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by Xuan Wang

Iterative learning control has been developed for processes or systems that complete the

same finite duration task over and over again. The mode of operation is that after each

execution is complete the system resets to the starting location, the next execution is

completed and so on. Each execution is known as a trial and its duration is termed the

trial length. Once each trial is complete the information generated is available for use

in computing the control input for next trial.

This thesis uses the repetitive process setting to develop new results on the design of

higher-order ILC control laws. The basic idea of higher-order ILC is to use information

from a finite number of previous trials, as opposed to just the previous trial, to update

the control input to be applied on next trial, with the basic objective of improving

the error convergence performance. The first set of new results in this thesis develops

theory that shows how this improvement can be achieved together with a measure of

the improvement available over a non-higher order law.

The repetitive process setting for analysis is known to require attenuation of the fre-

quency content of the previous trial error from trial-to-trial over the complete spectrum.

However, in many cases performance specifications will only be required over finite fre-

quency ranges. Hence the possibility that the performance specifications could be too

stringent. The second set of new results in this thesis develop design algorithms that

allow different frequency specifications over finite frequency ranges.

As in other areas, model uncertainties arise in applications. This motivates the devel-

opment of a robust control theory and associated design algorithms. These constitute

the third set of new results. Unlike alternatives, the repetitive process setting avoids the

appearance of product terms between matrices of the nominal system dynamics state-

space model and those used to describe the uncertainty set. Finally, detailed simulation

results support the new designs, based on one axis of a gantry robot executing a pick

and place operation to which iterative learning control is especially suited.
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Chapter 1

Introduction

Iterative learning control (ILC) is concerned with reference tracking control problems. In

applications, many industrial robots do tasks in a repetitive mode over a finite duration

and the basic control objective in such cases is to design control laws that force the output

to track the reference trajectory. A typical example is the ‘pick and place’ operation,

i.e., moving an object from one location to another, where time duration required can

only be finite. In the literature, each execution is known as a trial, or a pass, and the

finite of each trial is termed the trial length.

Once each trial is complete in the pick and place operation, the robot returns to the

starting location and the next trial can begin, either immediately after the resetting is

complete or after a further period of time has elapsed. Moreover, once a trial is complete

then all information generated over the trial length is available, at the cost of storage.

In ILC, the novel feature is the use of this information in the construction of the next

trial input. If a reference trajectory is given, then the error on any trial is the difference

between this trajectory and the output on this same trial and hence a formulation of a

control design problem in terms of the error sequence.

Let yk(p), 0 ≤ p ≤ α − 1, k ≥ 0 denote the scalar or vector-valued variable on trial

k and sample instant p, where α denotes the number of samples along the trial length

for discrete dynamics, i.e., α times the sampling period gives the trial length. Also let

yd(p), 0 ≤ p ≤ α − 1 denote the reference vector or trajectory, respectively, which is

assumed to be the same for all trials. Then the error on trial k is ek(p) = yd(p)−yk(p), 0 ≤
p ≤ α− 1. Hence the ILC design problem can be formulated as ensuring that the error

sequence {ek} converges to zero with increasing trials. Moreover, it is also required to

ensure that the dynamics produced along the trial are also ‘acceptable’.

Given the repeated trials, an obvious form of ILC law is to construct the input for the

next trial as the sum of that used on the previous trial plus a correction term. Also,

since all previous trial data is available, the basic question is: how best to use this data?

1



2 Chapter 1 Introduction

a core part of the answer is this question is the use of information that would be non-

causal in the standard systems sense. In particular, at sample instant p+λ can be used

provided it is generated on the previous trial. This is a feature unique to ILC.

The first research on Iterative Learning Control (ILC) developed a derivative, or D-type,

law for speed control of a voltage-controlled dc-servomotor. Since this first work ILC

has been an established area of research and one starting point for the literature is the

survey papers [1, 12]. A large volume of the currently available literature assumes a

discrete model of the dynamics is available, by sampling if required and hence direct

digital design.

Given the finite trial length, one approach to ILC design for discrete systems is to rep-

resent the dynamics by an equivalent standard systems model, where, e.g., the trial

output is represented by a column vector formed from the values at the sample instants

along the trial. This is often termed lifted ILC design and given the reference trajectory,

the trial-to-trial error dynamics can be written as a discrete difference equation in the

trial number. The basic task then is to design the ILC law such that trial-to-trial error

convergence occurs. In this design setting it is assumed that the system is stable but

if not a preliminary feedback control must be applied to ensure stability and accept-

able transient dynamics along the trials and ILC designed for the resulting controlled

dynamics.

Lifted ILC design is a two-stage procedure and an alternative is to exploit 2D systems

theory where in this setting one indeterminate is the trial number and the other the

along the trial variable. Repetitive processes are a distinct class of 2D systems where

information propagation in one direction only occurs over a finite duration this is an

inherent property of the dynamics and not an assumption introduced for analysis pur-

poses. A detailed treatment of repetitive processes, including industrial examples can

be found in [74].

As the trial length is finite, repetitive processes are a closer match to ILC and designs

using this setting have seen experimental verification on a gantry robot that replicates

the pick and place operation, see, e.g. [38, 67]. In the repetitive process setting, it is

possible to do control law design for error convergence and transient dynamics along the

trials in one step. Moreover, unlike the lifted approach, this setting extends naturally

to differential dynamics, i.e., to cases where design by emulation is the preferred or only

setting for design.

The 2D systems structure of repetitive processes arises from the fact that they make a

series of sweeps through a set of dynamics defined over a finite duration. Once a sweep is

complete, the process resets to the starting location and the next sweep can begin. Also

the output produced on the previous sweep acts as a forcing function on the dynamics

produced on the next sweep. The result can be oscillations that increase in amplitude

from sweep-to-sweep that cannot be removed by standard control actions.
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A rigorous stability theory for these processes has been developed and imposes a bounded

input bounded output property on the dynamics, either over the finite and fixed finite

trial length or uniformly, where this last property can be analysed by considering α→∞.

The latter property is stronger but, for linear time invariant dynamics, imposes frequency

attenuation over the complete frequency spectrum. This can be a very strict requirement

with consequent implications of designing a control law.

The possibility to specify different performance specifications over finite frequency ranges

has considerable practical significance since common performance issues occur over dif-

ferent frequency ranges. For example, the low frequency range influence the error con-

vergence performance. Moreover, in many cases of ILC, the reference trajectory often

has dominant frequency content only over a finite frequency ranges.

In this thesis, a major contribution is to develop repetitive process based ILC law design

algorithms, with a particular emphasis on higher-order laws [10] that are still an under-

developed area. It will be shown that such a law can improve the speed of trial-to-trial

error convergence coupled with acceptable along the trial dynamics. Moveover, a bound

on the convergence speed is established, where no such bound is known in the literature.

A second major contribution relates to avoiding the need to design over the complete

frequency spectrum. In particular, the Kalman-Yakubovich-Popov (KYP) lemma [68]

and its generalized version, denoted GKYP, are used develop results that allow the

design of higher-order ILC laws with different frequency domain specifications imposed

over finite frequency ranges. These results add to those currently available using this

approach [67].

Robustness, as in other areas, is an important issue in ILC design. In standard linear

systems theory one commonly used setting for robustness and control law design is to

assume that the uncertainty present lies in a specified model class. Two commonly

used classes are termed norm-bounded and polytopic, respectively and in the thesis the

former is considered in the ILC setting and the previous results are extended to the

robust case [23, 35].

This thesis consists of six further chapters, where Chapter 2 gives a literature review of

ILC is given and also the necessary background on repetitive processes and their stability

properties. Chapters 3 and 4 develop design algorithms for higher-order ILC. The results

include Linear Matrix Inequality (LMI) based design for discrete and continuous-time

systems, including the robust case. The major difference between the two chapters is

that in Chapter 3 design is based KYP lemma and is over the complete frequency range.

In Chapter 4 the analysis is based on the GKYP lemma over finite frequency ranges. In

these two chapters, the control law includes state feedback and hence the assumption

that all entries in the state vector can be measured or estimated. Chapter 5 develops

output-feedback control laws for the cases considered. Chapter 6 gives the results of

an in-depth evaluation of the new results of this thesis based on a model of one axis
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of a gantry robot identified from measured frequency response data. Finally, chapter 7

summarises the main new results in this thesis and discusses areas for possible future

research.



Chapter 2

Literature Review

2.1 Overview of Iterative Learning Control

The development of iterative learning control (ILC) emerged from industrial applica-

tions where the system involved executes the same operation many times over a fixed

finite time interval. When each operation is complete, resetting to the starting loca-

tion takes place and the next operation can commence immediately, or after a stoppage

time. A common example is a gantry robot undertaking a pick and place operation in

synchronization with a moving conveyor or assembly line. The sequence of operations

is: (a) the robot collects a payload from a fixed location, (b) transfers it over a finite

duration, (c) places it on the moving conveyor, (d) returns to the original location for

the next payload and then (e) repeats the previous four steps for as many payloads as

is required or can be transferred before it is required to stop.

To operate in pick and place mode it is necessary to supply the robot with a trajec-

tory to follow and the task for a control law is to ensure that the robot follows the

prescribed trajectory exactly or, more realistically, to within a specified tolerance. In

addition to controlling its own movement and that of the payload, the control law must

prevent other effects, such as disturbances and signal noise, from degrading tracking and

thereby forcing it outside of the tolerance bound. If the robot begins to operate outside

permissible limits, the control task is to bring it back within specification as quickly as

required or is physically possible. This task must be achieved without causing damage

to, e.g., the sensing and actuating technologies used.

The widely recognized starting point for ILC is [6], which considered a simple first

order linear servomechanism system for a voltage-controlled dc-servomotor. As in other

areas, there is debate on the origins of ILC, for which the survey papers [1, 12] and, in

particular, [1] give coverage and relevant references. In the opening paragraphs of [6]

the analogy between ILC and human learning is drawn in the text: ‘It is human to

5



6 Chapter 2 Literature Review

make mistakes, but it also human to learn from such experience. Is it possible to think

of a way to implement such a learning ability in the automatic operation of dynamic

systems?’.

The analysis in [6] developed, using the servomotor example as a particular example,

a control law applicable to systems required to track a desired reference trajectory or

vector of a fixed trial length α and specified a priori. On completion of each trial, the

system states reset and during time taken to complete this task the measured output is

used in the construction the next control output. The system dynamics were assumed to

be trial-invariant and invertible. These distinguishing features led to the establishment

of ILC as a major and ongoing area of control systems research and applications. Several

of these assumptions, e.g., trial-invariant dynamics, have been relaxed in recent years

but the concept of learning from experience gained over repeated trials of a task has

been retained.

Since it was first introduced ILC has broadened in breadth and depth, including links

with established fields such as robust, adaptive and optimal control. Application areas

have also expanded beyond industrial robotics and process control. In the latter area,

one starting point for the literature is the survey paper [85], which also considers the

connections with repetitive control and run-to-run control.

The notation for a scalar or vector-valued variable when ILC is applied to discrete

dynamics used in this thesis is yk(p), p = 0, 1, . . . , α− 1, where the nonnegative integer

k is the trial number and α ∈ N denotes the number of samples on each trial, with

a constant sampling period. Suppose also that the dynamics of the system or process

considered can be adequately modeled as linear and time-invariant. Then the state-space

model of such a system in the ILC setting is

xk(p+ 1) = Axk(p) +Buk(p)

yk(p) = Cxk(p), xk(0) = x0 (2.1)

where on trial k, xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the output vector and

uk(p) ∈ Rl is the control input vector.

In this model it is assumed that the initial state vector does not change from trial-

to-trial. The case when this assumption is not valid has also been considered in the

literature. The dynamics are assumed to be disturbance-free but again this assumption

can be relaxed. It also possible to write the dynamics in input-output form involving the

convolution operator or take the one-sided z transform and hence analysis and design

in the frequency domain is possible.

To apply the z transform it is necessary to assume α = ∞ but in most cases the con-

sequences of this requirement have no detrimental effects. For a more detailed analysis
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of cases where there are unwanted effects arising from this assumption, see the relevant

references in [1, 12] and more recent work in [83].

Let yd(p) ∈ Rm denote the supplied reference vector. Then the error on trial k is

ek(p) = yd(p)−yk(p) and the core requirement in ILC is to construct a sequence of input

functions uk+1(p), k ≥ 0, such that the performance achieved is gradually improved with

each successive trial and after a ‘sufficient’ number of these the current trial error is zero

or within an acceptable tolerance. Mathematically this can be stated as a convergence

condition on the input and error of the form

lim
k→∞

||ek|| = 0, lim
k→∞

||uk − u∞|| = 0 (2.2)

where u∞ is termed the learned control and || · || denotes an appropriate norm on the

underlying function space.

As one possibility, let || · ||2 denote the Euclidean norm of its argument then one choice

is ||e|| = maxp∈[0,α−1] ||e(p)||2. The reason for including the requirement on the control

vector is to ensure that strong emphasis on reducing the trial-to-trial error does not

come at the expense of unacceptable control signal demands. In application, only a

finite number of trials will ever be completed but mathematically letting k → ∞ is

required in analysis of, e.g., trial-to-trial error convergence.

Remark 2.1. When a specific norm is used in this thesis, this will be indicated by adding

a subscript.

2.2 Some Basic ILC Algorithms

As in other areas, initial research considered simple structure ILC laws. Arimoto et

al.[6] proposed the derivative type (D− type) ILC law for continuous-time system. This

ILC law can also be used for discrete-time system. Consider the discrete time-invariant

state-space model in ILC setting (2.1) over a fixed finite time interval p ∈ [0, α − 1].

Define the reference trajectory as yd(p), then the error on trial k is ek(p) = yd(p)−yk(p)
and initial state in each trial is zero. The D-type ILC law has the form

uk+1(p) = uk(p) + L(ek(p+ 1)− ek(p)) (2.3)

where L is an m×m matrix function to be designed and ek(p+1)−ek(p) is the difference

of the error. It is shown in [6] that trial-to-trial convergence occurs if

‖I − CBL‖ < 1 (2.4)

holds.
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Arimoto et al.[7] also proposed the proportional-type (P − type) ILC law. Consider

again (2.1) this control law is of the form

uk+1(p) = uk(p) + Lek(p) (2.5)

The convergence condition for the P-type ILC law is again (2.4).

Many control laws are based on a PID structure, e.g. in addition to D-type and P-

type ILC, PI-type ILC and PD-type ILC, and Kim et al.[46] gave the general form of

PID-type ILC. Consider again (2.1), then this control law has the form

uk+1(p) = uk(p) +KP ek(p+ 1) +KI

T∑
i=0

ek(i) +KD[ek(p+ 1)− ek(p)] (2.6)

where KP , KI and KD are the proportional, integral and derivative gains, respectively.

If KI and KP are zero, this law becomes D-type ILC. The convergence condition of

PID-type ILC is

‖I − CB(KP +KI +KD)‖ < 1 (2.7)

Heinzinger et al.[37] proposed an ILC law with forgetting factor to improve the stability

of ILC with uncertain initial conditions. The general form of D-type ILC with forgetting

factor for the system model (2.1) is

uk+1(p) = (1− γ)uk(p) + γu0(p) + L(ek(p+ 1)− ek(p)) (2.8)

where γ is the forgetting factor and 0 ≤ γ < 1, if γ = 0 this law becomes the D-type

ILC algorithm. The convergence condition is

‖(1− γ)I − LCB‖∞ < 1 (2.9)

In [37] this algorithm was given for systems with state disturbance, output noise and

errors in initial conditions.

Wang et al.[82, 83, 84, 90] proposed the phase-lead ILC law and analyzed it in the

frequency domain. The control law for the system model (2.1) is

uk+1(p) = uk(p) + Lek(p+ ∆) (2.10)

where ∆ > 0 is the lead phase. In order to analyze the convergence in the frequency

domain and derive the condition for error convergence, the learnable bandwidth was

introduced. Bandwidth was introduced where learning only takes place over a finite

frequency range. The presence of ∆ > 0, in the last control law represents the use of

data that would be noncausal in the standard case. This is the unique feature of ILC.
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2.3 Inverse Model-based ILC

Harte et al.[36] analyzed the monotonic convergence condition and robustness for uncer-

tain systems. Suppose that the linear system under consideration has a model G that

is invertible. Then an inverse ILC law has the form

uk+1 = uk + βG−1ek (2.11)

where β is the learning gain, which can be used to enhance performance. The conver-

gence condition by [36] is

‖I − βGeG−1‖∞ < 1 (2.12)

As the above condition shows, the convergence of inverse model-based ILC depends on

multiplicative uncertainty representation Ge = UG, where U is an uncertainty square

matrix. Suppose U + UT is positive-definite matrix. Then [36] also gave the robust

monotonic convergence condition and tested is in the frequency domain. The condition

of the monotonic convergence depends on the relationship between learning gain β and

U .

A gradient-based ILC law has the form

uk+1 = uk + βGT ek (2.13)

with convergence condition

‖I − βGGT ‖∞ < 1 (2.14)

2.4 Norm-optimal ILC (NOILC)

This form of ILC constructs the current trial input as the solution of an optimisation

problem. The basics of this method are now given following in the main [4, 5].

Let the real Hilbert space Y be the space of output signals and the real Hilbert space

U be the space of input signals. Define G as the system input/output operator from U
to Y. Then if the dynamics of the systems considered are the linear and represented in

operator form

y = Gu+ zo (2.15)

can be used where u ∈ U and y ∈ Y, and zo represents the effects of system initial

conditions (always be assumed as zo=0). Let the reference trajectory: yd ∈ Y then

ek = yd − yk. Then the objective of NOILC is to find a corresponding input signal that

minimize index Jk where

Jk+1(uk+1) = ‖ek+1‖2Y + ‖uk+1 − uk‖2U (2.16)
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The first term in (2.16) reflects the error being small during every trial, and the sec-

ond term make input uk+1 be not ‘too’ different from the previous input uk [55, 57].

Therefore, the updating input on the (k + 1)th trial is defined as

uk+1 = argminuk+1{Jk+1(uk + 1) : ek+1 = r − yk+1, yk+1 = Guk+1} (2.17)

Minimization of the performance index gives the control law

uk+1 = uk +G∗ek+1 (2.18)

where G∗ is the adjoint operator to the system G, and the final form of the control

update is

uk+1(p) = uk(p) + [{BTK(p)B +R}−1BTK(p)×A{xk+1(p)− xk(p)}] +R−1BT ξk+1(p)

(2.19)

where K(p) is the solution of the matrix Riccati equation on the interval p ∈ [0, α− 1]

K(p) = ATK(p+1)A+CTQC−ATK(p+1)B(BTK(p+1)B+R)−1BTK(p+1)A; (2.20)

with terminal boundary condition K(α− 1) = 0 and ξk+1(p) is the predict term

ξk+1(p) = (I +K(p)BR−1BT )−1(AT ξk+1(p+ 1) + CTQek(p)) (2.21)

with terminal boundary condition

ξk+1(α− 1) = 0 (2.22)

also Q, R and F are weights in the inner space Y and U, respectively. In this control

law, ξk+1(p) is the feedforward term and xk+1(p)− xk(p) is the feedback term.

Amann et al.[5] showed that the convergence rate for this control law satisfies

‖ek+1‖ ≤
1

1 + σ2
‖ek‖ (2.23)

where σ is the smallest singular value of G, and 1
1+σ2 is the rate of convergence.

The advantages of this algorithm is the automatic choice of the step size in the con-

trol law, it also enforces the monotonic convergence. However, the computational

cost of NOILC is larger than other basic algorithms and it is more complex. Despite

this, NOILC has seen experimental verification and implementations. Examples in-

clude gantry robot [69], rehabilitation robotics [75], chain conveyor systems [2], roll to

roll/micro-manufacturing system [79], and adaptive weights of the form [50].

Parameter-optimal ILC [54] uses only feedforward information and the system model G

must be positive (all the eigenvalues of G are positive) and invertible. Again the error
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converges to zero as k →∞, and the control law in this case is

uk+1(t) = uk(t) + βk+1ek(t) (2.24)

where βk+1 denotes the learning gain that varies from trial-to-trial and is chosen based

on minimising the cost function

J(βk+1) = ‖ek+1‖2 + εβ2
k+1 (2.25)

for ε, the adaptive weights is used, which is defined as ε = ε1 + ε2‖ek‖2. The condition

∂J(βk+1)/∂βk+1 = 0 gives the optimal βk+1.

βk+1 =
〈ek, Gek〉

ε1 + ε2‖ek‖2 + ‖Gek‖2
(2.26)

where 〈·〉 denotes the inner product. Also the convergence of this law is

‖ek+1‖2 ≤ λ‖ek‖2 (2.27)

where λ = 1 − β2
k+1(2ε2 + ‖Gek‖2

‖ek‖2
). The aim of the term εβ2

k+1 in performance index

(2.25) is to enforce zero error. The convergence rate is dependent on βk+1. However,

when ek reduces the gain βk+1 will also be reduced.

2.5 Newton-type ILC

For nonlinear dynamics one method is Newton-type ILC, which uses the Newton-Raphson

method to obtain the automatic learning gain. Avrachenkov [8] proposed quasi-Newton

based ILC for robotic manipulators.

Lin et al.[49, 50] developed Newton-type ILC for discrete nonlinear systems. Many ILC

laws can give high performance for linear dynamics but not if the system dynamics are

nonlinear. Newton-type ILC linearizes the nonlinear system to result in a time-varying

linear system. Consider the nonlinear discrete-time system in ILC setting{
xk(p+ 1) = f[xk(p), uk(p)]

yk(p) = h[xk(p)], xk(0) = xk0, p ∈ [0, α− 1]
(2.28)

where the relationship between input and output can be written as yk(p) = g(uk(p)).

The control law is

uk+1 = uk + g′(uk)
−1ek (2.29)

Using this control law, it is difficult to calculate the inversion and derivative of the

nonlinear system g(uk). The core of Newton ILC is to avoid the construction of this

term. Assume zk+1 = g′(uk)
−1ek, the control law becomes uk+1 = uk + zk+1. The aim
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is to calculate zk+1, from the definition, using

ek = g′(uk)zk+1 (2.30)

where, the kth trial error ek can be regarded as the designed signal and zk+1 is the input,

and g′ is the linearization of the nonlinear system. Therefore the objective is to find the

input for the system g′[uk] which can track the error ek. The linearization of the system

g′[uk] is {
x̃k(p+ 1) = A(p)x̃(p) +B(p)ũ(p)

ỹk(p) = C(p)x̃(p)
(2.31)

where A(p), B(p) and C(p) are time-varying matrices and defined as

A(p) = (
∂f

∂x
)uk,xk , B(p) = (

∂f

∂u
)uk,xk , C(p) = (

∂h

∂x
)uk,xk (2.32)

Any ILC design can be applied to this tracking operation and then the optimal input

zk+1 is obtained. A major advantage of this ILC design is a fast convergence rate.

The Newton-Kantrovich theorem shows that Newton-type ILC has semi-local quadratic

convergence performance. Therefore, Newton-type ILC has a form of quadratic conver-

gence.

