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The discovery of neutrino masses and large lepton mixing may be an indication for

an underlying non-Abelian family symmetry in nature, although the measurement of a

relatively large reactor angle effectively ruled out the simplest models of flavour, such as

those predicting tri-bimaximal mixing. However, more sophisticated realisations are still

viable, such as those based on constrained sequential dominance (CSD) with a type-I

seesaw mechanism. We study the CSD(n) class of models, showing how special vacuum

alignments of Standard Model singlet flavons may give rise to highly constrained lepton

mass matrices. A dedicated numerical fit based on χ2 minimisation gives predictions for

lepton mixing parameters, and excellent agreement with experimental data is found for

n = 3.

The CSD(3) alignments are implemented in several supersymmetric grand unified the-

ories (GUTs) of flavour with discrete family symmetries. We propose fairly complete

models based on A4 × SU(5), ∆(27) × SO(10), and S4 × SO(10), which are sponta-

neously broken to the minimal supersymmetric Standard Model. Each model leads to

predictive mass matrix structures for both quarks and leptons; in particular, those based

on SO(10) lead naturally to near-universal matrices as sums over low-rank matrices, so-

called universal sequential dominance, giving a natural explanation for fermion mass

hierarchies. Theoretical predictions are underpinned by dedicated χ2 fits, and in the

S4 × SO(10) model, estimates of the errors using Monte Carlo methods. We show that

thermal leptogenesis from decays of the lightest right-handed neutrino can produce the

observed baryon asymmetry of the Universe in CSD(n), and in the A4 × SU(5) and

∆(27)× SO(10) models. GUT breaking, proton decay, doublet-triplet splitting and the

µ problem are also addressed.
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Chapter 1

Introduction

1.1 The Standard Model

The Standard Model (SM) is a remarkably successful theory of quarks and leptons

which has withstood almost every experimental test over the course of decades. Most

recently, the last missing piece, the Higgs boson, was discovered by the ATLAS [7]

and CMS [8] collaborations at the Large Hadron Collider (LHC). The exception to this

success was the discovery of neutrino oscillations [9, 10], which proved experimentally

that neutrinos are massive and undergo flavour mixing. In further departure from the

Standard Model, mixing in the lepton sector appears fundamentally different to that of

quarks, stimulating research into understanding the origin of quark and lepton flavour.

Somewhat frustratingly, no other clear signals of new physics beyond the Standard Model

(BSM) have been detected, although widespread efforts have been made to develop

interesting extended models and identify channels for detecting new physics at the LHC

and future experiments. Conversely, the experimental evidence for the Standard Model is

steadily increasing. It is worth noting that most avenues of investigation for BSM physics

are motivated by theory rather than experimental discrepancies. For instance, one of

the strongest motivations for seeking new physics at TeV scale is the electroweak (EW)

hierarchy problem: what protects the Higgs boson mass from arbitrarily large corrections

from physics at high scale? Furthermore, the scale evolution of the Standard Model

gauge couplings and the apparent quantisation of electric charge point to unification of

the fundamental forces of nature at a scale around 1016 GeV. We will return to these

topics and other theoretical motivations for BSM physics in due course.

1.1.1 Symmetries and fields

Let us first, however, present the Standard Model. It is chiefly defined by two parts: a

set of symmetries, either gauged or global, and a set of fields. The gauge symmetry is

1
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SU(3)C × SU(2)L × U(1)Y , where SU(3)C is the gauge group of quantum chromody-

namics (QCD) [11–13], while SU(2)L × U(1)Y is the electroweak gauge group [14–17].

The subscript L refers to the fact that SU(2)L acts only on left-handed particles. The

SU(2)L quantum number is weak isospin, while Y refers to weak hypercharge. The

electroweak group breaks to the U(1) of electromagnetism, i.e.

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)em. (1.1)

Field
Representation

SU(3)C SU(2)L U(1)Y

QLi 3 2 1/6
uRi 3 1 2/3
dRi 3 1 -1/3
LLi 1 2 -1/2
eRi 1 1 -1
νRi 1 1 0

Ga 8 1 0
W a 1 3 0
B 1 1 0

H 1 2 1/2

Table 1.1: Standard Model field content.

The field content of the Standard Model is given in Table 1.1, showing their represen-

tations under the gauge group. It contains three types of fields: fermions, gauge bosons

and the Higgs field. The fermions are the constituent parts of atoms, and make up the

matter content of the Universe. As such, they are frequently referred to as “matter”.

Subscripts L and R denote left- and right-handedness, respectively. The subscript i is

a family (or generation) index. QLi = (uLi, dLi) denote the doublets containing left-

handed up and down (i = 1), charm and strange (i = 2), and top and bottom (i = 3)

quarks, while uRi and dRi are the respective right-handed states. An additional colour

SU(3) index is suppressed for clarity. Similarly, LLi = (νLi, eLi) denote the doublets

of a left-handed charged lepton and its corresponding neutrino (for the electron, muon

and tau), and eRi denote the right-handed charged leptons. Noting that each quark has

three colour degrees of freedom, there are in total 15 chiral states in each family (or 16 if

νR is included). Gauge bosons comprise the gluons G of the unbroken SU(3)C , and the

W and B bosons of the electroweak SU(2)L and U(1)Y , respectively. Finally, we have

the Higgs field H which, in addition to breaking electroweak symmetry, gives masses to

fermions via Yukawa interactions.

In Table 1.1 we have added three right-handed neutrinos νRi, which are not part of

the original Standard Model. However, the observation of neutrino oscillations requires

neutrinos to have mass. Adding a companion right-handed neutrino to each generation of
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the lepton doublet allows us to write a Yukawa coupling for neutrinos, as done for charged

fermions; this is the minimal extension to the Standard Model that can accommodate

massive neutrinos. Neutrino mass will be discussed in more detail in Section 1.2 and,

alongside understanding the nature and origin of Yukawa interactions, are a central

theme of this work.

Given the above symmetries and fields we write down the Standard Model Lagrangian

as the sum of three parts,

L = Lkinetic + LYukawa + LHiggs. (1.2)

Lkinetic contains the kinetic terms for gauge fields and fermions,

Lkinetic =
∑
ψ

iψσµDµψ −
1

4
GaµνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν , (1.3)

with ψ running over all fermions. Dµ are covariant derivatives, containing a derivative

part ∂µ and one or several gauge coupling parts, depending on the representation of ψ

under the Standard Model group. Colour singlets such as leptons will not couple to

gluons, for instance, while right-handed fermions do not couple to W fields. The quark

doublet is a non-singlet under all groups, such that

DµQL =
(
∂µ − ig3G

a
µTa

SU(3) − igW a
µTa

SU(2) − ig′BµY
)
QL, (1.4)

where TG are the generators of the group G, Y is hypercharge, and g3, g and g′ are

the gauge coupling constants for SU(3), SU(2) and U(1), respectively. The gauge field

strengths are given in terms of structure constants fabc and εabc by

Gaµν = ∂µG
a
ν − ∂νGaµ − g3 f

abcGbµG
c
ν ,

W a
µν = ∂µW

a
ν − ∂νW a

µ − g εabcW b
µW

c
ν ,

Bµν = ∂µBν − ∂νBµ.
(1.5)

The Higgs Lagrangian is given by

LHiggs = (DµH)†(DµH)− µ2H†H − λ(H†H)2, (1.6)

where DµH = (∂µ−igW a
µTa

SU(2)− 1
2 ig
′Bµ)H. Its potential has a minimum with non-zero

field values corresponding to a vacuum expectation value (VEV) v =
√
−µ2/(2λ) ≈ 174

GeV, which breaks SU(2)L×U(1)Y → U(1)em. The generator Q of U(1)em, correspond-

ing to electric charge, is given by a sum of electroweak generators

Q = T 3
SU(2) + Y. (1.7)
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Higgs couplings to SU(2) gauge fields via the covariant derivative gives the the latter

masses on the order of v, while self-couplings give also the Higgs boson a mass. This is

the essence of the Higgs mechanism [18–21]. Moreover, the neutral gauge components

Bµ and W 3
µ mix, leading to the physical bosons Z0, which becomes massive, and the

photon Aµ, which remains massless and corresponds to the unbroken U(1)em. This shift

between (Bµ,W
3
µ) and (Aµ, Z

0
µ) bases is characterised by the weak mixing angle θW ,

with sin2 θW = 0.2223(21) [22]. It is related to the electroweak gauge couplings g, g′ by

cos θW =
g√

g2 + g′2
, (1.8)

and the weak boson masses by cos θW = mW /mZ . The Higgs field also has the correct

quantum numbers to allow it to couple to left- and right-handed fermion fields, giving

an immediate explanation also for fermion masses. This is encoded in the Yukawa

Lagrangian LYukawa.

1.1.2 Quark mixing

The quark Yukawa couplings are given by

LYukawa,Q = −Y d
ijQLiHdRj − Y u

ijQLiεH
∗uRj + h.c., (1.9)

in the weak flavour-eigenstate basis, where i, j = 1, 2, 3 are family indices and ε is

the 2 × 2 antisymmetric tensor. There is a mismatch between the flavour and mass

eigenstates, which are related by unitary matrices. More precisely, the up-type quark

mass eigenstates may be obtained by diagonalising Y u by two unitary matrices V u
L,R

such that

Y u,diag = V u
L Y

u(V u
R )†. (1.10)

Similarly, Y d may be diagonalised by matrices V d
L,R such that

Y d,diag = V d
LY

d(V d
R)†. (1.11)

Without loss of generality we may move to the basis where the up-type quark flavour

and mass eigenstates coincide, by performing the transformations QLi → (V u
L )∗ikQLk

and uRj → (V u
R )†jluRl. However, as the quark doublet QL is shared among up- and

down-type quarks, we cannot simultaneously diagonalise the down-type quark Yukawa

matrix. The misalignment between bases and resultant mixing between quark flavour

states is encoded in a single unitary matrix known as the Cabibbo-Kobayashi-Maskawa

(CKM) matrix,

VCKM = V u
L V

d†
L . (1.12)
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The CKM matrix can be parametrised in terms of three Euler angles θqij and one complex

phase δq. With cij = cos θqij and sij = sin θqij ,

VCKM =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδq

0 1 0

−s13e
iδq 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 . (1.13)

This is the parametrisation employed by the Particle Data Group (PDG) [23]. Their

Standard Model values are given in Table 1.2, taken from the UTFit collaboration [24].

We also present the quark masses, extracted from the latest PDG review. As free

quarks have never been observed due to QCD confinement, there is some variability in

how quark masses are defined. For more details, we refer the reader to the PDG review.1

These values are presented for only completeness, and are not used directly in the model

fits presented within this thesis. The reason for this is that mass and mixing parameters

can change considerably with scale; this “running” is governed by renormalisation group

equations and encoded in so-called β functions. The parameters depend also on features

of the model itself, including the presence (or not) of supersymmetry. In future chapters

we present the relevant data, run up to high scale and taking into supersymmetric

corrections, to which we can directly compare our models.

Parameter
Value

Degrees Radians

θq12 12.91 ±0.04 0.2254 ±0.0007

θq13 0.209 ±0.007 0.00364 ±0.00013

θq23 2.410 ±0.037 0.04207 ±0.00064

δq 69.21 ±3.09 1.208 ±0.054

(a) CKM parameters.

Parameter Mass

mu /MeV 2.2 +0.6
−0.4

mc /GeV 1.28 ±0.03

mt /GeV 173.5 ±1.1

md /MeV 4.7 +0.5
−0.4

ms /GeV 96 +8
−4

mb /GeV 4.18 +0.04
−0.03

(b) Quark masses.

Table 1.2: Standard Model experimental quark masses and CKM mixing pa-
rameters, from. CKM parameters are obtained from [24]. Quark masses are
obtained from [23], and are given in the MS scheme, with µ ≈ 2 GeV for the
light quarks.

1.2 Neutrino mass, mixing and the seesaw mechanism

Charged leptons acquire masses analogously to quarks, via Yukawa couplings to the

Higgs. Meanwhile, in the original formulation of the Standard Model, neutrinos were

massless and therefore no lepton mixing was allowed. The minimal extension which

1 We note that the values in Table 1.2 are given in the MS scheme, with µ ≈ 2 GeV for the light
quarks.
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permits neutrino masses is by introducing right-handed neutrinos νR, which are gauge

singlets. They couple to the Higgs field in a Yukawa term Y ν
ijLLiεH

∗νRj , which gen-

erates neutrino Dirac masses when the Higgs acquires a VEV v, in complete analogy

with charged fermions. Phenomenologically, this would be sufficient to explain observa-

tions, but implies neutrino Yukawa couplings no larger than O(10−11), many orders of

magnitude below the smallest known coupling (the electron Yukawa), of O(10−6).

However, a key feature of right-handed neutrinos that distinguishes the neutrino mass

generation mechanism is that they are Majorana particles, i.e. their own antiparticle.

We may write a mass term directly for the right-handed neutrinos like (MR)ijνcRiνRj ,

where MR is an n×n matrix (for n neutrinos), and the charge conjugate νcR transforms as

a left-handed field.2 As this mass term is not constrained by any gauge symmetry, right-

handed neutrinos can be arbitrarily heavy, i.e. MR � vY ν . Under these conditions, left-

handed neutrinos can acquire small Majorana masses via the type-I seesaw mechanism,

first proposed in [25–28] (see also [29, 30]). Variations of the seesaw mechanism have

also been constructed involving SU(2) Higgs triplets (type-II) [31–33] or lepton triplets

(type-III) [34, 35].

The lepton Yukawa Lagrangian is thus given by

LYukawa,L = −Y e
ijLLiHeRj − Y ν

ijLLiεH
∗νRj − 1

2(MR)ijνcRiνRj + h.c.. (1.14)

The mass matrix for the 3 + n neutrinos can be written as3

Mν =

(
0 vY ν

v(Y ν)ᵀ MR

)
. (1.15)

A mass term like mνcLνL is forbidden at the renormalisable level by gauge invariance. It

is instead generated at the effective level when right-handed neutrinos are integrated out

of the theory, equivalent to diagonalising Mν . The texture zero in Mν becomes populated

by effective couplings that are naturally suppressed by the scale of right-handed neutrinos

which, if these are large, provides a natural explanation for the smallness of neutrino

mass. The light effective neutrino mass matrix mν , defined in the convention

L = −1
2m

ν
ijν

c
LiνLj + h.c., (1.16)

2 A note on notation: subscripts L and R on the Weyl spinors listed in Table 1.1 refer to the action
under SU(2)L, i.e. fermions ψR do not couple to W bosons. Under conjugation, denoted by superscript
c, the chirality of the field changes but the action under SU(2)L does not, e.g. ψcR transforms as a left-
handed field but remains an SU(2)L singlet. At the level of four-component Dirac spinors, conjugation
is defined by ψc = Cψᵀ, where C is a 4×4 matrix satisfying the relation C−1γµC = −γµᵀ. Occasionally
in the literature L and R refer instead to the components of the Dirac spinor, obtained via the projection
operators PR/L = 1

2
(1± γ5), e.g. (ψc)R = PRψ

c is the right-handed component of the Dirac spinor ψc.
The two pictures are related by noting that ψcR = (PRψ)c = PLψ

c = (ψc)L.
3 Assuming the seesaw mechanism is a true description of physics, we require n ≥ 2 in order to

explain neutrino oscillation data that indicates at least two physical neutrinos are massive.
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is given by

mν = −v2Y νM−1
R (Y ν)ᵀ. (1.17)

To demonstrate the interplay between scales, let us consider a toy model with only one

generation of neutrinos. Mν in Eq. 1.15 is now a 2 × 2 matrix, giving a single light

neutrino with mass mν = v2y2/M , where y is a representative Yukawa coupling and

M is the right-handed neutrino mass. The charged fermion Yukawa couplings range

from O(10−6) to O(1), with the upper end of that scale typically considered the most

“natural”. For definiteness, let us set y = 0.1. Neutrino oscillation experiments indicate

that at least one neutrino has mass around 50 meV. In this approximation, let us set

mν = 100 meV. Recalling that v ≈ 174 GeV, we arrive at an estimate for the right-

handed neutrino mass

M ∼ v2y2

mν
∼ 3× 1012 GeV. (1.18)

The seesaw scale is naturally very high, implying direct detection of right-handed neu-

trinos is impossible.

Flavour mixing in the lepton sector is encoded in the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix. It differs slightly in form from the CKM matrix due to the fact that

neutrinos may be Majorana particles. The charged lepton Yukawa matrix may be diag-

onalised by unitary matrices U eL and U eR, such that

Y e,diag = U eLY
e(U eR)†. (1.19)

The light neutrino mass matrix mν is symmetric, and diagonalised by an orthogonal

matrix UνL, giving

mν,diag = UνLm
ν(UνL)ᵀ. (1.20)

Both matrices cannot be diagonalised simultaneously by a basis transformation, leading

to flavour mixing described by the PMNS matrix

UPMNS = U eL(UνL)†. (1.21)

Although this is often referred to as neutrino mixing, contributions to UPMNS may

originate from either or both lepton matrices. In the basis where charged leptons are

diagonal, the PMNS matrix relates the neutrino flavour eigenstates |να〉 (α = e, µ, τ) to

mass eigenstates |νi〉 (i = 1, 2, 3) by

|να〉 =
∑
i

(UPMNS)αi |νi〉 . (1.22)
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In the PDG parametrisation, UPMNS is described by three mixing angles θ`ij and three

phases δ`, α21 and α31. With cij = cos θ`ij and sij = sin θ`ij ,

UPMNS =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ`

0 1 0

−s13e
iδ` 0 c13


 c12 s12 0

−s12 c12 0

0 0 1


× diag(1, eiα21/2, eiα31/2).

(1.23)

If neutrinos are Dirac particles, the phases α21 and α31 become unphysical, and the

PMNS matrix is exactly analogous to the CKM matrix. In shorthand, we may write the

above as UPMNS = R`23U
`
13R

`
12P .

Neutrino oscillation experiments do not measure the neutrino masses directly, and can

only constrain the mass squared differences ∆m2
ij = m2

i − m2
j . The absolute scale of

neutrino mass, characterised by the lightest neutrino mass m1, is not known. Moreover,

the ordering of neutrino masses is not yet fixed. While it is known that the first and

second neutrinos obey m1 < m2 (equivalent to ∆m2
21 > 0), at current experimental

precision it is not known whether the third neutrino with mass m3 is the heaviest, so-

called normal ordering (NO), or the lightest, dubbed inverted ordering (IO). In other

words, the sign of ∆m2
31 is undetermined, although global fits to data show a mild

preference for normal ordering [36]. For normal ordering, the strongest hierarchy occurs

when m1 is small: for m1 . 5 meV, m2/m3 ∼ 0.2. Meanwhile an inverted ordering

requires the first and second neutrinos to be similar, i.e. m1 . m2, while the third

neutrino is lighter. Observations of the cosmic microwave background (CMB) puts an

upper bound on the sum of neutrino masses
∑
mi < 0.23 eV [37]. Bounds on the

neutrino masses are also given by searches for neutrinoless double beta (0ν2β) decay.

Specifically, the 0ν2β decay rate is proportional to the square of the effective Majorana

mass |mββ | = |∑i U
2
eimi|. Future experiments may be able to place upper bounds on

|mββ | which is in tension with oscillation data for an inverted hierarchy (or alternatively,

confirm it).

In Table 1.3 we present the current best fit values for normal ordering to the three

lepton mixing angles θ`ij , Dirac charge-parity (CP ) phase δ` and neutrino mass-squared

differences ∆m2
ij , taken from the NuFit collaboration [36], as well as the measured masses

of the electron, muon and tau [23].

1.3 The flavour puzzle

The flavour puzzle can be approached in a number of equivalent ways. For instance, we

may ask:
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Parameter
Value

Best fit ±1σ 3σ range

sin2 θ`12 0.306 ±0.012 0.271 → 0.345

θ`12/
◦ 33.56 +0.77

−0.75 31.58 → 35.99

sin2 θ`23 0.441 +0.027
−0.021 0.385 → 0.635

θ`23/
◦ 41.6 +1.5

−1.2 38.4 → 52.8

sin2 θ`13 0.02166 ±0.00075 0.01934 → 0.02392

θ`13/
◦ 8.46 ±0.15 7.99 → 8.90

δ`/◦ 261 +51
−59 0 → 360

∆m2
21 /10−5 eV2 7.50 +0.19

−0.17 7.03 → 8.09

∆m2
31 /10−3 eV2 2.524 +0.039

−0.040 2.407 → 2.643

me /MeV 0.5109989461 (31)

mµ /MeV 105.6583745 (24)

mτ /GeV 1.77686 (12)

Table 1.3: Standard Model experimental lepton masses and PMNS mixing pa-
rameters, from [23, 36].

• Why are there three families (or generations) of each Standard Model fermion

field, in the same representation of the gauge group, differing only by their mass?

• Why is there such a large hierarchy among fermion masses, ranging from the

lightest neutrino, on the order of meV, to the top quark, with mt ≈ 173 GeV?

• Why is flavour mixing in the quark sector, characterised by the CKM matrix,

rather small while lepton mixing, characterised by the PMNS matrix, is large?

• A majority of the free parameters in the Standard Model originate in the Yukawa

couplings of fermions to the Higgs field; do they have a common origin?

The first question can be understood by looking at Table 1.2. For instance, the down,

strange and bottom quarks behave identically under the Standard Model gauge group,

but have respective masses of order 10−3, 10−1 and 1 GeV, respectively. The particles

can be made distinct by taking into account their different charges under additional

flavour quantum numbers, e.g. strangeness S and bottomness B′, but these quantum

numbers are anyway broken by weak interactions and not particularly illuminating.

Moreover, this does not explain the apparent need for three families, rather than one or

two, and does not forbid a fourth family of quarks, for which there is no experimental

evidence [23].

A compelling hint towards explaining the number three lies in CP violation: it was

observed by Kobayashi and Maskawa [38] that in a theory with three weakly interacting

families, the mixing matrix (now referred to as the CKM matrix) allows a single complex
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phase which is not present in a two-family system, leading to interactions which violate

CP . To date, this is the only confirmed source of CP violation in the Standard Model,

although current experimental hints in the lepton sector [36] indicate that also the

analogous CP -violating phase in the lepton mixing matrix is non-zero. From a physical

perspective, CP violation is necessary to explain the baryon-antibaryon asymmetry

of the Universe, which would motivate the existence of three families, although this

observation is complicated by the fact that the observed CP violation in the Standard

Model in any case is not nearly sufficient to explain the observed baryon asymmetry.

We return to this point in the discussion on baryo- and leptogenesis, below.

In addition to understanding the fact of three families, we are tasked with understanding

why the fermions, both across families and within a single family, have wildly different

masses. As seen in Table 1.2, quark masses range from a few MeV to over 100 GeV, five

orders of magnitude. In addition, the hierarchies in each sector of charged fermions –

up-type quarks, down-type quarks and charged leptons – are not the same, e.g. the ratio

of up and down quark masses mu/md . 1 differs from that of charm and strange quarks

(mc/ms ∼ 10), or top and bottom quarks (mt/mb ∼ 50).4 Finally, we must explain why

neutrinos, whose masses are no larger than O(100) meV, are many orders of magnitude

lighter than charged fermions. Between the lightest charged fermion (the electron, with

mass me ∼ 0.5 MeV) and the neutrinos lies seven orders of magnitude. One compelling

solution has already been presented, in the seesaw mechanism.

Turning to the third question above, we wish to understand why quark mixing, which

is dominated by the Cabibbo angle θq12 ≈ 13◦, is much smaller than lepton mixing,

where all mixing angles are sizeable. This may be tied to the previous question about

mass hierarchies, and can be reformulated as the question why the hierarchy in neutrino

masses appears much milder than those for charged fermions. Moreover it is still not

known with certainty whether the neutrino mass ordering is normal or inverted.

Finally, we note that all the above questions ultimately derive from our lack of under-

standing about the nature of the Yukawa couplings of Standard Model fermions to the

Higgs, from which most masses are thought to derive. The Yukawa sector contains most

of the free parameters of the Standard Model, such that each fermion mass is essentially

an input parameter of the theory. It is certainly possible that the distribution of free

parameters is random, however this is unlikely given the indications of structure in the

distribution of masses across families. In any given theory, there are many factors which

may influence the Yukawa couplings to the Higgs. In this work, we have relied on two

guiding principles which show promise for resolving the flavour puzzle: family symmetry,

and grand unification.

4 The ratios change depending on the scale at which they are evaluated, due to renormalisation group
running of the fermion masses. These numbers are merely indicative.
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1.4 Supersymmetry

Supersymmetry (SUSY) [39–43] has been at the centre of extensive research into physics

beyond the Standard Model for several decades, and remains one of the most compelling

possibilities for new physics, both on theoretical and phenomenological grounds. In this

section, we limit ourselves to summarising the necessary nomenclature, consistent with

that of [44], as well as describing the hierarchy problem and introducing the minimal su-

persymmetric Standard Model (MSSM). This constitutes neither a review of the theory

of supersymmetry (which can extend to aspects of gravity, string theory, and extra di-

mensions), nor of the current experimental status of supersymmetry searches at colliders;

both of these topics have a large associated literature.

1.4.1 A symmetry of fermions and bosons

Supersymmetry is an extension of the Poincaré symmetry of spacetime which relates

fermions and bosons. In other words, a supersymmetry transformation turns a fermionic

state f into a bosonic one b and vice versa, via some operatorsQ andQ† such thatQ |f〉 =

|b〉 and Q |b〉 = |f〉. These operators carry spin angular momentum, and satisfy certain

commutation and anticommutation relations (the supersymmetry algebra), which are

detailed in [44].

As the ultimate goal is to embed the Standard Model in a supersymmetric framework,

we must incorporate all (fermion) matter fields, (vector) gauge fields and the (scalar)

Higgs. The irreducible representations of the supersymmetry algebra – supermultiplets –

contain both fermionic and bosonic states. More precisely, each supermultiplet contains

equal numbers of fermionic and bosonic degrees of freedom. The combination of a Weyl

fermion and complex scalar field is referred to as a chiral supermultiplet; these will

house the Standard Model fermions, along with their scalar counterparts, referred to

as sfermions (e.g. stop, sbottom, stau). Meanwhile, the vector gauge fields live within

gauge supermultiplets, along with a spin-1/2 gaugino superpartner (e.g. wino, bino).

Finally, a scalar spin-0 field such as the Higgs can be accommodated in a chiral multiplet,

together with a spin-1/2 superpartner (in the case of the Higgs, a Higgsino).

In the limit where supersymmetry is preserved, the elements of a supermultiplet share

many properties. They have equal masses, and reside in the same representation of the

gauge group. As the supersymmetry generators commute with those of gauge trans-

formations, in the context of the Standard Model group this implies all fields within

a supermultiplet have the same weak hypercharge, weak isospin, and colour charge;

consequently they also have the same electric charge.

The requirement that a supermultiplet contains equal number of fermionic and bosonic

degrees of freedom fails when particles are off-shell, i.e. the supersymmetry algebra
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only closes when the classical equations of motions are satisfied. In order to consistently

define a chiral supermultiplet also off-shell, an auxiliary component field F is introduced.

It is a complex scalar field, but does not have a kinetic term, and its equation of motion

is simply F = F ∗ = 0. A similar term D is added to gauge supermultiplets. In short,

a chiral supermultiplet is made up of a Weyl fermion ψ, complex scalar φ and auxiliary

field F , while a gauge supermultiplet contains a gauge field Aµ, gaugino λ and auxiliary

field D. In theories of flavour, we will see that enforcing vanishing F terms of new

fields known as driving fields can constrain the vacuum alignments of family symmetry-

breaking fields, leading to predictive mass structures. This mechanism is called F -term

alignment.

In a theory with several chiral supermultiplets ψi, the interacting (i.e. non-gauge) part

of a Lagrangian invariant under supersymmetry may be written as

L = −1

2
W ijψiψj +W iFi + h.c., (1.24)

in terms of a single function W known as the superpotential, which is holomorphic over

the scalar fields. W i and W ij are given by functional derivatives,

W i =
δW

δφi
, W ij =

δ2W

δφiδφj
. (1.25)

It can also be shown that the equations of motion of the auxiliary fields Fi and their

conjugates are Fi = −W ∗i and F ∗i = −W i. The free part of the Lagrangian contains

terms FiF
∗i = |Fi|2. The auxiliary fields may then be eliminated, giving FiF

∗i =

W iW ∗i = |Wi|2, which is the form of a scalar potential V (φ, φ∗). The complete scalar

potential includes also contributions from D terms and is given by V = |Fi|2 + |Di|2. As

this thesis concerns the flavour sector of the Standard Model and its extensions, which

is encoded in the superpotential, D terms will not be considered further here.

A more elegant description of supersymmetry promotes the supermultiplet to an object

known as a superfield. It is defined on a manifold called superspace, which extends the

usual four-component spacetime coordinates by anticommuting spinor coordinates θ and

θ†. Theories defined in terms of superfields are manifestly invariant under supersym-

metry transformations. Now consider a single chiral superfield Φ̂ which describes the

supermultiplet (ψ, φ, F ). In appropriately chosen spacetime coordinates xµ, Φ̂ may be

written as

Φ̂ = φ(x) +
√

2θψ(x) + θθF (x). (1.26)

The superpotential defined above and its derivatives are identically described in terms

of Φ̂ rather than φ.
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1.4.2 The hierarchy problem

Having established some of the key components of a supersymmetric theory, we turn

to arguably the greatest motivation for seeking low-scale supersymmetry: the hierarchy

problem. Recall that the Higgs, just like fermions, acquires a mass when electroweak

symmetry is broken. This suggests that the natural scale of the Higgs mass is the

electroweak scale ΛEW ∼ 100 GeV, corroborated by the measurement of mH ≈ 125

GeV. Unfortunately, the Higgs mass is not stable against corrections coming from new

physics at higher scales. For instance, the Higgs propagator is subject to corrections

from loops containing fermions. The loop integral may be regulated by imposing a

momentum cutoff Λ, on the scale of new physics; corrections to the Higgs mass are

quadratic in this scale, i.e. ∆m2
H ∝ Λ2. Even if no new physics and no new scale is

inserted by hand, gravity effects are expected to come into effect at the Planck scale

MP ∼ 1019 GeV, implying a tuning of up to 17 orders of magnitude between tree- and

loop-level contributions to m2
H , which would need to be performed at every order in

perturbation theory.

In supersymmetry, however, the postulated scalar partners of each Standard Model

fermion give rise to additional loop contributions to the Higgs mass that exactly cancel

the quadratic contribution from the fermion loop. This is due to the fact that the cou-

plings to the Higgs of scalar and fermion components (λS and λf , respectively) of a given

supermultiplet are related, namely λS = |λf |2. By the non-renormalisation theorem [45]

of supersymmetry, this cancellation occurs to all orders. This is promising, but im-

mediately raises a concern: supersymmetry cannot remain unbroken at the electroweak

scale, or these superpartners would already have been discovered. However, the relation-

ship between couplings that yields the successful cancellation of quadratic corrections

is dependent on how supersymmetry is broken. It was understood that the breaking

must be mediated by terms with positive mass dimension, so-called soft supersymmetry

breaking.5

The presence of soft breaking terms runs the risk of reintroducing the very problem it

was intended to resolve, as they induce corrections to the Higgs mass proportional to

the scale soft supersymmetry breaking msoft, i.e. ∆m2
H ∼ m2

soft. If msoft � mH , a fine-

tuning reappears. msoft should therefore not far exceed the electroweak scale. However,

experimental searches at the LHC have failed to find any evidence of supersymmetry,

up to scales of approximately 2 TeV, suggesting naively that a tuning of at least one in

ten is required. This has put a dent in the paradigm of “natural” supersymmetry, but

has not broken it entirely.

5 The expectation is that supersymmetry, if it exists, is an exact symmetry which is broken spon-
taneously, analogous to electroweak symmetry breaking. In this context, the soft parameters are a
parametrisation of our ignorance of how this breaking occurs.
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1.4.3 The minimal supersymmetric Standard Model

Name
Particle Superpartner

Field Spin Field Spin

(s)quarks
Qi 1/2 Q̃i 0
uci 1/2 ũci 0

dci 1/2 d̃ci 0

(s)leptons
Li 1/2 L̃i 0
eci 1/2 ẽci 0

Gluon/gluino G 1 G̃ 1/2

W boson/wino W 1 W̃ 1/2

B boson/bino B 1 B̃ 1/2

Higgs(ino)
Hu 0 H̃u 1/2

Hd 0 H̃d 1/2

Table 1.4: MSSM field content.

