called

every 20th time step and written to disk every 1600 calls to the diagnostic),

- meanpressuregrad: mean flow condition for constant mean streamwise pressure gra-

dient. For constant mass flow rate, it must be changed to 2,

- gradp: value of the mean pressure gradient. This line is not present if meanpressure-

grad is 2,

- zwallbc: boundary condition on lower and upper wall (must remain at default value,

as in the current example),

- zwallslen: slip length on lower and upper wall (must remain at default value, as in

the current example).

(6) The code may be instructed to compute some optional diagnostics such as line pro-

files averaged in time only, or averaged in time and in one of the coordinate directions

(streamwise or spanwise). These can be activated through a local profiles.in file. The

existence of this file in the directory with other input files triggers the computation of

these profiles. An example of the contents of this file is given below.

4

1.0 1.0

1.0 2.0

2.0 1.0

2.0 2.0

2

1.0

2.0

2

1.0

3.0

All profiles are obtained as a function of wall-normal coordinates. The first line repre-

sents the number of time-averaged (only) line profiles required, with the corresponding

x- and y-coordinates in subsequent lines. The sixth line represents the number of time-

and spanwise-averaged line profiles, with corresponding x-coordinates in subsequent

lines. The ninth line represents the number of time- and streamwise-averaged line pro-

files required, with corresponding y-coordinates on subsequent lines. The data order

and input format of this file must be maintained as shown.

(7) Prepare a script file to launch the DNS code in batch mode on an HPC cluster. The total

number of processors provided in the script file must be consistent with the product

nxprocs × nyprocs × nzprocs = 128 (obtained from incl.F90). In the example

script file, flow main.pbs (prepared for Iridis4 at the University of Southampton), the

command defining number of processors is

#PBS -l nodes=8:ppn=16.

(8) The imb psi.bin, zgrid.bin, start.field, run.log and flow.in files must be placed within

the same directory.
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(9) Submit the batch job. The example script file is submitted on Iridis4 as,

qsub flow main.pbs

During the run, several diagnostics are written to .dat files. These include diagnostics related

to correlation statistics, mean forces, mean velocities, spatially averaged quantities and line

profiles (if the local profiles.in file is present). Details of computation of all diagnostics are

in the diagnostics.F90 file. At the end of the run, a restart file called field.001.bin is also

written to disk.

B.6 Stage 6: Basic post-processing

All post-processing has been done in Matlab for the current study. Some basic post-

processing scripts have been provided.

• Data from the meanforce.XXX.dat files can be extracted using the meanforce.m Mat-

lab script. XXX represents the number of the restart file which was used to start the

run. In case of the very first run, XXX is 000.

• Data from the meanvel.XXX.dat files can be extracted using the meanvel.m Matlab

script.

• Data from the stats.XXX.YYY.dat files can be extracted using the stats mean itc.m

Matlab script. The convention on XXX is same as above whereas YYY depends on

the value of the second parameter from Detaileddiagnostic in flow.in.

• The velocity and pressure data from the field.XXX.bin files can be extracted using

the readflowmainbin.m Matlab function. For the very first restart file, XXX is 001.

Additional post-processing files are required when time averaging is switched on (using

timeav flag = .TRUE. in incl.F90). This will produce an additional .bin field file called

time av field new.XXX.bin, where XXX again represents the number of the restart file which

was used to start the run. The file represents time-averaged quantities over the current run.

To obtain statistical convergence, several of these files need to be averaged. This can be

done using the ave tav.F90 routine along with its required input file ave par. Profiles in

the wall-normal direction (averaged in the streamwise and spanwise directions) can then

be obtained using the compute prof.m Matlab routine. Since an immersed boundary is

employed, a correction factor must be applied due to the spatial averaging in this routine.

This is obtained from the compute cfact.F90 routine with the cfact par input file. The

imb psi.bin file must be present in the directory from which compute cfact.F90 is executed.

The post-processing routines (in both Matlab and Fortran) and their corresponding

input files are relatively self-explanatory and the user should be able to understand them

fairly easily.
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Data statement

(1) The following data for the 17 samples are available (in .csv format) from the University

of Southampton repository at http://dx.doi.org/10.5258/SOTON/392562.

(i) Figures 3.4 and 3.5 - roughness height maps after filtering.

(ii) Table 3.2 - surface topographical properties.

(iii) Table 6.1 - simulation parameters including values of ∆U+ and peak profile TKE

at Reτ = 180.

(2) The data at Reτ = 180 for the 17 samples from the following figures are available (in

.csv format) from the University of Southampton repository at

http://doi.org/10.5258/SOTON/D0118.

(i) Figure 6.1 - mean streamwise velocity profiles.

(ii) Figure 6.2 - mean streamwise velocity defect profiles.

(iii) Figures 6.5, 6.8, 6.11 and 6.14 - profiles of the Reynolds streamwise, spanwise,

wall-normal and shear stress.

(iv) Figure 6.17 - profiles of the turbulent kinetic energy.

(v) Figures 6.19, 6.23, 6.26 and 6.30 - profiles of the dispersive streamwise, spanwise,

wall-normal and shear stress.

http://dx.doi.org/10.5258/SOTON/392562
http://doi.org/10.5258/SOTON/D0118
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