Of course, there will be applications where Newton-type ILC cannot be applied, e.g.,

when the required partial derivatives do not exist. In such cases other fully nonlinear

designs must be used such as feedback linearization. For background on this see, e.g.[89].

2.6 2D System Theory/Repetitive Process Based ILC De-

sign

Iterative learning control can be viewed as a 2D system, i.e. information propagation

in two independent directions where one of these is from trial to trial and the other is

along the trial. Therefore, ILC analysis using 2D systems theory is possible. Repetitive

processes [74, 76, 77] are a particular class of 2D systems with spatio-temporal dynamics

where the temporal dynamics are defined over a finite duration. Moreover, this is an

inherent property of the dynamics and not an assumption.

These process have their origins in the modeling and control of coal mining operations

and they are a more natural fit to ILC. The repetitive process approach forms a major

part of the analysis in this thesis and therefore the review of current results in this

section is mainly related to ILC analysis and design in this setting.
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Consider first 2D systems where Roesser [71] proposed a new model for linear image

processing of the form
xh(i+ 1, j) = A1x

h(i, j) +A2x
v(i, j) +B1u(i, j)

xv(i, j + 1) = A3x
h(i, j) +A4x

v(i, j) +B2u(i, j)

y(i, j) = C1x
h(i, j) + C2x

v(i, j) +Du(i, j)

(2.33)

for i ≥ 0, j ≥ 0, where xh and xv are the horizontal and vertical sub-vectors axis and

vertical respectively. An alternative model is due to Fornasini and Marchesini [25] and

has the form{
x(i+ 1, j + 1) = A0x(i, j) +A1(i+ 1, j) +A2(i, j + 1) +Bu(i, j)

y(i, j) = Cx(i, j)
(2.34)

where in contrast to the Roesser model the state vector x is not partitioned into two

sub-vectors [47]. More detail can also be found in [9, 29, 44, 51].

Consider the following ILC law for application to the system described by (2.1)

u(p, k + 1) = u(p, k) +K0e(p, k) +K1e(p+ 1, k) (2.35)

where K0 and K1 are the control law matrices and e(p+ 1, k) is a phase-lead term.

Defining ξ(p, k) = e(p, k + 1) − [I − BK1]e(p, k) the resulting controlled dynamics can

be written as the Roesser state-space model

ξ(p+ 1, k) = Aξ(p, k) + [−BK0 −ABK1]e(p, k)

e(p, k + 1) = I + [I −BK1]e(p, k) (2.36)

Using this model [48] showed that error convergence requires r(I −BK1) < 1, where

r(·) denotes the spectral radius, i.e., if an h × h matrix H has eigenvalues λi then

r(H) = max1≤i≤h |λi| (see also [24, 32, 33, 80] for more detail of 2D system theory based

ILC design).

From the above analysis, trial-to-trial error convergence occurs independent of the along

the trial dynamics (in p) due to the fact that over a finite trial length even an unstable

linear system can only produce a bounded output in response to a bounded input. If the

dynamics along the trial are not stable the approach is to design a stabilizing feedback

control law and then do ILC design for the resulting controlled dynamics. This is a

two-step design that can be avoided by using the repetitive process setting, for which

the following is the required background.

Repetitive processes are a distinct class of 2D linear systems [30, 31, 39, 73, 78, 81]. Such

processes make a series of sweeps, termed passes, through a set of dynamics defined over

a finite duration known as the pass length. The output on each pass is known as the



14 Chapter 2 Literature Review

pass profile and once each profile is produced the process resets to the starting location

ready for the start of the next pass. During each pass the previous pass profile acts as a

forcing function and hence contributes to the current pass profile dynamics. The result

can be oscillations that increase in amplitude from pass to pass. Such behavior cannot

be controlled by standard control action.

Repetitive processes have their origins in modeling and control of long-wall coal cutting

dynamics but the repetitive process structure also arises in other applications. These

include physical applications, such as metal rolling, and others where the repetitive

process setting has advantages for analysis, such as optimal control problems for gas

pipelines. The details can again be found in [58, 72, 74].

Of particular interest in this thesis are so-called discrete unit memory linear repetitive

processes, where the term unit memory refers to the fact that only the previous pass

profile contributes explicitly to the dynamics of the next one. The state-space model is

of the form

xk+1(p+ 1) = Axk+1(p) +Buk+1(p) +B0yk(p)

yk+1(p) = Cxk+1(p) +Duk+1(p) +D0yk(p) (2.37)

where xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the pass profile vector, uk(p) ∈ Rl

is the control input vector, k > 0 is the trial number, and 0 ≤ p ≤ α − 1 where α <∞
denotes the number of samples along the pass (α times the sampling period gives the

pass length). To complete the process description it is necessary to specify the boundary

conditions, i.e., the state initial vector for each pass and the initial pass profile (i.e., for

k = 0). The simplest possible form for these is xk+1(0) = dk+1, k ≥ 0 where dk+1 has

known constant entries and y0(p) = f(p) where the entries in f(p) are known functions

of p over the pass length α <∞.

The stability properties and their characterisation for linear repetitive processes is mo-

tivated by the unique control problem, i.e., oscillations in the pass profile sequence

that increase in amplitude as k increases, This stability theory is of the bounded input

bounded output form. In particular a bounded initial pass profile is required to pro-

duce a bounded sequence of pass profiles. Moreover, two cases are possible, either this

property over the finite and fixed pass length α or independent of the pass length.

The stability theory for linear repetitive processes is defined in terms of an abstract

model in a Banach space setting, where this abstract model, given next, includes all

examples as special cases.

Definition 2.2. [74] A linear repetitive process of constant pass length α > 0 consists

of a Banach space Eα, a linear subspace Wα of Eα, and a bounded linear operator

Lα mapping Eα into itself (also written Lα ∈ B(Eα, Eα)). The system dynamics are
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described by linear recursion relations of the form

yk+1 = Lαyk + bk+1, k ≥ 0 (2.38)

where yk ∈ Eα is the pass profile on pass k and bk+1 ∈ Wα. Here the term Lαyk repre-

sents the contribution from pass k to pass k + 1 and bk+1 represents initial conditions,

disturbances and control input effects.

The natural definition of asymptotic stability for these processes is to demand that,

given any initial profile y0 and any disturbance sequence {bk}k≥1 that ‘settles down’

to a steady disturbance b∞ as k → 0, the sequence {yk}k→1 generated by the abstract

model (2.38) ‘settles down’ to a steady, or so-called limit, profile as k →∞. This means

that abstract model is asymptotic stable if giving any initial pass profile y0 and strong

convergent disturbance bk the sequence yk can converges to a limit profile y∞. In the

absence of disturbances the pass profile sequence {yk}k≥1 converges strongly to zero for

all initial profiles if ‖Lα‖ < 1. In the absence

Theorem 2.3. [74] The linear repetitive process (2.38) of constant pass length α > 0 is

asymptotically stable if and only if

r(Lα) < 1 (2.39)

In the special cases of discrete unit memory processes this property holds if and only if

r(D0) < 1.

A more general form of repetitive processes have non-unit memory, i.e., a finite number

of pass profiles greater than one explicitly contribute to the current pass profile. In

particular, suppose that M > 1 pass profiles explicitly contribute to the current one.

Then a discrete non-unit memory linear repetitive process is described by the state-space

model

xk+1(p+ 1) = Axk+1(p) +Buk+1(p) +
M∑
j=1

Bj−1yk+1−j(p)

yk+1(p) = Cxk+1(p) +Duk+1(p) +

M∑
j=1

Dj−1yk+1−j(p) (2.40)

with the boundary conditions

xk+1(0) = dk+1, k ≥ 0

y1−j(p) = ŷ1−j(p), 0 ≤ p ≤ α− 1, 1 ≤ j ≤M (2.41)

where dk+1 is an n× 1 vector with known constant entries and the entries in the m× 1

vectors ŷ1−j(p) are known functions of p.
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The abstract model based stability theory also includes these processes and the following

result characterizes asymptotic stability.

Theorem 2.4. [74] A discrete non-unit memory linear repetitive process described by

(2.40) and (2.41) is asymptotically stable if and only if

r(D̃) < 1 (2.42)

where

D̃ =



0 I 0 · · · 0

0 0 I · · · 0

0 0 0 · · · 0
...

...
...

. . . I

DM−1 DM−2 DM−3 · · · D0


(2.43)

Asymptotic stability places no restrictions on the along the pass dynamics and this can

lead to unacceptable behavior. Guarantee that the sequence of pass profiles yk converges

in norm to the limit profile denoted by y∞, which, see [74] for the details, is described

by a standard linear systems state-space model with for examples described by (2.40)

state matrix A + B0(I − D0)−1C. Now consider the case when A = −0.5, C = 1 and

B0 = 0.5 + β where β is a real scalar. In this case A + B0(I −D0)−1C = β and hence

the limit profile is unstable for |β| ≥ 1.

To avoid such cases arising, stability along the pass can be imposed and treated math-

ematically by letting α→∞.

Theorem 2.5. [74] Suppose that the pair {A,B0} is controllable and the pair {C,A} is

observable. Then a discrete unit memory linear repetitive process described by (2.37) is

stable along the pass if and only if

(a) r(D0) < 1

(b) r(A) < 1

(c) all eigenvalues of the transfer-function matrix G(z) = C(zI −A)−1B0 +D0 have

modulus strictly less than unity ∀ |z| = 1.

The condition (a) is asymptotic stability and enforces pass-to-pass convergence, condi-

tion (b) stabilizes the state dynamics along each pass and condition (c), in the SISO case

for simplicity, requires that the frequency response generated by the transfer-function

G(z) lies inside the unit circle in the complex plane. Equivalently the frequency content

of the initial pass profile is attenuated from pass to pass over the complete frequency

spectrum.

The corresponding stability conditions for non-unit memory discrete linear repetitive

process (2.40) are
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Theorem 2.6. [74] Suppose that the pair {A,B0} is controllable and the pair {C,A}
is observable. Then the discrete non-unit memory linear repetitive process described by

(2.40) and (2.41) is stable along the pass if and only if,

(a) r(D̃) < 1

(b) r(A) < 1

(c) all eigenvalues of the transfer-function matrix G̃(z) have modulus strictly less than

unity ∀ |z| = 1.

where D̃ is defined in (2.43) and

G̃(z) =



0 I 0 · · · 0

0 0 I · · · 0

0 0 0 · · · 0
...

...
...

. . . I

GM (z) GM−1(z) GM−2(z) · · · G1(z)


(2.44)

where

Gj(z) = C(zI −A)−1Bj−1 +Dj−1, 1 ≤ j ≤M (2.45)

In design, the route via the so-called 2D Lyapunov equation leads to Linear Matrix

Inequality (LMI) computations but at the expense of sufficient but not necessary con-

ditions for stability along the pass.

Theorem 2.7. [74] A discrete unit memory linear repetitive process of the form defined

by (2.37) is stable along the pass if, there exists an (n + m) × (n + m) matrix P > 0

such that

Q =

[
δ1P 0

0 δ2P

]
− ÂTPÂ > 0 (2.46)

for any δi > 0, i = 1, 2, δ1 + δ2 = 1, and Â = [A1 A2].

where the notation > 0 (respectively < 0 denotes a symmetric positive definite (respec-

tively) negative-definite matrix. The equation (2.46) is one form of the 2D Lyapunov

inequality for these processes and the associated condition is necessary and sufficient in

the case of single-input single-output examples.

Theorem 2.8. [74] A discrete unit memory linear repetitive process described by (2.37)

is stable along the pass if, there exists matrices Y > 0 and Z > 0 satisfying the following

LMI Z − Y 0 Y AT1
0 −Z Y AT2

A1Y A2Y −Y

 < 0 (2.47)
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where A1 and A2 are defined by

A1 =

[
A B0

0 0

]
, A2 =

[
0 0

C D0

]
(2.48)

Define the augmented plant matrix Φ as

Φ =

[
A B0

C D0

]
(2.49)

Then an alternative theorem for stability along the pass is the following

Theorem 2.9. [74] A discrete unit memory linear repetitive process described by (2.37)

is stable along the pass if, there exists matrices W1 > 0 and W2 > 0 such that the 2D

Lyapunov inequality

ΦTWΦ−W < 0 (2.50)

where W is the direct sum of W1 and W2, i.e. W = W1 ⊕W2, or

W :=

[
W1 0

0 W2

]
(2.51)

Also applying the Schur’s complement formula to (2.50) the LMI based stability condi-

tion becomes [
−W WΦT

ΦW −W

]
< 0. (2.52)

Consider the state-space model of a differential non-unit memory linear repetitive pro-

cesses is

ẋk+1(t) = Axk+1(t) +Buk+1(t) +
M∑
j=1

Bj−1yk+1−j(t)

yk+1(t) = Cxk+1(t) +Duk+1(t) +
M∑
j=1

Dj−1yk+1−j(t) (2.53)

where xk(t) denotes state, uk(t) denotes control input, and yk(t) denotes pass profile,

k > 0 is the trial number, and 0 < t ≤ α over the finite pass length α. To complete the

process description, it is necessary to specify the boundary conditions, and the simplest

possible form is

xk+1(0) = dk+1, k ≥ 0

y1−j(t) = ŷ1−j(t), 0 < t ≤ α, 1 ≤ j ≤M (2.54)
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where dk+1 is an n× 1 vector with known constant entries and the entries in the n× 1

vectors ŷ1−j(t) are known functions of t. It is stable along the pass when next conditions

are hold.

Theorem 2.10. [74] Suppose that the pair {A,B0} is controllable and the pair {C,A}
is observable. Then the differential non-unit memory linear repetitive process described

by (2.53) and (2.54) is stable along the pass if and only if,

(a) all eigenvalues of the block companion matrix D̃ of (2.43) have modulus strictly

less than unity, i.e. r(D̃) < 1

(b) det(sIm −A) 6= 0, Re(s) ≥ 0, and

(c) all eigenvalues of the block companion transfer-function matrix

G̃(s) :=



0 I 0 · · · 0

0 0 I · · · 0

0 0 0 · · · 0
...

...
...

. . . I

GM (s) GM−1(s) GM−2(s) · · · G1(s)


(2.55)

have modulus strictly less than unity for s = iω, ∀ω ≥ 0, where

Gj(s) = C(sIm −A)−1Bj−1 +Dj−1, 1 ≤ j ≤M (2.56)

The model in (2.53) becomes the differential unit memory linear repetitive processes

when M = 1. Similarly, the 2D Lyapunov inequality can be used to analyze the stability

of the differential linear repetitive processes and for design. Based on the unit memory

linear model.

Theorem 2.11. [74] The unit memory version of (2.53) is stable along the pass if there

exist matrices W = W1 ⊕W2 > 0 which solve the 2D Lyapunov inequality,

ΦTW 1,0 +W 1,0Φ + ΦTW 0,1Φ−W 0,1 < 0 (2.57)

where Φ is defined by (2.49) and W1, W2 are matrices of dimensions m × m, n × n

respectively, W 1,0 = W1 ⊕ 0n×n, and W 0,1 = 0m×m ⊕W2.

Hladowski et al. [38] have used the repetitive process setting to design an ILC law of

the form

uk+1(p) = uk(p) +K1(xk+1(p)− xk(p)) +K2ek(p+ 1) (2.58)

where K1 and K2 are control matrices in the control law. The first step is to write the

dynamics as a discrete linear repetitive process. Introduce ηk+1(p+1) = xk+1(p)−xk(p)
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and combine with (2.1) and (2.58) to obtain the discrete linear repetitive process state

space model

ηk+1(p+ 1) = Âηk+1(p) + B̂ek(p)

ek+1(p) = Ĉηk+1(p) + D̂ek(p) (2.59)

where

Â = A+BK1, B̂ = BK2,

Ĉ = −C(A+BK1), D̂ = I− CBK2 (2.60)

Hence the controlled ILC dynamics are a repetitive process with current pass state vector

η and pass profile e.

Using the 2D Lyapunov inequality gives the following result.

Theorem 2.12. [38] The discrete linear repetitive process (2.59) is stable along the pass

if and only if there exist matrices X1 > 0, X2 > 0, R1 and R2 such that the following

LMI is feasible:
−X1 0 X1A

T +RT1 B
T −X1A

TCT −RT1 BTCT

0 −X2 RT2 B
T X2 −RT2 BTCT

AX1 +BR1 BR2 −X1 0

−CAX1 − CBR1 X2 − CBR2 0 −X2

 < 0

(2.61)

If (2.61) holds, the control law matrices K1 and K2 can be computed using

K1 = R1X
−1
1 , K2 = R2X

−1
2 (2.62)

The control law in the above result requires that the complete state vector is available

for measurement. If this is not the case an alternative to the use of an observer is to use

a law of the following form which only uses the output vector

uk+1(p) = uk(p) +K1ζk+1(p+ 1) +K2ζk+1(p) +K3ek(p+ 1) (2.63)

where

ζk+1(p) = yk+1(p− 1)− yk(p− 1) = C(xk+1(p− 1)− xk(p− 1)) (2.64)

where K1, K2 and K3 are the control law matrices. The next step is to design the

control matrices. Hence again set ηk+1(p+ 1) = xk+1(p)− xk(p) and let

η̃k+1(p+ 1) =

[
ηk+1(p+ 1)

ηk+1(p)

]
(2.65)
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The controlled ILC dynamics can be written as

η̃k+1(p+ 1) = Âη̃k+1(p) + B̂ek(p)

ek+1(p) = Ĉη̃k+1(p) + D̂ek(p) (2.66)

where

Â =

[
A+BK1C BK2

I 0

]

B̂ =

[
BK3

0

]
Ĉ =

[
−CA− CBK1C −CBK2C

]
D̂ = I− CBK3 (2.67)

The following result enables control law design.

Theorem 2.13. [40] An ILC scheme described by (2.66) is stable along the pass, if

there exist matrices Y > 0, Z > 0, N1, N2, and N3 such that the following LMI with

linear constraints holds Z − Y 0 ΩT
1

0 −Z ΩT
2

Ω1 Ω2 −Y

 < 0

CY1 = PC, CY2 = QC (2.68)

where Y = diag(Y1, Y2, Y3) and

Ω1 =

AY1 +BN1C BN2C BN3

Y1 0 0

0 0 0



Ω1 =

 0 0 0

0 0 0

−CAY1 − CBN1C −CBN2C Y3 − CBN3

 (2.69)

and the matrices P and Q are additional decision variables. If the LMI with equality

constraints of (2.68) is feasible, the control law matrices calculated using

K1 = N1P
−1, K2 = N2Q

−1, K3 = N3Y
−1

3 (2.70)

Both of these LMI designs result in a structure that is amenable to implementation.

Likewise they have been extended to for example robust control and again this is intro-

duced where relevant in this thesis.
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The final points to note that in contrast to designs based on the 2D Roesser model

ILC laws have been experimentally verified on a laboratory scale gantry robot that

replicates the pick and place operation to which ILC is particularly suited. The details

are in [30, 40]. Also the repetitive process setting permits one step design, i.e., regulation

of the dynamics along the passes and trial-to-trial error convergence. Also this design

method extend directly to differential dynamics, in contrast to lifting based designs.

As discussed above, stability along the trial requires frequency attenuation over the

complete frequency spectrum and this could be a very stringent condition. Moreover, in

terms of control law design practical experience confirms that often it is only required to

impose design conditions over finite frequency ranges. This has led to the development

of strong practical stability and design based on the Kalman-Yakubovich-Popov (KYP)

lemma. Let y∞(p), x∞(p) and u∞(p) denote the strong limits, if they exist, of yk(p),

xk(p) and uk(p). Then strong practical stability [17, 18, 19, 20, 21] requires that these

vectors are bounded. In effect, strong practical stability relaxes the bounded input

bounded output stability requirement over P := {(p, k) : k ≥ 0, p ≥ 0} by removing

the uniform boundedness requirement as both k →∞ and α→∞.

Let yk(∞), xk(∞) and uk(∞) denote the strong limits as α → ∞ of yk(p), xk(p) and

uk+1(p), respectively. Then the following hold with D = 0 in (2.37)

x∞(p+ 1) = (A+B0(I−D0)−1C)x∞(p) +Bu∞(p)

y∞(p) = (I−D0)−1Cx∞(p) (2.71)

and

yk+1(∞) = (C(I−A)−1B0 +D0)yk(∞)

xk+1(∞) = (I−A)−1B0yk(∞) (2.72)

Hence, if a discrete linear repetitive process described by (2.37) is strong practical sta-

bility it must satisfy

[a] r(D0) < 1

[b] r(A) < 1

[c] r(A+B0(I−D0)−1C) < 1

[d] r(C(I−A)−1B0 +D0) < 1

Consider the control law

uk+1(p) = uk(p) +Kek(p+ 1) (2.73)
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Using control law (2.73) for (2.1) and the controlled system becomes (2.59) with

Â = A, B̂ = BK,

Ĉ = −CA, D̂ = I− CBK (2.74)

If the matrix CBK is nonsingular, the condition [c] of strong practical stability always

holds.

Theorem 2.14. [21] The ILC scheme described by (2.59) with r(A) and CBK nonsin-

gular is strong practical stable if there exist Q > 0, nonsingular matrix S = diag{S1, S2}
and a regular matrix Ñ = [0 N ], said the following LMI that hold[

−Q ST ÃT + ÑT Π̃T

ÃS + Π̃Ñ Q− ÊS − (ÊS)T

]
< 0 (2.75)

where

Ã =

[
0 0

0 I

]
, Π̃ =

[
B

−CB

]
, Ê =

[
I−A 0

CA I

]
(2.76)

If (2.75) holds, control matrix K is given by K = NS−1
2 .

In practical, some performance over the finite frequency range is the most important in

design. Then generalized KYP lemma [41, 42, 43], which is the basis for many of the

new results in the thesis is as follows for the discrete and differential cases respectively.

Lemma 2.15. [43] For a discrete linear time-invariant system with transfer-function

matrix G(ejθ) and frequency response matrix G(ejθ) = C(ejθI−A)−1B+D, the following

inequalities are equivalent:

(i) the frequency domain inequality[
G(ejθ)

I

]∗
Π

[
G(ejθ)

I

]
< 0, ∀θ ∈ Θ, (2.77)

where Π is a given real symmetric matrix and Θ denotes the following frequency

ranges

Low frequency range Middle frequency range High frequency range

Θ |θ| ≤ θl θ1 ≤ θ ≤ θ2 |θ| ≥ θh

(ii) the LMI [
A B

I 0

]T
Ξ

[
A B

I 0

]
+

[
C D

0 I

]T
Π

[
C D

0 I

]
< 0 (2.78)
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where Q > 0, P is a symmetric matrix and the matrix Ξ is partitioned as

Ξ =

[
Ξ11 Ξ12

Ξ∗12 Ξ22

]
(2.79)

and specified as follows:

for the low frequency range: |θ| ≤ θl

Ξ =

[
−P Q

Q P − 2cos(θl)Q

]
(2.80)

for the middle frequency range: θl ≤ θ ≤ θh

Ξ =

[
−P ej(θ1+θ2)/2Q

e−j(θ1+θ2)/2Q P − (2cos((θ2 − θ1)/2)Q

]
(2.81)

for the high frequency range: |θ| ≥ θh

Ξ =

[
−P −Q
−Q P + 2cos(θh)Q

]
(2.82)

and for continuous-time system is

Lemma 2.16. [43] For a continuous linear time-invariant system with transfer-function

matrix G(jω) and frequency response matrix

G(jω) = C(jωI −A)−1B +D

the following inequalities are equivalent:

1. the frequency domain inequality[
G(jω)

I

]∗
Π

[
G(jω)

I

]
< 0 (2.83)

where Π is a given real symmetric matrix.