We complete this section by writing down the superpotential of the MSSM, to which the

models presented in subsequent chapters reduce in the low-scale limit. The field content

is given in Table 1.4. Without right-handed neutrinos, the superpotential is

WMSSM = Y u
ij Q̂iû

c
jĤu + Y d

ijQ̂id̂
c
jĤd + Y e

ijL̂iê
c
jĤd + µĤuĤd. (1.27)

All superfields Q̂, ûc, d̂c, L̂, êc, Ĥu and Ĥd are defined as left-chiral; the d̂c and ûc are

therefore equivalent to right-handed (s)quark states, while êc corresponds to the right-

handed (s)electron.6 For simplicity, we suppress colour and weak isospin indices, but we

keep family indices. As the superpotential is holomorphic, it is not possible to couple

up-type quarks to the complex conjugate of a single Higgs as done in the Standard Model

(see Eqs. 1.9 and 1.14). One must instead introduce a second Higgs doublet Hu with

opposite hypercharge to Hd which can couple to up-type fermions.7

The final term in Eq. 1.27 is the µ term, and generates masses for the Higgs fields.

As noted above, the Higgs also receives corrections from soft supersymmetry-breaking

terms. In order to avoid tuning problems, neither ought to be much larger than the

electroweak scale. A value µ . 1 TeV may be considered natural, but as it is not

protected by any symmetry it can ostensibly take any value, up to MP . Explaining its

closeness to the electroweak scale is known as the µ problem. The (neutral components

of) Higgs fields within Hu and Hd acquire VEVs, which consequently break electroweak

symmetry. The VEVs are written vu and vd, respectively, and satisfy

v2
u + v2

d = v2 ' 174 GeV, (1.28)

6 The hats (̂ ) indicating superfields will be dropped henceforth.
7 A second Higgs doublet is also required in the MSSM in order to cancel all gauge anomalies.
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where v is the Standard Model electroweak VEV. We may also define the ratio

tanβ =
vu
vd
, (1.29)

as a free parameter in the MSSM.

Theories of supersymmetry generally possess an additional symmetry known as R sym-

metry, which transforms the supercharges into each other, typically given by a global

U(1) symmetry or a discrete ZN . It is often broken to a Z2 subgroup, so called R or

matter parity. The MSSM (and many extensions) thereby contains massive particles

which are R-parity odd. The lightest supersymmetric particle (LSP) is therefore stable

and, if electrically neutral, forms an excellent dark matter candidate, in the category of

“weakly interacting massive particles” (WIMP).

1.5 Grand unification

Grand unification was first proposed in [46, 47], and a grand unified theory (GUT) of

quarks and leptons has remained a compelling candidate for BSM physics. Although

the earliest and simplest GUTs, which were non-supersymmetric, have since been ruled

out, more advanced realisations including SUSY GUTs remain viable. In this section

we review the motivations for grand unification, how the Standard Model may be em-

bedded into the SU(5) and SO(10) groups, and discuss briefly the phenomenological

consequences.

1.5.1 Motivation for a unified gauge group

The principle of grand unification is that the Standard Model gauge group SU(3) ×
SU(2) × U(1) is embedded in a higher-rank group, which is spontaneously broken at

some scale Λ, at which the Standard Model gauge couplings must be equal. Λ is therefore

obviously not the electroweak scale, where the couplings are very different. However,

they change with scale according to their renormalisation group equations, suggesting

they may converge at some higher scale. Remarkably, it was found that the Standard

Model gauge couplings (very nearly) acquired the same value at Λ = MGUT ∼ 1015−16

GeV, consequently dubbed the GUT scale.

As the errors on the couplings were reduced, it became evident that exact unification in

the simplest models was not possible. However, the situation could be improved with the

inclusion of supersymmetry. In the MSSM it can be seen that the couplings meet at a

single point at Λ ∼ 1016 GeV, to very good precision. This provides a strong motivation

not only for a GUT, but a SUSY GUT. In Figure 1.1 we see how the gauge couplings,
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reparametrised in terms of α−1
i , where αi = g2

i /4π,8 change with renormalisation scale

Q in both the Standard Model and the MSSM.
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Figure 1.1: Renormalisation group evolution of inverse gauge couplings α−1
i

with scale Q for the Standard Model (dashed lines) and MSSM (solid lines).
Figure from [44].

An additional feature of the Standard Model that provides strong motivation for gauge

unification is charge quantisation, namely why quarks have electric charges that are

integer multiples of e/3, where e is the electron charge. While free quarks have not been

observed, all composite particles, whether two-component mesons such as the pion or

three-component baryons such as the proton, are observed to have integer total charge

(in units of e), from which we conclude that all quarks have charges −e/3 if they are

down-type and +2e/3 if they are up-type. The question may also be phrased as one of

why the smallest observed electric charge unit is e/3.

1.5.2 Embedding the Standard Model

Several options exist for the choice of group into which the Standard Model should be

embedded. As the Standard Model group has total rank four, any embedding group

must also be of rank four or greater. A candidate can consist of a single gauge group,

such as SU(5) [46] or SO(10) [48, 49], or a product of groups as the Pati-Salam group

SU(4)C×SU(2)L×SU(2)R [47]. While the Pati-Salam group arguably does not consti-

tute true grand unification, as there are still three distinct gauge couplings, it was the

first to propose a unification of quarks and leptons into a single representation, inter-

preting lepton number as the “fourth colour”, and explains electric charge quantisation.

8 In this normalisation, g2 = g and g1 =
√

5/3g′.
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Moreover it is a subgroup of SO(10). It is possible to construct viable models based

on larger SU(N) groups or the exceptional group E6, but these will not be discussed

further here.

As the only rank-4 group that fulfils the above requirements, SU(5) may be thought

of as “minimal” unification. The Standard Model gauge fields (gluons and electroweak

bosons) are unified in a single adjoint 24,

Aµ =
24∑
a=1

AaµTa, (1.30)

where Ta are the generators of SU(5) and may be written as 5 × 5 matrices. Eight of

these reduce to the generators of SU(3) which give the gluon degrees of freedom while

three reduce to the SU(2) generators which, together with the hypercharge generator,

give the electroweak degrees of freedom. This accounts for half the degrees of freedom

in Aµ. The remaining 12 are the X and Y gauge bosons, with masses naturally of order

the scale where SU(5) is broken, and which carry both colour and electroweak charges,

allowing for new couplings between quarks and leptons. Moreover, above the unification

scale, all gauge fields Aaµ have a single associated coupling, i.e.

g5 = g3 = g =

√
5

3
g′. (1.31)

SU(5) is broken by the VEV of a new Higgs field Φ at high scale, analogous to electroweak

symmetry breaking. As rank is preserved, this Higgs is necessarily in the adjoint 24

representation, and acquires a VEV 〈Φ〉 ∝ diag(2, 2, 2,−3,−3).

SU(5) accommodates the Standard Model fermions of a single family in two represen-

tations, namely a 5̄ and 10.9 They may be organised as

5̄ =


dc1
dc2
dc3
e

−ve

 , 10 =


0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2

uc2 −uc1 0 −u3 −d3

u1 u2 u3 0 −ec
d1 d2 d3 ec 0

 , (1.32)

where the subscripts on u and d fields are colour indices, and the GUT multiplets

are defined as left-chiral. Furthermore, the Higgs field, which is an SU(2) doublet, is

minimally contained in a 5 of SU(5). In other words, we simply extend the Standard

Model fundamental doublet to a complete multiplet of the GUT, i.e. the fundamental

5 of SU(5).10 This however leads to an issue known as the doublet-triplet splitting

problem.

9 The bar in the 5̄ refers to a conjugate or anti-fundamental representation.
10 The two Higgs doublets of the MSSM are contained in a 5 + 5̄ pair.
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When the GUT group is broken to the Standard Model, the Higgs 5 is decomposed into

two parts: the electroweak Higgs doublet, and an SU(3) triplet. As discussed shortly, the

scale Λ, which is directly related to the mass of the Higgs triplet, is necessarily very high,

close toMGUT. The natural expectation is for fields arising from the same GUT multiplet

to have equal-scale masses, which in the case of the Higgs either suggests electroweak-

scale triplets (giving very rapid proton decay) or GUT-scale doublets, neither of which

is acceptable. This problem is not unique to SU(5); in appendices we demonstrate how

doublet-triplet splitting may be achieved in specific models based on SU(5) and SO(10),

respectively.

Electric charge is defined in Eq. 1.7 by Q = T 3+Y in terms of the electroweak generators,

which have natural analogues in SU(5). As these generators are traceless, the sum

of all charges in the fermion 5̄ = (dc1, d
c
2, d

c
3, e, ν) must equal zero. More precisely,

we get Q = diag(1/3, 1/3, 1/3,−1, 0), which correspond to the known electric charges

of the down antiquark, electron and neutrino and enforces the electron charge to be

exactly three times larger than the down quark charge. Finally, it is worth noting that

SU(5) does not naturally predict right-handed neutrinos, as all observed fermions are

adequately accommodated in the 5̄+10, but they can be added by hand as pure singlet

1s. In the absence of a flavour symmetry which unifies families of fermions, the Standard

Model when embedded in SU(5) consists of at least six matter fields: three each of a 5̄

and 10, plus another two or three singlets if right-handed neutrinos are desired.

The degree of unification can be improved if one goes to SO(10), where all fermions

of a single family can be united in a spinorial 16, which mandates a particle with

quantum numbers of a right-handed neutrino. The vector bosons are in the adjoint 45

representation. The electroweak Higgs doublets can again reside within a fundamental

representation of the group – a 10 – as the SO(10) product 10 · 16 · 16 contains a

singlet, such that we may write down a Yukawa term. If only a single 10 Higgs is

present, this is the only allowed Yukawa term, implying all particles within a family

have the same mass, which is phenomenologically unacceptable. To construct a theory

with viable Yukawa structures one must add additional Higgs fields; at least one must

anyway be added which spontaneously breaks SO(10). The desirable properties of gauge

coupling unification and charge quantisation in SU(5) are present also for SO(10), as is

the problem of doublet-triplet splitting. Unlike SU(5), which is necessarily broken by

an adjoint Higgs VEV, SO(10) allows more than one path to the Standard Model. It

contains the maximal subgroups SU(5)× U(1) and SU(4)× SU(2)× SU(2) (the Pati-

Salam group). The breaking pattern to either group or to a lower-rank subgroup depends

on the representation of the Higgs field that acquires the VEV. For an overview of

possible breaking schemes, see e.g. [50], where also group theory of SO(10) is discussed.
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1.5.3 Phenomenology

In the Standard Model, the stability of the proton is ensured by conservation of baryon

number B. As has been noted above, a generic prediction of GUTs is new particles which

can mediate interactions that violate B (and lepton number L), such as the X and Y

gauge bosons and Higgs triplets T . Both can couple either to two quarks (generically

labelled q, either Qi, u
c
i or dci ) or one quark and one lepton (labelled `, either Li or

eci ). This leads to annihilation processes like qq → X,Y, T → q`, and effective four-

fermion interactions qqq`/Λ2,11 where Λ is closely related to the mass of the mediating

particle. Consequently the proton is unstable and decays, with an associated lifetime

inversely proportional to its decay rate. As the proton lifetime is strongly constrained

by experiment to be larger than 1031−33 years (depending on the decay mode) [23], the

above B-violating interactions must be strongly suppressed.This implies either Λ is very

large, or the dangerous effective terms (including all relevant higher-order terms) are

forbidden by some symmetry.

For the X and Y bosons, the qqq` interactions are naturally suppressed by Λ ∼MGUT,

as X, Y are expected to acquire masses from the (super)field that breaks the GUT.

There is ambiguity in the natural expectation for the mass of Higgs triplets, due to the

doublet-triplet splitting problem. However from a phenomenological standpoint they

too must have masses near MGUT.

There is a second consideration when establishing the masses of new particles: gauge

coupling unification must not be spoiled. If the particles are gauge non-singlets, they

will enter as loop corrections to the running of the relevant couplings, primarily at

energy scales equivalent to their mass. The remarkable unification in the MSSM seen in

Figure 1.1 relies on the assumption that there is no additional field content between the

supersymmetry scale, which is typically taken to be O(TeV), and the GUT scale MGUT.

Additional fields at an intermediary scale could affect the running of the gauge couplings

and spoil the impressive confluence exhibited in the minimal model. Conversely, in a

non-SUSY GUT, the presence of new physics at an intermediary scale may induce the

necessary corrections to achieve unification.

1.6 Family symmetry

The Standard Model has, in the absence of mass terms, a large accidental global sym-

metry [U(3)]5, i.e. it is the maximal symmetry that preserves the kinetic terms. Each

U(3) can be understood to arise from the freedom to redefine the three families of a

given type of fermion f , where f = QL, uR, dR, LL, eR. In its minimal extension with

(also massless) right-handed neutrinos νR, this symmetry is extended to [U(3)]6. While

11 In supersymmetry, the corresponding superpotential term is qqq`/Λ.
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these symmetries are necessarily broken by the observed fermion masses, it is interesting

to consider a scenario where some global symmetry is made manifest at high scale, and

broken spontaneously by the VEV of some scalar field. Such fields, called flavons, are

typically gauge singlets, and often denoted φ. Fermions ψ couple to these flavon fields

(and the Higgs H), which subsequently acquire VEVs, giving effective Yukawa terms.

In other words, the Standard Model Yukawa parameters are given a dynamical origin.

Schematically,

L ∼ 1

Λ
φHψψ → 〈φ〉

Λ
Hψψ → yHψψ. (1.33)

The manner in which this symmetry is broken, and how fermions couple to flavons,

dictate the structure of Yukawa and mass matrices. This can give a powerful insight

into the flavour puzzle.

Models have been constructed based on continuous family symmetries such as a global

SU(3) [51, 52]. However the state of the art is to use non-Abelian discrete symmetries

(for reviews, see e.g. [53–56]), which can lead to sharp predictions for mixing parameters,

and do not lead to massless Goldstone modes as in a spontaneously broken continuous

symmetry.12 Whether continuous or discrete, choosing a non-Abelian symmetry has

the immediate consequence that Standard Model fermions are collected in non-trivial

representation of the group: family unification. It is particularly relevant to consider

groups which admit triplet representations, providing an a posteriori justification for

the observation of three families of fermions. The smallest such group is A4, which

describes the symmetries of a tetrahedron. Other popular choices are S4 (describing the

permutation of four elements) and ∆(27). A4 and S4 are subgroups of SO(3), while the

∆(27) is a subgroup of SU(3) and allows both triplet and antitriplet representations; all

three have been implemented in realistic GUT models described in Chapters 3, 4 and 5.

Their representations and product rules are given in Appendix A.

Before moving on to discuss model building with non-Abelian symmetries, we remark on

a very popular alternative based on Abelian symmetry: the Froggatt-Nielsen mechanism

[58]. The idea is to assume a single global U(1) (or ZN if a discrete symmetry is

preferred), and a scalar flavon field ξ. Fermions are given charges under this U(1) which

dictate their coupling to the ξ field. In the effective theory below the U(1)-breaking scale

Λ, the Yukawa couplings Yij are replaced by effective couplings involving various powers

of ξ/Λ. If ξ now acquires a VEV somewhat below Λ (say, an order of magnitude), the

resultant Yukawa matrices are naturally hierarchical, with their structures determined

solely by the U(1) charge assignments. The Froggatt-Nielsen mechanism remains a top

candidate for explaining the existence of mass hierarchies. A complete realisation of this

mechanism requires adding additional field content to make the theory renormalisable.

12 Discrete symmetries also permit in principle a mechanism to escape the gravity problem of global
symmetries, namely the common understanding that gravitational interactions at the Planck scale do
not respect global symmetries, as discussed in [57]. This may be circumvented in the case of a discrete
symmetry if one assumes it to be the remnant subgroup of a spontaneously broken gauge symmetry, on
the condition that all discrete anomalies cancel within the model.
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For example, each effective term like ξnψψH/Λn can be understood as the result of

integrating out n heavy vector-like fermion pairs. A discrete version of this mechanism

is implemented in a model based on A4×SU(5) in Chapter 3, giving the up-type quark

Yukawa matrix (which also controls most quark mixing). It demonstrates also that

Abelian and non-Abelian symmetries are not exclusive, and may be used in harmony to

explain flavour structures.

In models with discrete non-Abelian symmetries, flavour structure is dictated by the

alignments of the flavon VEVs which couple to fermions, and which break the original

symmetry, either down to a subgroup, or to nothing. The exact form of the couplings

of these flavons to fermions will inform the structures of the Yukawa and mass matrices.

The first option, where a residual symmetry remains after flavour breaking, leads to so-

called “direct” models of flavour, while the latter, where no part of the original symmetry

is present at low scale, corresponds to “indirect” models.

Direct models are motivated by the presence of accidental symmetries in the lepton

sector, namely a Z2 × Z2 Klein symmetry in the neutrino mass matrix and a Z3 in

the charged lepton matrix. A flavour model postulates a family symmetry GF which

is broken in a way that preserves these symmetries. For small groups, only a small set

of alignments can do this, which gives sharp predictions for lepton mixing parameters

that are in conflict with experiment. Perhaps the most popular realisation (prior to the

measurement of a non-zero reactor angle) of the direct approach was to use A4 or S4

to produce so-called tri-bimaximal (TB) mixing [59, 60], which respects the accidental

symmetries of the mass matrices, and wherein the columns of UPMNS are proportional to,

respectively, (−2, 1, 1), (1, 1, 1) and (0, 1,−1). It predicts sin θ23 = 1/
√

2, sin θ12 = 1/
√

3,

θ13 = 0 and no CP violation. The good agreement with data at the time fueled the

interest in flavour models with non-Abelian discrete symmetry. In light of the most

recent data, this approach requires ∆(6n2) for large values of n [61–65].13

In the indirect approach, there is no requirement for a subgroup of the original symmetry

to remain, i.e. the accidental symmetries of the mass matrices are not identified with any

part of GF . This allows flavons to acquire a much wider range of alignments, with the

possibility of constructing phenomenologically more successful flavour models, even with

small discrete groups. The price to pay for this freedom is that specifying the vacuum

alignments becomes model-dependent: the precise field content and allowed couplings

will dictate the flavon alignments. The models in Chapters 2, 3 and 4 are all indirect,

while that in Chapter 5 is semi-direct: only part of the accidental symmetry can be

identified with a generator of the family symmetry.

13 An analogous approach based on ∆(6n2) has also been considered in the quark sector [66–68].
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1.7 Leptogenesis

In this section we describe the open question of the baryon asymmetry of the Universe,

and its potential resolution via the leptogenesis mechanism. We also calculate the baryon

asymmetry in a toy model of thermal N1 leptogenesis.

1.7.1 The baryon asymmetry of the Universe

The current “standard model” of cosmology is the ΛCDM model [69], where Λ refers to

the (positive) cosmological constant responsible for the acceleration of the Universe [70],

and CDM stands for “cold dark matter”. It is a hot Big Bang model, which postulates

an initially very dense, hot Universe that subsequently expands. It is widely believed

that this is preceded by a period of superluminal expansion known as inflation [71–73].

As the Universe cools, hadrons and then light nuclei (hydrogen, helium, lithium) form in

what is known as Big Bang nucleosynthesis (BBN), which then combine with electrons

to form atoms, and eventually larger structures. The ΛCDM model successfully explains

most cosmological observables, including the existence and anisotropies of the CMB, the

accelerating expansion of the Universe, large scale galaxy structure, and the abundances

of the light elements.

However, it fails to explain why we have only observed primordial matter but not an-

timatter, i.e. the baryon asymmetry of the Universe (BAU). Assuming an inflationary

period, any pre-existing asymmetry would be washed out by the rapid expansion; it must

therefore be generated after inflation and before BBN. The conditions for generating a

BAU are understood, and several mechanisms have been proposed that necessarily ex-

tend beyond the Standard Models of both particle physics and cosmology. The ultimate

goal is to understand a single parameter: the number density of baryons in the Universe.

We are concerned with the difference in baryon and antibaryon densities nB−nB. How-

ever, given that primordial antimatter has not been observed, nB � nB (barring some

exotic model). One typically considers the baryon-to-photon ratio

ηB =
nB − nB

nγ
= (6.10± 0.04)× 10−10. (1.34)

Alternatively, the asymmetry may be normalised by the entropy density, giving

YB = (0.87± 0.01)× 10−10. (1.35)

See [74, 75] for reviews and [37] for a recent determination of the error.

It was discovered by Sakharov [76] that in a particle physics theory, three conditions

need to be satisfied in order to produce a baryon asymmetry. The first condition is

baryon number (B) violation; clearly, all interactions of the theory cannot preserve the
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net number of baryons. The second condition is charge (C) and charge-parity (CP )

violation. To demonstrate this, let us consider the decay of a particle X into a baryon

q and some other particle p. If C is conserved, the production rates of baryons and

antibaryons are equal, i.e. Γ(X → pq) = Γ(X → p̄q̄), and no net asymmetry is formed.

Next, consider decays of X into pairs of either left- or right-handed baryons. While

Γ(X → qLqL) 6= Γ(X → q̄Lq̄L) in general, CP conservation dictates Γ(X → qLqL) =

Γ(X → q̄Rq̄R) and Γ(X → qRqR) = Γ(X → q̄Lq̄L). The total decay rates of X and X

into baryons and antibaryons, respectively, are again equal:

Γ(X → qLqL) + Γ(X → qRqR) = Γ(X → q̄Rq̄R) + Γ(X → q̄Lq̄L). (1.36)

The third condition is that some of the interactions capable of producing a baryon

asymmetry must occur outside of thermal equilibrium. If all relevant processes remain

in equilibrium, any baryon production is washed out by the inverse process, i.e. Γ(X →
pq) = Γ(pq → X).

In fact all these conditions may be satisfied within the Standard Model itself (without

right-handed neutrinos). However, the size of the BAU generated by the Standard

Model is insufficient to explain the observed ηB. In particular, it was found that CP

violation in the quark sector was too small [77]. An explanation must therefore come

from new physics, including new sources of CP violation. One potential solution exists

within GUTs such as SU(5), where the asymmetry is generated from decays of heavy

gauge bosons. This is now disfavoured, as the generated asymmetry is expected to be

washed out by nonperturbative (B + L)-violating processes known as sphalerons. A

more promising candidate, first proposed by Fukugita and Yanagida [78], is that the

asymmetry is first generated in the lepton sector and subsequently transformed into a

baryon asymmetry by these same sphalerons; this is leptogenesis.

1.7.2 The leptogenesis mechanism

In its original and simplest formulation, leptogenesis postulates two or more heavy

right-handed neutrinos, which decay into lepton-Higgs (or antilepton-Higgs) pairs via

the Yukawa coupling. Although the tree-level matrix element is automatically CP -

conserving and thus decays equally to leptons and antileptons, interference effects at

one loop can lead to CP violation and a net lepton asymmetry. This relies on a non-

zero PMNS phase δ`, which is currently favoured by global fits to experiment (indeed,

a near-maximal phase δ` ∼ −π/2 seems preferred) [36]. It can also be understood that

at least some of these interactions will take place out of thermal equilibrium, when the

temperature of the Universe falls below the energy scale of the decaying neutrinos.

Some fraction of this lepton asymmetry must then be converted into a baryon asymme-

try. The mechanism for this is embedded within the Standard Model, in the form of
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sphalerons. They are non-perturbative solutions to the classical field equations which

break B (thus fulfilling the last of Sakharov’s conditions) and L, while conserving B−L.

Above the electroweak breaking scale, such sphaleron interactions are in thermal equi-

librium and efficient. Therefore, a net asymmetry in either leptons or baryons will get

mixed into the other. What constitutes a problem for GUT baryogenesis, as sphalerons

wash out the net baryon asymmetry, is in leptogenesis a desirable feature.

Any theory with right-handed neutrinos contains the necessary ingredients for leptoge-

nesis to proceed. Whether or not the correct BAU can be achieved is a quantitative

statement, taking into account not only the size of the produced asymmetry but also

washout effects due to inverse decays or scattering. It turns out leptogenesis is highly

compatible with the type-I seesaw mechanism, as the required right-handed neutrino

masses are of similar order in both cases. Let us sketch the mechanism in a toy model

of thermal leptogenesis. We limit ourselves here to the non-SUSY case; the mechanism

works very similarly in supersymmetry, up to various numerical coefficients, as we will

see in later chapters.

Thermal leptogenesis refers to the scenario where the right-handed neutrinos Ni are

produced in the thermal bath at high temperatures, i.e. the neutrino abundances NNi

are initially zero. Let us simplify the discussion by assuming the neutrino masses are

very hierarchical, and the dominant contribution to leptogenesis comes from the light-

est neutrino N1. The evolution of the neutrino abundance is given by the Boltzmann

equation
dNN1

dz
= −D

(
NN1 −N eq

N1

)
. (1.37)

N eq
N1

is the abundance at thermal equilibrium, and z ≡ M1/T . D is a decay factor,

which relates the total decay rate ΓD and the Hubble expansion rate H, and depends on

z. For a detailed study of what comprises D, see e.g. [79]. We also need to determine

the lepton asymmetry. It is often convenient to consider the B − L asymmetry NB−L,

whose evolution is described by

dNB−L
dz

= −ε1D
(
NN1 −N eq

N1

)
−WNB−L. (1.38)

The first term on the right-hand side is a source term for the B−L asymmetry, given in

terms of the CP (or decay) asymmetry ε1. The second term describes washout, governed

by the factor W which contains information about inverse decays and scattering effects.

Again we refer to [79] for details. Eqs. 1.37 and 1.38 form a set of coupled differential

equations, which may be solved for thermal initial conditions at z = 0 to give the final

asymmetry N f
B−L at z � 1. The solution may be parametrised in terms of ε1 and a

parameter κ1 known as the efficiency factor, by N f
B−L = ε1κ1. The quantity of interest,

the baryon-to-photon ratio ηB, is then given simply by

ηB = asph

N f
B−L
N rec
γ

' 0.96× 10−2ε1κ1, (1.39)
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in the Standard Model, where N rec
γ ≈ 37 accounts for the production of photons after

leptogenesis until recombination14 and asph = 28/79 ≈ 1/3 is the fraction of the lepton

asymmetry converted into a baryon asymmetry by sphalerons.

In summary, to calculate the BAU one needs to evaluate the CP asymmetry ε1 as

well as the decay and washout factors D and W . These depend on the model under

consideration and assumptions made. We leave the discussion on D and W here, but

let us say a few additional words about the CP asymmetry ε1, as it is closely related to

the neutrino Yukawa matrix, which features prominently in the flavour models within

this thesis. It is defined by

ε1 =
Γ1 − Γ1

Γ1 + Γ1

, (1.40)

where Γ1 and Γ1 are the decay rates of N1 neutrinos decaying, respectively, into `Hu

lepton-Higgs or `H†u antilepton-Higgs pairs. It is determined by calculating the inter-

ference between the tree-level diagram and one-loop self-energy and vertex diagrams,

shown in Figure 1.2,15 and given by

ε1 =
1

8π

∑
j=2,3

Im
[(

(λ†λ)2
)

1j

]
(λ†λ)11

gSM

(
M2
j

M2
1

)
, (1.41)

where λ is the neutrino Yukawa matrix and gSM(x) a loop function given by

gSM(x) =
√
x

(
(1 + x) ln

(
1 + x

x

)
− 2− x

1− x

)
. (1.42)

In the hierarchical limit x = (Mj/M1)2 � 1, this simplifies to gSM(x) ≈ −3/(2
√
x).

N1

H

ℓ

+ N1

H

ℓ
ℓ

H

Nj
+ N1

H

ℓ
H

ℓ

Nj

Figure 1.2: Diagrams contributing to CP asymmetry in neutrino decays.

14 Recombination, referring to when nuclei and electrons combined to form atoms, occurred approxi-
mately 3× 105 years after the Big Bang, corresponding to T ∼ 0.3 eV.

15 These and all future interaction diagrams were drawn with JaxoDraw [80].





Chapter 2

Constrained sequential dominance

In this chapter we introduce the framework of sequential dominance for understanding

the nature of neutrino mass and mixing, showing how predictive mass structures may

arise from vacuum alignment of triplet flavons. The contents of this chapter are derived

primarily from work published in [1], where a dedicated numerical analysis is performed

for a class of models known as CSD(n), and [3], which discusses leptogenesis in these

models. As a point of notation, we refer in this chapter to the PMNS parameters as θij

and δCP, consistent with the notation in [1, 3]. In other chapters they are denoted θ`ij
and δ`.

2.1 The sequential dominance framework

As discussed in the Introduction, one of the most attractive possibilities for generating

small neutrino masses is the type-I seesaw mechanism involving two or three right-

handed neutrinos. The effective Majorana mass matrix for the light neutrinos1 is given

by the seesaw formula,

mν = −mDM−1
R (mD)ᵀ, (2.1)

where mD and MR are the Dirac and right-handed Majorana mass matrices, respec-

tively. A natural way to obtain large lepton mixing and normal neutrino hierarchy

within type-I seesaw is to assume the sequential dominance (SD) of right-handed neu-

trinos [81–83]. The idea behind SD is that there are three right-handed neutrinos νatm
R ,

νsol
R and νdec

R , where νdec
R , usually the heaviest one with mass Mdec, is almost decoupled

from the seesaw mechanism, and is responsible for the lightest physical neutrino mass

m1. Of the remaining two, νatm
R , with mass Matm, gives the dominant seesaw contri-

bution and is mainly responsible for the (heaviest) atmospheric neutrino mass m3 and

mixing θ23, while νatm
R , with mass Msol, gives a subdominant contribution, responsible

1 mν is occasionally referred to as the physical mass matrix.

27
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for the (second-heaviest) solar neutrino mass m2 and mixing θ12. SD therefore imme-

diately predicts a normal neutrino mass hierarchy m1 � m2 � m3. The magnitude of

atmospheric and solar mixing is determined by ratios of Yukawa couplings, which can

easily be large, while reactor mixing is typically UPMNS
e3 . O(m2/m3) ≈ 0.17, as shown

in [84]. This successful prediction was made over a decade before the reactor angle θ13

was measured [85–87].

This argument can be made more precise when we define the neutrino mass matrices

that enter the seesaw formula. In the basis where the right-handed neutrino mass ma-

trix is diagonal, i.e. MR = diag(Matm,Msol,Mdec), we construct the neutrino Dirac

mass matrix mD from three columns as mD = (mD
atm,m

D
sol,m

D
dec). Applying the seesaw

formula gives

mν =
mD

atm(mD
atm)ᵀ

Matm
+
mD

sol(m
D
sol)

ᵀ

Msol
+
mD

dec(m
D
dec)

ᵀ

Mdec
, (2.2)

where
(mD

atm)†mD
atm

Matm
� (mD

sol)
†mD

sol

Msol
� (mD

dec)
†mD

dec

Mdec
, (2.3)

To obtain precise predictions for mixing one can go further and impose constraints on the

Yukawa couplings, dubbed constrained sequential dominance (CSD) [88]. The observed

pattern of lepton mixing angles can be understood in the above SD framework as follows.

We work in the basis where the charged lepton and right-handed neutrino mass matrices

are diagonal, known as the flavour basis, such that all mixing originates in the Dirac

matrixmD. If the dominant neutrino νatm
R has couplingsmD

atm = (0, a1, a2) to (νe, νµ, ντ ),

then this implies tan θ23 ∼ a1/a2 [81, 82] and a bound θ13 . m2/m3 [84, 89]. The

subdominant neutrino νsol
R has couplings mD

sol = (b1, b2, b3) to (νe, νµ, ντ ) which further

yield tan θ12 ∼
√

2b1/(b2 − b3) [83]. However, in practice these estimates are subject to

large corrections beyond the SD approximation, and as the analysis presented in this

chapter will show, the atmospheric and reactor angles in particular depend sensitively

on a choice of phase. By the SD assumption, the mixing angles are of course largely

insensitive to the decoupled neutrino νdec
R .

In order to obtain sharp predictions for lepton mixing angles, the relevant Yukawa cou-

pling ratios need to be fixed, for example using vacuum alignment of family symmetry-

breaking flavons. Flavons, their alignments, and how to integrate them into models of

flavour will be discussed more in the next section. The first attempts to use vacuum

alignment within an SU(3) family symmetry to predict maximal atmospheric mixing

(tan θ23 ∼ 1) from equal νatm
R couplings mD

atm = (0, a, a) were discussed in [51, 52].

Subsequently, constrained sequential dominance (CSD) [88] was proposed to explain tri-

bimaximal (TB) mixing with a zero reactor angle by using vacuum alignment to fix the

νsol
R couplings to also be equal up to a sign, namely mD

sol = (b, b,−b).2
2 Note that (0, a, a) · (b, b,−b) = 0. This orthogonality is related to the fact that CSD(1) respects

form dominance, since columns of the Dirac mass matrix in the flavour basis are proportional to the
columns of the unitary PMNS matrix [90, 91].
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Following the measurement of the reactor angle, various types of CSD have been pro-

posed, which preserves the atmospheric couplings and hence an approximate maximal

atmospheric angle tan θ23 ∼ a1/a2 ∼ 1, while proposing alternative solar couplings as

follows:

• CSD(2): mD
sol = (b, 2b, 0) [92],

• CSD(3): mD
sol = (b, 3b, b) [93],

• CSD(4): mD
sol = (b, 4b, 2b) [94].