2. the LMI [
A B

I 0

]T
Ξ

[
A B

I 0

]
+

[
C D

0 I

]T
Π

[
C D

0 I

]
< 0 (2.84)

where Q > 0, and P is a positive symmetric matrix and the matrix Ξ is defined as

• for the low frequency range |ω| ≤ ωl

Ξ =

[
Ξ11 Ξ12

Ξ∗12 Ξ22

]
=

[
−Q P

P −ω2
l Q

]
(2.85)
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• for the middle frequency range ω1 ≤ ω ≤ ω2

Ξ =

[
Ξ11 Ξ12

Ξ∗12 Ξ22

]
=

[
−Q P + j(ω1 + ω2)/2Q

∗ −ω1ω2Q

]
(2.86)

• for the high frequency range |ω| 6= ωh

Ξ =

[
Ξ11 Ξ12

Ξ∗12 Ξ22

]
=

[
Q P

P −ω2
hQ

]
(2.87)

In [63], the generalized KYP lemma is used to design the control law matrices (more

detail can also be found in [64, 65, 66]).

Theorem 2.17. [63] An ILC scheme described by (2.59) is stable along the trial over

the finite frequency ranges in Lemma 2.15 if there exist matrices X1, X2, W , S > 0,

Q > 0, P > 0 together with real scalars ρ1 and ρ2 such that the following LMIs are

feasible: [
S + ρ2W + ρ2W

T −ρ2AW − ρ2BX1 − ρ1W
T

∗ −S + sym{ρ1AW + ρ1BX1}

]
< 0 (2.88)


Ξ11 Ξ12 −W T 0 0

∗ Ξ22 + sym{AW +BX1} BX2 −W TATCT −XT
1 B

TCT

∗ ∗ I I −XT
2 B

TCT

∗ ∗ ∗ I

 < 0 (2.89)

where the compatibly dimensioned matrices Ξ11, Ξ12, Ξ22 form Ξ of (2.79) and ρ1 and

ρ2 satisfy

ρ2
1 − ρ2

2 < 0 (2.90)

If the LMI (2.88) and (2.89) are feasible, stabilizing control law matrices K1 and K2 in

(2.58) are given by

K1 = X1W
−1, K2 = X2 (2.91)

Here the subscript {∗} denotes block entries in symmetric matrices. Also sym{X} is

used to denote the symmetric matrix X+XT . One feature of ILC is that all information

in the previous trials is known, and it can use them in the control law to update the next

trial input. Cichy et al.[16] developed an ILC that uses a weighted sum of phase-lag term

and phase-lead term of information in the previous trial (also [15] for stabilize the linear

repetitive processes). In the previous control law, the phase-lead term ek(p+ λ), λ > 0

is applied, here the phase-lag term ek(p − λ), λ > 0 is also used. The control law for
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system state-space model (2.1) is defined as

uk+1(p) = uk(p) +Kx(xk+1(p)− xk(p)) +

Ωh∑
i=−Ωl

Kiek(p+ i+ 1) (2.92)

where Ωl and Ωh are positive integers and the time interval range from p−Ωl to p+ Ωh

denotes the “wave window”. Substituting this control law into (2.1), the controlled

system is

ηk+1(p+ 1) = Âηk+1(p) +

Ωh∑
i=−Ωl

B̂iek(p+ i)

ek+1(p) = Ĉηk+1(p) +

Ωh∑
i=−Ωl

D̂iek(p+ i) (2.93)

where

Â = A+BKx, B̂0 = BK0, B̂i = BKi,

Ĉ = −C(A+BKx), D̂0 = I− CBK0,

D̂i = −CBKi, i = −Ωl, ....,Ωh, i 6= 0 (2.94)

The additional boundary condition is

ek(p) = 0, p ∈ {−Ωl, ...,−1} ∪ {α, ..., α+ Ωh − 1} (2.95)

Since this control law applying the weighted sum of phase-lead term and phase-lag term

of error information in the control law, the global Lyapunov function is used to obtain

the design algorithm, which is shown next

Theorem 2.18. [16] The ILC scheme described by (2.93) is stable along the trial if there

exist matrices P > 0, N , Qi > 0 and Ni with i = −Ωl, ...,Ωh, such that the following

LMI is feasible: [
−P (AP +BN)T

AP +BN −P

]
< 0 (2.96)

where

A =


A 0 · · · 0 I 0 · · · 0

−CA 0 · · · 0 I 0 · · · 0
...

...
. . .

...
...

...
. . .

...

−CA 0 · · · 0 I 0 · · · 0

 (2.97)
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B =


B · · · B

−CB · · · −CB
...

. . .
...

−CB · · · −CB

 (2.98)

and

P = diag{P,Q−Ωl
, ..., Q0, ..., QΩh

}

N = diag{N,N−Ωl
, ..., N0, ..., NΩh

} (2.99)

If the LMI of (2.96) holds, stabilizing matrices in the control law (2.94) are given by

Kx = NP−1

Ki = NiQ
−1
i , i = −Ωl, ...Ωh (2.100)

Robustness is an important issue for ILC design. As in other areas, the approach used

is to assume that the uncertainty present is described by a particular model structure.

Under the case of norm bounded uncertainty, the state-space model describing the dy-

namics in the discrete case is

xk+1(p+ 1) = (A+ ∆A)xk+1(p) + (B + ∆B)uk+1(p) + (B0 + ∆B0)yk(p),

yk+1(p) = (C + ∆C)xk+1(p) + (D + ∆D)uk+1(p) + (D0 + ∆D0)yk(p) (2.101)

Here ∆A, ∆B, ∆C, ∆D, ∆B0, and ∆D0 are norm-bounded additive perturbations to

the state-space model matrices A, B, C, D, B0 and D0. The next result is extensively

used in the robustness analysis in this thesis.

Theorem 2.19. [45] For any FTF ≤ I, and a scalar ε > 0 the following holds

Σ1FΣ2 + ΣT
2 FΣT

1 ≤ ε−1Σ1ΣT
1 + εΣT

2 Σ2 (2.102)

The augmented plant matrix is subject to additive perturbations defined as follows

Φ + ∆Φ =

[
A B0

C D0

]
+

[
∆A ∆B0

∆C ∆D0

]
(2.103)

If FTF ≤ I holds and the uncertainties ∆Φ follows the norm bounded structure:

∆Φ =

[
H1

H2

]
F
[
E1 E2

]
=

[
H1

H2

]
FE (2.104)

Let

∆A1 =

[
∆A ∆B0

0 0

]
, ∆A2 =

[
0 0

∆C ∆D0

]
(2.105)
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hence

∆Φ = ∆A1 + ∆A2 = Ĥ1FE + Ĥ2FE (2.106)

where

Ĥ1 =

[
H1

0

]
, Ĥ2 =

[
0

H2

]
(2.107)

The next theorem provides conditions for stability along the pass under norm bounded

uncertainty in the discrete case.

Theorem 2.20. [74] Consider a discrete unit memory linear repetitive process of the

form defined by (2.37) in the presence of an uncertainty structure satisfying (2.106) and

(2.107). Then this process is stable along the pass if there exist matrices P > 0 and

Q̂ > 0 such that

(Â0 + ĤF̂Ê)TP (Â0 + ĤF̂Ê) + Q̂ < 0 (2.108)

where

Â0 =
[
Â1 Â2

]
, Q̂ =

[
Q− P 0

0 −Q

]
(2.109)

and

Ĥ =
[
Ĥ1 Ĥ2

]
, F̂ := I2 ⊗F , Ê := I2 ⊗ E (2.110)

and ⊗ denotes the matrix Kronecker product. By using Theorem 2.19, (2.108) can be

written as: for any choice of Q, there exists P > 0 such that (2.108) holds if, and only

if, there exists a scalar ε > 0 such that[
−P−1 + εĤĤT Â0

ÂT0 ε−1ÊT Ê + Q̂

]
< 0 (2.111)

In [38], two robust ILC design algorithms were developed. The theory is based on the

following model with time-varying uncertainty

xk(p+ 1) = Axk(p) + µ̂E(p)Hxk(p) +Buk(p)

yk(p) = Cxk(p), p = 0, 1, ..., α− 1 (2.112)

In the time-varying term µ̂E(p)Hxk(p), µ̂ is a constant positive scalar, the normalizing

matrix H ∈ Rh×n has constant entries and it is E(p) ∈ Rn×h that brings in the time-

varying dynamics. The last matrix is assumed to satisfy

E(p)TE(p) < 1, ∀p = 0, 1, ..., α− 1 (2.113)
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Using the same notation as above, the controlled dynamics with uncertainty can be

written as

ηk+1(p+ 1) = [Â+ µ̂Ψ̂(p)]ηk+1(p) + B̂ek(p)

ek+1(p) = [Ĉ − µ̂Γ̂(p)]ηk+1(p) + D̂ek(p) (2.114)

where Â, B̂, Ĉ and D̂ are defined in (2.59) and

Ψ̂(p) := E(p− 1)H

Γ̂(p) := CE(p− 1)H (2.115)

Theorem 2.21. [38] The ILC scheme described by (2.114) is stable along the trial for

all time-varying uncertainties satisfying (2.113) if there exist R1, R2, X1 > 0, X2 > 0,

and scalars λ > 0 and γ > 0 such that the following LMI is feasible:
−X1 0 X1AT +RT

1 B
T −X1ATCT−RT

1 B
TCT X1HT

0 −X2 RT
2 B

T X2−RT
2 B

TCT 0
AX1+BR1 BR2 −X1+γI 0 0

−CAX1−CBR1 X2−CBR2 0 −X2+γCCT 0
HX1 0 0 0 −0.5γI

 < 0 (2.116)

Also an upper bound for the parameter µ̂ in the time-varying uncertainty description of

(2.112) is given by

µ̂ =

√
γ

λ
(2.117)

If the condition holds, the control law matrices K1 and K2 are given by K1 = R1X
−1
1

and K2 = R2X
−1
2 .

This design algorithm provides a compromise between the uncertainty bounds and con-

vergence speed. However, it does not provide K1 and K2 for the maximum possible

uncertainty bound on µ̂. To remove this difficulty, a second robust design algorithm

based on the Generalized Eigenvalue Problem (GEVP) was developed.

Theorem 2.22. [38] The ILC scheme described by (2.114) is stable along the trial for

all time-varying uncertainties satisfying (2.113) if there exist R1, R2, X1 > 0, X2 > 0,

and a scalar λ > 0 such that the following GEVP is feasible

minimize η > 0

subject to :
0 0 0 0 0

0 0 0 0 0

0 0 I 0 0

0 0 0 CCT 0

0 0 0 0 0

 < ηΩ (2.118)
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where

Ω =

 −X1 0 −X1AT−RT
1 B

T X1ATCT +RT
1 B

TCT −X1HT

0 X2 −RT
2 B

T −X2+RT
2 B

TCT 0
−AX1−BR1 −BR2 X1 0 0
CAX1+CBR1 −X2+CBR2 0 X2 0
−HX1 0 0 0 0.5γI

 (2.119)

and Ω > 0. Also an upper bound for the parameter µ̂ in (2.112) is given by

µ̂max =

√
1

ηλ
(2.120)

If this condition holds, the control law matrices K1 and K2 are given by K1 = R1X
−1
1

and K2 = R2X
−1
2 .

In [63], the case of norm-bounded uncertainty was considered, starting from the state-

space model

xk(p+ 1) = (A+ ∆A)xk(p) + (B + ∆B)uk(p)

yk(p) = (C + ∆C)xk(p) (2.121)

where the perturbations are assumed to be of the norm-bounded form, that is

∆A = H1F(p)E1, ∆B = H1F(p)E2, ∆C = H2F(p)E1 (2.122)

where H1, H2, E1, and E2 are known real constant matrices of compatible dimensions

and F(p) is an uncertain perturbation satisfying F(p)FT (p) ≤ I. Applying the control

law (2.66), controlled system is in the form of (2.59) with

Â = (A+ ∆A) + (B + ∆B)K1, B̂ = (B + ∆B)K2,

Ĉ = −(C + ∆C)((A+ ∆A) + (B + ∆B)K1), D̂ = I− (C + ∆C)(B + ∆B)K2

(2.123)

Apply 2D Lyapunov equation, Schur’s complement and Theorem 2.19 to design the

control matrices, design robust is as follows.

Theorem 2.23. [63] An ILC scheme described by (2.59) with uncertainty structure

modeled by (2.122) and F(p)FT (p) ≤ I is stable along the trial over finite frequency

range in Lemma 2.15 if there exist matrices S > 0, Q > 0, P > 0, X1, X2, Ŵ , W2,

W11, W21, W31, W41 together with real scalars ρ1, ρ2, ε1 > 0 and[
S+sym{ρ2Ŵ}+ε1ρ22H1HT

1 −ρ2AŴ−ρ2BX1−ρ1ŴT−ε1ρ1ρ2H1HT
1 0

∗ −S+sym{ρ1AŴ+ρ1BX1}+ε1ρ21H1HT
1 XT

1 E
T
2 +ŴTET

1
∗ ∗ −ε1I

]
< 0 (2.124)
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ε2 > 0 such that the following LMIs are feasible:
Ξ11 Ξ12−ŴT 0 −W11CT −W11 W11ET

1 0

∗ Ω22 BX2 −W21CT Ω25 W21ET
1 −ŴTET

1 +XT
1 E

T
2

∗ ∗ I I−W31CT XT
2 B

T−W31 W31ET
1 XT

2 E
T
2

∗ ∗ ∗ Ω44 −W41−CWT
2 W41ET

1 0

∗ ∗ ∗ ∗ Ω55 W2ET
1 0

∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ −∗ −ε2I

 < 0 (2.125)

where

Ω22 = Ξ22 + sym{AŴ +BX1}+ ε2H1H
T
1 , Ω25 = Ŵ TAT +XT

1 B
T −W21 + ε2H1H

T
1

Ω44 = −I− sym{W41C
T }+ ε2H2H

T
2 , Ω55 = −W2 −W T

2 + ε2H1H
T
1 (2.126)

and ρ1 and ρ2 satisfy (2.90). Consequently, if the LMIs (2.124) and (2.125) are feasible,

stabilizing control law matrices K1 and K2 are given by K1 = X1Ŵ
−1 and K2 = X2.

Moreover, more detail of some robust design for disturbance can be found in [59, 60, 61,

62, 86, 87, 88].

2.7 Higher-order ILC

The novel future of ILC is that all information from the previous trials including error

and input are known once they are complete. Therefore an ILC law can use more

than one trials information in the control law and such laws are known as higher order.

Higher-order ILC was proposed by Gu et al. [34], with application to a PUMA 560

robot. Bien et al. [10] then gave the general form of such a law. Consider system model

(2.1), then the higher-order ILC law is of the form

uk+1(p) = P1uk(p) + ...+ PNuk−N+1(p) +Q1ek(p) + ...+QNek−N+1(p) (2.127)

where Pi and Qi, i ∈ [1, N ] are control law matrices, and the condition for trial-to-trial

convergence is
N∑
i=1

Pi = I,
N∑
i=1

‖Pi −QiCB‖ < 1 (2.128)

2.8 Summary

This chapter has given a summary of ILC laws and their design with a particular focus

on the use of repetitive process stability theory. Also the basics of higher-order ILC has

been introduced, where the major aim of this thesis is to extend the use of such control

laws. In the next chapter the KYP lemma is used to design a higher-order ILC law using

the repetitive process setting.





Chapter 3

New Algorithms for

State-Feedback Higher-order

Control Law Design Using the

KYP Lemma

3.1 Introduction

Higher-order iterative learning control uses error information of several previous trials

in control law. In this chapter, a state feedback higher-order ILC control law is used,

and an LMI approach is given to design the control law matrices.

When using higher-order control law for a system, the controlled dynamics can be de-

scribed as a non-unit memory linear repetitive process. Therefore the stability conditions

of such process can be used to analyze the ILC performance and design the control law

matrices. This chapter gives an LMI design algorithm for the optimal control law matri-

ces. It is difficult to design the control law matrices from stability conditions of non-unit

memory linear repetitive process due to the weight summation term of previous trials

information. However, by applying the super-vector it can be converted to a unit mem-

ory linear repetitive process. Then LMI design algorithm is obtained by using KYP

lemma of unit memory linear repetitive process.

In many applications, the systems are modelled with the uncertainties. The classical

design methods are much less powerful in such areas. Therefore, a robust control theory

is required. In this chapter, the norm-bounded additive uncertainty is considered and

the robust design algorithms are developed.
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3.2 Higher-order ILC Design for Discrete-time Systems

3.2.1 Problem Setup

Consider the discrete time-invariant linear state-space system model in the ILC setting

xk(p+ 1) = Axk(p) +Buk(p),

yk(p) = Cxk(p), p = 0, 1, ..., α− 1 (3.1)

where xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the output vector, uk(p) ∈ Rl is

the input vector, k is the trial number, and the finite trial length α <∞. Let yd ∈ Rm

be reference trajectory then error on trial k is ek(p) = yd(p) − yk(p). Recognizing the

availability of all information generated on the previous trials, a common form of ILC

law computes the current trial control input as the sum of that used on the previous

trial plus a correction term,i.e., of the form

uk+1(p) = uk(p) + ∆uk+1(p) (3.2)

where ∆uk+1(p) is a function of the error on trial k but could also be a function of the

previous trial control input. A natural extension is to allow ∆uk+1(p) to be a function

of the error and/or control vectors on a finite number of previous trials. In order to use

repetitive process theory for ILC design, introduce, for analysis purposes only,

ηk+1(p+ 1) = xk+1(p)− xk(p) (3.3)

and in (3.2) set

∆uk+1(p) = Kηk+1(p+ 1) +
M∑
j=1

Kj−1ek+1−j(p+ 1) (3.4)

The resulting controlled dynamics state-space model is

ηk+1(p+ 1) = Âηk+1(p) +
M∑
j=1

B̂j−1ek+1−j(p)

ek+1(p) = Ĉηk+1(p) +

M∑
j=1

D̂j−1ek+1−j(p) (3.5)

where

Â = A+BK, B̂0 = BK0, B̂j−1 = BKj−1,

Ĉ = −C(A+BK), D̂0 = I− CBK0,
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D̂j−1 = −CBKj−1, j = 2, ...,M (3.6)

which is a non-unit memory linear repetitive process, and is stable along the trial if and

only if all conditions in Theorem 2.6 are satisfied. Therefore the design algorithm for

control law matrices is based on Theorem 2.6. Many researchers have proposed the LMI

based design algorithms for such a control law for the unit memory case (Theorem 2.12,

Theorem 2.13). However, it is difficult to develop an LMI based design algorithm for

higher-order control law since the controlled system is non-unit memory and the sum-

mation term of error information on the previous trials cannot be used in the design

algorithm directly. This section gives a design algorithm for the higher-order control

law matrices which is based on the stability conditions for linear repetitive process.

In some applications, uncertainties will be present in the model structure. For such

system models, the general design algorithm cannot guarantee the system stable if it

is only based on the normal plant model. Therefore, robust design algorithm is given

to solve this problem. In this chapter, the norm-bounded additive uncertainty of the

system is considered. A system with norm-bounded uncertainty has the state-space

model

xk(p+ 1) = (A+ ∆A)xk(p) + (B + ∆B)uk(p),

yk(p) = (C + ∆C)xk(p), p = 0, 1, ..., α− 1 (3.7)

and the norm-bounded additive perturbations ∆A, ∆B and ∆C to the state-space model

matrices A,B and C are in the form

∆A = H1FE1, ∆B = H1FE2, ∆C = H2FE1, (3.8)

where H1, H2, E1, E2, and F ∈ Rr×r is an unknown matrix that satisfies F = F T

and FF T ≤ I. If apply the higher-order control law (3.2) for this model the controlled

system is in the form (3.5) with

Â = (A+ ∆A) + (B + ∆B)K, B̂0 = (B + ∆B)K0, B̂j−1 = (B + ∆B)Kj−1,

Ĉ = −(C + ∆C)((A+ ∆A) + (B + ∆B)K), D̂0 = I− (C + ∆C)(B + ∆B)K0,

D̂j−1 = −(C + ∆C)(B + ∆B)Kj−1, j = 2, ...,M (3.9)

The higher-order ILC control law robust design algorithms are based on the feedback

system (3.5) with (3.6) and (3.9), respectively.

3.2.2 LMI Based ILC Design

In the repetitive process setting the state-space model (3.5) is termed non-unit memory,

with M denoting the memory length. If M = 1 the model of the previous section,
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termed a unit memory repetitive process, is recovered. The analysis in this part requires

(3.5) to be written as a unit memory process, where the result is

ηk+1(p+ 1) = Âηk+1(p) + B̄ēk(p),

ēk+1(p) = C̄ηk+1(p) + D̄ēk(p), (3.10)

where

ēk(p) =
[
eTk−M+1(p) · · · eTk−1(p) eTk (p)

]T
,

B̄ =
[
B̂M−1 · · · B̂1 B̂0

]
,

C̄ =



0

0
...

0

Ĉ


, D̄ =



0 I 0 · · · 0

0 0 I
. . . 0

0 0 0 · · · 0
...

...
...

. . . I

D̂M−1 D̂M−2 D̂M−3 · · · D̂0


, (3.11)

Applying the z-transform, i.e., zxk(p) = xk(p + 1), (see [74] for the details of how to

avoid problems arising from the finite trial length) to (3.10) gives

ēk+1(z) = G(z)ēk(z) (3.12)

where G(z) = C̄(zI − Â)−1B̄ + D̄. The term in transfer-function matrix G(z) which

relates the convergence performance is only the bottom row, i.e.,

ek+1(z) = [GM−1(z), ..., G1(z), G0(z)]ēk(z) (3.13)

The design objective is to select the gains K, Kj−1, j = 1, ...,M such that the norm of

the above transfer function is sufficiently small and thus convergence can be achieved.

First give the following theorem.

Theorem 3.1. For a given γ > 0 the discrete linear repetitive process representing the

ILC dynamics described by (3.10) is stable along the trial and satisfies

‖[GM−1(z), ..., G1(z), G0(z)]‖∞ < γ (3.14)

if there exist symmetric matrix P1 > 0, and N1, N2 with µ = γ2 such that following

LMIs are feasible [
−P +Q ∗

A1P +B1N −P

]
< 0 (3.15)

[
−P ∗

A2P +B2N −P

]
< 0 (3.16)
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where

A1 =

[
A 0 0 · · · 0

−CA 0 0 · · · I

]
, B1 =

[
B B

−CB −CB

]
,

A2 =



A 0 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

−CA 0 0 · · · I


, B2 =



B B

0 0
...

...

0 0

−CB −CB


,

and

P = diag{P1, I}, Q = diag{0, (1− µ)I}, N = diag{N1, N2}.

The stabilizing control law matrices are given by

K = N1P
−1
1 , [KM−1, ..., K1, K0] = N2 (3.17)

Proof. The LMI (3.16) can be written as

ΦTPΦ− P < 0 (3.18)

where

Φ =

[
Â B̄

C̄ D̄

]
(3.19)

which is 2D Lyapunov inequality for stability of discrete linear repetitive process [74],

and the feedback system is stable along the trial. The condition (3.14) can be written

as [
(zI − Â)−1B̄

I

]T [
Ĉ D̃

0 I

]T [
I 0

0 −µI

][
Ĉ D̃

0 I

][
(zI − Â)−1B̄

I

]
< 0 (3.20)

Also by the bounded real lemma [22, 91], this last condition holds if and only if the

following LMI holds[
ÂTP1Â− P1 ÂTP1B̄

B̄TP1Â B̄TP1B̄

]
+

[
Ĉ D̃

0 I

]T [
I 0

0 −µI

][
Ĉ D̃

0 I

]
< 0 (3.21)

Where D̃ = [D̂M−1, ..., D̂0], by using the Schur’s complement formula, the LMI (3.15)

can be obtained from (3.21), and proof is complete.

The next theorem shows that when γ is small, the tracking error is guaranteed to

converge to zero.
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Theorem 3.2. If for γ ∈ (0, 1/
√
M) the design in Theorem 3.1 is feasible, the tracking

error converges to zero as k →∞. Moreover, the convergence is monotonic in the sense

that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. When the design algorithm in Theorem 3.1 is feasible,

‖ek+1‖22 < γ2
M−1∑
i=0

‖ek−i‖22 (3.22)

Define q = γ2M . As γ < 1/
√
M , q < 1. Hence

‖ek+1‖22 < γ2 × {‖ek−M+1‖22 + ...+ ‖ek‖22}

< q ×max {‖ek−M+1‖22, ..., ‖ek‖22} (3.23)

Furthermore,

‖ek+2‖22 < q × {‖ek−M+2‖22 + ...+ ‖ek+1‖22}

< q ×max{‖ek−M+1‖22, ..., ‖ek‖22} (3.24)

Following a similar argument

max{‖ek+1‖22, ..., ‖ek−M+2‖22}

< q ×max {‖ek−M+1‖22, ..., ‖ek‖22}

< qk ×max {‖eM−1‖22, ..., ‖e0‖22} (3.25)

Since q < 1, the value of qk → 0 as k →∞, and hence ‖e∞‖2 = 0, which completes the

proof.

From the above theorem it can be seen that γ characterizes how quickly the trial-to-

trial error converges to zero under the higher order ILC design. In practice, a faster

convergence is usually desirable. This can be achieved by finding the minimum γ value

by solving the following minimization problem.

min
P1>0,γ<1,N1,N2

µ (3.26)

where µ is defined in the Theorem 3.1.
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3.2.3 Robust Design Algorithm

In this section, a robust design algorithm can solve this problem for the norm-bounded

uncertainty in the system. The uncertainty based feedback system model can be con-

verted to the unit-memory repetitive processes (3.10), (3.11) with (3.9), and the robust

design result can now be established.

Theorem 3.3. For a given γ > 0 the discrete linear repetitive process representing the

ILC dynamics of (3.5) with additive uncertainties ∆A, ∆B, and ∆C in (3.9) is stable

along the trial and satisfies (3.14) if there exist matrices P1 > 0, N1, N2, W1x, W2x,

W1j for j = 0, ...,M − 1, W20, W3, W4x, W5x, W4j, W5j for j = 0, ...,M − 1, W6 with

appropriate dimensions and real scalar ε1 > 0, ε2 > 0 and µ = γ2 such that the following

LMI is feasible 
−P +Q ∗ ∗ ∗ ∗

A2P +B2N ∆22 ∗ ∗ ∗
∆31 ∆32 ∆33 ∗ ∗
∆41 ∆42 ∆43 ∆44 ∗
∆51 ∆52 ∆53 ∆54 ∆55

 < 0 (3.27)


−P ∗ ∗ ∗ ∗

A3P +B3N ∆62 ∗ ∗ ∗
∆71 ∆72 ∆73 ∗ ∗
∆81 ∆82 ∆83 ∆84 ∗
∆91 ∆92 ∆93 ∆94 ∆95

 < 0 (3.28)

where P , Q, and N are defined in the Theorem 3.1 and

A2 =
[
A 0 0 · · · 0

]
, B2 =

[
B B

]
, I2 =

[
0 · · · 0 I

]
,

A3 =


A 0 0 · · · 0

0 0 I · · · 0
...

... 0
. . .

...

0 0 0 · · · I

 , B3 =


B B

0 0
...

...

0 0

 , I1 =


0 I · · · 0
...

...
. . .

...

0 0 · · · I

 ,

and

∆22 = −P1 + ε1H1H
T
1 ,

∆31 = [−CW T
1x,−CW T

1M−1, ...,−CW T
11, I − CW T

10],

∆32 = −CW T
2x,

∆33 = −I − CW T
20 −W20C

T + ε1H2H
T
2 ,
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∆41 = A2P +B2N + [−W T
1x,−W T

1M−1, ...,−W T
10],

∆42 = −W T
2x,

∆43 = −W T
20 −W3C

T ,

∆44 = −W3 −W T
3 + ε1H1H

T
1 ,

Ē1 = [E1 0 0, ..., 0], Ē2 = [E2 E2],

∆51 =

 Ē1P + Ē2N

−E1W
T
1x −E1W

T
1M−1 · · · −E1W

T
10

Ē1P + Ē2N

 ,

∆52 =

 0

−E1W
T
2x

0

 , ∆53 =

 0

−E1W
T
20

0

 ,

∆54 =

 0

−E1W
T
3

0

 , ∆55 =

−ε1I 0 0

0 −ε1I 0

0 0 −ε1I

 ,
∆62 = diag{−P1 + ε2H1H

T
1 ,−I},

∆71 = [−CW T
4x,−CW T

4M−1, ...,−CW T
41, I − CW T

40],

∆72 = [−CW T
5x,−CW T

5M−1, ...,−CW T
51],

∆73 = −I − CW T
50 −W50C

T + ε2H2H
T
2 ,

∆81 = A2P +B2N + [−W T
4x,−W T

4M−1, ...,−W T
40],

∆82 = [−W T
5x,−W T

5M−1, ...,−W T
51],

∆83 = −W T
50 −W6C

T ,

∆84 = −W6 −W T
6 + ε2H1H

T
1 ,

∆91 =

 Ē1P + Ē2N

−E1W
T
4x −E1W

T
4M−1 · · · −E1W

T
40

Ē1P + Ē2N

 ,

∆92 =

 0 0 · · · 0

−E1W
T
5x −E1W

T
5M−1 · · · −E1W

T
51

0 0 · · · 0

 ,

∆93 =

 0

−E1W
T
50

0

 , ∆94 =

 0

−E1W
T
6

0

 ,

∆95 =

−ε2I 0 0

0 −ε2I 0

0 0 −ε2I

 ,
If the LMI (3.27) and (3.28) are feasible, stabilizing control law matrices are given by

K = N1P
−1
1 , [KM−1, ..., K1, K0] = N2 (3.29)
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with use of the linear objective minimization procedure (3.26).

Proof. Direct substitution of (3.9) into (3.15) and (3.16) introduces nonlinear terms.

To avoid these and obtain LMIs, apply Theorem 2.19 to these two LMIs, and then the

Schur’s complement formula gives (3.27) and proof is complete.

Theorem 3.4. If for γ ∈ (0, 1/
√
M) the design in Theorem 3.3 is feasible, the tracking

error converges to zero as k →∞ even with the presence of model uncertainty ∆A, ∆B

and ∆C. Moreover, the convergence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that of Theorem 3.2 and here the details are omit-

ted.

3.3 Higher-order ILC Design for Continuous-time Systems

3.3.1 Problem Setup

Consider the continuous time-invariant linear state-space system model in the ILC set-

ting

ẋk(t) = Axk(t) +Buk(t),

yk(t) = Cxk(t), 0 < t ≤ α (3.30)

where xk, yk, and uk are state, output and input vector, respectively, and k is the trial

number, and the finite trial length α < ∞. If yd denote the reference trajectory then

the error on trial k is ek(t) = yd(t)− yk(t). The ILC law is

uk+1(t) = uk(t) + ∆uk+1(t) (3.31)

where ∆uk+1(t) is a function of the error on trial k but could also be a function of the

previous trial control input. A natural extension is to allow ∆uk+1(t) to be a function

of the error and/or control vectors on a finite number of previous passes. In order to

use repetitive process theory for ILC design, introduce, for analysis purposes only,

ηk+1(t) =

∫ t

0
(xk+1(t)− xk(t))dt (3.32)

and in (3.31) set

∆uk+1(t) = Kηk+1(t) +

M∑
j=1

Kj−1ėk+1−j(t) (3.33)
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The resulting controlled dynamics state-space model is

η̇k+1(t) = Âηk+1(t) +

M∑
j=1

B̂j−1ek+1−j(t),

ek+1(t) = Ĉηk+1(t) +
M∑
j=1

D̂j−1ek+1−j(t), (3.34)

where

Â = A+BK, B̂0 = BK0, B̂j−1 = BKj−1,

Ĉ = −C(A+BK), D̂0 = I− CBK0,

D̂j−1 = −CBKj−1, j = 2, ...,M (3.35)

This non-unit memory linear repetitive process. It is stable along the pass if and only

if all conditions in Theorem 2.10 are satisfied. In a similar manner to the discrete case,

the model with uncertainty present is

ẋk(t) = (A+ ∆A)xk(t) + (B + ∆B)uk(t),

yk(t) = (C + ∆C)xk(t), 0 < t ≤ α (3.36)

and the norm-bounded additive perturbations ∆A, ∆B and ∆C to the state-space model

matrices A,B and C are of the form

∆A = H1FE1, ∆B = H1FE2, ∆C = H2FE1 (3.37)

where H1, H2, E1, E2, and F ∈ Rr×r is an unknown matrix that satisfies F = F T and

FF T ≤ I. If apply the control law (3.31) for this model the controlled system is in the

form (3.34) with

Â = (A+ ∆A) + (B + ∆B)K, B̂0 = (B + ∆B)K0, B̂j−1 = (B + ∆B)Kj−1,

Ĉ = −(C + ∆C)((A+ ∆A) + (B + ∆B)K), D̂0 = I− (C + ∆C)(B + ∆B)K0,

D̂j−1 = −(C + ∆C)(B + ∆B)Kj−1, j = 2, ...,M (3.38)

3.3.2 LMI Based ILC Design

Since the state-space model (3.34) is non-unit memory , with M denoting the memory

length, the analysis in this section requires (3.34) to be written as a unit memory process,
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where the result is

η̇k+1(t) = Âηk+1(t) + B̄ēk(t),

ēk+1(t) = C̄ηk+1(t) + D̄ēk(t), (3.39)

where

ēk(t) =
[
eTk−M+1(t) · · · eTk−1(t) eTk (t)

]T
,

B̄ =
[
B̂M−1 · · · B̂1 B̂0

]
,

C̄ =



0

0
...

0

Ĉ


, D̄ =



0 I 0 · · · 0

0 0 I
. . . 0

0 0 0 · · · 0
...

...
...

. . . I

D̂M−1 D̂M−2 D̂M−3 · · · D̂0


, (3.40)

Using Laplace transform, i.e., L[ẋk(t)] = sL[xk(t)] − xk(0), (see [74] for the details of

how to avoid problems arising from the finite trial length) to (3.39) gives

ēk+1(s) = G(s)ēk(s) (3.41)

where G(s) = C̄(sI − Â)−1B̄ + D̄. The term in transfer-function matrix G(s) which

relates the convergence performance is only the bottom row, i.e.,

ek+1(s) = [GM−1(s), ..., G1(s), G0(s)]ēk(s) (3.42)

and the objective is to select the gains K, Kj−1, j = 1, ...,M such that the norm of the

above transfer function is small and thus convergence can be achieved.

Theorem 3.5. For a given γ > 0 the differential linear repetitive process representing

the ILC dynamics described by (3.39) is stable along the trial and satisfies

‖[GM−1(s), ..., G1(s), G0(s)]‖∞ < γ (3.43)

if there exist symmetric matrix P1 > 0, and N1, N2 with µ = γ2 such that following

LMIs are feasiblesym{AP1 +BN1} BN2 −P1A
TCT −NT

1 B
TCT

NT
2 B

T −µI IT0 −NT
2 B

TCT

−CAP1 − CBN1 I0 − CBN2 −I

 < 0 (3.44)

sym{AP1 +BN1} BN2 −P1A
TCT1 −NT

1 B
TCT1

NT
2 B

T −I IT1 −NT
2 B

TCT1
−C1AP1 − C1BN1 I1 − C1BN2 −I

 < 0 (3.45)
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where

C1 =



0

0
...

0

C


, I1 =



0 I 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

0 0 0 · · · I


, I0 =

[
0 0 0 · · · I

]
, (3.46)

The stabilizing control law matrices are given by

K = N1P
−1
1 , [KM−1, ..., K1, K0] = N2 (3.47)

Proof. The LMI (3.45) can be written as

ΦT

[
P1 0

0 0

]
+

[
P1 0

0 0

]
Φ + ΦT

[
0 0

0 I

]
Φ−

[
0 0

0 I

]
< 0 (3.48)

where

Φ =

[
Â B̄

C̄ D̄

]
(3.49)

which is 2D Lyapunov inequality for stability of differential linear repetitive process [74],

and the feedback system is stable along the trial. The condition (3.44) can be written

as [
(jωI − Â)−1B̄

I

]T [
Ĉ D̃

0 I

]T [
I 0

0 −µI

][
Ĉ D̃

0 I

][
(jωI − Â)−1B̄

I

]
< 0 (3.50)

Also by the bounded real lemma [91], this last condition holds if and only if the following

LMI holds [
ÂTP1 + P1Â P1B̄

B̄TP1 0

]
+

[
ĈT Ĉ ĈT D̃

D̃T Ĉ D̃T D̃ − µI

]
< 0 (3.51)

Where D̃ = [D̂M−1, ..., D̂0], by using Schur’s complement formula, the LMI (3.44) is

obtained from (3.51), and proof is complete.

The next theorem shows that when γ is small, the tracking error is guaranteed to

convergence to zero.

Theorem 3.6. If for γ ∈ (0, 1/
√
M) the design in Theorem 3.5 is feasible, the tracking

error converges to zero as k →∞. Moreover, the convergence is monotonic in the sense

that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}
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Proof. When the design algorithm in Theorem 3.5 is feasible,

‖ek+1‖22 < γ2
M−1∑
i=0

‖ek−i‖22 (3.52)

Define q = γ2M . As γ < 1/
√
M , q < 1. Hence

‖ek+1‖22 < γ2 × {‖ek−M+1‖22 + ...+ ‖ek‖22}

< q ×max {‖ek−M+1‖22, ..., ‖ek‖22} (3.53)

Furthermore,

‖ek+2‖22 < q × {‖ek−M+2‖22 + ...+ ‖ek+1‖22}

< q ×max{‖ek−M+1‖22, ..., ‖ek‖22} (3.54)

Similarly

max{‖ek+1‖22, ..., ‖ek−M+2‖22}

< q ×max {‖ek−M+1‖22, ..., ‖ek‖22}

< qk ×max {‖eM−1‖22, ..., ‖e0‖22} (3.55)

Since q < 1, the value of qk → 0 as k →∞, and hence ‖e∞‖2 = 0, which completes the

proof.

From the above theorem it can be seen that γ characterizes how quickly the tracking error

converges to zero under the higher order ILC design. In practice, a faster convergence is

usually desirable. This can be achieved by solving the following minimization problem.

min
P1>0,γ<1,N1,N2

µ (3.56)

where µ = γ2, which is defined in the Theorem 3.5.

3.3.3 Robust Design Algorithm

Following the same argument on the discrete case in section 3.2.3, gives the theorem,

Theorem 3.7. For a given γ > 0 the differential linear repetitive process representing

the ILC dynamics of (3.39) with additive uncertainties ∆A, ∆B, and ∆C in (3.37) is

stable along the trial and satisfies (3.43) if there exist matrices P1 > 0, N1, N2, W1x,

W2x, W1j for j = 0, ...,M − 1, W2, W3x, W4x, W3j, W4 for j = 0, ...,M − 1, W6 with

appropriate dimensions and real scalar ε1 > 0, ε2 > 0 and µ = γ2 such that the following
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LMI is feasible

∆11 ∗ ∗ ∗ ∗ ∗ ∗
NT

2 B
T −µI ∗ ∗ ∗ ∗ ∗

−CW T
1x I0 − CW T

1 ∆33 ∗ ∗ ∗ ∗
AP1 +BN1 −W T

1x BN2 −W T
1 −W T

2x −W2C
T ∆44 ∗ ∗ ∗

E1P1 + E2N1 E2N2 0 0 −ε1I ∗ ∗
−E1W

T
1x −E1W

T
1 −E1W

T
2x −E1W

T
2 0 −ε1I ∗

E1P1 + E2N1 E2N2 0 0 0 0 −ε1I


< 0

(3.57)



∆51 ∗ ∗ ∗ ∗ ∗ ∗
NT

2 B
T −I ∗ ∗ ∗ ∗ ∗

−C1W
T
3x I1 − C1W

T
3 ∆63 ∗ ∗ ∗ ∗

AP1 +BN1 −W T
3x BN2 −W T

3 −W T
4x −W4C

T
1 ∆74 ∗ ∗ ∗

E1P1 + E2N1 E2N2 0 0 −ε2I ∗ ∗
−E1W

T
3x −E1W

T
3 −E1W

T
4x −E1W

T
4 0 −ε2I ∗

E1P1 + E2N1 E2N2 0 0 0 0 −ε2I


< 0

(3.58)

where I0, I1, and C1 are defined in (3.46) and

∆11 = sym{AP1 +BN1}+ ε1H1H
T
1 ,

∆33 = −I − CW T
2x −W2xC

T + ε1H2H
T
2 ,

∆44 = −W2 −W T
2 + ε1H1H

T
1 ,

∆51 = sym{AP1 +BN1}+ ε2H1H
T
1 ,

∆63 = −I − CW T
4x −W4xC

T + ε2H3H
T
3 ,

∆74 = −W4 −W T
4 + ε2H1H

T
1 ,

and W1 = [W1M−1, ...,W11], W3 = [W3M−1, ...,W31], H3 = [0, ..., 0, H2]T .

If the LMIs (3.57) and (3.58) are satisfied, the stabilizing control law matrices are given

by

K = N1P
−1
1 , [KM−1, ..., K1, K0] = N2 (3.59)

with use of the linear objective minimization procedure (3.56).

Proof. Direct substitution of (3.9) into (3.44) and (3.45) introduces nonlinear terms.

To avoid these and obtain LMIs, apply Theorem 2.19 to these two LMIs, and then the

Schur’s complement formula gives the LMI (3.57) and (3.58) and proof is complete.
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and the next theorem gives the condition for error convergence to zero as trial increase

to infinity.

Theorem 3.8. If for γ ∈ (0, 1/
√
M) the design in Theorem 3.7 is feasible, the tracking

error converges to zero as k →∞ even with the presence of model uncertainty ∆A, ∆B

and ∆C. Moreover, the convergence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that of Theorem 3.6 and here the details are omit-

ted.

3.4 Numerical Examples

In this section, numerical examples are used to test the design algorithms developed

earlier in this chapter. In this simulation, the value of memory length M is from 1 to 5,

and the number of trials is 40, the trial length is 2 sec. In the simulation, the reference

trajectory is the same for the discrete-time systems and continuous-time system example,

and is shown in figure 3.1.

Figure 3.1: The tracking reference trajectory.
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This part shows the numerical simulation for discrete-time system model, the example

is a simple 2th-order system, after the sampling by sample frequency 100Hz. The state-

space model matrices are

A =

[
0.9970 0

0.0035 0.9978

]
,

B =
[
0.0015 0

]T
,

C =
[
0.15 0

]
,

and on completion of each trial the 2-norm of the error signal is computed as

‖ek‖2 =

√√√√ N∑
p=1

e2
k(p)

The first simulation study investigated the effect of the memory length M on the trial-

to-trial error convergence performance. Using Theorem 3.1, and the relation between

values of M and γ is given in table 3.1. These confirm that as M increases, i.e., more

information from the past is used, the value of γ decreases and the tracking error con-

verges faster, see also figure 3.2. For example, the control law matrices when M = 2 are

K = [−628.3001 0.5001] and K1 = 1.1825, K0 = 1428.08. As the figure shows, the

error convergence is faster with larger M .

M γ

1 0.7081
2 0.6953
3 0.5164
4 0.4564
5 0.4140

Table 3.1: Relation between value of M and γ for LMI design result by using
algorithm in Theorem 3.1.

To examine the effectiveness of the robust design developed in Theorem 3.3, consider

the case when the matrices defining the uncertainty model are

H1 =
[
0.1 0

]T
, H2 = 0.01, E2 = 0.01,

E1 =
[
0.1 −0.1

]
.

The results for different M are shown in figure 3.3, and confirm that: 1) the tracking

error decreases monotonically and 2) increasing M improves the convergence speed.

Table 3.2 shows the relationship between M and value of γ, and error convergence

based different value of M is in figure 3.3. Moreover, γ satisfies γ ∈ [0, 1) and since the
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Figure 3.2: Error convergence performance along the trial by using algorithm
in Theorem 3.1.

M γ

1 0.7018
2 0.7012
3 0.5370
4 0.4871
5 0.4312

Table 3.2: Relation between value of M and γ for robust design result by using
algorithm in Theorem 3.3.

design is applied to an uncertain system, the value of γ with model uncertainty is larger

than that without, which is the price paid for robust design.

This part shows the numerical simulation for continuous-time system model, the example

is a simple 2th-order system model with state-space model matrices

A =

[
−0.3 0

0.35 −0.22

]
,

B =
[
0.15 0

]T
,

C =
[
0.15 0

]
,

and the completion of each trial the 2-norm of the error signal is

‖ek‖2 =

√∫ N

t=1
e2
k(t)dt
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Figure 3.3: Error convergence performance along the trial by using algorithm
in Theorem 3.3.

M γ

1 0.7101
2 0.6978
3 0.5211
4 0.4672
5 0.4214

Table 3.3: Relation between value of M and γ for LMI design result by using
algorithm in Theorem 3.5.

The first simulation study investigated the effect of the memory length M on the trial-

to-trial error convergence performance. Using the design method of Theorem 3.5, and

the relation between value of M and γ is given in table 3.3. These confirm that as M

increases, i.e., more information from the past is used, the value of γ decreases and the

tracking error converges faster, see also figure 3.4. For example, the control law matrices

when M = 2 are K = [−24.7632 1.8631] and K1 = 0.1243, K0 = 46.3028. As the

figure shows, the error convergence is faster with larger M .