All these examples maintain an approximate trimaximal value for the solar leptonic

angle tan θ12 ∼
√

2b1/(b2 − b3) ∼ 1/
√

2, while switching on the reactor angle.3 Since

experiment indicates that the bound θ13 . m2/m3 is almost saturated, these schemes

also require certain phase choices arg[b/a] in order to achieve the desired reactor an-

gle, leading to predictions for the CP -violating phase δCP. The purpose of [1] was to

generalise and then systematically study such patterns of couplings. One may consider

the class of models wherein the dominant (atmospheric) and the subdominant (solar)

right-handed neutrinos have couplings to (νe, νµ, ντ ) given respectively by

mD
atm = (0, a, a), mD

sol = (b, nb, (n− 2)b), (2.4)

where n is any positive integer; we refer to this as CSD(n). Before proceeding with the

numerical analysis, we shall justify such a pattern of couplings and show how it may

arise from a more fundamental theory based on a non-Abelian family symmetry.

2.2 Vacuum alignment

2.2.1 Vacuum expectation values of flavons

In the Standard Model, the fermion mass and Yukawa matrices are simply numerical

3 × 3 matrices which collect the various couplings to the Higgs. The basic idea behind

vacuum alignment is to postulate a non-Abelian family symmetry GF along with one or

several flavon fields φ (or superfields in a supersymmetric context), which are singlets

under the Standard Model gauge group. Flavons couple to fermions, giving rise to

terms which resemble φHψψ. The symmetry is broken spontaneously at some flavour-

breaking scale Λ. By analogy with the Higgs mechanism, the flavons acquire vacuum

expectation values, resulting in effective Yukawa terms. The scale Λ is not fixed by any

3 More recently, CSD(3) with only two right-handed neutrinos has been studied under the moniker
Littlest Seesaw [95–97]. CSD(4), when implemented in unified models with Y u = Y ν , with the second
column proportional to (1, 4, 2), predicts a Cabibbo angle θC ≈ 1/4 in the diagonal Y d ∼ Y e basis.
Pati-Salam models have been constructed along these lines [98, 99].



30 Chapter 2 Constrained sequential dominance

experimental evidence, but is often predicted by the model. In GUT models considered

in future chapters, we will see that GF is naturally broken at the GUT scale, i.e. Λ ∼
MGUT ∼ 1016 GeV. The family symmetry cannot be present at low scales, as this would

imply fermions unified under GF have identical couplings to the Higgs. Because fermions

are in non-trivial representations of GF , the vacuum structure of the theory will inform

the fermion flavour structure.

In all models studied in this thesis, GF admits triplet representations, along with any

number of other representations including at least one singlet. Flavons φi are then

triplets under GF , as are at least one set of Standard Model fermions. As an example,

assume the three lepton SU(2) doublets Li are united in a single triplet representation L

of GF , while the right-handed leptons `i are singlets. The Lagrangian will then contain

terms resembling (L ·φi)`iH/Λ, where the parentheses ( · ) denote a triplet contraction

into a singlet and the index i runs over the three generations. This example therefore

involves three different flavons which couple exclusively to one family of right-handed

leptons. When the φi acquire VEVs, these terms will populate each column of the lepton

Yukawa matrices with values proportional to the alignment of a given flavon VEV. For

instance, the first column of the charged lepton Yukawa matrix Y e comes from a term

(L ·φe)`eH. If φe acquires a VEV in a particular direction, say φe = ve(1, 0, 0), the (1,1)

element of Y e is populated while the (2,1) and (3,1) elements are zero.

The above argument is intended only as a simple illustration of how vacuum alignment

can lead to particular Yukawa and mass structures; a more complete example will be

presented shortly in a supersymmetric context, and explicit vacuum alignment sectors

are given for the models in Chapters 3 and 4. However the connection to the discussion

on CSD(n) can now be made more transparent: the arbitrarily chosen couplings (0, a, a)

and (b, nb, (n− 2)b) of leptons to, respectively, right-handed neutrinos νatm
R and νsol

R can

be explained if they arise from couplings to flavons that acquire VEVs proportional to

(0, 1, 1) and (1, n, n− 2).

How can alignments be obtained in a model? In supersymmetry, a consistent prescription

is that of F -term alignment. One postulates a set of superfields Ai and Oi called driving

fields, which are characterised by having R charge 2, do not acquire VEVs, and do not

couple directly to fermions. They do, however couple to flavons, described by a driving

superpotential Wdriving, which is dependent on the symmetries and precise field content

of the model. Their F term conditions FAi = 0 and FOi = 0 enforce relations between

components of the triplet flavons φ, giving rise to particular allowed alignments in the

vacuum.
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2.2.2 Example: CSD(n) from A4

Here we show how a sequence of symmetry and orthogonality conditions can produce

the CSD(n) alignments in a simple MSSM-like model with an A4 family symmetry. The

family symmetry is broken by triplet flavons φi. The relevant superpotential terms that

produce the correct Yukawa structure in the neutrino sector are

1

Λ
Hu(L · φatm)νcatm +

1

Λ
Hu(L · φsol)ν

c
sol +

1

Λ
Hu(L · φdec)ν

c
dec, (2.5)

where L is the SU(2) lepton doublet, transforming as a triplet under A4, while νcatm,

νcsol, ν
c
dec are CP conjugates of the right-handed neutrinos and Hu is the up-type Higgs

field. The right-handed neutrinos are A4 singlets but distinguished by some additional

quantum numbers. In the charged-lepton sector,

1

Λ
Hd(L · φe)ec +

1

Λ
Hd(L · φµ)µc +

1

Λ
Hd(L · φτ )τ c, (2.6)

where ec, µc, τ c contain the right-handed electron, muon and tau respectively. The right-

handed neutrino Majorana superpotential is chosen to give a diagonal mass matrix,

MR = diag(Matm,Msol,Mdec). (2.7)

Details of the construction of this superpotential (e.g. in terms of flavons), the relative

values of Matm, Msol, Mdec as well as the inclusion of any off-diagonal terms in MR

will all depend on additional specifications of the model but are not important for this

discussion.

The CSD(n) vacuum alignments arise from effective operators involving three triplet

flavon fields φatm, φsol, and φdec. The subscripts are chosen by noting that φatm correlates

with the atmospheric neutrino mass m3, φsol with the solar neutrino mass m2, and φdec

with the lightest neutrino mass m1, which in CSD is light enough that the associated

third right-handed neutrino can, to good approximation, be thought of as decoupled

from the theory [81]. CSD(n) is defined to be the choice of vacuum alignments

〈φatm〉 ∝

0

1

1

 , 〈φsol〉 ∝

 1

n

n− 2

 , 〈φdec〉 ∝

0

0

1

 , (2.8)

where n is a positive integer, and the only phases allowed are in the overall proportion-

ality constants.4 Such vacuum alignments arise from symmetry-preserving alignments

together with orthogonality conditions [93, 94].

4 In general also the elements of flavon VEVs can have relative signs as in the last alignment in
Eq. 2.9. However, for a given choice of such alignment, orthogonality fixes the relative signs of the
elements of subsequent alignments, with only the overall complex proportionality factor remaining.



32 Chapter 2 Constrained sequential dominance

The starting point for understanding the alignments in Eq. 2.8 are the symmetry-

preserving vacuum alignments of A4, namely1

0

0

 ,

0

1

0

 ,

0

0

1

 ,

±1

±1

±1

 , (2.9)

which each preserve some subgroup of A4 in a basis where the 12 group elements in

the triplet representation are real, i.e. each alignment in Eq. 2.9 is an eigenvector

of at least one non-trivial group element with eigenvalue +1. In a flavour model the

above alignments would also arise from the VEVs of triplet flavons, which however do

not couple to fermions. As such, their immediate role beyond producing the CSD(n)

alignments is unclear, though they may have an impact on early Universe physics, for

example in flavon inflation [100].

The above alignments can be fixed by coupling flavons φi to driving fields Ai that are

triplets under the family symmetry, by writing down renormalisable terms like Aiφiφi.

Since each Ai has three components, it leads to three separate F term conditions FA1
i

=

FA2
i

= FA3
i

= 0, which can only be satisfied if all components of φi are equal or two are

zero.

The first (atm) alignment in Eq. 2.8, which completely breaks the A4 symmetry, arises

from the orthogonality conditions0

1

1

 ⊥
 1

1

−1

 ,

1

0

0

 , (2.10)

involving two symmetry-preserving alignments selected from Eq. 2.9. Next, the align-

ment (2,−1, 1) may be obtained by noting that it is orthogonal to the alignment in

Eq. 2.10 and one of the symmetry-preserving alignments, 2

−1

1

 ⊥
 1

1

−1

 ,

0

1

1

 . (2.11)

The CSD(n) (or sol) alignment in Eq. 2.8 is in turn orthogonal to the above alignment,

i.e.  1

n

n− 2

 ⊥
 2

−1

1

 , (2.12)

where the orthogonality in Eq. 2.12 is maintained for any value of n (not necessarily

integer). To pin down the value of n and show that it is a particular integer requires a
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further orthogonality condition.5

For example, for n = 3, the desired alignment is obtained from the two orthogonality

conditions, 1

3

1

 ⊥
 2

−1

1

 ,

 1

0

−1

 , (2.13)

where the first condition above is a particular case of Eq. 2.12 and the second condition

involves a new alignment, obtained from two of the symmetry-preserving alignments in

Eq. 2.9, namely  1

0

−1

 ⊥
1

1

1

 ,

0

1

0

 . (2.14)

Using Eq. 2.5, the vacuum alignments in Eq. 2.8 make up the columns of the neutrino

Yukawa matrix, consistent with Eq. 2.4 where mD = (mD
atm,m

D
sol,m

D
dec). The charged-

lepton Yukawa matrix is chosen to be diagonal, corresponding to the three flavons φe,

φµ and φτ acquiring VEVs with alignments

〈φe〉 ∝

1

0

0

 , 〈φµ〉 ∝

0

1

0

 , 〈φτ 〉 ∝

0

0

1

 . (2.15)

2.3 Numerical analysis of CSD(n)

We turn now to a dedicated numerical analysis of the general class of CSD(n) models in

the framework described above but independent of a specific model, allowing the positive

integer n to take any integer value. The results of this analysis were first published in

[1].

2.3.1 Key features

CSD(n) is a generalisation of examples studied in the literature so far for n = 2, 3, 4,

including the original CSD (TB mixing) identified here as CSD(1). As we will see

shortly, after the seesaw mechanism has been implemented, with just two right-handed

neutrinos, the light effective Majorana neutrino mass matrix depends on just two mass

parameters ma and mb and a relative phase η. For each value of n we perform a fit to five

observed neutrino parameters: three mixing angles and two mass-squared differences.

5 We could simply use the alignment in Eq. 2.12, where n is a real number to be fitted. However, we
prefer to fix n to be a small positive integer to increase predictivity.
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It is worth mentioning several features of the analysis, and some key results. Firstly, we

find good fits for the CSD(3) and CSD(4) alignments, with favoured values of η near

2π/3 and 4π/5, respectively. This is consistent with previous works where η is associated

with spontaneous CP violation of an Abelian Z3N [93] or Z5N [94] symmetry. Unlike

these earlier studies, however, here we perform a systematic fit leading to more robust

results which allow the input phase to be determined from the data on the mixing angles.

Indeed it is reassuring to see the simple rational values of the input phase 2π/3 or 4π/5

emerge from the fit.

The value of the CP phase δCP emerges as a genuine prediction. Moreover, in CSD(n)

with just two right-handed neutrinos, there is a direct link between the oscillation phase

δCP and the leptogenesis phase, since there is only one phase η which is responsible

for both. The more general case with a third approximately decoupled right-handed

neutrino provides a close approximation to this situation. Therefore in both cases,

observation of leptonic CP violation in low energy neutrino oscillation experiments is

directly linked to cosmological CP violation, which both vanish in the same limit.

We consider the effect of a third right-handed neutrino giving mD
dec ∝ (0, 0, 1), which

introduces a further mass parameter mc and relative phase ξ, in order to gauge the effect

of having a non-zero lightest neutrino mass m1. For low values of mc, this provides

a perturbation to the two-neutrino results, leading to an upper limit on the lightest

physical neutrino mass m1 . 1 meV for the viable cases.

Though the analysis here is independent of a specific model (such as a GUT), it is

to be understood that the CSD alignments are discussed with a mind to integration

within a more complete model that ideally can explain all fermionic mass and mixing.

The remaining chapters in this thesis are aimed at fulfilling exactly this goal. As such,

numerical results presented here give an important foundational step in an approach to

solving the flavour puzzle.

2.3.2 Mass matrices

Recall from Eq. 1.14 that the charged lepton Yukawa matrix Y e and neutrino Yukawa

matrix Y ν are defined in a left-right convention by6

LLR = −HdY
e
ijLLieRj −HuY

ν
ijLLiνRj + h.c.. (2.16)

where i, j = 1, 2, 3 label the three families of lepton doublets LLi, right-handed charged

leptons eRj and right-handed neutrinos νRj . The physical effective neutrino Majorana

mass matrix mν is determined from the columns of Y ν via the seesaw mechanism,

6 This left-right convention for the Yukawa matrix differs by an Hermitian conjugation compared to
that used in the MPT package [101] due to the right-left (RL) convention used there. Subsequently, the
neutrino mass matrix after seesaw mν also differs by Hermitian conjugation.
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mν = −v2
uY

νM−1
R (Y ν)ᵀ, where mν is defined by

LLν = −1
2m

ν
ijν

c
LiνLj + h.c., (2.17)

while the right-handed neutrino Majorana mass matrix MR is defined by

LRν = −1
2(MR)ijνcRiνRj + h.c.. (2.18)

In these conventions, the CSD(n) mass matrices mD = vuY
ν and MR are given by

mD = vuY
ν =

0 b 0

a nb 0

a (n− 2)b c

 , MR =

Matm 0 0

0 Msol 0

0 0 Mdec

 , (2.19)

where a, b and c are generally complex. The seesaw formula yields

mν
(n) = mae

iα

0 0 0

0 1 1

0 1 1

+mbe
iβ

 1 n n− 2

n n2 n(n− 2)

n− 2 n(n− 2) (n− 2)2

+mce
iγ

0 0 0

0 0 0

0 0 1

 ,

(2.20)

where ma = |a|2/Matm, mb = |b|2/Msol and mc = |c|2/Mdec are real and positive, with

the phases displayed explicitly as α = arg[a2], β = arg[b2] and γ = arg[c2]. One overall

phase multiplying the entire matrix is unphysical. Choosing this to be α, it may be

factored out and then dropped in order to make the term proportional to ma real. This

results in two physical phases, defined by η = β−α and ξ = γ−α. Hence η = arg[b2/a2]

and ξ = arg[c2/a2].

We use the PDG parametrisation of the PMNS matrix defined in Eq. 1.23, where

UPMNS = Rl23U
l
13R

l
12P , expressed in terms of three mixing angles θij , a Dirac phase

δCP (residing in U13) and two Majorana phases α21, α31 contained in P . If Y e is di-

agonal, UPMNS is simply the matrix that diagonalises the neutrino mass matrix (up to

charged lepton phase rotations).

2.3.3 Fitting method

Here we describe the method used for finding the best fit of the CSD(n) matrices to

data. We must first clarify that we do not use raw experimental data. Rather, the

“data” corresponds to the predictions of physical observables µi (masses, mixing angles)

and associated uncertainties as obtained by a global fit to true experimental data, where

µi ∈ {sin2 θ12, sin
2 θ13, sin

2 θ23,∆m
2
21,∆m

2
31}. (2.21)
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As such we have not performed a global fit to the data, but instead fit the model

parameters, which are collected into a vector x, to the existing results of a global fit.

For a given input vector x one obtains a set of predicted values Pi(x) which may be

compared to the corresponding values µi. In this analysis, x = (ma,mb,mc, η, ξ), or a

subset thereof. We use a standard χ2 test statistic to compare predictions for different

x; optimum x, yielding the best fit, was found by minimising the χ2 function. The test

statistic χ2 is defined by7

χ2 =
N∑
i=1

(
Pi(x)− µi

σi

)2

, (2.22)

where N = 5 is the number of input parameters in this analysis, µi are the current

global best fit values to experimental data, and σi are the associated 1σ errors, while

Pi are the model predictions for physical observables, i.e. the (squared sines of) three

lepton mixing angles θij and two mass-squared differences ∆m2
21 and ∆m2

31.

For definiteness, all “data” µi is taken from just one of the global fits, namely that of

the NuFit collaboration. The most up-to-date values at the time of publication of [1], on

which much of this chapter is based, were NuFit 2.0 [105], which are given in Table 2.1.

The following discussion is based on those results, which differ slightly from the current

best fit values, which were presented in Chapter 1 and are used in Chapter 5. In NuFit

2.0, the CP -violating phase δCP is constrained at 1σ, but is completely undetermined at

3σ, and so is left as a pure prediction in this analysis, as are the two Majorana phases.

Parameter
Value

Best fit ±1σ 3σ range

sin2 θ`12 0.304 +0.13
−0.12 0.270 → 0.344

θ`12/
◦ 33.48 +0.78

−0.75 31.29 → 35.91

sin2 θ`23 0.451 +0.052
−0.028 0.382 → 0.643

θ`23/
◦ 42.3 +3.0

−1.6 38.2 → 53.3

sin2 θ`13 0.0218 ±0.0010 0.0186 → 0.0250

θ`13/
◦ 8.50 +0.20

−0.21 7.85 → 9.10

δ`/◦ 306 +39
−70 0 → 360

∆m2
21 /10−5 eV2 7.50 +0.19

−0.17 7.02 → 8.09

∆m2
31 /10−3 eV2 2.457 ±0.047 2.317 → 2.607

Table 2.1: Standard Model experimental neutrino mass-squared differences and
PMNS mixing parameters from NuFit 2.0 [105].

The error σi is equivalent to the standard deviation of the global best fit values if the

global fit distribution of the observable is Gaussian. This is essentially the case for most

fitted observables, with the notable exception of the atmospheric angle θ23. As seen in

7 This is the standard definition; the implementation used here of χ2-minimisation for finding best
fits of models to data is analogous to that in [102], and more recently in [103, 104].
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[105], the ∆χ2 distribution for θ23 has two minima on either side of 45◦, with a slight

preference for θ23 < 45◦ for normal ordering, and a best fit value θ23 = 42.3◦. This is

reflected in the asymmetric error +3.0◦

−1.6◦ which in terms of sin2 θ23 is +0.052
−0.028. So as to not

overstate the error (and consequently underestimate χ2), we assume the distribution to

be Gaussian about the best fit point, setting σθ23 = 1.6, or equivalently σsin2 θ23
= 0.028.

For best fit values larger than 42.3◦ this will overestimate the χ2, so we are being

conservative in presenting our results when the data is not Gaussian.

It is generically true that additional input parameters can improve a model fit. One may

thus be tempted to calculate a reduced chi-squared χ2
red, i.e. the χ2 per degree of freedom

(d.o.f.), where the number of d.o.f. is naively given by the number of observables minus

the number of input parameters. In the conventional picture, a good fit has χ2
red ' 1.

However, as discussed in [106] this interpretation is only valid for linear models; the

PMNS matrix which diagonalises the CSD(n) matrix is certainly not linearly dependent

on the parameters. While χ2 is a valid tool for comparing models to each other, since it

is not possible to establish an exact number of d.o.f., we cannot reliably define χ2
red.

Initially, a coarse Monte-Carlo was used to examine the five-dimensional parameter

space. A random vector x = (ma,mb,mc, η, ξ) is chosen, all PMNS parameters are

calculated numerically using the Mixing Parameter Tools (MPT) package for Mathematica

[101], and χ2 is evaluated. A large-N search of this type reveals the existence of two

distinct regions of low χ2. These regions in parameter space are characterised by having

the same approximate values of ma and mb, while mc and ξ are allowed to take a broad

range of values (in fact ξ can take any value at all in [−π, π]). Meanwhile η is constrained

only up to a sign: the two minima then correspond to equal and opposite values of η.

Refining the input parameter space by allowing only η ∈ (0, π) leaves a single global

minimum region. This minimum is well-defined and generally stable, meaning our χ2

statistic is a good test for goodness-of-fit over this space; this is true for all CSD(n).

To demonstrate this, see Figure 2.1, which plots the results of the random search Monte

Carlo for the representative cases CSD(3) and CSD(4), which as we will see are the most

physically interesting cases. Specifically, it plots the lower envelope of χ2 as a function

of a given input parameter, evaluated for 106 points in the parameter space spanned

by (ma,mb,mc, η). Other CSD(n) alignments observe similar behaviours. The shape of

the curves for ma, mb, and η show clearly defined minima, while the range of low-χ2

values is comparatively wider and includes mc = 0. Nevertheless, although mc may

take a large range of values and produce reasonably good χ2 fits, it appears to have a

single minimum region. The value of the phase ξ does not have a significant effect on

the position and nature of the minimum and is fixed to either of two values, η and 0,

for convenience. These phase choices are discussed below.

Figure 2.2 shows the best fit χ2 with respect to the two input masses ma and mb for a

two-neutrino model with CSD(3) and CSD(4). It is clear from the contours that both
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Figure 2.1: Lower envelope of best fit χ2 in the neighbourhood of the global
best fit of input parameters ma,b,c, η for CSD(3) and CSD(4), with fixed ξ.

input masses are quite tightly constrained. Any fit that gives χ2 < 50 will correspond

to a deviation from the best fit value of no more than 10-15%. It is also confirmed that

the addition of a third right-handed neutrino does not significantly alter the best fit or

the spread of ma and mb, since mc is small (as required by CSD). This lends validity

to our assertion that the two physical neutrino masses m2,3 are largely derived from

the input masses ma,b, leaving (in the two-neutrino case) only a single phase η which
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Figure 2.2: Variation of χ2 with input masses ma and mb for CSD(3) and
CSD(4). The dark blue region corresponds to χ2 ≤ 5, while the surrounding
regions correspond to χ2 ≤ 20 and χ2 ≤ 50.

controls the detailed prediction of the PMNS matrix. Once the single global minimum

is confirmed, numerical minimisation is performed in Mathematica, which preferentially

uses the method of differential evolution to find local minima. Heuristically, it works

by maintaining a population of candidate solutions. This is moved around in parameter

space by choosing new points based on the current population, which are added to the

set if they correspond to a better fit (in this case, a lower χ2), otherwise discarded.

2.3.4 Results for two right-handed neutrinos

Here we present results of the fit to data of CSD(n) with two right-handed neutrinos.

In all subsequent plots, a thick solid gridline corresponds to a best fit value of a mixing

angle or neutrino mass, while thin solid gridlines show the 1σ limits, and thin dashed

gridlines show the 3σ range.

Models with only two right-handed neutrinos are compelling as they are typically highly

predictive. Here, the neutrino mass matrix in Eq. 2.20 simplifies to

mν
(n) = ma

0 0 0

0 1 1

0 1 1

+mbe
iη

 1 n n− 2

n n2 n(n− 2)

n− 2 n(n− 2) (n− 2)2

 , (2.23)

with η = β − α after removing an overall unphysical phase α. As this matrix has

rank 2, it immediately predicts the lightest physical neutrino mass to be zero, m1 = 0.

Moreover, since m1 = 0 in this case m2 =
√

∆m2
21 and m3 =

√
∆m2

31. For a given

choice of alignment n, there are three real input parameters ma, mb and η from which

two light physical neutrino masses m2, m3, three lepton mixing angles, the CP -violating
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phase δCP and two Majorana phases are derived; a total of nine physical parameters from

three input parameters, i.e. six predictions for each value of n. As the Majorana phases

are not known and δCP is only tentatively constrained by experiment, this leaves five

presently well-measured observables, namely the two neutrino mass squared differences

and the three lepton mixing angles, from only three input parameters.

n
ma mb η θ12 θ13 θ23 |δCP| m2 m3

χ2

(meV) (meV) (rad) (◦) (◦) (◦) (◦) (meV) (meV)

1 24.8 2.89 3.14 35.3 0 45.0 0 8.66 49.6 485

2 19.7 3.66 0 34.5 7.65 56.0 0 8.85 48.8 95.1

3 27.3 2.62 2.17 34.4 8.39 44.5 92.2 8.69 49.5 3.98

4 36.6 1.95 2.63 34.3 8.72 38.4 120 8.61 49.8 8.82

5 45.9 1.55 2.88 34.2 9.03 34.4 142 8.53 50.0 33.8

6 55.0 1.29 3.13 34.2 9.30 31.6 179 8.46 50.2 65.2

7 63.0 1.12 3.14 34.1 9.68 31.0 180 8.35 50.6 100

8 71.0 0.984 3.14 34.0 9.96 30.6 180 8.25 50.8 135

9 79.0 0.880 3.14 33.9 10.2 30.3 180 8.17 51.0 168

Table 2.2: Best fit parameters for CSD(n) with two right-handed neutrinos. Ad-
ditionally, we predict one massless neutrino with m1 = 0 and one zero Majorana
phase.
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Figure 2.3: Best fit χ2 with respect to n, for CSD(n) with two right-handed
neutrinos.

Table 2.2 shows all best fit parameters with respect to n, while Figure 2.3 plots the

corresponding best fit χ2. In Table 2.2, the fitted three input parameters ma, mb and η

yield nine physical predictions, but only six physical outputs are shown. The undisplayed

outputs are m1 = 0 in each case and two Majorana phases, one of which is zero. Both

CSD(3) and CSD(4) have χ2 < 10, while all others have significantly higher values,

generally increasing with n. We view the fit for n = 3 as a good fit, particularly in

light of the fact that it can naturally predict a CP phase δCP close to the current

experimental preferred value of ∼ −π/2. Similarly the fit for CSD(4) shows promise for
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model building, with a prediction |δCP| = 120◦. For n ≥ 4, the largest contribution to

χ2 is typically θ23, while for n = 3 there is no dominant contribution.
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Figure 2.4: Best fit lepton mixing angles and CP -violating phase with respect
to n, for CSD(n) with two right-handed neutrinos.
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Figure 2.5: Best fit light neutrino masses with respect to n, for CSD(n) with
two right-handed neutrinos.

Figures 2.4 and 2.5 show the variation of physical masses and neutrino mixing angles

with respect to n. Note that, in the conventions defined earlier, a positive value of η,

namely η ∈ (0, π), yields a negative CP -violating angle, i.e. δCP ∈ (0,−π), while the

mirror global minimum for η ∈ (−π, 0) corresponds uniquely to δCP ∈ (π, 0). As η is

unconstrained (unless some model explicitly restricts its domain), only the absolute value

of δCP can be predicted in this framework. In Table 2.2 we only show positive η values,

for which δCP is negative. It is also worth noting that both CSD(3) and CSD(4) yield

predictions within the preferred range |δCP| ∼ 90◦±45◦ but may be distinguished by their

differing predictions for the atmospheric angle θ23 ≈ 45◦ and θ23 ≈ 38◦, respectively.
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Figure 2.6: Variation of χ2 with phase η, for CSD(n) with two right-handed
neutrinos.

The two input masses ma and mb are essentially fitted to the two light neutrino masses

m2, m3 after which the entire PMNS matrix is determined from only one parameter,

namely the phase η. A priori, CSD(n) need not lead to low χ2 values for any choice of

n, due to the sensitivity of the predictions to the phase η, yet in fact the results show

that it gives very good fits to the leptonic mixing angles for n = 3, 4, for special values

of η, yielding a value of |δCP| as a genuine prediction, along with preferred values for

the lepton angles. This is illustrated in Figure 2.6 which shows the variation of χ2 with

η, for 1 ≤ n ≤ 9. It is clear that η is quite strongly constrained, even for CSD(3) and

CSD(4); with CSD(3), the values (in radians) of η that give χ2 < 10 are 2.08 . η . 2.27,

which is a range of approximately 11◦. This range includes the value 2π/3. Such a value

could be produced in a model with a discrete symmetry such as Z3N . As hinted by

the earlier Monte Carlo scan, the neutrino masses are also tightly constrained, for all

CSD(n).

To make the link between χ2 minimisation and physical prediction more concrete, let

us examine the variation in the three mixing angles with η, as plotted in Figure 2.7, for

the physically most interesting cases of CSD(n) with n = 3, 4, 5. We see that although

θ12 is largely insensitive to η, there is a complicated dependence of the other two mixing

angles on η, which is different for different n. These plots demonstrate what the χ2 value

suggests: for some small set of values η, the predicted mixing angles converge on the

experimental best fit values for CSD(3) and CSD(4). Meanwhile for CSD(5) we begin

to see tension between the fits to θ13 and θ23; this tension grows with large n.
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Figure 2.7: Variation of the lepton mixing angles θij with phase η, for CSD(n)
with two right-handed neutrinos. Shaded regions represent the ±1σ range for
θij (in colours corresponding to the drawn curve). The reactor angle θ13 has
been multiplied by a factor 5 for the sake of visual ease.
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2.3.5 Results for three right-handed neutrinos

We turn now to the results of the fit for CSD(n) with three right-handed neutrinos. As

in previous figures, a thick solid gridline corresponds to a best fit value of a mixing angle

or neutrino mass, while thin solid gridlines show the 1σ limits, and thin dashed gridlines

show the 3σ range.

We now extend the analysis to the case of three right-handed neutrinos. Removing the

unphysical overall phase α from Eq. 2.20 gives

mν
(n) = ma

0 0 0

0 1 1

0 1 1

+mbe
iη

 1 n n− 2

n n2 n(n− 2)

n− 2 n(n− 2) (n− 2)2

+mce
iξ

0 0 0

0 0 0

0 0 1

 .

(2.24)

The immediate effect of including a third right-handed neutrino is to switch on a non-

zero value for the lightest physical neutrino mass m1, where previously for the case of

two right-handed neutrinos we had m1 = 0.

Since the contribution from the third right-handed neutrino is assumed to be a pertur-

bation to the case of two right-handed neutrinos considered in the previous subsection,

the detailed structure of the third matrix is irrelevant, and it is sufficient to only keep

the most important term in the third matrix. This analysis assumes it to be in the

(3,3) entry, since in unified models where Y u ∼ Y ν this entry is responsible for the top

quark Yukawa coupling (see e.g. [4, 6, 98, 99]). The third term brings in a further

undetermined relative phase ξ which complicates the analysis somewhat. As indicated

by the Monte Carlo scan, the results are comparatively less sensitive to this phase ξ,

particularly for the physically interesting cases of n = 3, 4. By considering only the cases

where ξ = 0 (phase aligned with dominant mass matrix) or ξ = η (phase aligned with

subdominant mass matrix), we can illustrate the sensitivity of the results to this phase

without over-complicating the analysis. Such a constraint on the value of ξ, correspond-

ing to the phase of either of the other matrices that make up mν (proportional to ma

or mb) may also arise directly from a model, such as in [98, 99].

Tables 2.3 and 2.4 show the results for the best fit physical parameters (masses, mixing

angles and δCP) and input parameters, respectively, for the case ξ = 0. Similarly,

Tables 2.5 and 2.6 show the best fit physical and input parameters for the case ξ = η.

As in the two right-handed neutrino case, only CSD(3) and CSD(4) can achieve χ2 < 10.

More generally for each CSD(n), the associated χ2 values are slight improvements over

the two-neutrino case, which is expected as there is an additional free parameter mc.