To examine the effectiveness of the robust design developed in Theorem 3.7, consider

the case when the matrices defining the same uncertainty model as for the discrete-time

example. The results for different M are shown in figure 3.5, and confirm that: 1) the

tracking error decreases monotonically and 2) increasing M improves the convergence

speed. Table 3.4 shows the relationship between M and value of γ, and the result of

error convergence based different value of M is in figure 3.5. In table 3.4, γ satisfies

γ ∈ [0, 1) and since the design is applied to an uncertain system, the value of γ with

model uncertainty is larger than that without, which is the price paid for robust design.
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Figure 3.4: Error convergence performance along the trial by using algorithm
in Theorem 3.5.

M γ

1 0.7115
2 0.7016
3 0.5391
4 0.4921
5 0.4334

Table 3.4: Relation between value of M and γ for robust design result by using
algorithm in Theorem 3.7.

Figure 3.5: Error convergence performance along the trial by using algorithm
in Theorem 3.7.
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3.5 Summary

In this chapter, a new design algorithm has been developed for higher-order ILC control

law matrices. The higher-order control law uses state-feedback, and design is based on

the KYP lemma. This new design requires attenuation of the frequency content of the

previous trial error over the complete trial length. In some applications, however, only

a finite frequency range need to be considered. In other applications, it may be required

to impose different frequency specifications over various frequency ranges. The next

chapter uses the generalized KYP lemma to develop algorithms for control law design

in such case.



Chapter 4

New Algorithms for

State-Feedback Control Law

Design Using the Generalized

KYP Lemma

4.1 Introduction

This chapter develops new design algorithms for state feedback higher-order control law

design which described in the previous Chapter. The design algorithms are based on

the generalized Kalman-Yakubovich-Popov (GKYP) lemma.

4.2 Higher-order ILC Design for Discrete-time Systems

4.2.1 Problem Setup

Consider the discrete time-invariant linear state-space system model in the ILC setting

xk(p+ 1) = Axk(p) +Buk(p),

yk(p) = Cxk(p), p = 0, 1, ..., α− 1 (4.1)

where xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the output vector, uk(p) ∈ Rl is the

input vector, k is the trial number, and the finite trial length α < ∞. Let yd ∈ Rm be

reference trajectory then error on trial k is ek(p) = yd(p)− yk(p). The ILC control law

53
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is

uk+1(p) = uk(p) + ∆uk+1(p) (4.2)

where ∆uk+1(p) is a function of the error on trial k but could also be a function of the

previous trial control input. Introduce, for analysis purposes only,

ηk+1(p+ 1) = xk+1(p)− xk(p) (4.3)

and in (4.2) set

∆uk+1(p) = Kηk+1(p+ 1) +

M∑
j=1

Kj−1ek+1−j(p+ 1) (4.4)

as the higher-order ILC control law. The resulting controlled dynamics state-space

model is

ηk+1(p+ 1) = Âηk+1(p) +

M∑
j=1

B̂j−1ek+1−j(p)

ek+1(p) = Ĉηk+1(p) +
M∑
j=1

D̂j−1ek+1−j(p) (4.5)

where

Â = A+BK, B̂0 = BK0, B̂j−1 = BKj−1,

Ĉ = −CA− CBK, D̂0 = I− CBK0,

D̂j−1 = −CBKj−1, j = 2, ...,M (4.6)

which again is a non-unit memory linear repetitive process, and is stable along the trial

if and only if all conditions in Theorem 2.6 are satisfied. Therefore the design algorithm

for control law matrices is based on Theorem 2.6. However, it is difficult to develop the

LMI based design algorithm for higher-order control law since the controlled system is

non-unit memory and the summation term of error information on the previous trials

cannot be used in the design algorithm directly. This section develops a design algorithm

for the higher-order control law matrices which is based on the stability conditions for

linear repetitive process.

In some applications, the systems are in the presence of uncertainties will be present

in the model structure. For such system models, the general design algorithm cannot

guarantee the system stable if it is only based on the normal plant model. Therefore,

robust design algorithm is given to solve this problem. The norm-bounded additive

uncertainty of the system is in considered. A system with norm-bounded uncertainty
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has the state-space model

xk(p+ 1) = (A+ ∆A)xk(p) + (B + ∆B)uk(p),

yk(p) = (C + ∆C)xk(p), p = 0, 1, ..., α− 1 (4.7)

and the norm-bounded additive perturbations ∆A, ∆B and ∆C to the state-space model

matrices A,B and C are in the form

∆A = H1FE1, ∆B = H1FE2, ∆C = H2FE1 (4.8)

where H1, H2, E1, E2, and F ∈ Rr×r is an unknown matrix that satisfies F = F T

and FF T ≤ I. If apply the higher-order control law (4.2) for this model the controlled

system is in the form (4.5) with

Â = (A+ ∆A) + (B + ∆B)K, B̂0 = (B + ∆B)K0, B̂j−1 = (B + ∆B)Kj−1,

Ĉ = −(C + ∆C)((A+ ∆A) + (B + ∆B)K), D̂0 = I− (C + ∆C)(B + ∆B)K0,

D̂j−1 = −(C + ∆C)(B + ∆B)Kj−1, j = 2, ...,M (4.9)

The higher-order ILC control law robust design algorithm are based on the feedback

system (4.5) with (4.6) and (4.9), respectively.

4.2.2 LMI Based ILC Design

In the repetitive process setting the state-space model (4.5) is termed non-unit memory,

with M denoting the memory length. The analysis in this section requires (4.5) to be

written as a unit memory process, where the result is

ηk+1(p+ 1) = Âηk+1(p) + B̄ēk(p),

ēk+1(p) = C̄ηk+1(p) + D̄ēk(p), (4.10)

where

ēk(p) =
[
eTk−M+1(p) · · · eTk−1(p) eTk (p)

]T
,

B̄ =
[
B̂M−1 · · · B̂1 B̂0

]
,
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C̄ =



0

0
...

0

Ĉ


, D̄ =



0 I 0 · · · 0

0 0 I
. . . 0

0 0 0 · · · 0
...

...
...

. . . I

D̂M−1 D̂M−2 D̂M−3 · · · D̂0


, (4.11)

Applying the z-transform, i.e., zxk(p) = xk(p+ 1) to (4.10) gives

ēk+1(z) = G(z)ēk(z) (4.12)

where G(z) = C̄(zI − Â)−1B̄ + D̄. The term in transfer-function matrix G(z) which

relates the convergence performance is only the bottom row, i.e.,

ek+1(z) = [GM−1(z), ..., G1(z), G0(z)]ēk(z) (4.13)

In [63], one design algorithm which uses the generalized KYP lemma for design the

control law matrices of the ILC controlled system, and a standard state-feedback control

law is used then the ILC controlled system is unit memory linear repetitive processes.

In this section, it is extended for higher-order ILC control law. The generalized KYP

lemma which is described in Lemma 2.15, and the design algorithm is

Theorem 4.1. For a given γ > 0 the discrete linear repetitive process representing the

ILC dynamics of (4.10) is stable along the trial and satisfies

maxσ([GM−1(ejθ), ..., G1(ejθ), G0(ejθ)]) < γ (4.14)

over the finite frequency range θ ∈ Θ defined in Lemma 2.15, and z = ejθ, and there

exist matrices S > 0, P1 > 0, Q1 > 0, P2 > 0, Q2 > 0, X1, X2, and W1, and real scalar

ρ1, ρ2 and µ = γ2 such that the following LMIs are feasible:
Ξ11 Ξ12 −W T

1 0 0

∗ Ξ22 + sym{AW1 +BX1} BX2 −W T
1 A

TCT −XT
1 B

TCT

∗ ∗ −µI IT0 −XT
2 B

TCT

∗ ∗ ∗ −I

 < 0 (4.15)


Ξ̄11 Ξ̄12 −W T

1 0 0

∗ Ξ̄22 + sym{AW1 +BX1} BX2 −W T
1 A

TCT1 −XT
1 B

TCT1
∗ ∗ −I IT1 −XT

2 B
TCT1

∗ ∗ ∗ −I

 < 0 (4.16)

[
S + ρ2W1 + ρ2W

T
1 −ρ2AW1 − ρ2BX1 − ρ1W

T
1

∗ −S + sym{ρ1AW1 + ρ1BX1}

]
< 0 (4.17)
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where the compatibly dimensioned matrices Ξ11, Ξ12, Ξ22, and Ξ̄11, Ξ̄12, Ξ̄22 form Ξ and

Ξ̄ in Lemma 2.15 and ρ1, ρ2 satisfy

ρ2
1 − ρ2

2 < 0 (4.18)

and

I0 = [0, ..., 0 I]

,

I1 =


0 I · · · 0

0
...

. . .
...

0 0 · · · I

0 0 · · · I

 , C1 =


0
...

0

C

 , (4.19)

If the (4.15), (4.16) and (4.17) are satisfied, stabilizing control law matrices are given

by

K = X1W
−1
1 , [KM−1, ..., K1, K0] = X2 (4.20)

Proof. The generalized KYP lemma given in this thesis as Lemma 2.15, then applied

with Â, B̄, C̄, and D̄, the resulting LMI is[
Â B̄

I 0

]T
Ξ̄

[
Â B̄

I 0

]
+

[
C̄ D̄

0 I

]T
Π

[
C̄ D̄

0 I

]
< 0 (4.21)

Then after some processes include Schur’s complement, LMI (4.16) can be obtained from

(4.21). However, the controlled system is stable along the trial if it satisfies the next

Lyapunov inequality:

ÂTSÂ− S < 0 (4.22)

Then after routine manipulations (4.17) can be obtained, and proof is complete.

The next result shows that when γ is small, the tracking error is guaranteed to converges

to zeros.

Theorem 4.2. If for γ ∈ [0, 1/
√
M) the design in Theorem 4.1 is feasible, the tracking

error converges to zero as k → ∞ over the finite frequency range θ ∈ Θ defined in

Lemma 2.15. Moreover, the convergence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. When the design algorithm in Theorem 4.1 is feasible,

‖ek+1‖22 < γ2
M−1∑
i=0

‖ek−i‖22 (4.23)
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Define q = γ2M . As γ < 1/
√
M , q < 1. Hence

‖ek+1‖22 < γ2 × {‖ek−M+1‖22 + ...+ ‖ek‖22}

< q ×max {‖ek−M+1‖22, ..., ‖ek‖22} (4.24)

Furthermore,

‖ek+2‖22 < q × {‖ek−M+2‖22 + ...+ ‖ek+1‖22}

< q ×max{‖ek−M+1‖22, ..., ‖ek‖22} (4.25)

Following a similar argument

max{‖ek+1‖22, ..., ‖ek−M+2‖22}

< q ×max {‖ek−M+1‖22, ..., ‖ek‖22}

< qk ×max {‖eM−1‖22, ..., ‖e0‖22} (4.26)

Since q < 1, the value of qk → 0 as k →∞, and hence ‖e∞‖2 = 0, which completes the

proof.

From the above theorem it can be seen that γ characterizes how quickly the tracking error

converges to zero under the higher order ILC design. In practice, a faster convergence

is usually desirable. This can be achieved by finding the minimum γ value by solving

the following minimization problem.

min
S>0,P1>0,Q1>0,P2>0,Q2>0,γ<1,,W1,X1,X2

µ (4.27)

4.2.3 Robust Design Algorithm

In this section, a robust design algorithm can solve this problem for the norm-bounded

uncertainty in the system. The uncertainty based feedback system model can be con-

verted to the unit-memory repetitive processes (4.10), (4.11) with (4.9), with linear

objective minimization procedure (4.27) the robust design result can now be established.

Theorem 4.3. For a given γ > 0 the discrete linear repetitive process representing

the ILC dynamics of (4.10) with additive uncertainties ∆A, ∆B, and ∆C in (4.9) is

stable along the trial and satisfies (4.14) over the finite frequency range θ ∈ Θ defined

in Lemma 2.15, and there exist matrices S > 0, P1 > 0, Q1 > 0, P2 > 0, Q2 > 0, X1,

X2, and W1, W11, W12, W13, W14, W2 and W31, W32, W33, W34, W4, and real scalar
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ρ1, ρ2, ε1 > 0, ε2 > 0 and ε3 > 0 such that the following LMIs are feasible

Ξ11 Ξ12−WT
1 0 −W11CT −W11 0 −W11ET

1 0

∗ ∆22 BX2 −W12CT ∆25 ∆26 −W12ET
1 ∆28

∗ ∗ −µI IT0 −W13CT XT
2 B

T−W13 XT
2 E

T
2 −W13ET

1 XT
2 E

T
2

∗ ∗ ∗ ∆44 −CWT
2 −W14 0 −W14ET

1 0

∗ ∗ ∗ ∗ ∆55 0 −W2ET
1 0

∗ ∗ ∗ ∗ ∗ −ε1I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I

 < 0 (4.28)



Ξ̄11 Ξ̄12−WT
1 0 −W31CT

1 −W31 0 −W31ET
1 0

∗ ∆62 BX2 −W32CT
1 ∆65 ∆66 −W32ET

1 ∆68

∗ ∗ −I IT1 −W33CT
1 XT

2 B
T−W33 XT

2 E
T
2 −W33ET

1 XT
2 E

T
2

∗ ∗ ∗ ∆74 −CWT
2 −W34 0 −W34ET

1 0

∗ ∗ ∗ ∗ ∆85 0 −W4ET
1 0

∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I

 < 0 (4.29)

[
∆91 ∆92 0 0
∗ −S+sym{ρ1AW+ρ1BX1}+ε3H1HT

1 −WT
1 E

T
1 −XT

1 E
T
2 WT

1 E
T
1 +XT

1 E
T
2

∗ ∗ −ε3I 0
∗ ∗ ∗ −ε3I

]
< 0 (4.30)

where

∆22 = Ξ22 + sym{AW +BX1}+ ε1H1H
T
1 ,

∆25 = W T
1 A

T +XT
1 B

T −W12,

∆26 = ∆28 = W T
1 E

T
1 +XT

1 E
T
2 ,

∆44 = −I − sym{CW T
14}+ ε1H2H

T
2 ,

∆55 = −W2 −W T
2 + ε1H1H

T
1 ,

∆62 = Ξ̄22 + sym{AW +BX1}+ ε2H1H
T
1 ,

∆65 = W T
1 A

T +XT
1 B

T −W32,

∆66 = ∆68 = W T
1 E

T
1 +XT

1 E
T
2 ,

∆74 = −I − sym{CW T
34}+ ε2H2H

T
2 ,

∆85 = −W4 −W T
4 + ε2H1H

T
1 ,

∆91 = S + sym{ρ2W1}+ ε3ρ
2
2H1H

T
1 ,

∆92 = −ρ2AW − ρ2BX1 − ρ1W
T
1 ,

and I0, I1, C1 are defined in (4.19), and ρ1, ρ2 satisfy (4.18), Ξ22, and Ξ̄11, Ξ̄12, Ξ̄22

form Ξ and Ξ̄ in Lemma 2.15. If the LMIs (4.27), (4.28) and (4.29) are satisfied,

stabilizing control law matrices are given by

K = X1W
−1
1 , [KM−1, ..., K1, K0] = X2 (4.31)

with use of the linear objective minimization procedure (4.27).

Proof. Direct substitution of (4.9) into (4.15), (4.16) and (4.17) introduces nonlinear
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terms, applying Theorem 2.19 to these two LMIs and the Schur’s complement formula

gives (4.28), (4.29) and (4.30) and proof is complete.

Theorem 4.4. If for γ ∈ (0, 1/
√
M) the design in Theorem 4.3 is feasible, the tracking

error converges to zero as k → ∞ over the finite frequency range θ ∈ Θ defined in

Lemma 2.15 even with the presence of model uncertainties ∆A, ∆B and ∆C. Moreover,

the convergence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that of Theorem 4.2 and here the details are omit-

ted.

4.3 Higher-order ILC Design for Continuous-time Systems

4.3.1 Problem Setup

Consider the continuous time-invariant linear state-space system model in the ILC set-

ting

ẋk(t) = Axk(t) +Buk(t),

yk(t) = Cxk(t), 0 < t ≤ α (4.32)

where xk, yk, and uk are state, output and input vector, respectively, and k is the trial

number, and the finite trial length α < ∞. If yd denotes the reference trajectory then

error on trial k is ek(t) = yd(t)− yk(t). The ILC law is

uk+1(t) = uk(t) + ∆uk+1(t) (4.33)

where ∆uk+1(t) is a function of the error on trial k but could also be a function of the

previous trial control input. A natural extension is to allow ∆uk+1(t) to be a function

of the error and/or control vectors on a finite number of previous passes. In order to

use repetitive process theory for ILC design, introduce, for analysis purposes only,

ηk+1(t) =

∫ t

0
(xk+1(t)− xk(t))dt (4.34)

and in (4.33) set

∆uk+1(t) = Kηk+1(t) +

M∑
j=1

Kj−1ėk+1−j(t) (4.35)
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The resulting controlled dynamics state-space model is

η̇k+1(t) = Âηk+1(t) +

M∑
j=1

B̂j−1ek+1−j(t)

ek+1(t) = Ĉηk+1(t) +
M∑
j=1

D̂j−1ek+1−j(t) (4.36)

where

Â = A+BK, B̂0 = BK0, B̂j−1 = BKj−1,

Ĉ = −C(A+BK), D̂0 = I− CBK0,

D̂j−1 = −CBKj−1, j = 2, ...,M (4.37)

This is a non-unit memory linear repetitive process. It is stable along the pass if and

only if all conditions in Theorem 2.10 are satisfied. In a similar manner to the discrete

case in section 4.2.1, the model with uncertainty present is

ẋk(t) = (A+ ∆A)xk(t) + (B + ∆B)uk(t),

yk(t) = (C + ∆C)xk(t), 0 < t ≤ α (4.38)

and the norm-bounded additive perturbations ∆A, ∆B and ∆C to the state-space model

matrices A,B and C are of the form

∆A = H1FE1, ∆B = H1FE2, ∆C = H2FE1 (4.39)

where H1, H2, E1, E2, and F ∈ Rr×r is an unknown matrix that satisfies F = F T and

FF T ≤ I. If apply the control law (4.33) for this model the controlled system is in the

form (4.36) with

Â = (A+ ∆A) + (B + ∆B)K, B̂0 = (B + ∆B)K0, B̂j−1 = (B + ∆B)Kj−1,

Ĉ = −(C + ∆C)((A+ ∆A) + (B + ∆B)K), D̂0 = I− (C + ∆C)(B + ∆B)K0,

D̂j−1 = −(C + ∆C)(B + ∆B)Kj−1, j = 2, ...,M (4.40)

4.3.2 LMI Based ILC Design

Since the state-space model (4.36) is termed non-unit memory, with M denoting the

memory length, the analysis in this section requires (4.36) to be written as a unit memory
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process, where the result is

η̇k+1(t) = Âηk+1(t) + B̄ēk(t),

ēk+1(t) = C̄ηk+1(t) + D̄ēk(t), (4.41)

where

ēk(t) =
[
eTk−M+1(t) · · · eTk−1(t) eTk (t)

]T
,

B̄ =
[
B̂M−1 · · · B̂1 B̂0

]
,

C̄ =



0

0
...

0

Ĉ


, D̄ =



0 I 0 · · · 0

0 0 I
. . . 0

0 0 0 · · · 0
...

...
...

. . . I

D̂M−1 D̂M−2 D̂M−3 · · · D̂0


, (4.42)

Using Laplace transform, i.e., L[ẋk(t)] = sL[xk(t)] − xk(0), (see [74] for the details of

how to avoid problems arising from the finite trial length) to (4.41) gives

ēk+1(s) = G(s)ēk(s) (4.43)

where G(s) = C̄(sI − Â)−1B̄ + D̄. The term in transfer-function matrix G(s) which

relates the convergence performance is only the bottom row. It is

ek+1(s) = [GM−1(s), ..., G1(s), G0(s)]ēk(s) (4.44)

and the design objective is to select the gains K, Kj−1, i = 1, ...,M such that the norm

of the above transfer function is small and thus convergence can be achieved.

Theorem 4.5. For a given γ > 0 the differential linear repetitive process representing

the ILC dynamics of (4.41) is stable along the trial and satisfies

maxσ([GM−1(jθ), ..., G1(jθ), G0(jθ)]) < γ (4.45)

over the finite frequency range defined in Lemma 2.16, and there exist matrices S > 0,

P1 > 0, Q1 > 0, P2 > 0, Q2 > 0, X1, X2, and W1, and µ = γ2 such that the following

LMIs are feasible:
Ξ11 Ξ12 −W T

1 0 0

∗ Ξ22 + sym{AW1 +BX1} BX2 −W T
1 A

TCT −XT
1 B

TCT

∗ ∗ −µI IT0 −XT
2 B

TCT

∗ ∗ ∗ −I

 < 0 (4.46)
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Ξ̄11 Ξ̄12 −W T
1 0 0

∗ Ξ̄22 + sym{AW1 +BX1} BX2 −W T
1 A

TCT1 −XT
1 B

TCT1
∗ ∗ −I IT1 −XT

2 B
TCT1

∗ ∗ ∗ −I

 < 0 (4.47)

[
−W1 −W T

1 S +AW1 +BX1 −W T
1

∗ sym{AW1 +BX1}

]
< 0 (4.48)

where the compatibly dimensioned matrices Ξ11, Ξ12, Ξ22, and Ξ̄11, Ξ̄12, Ξ̄22 form Ξ and

Ξ̄ in Lemma 2.16 and I0, I1, and C1 are defined in (4.19). If the (4.46), (4.47) and

(4.48) are satisfied, stabilizing control law matrices are given by

K = X1W
−1
1 , [KM−1, ..., K1, K0] = X2 (4.49)

Proof. The generalized KYP lemma of Lemma 2.16, when applied with Â, B̄, C̄, and D̄

in it, the equal LMI is[
Â B̄

I 0

]T
Ξ̄

[
Â B̄

I 0

]
+

[
C̄ D̄

0 I

]T
Π

[
C̄ D̄

0 I

]
< 0 (4.50)

Then after some processes include Schur’s complement formula, the LMI (4.47) is ob-

tained from (4.50). However, the controlled system is stable along the trial if it satisfies

next Lyapunov inequality:

ÂTS + SÂ < 0 (4.51)

Then after routine manipulations LMI (4.48) can be obtained.

The next theorem shows that when γ is small, the tracking error is guaranteed to

converges to zeros.

Theorem 4.6. If for γ ∈ (0, 1/
√
M) the design in Theorem 4.5 is feasible, the tracking

error converges to zero as k →∞ over the finite frequency range defined in Lemma 2.16.

Moreover, the convergence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. When the design algorithm in Theorem 4.5 is feasible,

‖ek+1‖22 < γ2
M−1∑
i=0

‖ek−i‖22 (4.52)

Define q = γ2M . As γ < 1/
√
M , q < 1. Hence

‖ek+1‖22 < γ2 × {‖ek−M+1‖22 + ...+ ‖ek‖22}

< q ×max {‖ek−M+1‖22, ..., ‖ek‖22} (4.53)
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Furthermore,

‖ek+2‖22 < q × {‖ek−M+2‖22 + ...+ ‖ek+1‖22}

< q ×max{‖ek−M+1‖22, ..., ‖ek‖22} (4.54)

Similarly,

max{‖ek+1‖22, ..., ‖ek−M+2‖22}

< q ×max {‖ek−M+1‖22, ..., ‖ek‖22}

< qk ×max {‖eM−1‖22, ..., ‖e0‖22} (4.55)

Since q < 1, the value of qk → 0 as k →∞, and hence ‖e∞‖2 = 0, which completes the

proof.

From the above theorem it can be seen that γ characterizes how quickly the tracking error

converges to zero under the higher order ILC design. In practice, a faster convergence

is usually desirable. This can be achieved by finding the minimum γ value by solving

the following linear minimization objective procedure.

min
S>0,P1>0,Q1>0,P2>0,Q2>0,γ<1,,W1,X1,X2

µ (4.56)

4.3.3 Robust Design Algorithm

Following the same argument on the discrete case in section 4.2.3, gives the theorem,

Theorem 4.7. For a given γ > 0 the differential linear repetitive process representing

the ILC dynamics of (4.41) with additive uncertainties ∆A, ∆B, and ∆C in (4.9)

is stable along the trial and satisfies (4.45) over the finite frequency range defined in

Lemma 2.16, and there exist matrices S > 0, P1 > 0, Q1 > 0, P2 > 0, Q2 > 0, X1, X2,

and W1, W11, W12, W13, W14, W2 and W31, W32, W33, W34, W4, ε1 > 0, ε2 > 0 and

ε3 > 0 such that the following LMIs are feasible

Ξ11 Ξ12−WT
1 0 −W11CT −W11 0 −W11ET

1 0

∗ ∆22 BX2 −W12CT ∆25 ∆26 −W12ET
1 ∆28

∗ ∗ −µI IT0 −W13CT XT
2 B

T−W13 XT
2 E

T
2 −W13ET

1 XT
2 E

T
2

∗ ∗ ∗ ∆44 −CWT
2 −W14 0 −W14ET

1 0

∗ ∗ ∗ ∗ ∆55 0 −W2ET
1 0

∗ ∗ ∗ ∗ ∗ −ε1I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I

 < 0 (4.57)



Ξ̄11 Ξ̄12−WT
1 0 −W31CT

1 −W31 0 −W31ET
1 0

∗ ∆62 BX2 −W32CT
1 ∆65 ∆66 −W32ET

1 ∆68

∗ ∗ −I IT1 −W33CT
1 XT

2 B
T−W33 XT

2 E
T
2 −W33ET

1 XT
2 E

T
2

∗ ∗ ∗ ∆74 −CWT
2 −W34 0 −W34ET

1 0

∗ ∗ ∗ ∗ ∆85 0 −W4ET
1 0

∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I

 < 0 (4.58)



Chapter 4 New Algorithms for State-Feedback Control Law Design Using the
Generalized KYP Lemma 65−W1−WT

1 ∆92 0 0

∗ sym{AW1+BX1}+ε3H1HT
1 −WT

1 E
T
1 −XT

1 E
T
2 WT

1 E
T
1 +XT

1 E
T
2

∗ ∗ −ε3I 0
∗ ∗ ∗ −ε3I

 < 0 (4.59)

where

∆22 = Ξ22 + sym{AW +BX1}+ ε1H1H
T
1 ,

∆25 = W T
1 A

T +XT
1 B

T −W12,

∆26 = ∆28 = W T
1 E

T
1 +XT

1 E
T
2 ,

∆44 = −I − sym{CW T
14}+ ε1H2H

T
2 ,

∆55 = −W2 −W T
2 + ε1H1H

T
1 ,

∆62 = Ξ̄22 + sym{AW +BX1}+ ε2H1H
T
1 ,

∆65 = W T
1 A

T +XT
1 B

T −W32,

∆66 = ∆68 = W T
1 E

T
1 +XT

1 E
T
2 ,

∆74 = −I − sym{CW T
34}+ ε2H2H

T
2 ,

∆85 = −W4 −W T
4 + ε2H1H

T
1 ,

∆92 = S +AW1 +BX1 −W T
1 ,

and I0, I1, C1 are defined in (4.19), and Ξ22, and Ξ̄11, Ξ̄12, Ξ̄22 form Ξ and Ξ̄ in

Lemma 2.16. If the LMIs (4.57), (4.58) and (4.59) are satisfied, stabilizing control law

matrices are given by

K = X1W
−1
1 , [KM−1, ..., K1, K0] = X2 (4.60)

with use of the linear objective minimization procedure (4.56).

Proof. Direct substitution of (4.39) into (4.46), (4.47) and (4.48) would introduce non-

linear terms, applying Theorem 2.19 to these two LMIs, plus the Schur’s complement

formula gives the LMIs (4.57), (4.58) and (4.59) and proof is complete.

Theorem 4.8. If for γ ∈ (0, 1/
√
M) the design in Theorem 4.7 is feasible, the tracking

error converges to zero as k →∞ over the finite frequency range defined in Lemma 2.16

even with the presence of model uncertainties ∆A, ∆B and ∆C. Moreover, the conver-

gence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that for Theorem 4.6 and that the detail are omit-

ted.



66
Chapter 4 New Algorithms for State-Feedback Control Law Design Using the

Generalized KYP Lemma

4.4 Numerical Examples

In this section, numerical examples are used to test the new design algorithms developed

earlier in this chapter. In this simulation, the value of memory length M is from 1 to

5, and the number of trials is 40, the trial length is 2 sec. The special frequency range

is focused, by using fourier transform for the reference trajectory, and as the figure

4.1 shown, the useful frequency range for the reference trajectory is within 2Hz, in the

simulation, the cut-off frequency range chosen for design algorithm is 2Hz.

Figure 4.1: The FFT of the tracking reference trajectory.

This part shows the numerical simulation for discrete-time system model, the example is

a simple 2th-order system model which after the sampling by sample frequency 100Hz,

the state-space model matrices are

A =

[
0.9970 0

0.0035 0.9978

]
,

B =
[
0.0015 0

]T
,

C =
[
0.15 0

]
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M γ

1 0.6631
2 0.6154
3 0.5022
4 0.4313
5 0.4038

Table 4.1: Relation between value of M and γ for LMI design result by using
algorithm in Theorem 4.1.

, and on completion of each trial the 2-norm of the error signal is computed as

‖ek‖2 =

√√√√ N∑
p=1

e2
k(p)

The first simulation study investigated the effect of the memory length M on the trial-

to-trial error convergence performance. Using Theorem 4.1, and the relation between

values of M and γ is given in table 4.1. These confirm that as M increases, i.e., more

information from the past is used, the value of γ decreases and the tracking error con-

verges faster, see also figure 4.2. For example, the control law matrices when M = 2

are K = [−617.4002 0.5021] and K1 = 1.0826, K0 = 1828.08. As the figure shown,

when choose the bigger value of M , the speed of error convergence becomes faster, and

the result of error convergence based different value of M is in figure 4.2.

Figure 4.2: Error convergence performance along the trial by using algorithm
in Theorem 4.1.
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M γ

1 0.6742
2 0.6240
3 0.5252
4 0.4414
5 0.4133

Table 4.2: Relation between value of M and γ for robust design result by using
algorithm in Theorem 4.3.

To examine the effectiveness of the robust design developed in Theorem 4.3, consider

the case when the matrices defining the uncertainty model are

H1 =
[
0.1 0

]T
, H2 = 0.01, E2 = 0.01,

E1 =
[
0.1 −0.1

]
.

The results for different M are shown in figure 4.3, which confirm that: 1) the tracking

error decreases monotonically and 2) increasing M improves the convergence speed.

table 4.2 shows the relationship between M and value of γ, and the result of error

convergence based different value of M is in figure 4.3. Moreover, γ satisfies γ ∈ [0, 1)

Figure 4.3: Error convergence performance along the trial by using algorithm
in Theorem 4.3.

and since the design is applied to an uncertain system, the value of γ with model

uncertainty is larger than that without, which is the price paid for robust design.
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M γ

1 0.6602
2 0.6011
3 0.5139
4 0.4456
5 0.4014

Table 4.3: Relation between value of M and γ for LMI design result by using
algorithm in Theorem 4.5.

M γ

1 0.6694
2 0.6214
3 0.5317
4 0.4631
5 0.4322

Table 4.4: Relation between value of M and γ for robust design result by using
algorithm in Theorem 4.7.

This part shows the numerical simulation for discrete-time system model, the example

is a simple 2th-order system with state-space model matrices

A =

[
−0.3 0

0.35 −0.22

]
,

B =
[
0.15 0

]T
,

C =
[
0.15 0

]
, and the completion of each trial the 2-norm of the error signal is

‖ek‖2 =

√∫ N

t=1
e2
k(t)dt

The first simulation study investigated the effect of the memory length M on the trial-

to-trial error convergence performance. Using the design method of Theorem 4.5, and

the relation between value of M and γ is given in table 4.3. These confirm that as M

increases, i.e., more information from the past is used, the value of γ decreases and the

tracking error converges faster, see also figure 4.4. For example, the control law matrices

when M = 2 are K = [−28.8912 6.6053] and K1 = 0.5111, K0 = 62.8082, and the

result of error convergence based different value of M is in figure 4.4.

To examine the effectiveness of the robust design developed in Theorem 4.7, consider

the case when the matrices defining the same uncertainty model as for the discrete-time

example. The results for different M are shown in figure 4.5, which confirm that: 1) the

tracking error decreases monotonically and 2) increasing M improves the convergence

speed. Table 4.4 shows the relationship between M and value of γ, and the result of
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Figure 4.4: Error convergence performance along the trial by using algorithm
in Theorem 4.5.

error convergence based different value of M is in table 4.4, γ satisfies γ ∈ [0, 1) and

Figure 4.5: Error convergence performance along the trial by using algorithm
in Theorem 4.7.

since the design is applied to an uncertain system, the value of γ with model uncertainty

is larger than that without, which is the price paid for robust design.
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4.5 Summary

In this chapter, the generalized KYP lemma has used to develop new the higher-order

ILC control law matrices design algorithms. Compared with the ILC design of the

previous chapter, the design algorithm by using generalized KYP lemma can pay more

attention on the stability performance within the finite frequency range, such as ‘low’

frequency. In chapter 3 and chapter 4, the state-feedback control scheme is applied. By

using state-feedback control scheme, the feedback system can obtain ‘good’ transient

performance along each trial. However, in practice, the state of system is not always

observed, and at this time only output-feedback control scheme is useful for system

control. The next chapter gives design algorithm by using output-feedback scheme.





Chapter 5

New Design Algorithms for

Output-Feedback Control Laws

5.1 Introduction

In this chapter, the output feedback higher order ILC control law is used. As in the

last two, this chapter gives the design algorithms which are based on KYP lemma and

its generalized version. Finally, simulation results are also given to show the similar

relation between the speed of error convergence and value of memory length.

5.2 Higher-order ILC Design for Discrete-time System

5.2.1 Problem Setup

Consider the discrete time-invariant linear state-space system model in the ILC setting

xk(p+ 1) = Axk(p) +Buk(p),

yk(p) = Cxk(p), p = 0, 1, ..., α− 1 (5.1)

where xk(p) ∈ Rn is the state vector, yk(p) ∈ Rm is the output vector, uk(p) ∈ Rl is the

input vector, k is the trial number, and the finite trial length α < ∞. Let yd ∈ Rm be

reference trajectory then error on trial k is ek = yd − yk. The ILC control law is

uk+1(p) = uk(p) + ∆uk+1(p) (5.2)

where ∆uk+1(p) is a function of the error on trial k but could also be a function of the

previous trial control input. In order to use repetitive process theory for ILC design,

73
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consider

∆uk+1(p) =
M∑
j=1

Kj−1ek+1−j(p+ 1) (5.3)

as the higher-order ILC control law, and introduce

ηk+1(p+ 1) = xk+1(p)− xk(p) (5.4)

The resulting controlled dynamics state-space model is

ηk+1(p+ 1) = Aηk+1(p) +
M∑
j=1

B̂j−1ek+1−j(p)

ek+1(p) = Ĉηk+1(p) +
M∑
j=1

D̂j−1ek+1−j(p) (5.5)

where

B̂0 = BK0, B̂j−1 = BKj−1,

Ĉ = −CA, D̂0 = I− CBK0,

D̂j−1 = −CBKj−1, j = 2, ...,M (5.6)

which is a discrete non-unit memory linear repetitive process. It is stable along the trial

if and only if stability conditions in Theorem 2.6 are satisfied. Therefore the design

algorithm for control law matrices is based on Theorem 2.6. In this chapter, the KYP

lemma and its generalized version are used.

In some applications, the systems are in the presence of uncertainties in the model

structure. For such system models, the general design algorithm cannot make the system

stable if it is only based on the certainty part of the model. Therefore, robust design

algorithm is given to solve this problem. The norm-bounded additive uncertainty of the

system is in consideration. The norm-bounded additive perturbations ∆A, ∆B and ∆C

to the state-space model matrices A, B and C are in the form

∆A = H1FE1, ∆B = H1FE2, ∆C = H2FE1 (5.7)

where H1, H2, E1, E2, and F are defined in section 3.2.1. Applying the control law

(5.2) and (5.3), the model the controlled system is in the form (5.5) and (5.6) with

Â = (A+ ∆A), B̂0 = (B + ∆B)K0, B̂j−1 = (B + ∆B)Kj−1,

Ĉ = −(C + ∆C)(A+ ∆A), D̂0 = I− (C + ∆C)(B + ∆B)K0,
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D̂j−1 = −(C + ∆C)(B + ∆B)Kj−1, j = 2, ...,M (5.8)

5.2.2 KYP Lemma Based Design Algorithms

The controlled system (5.5) is not in the standard term of the linear repetitive processes.

In order to design the control law matrices, it is necessary to convert it to the unit

memory linear repetitive process, i.e.,

ηk+1(p+ 1) = Aηk+1(p) + B̄ēk(p)

ēk+1(p) = C̄ηk+1(p) + D̄ēk(p) (5.9)

where

ēk(p) =
[
eTk−M+1(p) · · · eTk−1(p) eTk (p)

]T
,

B̄ =
[
B̂M−1 · · · B̂1 B̂0

]
,

C̄ =



0

0
...

0

Ĉ


, D̄ =



0 I 0 · · · 0

0 0 I
. . . 0

0 0 0 · · · 0
...

...
...

. . . I

D̂M−1 D̂M−2 D̂M−3 · · · D̂0


, (5.10)

Using the z-transform, i.e., zxk(p) = xk(p+ 1), gives

ēk+1(z) = G(z)ēk(z) (5.11)

where G(z) = C̄(zI − A)−1B̄ + D̄. The term in transfer-function matrix G(z) which

relates to the convergence performance is only the bottom row, i.e.,

ek+1(z) = [GM−1(z), ..., G1(z), G0(z)]ēk(z) (5.12)

The design objective is to select the gains Kj−1, j = 1, ...,M such that the norm of the

above transfer function is sufficiently small and thus convergence can be achieved.

Theorem 5.1. For a given γ > 0 and assume the A is stable. Then the discrete linear

repetitive process representing the ILC dynamics described by (5.9) is stable along the

pass and satisfies

‖[GM−1(z), ..., G1(z), G0(z)]‖∞ < γ (5.13)

if there exist symmetric matrix P1 > 0, and N2 with µ = γ2 such that following LMIs

are feasible [
−P +Q ∗

A1P +B1N −P

]
< 0 (5.14)



76 Chapter 5 New Design Algorithms for Output-Feedback Control Laws

[
−P ∗

A2P +B2N −P

]
< 0 (5.15)

where

A1 =

[
A 0 0 · · · 0

−CA 0 0 · · · I

]
, B1 =

[
0 B

0 −CB

]
,

A2 =



A 0 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

−CA 0 0 · · · I


, B2 =



0 B

0 0
...

...

0 0

0 −CB


,

and

P = diag{P1, I}, Q = diag{0, (1− µ)I}, N = diag{0, N2}.

If the LMIs (5.14), and (5.15) are satisfied, stabilizing control law matrices are given by

[KM−1, ..., K1, K0] = N2 (5.16)

Proof. The LMI (5.15) can be written as

ΦTPΦ− P < 0 (5.17)

where

Φ =

[
A B̄

C̄ D̄

]
(5.18)

which is 2D Lyapunov inequality for stability of discrete linear repetitive process, and

the feedback system is stable along the trial. The condition (5.13) can be written as[
(zI −A)−1B̄

I

]T [
Ĉ D̃

0 I

]T [
I 0

0 −µI

][
Ĉ D̃

0 I

][
(zI −A)−1B̄

I

]
< 0 (5.19)

Also by the bounded real lemma, this last condition holds if and only if the following

LMI holds [
ATP1A− P1 ATP1B̄

B̄TP1A B̄TP1B̄

]
+

[
Ĉ D̃

0 I

]T [
I 0

0 −µI

][
Ĉ D̃

0 I

]
< 0 (5.20)

Where D̃ = [D̂M−1, ..., D̂0], by using the Schur’s complement formula, the LMI (5.12)

can be obtained from (5.20), and proof is complete.
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The next theorem shows that when γ is small, the tracking error is guaranteed to

convergence to zero.

Theorem 5.2. If for γ ∈ [0, 1/
√
M) the design in Theorem 5.1 is feasible, the tracking

error converges to zero as k →∞. Moreover, the convergence is monotonic in the sense

that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. When the design algorithm in Theorem 5.1 is feasible,

‖ek+1‖22 < γ2
M−1∑
i=0

‖ek−i‖22 (5.21)

Define q = γ2M . As γ < 1/
√
M , q < 1. Hence

‖ek+1‖22 < γ2 × {‖ek−M+1‖22 + ...+ ‖ek‖22}

< q ×max {‖ek−M+1‖22, ..., ‖ek‖22} (5.22)

Furthermore,

‖ek+2‖22 < q × {‖ek−M+2‖22 + ...+ ‖ek+1‖22}

< q ×max{‖ek−M+1‖22, ..., ‖ek‖22} (5.23)

Following a similar argument,

max{‖ek+1‖22, ..., ‖ek−M+2‖22}

< q ×max {‖ek−M+1‖22, ..., ‖ek‖22}

< qk ×max {‖eM−1‖22, ..., ‖e0‖22} (5.24)

Since q < 1, the value of qk → 0 as k →∞, and hence ‖e∞‖2 = 0, which completes the

proof.

From the above theorem it can be seen that γ characterizes how quickly the tracking error

converges to zero under the higher order ILC design. In practice, a faster convergence is

usually desirable. This can be achieved by solving the following minimization problem.

min
P1>0,γ<1,N2

µ (5.25)

If (5.7) is substituted into the general LMI design algorithm, there exists the nonlinear

term. In that problem, a solution that avoid this problem is developed. Firstly, using

the same output feedback higher-order ILC control law (5.2) for this system (5.1), the

controlled ILC system is given by (5.5) and (5.8). This non-unit memory linear repetitive
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processes can be written as the unit memory linear repetitive processes (5.9). The robust

design algorithm is given by the following result.

Theorem 5.3. For a given γ > 0 and assume the A is stable. Then the discrete linear

repetitive process representing the ILC dynamics of (5.9) with additive uncertainties ∆A,

∆B, and ∆C in (5.7) is stable along the pass and satisfies (5.13) if there exist matrices

P1 > 0, N2, W1x, W2x, W1j for j = 0, ...,M − 1, W20, W3, W4x, W5x, W4j, W5j for

j = 0, ...,M − 1, W6 with appropriate dimensions and real scalars ε1 > 0, ε2 > 0 and

µ = γ2 such that the following LMIs are feasible
−P +Q ∗ ∗ ∗ ∗

A2P +B2N ∆22 ∗ ∗ ∗
∆31 ∆32 ∆33 ∗ ∗
∆41 ∆42 ∆43 ∆44 ∗
∆51 ∆52 ∆53 ∆54 ∆55

 < 0 (5.26)


−P ∗ ∗ ∗ ∗

A3P +B3N ∆62 ∗ ∗ ∗
∆71 ∆72 ∆73 ∗ ∗
∆81 ∆82 ∆83 ∆84 ∗
∆91 ∆92 ∆93 ∆94 ∆95

 < 0 (5.27)

where P , Q, and N are defined in the Theorem 5.1 and

A2 =
[
A 0 0 · · · 0

]
, B2 =

[
0 B

]
,

A3 =


A 0 0 · · · 0

0 0 I · · · 0
...

... 0
. . .

...

0 0 0 · · · I

 , B3 =


0 B

0 0
...

...

0 0

 ,

I1 =


0 I · · · 0
...

...
. . .

...

0 0 · · · I

 , I2 =
[
0 · · · 0 I

]
.
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∆22 = −P1 + ε1H1H
T
1 ,

∆31 = [−CW T
1x,−CW T

1M−1, ...,−CW T
11, I − CW T

10],

∆32 = −CW T
2x,

∆33 = −I − CW T
20 −W20C

T + ε1H2H
T
2 ,

∆41 = A2P +B2N + [−W T
1x,−W T

1M−1, ...,−W T
10],

∆42 = −W T
2x,

∆43 = −W T
20 −W3C

T ,

∆44 = −W3 −W T
3 + ε1H1H

T
1 ,

Ē1 = [E1 0 0, ..., 0], Ē2 = [E2 E2],

∆51 =

 Ē1P + Ē2N

−E1W
T
1x −E1W

T
1M−1 · · · −E1W

T
10

Ē1P + Ē2N

 ,

∆52 =

 0

−E1W
T
2x

0

 , ∆53 =

 0

−E1W
T
20

0

 ,

∆54 =

 0

−E1W
T
3

0

 , ∆55 =

−ε1I 0 0

0 −ε1I 0

0 0 −ε1I

 ,
∆62 = diag{−P1 + ε2H1H

T
1 ,−I},

∆71 = [−CW T
4x,−CW T

4M−1, ...,−CW T
41, I − CW T

40],

∆72 = [−CW T
5x,−CW T

5M−1, ...,−CW T
51],

∆73 = −I − CW T
50 −W50C

T + ε2H2H
T
2 ,

∆81 = A2P +B2N + [−W T
4x,−W T

4M−1, ...,−W T
40],

∆82 = [−W T
5x,−W T

5M−1, ...,−W T
51],

∆83 = −W T
50 −W6C

T ,

∆84 = −W6 −W T
6 + ε2H1H

T
1 ,

∆91 =

 Ē1P + Ē2N

−E1W
T
4x −E1W

T
4M−1 · · · −E1W

T
40

Ē1P + Ē2N

 ,

∆92 =

 0 0 · · · 0

−E1W
T
5x −E1W

T
5M−1 · · · −E1W

T
51

0 0 · · · 0

 ,

∆93 =

 0

−E1W
T
50

0

 , ∆94 =

 0

−E1W
T
6

0

 ,

∆95 =

−ε2I 0 0

0 −ε2I 0

0 0 −ε2I

 ,
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If the LMIs (5.26) and (5.27) are satisfied, stabilizing control law matrices are given by

[KM−1, ..., K1, K0] = N2 (5.28)

with use of the linear objective minimization procedure (5.25).