However, by the SD assumption, the third right-handed neutrino is nearly decoupled

from the theory, constraining mc to be small. As noted previously, evaluating the

number of excess degrees of freedom is non-trivial. One may cautiously regard χ2 values

between unity and, say, up to 10 as encouraging, bearing in mind also that δCP is not
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n
θ12 θ13 θ23 |δCP| m1 m2 m3 χ2

(◦) (◦) (◦) (◦) (meV) (meV) (meV)

1 33.5 0.293 41.4 245 0.874 8.71 49.6 474
2 34.5 7.65 56.0 0 0 8.85 48.8 95.1
3 33.6 8.37 44.6 81.3 0.278 8.69 49.5 2.59
4 33.0 8.70 38.8 89.1 0.692 8.64 49.7 6.51
5 32.4 8.92 35.6 89.2 0.964 8.62 49.9 25.1
6 31.8 9.04 33.6 88.6 1.12 8.61 50.0 43.1
7 31.3 9.12 32.3 87.9 1.22 8.61 50.1 58.1
8 31.0 9.29 32.0 87.5 1.23 8.57 50.1 70.9
9 30.7 9.44 32.1 86.9 1.22 8.54 50.2 82.4

Table 2.3: Best fit physical parameters for CSD(n) with ξ = 0.

n
ma mb mc η

(meV) (meV) (meV) (rad)

1 23.3 2.81 5.77 1.62
2 19.7 3.66 0 0
3 26.0 2.60 1.77 2.1
4 32.3 1.94 4.75 2.48
5 38.3 1.52 7.10 2.65
6 44.5 1.25 9.81 2.74
7 50.7 1.06 10 2.81
8 57.3 0.92 10 2.85
9 64.0 0.82 10 2.88

Table 2.4: Best fit input parameters for CSD(n) with ξ = 0.

n
θ12 θ13 θ23 |δCP| m1 m2 m3 χ2

(◦) (◦) (◦) (◦) (meV) (meV) (meV)

1 33.3 0.069 44.2 180 0.197 8.66 49.6 477
2 34.5 7.65 56.0 0 0 8.85 48.8 95.1
3 33.7 8.37 44.8 92.7 0.092 8.69 49.5 3.14
4 33.0 8.67 39.0 123 0.215 8.62 49.7 5.53
5 32.5 8.93 35.2 149 0.307 8.55 50.0 27.6
6 32.1 9.27 33.1 180 0.356 8.46 50.2 56.8
7 32.0 9.66 32.6 180 0.364 8.34 50.6 92.4
8 32.0 9.95 32.1 180 0.358 8.24 50.9 129
9 32.0 10.2 31.7 180 0.341 8.15 51.1 163

Table 2.5: Best fit physical parameters for CSD(n) with ξ = η.
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n
ma mb mc η

(meV) (meV) (meV) (rad)

1 24.5 2.75 1.26 0
2 19.7 3.66 0 0
3 27.3 2.61 0.558 2.16
4 36.8 1.93 1.30 2.63
5 46.5 1.52 1.85 2.91
6 55.4 1.27 2.15 3.14
7 63.4 1.10 2.2 3.14
8 71.4 0.97 2.16 3.14
9 79.3 0.87 2.05 3.14

Table 2.6: Best fit input parameters for CSD(n) with ξ = η.

included in the fit, and also that the error on the atmospheric angle θ23 is asymmetric.

In the light of all of the above, there is some variability in the χ2 values, and they should

be interpreted with care.

As n increases, the fit prefers a stronger hierarchy of input neutrino masses ma and

mb, while the contribution from mc becomes stronger. The input mass parameters ma,

mb and mc are allowed to be free apart from an upper limit imposed on mc < 10 meV

in order not to violate the SD condition. In the case of ξ = 0, mc reaches the soft

upper bound of 10 meV for CSD(n ≥ 7). Note that a fit that requires a large mc is

not CSD. A proper analysis of such a non-CSD model necessarily includes contributions

from elements of the third matrix (proportional to mce
iξ) other than the largest (3,3)

element, which have been neglected thus far. This would destroy the predictivity of the

scheme which makes CSD(n) so appealing. This justifies imposing the chosen upper

bound on mc. However for the successful cases CSD(3) and CSD(4), the best fit values

of mc are comfortably below 10 meV, so these cases naturally prefer a quite decoupled

third right-handed neutrino for which the upper limit of mc is irrelevant. Consequently,

restricting our analysis to only examine two values of ξ appears justified for small n.

For larger n, the overall contribution from the third matrix is larger, yet nevertheless

fails to significantly improve the (poor) fit to data.

Among physical parameters, of particular note in Tables 2.3 and 2.5 is the CP -violating

phase δCP, which is close to ±90◦ for CSD(3), for both choices of ξ. Furthermore, the

alignment of ξ with the dominant or subdominant mass matrix appears to greatly affect

the prediction for δCP for other n, suggesting a relationship between η, ξ and δCP. Notice

that when ξ = η, the best fit of both is 180◦ for n ≥ 6. An analytic treatment would be

required for a deeper understanding of their connection, which we did not perform, but

note that this behaviour only appears for CSD(n ≥ 6) with poor fits which are of less

physical relevance.
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Figure 2.8: Best fit lepton mixing angles and CP -violating phase with respect
to n, for CSD(n) with three right-handed neutrinos. The cases ξ = 0 (ξ = η)
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Figures 2.8 and 2.9 show the variation of the best fit physical parameters as a function

of n. In Figure 2.8 we see that the reactor angle increases with n while the atmospheric

and solar angles decrease. Examining the 3σ ranges (dashed lines) we also see that θ23

is typically worst fit (only CSD(3) lies within the 1σ bounds), and is also least sensitive

to the choice of phase ξ, which can otherwise improve the fit of θ12 or θ13 at large n.

Note the similarities between the predictions in Figures 2.8 and 2.9 and the corresponding

figures for models with two neutrinos (Figures 2.4 and 2.5). The primary difference when

a third neutrino is introduced is that θ12 is pushed to a lower value. The two-neutrino

case has been studied in depth more recently in [95], where they provide exact mixing

angle sum rules. In particular, they find that tan θ12 = [(1 − 3 sin2 θ13)/2]1/2 for any

n. As θ13 is relatively small, θ12 ' 1/
√

2 to good approximation, in agreement with

the result in Figure 2.4. However, no such analytical results are available for the three-

neutrino scenario; the addition of one complex free parameter, coupled with the fact

that all matrix elements are sizeable, allows for non-trivial modifications to the mixing

angles. In the absence of analytical results, which may or may not be attainable, and are

anyway beyond the scope of the numerical analysis presented here, it is not immediately

clear why θ12 is dominantly affected when a third neutrino is introduced. The best

fit values of m1 in Figure 2.9 indicates that it can vary greatly with n for some phase

choices. It is however unlikely that this can be used to constrain models in the near

future, as the mass scale is well below current experimental bounds of
∑
mν < 0.23 eV

[37].8

The variation of χ2 with respect to the phase η and the third input neutrino mass mc

is shown in Figure 2.10, for CSD(n) with 3 ≤ n ≤ 5. As in the case with two neutrinos,

η is quite tightly constrained. Meanwhile, mc typically has a rather large range of

acceptable values, particularly when ξ = 0, and does not appear strongly correlated

with η. Similarly, the best fit values of the physical lightest neutrino mass m1 lie in

rather shallow minima of χ2, as shown in Figure 2.11 where the dashed line refers to the

ξ = 0 case, while the solid line refers to the ξ = η case.

Figures 2.13 and 2.14 show the dependence on the lightest neutrino mass m1 of the

predicted mixing angles and neutrino masses, respectively, while Figure 2.12 shows the

variation of best fit input parameters with m1. We see in Figure 2.12 that mc and m1

are closely correlated, while best fit ma,b are not strongly affected by the introduction

of a third neutrino. Meanwhile in Figure 2.13, the variation is primarily in θ12 when m1

is small. Again in these plots the dashed line refers to the ξ = 0 case, while the solid

line refers to the ξ = η case.

We observe that the choice of phase ξ has a small effect on the χ2 value of the global

minimum, but can noticeably shift its location in parameter space. Naturally the largest

8 At time of publication of [1], the most current Planck results were [107], which give approximately
the same bound.
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Figure 2.10: Best fit χ2 with respect to the phase η and third input neutrino
mass mc. The dark blue region corresponds to χ2 ≤ 5, while surrounding regions
correspond to χ2 ≤ 20 and χ2 ≤ 50. The best fit points are indicated by stars.
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Figure 2.12: Variation of the best fit input parameters with m1. Dashed and
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effect is on the best fit value and range of validity of mc, but it also contributes to

interference between the three mass matrices in Eq. 2.24. The practical effect is that

each of the three vacuum alignments contribute in varying amounts to each of the three

PMNS mixing angles depending on the relative phase between the matrices, which can

be seen particularly in Figure 2.13, where the choice of ξ alters the shape of the variation

of the mixing angles. As noted earlier, the addition of a third neutrino appears to most

dramatically affect the solar angle θ12, in contrast to the two-neutrino model, where it

is essentially constant. The physical neutrino masses in Figure 2.14 are comparatively

far less sensitive to changes in ξ.
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2.3.6 Special cases: CSD(3) and CSD(4) with fixed phases

It is interesting that the optimal fit for the CSD(3), with χ2 = 2.59(3.14), corresponds

to a choice of input phase |η| = 2.10(2.16) = 0.669π(0.682π), for the ξ = 0 (ξ = η)

cases, respectively. Its closeness to the value 2π/3, independently of ξ, is a compelling

quality in favour of flavour models that predict additional Z3N symmetries, which tend

to predict quantised phases as multiples of π/3. This motivates a χ2 analysis with a

fixed value of η = 2π/3, for a reduced input vector x = (ma,mb,mc). The resulting

input and output parameters for fixed η = 2π/3 are given in Table 2.7. The best fits

give χ2 = 2.59(5.25), for the ξ = 0 (ξ = η) cases, respectively, marginally worse than in

the case of unconstrained η fits which gave χ2 = 2.59(3.14).
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Parameter
Best fit value
ξ = 0 ξ = η

ma /meV 25.9 26.7
mb /meV 2.60 2.64
mc /meV 1.80 0.88

m1 /meV 0.29 0.14
m2 /meV 8.71 8.63
m3 /meV 48.2 49.7
θ12 /

◦ 32.1 33.3
θ13 /

◦ 8.74 8.54
θ23 /

◦ 46.2 45.8
|δCP| /◦ 90.2 89.1

Table 2.7: Best fit input and output values for CSD(3) with fixed input phase
η = 2π/3.

Turning to the other promising candidate, CSD(4), we see that, for ξ = 0 (ξ = η), we

have χ2 = 6.51(5.53) for |η| = 2.48(2.63) = 0.79π(0.84π), which is close to 4π/5. It is

meaningful to examine the parameter space for a fixed phase η = ±4π
5 and ξ = 0 (as in

[98]) or ξ = η (as in [99]), although in such realistic models charged lepton corrections

also play a role. The fit yields χ2 = 7.20(14.7) with corresponding input and output

parameters given in Table 2.8.

Parameter
Best fit value
ξ = 0 ξ = η

ma /meV 33.0 35.4
mb /meV 1.94 1.99
mc /meV 4.42 1.60
m1 /meV 0.66 0.26
m2 /meV 8.65 8.49
m3 /meV 49.7 50.2
θ12 /

◦ 33.5 32.7
θ13 /

◦ 8.68 9.05
θ23 /

◦ 38.2 41.3
|δCP| /◦ 93.6 112

Table 2.8: Best fit input and output values for CSD(4) with fixed input phase
η = 4π/5.

2.4 Leptogenesis in CSD(n) models

In this section we show how successfulN1 leptogenesis may be realised in CSD(n) models,

based on the work in [3]. In [3] we also applied the results to an A4×SU(5) SUSY GUT
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which realises the CSD(3) vacuum alignment. This model and its leptogenesis predic-

tions will be discussed in Chapter 3. Recall that the leptogenesis mechanism involves at

least two right-handed neutrinos, whose CP -violating decays give rise to a lepton asym-

metry, which is subsequently converted into a baryon asymmetry by sphalerons. By the

SD assumption, the third right-handed neutrino is almost decoupled from the theory.

As demonstrated in the above numerical analysis, it has only minor effect on predictions

for low-scale neutrino parameters. Its contribution to leptogenesis will also be negligible,

so here we consider the class of models involving only two right-handed neutrinos. We

begin by establishing the link between the phase η in the light neutrino mass matrix mν ,

as defined in Eq. 2.23, and the leptogenesis phase. Next, the baryon asymmetry of the

Universe (BAU) from thermal N1 leptogenesis is calculated in the CSD(n) framework,

and numerical results are presented for the most viable cases, namely 3 ≤ n ≤ 5. The

leptogenesis calculation primarily follows the method described in [108], which builds on

previous efforts in [109–111] towards understanding the importance of flavour in thermal

leptogenesis.

2.4.1 Link between the CP and leptogenesis phases

In the original form of CSD, i.e. TB mixing or CSD(1), the columns of the neutrino

Dirac mass matrix mD in the flavour basis were orthogonal to each other and conse-

quently the CP asymmetries for cosmological leptogenesis vanished [108, 112]. Following

the subsequent observation that leptogenesis also vanished for a range of other family

symmetry models [113–115], this undesirable feature was eventually understood [116] to

be a general consequence of seesaw models with form dominance [90, 91], i.e. in which

the columns of mD in the flavour basis are proportional to the columns of the PMNS

matrix.

For general CSD(n), leptogenesis does not vanish since the columns of mD are not

orthogonal. To be precise, mD
atm = (0, a, a) and mD

sol = (b, nb, (n − 2)b) from Eq. 2.4

are not orthogonal for n > 1. The original CSD(n = 1) case satisfies form dominance

since (0, a, a) · (b, b,−b) = 0, and leptogenesis vanishes in this case. CSD(1) is anyway

excluded due to observed reactor angle and confirmed by our analysis, which gives

χ2 ∼ 500. Interestingly, since the seesaw mechanism in CSD(n) with two right-handed

neutrinos only involves a single phase η, both the leptogenesis asymmetries and the

neutrino oscillation phase δCP must necessarily originate from η, providing a direct link

between the two CP -violating phenomena in this class of models.

Before delving into a detailed analysis, let us sketch this dependence to understand its

significance. The produced baryon asymmetry YB from leptogenesis in CSD(n) models

with two right-handed neutrinos satisfies, following the arguments in [108],

YB ∝ ± sin η, (2.25)
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where the “+” sign applies to the case Matm � Msol and the “−” sign holds for the

case Msol � Matm. Since the observed baryon asymmetry YB is positive, it follows

that for Matm � Msol sin η must be positive, while for Msol � Matm sin η must be

negative. We have seen that, for CSD(n), positive η is associated with negative δCP and

vice versa. Although the global fits do not distinguish the sign of η, the present hint

that δCP ∼ −π/2 would require positive η. Then in order to achieve positive YB we

require Matm � Msol. Leptogenesis with two right-handed neutrinos with this relation

was considered in [117], however those results are geared towards preserving TB mixing.

Leptogenesis was has also been studied for CSD(2) [92], which involves two texture

zeroes. Here we find a link for CSD(n), even with only one texture zero, due to the

appearance of only a single phase η in the seesaw mechanism.

The above conclusions remain approximately true when the nearly-decoupled third right-

handed neutrino is introduced. As discussed in [108], the relative size of the additional

contribution to the CP asymmetry when a third neutrino is present9 is O(mc/mb) ∼ 0.1.

2.4.2 Calculating the baryon asymmetry

A sketch of the N1 leptogenesis mechanism was presented in the Introduction for the

minimally extended Standard Model (by three right-handed neutrinos). Since all models

considered in subsequent chapters are supersymmetric, and indeed the vacuum align-

ment mechanism discussed earlier is based on solutions to F -term equations of various

superfields, it is prudent to consider also leptogenesis in a supersymmetric context. This

will involve additional contributions from sneutrino decays, which in practice primarily

results in modifications to several constants in the calculation. We must also take into

account flavour effects, where we distinguish between the flavour indices (e, µ, τ) of the

leptons produced by neutrino decays.

A note on notation: as discussed in the Introduction, the final BAU can be parametrised

in terms of a CP asymmetry part and an efficiency part. Commonly in the literature

the symbols ε and κ are used, respectively. In flavour-dependent scenarios the BAU is

given by the sum over contributions in each flavour, i.e. ηB ∝ YB ∝
∑

α εακα. Here we

instead write the CP asymmetries and efficiency factors as ε1,α and η1,α, respectively,

consistent with notation in [3], which builds on work in [108]. The subscript “1” refers

to the fact that we are considering only the contribution from N1 decays.

At the theory level, the inputs that determine the size of the lepton asymmetry due to

right-handed neutrino decays are the neutrino Yukawa matrix λν and the right-handed

9 A third right-handed neutrino is necessary in the realistic Pati-Salam models based on CSD(4) in
[98, 99]. In these models the new phase is either given by ξ = 0 or ξ = η, so no new leptogenesis phase
appears. However the mechanism for leptogenesis is necessarily quite different in these models, since the
lightest right-handed neutrino of mass Matm is too light to generate successful leptogenesis in its decays.
Instead one must rely on the decays of the second lightest right-handed neutrino of mass Msol [118].
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neutrino Majorana mass matrix M c. In the basis where charged leptons are diagonal,

the relevant terms are defined by the superpotential

Wν = yiatmHLiN
c
atm + yisolHLiN

c
sol +MatmN

c
atmN

c
atm +MsolN

c
solN

c
sol, (2.26)

where Li are three families of lepton doublets, and the right-handed neutrinos N c
atm and

N c
sol (with real positive masses Matm and Msol, respectively) do not mix. The couplings

yiatm and yisol make up the first and second column, respectively, of λν . Assuming the

CSD(n) relations in Eq. 2.4, the Yukawa matrix and (conjugated) right-handed mass

matrix in this basis are

λν =

0 b

a nb

a (n− 2)b

 , M c =

M1 0

0 M2

 , (2.27)

where we have written M1 = Matm and M2 = Msol, with M1 < M2, in anticipation of

the result that the lighter right-handed neutrino is the dominant (atm) one.10

The above superpotential specifies the basis used for the leptogenesis calculations. This

basis choice (the leptogenesis or SUSY basis) differs from that used in the earlier nu-

merical analysis (the seesaw basis), by complex conjugation. This must be taken into

account when comparing to numerical results for neutrino parameters at low scale. The

two bases and the dictionary between them will be discussed below, but for the calcu-

lation that follows it is sufficient to consider a, b, M1,2 as free parameters (with a, b

complex).

The degree to which flavour effects play a role in determining the BAU depends on which

Yukawa interactions are in thermal equilibrium at temperatures T ∼M1. Generically, at

high temperatures the interaction rate of a given charged lepton, which is proportional

to the square of the Yukawa coupling [119], is smaller than the expansion rate of the

Universe, characterised by the Hubble parameter. When the temperature drops, charged

lepton interactions become efficient and successively come into thermal equilibrium,

first the tau (which has the largest coupling), followed by the muon and eventually

the electron. In leptogenesis this can be translated into a statement about the right-

handed neutrino mass, such that three distinct regimes must be considered, which are

summarised in [108]. The flavour-independent regime, i.e. where all charged lepton

flavours are out of equilibrium, corresponds in the MSSM to

M1 > (1 + tan2 β)× 1012 GeV. (2.28)

10 Since Mc is diagonal, there is no distinction between the parameters Nc
atm,sol and mass eigenstates

M1,2. This will not be the case when we consider leptogenesis in a ∆(27) × SO(10) SUSY GUT in
Chapter 4. It is therefore valuable to introduce a more general notation here.



56 Chapter 2 Constrained sequential dominance

The two-flavour regime, where the tau is treated separately but the electron and muon

are indistinguishable, corresponds to

(1 + tan2 β)× 109 GeV . M1 . (1 + tan2 β)× 1012 GeV. (2.29)

Finally, the regime where all flavours are to be treated separately corresponds to

(1 + tan2 β)× 105 GeV . M1 . (1 + tan2 β)× 109 GeV. (2.30)

The corresponding values in the Standard Model can be attained by setting tanβ = 0

in the above inequalities.

It will turn out that for the models of interest M1 ∼ (40− 100)× 109 GeV. The results

therefore appear to post-justify the flavour-dependent treatment only for tanβ & 10.

However as it turns out, our results for the three-flavour case are almost identical to

those for the flavour-independent case. The reason is that the efficiency factors for the µ

and τ flavours turn out to be equal, i.e. η1,µ = η1,τ , while the asymmetry for the electron

flavour is zero, ε1,e = 0, so there is no overall contribution to YB there. In this case

one may define an efficiency factor ηind ≡ η1,µ = η1,τ and asymmetry ε1 ≡
∑

α ε1,α such

that the BAU is proportional to ηindε1, as will become clear from the following results.

The only difference between the flavour-independent and flavour-dependent cases, in the

considered models, is in the detailed solutions to the Boltzmann equations which involve

differences in a numerical matrix A (defined below) which only appears logarithmically

in determining the washouts. The main consequence of this is that the above condition

tanβ & 10 becomes relaxed, and our results are valid for any value of tanβ to good

approximation. However, for clarity, we shall perform the calculation using the full

three-flavour treatment.

The total BAU YB is obtained as a sum over the individual contributions in each lepton

flavour Y∆α , by

YB =
10

31

∑
α

Y∆α , (2.31)

The individual flavour contributions are in turn given by

Y∆α = η1,α[YN1 + YÑ1
]ε1,α, (2.32)

where η1,α are efficiency factors and ε1,α are the CP asymmetries. In the Boltzmann

approximation for the MSSM, i.e. assuming the same statistics for fermions and bosons,

YN1 ≈ YÑ1
≈ 45

π4g∗
, g∗ = 228.75, (2.33)

where g∗ is the effective number of degrees of freedom in the MSSM. The factors YN1,Ñ1

are (s)neutrino number densities and may be interpreted as normalisation constants.
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The expression (per flavour index) for the CP asymmetry is [108]

ε1,α =
1

8π

Im
[
(λ†ν)1α(λ†νλν)12(λᵀν)2α

]
(λ†νλν)11

gMSSM

(
M2

2

M2
1

)
. (2.34)

The loop factor gMSSM(x) is given by

gMSSM(x) =
√
x

(
2

1− x − ln

(
1 + x

x

))
. (2.35)

For large x, i.e. M1 �M2, we have

gMSSM

(
M2

2

M2
1

)
≈ −3

M1

M2
. (2.36)

For the CSD(n) matrix λν defined in Eq. 2.27, the flavour dependent asymmetries are

ε1,e = 0,

ε1,µ = − 3

8π

M1

M2
(n− 1)n

Im[a∗2b2]

|a|2 ,

ε1,τ = − 3

8π

M1

M2
(n− 1)(n− 2)

Im[a∗2b2]

|a|2 .

(2.37)

Note that

ε1,τ =

(
n− 2

n

)
ε1,µ. (2.38)

We define the phase η that is relevant for leptogenesis as

η ≡ − arg[a∗2b2]. (2.39)

This naming convention is not coincidental, as it will be shown to be equal to that which

appears in the CSD(n) neutrino mass matrix mν .

Having established the factor YN1 + YÑ1
and the ε1,α asymmetries, it remains to de-

termine the (flavour-dependent) efficiency factors η1,α. These arise from solutions to

the supersymmetric flavour-dependent Boltzmann equations given in [108]. These equa-

tions do not have simple analytical solutions, and are more readily solved numerically.

Generically, the efficiency factors η1,α depend in a rather complicated fashion on λν .

This is doubly true in cases where the right-handed neutrino mass matrix is not already

diagonal; moving into the flavour basis adds a layer of complexity to the result. Exactly

this scenario is encountered in Chapter 4, where a similar leptogenesis calculation is

performed in a ∆(27) × SO(10) SUSY GUT. However, in the minimal CSD(n) frame-

work presented here, we will find that η1,α essentially depends only on the input mass

parameter ma, in such a way that we may use results available in [108] to calculate η1,α.

We therefore defer a detailed discussion of the Boltzmann equations to Chapter 4.
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As seen in [108], η1,α may be expressed as a function of two quantities: log10 |AααKα|
(no sum) and K =

∑
αKα. Aαα are the diagonal elements of a numerical matrix A. In

the MSSM and in the three-flavour regime, it is given by the numerical 3× 3 matrix

A =


− 93

110
6
55

6
55

3
40 −19

30
1
30

3
40

1
30 −19

30

 . (2.40)

The elements of A depend on which interactions are in thermal equilibrium at the

temperatures where leptogenesis takes place. The parameters Kα are referred to as

decay factors, and essentially describe the degree to which the asymmetry is washed

out: Kα � 1 may be considered strong washout, while Kα < 1 is weak washout. They

are themselves functions of so-called effective neutrino mass parameters m̃1,α, such that

Kα =
m̃1,α

m∗MSSM

, (2.41)

where m∗MSSM ≈ (1.58× 10−3 eV) sin2 β is the equilibrium neutrino mass, and

m̃1,α = (λ†ν)1α(λν)α1
v2
u

M1
. (2.42)

With λν given in Eq. 2.27, and recalling that vu = v sinβ, the mass parameters are

m̃1,e = 0, m̃1,µ = m̃1,τ = |a|2 v
2 sin2 β

M1
. (2.43)

Because m̃1,µ = m̃1,τ we also obtain Kµ = Kτ . From Eq. 2.40 we obtain Aµµ = Aττ =

−19/30. Thus we conclude that η1,µ = η1,τ . Furthermore, the expression for m̃1,µ = m̃1,τ

in Eq. 2.43 corresponds exactly to the definition for the dominant input mass parameter

ma in the light neutrino mass matrix mν , as defined in Eq. 2.20 (for general CSD(n))

and Eq. 2.23 (for two right-handed neutrinos). It provides us with another immediate

link between leptogenesis parameters and the neutrino mass matrix.

We may now return to the expression for the observed asymmetry YB as per Eqs. 2.31

and 2.32, where

YB =
10

31

∑
α

η1,α[YN1 + YÑ1
]ε1,α. (2.44)

Inserting the approximations for YN1 and YÑ1
from Eq. 2.33 and the asymmetries ε1,α

from Eq. 2.37 yields

YB =
10

31

(
η1,µ

[
2

45

π4g∗

]
ε1,µ + η1,τ

[
2

45

π4g∗

]
n− 2

n
ε1,µ

)
=

10

31
η1,µ

[
2

45

π4g∗

](
2n− 2

n

)(
− 3

8π

M1

M2
(n− 1)n

Im[a∗2b2]

|a|2
)
.

(2.45)
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Expressing this in terms of the phase η defined in Eq. 2.39, noting that Im[a∗2b2]/|a2| =
−|b|2 sin η, we arrive at

YB =
675

31π5g∗

M1

M2
η1,µ (n− 1)2|b|2 sin η. (2.46)

Finally, we note that |b|2/M2 ∝ mb, the subdominant input mass parameter in mν .

Thus the final baryon asymmetry YB in Eq. 2.46 depends explicitly on mb and η (which

will shortly be shown to be identical to that in mν) and implicitly on ma through the

efficiency factor η1,α. The dependence on the integer n is also clear. Note in particular

that the case n = 1 gives YB = 0, i.e. that TB mixing cannot give a non-zero baryon

asymmetry, reproducing the known result.

2.4.3 Constraining leptogenesis with neutrino data

In order to constrain leptogenesis in CSD(n) we use information about low energy neu-

trino masses and mixing. As discussed earlier (see Eqs. 2.16 – 2.18), the lepton matrices

and seesaw mechanism are defined by

LLR + LRν = −HdY
e
ijLLieRj −HuY

ν
ijLLiνRj − 1

2(MR)ijνcRiνRj + h.c. (2.47)

The seesaw formula in this basis is mν = −v2
uY

νM−1
R (Y ν)ᵀ, where mν is defined by

LLν = −1
2m

ν
ijν

c
LiνLj + h.c.. There is a simple dictionary between the seesaw basis and

the SUSY basis in Eq. 2.26, as follows: Y ν = (λν)∗, while MR = (M c)∗ = M c. Hence

the CSD(n) relations in Eq. 2.27 become, in the seesaw basis,

Y ν =

 0 b∗

a∗ nb∗

a∗ (n− 2)b∗

 , MR =

(
M1 0

0 M2

)
. (2.48)

Recall that the seesaw mechanism produces the effective neutrino mass matrix

mν = ma

0 0 0

0 1 1

0 1 1

+mbe
iη

 1 n (n− 2)

n n2 n(n− 2)

(n− 2) n(n− 2) (n− 2)2

 , (2.49)

where ma = v2
u|a|2/M1, mb = v2

u|b|2/M2, and the phase η is defined as

η ≡ arg[a2/b2]. (2.50)

This definition of the phase η is consistent with Eq. 2.39, providing the link between

leptogenesis and low energy neutrino phenomenology. The sign of η fixes the leptonic

Dirac phase δCP. Specifically, a positive η uniquely leads to negative δCP, and vice
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versa. As experimental data hints at δCP ∼ −π/2, the a posteriori preferred solution

has positive η. The sign of η also has high energy cosmological significance: as seen in

Eq. 2.46, it controls the sign and magnitude of the BAU. As noted earlier, N c
atm � N c

sol

and positive η predict a positive BAU, as desired.

The remainder of this section is devoted to the numerical CSD(n) results for both

neutrino phenomenology and leptogenesis. The dependence on mb is made apparent by

rewriting Eq. 2.46 as

YB =
675

31π5g∗

M1mb

v2
u

η1,µ(n− 1)2 sin η. (2.51)

We will limit our analysis to those values of n which produce reasonable fits to data,

namely n = 3, 4, 5, as only these give χ2 < 50. For convenience, the relevant results

from Table 2.2 are reproduced in Table 2.9, along with their predictions for the lepton

mixing angles, CP violating phase and neutrino masses. Note that we have now fixed

η to be positive, corresponding to negative δCP. This will ensure the correct sign of the

baryon asymmetry.

We reiterate that values of ma, mb and η that may be characterised as providing “good”

fits (or at least fits with χ2 close to the minimal value) lie comfortably within ±10% of

their respective best fit values. We are left with an expression for YB that is linear in M1,

multiplied by a numerical factor that ultimately depends only on n. Taking into account

the variability of the mass matrix parameters, we estimate that the numerical factor may

also vary by up to ±10% without significantly impacting the fits to neutrino masses and

mixing angles. In terms of placing bounds on M1, this far outweighs the current error

on the experimental value for YB, which is approximately ±0.6%. It is also worth noting

that CSD(2) predicts a best fit with η = 0, while CSD(n) with n > 5 predict best fits

with η = π, both giving sin η = 0, which implies a zero baryon asymmetry. This further

justifies neglecting those cases here.

n
ma mb η θ12 θ13 θ23 δCP m2 m3 χ2

(meV) (meV) (rad) (◦) (◦) (◦) (◦) (meV) (meV)

3 27.3 2.62 2.17 34.4 8.39 44.5 -92.2 8.69 49.5 3.98
4 36.6 1.95 2.63 34.3 8.72 38.4 -120 8.61 49.8 8.82
5 45.9 1.55 2.88 34.2 9.03 34.4 -142 8.53 50.0 33.8

Table 2.9: Best fit parameters for CSD(n) with two right-handed neutrinos, for
3 ≤ n ≤ 5.

With ma fixed by the fit, we may estimate log10(AµµKµ) = log10(AττKτ ), from the

results in Eqs. 2.40 – 2.43, with which we obtain the efficiency factors from the solu-

tions to the Boltzmann equations given in [108]. Hence, for n = (3, 4, 5), we obtain

the corresponding efficiency factors η1,µ = (0.0236, 0.0166, 0.0126). Inserting numerical

values also for mb and η from Table 2.9 into Eq. 2.51, we arrive at the predictions for
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the right-handed neutrino masses11

CSD(3) : YB ∼ 2.2× 10−11

[
M1

1010 GeV

]
⇒ M1 ∼ 4.0× 1010 GeV,

CSD(4) : YB ∼ 1.5× 10−11

[
M1

1010 GeV

]
⇒ M1 ∼ 5.8× 1010 GeV,

CSD(5) : YB ∼ 0.86× 10−11

[
M1

1010 GeV

]
⇒ M1 ∼ 10× 1010 GeV.

(2.52)

With M1 fixed in each case, |a| may be calculated to be O(10−3) using ma = v2
u|a|2/M1,

since ma is known. On the other hand only the combination mb = v2
u|b|2/M2 is fixed

by neutrino data and the separate parameters |b| and M2 are not determined from

leptogenesis.

2.5 Summary

In this chapter we have described the sequential dominance framework, which provides

a natural understanding of the smallness of neutrino mass and large lepton mixing in

the context of the type-I seesaw mechanism. We have analysed the phenomenology of

the CSD(n) class of models, where the dominant right-handed neutrino couples to the

three families of left-handed neutrinos with strengths proportional to (0, 1, 1), while the

subdominant right-handed neutrino couples with strengths proportional to (1, n, n− 2),

for an integer n, and shown how these couplings can arise from the vacuum alignments

of flavons that are triplets under a discrete family symmetry.

Models with both two and three right-handed neutrinos have been considered, in the

flavour basis, for 1 ≤ n ≤ 9. A χ2 fit shows that good agreement with experimental

global fits can be attained for n = 3, 4. In particular, CSD(3) with two right-handed

neutrinos yields a very minimal and successful model of neutrinos, involving only three

free parameters: two mass parameters ma,b and a phase η.

This phase has significance for both leptonic CP violation and leptogenesis. The Dirac

CP phase δCP is predicted by the fit to be approximately ±π/2 for CSD(3), and ±2π/3

for CSD(4), and 0 or π for other n. Within CSD(n), we have also calculated the

contribution to the baryon asymmetry of the Universe YB from thermal leptogenesis.

The flavoured CP asymmetries are found to be proportional to sin η. Coupled with the

requirement that YB > 0 requires η > 0, which predicts δCP < 0, in agreement with

current experimental hints. These results represent a promising foundational step for a

more complete model of leptons, and cosmology.

11 We have used sinβ ≈ 1 which is a good approximation for tanβ & 3.





Chapter 3

An A4 × SU(5) model

As noted in the Introduction, the Standard Model, although highly successful, leaves

many unanswered questions in its wake, such as: what (if anything) stabilises the Higgs

boson mass? Does charge quantisation and the apparent unification of gauge forces at

high scale originate from grand unification? What is the origin of the three families of

quarks and leptons and their pattern of masses, mixing and CP violation? Why is CP

so accurately conserved by the strong interactions? In this chapter we discuss a proposed

model capable of addressing all the above questions. The basic ingredients of the model

are supersymmetry together with an SU(5) grand unified theory, flavoured by an A4

family symmetry. The majority of this chapter is adapted from work published in [2],

which defines the model, while the discussion on leptogenesis was originally published

in [3].

3.1 The minimal flavoured GUT

The model is minimal in the sense that SU(5) is the smallest GUT group and A4 is

the smallest family symmetry group that admits triplet representations. Also, below

the GUT scale, the model yields the minimal supersymmetric Standard Model (MSSM)

supplemented by a minimal two right-handed neutrino seesaw mechanism. It is realistic

in the sense that it provides a successful (and natural) description of the fermion mass

and mixing spectrum, including spontaneous CP violation, while resolving the strong

CP problem. It is fairly complete in the sense that GUT and flavour symmetry breaking

are addressed, including doublet-triplet splitting, Higgs mixing and the origin of the

MSSM µ term, all of which are detailed in Section C.1 of Appendix C. We emphasise the

predictive nature of the model in the lepton sector, realising the very successful CSD(3)

vacuum alignments analysed in the previous chapter. Here they originate from the

vacuum alignment of A4 triplets, fully determined by the field content and symmetries.

The single phase η in the neutrino mass matrix is fixed to a discrete choice. We select

63
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η = 2π/3 from the nine complex roots of unity arising from spontaneous CP violation

of a Z9×Z6 discrete symmetry, by a mechanism proposed in [120]. Such a spontaneous

CP -violating scenario had been proposed previously in order to account for the smallness

of CP violation in the soft SUSY sector [121, 122].

We also employ a ZR4 discrete R symmetry as the origin of MSSM matter parity (as in

[123, 124]), ensuring in principle a viable WIMP dark matter candidate. Doublet-triplet

splitting is achieved via the missing partner (MP) mechanism [125, 126], as advocated

for flavoured GUTs in [127]. The model predicts very sparse charged lepton and down-

type quark Yukawa matrices, with five texture zeroes, and Yukawa elements involving

simple SU(5) Clebsch-Gordan (CG) ratios of 4/9 and 9/2 for the first and second fam-

ilies, respectively, with mτ/mb = 1 for the third family, all in excellent agreement with

their experimental values run up to the GUT scale [128, 129]. Quark mixing originates

predominantly from a non-diagonal and naturally hierarchical up-type quark Yukawa

matrix, controlled by the Z9 symmetry. Quark CP violation, however, comes exclu-

sively from a single off-diagonal element in the down-type quark Yukawa matrix. By

contrast, to excellent approximation all lepton mixing and CP violation originates from

the neutrino mass matrix, whose structure is controlled by the A4 and the Z6 symmetries

via CSD(3).

Although there have been several attempts in the literature at constructing an A4 ×
SU(5) SUSY GUT of flavour (for an incomplete list see e.g. [130–139]), many of the

previous models predicted mixing very close to tri-bimaximal and are by now excluded.

For some examples of SU(5) SUSY GUTs with different family symmetries, see [140–

143]. It will take some time and (experimental) effort to resolve all these models. The

most promising models are those that make testable predictions while being theoretically

complete and consistent.

This is a non-minimal model from the perspective of counting degrees of freedom, as

there are many different chiral superfields in this model, indeed almost exactly a hundred.

It is however important to note that we are explicitly presenting a renormalisable model.

Any non-renormalisable terms generated below the Planck scale are required to have a

specific well-defined realization through multiple renormalisable terms involving heavy

messenger fields that can be integrated out around the GUT scale. The resulting effective

theory is actually more predictive than otherwise, with a normal neutrino mass hierarchy,

a zero lightest neutrino mass, and all lepton mixing angles and CP phases predicted.

We would argue that the model presented here is amongst the most viable and complete

SUSY GUTs of flavour consistent with current data.



Chapter 3 An A4 × SU(5) model 65

3.2 The Yukawa sector

3.2.1 Field content and symmetries

The model involves a superpotential invariant under A4 × SU(5) × Z9 × Z6 as well as

a ZR4 discrete R symmetry and CP at the GUT scale, where all symmetries, including

CP , are spontaneously broken along supersymmetric flat directions to give the MSSM.

The purpose of this section is to describe those aspects of the model pertaining to the

Yukawa sector, i.e. the quark and lepton masses and mixing. The flavour sector of the

model is very important in our approach, since we make a serious attempt to understand

and, where possible, predict the experimentally observable fermion masses and mixing

matrices.

Field
Representation

A4 SU(5) Z9 Z6 ZR4
F 3 5̄ 0 0 1
T1 1 10 5 0 1
T2 1 10 7 0 1
T3 1 10 0 0 1
N c

1 1 1 7 3 1
N c

2 1 1 8 3 1
Γ 1 1 0 3 1

H5 1 5 0 0 0
H5̄ 1 5̄ 2 0 0
H24 1′ 24 3 0 0
Λ24 1′ 24 0 0 0
H45 1 45 4 0 2
H45 1 45 5 0 0

ξ 1 1 2 0 0
θ1 1 1 1 3 0
θ2 1 1 1 4 0

φe 3 1 0 0 0
φµ 3 1 3 0 0
φτ 3 1 7 0 0
φ1 3 1 3 2 0
φ2 3 1 1 3 0
φ3 3 1 3 1 0
φ4 3 1 2 1 0
φ5 3 1 6 2 0
φ6 3 1 5 2 0

(a) Matter and symmetry-breaking superfields
with even R charge.

Field
Representation

A4 SU(5) Z9 Z6 ZR4
X1 1 5̄ 7 0 1
X2 1 5 2 0 1
X3 1 5̄ 6 0 1
X4 1 5 3 0 1
X5 1′′ 5̄ 3 0 1
X6 1′ 5 6 0 1
X7 1 5̄ 2 0 1
X8 1′′ 5 7 0 1
X9 1′ 5̄ 0 0 1
X10 1′ 5 0 0 1
X11 1 5̄ 1 3 1
X12 1 5 7 5 1
X13 1 5̄ 2 3 1
X14 1 5 6 5 1

Σi 1 5 i 0 0

Σi 1 5̄ i 0 2

(b) Messenger superfields. The 16 Σ messen-
gers are indexed by their (non-zero) Z9 charge
i = 1, . . . , 8.

Table 3.1: Superfields which specify the Yukawa sector of the model.
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The ZN symmetries are Abelian discrete groups which denote discrete roots of complex

roots of unity. For example, a Z9 charge of n is equivalent to a charge e2πni/9. Such

symmetries are often referred to as shaping symmetries, which serve to forbid unwanted

terms in the superpotential. From a model-building perspective, these choices of N are

free, as are the field charges, although in this model N are chosen as multiples of three,

as these can lead to discrete phase choices in the fermion mass matrices that include

the value 2π/3, identified in the previous chapter as particularly suitable for CSD(3)

in the neutrino sector. How this may arise is discussed in Section C.1 of Appendix C.

Meanwhile, under the R symmetry ZR4 , the superpotential has an overall charge of 2.

Table 3.1a shows the matter superfields F , Ti that contain the quarks and leptons, as

well as the right-handed neutrino superfields N c
i and double-seesaw superfield Γ, all of

which carry unit ZR4 charge. Apart from the A4 × SU(5) assignments of F ∼ (3, 5),

Ti ∼ (1, 10), N c
i ∼ (1, 1), under Z9 they transform as F ∼ 0, Ti ∼ (5, 7, 0), N c

i ∼ (7, 8).

Unlike the rest of the quarks and leptons, the right-handed neutrinos are further charged

under Z6 (as are some of the symmetry-breaking scalars). Table 3.1a also contains the

six Higgs superfields, generally denoted H (but also Λ) which serve to break the SU(5)

gauge symmetry. The two light MSSM Higgs doublet superfields Hu and Hd will emerge

from H5 and a mixture of H5̄ and H45. The superfield ξ which breaks Z9 is particularly

central to this theory, as it is responsible for both right-handed neutrino masses and the

up-type quark mass hierarchy. Finally we have the θi superfields which break Z6 and

help to control neutrino Dirac masses, and nine A4-breaking triplet flavons generally

denoted φ, with various vacuum alignments, responsible for large lepton mixing.

With these assignments, only the top quark gets a mass from a renormalisable Yukawa

coupling H5T3T3 (which has ZR4 charge 2 as required for an allowed superpotential term).

All the other quark and lepton Yukawa couplings must arise through higher-order terms.

This provides the basic reason why most of the Standard Model Yukawa couplings appear

to be so small. Also the hierarchy among lighter quarks is addressed: more precisely,

the observed hierarchy of Yukawa couplings between the three families will be explained

via a discrete Z9 version of the Froggatt-Nielsen mechanism [58]. Originally conceived in

terms of a global U(1) symmetry, the mechanism involves the superfield ξ which gains a

VEV 〈ξ〉 slightly below the scale M at which the symmetry (in our case, Z9) breaks, e.g.

〈ξ〉 /M ∼ 0.1. Fermions couple to different powers of ξ, such that the Yukawa matrices

are populated by powers of 〈ξ〉 /M . This introduces hierarchies in the Yukawa matrices.

In this model, the low VEV of ξ controls the hierarchy in the up-type quark sector, and

also, in part, the smallness of the down quark and electron.

In order to enhance predictivity we need the messengers listed in Table 3.1b, which is

the price we pay for having a renormalisable theory at the GUT scale. We denote these

superfields either as fermion messengers, Xi, or scalar messengers, Σi, depending on

whether they carry similar quantum numbers to, respectively, the quarks and leptons

(with odd ZR4 charge) or the symmetry-breaking scalars (with even ZR4 charge). The
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fermion messengers Xi carry similar quantum numbers to down-type quarks and charged

leptons (and neutrinos). Scalar messengers Σi have quantum numbers similar to H5 (the

superfield that gives the top quark a renormalisable mass term). The Σi messengers do

not get VEVs, which means we need not consider the effect of diagrams with Σi in

external legs to the masses of Standard Model fermions.

The messengers group themselves in pairs of two superfields with a renormalisable bare

mass coupling which respects all the symmetries. Their masses are therefore expected to

be around the GUT scale. Although there will be in general distinct masses for different

pairs, for simplicity we take the masses of all such pairs to be M and set this equal to

the GUT scale in our numerical estimates. We emphasise that the successful predictions

of the model in the lepton sector (namely predicting the PMNS matrix) is independent

of the specific values of these mass parameters.

3.2.2 Up-type quarks

Apart from the top quark mass, which originates from a renormalisable Yukawa coupling,

the remaining up-type quark Yukawa couplings appear from higher-order terms that

result from combining several renormalisable terms involving Σi messengers and the

GUT singlet superfield ξ. To be precise, the up-type quark Yukawa couplings arise from

tower diagrams shown in Figure 3.1. For example, the most suppressed coupling arises

from the first diagram in Figure 3.1. Other (less suppressed) couplings arise from the

diagrams where at the base one has the respective TiTj , with a shorter tower leading up

to H5. The renormalisable H5T3T3 operator responsible for the top quark mass is the

last diagram in Figure 3.1. Due to the cyclic nature of the Z symmetries, we are able

to write down terms like MΣ2Σ7, which as an overall Z9 charge of 9, equivalent to 0.

H5̄

ξ

ξ

ξ

ξ

Σ̄7

Σ2

Σ̄5

Σ4

Σ̄3

Σ6

Σ̄1

Σ8

T1 T1

H5̄

ξ

ξ

ξ

Σ̄7

Σ2

Σ̄5

Σ4

Σ̄3

Σ6

T1 T2

H5̄

ξ

ξ

Σ̄7

Σ2

Σ̄5

Σ4

T1 T3

H5̄

ξ

ξ

Σ̄7

Σ2

Σ̄5

Σ4

T2 T2

H5̄

ξΣ̄7

Σ2

T2 T3

H5̄

T3 T3

Figure 3.1: Diagrams responsible for the up-type quark Yukawa couplings.
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The effective superpotential responsible for the up-type Yukawa couplings is

Wup = uijH5TiTj

(
ξ

M

)nij
. (3.1)

The resulting symmetric Yukawa matrix for up-type quarks is

Y u
ij = uij

(〈ξ〉
M

)nij
∼

ξ̃
4 ξ̃3 ξ̃2

ξ̃2 ξ̃

1

 , (3.2)

where ξ̃ = 〈ξ〉 /M ∼ 0.1. The explicit form of Y u is given in Eq. 3.14 and includes

the coefficients uij , which are O(1) and, by enforcing CP conservation at the GUT

scale, necessarily real. Thus, the hierarchy of the up quark masses as well as the CKM

mixing angles are given by powers of ξ̃. Due to the structure of this matrix, any phase

introduced by 〈ξ〉 can be reabsorbed by appropriate redefinition of the three Ti fields,

so Y u does not contain a source of CP violation.

3.2.3 Down-type quarks and charged leptons

When considering the Yukawa structures of down quarks and charged leptons we must

inevitably discuss A4 triplet flavons. As a point of terminology, we refer to as “flavons”

any superfields that are GUT singlets transforming non-trivially under the family sym-

metry and that get VEVs. In particular not only A4 but also Z9 and Z6 are family

symmetries, so we also refer to ξ as a flavon. The assignments of all the flavons under

the family symmetries appear in Table 3.1a. Indeed, since the three families of F trans-

form as a triplet of A4, all terms like TiH5̄F require a contraction with at least one A4

triplet flavon to be invariant.

H5̄ φτ

T3 FX1 X2

(a)

H45 H24

T2 FX3 X6X5X4

φµ

(b)

H5̄

〈Λ24〉
T1 FX7

ξ

X8 X9 X10

φe

〈Λ24〉

(c)

H5̄

〈Λ24〉
T1 FX7

ξ

X8 X9 X6

φµ

〈H24〉

(d)

Figure 3.2: Diagrams responsible for the down-type quark and charged lepton
Yukawa terms.

The relevant diagrams are shown in Figure 3.2. After integrating out the messengers X,

which acquire large masses as a result of either explicit mass terms or GUT-scale Higgs
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VEVs, we obtain effective operators of the form

Wdown = d33
H5̄

M
T3(φτF ) + d22

H45H24

M2
T2(φµF ) + d11

H5̄ξ

〈Λ24〉2
T1(φeF )

+ d12
H5̄ξ

〈Λ24〉 〈H24〉
T1(φµF ),

(3.3)

where dij are O(1) couplings. The light MSSM doublet Hd is a combination of the

doublets inside H5̄ and H45, as discussed in Section C.1.2, hence the d22 term also

leads to a relevant Yukawa coupling. The alignments of the respective VEVs of φe,µ,τ

(discussed in Section 3.4) are

〈φe〉 = ve

1

0

0

 , 〈φµ〉 = vµ

0

1

0

 , 〈φτ 〉 = vτ

0

0

1

 , (3.4)

such that, apart from the term multiplying d12, the contraction appearing with T1,2,3

isolates the respective F1,2,3 family. This would lead to diagonal Yukawa structures if

not for the additional term connecting T1(φµF ) (see Figure 3.2d).

The resulting effective Yukawa matrices are, schematically,

Y d
LR ∼ Y e

RL ∼


〈ξ〉 ve
v2

Λ24

〈ξ〉 vµ
vΛ24vH24

0

0
vH24vµ
M2

0

0 0
vτ
M

 , (3.5)

where vΛ24 and vH24 are the respective VEVs of Λ24 and H24 (defined in Eq. 3.6 below).

The off-diagonal term in Y e also provides a tiny contribution to left-handed charged

lepton mixing, θe12 ∼ me/mµ, which may safely be neglected. It also introduces CP

violation to the CKM matrix via the phase of 〈ξ〉.

Furthermore, because the underlying renormalisable theory is known, the diagrams in

Figure 3.2 are the only contributions for each family. The SU(5) contractions and

associated CG coefficients appearing for each family are unique [127–129]. With GUT-

scale symmetry breaking as discussed in Appendix C, each of the scalars here get a VEV

with the group structure

〈H5̄〉a = δa5 vd/
√

2,

〈H45〉abc = (δ[a
c − δ[a

5 δ
5
c − 4δ

[a
4 δ

4
c )δ

b]
5 vd/

√
2,

〈H24〉ab = diag(2, 2, 2,−3,−3) vH24 ,

〈Λ24〉ab = diag(2, 2, 2,−3,−3) vΛ24 ,

(3.6)
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where the indices run over a, b, c = 1, . . . , 5. This leads to the GUT-scale predictions

Y e
33

Y d
33

= 1,
Y e

22

Y d
22

=
9

2
,

Y e
11

Y d
11

=
Y e

21

Y d
12

=
4

9
. (3.7)

The explicit forms of Y d and Y e, including CG and dij coefficients, are given later in

Eqs. 3.15 and 3.16, respectively.

3.2.4 Neutrinos

In order to obtain the CSD(3) vacuum alignment in this model we couple the neutrinos to

a set of flavons, distinguished by the Z6 symmetry. Of the superfields in Table 3.1a, only

the right-handed neutrinos and some of the flavons are charged under this symmetry. For

clarity, we relabel two of the flavon fields as φatm ≡ φ3 and φsol ≡ φ4, to highlight their

role in producing neutrino mixing. We also write N c
atm ≡ N c

1 to denote the right-handed

neutrino that dominantly leads to the atmospheric neutrino mass, and N c
sol ≡ N c

2 as

that which contributes mainly to the solar neutrino mass. The relevant terms in the

superpotential giving neutrino masses are thus

Wν = y1H5F
φatm

〈θ2〉
N c

atm + y2H5F
φsol

〈θ2〉
N c

sol + y3
ξ2

MΓ
N c

atmN
c
atm + y4ξN

c
solN

c
sol, (3.8)

where MΓ refers to the mass scale of the superfield Γ. The flavons φatm and φsol gain

VEVs

〈φatm〉 = vatm

0

1

1

 , 〈φsol〉 = vsol

1

3

1

 , (3.9)

where vatm and vsol are generally complex. Denoting the phases of VEVs as ρi = arg vi,

only the relative phase ρatm−ρsol between the VEVs is physically relevant. The flavon ξ

(already responsible for the up-type quark masses) is also acting as a Majoron [144] by

generating hierarchical right-handed neutrino masses.

H5

〈θ2〉
N c

atm FX13

φatm

X14

(a)

H5

〈θ2〉
N c

sol FX11

φsol

X12

(b)

ξ ξ

N c
atm N c

atmΓ Γ

(c)

ξ

N c
sol N c

sol

(d)

Figure 3.3: Diagrams responsible for the Dirac neutrino Yukawa terms.
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At the effective level, the Dirac terms result from coupling the neutrinos (and H5) to φatm

and φsol via the flavon θ2 (an A4 singlet carrying Z6 charge). The corresponding diagrams

with associated messengers appear in Figure 3.3. In turn, the Majorana mass term for

N c
atm is also non-renormalisable and we refer to Γ as the respective messenger. It couples

only to N c
atm and simply provides the non-renormalisable mass term for N c

atm, suppressed

relative to the mass of N c
sol. As Γ has the quantum numbers of a third right-handed

neutrino, one can also consider this field as mediating a double-seesaw mechanism. The

mixing term ξ6N c
atmN

c
sol/M

5, though allowed by the symmetries, is absent as there is no

combination of messengers able to produce it. We write 〈ξ〉 = |vξ|eiρξ , where ρξ is chosen

from a discrete set of available phases, as shown in Appendix C. This phase originates

from the spontaneous breaking of a discrete Abelian symmetry, in this case Z9.

We will now show that ρξ and ρatm−ρsol fix the relative phases within the effective

neutrino mass matrix and consequently the leptonic mixing angles. Recall from the

discussion in Chapter 2 (see Eqs. 2.16 – 2.18) that low-scale neutrino parameters are

defined in the seesaw basis, which differs from the one in which the superpotential is

defined (the SUSY basis) by complex conjugation. Within this model, let us assume

that the charged lepton Yukawa matrix is essentially diagonal, i.e. corrections from the

off-diagonal element Y e
21 are negligible. The superpotential in Eq. 3.8 leads, in the SUSY

basis, to neutrino matrices

λν =

0 b

a 3b

a b

 , M c =

y3 〈ξ〉2
MΓ

0

0 y4 〈ξ〉

 , (3.10)

where a = y1vatm/ 〈θ2〉 and b = y2vsol/ 〈θ2〉. The corresponding matrices Y ν and MR in

the seesaw basis are given by Y ν = (λν)∗ and MR = (M c)∗. The seesaw formula yields

the light neutrino matrix

mν = ma

0 0 0

0 1 1

0 1 1

+mbe
iη

1 3 1

3 9 3

1 3 1

 , (3.11)

where ma = v2
u|a|2/(y3|vξ|2/M) and mb = v2

u|b|2/(y4|vξ|). We have multiplied through-

out by an overall phase which we subsequently drop, keeping only the (physical) relative

phase

η ≡ −ρξ + 2(ρatm−ρsol), (3.12)

where we recall the above definitions of phases,

ρξ ≡ arg 〈ξ〉 , ρatm−ρsol ≡ arg[vatmv
∗
sol], (3.13)

and that CP conservation at high energies ensures that yi and M are real.
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By arguments given in Sections 3.4 (discussing vacuum alignment) and C.1 (discussing

GUT breaking), we can restrict the physical phase η to one of the nine complex roots

of unity. The values η = ±2π/3 are preferred by CSD(3). Note that the model predicts

a normal neutrino mass hierarchy, namely m3 > m2 � m1 = 0, which will be tested

in the near future. The sign of η has phenomenological significance, as it fixes the

leptonic Dirac phase δ`. Specifically, a positive η uniquely leads to negative δ`, and vice

versa. As experimental data hints at δ` ∼ −π/2, the a posteriori preferred solution has

positive η = +2π/3. We saw in the last chapter that the sign of η also has cosmological

significance: a positive η, together with the requirement that the baryon asymmetry of

the Universe (BAU) is positive, implies that the lightest right-handed neutrino should

be N c
1 = N c

atm, while N c
2 = N c

sol is heavier, which is the natural ordering in our model.

3.3 Numerical fit to data

The structure of the Yukawa matrices and neutrino mass matrix is set by the theory, up

to O(1) coefficients. The VEVs of the fields ξ, Λ24 and H24 are at or near the GUT scale,

but otherwise undetermined. This freedom coincides with the choice of coefficients in

the Yukawa matrices, providing no extra degrees of freedom in the determination of the

Yukawas other than to provide the appropriate scale. The same is true for the flavon

fields φe, φµ and φτ , which provide the necessary hierarchy in the down-type quark and

charged lepton Yukawa sector.

The neutrino matrix mν is given in Eq. 3.11. Letting vf represent the VEV of a field f ,

the Yukawa matrices are

Y u =


u11|ξ̃4| u12|ξ̃3| u13|ξ̃2|
u12|ξ̃3| u22|ξ̃2| u23|ξ̃|
u13|ξ̃2| u23|ξ̃| u33

 , (3.14)

Y d =
1√
2



1

4
d11
|vξve|
|vΛ24 |2

d12
|vξvµ|
|vΛ24vH24 |

eiζ 0

0 2d22
|vH24vµ|
M2

0

0 0 d33
|vτ |
M

 , (3.15)

Y e =
1√
2



1

9
d11
|vξve|
|vΛ24 |2

0 0

d12
|vξvµ|
|vΛ24vH24 |

eiζ 9d22
|vH24vµ|
M2

0

0 0 d33
|vτ |
M

 . (3.16)
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As already remarked, the phases in Y u from powers of 〈ξ〉 = |vξ|eiρξ can be removed

by field redefinitions. Without loss of generality we have rephased fields such that the

only phase appearing in Y d and Y e is the phase ζ as shown in Eqs. 3.15 and 3.16, so

all quark CP violation originates from the single phase ζ appearing in Y d
12. In turn, ζ is

determined by a combination of phases coming from various field VEVs; more precisely

ζ = ρξ − 2ρH24 − ρΛ24 . (3.17)

As long as it is reasonably far from zero, it can produce the necessary CP violation.

Different choices of ζ do not affect the goodness-of-fit, corresponding simply to different

but equally valid choices of O(1) coefficients. For our fit we choose ζ = π/3. Note that

the corresponding phase in Y e
21 does not contribute to leptonic CP violation, since this

term does not affect left-handed mixing, to an accuracy of O(me/mµ).

To fit the real coefficients uij , dij , ma and mb, we minimise a χ2 function, previously

defined in Eq. 2.22, given by

χ2 =
N∑
i=1

(
Pi(x)− µi

σi

)2

, (3.18)

relating the physical predictions Pi(x) for a given set of input parameters x to the best-fit

value µi and associated error σi.

As in Chapter 2, the fit presented here uses best fit values and errors from the NuFit

collaboration, version 2.0 [105], for PMNS parameters θ`ij and neutrino mass-squared

differences ∆m2
ij . These are given in Table 2.1. At the time of publication of [2], on

which much of this chapter is based, these were the most up-to-date values. Recall also

from Section 2.3.3 that the errors σi are equivalent to the standard deviation of a fit

to a Gaussian distribution. For most parameters, this is a valid interpretation, with

the exception of the (lepton) atmospheric angle θ`23, which has a bimodal distribution.

For a normal hierarchy, the distribution is roughly centered on θ`23 = 45◦, with a local

minimum in both the first and second octant. The best fit value is in the first octant,

with θ`23 = 42.3◦. As in Chapter 2, we approximate its distribution by a Gaussian about

42.3◦, setting σθ`23
= 1.6◦.

In the fit of this A4 × SU(5) model, N = 18, corresponding to six mixing angles θ`ij
(leptons) and θqij (quarks), the CKM phase δq, nine Yukawa eigenvalues for the quarks

and charged leptons, and two neutrino mass-squared differences ∆m2
21 and ∆m2

31. We

use the PDG parametrisation of the PMNS and CKM matrices. In the NuFit 2.0 global

fit the leptonic phase δ` is poorly constrained at 1σ (and completely unconstrained at

3σ), so is not fitted but left as a pure prediction of the model, as are the (completely

unconstrained) Majorana phases α21 and α31. As the model predicts only two massive

left-handed neutrinos, i.e. m1 = 0, one Majorana phase is zero, which we take to be

α31 = 0.
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The running of best-fit and error values to the GUT scale are generally dependent on

supersymmetry parameters, notably tanβ, as well as contributions from supersymmetric

threshold corrections. We extract the GUT scale CKM parameters and all Yukawa

couplings (with associated errors) from [145] for judicious choices of tanβ. In further

reference to [145], we choose for the parameter η̄b parametrising the threshold corrections

a value η̄b = −0.24375; a non-zero value is required primarily to account for a (small)

difference in b and τ Yukawa couplings. The data to which we compare the model

(including the threshold correction) is given in Table 3.2. This parametrisation of the

supersymmetric threshold corrections and running is discussed in Appendix B.

Parameter
Best fit ±1σ

tanβ = 5 tanβ = 10

θq12 /
◦ 13.027 ±0.0407 13.027 ±0.0407

θq13 /
◦ 0.1802 ±0.0140 0.1802 ±0.0140

θq23 /
◦ 2.054 ±0.192 2.054 ±0.192

δq /◦ 69.21 ±3.09 69.21 ±3.09

yu /10−6 2.92 ±0.906 2.88 ±0.893
yc /10−3 1.43 ±0.0501 1.41 ±0.0493
yt /10−1 5.34 ±0.171 5.20 ±0.157
yd /10−6 4.81 ±0.529 4.84 ±0.533
ys /10−5 9.52 ±0.514 9.59 ±0.518
yb /10−3 6.95 ±0.0896 7.01 ±0.0914

ye /10−6 1.97 ±0.0118 1.98 ±0.0119
yµ /10−4 4.16 ±0.0249 4.19 ±0.0251
yτ /10−3 7.07 ±0.0364 7.15 ±0.0371

Table 3.2: Experimental CKM and charged fermion Yukawa parameters, run
up to the GUT scale, assuming the MSSM [145]. The SUSY-breaking scale is
set at 1 TeV. We have included an overall contribution from threshold correc-
tions corresponding to η̄b = −0.225 which affects primarily the b quark Yukawa
coupling yb.

Minimisation by differential evolution was performed in Mathematica, yielding the set of

physical parameters in Table 3.3 and corresponding O(1) input coefficients in Table 3.4,

with an associated χ2 = 7.98 for tanβ = 5 and χ2 = 7.84 for tanβ = 10. The largest

single contribution to χ2 is from the fit to the atmospheric angle θ`23. The non-zero

Majorana phase is predicted to be α21 = 72◦, and is insensitive to tanβ, as indeed are

all the mixing angles and phases.

In this fit, the VEVs of ξ, Λ24, H24 and the three φe,µ,τ are fixed by hand in terms of

the scale M , which is taken to be the GUT scale, i.e. M ≈ 3 × 1016 GeV. Similarly,

the Higgs doublet VEV enters only implicitly through ma and mb, but is understood to
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take the value vH = 174 GeV. We set

vξ = 6× 10−2M, vΛ24 = M, vH24 = 3× 10−1M,

ve = 10−3M, vµ = 10−3M, vτ = 5× 10−2M.
(3.19)

The value of vξ is chosen to accommodate not only the fit to Y u parameters but also

to control the µ-term. Meanwhile the approximate factor 3 split between vΛ24 and

vH24 assists in establishing a hierarchy between the e and µ families. With the above

numerical values for the VEVs, the Yukawa matrices can be expressed in terms only of

O(1) coefficients and the complex phase ζ, as

Y u =

1.296× 10−5 · u11 2.16× 10−4 · u12 3.6× 10−3 · u13

2.16× 10−4 · u21 3.6× 10−3 · u22 6× 10−2 · u23

3.6× 10−3 · u31 6× 10−2 · u32 u33

 ,

Y d =
1√
2

1.5× 10−5 · d11 2× 10−4 · d12e
iζ 0

0 6× 10−4 · d22 0

0 0 5× 10−2 · d33

 ,

Y e =
1√
2

6.67× 10−6 · d11 0 0

2× 10−4 · d12e
iζ 2.7× 10−3 · d22 0

0 0 5× 10−2 · d33

 .

(3.20)

In order to understand the significance of the χ2 fit, and assess the strength of the

model overall, it is prudent to enumerate the parameters and predictions of the model.

The nominal parameter count at the GUT scale is very large, owing to the diverse

field content. However, at the scale where we are able to make predictions, many of

these parameters combine to give a constrained set of free parameters that need to be

determined. Notably, the VEVs of Higgs and flavon fields such as those given in Eq. 3.19

do not constitute true degrees of freedom, as they can be absorbed by redefining other

parameters.

Relevant parameters that require consideration include: six uij , four dij , masses ma

and mb, phases η and ζ, the threshold factor η̄b, and tanβ, for a total of 16 input

parameters. However three of these parameters, namely tanβ, η and ζ, are fixed prior

to the fit. Finally, the factor η̄b affects only the coupling yb and is fitted by hand. The

model fits 18 observables, ten in the quark sector and eight in the lepton sector. In

addition the model predicts the leptonic CP phase δ`, two Majorana phases (one of

which is zero) and a massless physical neutrino.
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Parameter
Value

tanβ = 5 tanβ = 10

θq12 /
◦ 13.027 13.027

θq13 /
◦ 0.180 0.180

θq23 /
◦ 2.054 2.054

δq /◦ 69.18 69.18
yu /10−6 2.92 2.88
yc /10−3 1.43 1.41
yt /10−1 5.34 5.20
yd /10−6 4.30 4.33
ys /10−5 9.51 9.58
yb /10−3 7.05 7.13

θ`12 /
◦ 34.3 34.3

θ`13 /
◦ 8.67 8.67

θ`23 /
◦ 45.8 45.8

δ` /◦ −86.7 −86.7
∆m2

21 /10−5 eV2 7.38 7.38
∆m2

31 /10−3 eV2 2.48 2.48
ye /10−6 1.97 1.98
yµ /10−4 4.16 4.19
yτ /10−3 7.05 7.13

Table 3.3: Best fit physical quark and lepton parameters.

Parameter
Value

tanβ = 5 tanβ = 10

u11 0.9566 0.9182
u12 0.7346 0.7087
u13 0.7198 0.6910
u22 0.5961 0.5768
u23 0.3224 0.3095
u33 0.5435 0.5218

d11 2.133 4.236
d12 0.8363 1.661
d22 1.108 2.200
d33 1.021 2.034

ma /meV 26.57 26.57
mb /meV 2.684 2.684

Table 3.4: Best fit input quark Yukawa coefficients uij and dij , and neutrino
mass parameters ma and mb, with fixed η = 2π/3, ζ = π/3.
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3.4 Flavon alignment

Thus far it has simply been assumed that the A4 triplet VEVs are aligned in spe-

cial directions, corresponding to CSD(3). These alignments are in fact also fixed by a

renormalisable superpotential, which we present here, including all terms allowed by the

symmetries. In doing so, the role of the Z6 symmetry becomes clearer. The method is

that of F -term alignment, which necessitates the addition of several new fields. This set

of superfields Ai and Oij with ZR4 charge 2, i.e. the driving sector, is listed in Table 3.5.