Proof. Direct substitution of (5.8) into (5.14) and (5.15) introduces nonlinear terms. To

avoid these and obtain LMIs, applying Theorem 2.19 to these two LMIs, and then the

Schur’s complement formula gives (5.26) and (5.27) and proof is complete.

The next theorem gives the condition for monotonic error convergence to zeros as k →∞.

Theorem 5.4. If for γ ∈ (0, 1/
√
M) the design in Theorem 5.3 is feasible, the tracking

error converges to zero as k → ∞ in the presence of model uncertainties ∆A, ∆B and

∆C. Moreover, the convergence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that of Theorem 5.2 and here the details are omit-

ted.

5.2.3 Generalized KYP Lemma Based Design Algorithms

This section develops a new design algorithm for output feedback higher-order control

law in the section 5.2.1. The design algorithm is based on the generalized Kalman-

Yakubovich-Popov (GKYP) lemma, and is given in the next result.

Theorem 5.5. For a given γ > 0 and assume the A is stable. Then the discrete linear

repetitive process representing the ILC dynamics described by (5.9) is stable along the

pass and satisfies

maxσ([GM−1(ejθ), ..., G1(ejθ), G0(ejθ)]) < γ (5.29)

over the finite frequency range θ ∈ Θ defined in Lemma 2.15, if there exist matrices

P1 > 0, Q1 > 0, P2 > 0, Q2 > 0, X2, and W1, and µ = γ2 such that the following LMIs

are feasible: 
Ξ11 Ξ12 −W T

1 0 0

∗ Ξ22 + sym{AW1} BX2 −W T
1 A

TCT

∗ ∗ −µI IT0 −XT
2 B

TCT

∗ ∗ ∗ −I

 < 0 (5.30)
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
Ξ̄11 Ξ̄12 −W T

1 0 0

∗ Ξ̄22 + sym{AW1} BX2 −W T
1 A

TCT1
∗ ∗ −I IT1 −XT

2 B
TCT1

∗ ∗ ∗ −I

 < 0 (5.31)

where the compatibly dimensioned matrices Ξ11, Ξ12, Ξ22, and Ξ̄11, Ξ̄12, Ξ̄22 form Ξ and

Ξ̄ in Lemma 2.15 and

I0 = [0, ..., 0 I]

,

I1 =


0 I · · · 0

0
...

. . .
...

0 0 · · · I

0 0 · · · I

 , C1 =


0
...

0

C

 , (5.32)

If the (5.30), (5.31) are satisfied, stabilizing control law matrices are given by

[KM−1, ..., K1, K0] = X2 (5.33)

Proof. The generalized KYP lemma given in this thesis as Lemma 2.15, then applied

with A, B̄, C̄, and D̄, the resulting LMI is[
A B̄

I 0

]T
Ξ̄

[
A B̄

I 0

]
+

[
C̄ D̄

0 I

]T
Π

[
C̄ D̄

0 I

]
< 0 (5.34)

Then after some processes include Schur’s complement formula, LMI (5.31) is obtained

from (5.34), and proof is complete.

Theorem 5.6. If for γ ∈ [0, 1/
√
M) the design in Theorem 5.5 is feasible, the tracking

error converges to zero as k → ∞ over the finite frequency range θ ∈ Θ defined in

Lemma 2.15. Moreover, the convergence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that of Theorem 5.2 and here the details are omit-

ted.

In the practice, in order to improve the speed of the error convergence, the next mini-

mization problem is solved to minimize the value of γ,

min
P1>0,Q1>0,P2>0,Q2>0,γ<1,W1,X2

µ (5.35)

Applying the same uncertainties in section 5.2.1, and gives the robust design,
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Theorem 5.7. For a given γ > 0 and assume the A is stable. Then the discrete linear

repetitive process representing the ILC dynamics of (5.9) is stable along the pass and

satisfies (5.29) over the finite frequency range θ ∈ Θ defined in Lemma 2.15, and there

exist matrices P1 > 0, Q1 > 0, P2 > 0, Q2 > 0, X2, and W1, W11, W12, W13, W14,

W2 and W31, W32, W33, W34, W4, and real scalars ρ1, ρ2, ε1 > 0, ε2 > 0 such that the

following LMIs are feasible

Ξ11 Ξ12−WT
1 0 −W11CT −W11 0 −W11ET

1 0

∗ ∆22 BX2 −W12CT ∆25 ∆26 −W12ET
1 ∆28

∗ ∗ −µI IT0 −W13CT XT
2 B

T−W13 XT
2 E

T
2 −W13ET

1 XT
2 E

T
2

∗ ∗ ∗ ∆44 −CWT
2 −W14 0 −W14ET

1 0

∗ ∗ ∗ ∗ ∆55 0 −W2ET
1 0

∗ ∗ ∗ ∗ ∗ −ε1I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I

 < 0 (5.36)



Ξ̄11 Ξ̄12−WT
1 0 −W31CT

1 −W31 0 −W31ET
1 0

∗ ∆62 BX2 −W32CT
1 ∆65 ∆66 −W32ET

1 ∆68

∗ ∗ −I IT1 −W33CT
1 XT

2 B
T−W33 XT

2 E
T
2 −W33ET

1 XT
2 E

T
2

∗ ∗ ∗ ∆74 −CWT
2 −W34 0 −W34ET

1 0

∗ ∗ ∗ ∗ ∆85 0 −W4ET
1 0

∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I

 < 0 (5.37)

where

∆22 = Ξ22 + sym{AW}+ ε1H1H
T
1 ,

∆25 = W T
1 A

T +XT
1 B

T −W12,

∆26 = ∆28 = W T
1 E

T
1 ,

∆44 = −I − sym{CW T
14}+ ε1H2H

T
2 ,

∆55 = −W2 −W T
2 + ε1H1H

T
1

∆62 = Ξ̄22 + sym{AW}+ ε2H1H
T
1 ,

∆65 = W T
1 A

T −W32,

∆66 = ∆68 = W T
1 E

T
1 ,

∆74 = −I − sym{CW T
34}+ ε2H2H

T
2 ,

∆85 = −W4 −W T
4 + ε2H1H

T
1 ,

and I0, I1, C1 are defined in (5.32), and Ξ22, Ξ̄11, Ξ̄12, Ξ̄22 form Ξ and Ξ̄ in Lemma 2.15.

If the LMIs (5.36), (5.37) are satisfied, stabilizing control law matrices are given by

[KM−1, ..., K1, K0] = X2 (5.38)

with use of the linear objective minimization procedure (5.35).

Proof. Direct substitution of (5.8) into (5.30), (5.31) introduces nonlinear terms, ap-

plying Theorem 2.19 to these two LMIs and the Schur’s complement formula gives the
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LMIs (5.36), (5.37), and proof is complete.

Theorem 5.8. If for γ ∈ (0, 1/
√
M) the design in Theorem 5.7 is feasible, the tracking

error converges to zero as k → ∞ over the finite frequency range θ ∈ Θ defined in

Lemma 2.15 even with the presence of model uncertainties ∆A, ∆B and ∆C. Moreover,

the convergence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that of Theorem 5.2 and here the details are omit-

ted.

5.3 Design Algorithms For Continuous-time Systems

5.3.1 Problem Setup

Consider the discrete time-invariant linear state-space system model in the ILC setting

ẋk(t) = Axk(t) +Buk(t),

yk(t) = Cxk(t), 0 < t ≤ α (5.39)

and the ILC control law is

uk+1(t) = uk(t) + ∆uk+1(t) (5.40)

where ∆uk+1(t) is a function of the error on trial k but could also be a function of the

previous trial control input and is given by

∆uk+1(t) =
M∑
j=1

Kj−1ėk+1−j(t) (5.41)

Introduce

ηk+1(t) =

∫ t

0
(xk+1(t)− xk(t))dt (5.42)

gives resulting controlled dynamics state-space model as

η̇k+1(t) = Aηk+1(t) +

M∑
j=1

B̂j−1ek+1−j(t)

ek + 1(t) = Ĉηk+1(t) +
M∑
j=1

D̂j−1ek+1−j(t) (5.43)
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where

B̂0 = BK0, B̂j−1 = BKj−1,

Ĉ = −CA, D̂0 = I− CBK0,

D̂j−1 = −CBKj−1, j = 2, ...,M (5.44)

Applying the same uncertainties in section 5.2.1, the state-space model is

ẋk(t) = (A+ ∆A)xk(t) + (B + ∆B)uk(t),

yk(t) = (C + ∆C)xk(t), p = 0, 1, ..., α− 1 (5.45)

and the norm-bounded additive perturbations ∆A, ∆B and ∆C to the state-space model

matrices A, B and C are in the form

∆A = H1FE1, ∆B = H1FE2, ∆C = H2FE1 (5.46)

where H1, H2, E1, E2, and F are defined in section 3.2.1. If apply the higher-order

control law (5.40) for this model the controlled system is in the form (3.5) with

Â = (A+ ∆A), B̂0 = (B + ∆B)K0, B̂j−1 = (B + ∆B)Kj−1,

Ĉ = −(C + ∆C)(A+ ∆A), D̂0 = I− (C + ∆C)(B + ∆B)K0,

D̂j−1 = −(C + ∆C)(B + ∆B)Kj−1, j = 2, ...,M (5.47)

5.3.2 KYP Lemma Based Design Algorithms

As similar, the differential linear repetitive process (5.43) is not unit memory, in order

to obtain the design algorithm based KYP lemma, convert it to the unit memory linear

repetitive process

η̇k+1(t) = Aηk+1(t) + B̄ēk(t)

ēk+1(t) = C̄ηk+1(t) + D̄ēk(t) (5.48)

where

ēk(t) =
[
eTk−M+1(t) · · · eTk−1(t) eTk (t)

]T
,

B̄ =
[
B̂M−1 · · · B̂1 B̂0

]
,
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C̄ =



0

0
...

0

Ĉ


, D̄ =



0 I 0 · · · 0

0 0 I
. . . 0

0 0 0 · · · 0
...

...
...

. . . I

D̂M−1 D̂M−2 D̂M−3 · · · D̂0


, (5.49)

applying Laplace transform, i.e., L[ẋk(t)] = sL[xk(t)]− xk(0) to (5.49) and gives

ēk+1(s) = G(s)ēk(s) (5.50)

where G(s) = C̄(sI − A)−1B̄ + D̄. The term in transfer-function matrix G(s) which

relates the convergence performance is only the bottom row. i.e.,

ek+1(s) = [GM−1(s), ..., G1(s), G0(s)]ēk(s) (5.51)

and the objective is to select the gains Ki−1, i = 1, ...,M such that the norm of the

above transfer function is sufficiently small and thus convergence can be achieved.

Theorem 5.9. For a given γ > 0 and assume the A is stable. Then the differential

linear repetitive process representing the ILC dynamics described by (5.49) is stable along

the pass and satisfies

‖[GM−1(s), ..., G1(s), G0(s)]‖∞ < γ (5.52)

if there exist symmetric matrix P1 > 0, and N2, µ = γ2 such that following LMIs are

feasible sym{AP1} BN2 −P1A
TCT

NT
2 B

T −µI IT0 −NT
2 B

TCT

−CAP1 I0 − CBN2 −I

 < 0 (5.53)

sym{AP1} BN2 −P1A
TCT1

NT
2 B

T −I IT1 −NT
2 B

TCT1
−C1AP1 I1 − C1BN2 −I

 < 0 (5.54)

where I0, I1, and C1 are defined in (5.32). The stabilizing control law matrices are given

by

[KM−1, ..., K1, K0] = N2 (5.55)

Proof. The LMI (5.54) can be written as

ΦT

[
P1 0

0 0

]
+

[
P1 0

0 0

]
Φ + ΦT

[
0 0

0 I

]
Φ−

[
0 0

0 I

]
< 0 (5.56)
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where

Φ =

[
A B̄

C̄ D̄

]
(5.57)

which satisfies the 2D Lyapunov inequality for differential linear repetitive process, The

condition (5.52) can be written as[
(jωI −A)−1B̄

I

]T [
Ĉ D̃

0 I

]T [
I 0

0 −µI

][
Ĉ D̃

0 I

][
(jωI −A)−1B̄

I

]
< 0 (5.58)

Also by the bounded real lemma, this last condition holds if and only if the following

LMI holds [
ATP1 + P1A P1B̄

B̄TP1 0

]
+

[
ĈT C̄ ĈT D̃

D̃T Ĉ D̃T D̃ − µI

]
< 0 (5.59)

Where D̃ = [D̂M−1, ..., D̂0], by using Schur’s complement formula, the LMI (5.53) can

be obtained from (5.59), and proof is complete.

and the next theorem shows that when γ is small, the tracking error is guaranteed to

converge to zeros.

Theorem 5.10. If for γ ∈ [0, 1/
√
M) the design in Theorem 5.9 is feasible, the tracking

error converges to zero as k →∞. Moreover, the convergence is monotonic in the sense

that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that of Theorem 5.2 and here the details are omit-

ted.

From the above theorem it can be seen that γ characterizes how quickly the tracking error

converges to zero under the higher order ILC design. In practice, a faster convergence is

usually desirable. This can be achieved by solving the following minimization problem.

min
P1>0,γ<1,N2

µ (5.60)

Consider the uncertainties in the state-space model, the robust design is

Theorem 5.11. For a given γ > 0 and assume the A is stable. Then the differential

linear repetitive process representing the ILC dynamics of (5.48) with additive uncer-

tainty part ∆A, ∆B, and ∆C in (5.7) is stable along the pass and satisfies (5.52) if

there exist matrices P1 > 0, N2, W1x, W2x, W1j for j = 0, ...,M − 1, W2, W3x, W4x,
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W3j, W4 for j = 0, ...,M − 1, W6 with appropriate dimensions and real scalars ε1 > 0,

ε2 > 0 and µ = γ2 such that the following LMI is feasible

∆11 ∗ ∗ ∗ ∗ ∗ ∗
NT

2 B
T −µI ∗ ∗ ∗ ∗ ∗

−CW T
1x I0 − CW T

1 ∆33 ∗ ∗ ∗ ∗
AP1 −W T

1x BN2 −W T
1 −W T

2x −W2C
T ∆44 ∗ ∗ ∗

E1P1 E2N2 0 0 −ε1I ∗ ∗
−E1W

T
1x −E1W

T
1 −E1W

T
2x −E1W

T
2 0 −ε1I ∗

E1P1 E2N2 0 0 0 0 −ε1I


< 0

(5.61)



∆51 ∗ ∗ ∗ ∗ ∗ ∗
NT

2 B
T −I ∗ ∗ ∗ ∗ ∗

−C1W
T
3x I1 − C1W

T
3 ∆63 ∗ ∗ ∗ ∗

AP1 −W T
3x BN2 −W T

3 −W T
4x −W4C

T
1 ∆74 ∗ ∗ ∗

E1P1 E2N2 0 0 −ε2I ∗ ∗
−E1W

T
3x −E1W

T
3 −E1W

T
4x −E1W

T
4 0 −ε2I ∗

E1P1 E2N2 0 0 0 0 −ε2I


< 0

(5.62)

where I0, I1, and C1 are defined in (5.32) and

∆11 = sym{AP1}+ ε1H1H
T
1 ,

∆33 = −I − CW T
2x −W2xC

T + ε1H2H
T
2 ,

∆44 = −W2 −W T
2 + ε1H1H

T
1 ,

∆51 = sym{AP1}+ ε2H1H
T
1 ,

∆63 = −I − CW T
4x −W4xC

T + ε2H3H
T
3 ,

∆74 = −W4 −W T
4 + ε2H1H

T
1 ,

and W1 = [W1M−1, ...,W11], W3 = [W3M−1, ...,W31], and H3 = [0, ..., 0, H2]T . If (5.61)

and (5.62) are satisfied, the stabilizing control law matrices are given by

[KM−1, ..., K1, K0] = N2 (5.63)

with use of the linear objective minimization procedure (5.60).

Proof. This follows identical steps to that of Theorem 5.3 and here the details are omit-

ted.

Theorem 5.12. If for γ ∈ (0, 1/
√
M) the design in Theorem 5.11 is feasible, the tracking

error converges to zero as k → ∞ even with the presence of model uncertainties ∆A,
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∆B and ∆C. Moreover, the convergence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that of Theorem 5.2 and here the details are omit-

ted.

5.3.3 Generalized KYP Lemma Based Design Algorithms

Applying the generalized KYP lemma to design the control law matrices in (5.41), the

theorem is

Theorem 5.13. For a given γ > 0 and assume the A is stable. Then the differential

linear repetitive process representing the ILC dynamics of (5.48) is stable along the pass

and satisfies

maxσ([GM−1(jθ), ..., G1(jθ), G0(jθ)]) < γ (5.64)

over the finite frequency range defined in Lemma 2.16, and there exist matrices P1 > 0,

Q1 > 0, P2 > 0, Q2 > 0, X2, and W1, and µ = γ2 such that the following LMIs are

feasible: 
Ξ11 Ξ12 −W T

1 0 0

∗ Ξ22 + sym{AW1} BX2 −W T
1 A

TCT

∗ ∗ −µI IT0 −XT
2 B

TCT

∗ ∗ ∗ −I

 < 0 (5.65)


Ξ̄11 Ξ̄12 −W T

1 0 0

∗ Ξ̄22 + sym{AW1} BX2 −W T
1 A

TCT1
∗ ∗ −I IT1 −XT

2 B
TCT1

∗ ∗ ∗ −I

 < 0 (5.66)

where the compatibly dimensioned matrices Ξ11, Ξ12, Ξ22, and Ξ̄11, Ξ̄12, Ξ̄22 form Ξ and

Ξ̄ in Lemma 2.16 and I0, I1, C1 are defined in (5.32). If the (5.65), (5.66) are satisfied,

stabilizing control law matrices are given by

[KM−1, ..., K1, K0] = X2 (5.67)

Proof. The generalized KYP lemma of Lemma 2.16, when applied with A, B̄, C̄, and D̄

in it, the equal LMI is[
A B̄

I 0

]T
Ξ̄

[
A B̄

I 0

]
+

[
C̄ D̄

0 I

]T
Π

[
C̄ D̄

0 I

]
< 0 (5.68)

Then after some processes include Schur’s complement, finally, LMI (5.66) can be ob-

tained from (5.68).
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When γ in the design algorithm is small, the tracking error is guaranteed to converges

to zeros.

Theorem 5.14. If for γ ∈ [0, 1/
√
M) the design in Theorem 5.13 is feasible, the tracking

error converges to zero as k →∞ for some finite frequency range defined in Lemma 2.16.

Moreover, the convergence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that of Theorem 5.2 and here the details are omit-

ted.

In practice, a faster convergence can be achieved by solving next linear objective mini-

mization procedure,

min
P1>0,Q1>0,P2>0,Q2>0,γ<1,W1,X2

µ (5.69)

and the robust design for uncertainties in the system is

Theorem 5.15. For a given γ > 0 and assume the A is stable. Then the differential

linear repetitive process representing the ILC dynamics of (5.48)is stable along the pass

and satisfies (5.64) over the finite frequency range defined in Lemma 2.16, and there

exist matrices P1 > 0, Q1 > 0, P2 > 0, Q2 > 0, X2, and W1, W11, W12, W13, W14, W2

and W31, W32, W33, W34, W4, ε1 > 0, ε2 > 0 such that the following LMIs are feasible

Ξ11 Ξ12−WT
1 0 −W11CT −W11 0 −W11ET

1 0

∗ ∆22 BX2 −W12CT ∆25 ∆26 −W12ET
1 ∆28

∗ ∗ −µI IT0 −W13CT XT
2 B

T−W13 XT
2 E

T
2 −W13ET

1 XT
2 E

T
2

∗ ∗ ∗ ∆44 −CWT
2 −W14 0 −W14ET

1 0

∗ ∗ ∗ ∗ ∆55 0 −W2ET
1 0

∗ ∗ ∗ ∗ ∗ −ε1I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I

 < 0 (5.70)



Ξ̄11 Ξ̄12−WT
1 0 −W31CT

1 −W31 0 −W31ET
1 0

∗ ∆62 BX2 −W32CT
1 ∆65 ∆66 −W32ET

1 ∆68

∗ ∗ −I IT1 −W33CT
1 XT

2 B
T−W33 XT

2 E
T
2 −W33ET

1 XT
2 E

T
2

∗ ∗ ∗ ∆74 −CWT
2 −W34 0 −W34ET

1 0

∗ ∗ ∗ ∗ ∆85 0 −W4ET
1 0

∗ ∗ ∗ ∗ ∗ −ε2I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I

 < 0 (5.71)
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where

∆22 = Ξ22 + sym{AW}+ ε1H1H
T
1 ,

∆25 = W T
1 A

T −W12,

∆26 = ∆28 = W T
1 E

T
1 ,

∆44 = −I − sym{CW T
14}+ ε1H2H

T
2 ,

∆55 = −W2 −W T
2 + ε1H1H

T
1

∆62 = Ξ̄22 + sym{AW}+ ε2H1H
T
1 ,

∆65 = W T
1 A

T −W32,

∆66 = ∆68 = W T
1 E

T
1 ,

∆74 = −I − sym{CW T
34}+ ε2H2H

T
2 ,

∆85 = −W4 −W T
4 + ε2H1H

T
1 ,

and I0, I1, C1 are defined in (5.32), and Ξ22, Ξ̄11, Ξ̄12, Ξ̄22 form Ξ and Ξ̄ in Lemma 2.16.

If the LMIs (5.70), (5.71) are satisfied, stabilizing control law matrices are given by

[KM−1, ..., K1, K0] = X2 (5.72)

with use of the linear objective minimization procedure (5.69).

Proof. This follows identical steps to that of Theorem 5.7 and here the details are omit-

ted.

and

Theorem 5.16. If for γ ∈ (0, 1/
√
M) the design in Theorem 5.15 is feasible, the tracking

error converges to zero as k →∞ over the finite frequency range defined in Lemma 2.16

even with the presence of model uncertainties ∆A, ∆B and ∆C. Moreover, the conver-

gence is monotonic in the sense that

max{‖ek+1‖, ..., ‖ek−M+2‖} < γmax{‖ek‖, ..., ‖ek−M+1‖}

Proof. This follows identical steps to that of Theorem 5.2 and here the details are omit-

ted.

5.4 Numerical Examples

In this section, examples are to test the new design algorithms developed earlier in this

chapter. In this simulation, the value of memory length M is from 1 to 5, and the

number of trial is 40, the trial length is 2 sec. The reference trajectory and system
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model that are used in this section is as the same as that in the previous chapters. Also

use same definition of the 2-norm of the error signal. The example is a simple 2th-order

systems model with state-space model matrices

A =

[
−0.3 0

0.35 −0.22

]
,

B =
[
0.15 0

]T
,

C =
[
0.15 0

]
,

for continuous-time model, and after sampling by using 100Hz sample frequency, obtain

the discrete-time system with state-space model matrices

A =

[
0.9970 0

0.0035 0.9978

]
,

B =
[
0.0015 0

]T
,

C =
[
0.15 0

]
,

There are two parts, first part shows the simulation results for design algorithm by

using KYP lemma, and the latter part is for design algorithm by using generalized KYP

lemma.