The alignment superpotential is1

Walign ∼ Aµφµφµ +Aτφτφτ +A2(φ2φ2 + φ2θ1)

+Oeµφeφµ +Oeτφeφτ +Oµτφµφτ

+Oe3φeφ3 +O23φ2φ3 +O12φ1φ2 +O13φ1φ3

+Oµ5φµφ5 +O25φ2φ5 +Oµ6φµφ6 +O56φ5φ6 +O64φ6φ4 +O14φ1φ4.

(3.21)

The inclusion of the Z6 symmetry is necessary to ensure each driving field is isolated

from all others, such that their F terms depend only on flavons. This leads to an array

of vanishing F -term conditions that force mutual orthogonality between many of the

vacuum alignments. As F terms and the orthogonality conditions necessary to produce

CSD(3) were discussed in Section 2.2 of the previous chapter, we shall not repeat them

here, and state only the results, namely

〈φe〉 ∝

1

0

0

 , 〈φµ〉 ∝

0

1

0

 , 〈φτ 〉 ∝

0

0

1

 ,

〈φ1〉 ∝

 2

−1

1

 , 〈φ2〉 ∝

 1

1

−1

 , 〈φ3〉 ∝

0

1

1

 ,

〈φ4〉 ∝

1

3

1

 , 〈φ5〉 ∝

1

0

1

 , 〈φ6〉 ∝

 1

0

−1

 .

(3.22)

The VEVs (containing two zero entries) of the flavons φe,µ,τ appear in the down-type

quark and charged lepton Yukawa matrices Y d, Y e, while the flavons φ3,4 (redubbed

φatm,sol) appear in the neutrino Yukawa matrix Y ν and subsequently the mass matrix

after seesaw, mν . It is the special structure of these vacuum alignments, combined with

the phase η in mν , that leads to the very successful prediction of the leptonic mixing

angles (as described in Section 3.3). The remaining VEVs are not directly relevant to

1 Note that the O (and P ) fields that are neutral under Z6 couple to H5H5̄ξ
n (with some power of

ξ), e.g. P22H5H5̄. We do not discuss these further as the respective F terms do not affect the alignment
nor the origin of the µ-term.
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the masses and mixings of Standard Model fermions, but help shape the VEVs of φatm

and φsol.

Field
Representation

A4 SU(5) Z9 Z6 ZR4
Aµ 3 1 3 0 2
Aτ 3 1 4 0 2
A2 3 1 7 0 2

Oeµ 1 1 6 0 2
Oeτ 1 1 2 0 2
Oµτ 1 1 8 0 2
Oe3 1 1 6 5 2
O23 1 1 5 2 2
O12 1 1 5 1 2
O13 1 1 3 3 2
Oµ5 1 1 0 4 2
O25 1 1 2 1 2
Oµ6 1 1 1 4 2
O56 1 1 7 2 2
O64 1 1 2 3 2
O14 1 1 4 3 2

(a) Alignment superfields.

Field
Representation

A4 SU(5) Z9 Z6 ZR4
Pee 1 1 0 0 2
Pµµ 1 1 3 0 2
P22 1 1 7 0 2
Pe4 1 1 7 5 2
P1e 1 1 6 4 2
P44 1 1 5 4 2
P34 1 1 4 4 2

P 1,2
33 1 1 3 4 2
P2τ 1 1 1 3 2

(b) Phase-fixing superfields.

Table 3.5: Superfields driving family symmetry breaking.

With the direction of the A4 triplet flavons φ fixed, we turn now to a discussion of how

to fix the relative phase ρatm−ρsol ≡ arg[vatmv
∗
sol] to a discrete choice. We present a

mechanism which does this by adding a number of fields Pij that are A4 and SU(5)

singlets, also given in Table 3.5, and which resemble the Oij fields except they do not

force orthogonality between the flavons φ.

These fields and their respective charge assignments result in the invariant superpotential

terms

Wphase = Pee(φeφe +M2 + P 2
ee) + Pµµ(φµφµ + Z2Z3 + P 2

µµ)

+ Pe4(φeφ4 + θ1θ2) + P22(φ2φ2 + θ1θ1)

+ P1e(φ1φe + φ6φτ ) + P44(φ4φ4 + φ5φτ ) + P34(φ3φ4 + φ6φe)

+ P 1,2
33 (φ3φ3 + φ1φµ + φ5φe) + P2τ (φ2φτ + φ3φ6 + φ4φ5),

(3.23)

where each term technically has an associated real coupling λ which is O(1) and may

be made positive by field redefinitions. We omit these for simplicity as they have no

effect on the general argument presented here, with one caveat: the two superfields P 1,2
33

have exactly the same quantum numbers but different λ couplings to flavons. Due to

this duplication there are two independent relations between the flavon VEVs involving
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different λ couplings which leads to an additional constraint on the phases of the respec-

tive VEVs. Exact values of these λ are not specified; it suffices that they are not equal.

Furthermore, the primary role of the SU(5) adjoint fields Z2 and Z3, which couple to

Pµµ, is in the GUT-breaking mechanism. Their phases are fixed separately by other

superpotential terms (see Eq. C.1).

We begin the analysis of the terms in Eq. 3.23 by noting they do not affect the alignments

of the flavons φ. The corresponding F terms for each field Pij produces a set of coupled

equations that admit a solution where none of the A, O, and P fields but all the flavons

obtain a VEV. Omitting the λ coefficients, these VEVs have the structure

ve ∼M, vµ ∼ (vZ2vZ3)
1
2 ,

vτ ∼ (vZ2 vZ3)−
1
3M

5
3 , v1 ∼ (vZ2vZ3)−

1
2 v2

3,

v2 ∼ (vZ2vZ3)−
1
6M−

7
3 v3

3, v4 ∼ (vZ2vZ3)−
1
6M

1
3 v3,

v5 ∼M−1 v2
3, v6 ∼ (vZ2vZ3)−

1
6M−

2
3 v2

3,

vθ1 ∼ (vZ2vZ3)
1
6M−

7
3 v3

3, vθ2 ∼ (vZ2vZ3)−
1
6M

11
3 v−2

3 ,

vO = vP = vA = 0.

(3.24)

Regarding the magnitudes of the VEVs, two comments are in order. We assumed above

that M sets the scale of the VEV of φe, which is in contradiction with our previous

assumption that it be O(10−3)M . This violates our simplifying assumption that all

mass scales are equal, and demonstrates that some spectrum of mass scales is in fact

required in this model. As for the VEV v3, it is driven to a specific scale Λ3 radiatively

[146].2 Writing ρi ≡ arg vi, this VEV structure gives (up to multiples of π) the phase

relation

ρ4 =
2πn

3
− 1

6
(ρZ2 + ρZ3) + ρ3, (3.25)

where n is an integer, and similar relations for the other flavons as linear combinations

of ρ3, (ρZ2 +ρZ3) and multiples of 2π/3. This is an important equation since it fixes the

relative phase ρ3 − ρ4 = ρatm−ρsol in terms of 1
6(ρZ2 + ρZ3). We show in Appendix C

that ρZ2 + ρZ3 = 2πk′

3 , where we also establish that ρξ = 2πk
9 , for integers k, k′. From

Eq. 3.12, η ≡ −ρξ + 2(ρatm−ρsol), so we conclude that η is one of the nine complex roots

of unity.

3.5 Aspects of GUT breaking

Let us now summarise features of the complete model related to the breaking of SU(5)

down to the Standard Model, including the resolution to the doublet-triplet splitting

problem. We also find that new proton decay operators are naturally suppressed in this

2 For examples of this mechanism in other models, see e.g. [147–151].
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model due to the presence of flavour symmetries. The bulk of this discussion on GUT

breaking is deferred to Section C.1 of Appendix C.

GUT breaking in this model arises from a superpotential involving adjoint Higgs super-

fields H24, Λ24, and the flavon ξ, and is driven by three SU(5) adjoints Z1,2,3. These were

briefly encountered in the term PµµZ2Z3 which appears in the flavon driving superpoten-

tial in Eq. 3.23. The superpotential, given in Eq. C.1, contains two non-renormalisable

terms which come from renormalisable diagrams involving new adjoint messengers Υ.

All adjoints acquire GUT-scale VEVs which break SU(5) to the Standard Model gauge

group. The ZR4 R symmetry is also broken at this scale, with a residual Z2 matter parity

remaining.

Doublet-triplet splitting proceeds by the MP mechanism, which requires the addition of

several new particles: at least one pair in the 50 + 50 representations of SU(5), and (at

least) one 75, which acquires a GUT-scale VEV. In this model, we label the 50 and 50

by Ωi, and the 75 by Πi; they are listed in Table C.1b, giving rise to the superpotential

in Eq. C.5. The mechanism works as follows: first, we forbid any terms where the

Higgs superfields H5,5 and H45,45 (all containing MSSM-like doublets) couple to adjoint

Higgs, which would give the doublets GUT-scale masses. They couple instead to the

50 + 50 superfields Ωi, which do not contain SU(2) doublets (that are not also colour

non-singlets). The Higgs doublet mass matrix is therefore zero at this stage, while the

triplet mass matrix, which mixes triplets within the 5-, 45- and 50-dimensonal Higgs

superfields, is populated by elements depending on 〈Πi〉 ∼ M , with all eigenvalues at

the GUT scale. The MSSM µ term instead arises due to a single term H5H45Π1ξ
8/M8

allowed by the symmetries and messengers. As 〈ξ〉 �M , this term is highly suppressed,

giving µ�M .

A classic problem in any GUT is that it allows for interactions that mediate proton

decay, which must be kept under control. We find in this model that proton decay from

new operators is strongly suppressed, due to the presence of multiple symmetries. Most

dangerous are the “dimension-5” operators which lead to B-violating operators like qqq`

at the low scale (for a discussion of dimension-6 operators we refer the reader to [127]).

In SU(5), the relevant terms resemble TTTF , which are forbidden by the symmetries

of the model. However, related higher-order operators are allowed of the form

TiTjTkF
Zφ

M3

(
ξ

M

)nijk
, (3.26)

where the extra superfields shown are needed for such terms to be invariant under

the symmetries. Since we are working with a renormalisable theory, in order for such

effective term to be present at the GUT scale with M ∼MGUT, there must be messengers

allowing them. In this case, an analysis of the SU(5) index structure revels there should

either be messengers that in SU(5) representations 10 or 5 that are also charged under

ZR4 .
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As one can confirm from Table 3.1b, our model has neither: 10 messengers were not

used, and the 5 messengers are all neutral under ZR4 . We conclude therefore that our

symmetry content, together with the existing set of messengers, do not allow any such

GUT scale-suppressed operators that would lead to excessively fast proton decay to be

generated. The operators in Eq. 3.26 may in principle be generated by physics at the

Planck scale, with the scale M replaced by the Planck mass, leading to highly suppressed

proton decay.

3.6 The strong CP problem

This model has the rather serendipitous benefit of containing a possible solution to the

strong CP problem, of the Nelson-Barr type [152–155]. Before demonstrating how this

solution appears in the model, let us review the problem itself. Although generally not

written down, the Standard Model allows the term

g2
sθ0

32π2
GG̃, (3.27)

where G is the gluon field strength and G̃ its dual. The phase θ0 can a priori take any

value; it is reasonable to assume it is O(1). This term breaks CP , which is problematic

as there is no evidence that CP is broken in the strong sector – all known CP violation

is mediated by W bosons.

One may imagine that some form of CP symmetry may be enforced that prohibits the

dangerous topological term. However, the effective angle θ0 also receives corrections

from the quark mass matrices, encoded in an angle θq = arg det[MuMd]. Therefore we

should consider the physical angle θ̄ = θ0− θq. The most stringent experimental bounds

on θ̄ come from measurements of the neutrino electron dipole moment [156], and set an

upper bound

θ̄ < 10−10. (3.28)

Some degree of CP violation must exist in the quark mass matrices due to a non-zero

phase δq, suggesting that even if θ0 = 0 is enforced by the theory, strong CP violation

might re-emerge in θq.

In short, ensuring such an extremely small value is non-trivial. It is possible that there

is simply a cancellation of one in 1010 such that the physical angle θ̄ is sufficiently small,

although this fine-tuning is aesthetically unappealing. It is also interesting to compare

this to CP violation related to the weak interaction in the quark sector. The relevant

quantity is the Jarlskog invariant Jq ∼ det[Y uY u†, Y dY d†], which, when compared to

data, is required to be non-vanishing, and indeed in the standard parameterisation,

requires a large phase angle δq ∼ 1.
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In the literature there are two popular mechanisms for solving the strong CP problem,

based on very different physical principles.3 Perhaps the most popular solution is the

Peccei-Quinn mechanism [158, 159]. The key ingredients are a global U(1)PQ symmetry

and one new scalar field ϕ charged under the symmetry. Moreover, some coloured

particles (either known or newly imagined ones) are also charged under this U(1)PQ,

which is spontaneously broken by the VEV of ϕ, giving rise to a Goldstone mode known

as the axion. This axion couples via a QCD anomaly to GG̃, giving rise to a term that

of the same form as the topological term in Eq. 3.27. In the vacuum, the axion naturally

relaxes the total topological term to zero, thereby solving the strong CP problem. The

QCD axion is also an excellent dark matter candidate, offering an alternative to the

WIMP paradigm.

An alternative, which does not rely on the introduction of new symmetries or field

content per se, is known as the Nelson-Barr resolution. The idea relies on being able to

set θ0 and θq individually to zero. The former is rather trivially done by assuming a CP

symmetry at the high scale that forbids the term proportional to θ0. Next, one must

ensure that after spontaneous violation of CP , one maintains θ̄ < 10−10 and in particular

θq < 10−10, while at the same time allowing a large CKM phase δq. We proceed by

example, showing how this is achieved in this A4 × SU(5) model, demonstrating also

the practical difficulties associated with this approach.

The solution lies in the particular forms of the quark Yukawa matrices. Recall from

Eqs. 3.2 and 3.5 that the quark Yukawa matrices take the form

Y u ∼

ξ̃
4 ξ̃3 ξ̃2

ξ̃2 ξ̃

1

 , Y d ∼


〈ξ〉 ve
v2

Λ24

〈ξ〉 vµ
vΛ24vH24

0

0
vH24vµ
M2

0

0 0
vτ
M

 , (3.29)

where ξ̃ = 〈ξ〉 /M , and vi denote the VEVs of various superfields. First, note that Y u

can be made explicitly real by rephasing quark fields. If ρξ = arg 〈ξ〉, all phases may be

eliminated by multipling the first row and column by e−2iρξ , and the second row and

column by e−iρξ . Next, the diagonal elements of Y d can also be made real by appropriate

rephasings. A single phase remains in the (1,2) element of Y d, which sources the CKM

phase. On the other hand, the determinant of Y d is real, simply given by the product

of the diagonal entries, due to the fact that the (2,1) element is zero. In other words,

arg det[Y uY d] is zero. But this is simply the definition of θq, nominally suggesting that

the strong CP problem has been solved, as a result of particular matrix structures in the

model. This is similar to the original proposal by Nelson and Barr, where the triangular

3 In principle a third possibility exists: if the up quark is massless, there is one additional degree
of freedom in the quark mass matrix which may be used to rotate away the strong CP angle, i.e. it
becomes unphysical. However, a massless up quark is now ruled out by experiment [23] and lattice QCD
[157].
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form of Yukawa matrices was proposed, although in our model θq vanishes due to the

triangular form of Y d only, with Y u being non-triangular and real.

On the other hand, the triangular matrix structure relies on a zero Yukawa coupling

Y d
21, which can conceivably be spoiled by higher-order corrections, violating the bound

θq < 10−10. For a successful resolution of the strong CP problem, such corrections to

the Yukawa matrices must be forbidden or sufficiently suppressed. Encouragingly, in our

model such higher order corrections are absent at the field theory level with the specified

messenger sector. Pollution in the Yukawa matrix would arise from the coupling of the

bilinears T2H5̄ or T2H45 to the bilinear φeF . Since these terms are non-renormalisable,

we require messengers to form them. The messengers that could produce such terms are

the Xi fields in Table 3.1b, but the only allowed connection to φeF with these messengers

is T1H5̄ (contributing to Y d
11). The required Y d

21 = 0 appears protected from higher-order

corrections.

Before declaring victory, we must also consider the effect of corrections arising from

interactions at the Planck scale, since such operators only have to respect the symmetries

of the model, and do not require a specified messenger sector to generate them. The

lowest-order contribution comes from the term4

T2H5̄
φe
MP

F. (3.30)

With a general choice of phase, such a term would lead to θq ∼ 10−4, which is far too big.

This contribution to θq may be avoided by a judicious choice of GUT-breaking phases.

As stated in Eq. 3.17, the physical phase in the down-type quark Yukawa matrix is

ζ = ρξ − 2ρH24 − ρΛ24 . The new Planck-suppressed term has a phase ζ ′ = −ρξ + 2ρΛ24 .

Choosing a relation between phases 2ρH24 = ρΛ24 gives ζ = −ζ ′ and the contribution to

θq vanishes. As shown in Section C.1 (see Eq. C.2), these phases are discretised, given

as third roots of real O(1) parameters λi, which are coefficients of the renormalisable

GUT-breaking superpotential. The relation 2ρH24 = ρΛ24 which makes the contribution

to θq vanish, occurs in one in three cases.

The second-largest contribution comes from a term

T2H4̄5
ξ2φe
M3
P

F, (3.31)

giving θq ∼ 10−14 which is several orders of magnitude below the current experimental

bound. Any other Planck-suppressed terms allowed by the symmetries are at higher

order, so we need not consider them. Finally, extra contributions may come from

supersymmetry-breaking terms. If we assume that there is no extra CP violation in

this sector, which is controlled by the (spontaneously) CP -violating flavons, such con-

tributions to θ̄ are also expected to be negligible [160]. In summary, the model can

4 This term would also give a contribution to lepton angles of O(10−3) which is negligible.
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resolve the strong CP problem without introducing an axion, even in the presence of

higher-order operators.

3.7 Leptogenesis

In Section 2.4 it was shown that the CSD(n) vacuum alignments can, for 3 ≤ n ≤ 5,

explain the observed baryon asymmetry of the Universe through N1 leptogenesis. That

calculation first appeared in [3], which also discusses leptogenesis in theA4×SU(5) model

of this chapter. In fact, the implementation of CSD(3) in this model conforms closely

to the simplest scenario, characterised by two right-handed neutrinos with a diagonal

mass matrix MR, a diagonal charged lepton Yukawa matrix Y e, and the two columns of

the neutrino Yukawa matrix Y ν populated by the CSD(n) alignments proportional to

(0, 1, 1) and (1, n, n−2). The main deviation in the current model from this setup is that

Y e is not quite diagonal: it contains also a non-zero (1, 2) element. However, its effect on

the leptogenesis calculation is negligible: the necessary basis transformation that makes

Y e diagonal induces negligible corrections (of O(1%)) to the CSD(3) alignment.

As such, we can immediately apply the results from Chapter 2 to this model. We recall

that the leptogenesis calculation is performed in the SUSY basis, defined as in Eq. 2.26

by

Wν = yiatmHLiN
c
atm + yisolHLiN

c
sol +MatmN

c
atmN

c
atm +MsolN

c
solN

c
sol, (3.32)

with diagonal charged leptons and right-handed neutrinos, and where the columns of

the neutrino Yukawa matrix λν are yatm = (0, a, a) and ysol = (b, nb, (n − 2)b). We

immediately identify the right-handed neutrino masses M1 = Matm and M2 = Msol.

This may be compared to the superpotential in Eq. 3.8 that defines the neutrino sector

in the A4 × SU(5) model,

Wν = y1H5F
φatm

〈θ2〉
N c

atm + y2H5F
φsol

〈θ2〉
N c

sol + y3
ξ2

MΓ
N c

atmN
c
atm + y4ξN

c
solN

c
sol, (3.33)

we identify the parameters a, b, M1 and M2 as

a = y1
vatm

〈θ2〉
, b = y2

vsol

〈θ2〉
, M1 = y3

(vξ)
2

MΓ
, M2 = y4vξ. (3.34)

For convenience we can also specify the parameters of mν ,

ma =
v2
u|a|2
M1

=

∣∣∣∣∣y2
1v

2
uv

2
atmMΓ

y3 〈θ2〉2 v2
ξ

∣∣∣∣∣ , mb =
v2
u|b|2
M2

=

∣∣∣∣∣ y2
2v

2
uv

2
sol

y4 〈θ2〉2 vξ

∣∣∣∣∣ . (3.35)

As noted in Section 2.4, the Yukawa matrices λν and Y ν corresponding to the SUSY

and seesaw bases, respectively, are related by conjugation, i.e. Y ν = (λν)∗.



Chapter 3 An A4 × SU(5) model 85

Recall that the final asymmetry YB may be written as a sum over lepton flavour contri-

butions, YB = (10/31)
∑

α Y∆α , where

Y∆α = η1,α[YN1 + YÑ1
]ε1,α. (3.36)

The CP asymmetry ε1,α arises from the interference between diagrams describing right-

handed neutrino decays, while the efficiency factors η1,α contain information about

washout. In CSD(n), we find (see Eq. 2.51)

YB =
675

31π5g∗

M1mb

v2
u

η1,µ(n− 1)2 sin η. (3.37)

The dependence on the model parameters mb, M1 and M2 is explicit, while the efficiency

factors η1,α depend on ma.

The relevant best fit input parameters from our model are given in Table 3.4, with corre-

sponding physical predictions in Table 3.3. In order to calculate η1,α one generally needs

to solve the associated Boltzmann equations. However, by the arguments presented in

the Chapter 2, in the CSD(n) framework we may use known results from [108] to esti-

mate η1,α. The parameters m̃1,α were also discussed earlier (see Eq. 2.43), where it was

shown that m̃1,µ = m̃1,τ = ma. The model fit gives ma = 26.57 meV, which implies

log10(AµµKµ) = log10(AττKτ ) = 1.027. With this we obtain, from the solutions given

in [108],

η1,µ = η1,τ ≈ 0.0236. (3.38)

The decay asymmetries given in Eq. 2.37 are calculated by

ε1,µ = 3ε1,τ =
9

4π

M1mb

v2 sin2 β
sin η

≈ 6.01× 10−7

[
M1

1010 GeV

]
.

(3.39)

Using the above estimates, we may obtain from Eq. 2.51 the BAU for this model,

YB ≈ 2.2× 10−11

[
M1

1010 GeV

]
. (3.40)

Comparison with the experimental value of YB thus fixes the lightest right-handed neu-

trino mass to

M1 ≈ 3.9× 1010 GeV. (3.41)

As shown in Eq. 3.34, in this model the right-handed neutrino mass is M1 = y3(vξ)
2/MΓ,

where MΓ is the renormalizable mass of the messenger Γ that allows this term and can

be MΓ ∼MP . This fixes the arbitrary dimensionless constant to be y3 ∼ 0.3, hence the

BAU is achieved without extra tuning of parameters. Fixing the mass M1 also fixes the

parameter a in the Yukawa matrix to be a ≈ 0.006, defined in Eq. 3.34.
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3.8 Summary of features

We have presented a SUSY GUT based on SU(5) with an A4×Z9×Z6 family symmetry

and a discrete ZR4 R symmetry, which is broken to the MSSM with matter parity. It

realises the CSD(3) vacuum alignments with (nearly) diagonal charged leptons, which

successfully explains all observed neutrino masses and mixing with only three free param-

eters, while predicting a CP phase δ` ≈ ±π/2. It can also explain the observed baryon

asymmetry of the Universe by thermal leptogenesis from the lightest right-handed neu-

trino. In the quark sector, mixing occurs from a discrete variant of the Froggatt-Nielsen

mechanism, while CP violation arises from a single term in the down-type quark sector.

The model is renormalisable at the GUT scale, with both GUT and family symmetry

breaking addressed (the former in an appendix), ensuring also doublet-triplet splitting

via the missing partner mechanism, and a µ term as low as TeV scale. In addition,

proton decay from higher-dimensional operators are shown to be strongly suppressed.

The strong CP problem is resolved in the model without the inclusion of axions, due to

the particular Yukawa matrix structures predicted by the model.



Chapter 4

A ∆(27) × SO(10) model

Given the phenomenological success of the CSD(3) alignments and their incorporation

into the SU(5) SUSY GUT of the previous chapter, we wished to see if CSD(3) can also

be realised in SO(10), which features a more elegant and complete unification of quarks

and leptons; ∆(27) was found to be a suitable candidate for the family symmetry. For

a list of flavoured GUTs based on SO(10) with discrete family symmetry, see [147, 148,

161–174]. Family and gauge unification leads in this model to distinct structures for the

fermion mass matrices, and a successful fit of model parameters to the known masses

and mixing parameters is found. The contents of this chapter are derived primarily from

[4], where the model was first proposed, and [5], which discusses thermal leptogenesis.

4.1 Overview of the model

The model is based on ∆(27) × SO(10), with a CP symmetry at the high scale. The

choice of ∆(27) is primarily due to the fact that it has both triplet and antitriplet

representations. It is not possible to construct any invariant with only two triplets

(or two antitriplets), which is convenient as is immediately forbids many potentially

dangerous terms involving the superfield Ψ, which is a spinorial 16 of SO(10) and a

triplet of ∆(27) and thereby unifies all known fermions into a single representation. In

addition, the non-trivial singlets of ∆(27) are useful, as they are used to give rise to

CP -violating phases that are related to the group rather than arbitrary parameters in

the Lagrangian.1 We therefore describe this as spontaneous geometrical CP violation

[175–183], in this model in a novel form, as it fixes relative phases between distinct

flavons. The model has many attractive features, including the use of only the lower-

dimensional “named” representations of SO(10), i.e. the singlet, fundamental, spinor

or adjoint representations. SO(10) is broken via SU(5) with doublet-triplet splitting

1 The latter scenario was encountered in the A4 × SU(5) model of Chapter 3, where the single input
phase η in the neutrino mass matrix was constrained to one of the ninth roots of unity.
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achieved by a version of the Dimopoulos-Wilczek (DW) or missing VEV mechanism

[184–186].

The model is renormalisable at the GUT scale, and also involves a discrete Z9 × Z12 ×
ZR4 symmetry. We identify all global symmetry groups other than ZR4 as family (or

flavour) symmetries, which are broken close to the GUT-breaking scale to yield the

MSSM supplemented by a right-handed neutrino seesaw mechanism. ZR4 is a discrete R

symmetry and the origin of the MSSM matter parity which protects the LSP, a possible

WIMP dark matter candidate.

The model is realistic in the sense that it provides a successful (and natural) descrip-

tion of the quark and lepton (including neutrino) mass and mixing spectra, including

spontaneous CP violation. The low-scale Yukawa structure is dictated by the coupling

of matter to ∆(27) antitriplets φ whose VEVs are aligned in the CSD(3) directions by

a superpotential. Light physical Majorana neutrinos masses emerge from a specific im-

plementation of the seesaw mechanism within SO(10). Furthermore, the model is fairly

complete in the sense that both GUT and family symmetry breaking are addressed,

including doublet-triplet splitting and the origin of the MSSM µ term.

The basic goal of the flavour sector in these models is to couple the Standard Model

fermions to flavons φatm, φsol and φdec which acquire CSD(3) VEVs

φatm ∝

0

1

1

 , φsol ∝

1

3

1

 , φdec ∝

0

0

1

 . (4.1)

We achieve this in a way that is compatible with an SO(10) GUT, where all fermion

states are united such that left- and right-handed fermions transform equally under

the family symmetry. Since SO(10) constrains the Dirac couplings of all leptons and

quarks to be equal within a family, up to possible Clebsch-Gordan (CG) factors, it is

actually rather non-trivial that the successful scheme in the lepton sector will translate

to success in the quark sector. We find that we can attain good fits to data for quark and

lepton masses, mixings and phases. In a sense this degree of unification is a significant

improvement over the SU(5) model in the previous chapter, wherein only the three

generations of fermion 5̄s were unified into a triplet of the A4 family symmetry (while

the 10s and neutrino 1s were family singlets).
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4.2 Yukawa sector

4.2.1 Field content and superpotential

The most important field content is given in Table 4.1, while in Table 4.2 we list the

messenger superfields with R charge 1, which are integrated out to give the superpo-

tential in Eq. 4.3. The MSSM matter content is collected in Ψ. Higgs superfields are

typically denoted by their SO(10) representation, with two 10s that couple respectively

to the up-type and down-type MSSM matter at the low scale. Specifically, the two

MSSM Higgs SU(2) doublets Hu and Hd arise from Hu
10 and Hd

10, where one only gets

a VEV in the Hu direction and the other in the Hd direction. If we didn’t have the two

H10 we would get the erroneous relation

md
ij tanβ = mu

ij , (4.2)

which gives no CKM mixing. The H16 breaks SO(10) → SU(5) and gives masses to

right-handed neutrinos.

Field
Representation

∆(27) SO(10) Z9 Z12 ZR4
Ψ 3 16 0 0 1

Hu
10 1 10 6 0 0

Hd
10 1 10 5 0 0

H45 1 45 0 0 0
H ′45 1 45 0 3 0
HDW 1 45 6 0 2
H16 1 16 6 0 0
H16 1 16 2 0 2

φdec 3 1 6 0 0

φatm 3 1 1 0 0

φsol 3 1 5 6 0
ξ 1 1 1 0 0

Table 4.1: Matter, Higgs and CSD(3) flavon superfields.

The flavons φi are antitriplets under ∆(27), named in accordance with their respective

roles in the CSD(3) scheme. The messengers are typically indexed by their Z9 charge,

while each prime tick (′) corresponds to an additive Z12 charge of 3.

The H45 obtains a VEV that breaks SU(5) to the Standard Model group, i.e. SU(5)→
SU(3) × SU(2) × U(1). As we will see, it also provides the necessary CG coefficients

to give the correct masses to Standard Model fermions. Since it has no Z charge and

the messengers are in the 16 representation, these can have a renormalizable mass or a

mass depending on 〈H45〉.
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Field
Representation

∆(27) SO(10) Z9 Z12 ZR4
χi 1 16 i ∈ {1, 5, 6, 7} 0 1
χi 1 16 i ∈ {8, 4, 3, 2} 0 1

χ′′i 1 16 i ∈ {5, 6, 7} 6 1
χ′′i 1 16 i ∈ {4, 3, 2} 6 1

χ′6 1 16 6 3 1
χ′′′3 1 16 3 9 1

Ωi 1 1 i ∈ {0, ... , 8} 0 1
Ω′′i 1 1 i ∈ {3, 4, 5, 6} 6 1

Table 4.2: Messengers with unit R charge.

The Yukawa superpotential that produces the quark and lepton mass matrices is

WY = ΨiΨjH
u
10

φidecφ
j
dec

2∑
n=0

λ
(u)
dec,n

〈H45〉nM2−n
χ

+ φiatmφ
j
atmξ

3∑
n=0

λ
(u)
atm,n

〈H45〉nM3−n
χ

+φisolφ
j
solξ

2
4∑

n=0

λ
(u)
sol,n

〈H45〉nM4−n
χ

+ φisolφ
j
decξ

(
λ

(u)
sd,1

〈H ′45〉2Mχ

+
λ

(u)
sd,2

〈H ′45〉2 〈H45〉

)
+ ΨiΨjH

d
10

φidecφ
j
decξ

3∑
n=0

λ
(d)
dec,n

〈H45〉nM3−n
χ

+ φiatmφ
j
atmξ

2
4∑

n=0

λ
(d)
atm,n

〈H45〉nM4−n
χ

+φisolφ
j
solξ

3
5∑

n=0

λ
(d)
sol,n

〈H45〉nM5−n
χ


+ ΨiΨjH16H16

[
φidecφ

j
decξ

3 λ
(M)
dec

M2
χM

4
Ωdec

+ φiatmφ
j
atmξ

4 λ
(M)
atm

M3
χM

4
Ωatm

+φisolφ
j
solξ

5 λ
(M)
sol

M4
χM

4
Ωsol

]
,

(4.3)

where λ
(f)
i,n are constants, presumed O(1). The singlet field ξ acquires a VEV slightly be-

low the GUT scale, and is primarily responsible for the mass hierarchy between fermions

through the Froggatt-Nielsen mechanism. In fact, the VEV of ξ arises in two different

contexts: explicitly as in the superpotential above, as well as implicitly in the actual

triplet flavon VEVs themselves, which are driven to slightly different scales by the su-

perpotential. The details of this mechanism are discussed in Section C.2 of Appendix C.

Each term in the above superpotential has an associated scale derived from the VEVs of

the messengers that produce it. These are generally different, but for simplicity we refer

to them all as Mχ when they are produced by pairs of SO(10) spinor messengers χ and

χ. We make a special note of cases where scale differences have important consequences
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for the model, in particular writing MΩdec
, MΩatm and MΩsol

as the combinations of

messenger masses that appear in these respective terms.

While the superpotential in Eq. 4.3 is rather complex, due to the presence of multiple

sums over λ parameters, mass scales, and the VEV of H45, these sums result in a single

numerical factor each at low scales. The apparent complexity of the exact superpotential

obscures the quite simple and regular structure that ultimately dictates the fermion

mass and Yukawa matrix structure. To see this structure more clearly, we suppress all

numerical factors, which yields

WY = ΨiΨjH
u
10

[
φidecφ

j
dec + φiatmφ

j
atmξ + φisolφ

j
solξ

2 + φisolφ
j
decξ

]
+ ΨiΨjH

d
10ξ
[
φidecφ

j
dec + φiatmφ

j
atmξ + φisolφ

j
solξ

2
]

+ ΨiΨjH16H16ξ
3
[
φidecφ

j
dec + φiatmφ

j
atmξ + φisolφ

j
solξ

2
]
.

(4.4)

The first line will give up-type quark and neutrino Yukawa couplings, the second gives

down-type quark and charged lepton Yukawa couplings, while the last line gives right-

handed neutrinos Majorana masses. Each antitriplet flavon pair φiφj corresponds to a

numerical 3× 3 matrix. With the exception of the pair φsolφdec, the resultant matrices

are all rank 1. It is immediately clear that there is a large degree of uniformity in the

Yukawa superpotential, which is reflected in the mass and Yukawa matrices presented

shortly.

The renormalisable superpotential that gives Eq. 4.3 can be inferred from the diagrams

that produce each term, which are given in Figures 4.1, 4.2 and 4.6. We now proceed

to establish the fermion mass matrices, including the light neutrino mass matrix after

seesaw.

4.2.2 Dirac mass matrices

The diagrams involving messengers that give the Yukawa terms in the up sector are

shown in Figure 4.1, while the diagrams for the down sector are in Figure 4.2. Note

that in these and all future diagrams, solid lines correspond to fields with odd R-charge,

while dashed lines signify even R-charge.

There are several more diagrams that can be written wherein messenger pairs couple to

the H45. Specifically, since the H45 has no charge under any of the Z symmetries and

is a real representation, it may replace a renormalizable mass diagram as in Figure 4.3.

This is the reason for the sum of terms with different powers of 〈H45〉 and Mχ appearing

in the superpotential.

The H45 acquires a VEV with a magnitude v45 ∼ MGUT, which breaks SU(5) to the

Standard Model group, and leads to CG relations which separate the fermion Yukawa
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φ̄dec Hu
10

Ψ Ψχ̄3 χ̄3χ6χ6

φ̄dec

(a)

φ̄atm ξ

Ψ χ̄8 χ1

Hu
10 φ̄atm

Ψχ1χ̄7 χ̄8χ2

(b)

φ̄sol ξ

Ψ χ̄′′
4 χ′′

5

Hu
10 ξ

Ψχ′′
6χ̄′′

3 χ̄′′
3χ′′

6

φ̄sol

χ′′
5 χ̄′′

4

(c)

φ̄sol ξ

Ψ χ̄′′
4 χ′′

5

Hu
10

Ψχ′′′
6χ̄′′

3 χ̄3χ′
6

φ̄dec

〈H ′
45〉 〈H ′

45〉

(d)

Figure 4.1: Diagrams coupling Ψ to Hu
10, giving the up-type quark and Dirac

neutrino Yukawa terms.

couplings. As an example, consider the down-type quarks: at the low scale, the super-

potential resembles

WMSSM ∼ dLdRHd

(
y1

M2
χ

+
y2

v45Mχ
+
y3

v2
45

)
. (4.5)

We may use the parameters yi to fit all the masses.2 We assume H45 acquires a real

VEV; the superpotential that fixes 〈H45〉 is given in Section C.3 of Appendix C. The

linear combinations of coefficients yi thus yield a single effective real coefficient which is

typically different for each generation, and different for each of the up, down, charged

lepton, and neutrino sectors.

As noted above, a consequence of SO(10) unification and the superpotential structure

is that all fermion Dirac matrices have the same generic structure. More precisely, after

the flavons acquire VEVs in the CSD(3) alignment, the Dirac mass matrices are given

2 For the third family we have three yi, with four for the second family, and five for the first family.
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φ̄dec ξ

Ψ χ̄3 χ6

Hd
10 φ̄dec

Ψχ6χ̄2 χ̄3χ7

(a)

φ̄atm ξ

Ψ χ̄8 χ1

Hd
10 ξ

Ψχ2χ̄7 χ̄7χ2

φ̄atm

χ1 χ̄8

(b)

φ̄sol ξ

Ψ χ̄′′
4 χ′′

5

ξ Hd
10

Ψχ̄′′
2χ̄′′

3 χ′′
7χ′′

6

ξ

χ′′
6 χ̄′′

3

φ̄sol

χ′′
5 χ̄′′

4

(c)

Figure 4.2: Diagrams coupling Ψ to Hd
10, giving the down-type quark and

charged lepton Yukawa terms.

Mχ

H45

Figure 4.3: Diagram showing the replacement of a messenger mass term by a
H45 VEV. The symmetries of the model allow for any mass insertion Mχ to be
replaced by an H45χχ vertex, leading to extra superpotential terms.

by

mf = µfa 〈φatm〉i 〈φatm〉j + µfs 〈φsol〉i 〈φsol〉j + µfd 〈φdec〉i 〈φdec〉j

= mf
ae

2iρatm

0 0 0

0 1 1

0 1 1

+mf
s e

2iρsol

1 3 1

3 9 3

1 3 1

+mf
de

2iρdec

0 0 0

0 0 0

0 0 1

 ,
(4.6)

where µfi are coefficients derived from the Hu,d
10 , H45 and ξ VEVs, and ρi are the phases

of flavon VEVs. This structure however does not include an additional contribution to

up quark mass matrix, which arises from a mixed term in WY (Eq. 4.3, line 2). Allowed

by the symmetries and messengers, it is proportional to φsolφdec, and couples to Hu
10 but

not Hd
10. This term leads to the additional contribution to the up quark mass matrix

mu
sd e

iρsd

0 0 1

0 0 3

1 3 2

 . (4.7)

This mixed term is not allowed for the Hd
10 due to a lack of messengers able to produce it.
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In Figure 4.4, we see how this mixed term would have had to be built with an Hd
10. Since

there is no field χ′′′7 to build this diagram, it isn’t allowed. There are no messengers that

allow us to build other mixed terms (involving different pairs of flavons); even if there

were, they would be highly suppressed. Without the term in Eq. 4.7, the fit to CKM

parameters is quite poor, whereas with this term included, a good fit can be found.

Ψ

φ̄sol φ̄decξ Hd
10 ξ

〈H ′
45〉 〈H ′

45〉
χ̄′′
4 χ′′

5 χ′′′
7χ̄′′

3 χ̄2 χ6χ′
6 χ̄3 Ψ

!

Figure 4.4: Hypothetical diagram that would produce a mixed term involv-
ing Hd

10, φsol and φdec. As the required messenger χ′′′7 is absent, this term is
forbidden.

The mixed term does not contribute to down-type quarks or charged leptons, since it

only involves Hu
10. Furthermore, due to its structure it does not contribute to neutrino

masses either. To see this we may decompose the contribution to neutrinos from the

diagram in Figure 4.1d, at the SU(5) level. We adopt the naming convention where the

SU(5) representation is labelled by its dimension, with its parent SO(10) field given as

a subscript. The left-handed neutrinos are in 5Ψ and the right-handed neutrinos are

the 1Ψ. The hypothetical diagram would be in Figure 4.5. We see that the part of

the diagram that is emphasized with a red circle involves one adjoint and two SU(5)

singlets. This is zero, therefore the whole diagram is zero.

5̄Ψ

φ̄sol ξ 24H ′
45

5Hu
10

24H ′
45 φ̄dec

!
5χ̄′′

4
1Ψ1χ̄3

1χ′′′
6

5̄χ′
6

5χ̄′′
3

5̄χ′′
5

Figure 4.5: Null contribution from the φsolφdec mixed term to neutrinos.

As 〈H45〉 is assumed real, the only phases contributing to the mass matrices are therefore

ρatm, ρsol and ρdec, the phases of 〈φatm〉, 〈φsol〉 and 〈φdec〉 respectively, as well as ρξ, the

phase of 〈ξ〉. We define the dominant phase as the phase of the second (sol) matrix in

the seesaw basis where the first (atm) matrix is real, i.e.

η ≡ − arg

[
〈φsol〉2

〈φatm〉2
〈ξ〉
]

= −2(ρsol − ρatm)− ρξ. (4.8)

Similarly the subdominant phase of the third (dec) matrix is

η′ ≡ − arg

[
〈φdec〉2

〈φatm〉2
1

〈ξ〉

]
= −2(ρdec − ρatm) + ρξ. (4.9)

It will turn out that these definitions of the phases apply also for the effective neutrino

mass matrix after seesaw.
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4.2.3 Neutrinos

The right-handed neutrino Majorana terms (last two lines of Eq. 4.3) are produced by

the diagrams in Figure 4.6. If we decompose these diagrams into SU(5) components, the

base line would be all singlets. Therefore there can be no contribution coming from the

H45 nor the H ′45 and there is no mixed term allowed. In other words, the diagrams shown

are the only contributions to the right-handed neutrino mass matrix. Even though they

appear suppressed by many orders of the messenger scales, these terms attain scales

that are phenomenologically desirable. It is usual for the right-handed neutrino masses

to be in the range 1010 − 1014 GeV. The VEV H16 breaks SO(10)→ SU(5) and thus is

at or slightly above the GUT scale, while the messenger scales, generically labelled M ,

are yet higher, such that messengers may be integrated out. Recalling that ξ gains a

VEV roughly an order of magnitude below the GUT scale, we have ξ < 〈H16〉 . M and

this way we may obtain the correct scale for right-handed neutrino masses.

Ψ Ψ

φ̄dec φ̄decH16 ξ ξ ξ H16

χ̄3 χ6 Ω6 Ω3 Ω5 Ω4 Ω4 Ω5 Ω3 Ω6 χ6 χ̄3

(a)

Ψ Ψ

φ̄atm H16ξ H16 ξ ξ ξ φ̄atm

χ̄8 χ1 χ̄7 χ2 Ω1 Ω8 Ω0 Ω0 Ω8 Ω1 Ω7 Ω2 χ̄8χ1

(b)

Ψ Ψ

φ̄sol H16ξ H16 ξ ξ ξ ξ φ̄sol

χ̄′′
4 χ′′

5 χ̄′′
3 χ′′

6 Ω′′
6 Ω′′

3 Ω′′
5 Ω′′

4 Ω′′
4 Ω′′

5 Ω′′
3 Ω′′

6 χ̄′′
3χ′′

6 χ′′
5 χ̄′′

4

(c)

Figure 4.6: Diagrams responsible for the right-handed neutrino Majorana
masses.

The right-handed Majorana mass matrix is constructed using the same flavon pairs as

the Dirac matrices, and will have the same structure, as given in Eq. 4.6. It is also true,

though not immediately obvious, that this mass matrix structure is realised also for the

light Majorana neutrinos after seesaw. This will be proven shortly, but let us present

here a heuristic description of this mechanism. To this end, it is helpful to consider

the neutrino sector after breaking SO(10) → SU(5), where the left- and right-handed

neutrinos ν and νc are contained respectively in a 5 and 1 of SU(5), in triplets of the

family symmetry. We denote the 5 by F and the singlet by N c. The Dirac mass matrix
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is then sourced by the terms

Hu
10

[
λ

(ν)
atmξ

M3
χ

(φatmF )(φatmN
c) +

λ
(ν)
sol ξ

2

M4
χ

(φsolF )(φsolN
c) +

λ
(ν)
dec

M2
χ

(φdecF )(φdecN
c)

]
,

(4.10)

when the Hu
10, ξ and φ fields acquire VEVs. Pairs of terms in parentheses, like (φF ) and

(φN c), signify a contraction of a ∆(27) triplet-antitriplet pair, yielding a flavour singlet.

In a similar fashion, the right-handed Majorana matrix originates from the terms

〈H16H16〉
[

λ
(M)
atm ξ

4

M3
χM

4
Ωatm

(φatmN
c)(φatmN

c) +
λ

(M)
sol ξ

5

M4
χM

4
Ωsol

(φsolN
c)(φsolN

c)

+
λ

(M)
dec ξ

3

M2
χM

4
Ωdec

(φdecN
c)(φdecN

c)

]
.

(4.11)

We have made a distinction between the average scales of the messengers that produce

each of the above three terms, giving us three distinct mass scales for the Ω-type messen-

gers, denoted MΩatm , MΩsol
and MΩdec

. We will see that the best fit to data suggests that

the third effective neutrino mass is small, in accordance with the sequential dominance

(SD) assumption. Implementing the seesaw mechanism, this translates to a requirement

that the third right-handed neutrino is essentially decoupled. This implies its mass,

which originates from the final term in Eq. 4.11, is very large. This can be achieved if

MΩdec
< MΩatm ,MΩsol

.

Collecting the Higgs and ξ fields along with λ coefficients into generic parameters κ (with

dimensions of inverse mass), we can write Eqs. 4.10 and 4.11 in the simplified form

κνatm(φatmF )(φatmN
c) + κνsol(φsolF )(φsolN

c) + κνdec(φdecF )(φdecN
c)

+ κMatm(φatmN
c)(φatmN

c) + κMsol(φsolN
c)(φsolN

c) + κMdec(φdecN
c)(φdecN

c),
(4.12)

noting also that generically κν � κM . This can be written in block diagonal matrix

form as

φatmF φatmN
c φsolF φsolN

c φdecF φdecN
c



φatmF 0 κνatm

φatmN
c κνatm κMatm

φsolF 0 κνsol

φsolN
c κνsol κMsol

φdecF 0 κνdec

φdecN
c κνdec κMdec

, (4.13)
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with all other elements zero. Diagonalisation gives, to O
(
(κν/κM )2

)
, the effective Wein-

berg operators

− (κνatm)2

κMatm

(φatmF )(φatmF )− (κνsol)
2

κMsol

(φsolF )(φsolF )− (κνdec)
2

κMdec

(φdecF )(φdecF ). (4.14)

These in turn reproduce a light neutrino Majorana mass matrix of the form given in

Eq. 4.6.

Finally, we must take into account an overall complex conjugation of the Yukawa and

right-handed Majorana matrices when shifting from the SUSY basis (in which the

Yukawa superpotential is defined) to the seesaw basis. This basis change was discussed

in Chapter 2 (see Eqs. 2.16 – 2.18) and we only repeat the conclusions, namely that

Y ν = (λν)∗, MR = (M c)∗, (4.15)

where Y ν , MR are in the seesaw basis and λν , M c are in the SUSY basis. We proceed

in the seesaw basis, wherein

Y ν = κν∗atmv
∗2
atm

0 0 0

0 1 1

0 1 1

+ κν∗solv
∗2
sol

1 3 1

3 9 3

1 3 1

+ κν∗decv
∗2
dec

0 0 0

0 0 0

0 0 1

 ,

MR = κM∗atmv
∗2
atm

0 0 0

0 1 1

0 1 1

+ κM∗sol v
∗2
sol

1 3 1

3 9 3

1 3 1

+ κM∗decv
∗2
dec

0 0 0

0 0 0

0 0 1

 ,

(4.16)

using the effective parameters introduced in Eq. 4.12. To verify that the relative phases

are again η and η′ (as defined in Eqs. 4.8 and 4.9), we may insert VEVs of all fields

(denoted vf for given field f) to give an effective neutrino matrix

mν = µae
iα

0 0 0

0 1 1

0 1 1

+ µbe
iβ

1 3 1

3 9 3

1 3 1

+ µce
iγ

0 0 0

0 0 0

0 0 1

 , (4.17)

where
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10
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2

v2
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4
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∣∣∣∣∣ , α ≡ − arg
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(vHu

10
)2

(vH16
)2

v2
atm

v2
ξ

]
,

µb ≡
∣∣∣∣∣(vHu

10
)2

(vH16
)2

(λ
(ν)
sol )

2M4
Ωsol

λ
(M)
sol M

4
χ

(v2
solv

2
ξ )

2

v2
solv

5
ξ

∣∣∣∣∣ , β ≡ − arg

[
(vHu

10
)2

(vH16
)2

v2
sol

vξ

]
,

µc ≡
∣∣∣∣∣(vHu

10
)2

(vH16
)2

(λ
(ν)
dec)

2M4
Ωdec

λ
(M)
dec M

2
χ

v4
dec

v2
decv

3
ξ

∣∣∣∣∣ , γ ≡ − arg

[
(vHu

10
)2

(vH16
)2

v2
dec

v3
ξ

]
,

(4.18)

and where messenger masses and λ couplings are all real due to CP conservation. As
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before, the physical phases η and η′ are defined as the relative phases between the three

rank-1 matrices that make up mν , i.e.

η ≡ β − α = − arg

[
v2

sol

vξ

]
+ arg

[
v2

atm

v2
ξ

]
= −2(ρsol − ρatm)− ρξ,

η′ ≡ γ − α = − arg

[
v2

dec

v3
ξ

]
+ arg

[
v2

atm

v2
ξ

]
= −2(ρdec − ρatm) + ρξ,

(4.19)

which is identical to Eqs. 4.8 and 4.9.

4.2.4 The seesaw mechanism with universal rank-1 structures

The heuristic argument above for how the seesaw mechanism is implemented was first

presented for the case of tri-bimaximal mixing in [147, 187]. However one may worry that

the combinations of right-handed neutrinos that are integrated out, namely (φatmN
c),

(φsolN
c), (φdecN

c) are not mass eigenstates. One may also worry that the mechanism

only works for tri-bimaximal mixing where the flavon alignments are mutually orthog-

onal. We now present a more rigorous discussion of how the seesaw mechanism is

implemented in this model, showing that the above result is in fact robust. The core

proof, that the effective neutrino mass matrix has the structure given in Eq. 4.6, does not

depend on symmetry or the special CSD(3) alignments, requiring only that the Dirac

and heavy Majorana matrices be expressable as linear combinations of the same three

rank-1 matrices.

A symmetric n× n matrix M of rank n can be written as a sum over n rank-1 matrices

Mi,

M =
n∑
i=1

Mi =
n∑
i=1

αiφiφ
ᵀ
i , (4.20)

where φi are column vectors of length n and αi are constants. In our flavour model, φi

can be identified with the flavon VEV alignments, up to a constant of proportionality.

The neutrino Yukawa and right-handed Majorana matrices may be written

Y ν = y1M1 + y2M2 + y3M3,

MR = r1M1 + r2M2 + r3M3,
(4.21)

where Mi ∝ φφᵀ and yi, ri are constants. Recalling the seesaw formula

mν = −v2
uY

νM−1
R (Y ν)ᵀ, (4.22)

determining mν requires finding the inverse of MR. Applying once again the parametri-

sation in Eq. 4.20, we may express M−1
R in terms of some other rank-1 matrices M̃1,

M̃2 and M̃3. These are chosen such that the coefficients multiplying each rank-1 matrix
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is 1/ri, i.e.

M−1
R =

1

r1
M̃1 +

1

r2
M̃2 +

1

r3
M̃3. (4.23)

This defines the matrices M̃ i. Their connection to the matrices Mi can be understood

by taking the definition of the inverse,

I = MRM
−1
R = (r1M1 + r2M2 + r3M3)

(
M̃1

r1
+
M̃2

r2
+
M̃3

r3

)
= M1M̃1 +

r2

r1
M2M̃1 +

r3

r1
M3M̃1 +

r1

r2
M1M̃2 +M2M̃2 +

r3

r2
M3M̃2

+
r1

r3
M1M̃3 +

r2

r3
M2M̃3 +M3M̃3

(4.24)

The requirement that the definitions in Eqs. 4.21 and 4.23 hold simultaneously for any

ri fixes the products MiM̃ j , giving

M1M̃1 +M2M̃2 +M3M̃3 = I,

MiM̃ j = 0, for i 6= j.
(4.25)

By a similar consideration of the equivalent relation I = M−1
R MR, we obtain also

M̃1M1 + M̃2M2 +M3M̃3 = I,

M̃ iMj = 0, for i 6= j.
(4.26)

Now consider the trivial relation MR ≡MRM
−1
R MR. Expanding MR and M−1

R in terms

of their respective rank-1 matrices, and matching coefficients ri, we arrive at the rule

MiM̃ iMi = Mi, (4.27)

which is simply the pseudoinverse of Mi [188].

Returning to the seesaw formula, and noting that Y ν = (Y ν)ᵀ, we have

mν = −v2
uY

νM−1
R Y ν

= −v2
u(y1M1 + y2M2 + y3M3)

(
M̃1

r1
+
M̃2

r2
+
M̃3

r3

)
(y1M1 + y2M2 + y3M3).

(4.28)

Expanding the parentheses and using Eqs. 4.25, 4.26 and 4.27, we arrive at

mν = −v2
u

(
y2

1

r1
M1 +

y2
2

r2
M2 +

y2
3

r3
M3

)
, (4.29)

which is the same form as Y ν and MR.
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This proof can also be understood in the language of vacuum alignments, as demon-

strated in [5]. Recalling Eq. 4.20, we express each rank-1 matrix by Mi = φiφ
ᵀ
i , where it

is understood that φ represents the VEV of a triplet flavon. Again, the neutrino Yukawa

and right-handed Majorana matrices are written Y ν =
∑

i yiMi and MR =
∑

i riMi, re-

spectively, as in Eq. 4.21. Now let us consider a new set of column vectors φ̃i, φ̃i, φ̃i,

which are orthogonal to the original ones, and satisfy the conditions

φ̃ᵀi φj = δij , i, j = a, b, c. (4.30)

For example, for the column vectors corresponding to CSD(3),

φ1 = (0, 1, 1), φ2 = (1, 3, 1), φ3 = (0, 0, 1), (4.31)

the corresponding column vectors which satisfy Eq. 4.30 are

φ̃1 = (−3, 1, 0), φ̃2 = (1, 0, 0), φ̃3 = (2,−1, 1). (4.32)

Given these new vectors, we can define some new rank-1 matrices M̃ i = φ̃iφ̃
ᵀ
i . Then the

inverse of the heavy right-handed Majorana matrix is uniquely given by Eq. 4.23, in terms

of ri (the coefficients of MR). It can easily be verified explicitly that this result satisfies

MRM
−1
R = I using Eq. 4.30, which implies that the cross-terms vanish, i.e. MiM̃ j = 0.

It is also worth noting that the orthogonality condition in Eq. 4.30 is sufficient for

immediately computing the unique solution for the inverse. As such, this derivation

reverses the earlier argument, wherein the orthogonality condition (Eqs. 4.25 and 4.26)

arises from the requirement that the identity hold for any coefficients ri multiplying

the rank-1 matrices. Now, starting with the orthogonality of vectors φ, φ̃ (Eq. 4.30),

we uniquely fix the coefficients of the inverse M−1
R to be 1/ri. Both formulations are

equivalent, and valid for any linearly independent vectors φ.

4.2.5 Renormalisability of the top quark

The superpotential in Eq. 4.3 is written as a set of effective terms, divided by various

powers of messenger scales which are O(MGUT). The degree of suppresion in each term is

largely controlled by the power of the singlet ξ, which as noted above acts as a Froggatt-

Nielsen (super)field. We assume all terms containing at least one power of ξ/M can be

safely expressed by an effective term after integrating out messengers. Only one term

does not contain any insertions of ξ, and requires more care. Specifically, the first term

in Eq. 4.3 is primarily responsible for the up-type third family fermions (notably, the

top quark), and is written naively as

ΨiΨjH
u
10φ

i
decφ

j
dec

2∑
n=0

λ
(u)
dec,n

〈H45〉nM2−n
χ

. (4.33)
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When φdec gets a VEV like (0, 0, vdec), with vdec assumed to be near the GUT scale,

these terms reduce to

v2
decΨ3Ψ3H

u
10

2∑
n=0

λ
(u)
dec,n

〈H45〉nM2−n
χ

. (4.34)

In fact we can only consistently write these non-renormalisable terms when 〈φdec〉 �Mχ,

but we actually have 〈φdec〉 ≈Mχ so simple integration of the messengers is not possible.

It turns out the physical top (and third Dirac neutrino) are not exactly aligned with

the third component of Ψ. We therefore need to work out the mixing between the

messengers and Ψ. Such mixing technically occurs for all terms, but as noted above,

this is only necessary in practice for the least-suppressed term above.

To prove that this in fact gives us a renormalisable top mass, it is sufficient to examine

the first term in the above sum (with n = 0). It is sourced by the renormalisable terms

W ∼ Ψφdecχ3 +Mχχ6χ3 +Hu
10χ6χ6, (4.35)

where we suppress O(1) couplings. In matrix form, this gives

W ∼
(

Ψ3 χ6 χ3

) 0 0 vdec/2

0 〈Hu
10〉 Mχ/2

vdec/2 Mχ/2 0


Ψ3

χ6

χ3

 . (4.36)

Since 〈Hu
10〉 � vdec ∼ Mχ, diagonalising this mass matrix reveals two heavy and one

light eigenstate, the latter being at the electroweak scale and which we can associate

with the third family, and crucially with the top quark. Supposing vdec ≈ Mχ, the

electroweak scale eigenstate is

t ≈ 1√
2

(Ψ3 + χ6) . (4.37)

In other words the third family up-type fermion, specifically the top quark, is a linear

combination of Ψ3 and χ6, where the latter has a renormalizable coupling to the Higgs.

The other eigenstates have masses at the GUT scale and are therefore identified as

messenger eigenstates. We will revisit this topic of the renormalisability of the third

family in the next chapter in the context of an S4 × SO(10) model.

4.3 Family symmetry and GUT breaking

In this section we summarise how the flavour symmetries and GUT group are broken

at high scale to the MSSM group with R parity, deferring the details of the discussion

to Appendix C. Family symmetry breaking, and the specific implementation of the

F -term alignment mechanism which produces the CSD(3) alignments, is given in full
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in Section C.2. The product rules for triplets and antitriplets of ∆(27) are listed in

Appendix A. Meanwhile, GUT breaking, doublet-triplet splitting, and the smallness of

the µ term are all addressed in Section C.3.

4.3.1 Flavon alignments

Here we sketch the method for obtaining CSD(3), and give key results. The CSD(3)

alignments, which fully break the flavour symmetries (with no residual symmetries re-

maining), are obtained by initially considering the “special” alignments of ∆(27). They

are characterised by having either two zeros (e.g. (0, 0, 1)) or three equal magnitudes,

with phases that are powers of ω = ei2π/3 (e.g. (1, 1, 1) or (1, ω, ω2)). They may be

procured by coupling triplet and antitriplet flavons φ and φ to driving fields Ai, Ai,

which are also triplets or antitriplets. A number of singlet driving fields Oi are intro-

duced whose F terms force orthogonalities between flavons, ultimately fixing the VEVs

of three antitriplets to the CSD(3) alignments; these alone couple directly to Ψ. All

flavons and driving fields involved in this mechanism are given in Tables C.2a and C.2b.

All flavon VEVs are also driven to particular scales. To do this, we introduce driving

fields Pi and messengers ζi (listed in Table C.3) which force additional relations. De-

noting the magnitudes of flavon VEVs vi, the relevant flavons turn out to be related

by

v2
sol ∝ ω2

(
ξ

Mζ

)7

v2
dec, v2

atm ∝
(

ξ

Mζ

)8

v2
dec, (4.38)

where the constants of proportionality are given as a product of various real O(1) renor-

malisable couplings. Since 〈ξ〉 /Mζ < 1, we conclude that vdec � vatm ∼ vsol. These

relations also result in fixed relative phases between flavons, such that the physical

phases in the fermion mass matrices, defined in Eqs. 4.8 and 4.9, are given by

η = − arg

[
v2

sol

v2
atm

〈ξ〉
]

= − arg[ω2],

η′ = − arg

[
v2

dec

v2
atm

1

〈ξ〉

]
= 9 arg[〈ξ〉].

(4.39)

These phases are in fact completely fixed. The VEV of ξ is fixed by the GUT-breaking

potential given in Appendix C (see Eq. C.28), and fixes the phase of 〈ξ〉 to a ninth root

of unity; by the cancellation of this phase we finally have

η =
2π

3
, η′ = 0. (4.40)

Strictly speaking these phases are fixed only up to a relative phase π, depending on

the signs of the real constants. However, this additional phase is unphysical, as it may

always be subsumed into other real parameters at the low scale.
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4.3.2 GUT breaking

We proceed by summarising key features of GUT and R symmetry breaking. Here

we are particularly interested in those aspects relevant for understanding the flavour

puzzle. SO(10) is broken by the VEV of a Higgs 16 + 16 pair to SU(5), and then by

the VEVs of Higgs 45s to the Standard Model group. Symmetry breaking arises from

a rather complicated superpotential (see Eq. C.28) involving adjoints H45, H ′45, HDW ,

spinors H16,16, and two driving singlets Z, Z ′′. Their F terms ensure all the above

fields get non-zero VEVs, which break both the GUT and R symmetry at the GUT

scale. Various higher-order terms are realised in the renormalisable theory by diagrams

involving new messenger superfields Zi, Σi, Υ, with associated scales MZ , MΣ, MΥ.

The superpotential also contains several terms like Zφiφjξ
n, i.e. coupling Z to flavon

triplet-antitriplet pairs and some power of ξ, which are allowed by the symmetries and

messengers, which links the flavon and Higgs VEVs.

Of particular interest are the VEVs of H45 and ξ, which play important roles in the

Yukawa sector. As H45 is a pure singlet under all flavour symmetries, we may write

down infinitely many terms involving progressively higher powers of H45. For simplicity

we keep only the first two terms, which are of the form X(λ10H45 +λ11H
3
45/M

2
Υ), where

X is a combination of other superfields (see Eq. C.28 for the exact form). Its own F -term

equation gives H45 a VEV,

v45 =

√
−λ10

λ11
MΥ. (4.41)

By a choice of λ parameters, we may take v45 as real. The VEV of ξ is fixed by the

F -term conditions for Hu,d
10 and given in terms of some real O(1) coefficients λ by

〈ξ〉 =

(
λ5λ7

λ8λ6

)1/9

MΣ. (4.42)

In other words, its phase is given by ρξ = 2πn/9 for some integer n.

Doublet-triplet splitting is achieved by implementing the DW mechanism. The idea is

that Higgs 10s, Hu,d
10 , are given masses through their coupling to a 45, HDW , whose

VEV is aligned in such a way that only the triplet components in the 10s couple to

〈HDW 〉, while the doublets do not couple to the VEV. For this reason, the mechanism

is sometimes known as the “missing VEV mechanism”. In SO(10), the VEV may be

written as

〈HDW 〉 = vDW diag(1, 1, 1, 0, 0)⊗ iσ2, (4.43)

where σ2 is a 2× 2 Pauli matrix. The alignment (1, 1, 1, 0, 0) may be viewed as “SU(5)-

like”;3 the first three components therefore couple to the SU(3) part, while the zero

components couple to the SU(2) part.

3 Note however that the alignment (1, 1, 1, 0, 0) is not a valid alignment in an SU(5) GUT, as it is not
traceless. In SO(10), due to the product with σ2, the tracelessness condition is automatically fulfilled.
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This leaves several massless Higgs doublets: two in each H10, as well as one in each of

H16 and H16. In the MSSM, only two of these are massless, while the others should

also acquire large masses, so as not to spoil successful gauge coupling unification. In

other words, we also have a “doublet-doublet” splitting problem. The solution in this

model is similar in nature to that of the previous A4×SU(5) model: we write down the

superpotential compatible with the symmetries and field content involving two or more

of the Higgs superfields containing SU(2) doublets, which also couple to various powers

of ξ. We write down the mass matrix, and find that there is one eigenvalue which is

suppressed by ξ8/M7 �M , which we identify as the µ term. With the freedom due to

O(1) parameters and messenger scales, we can arrange for µ ∼ 1 TeV without significant

tuning. Moreover we identify the MSSM Higgs doublets arising almost entirely from a

single 10 each with negligible mixing, i.e. Hu ≈ 2(Hu
10) and Hd ≈ 2(Hd

10).

4.3.3 Proton decay

As in the previous A4×SU(5) model, a characteristic feature of SO(10) GUTs is the pre-

diction of proton decay, mediated by extra gauge bosons or by the triplets accompanying

the Higgs doublets. We must ensure that our model does not lead to an unacceptable de-

cay rate, and obeys the bound on the proton lifetime, which we assume to be τp > 1032

years. We do not here consider the individual predictions for different decay modes,

which have different associated experimental bounds giving τp > 1031−33 years [23]. In

SUSY SO(10) GUTs the main source for proton decay comes from triplet Higgsinos,

whose decay width is dependent on SUSY breaking and the specific coupling texture of

the triplets. In general the constraints are barely met when the triplets are at the GUT

scale [189, 190], as in this model.