The first simulation study investigated the effect of the memory length M on the trial-

to-trial error convergence performance. Using Theorem 5.1 for discrete-time systems

and Theorem 5.9 for continuous-time systems, and the relation between value of M

and γ is given in table 5.1. These confirm that as M increases, i.e., more informa-

tion from the past is used, the value of γ decreases and the tracking error converges

faster, see also figure 5.1. For example, the control law matrices when M = 2 are

K1 = 1.0013, K0 = 1512.0081 for discrete-time systems andK1 = 1.2113, K0 = 59.1081

for continuous-time systems. As the figure shows, the error convergence is faster with

larger M , and error convergence based different value of M is in figure 5.1.

M γ (discrete-time version) γ (continuous-time version)

1 0.6774 0.6781
2 0.6312 0.6314
3 0.5211 0.5423
4 0.4672 0.4601
5 0.4214 0.4217

Table 5.1: Relation between value of M and γ for design by using algorithm in
Theorem 5.1 and Theorem 5.9.

To examine the effectiveness of the robust design developed in Theorem 5.3 for discrete-

time systems and Theorem 5.11 for continuous-time systems, consider the case when the
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Figure 5.1: Error convergence performance along the trial by using algorithm
in Theorem 5.1 and Theorem 5.9.

matrices defining the same uncertainty model as in previous chapters. The results for

different M are shown in figure 5.2, and also confirm that: 1) the tracking error decreases

monotonically and 2) increasing M improves the convergence speed. Table 5.2 shows

the relationship between M and value of γ, and error convergence based different value

M γ (discrete-time version) γ (continuous-time version)

1 0.6811 0.6869
2 0.6324 0.6402
3 0.5391 0.5531
4 0.4721 0.4832
5 0.4301 0.4334

Table 5.2: Relation between value of M and γ for robust design result by using
algorithm in Theorem 5.3 and Theorem 5.11.

of M is in figure 5.2. In table 5.2, γ satisfies γ ∈ [0, 1) and since the design is applied to

an uncertain system, the value of γ with model uncertainty is larger than that without,

which is the price paid for robust design.

Then simulation study investigated the effect of the memory length M on the trial-to-

trial error convergence performance for generalized KYP lemma based design algorithms

in Theorem 5.5 and Theorem 5.13, and the relation between value of M and γ is given in

Table 5.3. These also confirm that as M increases, i.e., more information from the past is

used, the value of γ decreases and the tracking error converges faster, see also figure 5.3.

For example, the control law matrices when M = 2 are K1 = 1.2023, K0 = 1541.2284

for discrete-time systems andK1 = 1.4111, K0 = 51.2082 for continuous-time systems.

As the figure shows, the error convergence is faster with larger M , and error convergence
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Figure 5.2: Error convergence performance along the trial by using algorithm
in Theorem 5.3 and Theorem 5.11.

M γ (discrete-time version) γ (continuous-time version)

1 0.6741 0.6764
2 0.6142 0.6172
3 0.5132 0.5311
4 0.4511 0.4571
5 0.4131 0.4201

Table 5.3: Relation between value of M and γ for design by using algorithm in
Theorem 5.5 and Theorem 5.13.

based different value of M is in figure 5.3.

To examine the effectiveness of the robust design in Theorem 5.7 and Theorem 5.15,

consider the case when the matrices defining the same uncertainty model. The results

for different M are shown in figure 5.4, and confirm that: 1) the tracking error decreases

monotonically and 2) increasing M improves the convergence speed. Table 5.4 shows

the relationship between M and value of γ, and error convergence based different value

M γ (discrete-time version) γ (continuous-time version)

1 0.6802 0.6810
2 0.6299 0.6311
3 0.5312 0.5510
4 0.4611 0.4634
5 0.4217 0.4270

Table 5.4: Relation between value of M and γ for robust design result by using
algorithm in Theorem 5.7 and Theorem 5.15.

of M is in figure 5.4. In table 5.4, γ satisfies γ ∈ [0, 1) and since the design is applied to

an uncertain system, the value of γ with model uncertainty is larger than that without.
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Figure 5.3: Error convergence performance along the trial by using algorithm
in Theorem 5.5 and Theorem 5.13.

Figure 5.4: Error convergence performance along the trial by using algorithm
in Theorem 5.7 and Theorem 5.15.

5.5 Summary

In this chapter, a new design algorithm has been developed for higher-order ILC control

law matrices. The higher-order control law uses output-feedback, and design is based

on the KYP lemma and its generalized version. This new design requires attenuation

of the frequency content of the previous trial error over the complete trial length. In

some applications, however, only a finite frequency range need to be considered. In

other applications, it may be required to impose different frequency specifications over

various frequency ranges. For such applications, the generalized KYP lemma based
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design algorithm can be used. In the next chapter, the gantry robot model is used to

test different design algorithms based state-feedback and output-feedback control, also

the comparison and discussion is given.





Chapter 6

Simulation Based Case Studies

6.1 Introduction

In the previous chapters, algorithms for ILC design based on repetitive process stability

conditions are developed. In this chapter, a gantry robot is used to test the performance

of these ILC design algorithms. The gantry robot replicates a pick and place task

which consists of: i) collect the payload from a fixed location, ii) transferring it over

a finite duration, iii) place it at a fixed location or under synchronization on a moving

conveyor, iv) return to the starting location and v) repeat i)–iv) as many times as

required or until a halt for maintenance or for other reasons is required. The design

and commissioning of this system is described in [70] and the relevant cited references,

including the construction of transfer-function approximate models of the dynamics of

each axis from frequency response tests.

This experimental facility has been used to compare many ILC designs, including those

designed in the repetitive process setting. The gantry robot is shown in figure 6.1, which

consists of three separate axes which are mounted perpendicular to each other. In this

chapter, only 7th order X-axis of model is used, it is the highest order axis in the gantry

robot, and its frequency response is shown in figure 6.2, and the reference trajectory of

X-axis with trial length as 2 sec is in figure 6.3. The continuous-time state-space model

97
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Figure 6.1: The gantry robot with the three axes marked.
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Figure 6.2: Frequency response testing results for the X-axis of the gantry robot.

matrices are

A =



−30.7846 162.5501 16.0032 5.9864 5.4855 6.2566 5.8107

−63.3620 −30.7846 35.5443 −39.2850 33.3716 −40.3732 −2.8846

0 0 −113.9526 187.1883 −19.1232 −131.0272 −53.4097

0 0 −232.3381 −113.9526 −143.3183 391.9655 95.1775

0 0 0 0 −233.1077 662.0887 223.8695

0 0 0 0 −21.7165 −233.1077 −64.1019

0 0 0 0 0 0 0


,

B =
[
−0.2643 0.4654 4.0497 −8.1245 −16.5316 3.7272 9.1000

]T
,

C =
[
0.0391 0 0.0146 0 0.0071 0 0.0057

]
.
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Figure 6.3: The reference trajectory for the X-axis.

Sampling at Ts = 0.01s sec given the discrete-time state-space model matrices

A =



0.3879 1.0000 0.2138 0 0.1041 0 0.0832

−0.3898 0.3879 0.1744 0 0.0849 0 0.0678

0 0 −0.1575 0.2500 −0.2006 0 −0.1603

0 0 −0.3103 −0.1575 −0.0555 0 −0.0444

0 0 0 0 0.0353 0.5000 0.2809

0 0 0 0 −0.0164 0.0353 −0.2757

0 0 0 0 0 0 1.0000


,

B =
[
0 0 0 0 0 0 0.0910

]T
,

C =
[
0.0391 0 0.0146 0 0.0071 0 0.0057

]
.

6.2 Results for the KYP lemma based design

In this section, gantry robot is used to test the design algorithms based on KYP lemma.

6.2.1 Simulation results for the state-feedback control design

In this section, the simulation results are for designers of state-feedback scheme. The

value of memory length M is from 1 to 5.
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As one example of the application of Theorem 3.1, the results for M = 2 are

K = [ − 17.8484 − 42.8556 − 9.4786 − 1.4860 − 4.2474 − 1.8368 − 19.5956]

and

K1 = 0.3825, K0 = 181.9765

Table 6.1 gives the values of γ for different M , and the error convergence performance

M γ(discrete-time version) γ(continuous-time version)

1 0.9996 0.9998
2 0.7008 0.7041
3 0.5021 0.5209
4 0.4572 0.4591
5 0.3913 0.4158

Table 6.1: Relation between value of M and γ for the state feedback
design(State-feedback, KYP lemma based design algorithm).

Figure 6.4: Error convergence performance from trial to trial (State-feedback,
KYP lemma based design algorithm).

is shown in figure 6.4. The results confirm that as M increases the speed of error

convergence also increases.

As a robust design example, consider additive uncertainty in the case when

H1 =
[
0.1 0 0 0 0 0 0

]T
, H2 = 0.01, E2 = 0.01,

E1 =
[
0.1 −0.1 0.1 −0.1 0.05 −0.05 0.1

]
.
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M γ(discrete-time version) γ(continuous-time version)

1 0.9996 0.9999
2 0.7015 0.7062
3 0.5988 0.6010
4 0.4591 0.4980
5 0.3985 0.4456

Table 6.2: Relation between value of M and γ for robust design (State-feedback,
KYP lemma based design algorithm).

Again M from 1 to 5 is considered over 50 trials. The results are in the next table and

figure, and the figure of error convergence with different M is shown in figure 6.5. The

Figure 6.5: Error convergence performance along the trial for the robust design
(State-feedback, KYP lemma based design algorithm).

results also show the same relation that when M increases, the speed of error convergence

also increases.

6.2.2 Simulation results for the output-feedback control design

Applying the design algorithms in Theorem 5.1 and Theorem 5.7, choose different values

of M , table 6.3 shows relation between M and γ, and figure 6.6 shows error convergence

performance. In the result, the total number of trials is 50, and it shows that when

M increases, the speed of error convergence also increases. Consider the same additive

uncertainty part, relation between M and γ is shown in table 6.4, and next figure gives
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M γ(discrete-time version) γ(continuous-time version)

1 0.9997 0.9998
2 0.7033 0.7051
3 0.5321 0.5321
4 0.4647 0.4651
5 0.4211 0.4215

Table 6.3: Relation between value of M and γ for output-feedback design
result(Output-feedback, KYP lemma based design algorithm).

Figure 6.6: Error convergence performance along the trial(Output-feedback,
KYP lemma based design algorithm).

M γ(discrete-time version) γ(continuous-time version)

1 0.9997 0.9999
2 0.7041 0.7064
3 0.5993 0.6021
4 0.4871 0.4991
5 0.4372 0.4463

Table 6.4: Relation between value of M and γ for robust design result(Output-
feedback, KYP lemma based design algorithm).

the performance results.

6.3 Simulation results by using Generalized KYP design

Applying the Fourier transform to the reference trajectory gives the result shown in

figure 6.8 and confirms that it has significant frequency content within 0 and 5Hz. Hence

the generalized KYP lemma based design algorithms are used. The cut-off frequency is
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Figure 6.7: Error convergence performance along the trial for the robust
design(Output-feedback, KYP lemma based design algorithm).

taken as 5Hz and the designs force the controlled ILC system track the reference signal

within this frequency range. The results are divided into two parts.
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Figure 6.8: The reference trajectory for the x-axis.
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6.3.1 Simulation results for the state-feedback control design

In this part, the simulation results include design algorithms for state-feedback scheme

using generalized KYP lemma and their robust design algorithms, the design algorithms

are shown in Chapter 4. In the simulation, the value of memory length M is from 1 to

5. The state matrix A has one eigenvalue on the unit circle. To highlight the use of

Theorem 4.1, consider the case when M = 2 with ρ1 = 1 and ρ2 = − 2, which can

satisfies ρ2
1 < ρ2

2. Completing the design gives

K = [−29.2402 − 75.3808 − 11.6832 − 7.0368 − 2.6840 − 6.8440 − 16.5937]

and

K1 = 0.9080, K0 = 182.7897

Here γ = 0.6811. The plot of the frequency gain for controlled system transfer-function

over the range 0 to 5Hz is shown in figure 6.9 and the gain decreases with increasing

frequency. Table 6.5 shows the results for M and γ in both cases. The figure 6.10 gives

error convergence performance.

Figure 6.9: Feedback ILC system transfer function(State-feedback, GKYP
lemma based design algorithm).

In this figure, the absolute value of the transfer function ‖G(ejω)‖ is decrease when

frequency increases, and the biggest value is in 0Hz, which is 0.6810. Both consider the

continuous-time version, the relation between M and γ is shown in table 6.6.

Also when M increases the speed of the error convergence also increases.
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M γ(discrete-time version) γ(continuous-time version)

1 0.9818 0.9987
2 0.6811 0.6911
3 0.5001 0.5202
4 0.4221 0.4585
5 0.3877 0.4157

Table 6.5: Relation between value of M and γ for LMI design (State-feedback,
GKYP lemma based design algorithm).

Figure 6.10: Error convergence performance along the trial for LMI
design(State-feedback, GKYP lemma based design algorithm).

Next, the robust design algorithm of Chapter 4 is considered. The next table and figure

confirm that the same conclusion holds in this case, and the figure of trial-to-trial error

M γ(discrete-time version) γ(continuous-time version)

1 0.9877 0.9997
2 0.6866 0.6962
3 0.5554 0.5667
4 0.4426 0.4965
5 0.3974 0.4427

Table 6.6: Relation between value of M and γ for robust design (State-feedback,
GKYP lemma based design algorithm).

convergence is in figure 6.11. In the result, it also shows the same relation that when

M increase, the speed of error convergence also increase and error convergence becomes

faster.
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Figure 6.11: Error convergence performance along the trial for robust design
(State-feedback, GKYP lemma based design algorithm).

6.3.2 Simulation results for the output-feedback control design

Using the algorithm in Theorem 5.5 and Theorem 5.9 to design the control law matrices.

When choose M = 2, the value of ρ1 and ρ2 are 1 and −2 which can satisfy the condition

ρ2
1 − ρ2

2 < 0. The value of γ is computed as γ =
√
µ and its value is 0.6911. The plot of

the absolute value for controlled system transfer function ‖G(ejω)‖ over the frequency

range from 0Hz to 5Hz is shown in figure 6.12. In this figure, the biggest value is in

0Hz, which is 0.6910, and the value decreases as the frequency increases. Therefore, the

curve is below the γ = 0.6365. Also consider the continuous-time version, the relation

between M and γ is shown in next table, and the figure 6.13 shows trial-to-trial error

M γ(discrete-time version) γ(continuous-time version)

1 0.9731 0.9799
2 0.6911 0.7021
3 0.5121 0.5146
4 0.4367 0.4423
5 0.3234 0.4021

Table 6.7: Relation between value of M and γ for LMI design (Output-feedback,
GKYP lemma based design algorithm).

convergence performance. The figure shows that when M increase, the speed of error

convergence also increase and error convergence becomes faster. Test the robust design

algorithms for the same uncertainty part, the relation between M and γ is in table 6.8.
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Figure 6.12: Feedback ILC system transfer function(Output-feedback, GKYP
lemma based design algorithm).

Figure 6.13: Error convergence performance along the trial for LMI
design(Output-feedback, GKYP lemma based design algorithm).

The figure of error convergence is in figure 6.14. In this section, the relations between

different M and γ is shown in the Tables based different design algorithms. The next

section will gives the comparison between different control schemes and KYP/GKYP

lemma based design algorithms.
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M γ(discrete-time version) γ(continuous-time version)

1 0.9822 0.9982
2 0.7018 0.7043
3 0.5351 0.5455
4 0.4601 0.4841
5 0.3857 0.4220

Table 6.8: Relation between value of M and γ for robust design (Output-
feedback, GKYP lemma based design algorithm).

Figure 6.14: Error convergence performance along the trial for the robust
design(Output-feedback, GKYP lemma based design algorithm).

6.4 Comparisons

In this section, the comparison between different design algorithms are given. In the

previous chapters, the repetitive processing based ILC design algorithm which use KYP

lemma and its generalized version are proposed for state feedback and output feedback

scheme. In this section, there are four subsections, the first subsection gives comparison

between different design algorithm for state feedback scheme, and the second subsec-

tion gives comparison between different design algorithm for output feedback scheme.

Moreover, the third subsection gives the comparison between different feedback scheme

by using repetitive processing based ILC design algorithm which use KYP lemma and

the last subsection gives the comparison between different feedback scheme by using

repetitive processing based ILC design algorithm which use generalized KYP lemma.
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6.4.1 Comparison Between KYP/GKYP Lemma Based Design Algo-

rithm For State Feedback Control Scheme

In this subsection, the simulation results are for state-feedback based ILC laws. Consider

the discrete/continuous-time system. The KYP lemma based design algorithm is pro-

posed in chapter 3 and the generalized KYP lemma based design algorithm is proposed

in chapter 4, both design algorithms are applied for state feedback control law. In this

subsection, the key performance of error convergence speed is focus on. It is clear that

Figure 6.15: Comparison between KYP/GKYP lemma based design algorithms
for state feedback control scheme (discrete-time system version).

in all situations, the curve of the trial-to-trial error convergence performance that by

using the generalized KYP lemma based design algorithm is lower than the curve of the

result by using KYP lemma based design algorithm. This means that the generalized

KYP lemma based design algorithms can support better trial-to-trial error convergence

performance, and it can get higher speed of error convergence.

6.4.2 Comparison Between KYP/GKYP Lemma Based Design Algo-

rithm For Output Feedback Control Law

In this section, the comparison between different design algorithms is given. Consider the

discrete/continuous-time system. The KYP lemma based design algorithm is proposed

in section 5.2 and the generalized KYP lemma based design algorithm is proposed in
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Figure 6.16: Comparison between KYP/GKYP lemma based design algorithms
for state feedback control scheme (continuous-time system version).

section 5.3, both design algorithms are applied for state feedback control law. In this

subsection, the key performance of error convergence speed is focus on. The figures are

given in figure 6.17 and figure 6.18. As the figures shown, even the control scheme here

is changed to be output-feedback scheme, the relation is as the same as that by using

state-feedback scheme. It is that the generalized KYP lemma based design algorithm

can obtain the better performance,

6.4.3 Comparison Between KYP Based Design Algorithms For State/Out-

put Feedback Control Law

In this section, the comparison between different design algorithms is given. Consider

the discrete/continuous-time system. The KYP lemma based design algorithm for state

feedback control scheme is proposed in Chapter 3 and the KYP lemma based design

algorithm for output feedback control scheme is proposed in chapter 5. In this subsection,

the key performance of error convergence speed is focus on. The figures are given in

figure 6.19 and figure 6.20. As the figures shown, when use the same type of design

algorithm(here is KYP lemma based design algorithm), the state-feedback control law

can achieve the higher speed of trial-to-trial error convergence. In this simulations, the

state-feedback control scheme can focus on the transient performance along the trial,

thus it can obtain better performance.
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Figure 6.17: Comparison between KYP/GKYP lemma based design algorithms
for output feedback control scheme (discrete-time system).

Figure 6.18: Comparison between KYP/GKYP lemma based design algorithms
for output feedback control scheme (continuous-time system).
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Figure 6.19: Comparison between KYP based design algorithms for different
feedback control scheme (discrete-time system).

Figure 6.20: Comparison between KYP lemma based design algorithms for
different feedback control scheme (continuous-time system).



Chapter 6 Simulation Based Case Studies 113

6.4.4 Comparison Between GKYP Based Design Algorithms For State

/Output Feedback Control Law

In this subsection, the comparison between different design algorithms is given. Consider

the discrete/continuous-time system. The KYP lemma based design algorithm for state

feedback control scheme is proposed in Chapter 4 and the KYP lemma based design

algorithm for output feedback control scheme is proposed in chapter 5. In this subsection,

the key performance of error convergence speed is focus on. The figures are given in

figure 6.21 and figure 6.22. The result is as similar as that using the KYP lemma based

Figure 6.21: Comparison between GKYP based design algorithms for different
feedback control scheme (discrete-time system).

Figure 6.22: Comparison between GKYP lemma based design algorithms for
different feedback control scheme (continuous-time system).
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design algorithm.

6.5 Summary

In this chapter, the model of gantry robot is used to test the design algorithms in previous

chapters. In this chapter, the repetitive process based ILC design algorithms by using

KYP lemma and its generalized version are used for state feedback and output feedback

higher-order control laws. from the simulation results, the design algorithms are applied

well for the gantry robot. Moreover, this chapter also gives the comparison between

different kind of design algorithms for different feedback control schemes. Among them,

the design algorithm by using generalized KYP lemma and the state feedback control

law is proofed to obtain the best performance, which support the highest speed of error

convergence.



Chapter 7

Conclusions and Further Work

7.1 Conclusion

This thesis has developed significant new results on the design of ILC laws in the repet-

itive process setting. The vast majority of the analysis and design of ILC laws only

explicitly use information from the previous trials. On any trial, however, all infor-

mation generated on any previous trial can be used, at the cost having to store the

information required. Higher-order ILC is a design where a finite number, greater than

unity, of previous trials are explicitly used in the construction of the next trial input.

Higher-order ILC has been considered in the literature but missing are results/designs

that quantify the benefits possible.

Repetitive process stability theory allows design to simultaneously enforce trial-to-trial

error convergence and acceptable transients along the trials. Moreover, this setting

extends to differential dynamics unlike alternatives. This allows design by emulation.

Also the extension robust control, where the uncertainty is assumed to belong to a

particular model class. The first new set of results in this thesis to develop an LMI

based design for a higher-order ILC law for both differential and discrete linear time-

invariant dynamics. Also the convergence properties of these designs is established.

The repetitive process setting for ILC design imposes frequency attenuation over the

complete spectrum of the previous trial error dynamics. This could be very constrain-

ing in at least some applications. Moreover, some applications may require different

frequency domain specifications over different frequency ranges. The second set of new

results in this thesis uses the generalized KYP lemma to allow design with these features.

Again the convergence properties of the designs is established.

In the last set of new results in this thesis, the analysis is extended to output feedback

higher-order ILC laws. Again the convergence properties of the designs are established.

As a necessary step towards to experimental verification, all designs are compared in

115
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simulation on the model of one axis of a gantry robot. This robot has been used to

test many ILC laws and the model used in this thesis has been determined by frequency

response tests.

7.2 Further Work

In this thesis, design algorithms based KYP lemma and generalized KYP lemma have

been developed for higher-order ILC control laws matrices. Moreover, a model of gantry

robot has been used to test the performance of these algorithms. Areas for further

research include the following.

• The design algorithms have been evaluated on a model of the gantry robot. An

obvious next step is to test these designs experimentally.

• As the simulations in this thesis demonstrate, as the value of M increases, the

speed of error convergence also increases. However, an exact relationship between

M and speed of error convergence has yet to be established.

• This thesis has developed some results on robust control and these require further

development and experimental verification. There is also a need to deal with

disturbances.

• The design algorithms developed in this thesis place no constraints on process

variables, e.g., input and/or output constraints. This are should be the subject of

research effort.
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