Again we find that that proton decay from dangerous dimension-5 operators resembling

qqq` is strongly suppressed, due to the presence of multiple symmetries (for a discussion

of dimension-6 operators we refer the reader to [127]). As all matter is contained in

the same Ψ ∼ (3, 16) representation of SO(10), we consider ΨΨΨΨ. However this is

forbidden by ∆(27), which does not allow products of only triplets (or only antitriplets)

unless there are three of them – or some multiple of three. To build this effective term

at higher order we require at minimum one φ, as well as some superfield with R charge

2; one such candidate is the field Z, which is a singlet under all other symmetries and

plays a role in GUT breaking (see Section C.3). To ensure the Z9,12 symmetries are

respected may require additional fields such as ξ. We are therefore interested in terms

like

ΨΨΨΨ
Zφ

M3

(
ξ

M

)n
, (4.44)

for some integer n. In the renormalisable theory, for this type of effective term to be

present at M ∼ MGUT requires appropriate messengers. Specifically, we would need
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messengers that are ∆(27) triplets, which are completely absent from our model. Hence

such terms can not be produced at (or below) the GUT scale.

They may, however, arise with Planck-scale suppression M ∼ MP . The lowest-order

term arising from fields that aquire non-vanishing VEVs (and therefore contribute to

proton decay) is

ΨΨΨΨ
Zφdecξ

3

M6
P

, (4.45)

which would generate proton decay terms of the type

gQQQL
〈X〉
M2
P

, (4.46)

where g is a dimensionless coupling and 〈X〉 is a generic VEV of a field, as discussed in

[191]. These terms must be suppressed enough to generate a proton lifetime τp > 1032

years, which is achieved when

g 〈X〉 < 3× 109 GeV. (4.47)

In our model,

〈X〉 =
〈Z〉 vdec 〈ξ〉3

M4
P

∼ 150 GeV, (4.48)

such that with O(1) dimensionless couplings, proton decay is very suppressed.

4.4 Numerical fit

4.4.1 Mass matrices

We turn to a numerical fit of all known quark and lepton mass and mixing parameters.

At the low scale, the VEVs of flavons and messenger fields combine to give the mass
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matrices

mu

vu
= yu1

0 0 0

0 1 1

0 1 1

+ yu2 e
iη

1 3 1

3 9 3

1 3 1

+ yu3 e
iη′

0 0 0

0 0 0

0 0 1

 + yu4 e
iηu4

0 0 1

0 0 3

1 3 2

 ,

md

vd
= yd1

0 0 0

0 1 1

0 1 1

+ yd2e
iη

1 3 1

3 9 3

1 3 1

+ yd3e
iη′

0 0 0

0 0 0

0 0 1

 ,

me

vd
= ye1

0 0 0

0 1 1

0 1 1

+ ye2e
iη

1 3 1

3 9 3

1 3 1

+ ye3e
iη′

0 0 0

0 0 0

0 0 1

 ,

mν = µa

0 0 0

0 1 1

0 1 1

+ µbe
iη

1 3 1

3 9 3

1 3 1

+ µce
iη′

0 0 0

0 0 0

0 0 1

 .

(4.49)

We recall that η = 2π/3 and η′ = 0, while the remaining phase ηu4 is free.

Assuming all superpotential terms have O(1) couplings, we may derive a “natural” scale

for each of the coefficients yfi . Firstly, we recall that there are several messenger scales

present in our model. The ones that appear in yfi are Mχ, Mζ , MΩdec
, MΩsol

and MΩatm .

As previously established, we have 〈ξ〉 . Mζ < Mχ. More specifically, we will assume

the ratios
〈ξ〉
Mζ

& 0.5,
〈ξ〉
Mχ

. 0.1. (4.50)

We further define the GUT scale by MGUT ≡ v45 . Mχ. Finally, as discussed previously,

we assume that MΩatm ≈MΩsol
> MΩdec

, by roughly one order of magnitude.

The coefficients yfi derive from can be obtained from the superpotential in Eq. 4.3. For

a given fermion type f = u, d, e, they take a generic form

yf1 = φatmφatmξ
N−2

N∑
n=0

λ
(f)
X,n

〈H45〉nMN−n
χ

,

yf2 = φsolφsolξ
N−2

N∑
n=0

λ
(f)
X,n

〈H45〉nMN−n
χ

,

yf3 = φdecφdecξ
N−2

N∑
n=0

λ
(f)
X,n

〈H45〉nMN−n
χ

,

(4.51)

where λ are O(1) couplings and N is a number between two and five. We will assume

there are no large cancellations between terms in the sums. The flavon VEVs were

discussed briefly above (and in more detail in Appendix C); they may be approximated
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by

〈φdec〉 ∼MGUT, 〈φatm〉 ∼
〈ξ〉4
M4
ζ

MGUT, 〈φsol〉 ∼
〈ξ〉7/2

M
7/2
ζ

MGUT. (4.52)

We note immediately that these VEVs have large powers of 〈ξ〉 /Mζ , which is primarily

bounded below (see Eq. 4.50). This translates to only a loose upper bound on the fitting

parameters.

We expect the fitted coefficients yfi to be of the approximate scales

yu1 & 4× 10−4, ye1 & 4× 10−5, yd1 & 4× 10−5, µa ∼ 10−2 eV,

yu2 & 8× 10−5, ye2 & 8× 10−6, yd2 & 8× 10−6, µb ∼ 10−3 eV,

yu3 ∼ 1, ye3 ∼ 10−1, yd3 ∼ 10−1, µc ∼ 10−3 eV,

yu4 & 5× 10−4.

(4.53)

Smaller parameter values than given above are allowed, as there may be cancellations

within the sums that make up each parameter, although this scenario is indicative of

some tuning. Nevertheless, we see how SO(10) unification implies similar hierarchies

among all charged fermions. It also suggests up-type quark masses are larger than

for down-type quarks and charged leptons, by roughly one order of magnitude, due to

one fewer insertion of 〈ξ〉. This is welcome as far as the second and third family are

concerned, but potentially problematic for the first family, given that the up quark is

lighter than the down quark.

4.4.2 Best fit results

To fit the real coefficients yu1,2,3,4, yd1,2,3, ye1,2,3, and µa,b,c as well as the phase ηu4 , we

minimise a χ2 function that relates the physical predictions Pi(x) for a given set of input

parameters x to their current best-fit values µi and their associated errors, denoted σi.

The χ2 function, first defined in Eq. 2.22, is given by

χ2 =
N∑
i=1

(
Pi(x)− µi

σi

)2

. (4.54)

Neutrino masses and PMNS parameters are obtained from the NuFit collaboration. As

in Chapters 2 and 3, the most recent global fit results at the time of publication of [4],

on which much of this chapter is based, was NuFit 2.0 [105].

In further reference to previous discussions (see Sections 2.3.3, 3.3), the errors σi are

equivalent to the standard deviation of a fit to a Gaussian distribution, which is a good

representation of the data for most physical parameters; the exception is the (lepton)

atmospheric angle θl23, which has a bimodal distribution. For a normal hierarchy (as
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predicted by the model), the distribution is broadly centered on maximal atmospheric

angle, i.e. θl23 ∼ 45◦, with a small preference for θl23 to be in the first octant. We wish to

extend the scope of the previous analyses, which simply assumed the preference for the

first octant was true. As such, we here consider two possible scenarios when performing

our fit.

• Scenario 1: we assume that the (weak) preference for θl23 < 45◦ is true, and

approximate its distribution by a Gaussian about µθl23
= 42.3◦, setting σθl23

= 1.6◦

as the error.

• Scenario 2: we remain octant-agnostic by assuming a Gaussian distribution centred

at the midpoint between the two 1σ bounds, i.e. µθl23
= 45.9◦ with σθl23

= 3.5◦.

A separate χ2 fit was performed for each scenario.

Here, N = 18, corresponding to six mixing angles θlij (neutrinos) and θqij (quarks), the

CKM phase δq, nine Yukawa eigenvalues for the quarks and charged leptons, and two

neutrino mass-squared differences ∆m2
21 and ∆m2

31. We note however that the free

input parameters controlling the quark and lepton sectors are distinct, and thus the two

sectors may be considered separately, constrained only by the requirement that related

parameters are of comparable scales. We use the PDG parametrisation of the PMNS

and CKM matrices. Experimentally, the leptonic phase δ` is poorly constrained and

left as a pure prediction of the model, as are the (completely unconstrained) Majorana

phases α21 and α31. The bound on the sum of neutrino masses coming from cosmology

is not included in the fit but is anyway easily met for strongly hierarchical neutrinos

predicted by the SD framework.

The running of best-fit and error values to the GUT scale are generally dependent on

supersymmetry parameters, notably tanβ, as well as contributions from supersymmet-

ric threshold corrections. These are discussed in Appendix B. We extract the GUT-

scale CKM parameters and all Yukawa couplings (with associated errors) from [145] for

tanβ = 5. The value of tanβ is found not to have a significant impact on the quality

of our model, so we only present results for tanβ = 5 here. Furthermore, we find that

our model is essentially unaffected by threshold corrections, so we simply assume them

to be zero. Using the notation defined in [145], and summarised in Appendix B, this is

equivalent to setting the parameters η̄i to zero.

Table 4.3 shows the best fit of the model to quark masses and CKM parameters, as

well as the 1σ ranges from experimental data (run up to the GUT scale) for reference.

The corresponding set of model parameters is given in Table 4.4. Table 4.5 shows

the analogous best fit of the model to lepton masses and PMNS parameters, also with

data 1σ ranges, where applicable. It includes also predictions for currently unmeasured

parameters, including the two Majorana CP phases and the effective neutrino mass
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Parameter Value Data fit 1σ range

θq12/
◦ 13.020 12.985 → 13.067

θq13/
◦ 0.2023 0.1866 → 0.2005

θq23/
◦ 2.238 2.202 → 2.273

δq/◦ 69.89 66.12 → 72.31
mu /MeV 0.602 0.351 → 0.666
mc /MeV 249.5 240.1 → 257.5
mt /GeV 93.37 89.84 → 95.77
md /MeV 0.511 0.744 → 0.929
ms /MeV 15.80 15.66 → 17.47
mb /GeV 0.947 0.925 → 0.948

Table 4.3: Best fit quark sector observables at the GUT scale, with experimental
1σ ranges from [145]. The SUSY-breaking scale is set to 1 TeV, tanβ = 5, and
no threshold corrections are assumed.

Parameter Value

yu1 /10−5 3.478
yu2 /10−4 2.075
yu3 /10−1 5.389
yu4 /10−3 5.774
ηu4 1.629π
yd1 /10−4 -3.199
yd2 /10−5 2.117
yd3 /10−2 2.792
η 2π/3
η′ 0

Table 4.4: Quark sector input parameter values, with η, η′ fixed by the theory.

|mββ |. The corresponding input parameters are given in Table 4.6. The total χ2 is 17.3

and 16.7 for scenario 1 and 2, respectively (see discussion on θl23 above).

In the quark sector there are seven real input parameters plus three phases, two of which

are fixed by the model, that we fit to six quark masses and four CKM parameters.4 The

quark contribution to the total χ2 is 16.0, by far the largest contribution, and consists

almost entirely of an approximately 3.5σ deviation in the down quark mass md.

In the lepton sector there are six real input parameters plus two fixed discrete phases

that we fit to three charged lepton masses, two neutrino mass-squared differences and

three mixing angles (a total of eight observables). The associated contribution to the

total χ2 is 1.3 and 0.7 for scenario 1 and 2, respectively. Note the two different data

4 Note that in [4], a fit was conducted with several extra phases in the quark sector, giving a better
fit with χ2 ≈ 2. These phases resulted from assuming an imaginary VEV of the SO(10) adjoint H45

(see Table 4.1) which appears in sums in Eq. 4.3. The model fixes its VEV to be either strictly real
or imaginary. However, this would necessarily introduce extra phases in the lepton sector, spoiling the
predictivity of the CSD(n) scheme with fixed η = 2π/3. It was then discovered that a good fit can be
achieved even in the more predictive case where 〈H45〉 is real, and all (but one) phases are fixed.
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Parameter
Value

Data fit 1σ range
Scenario 1 Scenario 2

θl12 /
◦ 33.13 32.94 32.83 → 34.27

θl13 /
◦ 8.59 8.55 8.29 → 8.68

θl23 /
◦ 40.81 40.63 → 43.85

46.65 42.40 → 49.40
δ` /◦ 280 275 192 → 318
me /MeV 0.342 0.342 0.340 → 0.344
mµ /MeV 72.25 72.25 71.81 → 72.68
mτ /GeV 1.229 1.229 1.223 → 1.236
∆m2

21 /10−5 eV2 7.58 7.46 7.33 → 7.69
∆m2

31 /10−3 eV2 2.44 2.47 2.41 → 2.50

m1 /meV 0.32 0.38
m2 /meV 8.64 8.65
m3 /meV 49.7 49.7∑
mi /meV 58.7 59.4

α21 /
◦ 264 264

α31 /
◦ 323 333

|mββ | /meV 2.46 2.42

Table 4.5: Best fit lepton observables at the GUT scale, with experimental 1σ
ranges from [105, 145]. The SUSY-breaking scale is set to 1 TeV, tanβ = 5,
and no threshold corrections are assumed.

Parameter
Value

Scenario 1 Scenario 2

ye1 /10−3 2.217 -1.966
ye2 /10−5 -1.025 1.027
ye3 /10−2 3.366 3.790
µa /meV 26.60 25.90
µb /meV 2.571 2.546
µc /meV 2.052 2.461
η 2π/3
η′ 0

Table 4.6: Lepton sector input parameter values, with η, η′ fixed by the theory.



Chapter 4 A ∆(27)× SO(10) model 111

fit 1σ ranges for θl23 in Table 4.5, depending on the choice of scenario. Although the

fit does not constitute a full analysis of the parameter space, it agrees with the results

of the more dedicated numerical analysis of CSD(n) models in Chapter 2. The most

significant different between the SO(10) model presented here and the idealised model

considered previously is that the charged lepton mass matrix is non-diagonal. In fact,

small charged lepton corrections appear to improve the fit slightly.

It is also worth noting that on one hand the model successfully fits all measured lepton

parameters, and predicts a Dirac CP phase δ` ∼ −π/2 = 270◦, which is in good agree-

ment with the current hints from data. In fact, when this model was first conceived

[4], the NuFit global fit [105] preferred δ` ≈ 306◦, while more recent results [36] suggest

δ` ≈ 261◦, which is somewhat closer to the predicted values in Table 4.5.

On the other hand, two generic predictions for the lepton sector, namely a normal neu-

trino hierarchy and a very small effective neutrino mass mββ . 3 meV, are unfortunately

very difficult to test directly. Nevertheless these predictions would rule the model out in

the event that an inverted neutrino ordering is observed. As noted in the Introduction,

an inverted ordering is currently disfavoured by global fits to neutrino oscillation data

albeit to low significance, and is also being constrained by cosmology which may be able

to settle this question decisively within the foreseeable future.

4.5 Leptogenesis

Conventional wisdom when discussing leptogenesis in SO(10) suggests that the lightest

right-handed neutrino N1 has a mass that is too low to produce the correct baryon

asymmetry of the Universe (BAU). It can be understood as follows: there is a very

strong hierarchy in the up-type quark masses, with mu : mc : mt ∼ 10−5 : 10−3 : 1,

while the hierarchy among neutrinos is comparatively mild. Assuming a normal ordering

m1 < m2 < m3, we have m1 : m2 : m3 ∼ 10−2 : 10−1 : 1. If up-type quark and neutrino

Dirac couplings are assumed equal in naive SO(10), producing the correct hierarchy in

the neutrino Majorana masses after seesaw requires a large hierarchy in the right-handed

neutrino masses Mi that is stronger even than the quark hierarchy, like 106 : 1010 : 1015.

The typically cited lower bound [192] on the lightest mass M1 which can successfully

realise N1 leptogenesis is

M1 & 109 GeV. (4.55)

While this bound is slightly malleable [109], a mass M1 ∼ 106 GeV is too light for

traditional leptogenesis. Typically one proceeds by considering N2 leptogenesis [193,

194], which has been studied in detail for SO(10)-inspired models [195–199] (for further

work on leptogenesis in SO(10), see [200–205]). We here show that in a flavoured

SO(10) SUSY GUT model where the naive quark and neutrino Yukawa structures may

be modified, N1 leptogenesis is indeed possible, and the N1 mass can be made to respect
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the traditional bound. This section is chiefly based on our work in [5], showing how

leptogenesis may be realised in the above ∆(27)× SO(10) model.

4.5.1 Mass and Yukawa parameters

As discussed previously, a compelling feature of the model is that the mass matrices in

each sector (including the light neutrinos after seesaw) have the same universal structure,

and the phases and mixing angles are guided by the flavour symmetry. In particular the

phases in both quark and lepton sectors are determined by relative phases of flavons.5

This leads also to a rather predictive scenario for leptogenesis, which ultimately allows

us to constrain some of the free parameters of the model (and indirectly the mass of the

right-handed neutrinos) in order to obtain the correct baryon asymmetry.

For the following calculation, we use the notation consistent with [5], which is slightly

different to that used previously within this chapter. We write the charged lepton and

neutrino Yukawa matrices Y e,ν and right-handed neutrino mass matrix MR as

Y e,ν = ye,νatm

0 0 0

0 1 1

0 1 1

+ ye,νsol e
iη

1 3 1

3 9 3

1 3 1

+ ye,νdece
iη′

0 0 0

0 0 0

0 0 1

 ,

MR = Matm

0 0 0

0 1 1

0 1 1

+Msole
iη

1 3 1

3 9 3

1 3 1

+Mdece
iη′

0 0 0

0 0 0

0 0 1

 .

(4.56)

The model fixes η = 2π/3, η′ = 0, while the effective couplings ye,νi and Mi (with

i = atm, sol,dec) are real and dimensionless with the natural hierarchies

ye,νdec � ye,νatm � ye,νsol ,

Mdec � Matm > Msol.
(4.57)

These relations are a direct consequence of the superpotential in Eq. 4.3 and the symmetry-

breaking sector that fixes the flavon VEVs, although, apart from these general expecta-

tions, we shall regard the yi and Mi as free parameters. The subscripts i = atm, sol, dec

differ from those in Eq. 4.51, where simply i = 1, 2, 3, respectively. This is done to

emphasise the connection of each parameter to the flavons φatm, φsol, φdec, and to the

SD framework. Similarly, we write the light neutrino matrix as

mν = µatm

0 0 0

0 1 1

0 1 1

+ µsole
iη

1 3 1

3 9 3

1 3 1

+ µdece
iη′

0 0 0

0 0 0

0 0 1

 , (4.58)

5 The quark sector is largely not relevant for leptogenesis calculations, with the exception of the top
mass mt, which appears when ∆L = 1 scatterings like qt→ H → `N are taken into account.
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where µi ≡ (yνi vu)2/Mi and µatm � µsol & µdec.
6

Low-scale experimental data can only fix the combination of neutrino Dirac and Majo-

rana parameters encoded in the µi, and do not allow the three right-handed neutrino

mass parameters Matm, Msol, Mdec to be disentangled from the Yukawa couplings yνatm,

yνsol, y
ν
dec. Leptogenesis on the other hand is a high-scale phenomenon: the requirement

that the BAU is produced entirely from thermal N1 leptogenesis may constrain the

Yukawa couplings yνatm, yνsol, which enables the right-handed neutrino mass parameters

Matm and Msol to be constrained, thereby also the lightest two right-handed neutrino

mass eigenvalues M1 and M2, assuming the third mass M3 to be much heavier. The

relation between the parameters Matm, Msol and the eigenvalues M1, M2 is rather com-

plicated since the mass matrix MR is not diagonal, but according to SD we should have

Mdec ≈M3 much heavier than the others and thus essentially decoupled.

Before proceeding with the calculation of the BAU, let us recapitulate the results of

the leptogenesis analysis in Chapter 2 (see Section 2.4), which is based on the work

in [3]. There we discussed N1 leptogenesis in a class of models with CSD(n) vacuum

alignments, leading to rather a rather simple expression for the final BAU in terms of

the parameters of the light neutrino mass matrix mν (see Eq. 2.46). A special case of

this class of models was considered in Chapter 3, in the context of an A4×SU(5) model.

Previous results depended crucially on several features of said class of CSD(n) models,

namely 1) diagonal charged leptons, 2) only two right-handed neutrinos with 3) a di-

agonal Majorana mass matrix, as well as 4) a neutrino Yukawa matrix Y ν where each

column is proportional to one of the CSD(n) vacuum alignments. To elaborate on the

final point, the first and second columns of Y ν resembled (0, a, a) and (b, nb, (n − 2)b)

respectively, where a, b are complex numbers (see e.g. Eq. 2.27) collecting various O(1)

couplings and (magnitudes of) flavon VEVs. Notably, each element of Y ν was expressed

in terms of only one complex free parameter, greatly simplifying the resultant expression

for the BAU. In particular, the only phase dependence was a single explicit factor sin η,

with η = arg[b2/a2].

None of the above conditions apply here. It is immediately apparent that neither the

charged leptons nor the right-handed neutrinos are diagonal (conditions 1 and 3, respec-

tively), and unification under ∆(27) × SO(10) demands three right-handed neutrinos

rather than two (condition 2). Finally, the CSD(3) alignments are not neatly arranged

in columns of Y ν (condition 4), which is now necessarily symmetric due to SO(10)

unification. As a consequence, each element of Y ν is a non-trivial combination of real

parameters yi and η, while its phase will depend on the relative magnitudes of these

parameters.

6 For completeness, all effective parameters are given explicitly in terms of VEVs and O(1) parameters
at the end of this section (see Eq. 4.84).
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Despite the increased complexity, it is tempting to derive also in this scenario analyti-

cal estimates for the CP asymmetries ε1,α akin to those in Eq. 2.37. To do so requires

transforming into the flavour basis where charged leptons and right-handed neutrinos are

diagonal, which modifies Y ν . Analytical approximations for this basis transformation

are discussed in Appendix D along with some estimates for the resultant CP asymme-

tries. However, the resultant neutrino Yukawa matrix in the flavour basis depends rather

intricately on all the input parameters, and the physical consequences are not easily dis-

cerned. Only in the limit where rather severe simplifications are made do the analytical

approximations for the CP asymmetries yield distinct predictions. It was concluded

that the limited scope of the approximate expressions did not provide much additional

value, and are therefore not presented in [5], which relies entirely on numerical solutions

to the Boltzmann equations.

To conclude this discussion, we define the neutrino Yukawa matrix λν , in the flavour

basis. The charged lepton and right-handed neutrino mass matrices may be diagonalised

by a set of unitary matrices generically labelled U , V , such that

VeLY
eV †eR = diag(ye, yµ, yτ ),

VeLY
e†Y eV †eL = diag(y2

e , y
2
µ, y

2
τ ) = VeRY

eY e†V †eR,

UNM
NUTN = diag(M1,M2,M3).

(4.59)

As Y e in Eq. 4.56 is complex-symmetric, we have V †eR = V T
eL. λν is thus given by

λ∗ν = VeLY
νUTN , (4.60)

where the complex conjugation accounts for the shift between seesaw and leptogenesis

bases, as discussed in earlier chapters (see e.g. Section 2.4).

4.5.2 Boltzmann equations

Having defined the lepton matrices that consitute the primary model input into the

leptogenesis calculations, we proceed to establish the Boltzmann equations for flavoured

N1 leptogenesis, whose solution ultimately yields the desired BAU. This calculation

primarily follows the method described in [108].

As we are considering thermal leptogenesis, we assume a reheating temperature T >

M1. Moreover, the model establishes a strong hierarchy in right-handed neutrino mass

eigenvalues M1 � M2 � M3, demonstrated in Appendix D. We may therefore use the

approximation whereby an asymmetry is generated only by the lightest right-handed

neutrino. Under these conditions, as in Chapter 2 (see Eqs. 2.31 and 2.32), we may
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parametrise the final BAU YB as

YB =
10

31

[
YN1 + YÑ1

]
z�1

∑
α

ε1,αηα. (4.61)

Each ε1,α is the CP asymmetry of N1 neutrinos in a particular lepton flavour α, while

ηα (previously labelled η1,α) is an efficiency factor which contains the dependence on

washout from inverse decays and scattering, and is typically different for each flavour α.

YN1,Ñ1
are (s)neutrino number densities and serve as normalisation factors. In the fully

flavoured regime, calculating ηα requires solving the Boltzmann equations in terms of

the decay factors Kα and a numerical 3× 3 flavour coupling matrix A. As will be seen

shortly, ηα typically takes values 0 < ηα . 0.2.

The flavoured decay asymmetries ε1,α are defined by

ε1,α =
Γ1α − Γ1α

Γ1 + Γ1

, (4.62)

where Γ1α, Γ1α are the decay rates of N1 neutrinos decaying, respectively, into `αHu

lepton-Higgs or `αH
∗
u antilepton-Higgs pairs, in a given flavour α. Γ1 and Γ1 are the

corresponding total decay rates (summed over flavour). An analogous decay asymmetry

ε1,α̃ may be defined for neutrinos decaying into ˜̀
αH̃ slepton-Higgsino pairs, and similarly

we may define ε1̃,α, and ε1̃,α̃ for Ñ1 sneutrino decays. In the MSSM, to which the SO(10)

model reduces, all these decay rates are equal, i.e. ε1,α = ε1,α̃ = ε1̃,α = ε1̃,α̃.

Assuming M3 is large enough that the N3 neutrino does not participate in leptogenesis,

in the hierarchical approximation M1 �M2, ε1,α can be expressed as

ε1,α =
1

8π

Im
[
(λ†ν)1α(λ†νλν)12(λᵀν)2α

]
(λ†νλν)11

gMSSM

(
M2

2

M2
1

)
. (4.63)

λν is the neutrino Yukawa matrix in the flavour basis. Recall from Eq. 2.36 that the

factor gMSSM is, in the limit where M1 �M2, well approximated by

gMSSM

(
M2

2

M2
1

)
≈ −3

M1

M2
. (4.64)

Given the highly non-trivial mass and Yukawa matrix structures, to rigorously show that

N1 leptogenesis can be achieved in this model, we cannot rely on approximations to these

matrices, which may only be valid in small regions of parameter space. Moreover, unlike

the discussions in Chapters 2 and 3, the efficiency factors ηα are not fixed by the fit to

neutrino mixing data (recall that in those calculations, ηα depended only on the input

parameter ma in the neutrino mass matrix mν , which was known to good precision).

Rather, we solve the Boltzmann equations for the evolution of the N1 neutrino and
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B−L asymmetry densities numerically. This allows us to derive bounds on the neutrino

Yukawa couplings by performing a scan over parameter space.

The solutions are chiefly dependent on the decay factors Kα (themselves dependent on

the neutrino Dirac matrix) and the matrix A that encodes flavour coupling effects that

modify the lepton asymmetries in individual flavours. In the three-flavour case, Kα and

the total decay factor K are defined by

Kα =
v2
u(λ†ν)1α(λν)α1

m?M1
, K =

∑
α

Kα, (4.65)

where m? ' 1.58×10−3 eV is the equilibrium neutrino mass (in the MSSM). Recall that

in the three-flavour case, the numerical matrix A in the MSSM is given by

A =

−93/110 6/55 6/55

3/40 −19/30 1/30

3/40 1/30 −19/30

 . (4.66)

The N1 neutrino density is given by YN1 , with the density at thermal equilibrium given

by Y eq
N1

. We define ∆YN1 = YN1 − Y eq
N1

, as well as corresponding ∆YÑ1
= YÑ1

− Y eq

Ñ1
for

the sneutrino density YÑ1
. The equilibrium density for leptons and sleptons are denoted

Y eq
` and Y eq

˜̀ . We use

Y eq
N1

= Y eq

Ñ1
≈ 45

2π4g∗
z2K2(z), Y eq

` = Y eq
˜̀ ≈

45

2π4g∗
. (4.67)

The function K2(z) and its companion K1(z) which appears below are modified Bessel

functions of the second kind.

The total B/3− Lα asymmetries (including both fermion and scalar matter) are given

by Y∆α . The Boltzmann equations may be written as

dYN1

dz
= −2Df1∆YN1 , (4.68)

dYÑ1

dz
= −2Df1∆YÑ1

, (4.69)

dY∆α

dz
= 2 ε1,αDf1(∆YN1 + ∆YÑ1

) +W
Kα

K
f2

∑
β

AαβY∆β
. (4.70)

The decay and washout terms D and W are defined as

D = Kz
K1(z)

K2(z)
, W = Kz

K1(z)

K2(z)

Y eq
N1

+ Y eq

Ñ1

Y eq
` + Y eq

˜̀

. (4.71)

The functions f1(z) and f2(z) parametrise the contributions from ∆L = 1 scatterings.

We use the results from [79], wherein they consider scatterings involving neutrinos and



Chapter 4 A ∆(27)× SO(10) model 117

top quarks but not gauge bosons, nor do they consider thermal effects. The functions

may be approximated by

f1(z) ≈ f2(z) ≈ z

a

[
ln
(

1 +
a

z

)
+
KS

Kz

](
1 +

15

8z

)
, (4.72)

where

a =
K

KS ln(M1/Mh)
, (4.73)

while the ratio KS/K is given by

KS

K
=

9

4π2

m2
t

gN1v
2
, (4.74)

where mt is the top quark mass (at the leptogenesis scale), Mh ≈ 125 GeV is the Higgs

mass, and gN1 = 2. In the limit where scattering effects are neglected, f1(z) = f2(z) = 1.

The top mass is fitted by the SO(10) model at the GUT scale, at mt = 92.8 GeV.

Assuming the running between GUT and leptogenesis scales is relatively minor, we use

this benchmark value.

Let us rewrite the parametrisation in Eq. 4.61 as YB = Y0
∑

α ε1,αηα, where Y0 =

(10/31)[YN1 + YÑ1
]z�1 is now interpreted as a normalisation constant that ensures 0 ≤

ηα ≤ 1. We may factor out the decay asymmetry ε1,α from the Boltzmann equation

for each of the three Y∆α in Eq. 4.70, leading to a set of equations for the efficiency

factors ηα. Furthermore, if we neglect the small off-diagonal elements of the matrix A,

the efficiencies in each flavour decouple and may be solved individually in terms of the

decay factors Kα. More precisely, for fixed K/|AααKα|, ηα(z → ∞) is a function only

of AααKα. Eq. 4.70 may be rewritten as

Y0
dηα
dz

= 2Df1(∆YN1 + ∆YÑ1
) +W

AααKα

K
f2Y0ηα. (4.75)

4.5.3 Results

The above final step, i.e. assuming A to be diagonal, is not strictly speaking necessary

when solving the above equations numerically, as the increased computational load of

using the full A matrix is negligible. However, it allows us to examine the properties

of ηα independently of the details of the Yukawa matrix and of the lepton flavour α,

using instead Kα as inputs. In Figure 4.7 we show the variation in ηα, in agreement

with the results in [108]. The grey lines show ηα when scatterings are switched off, i.e.

f1 = f2 = 1.

In the solutions presented below, we will solve Eqs. 4.68 – 4.70 in terms of the full A-

matrix. The only relevant parameters in the ∆(27)×SO(10) model which are not fixed

by the fit to lepton data are either the set of three neutrino Dirac couplings yνi or the
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K/|AααKα|

1
5
100

-2 -1 0 1 2
0.00
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log10|AααKα|

ηα

Figure 4.7: Variation in the efficiency factor ηα with |AααKα|. Kα are decay
constants and Aαα the diagonal elements of a numerical coupling matrix. The
grey lines show ηα when scatterings are switched off.

three right-handed neutrino Majorana couplings Mi (i = dec, atm, sol). Once either set

has been chosen, the other is fixed by the seesaw relation µi = (vuy
ν
i )2/Mi. We choose

as inputs the Dirac couplings.

Due to the structure of SO(10), we anticipate these to be roughly equal to the up-type

quark Yukawa couplings. As we will find, there exists some tension between the up-quark

and neutrino sectors. We begin by noting that the third neutrino does not significantly

affect the results. Thus it is most interesting to examine the yνatm − yνsol space, while

setting yνdec = 0.5. Given the seesaw relation and that µ3 ∼ 1 meV, the third neutrino

N3 has a mass M3 ≈Mdec ∼MGUT.

Figure 4.8 shows the values of the neutrino Dirac parameters yνatm and yνsol which produce

the correct YB, to within 10% and 20% (darker and lighter shades, respectively) as well

as satisfying the phenomenological requirements for correct neutrino masses and lepton

mixing. Each distinct region of parameter space in Figure 4.8 is marked in a different

colour, which correlate also with the colours in Figures 4.9 and 4.10. Although the dotted

line (indicating yatm = ±ysol) in Figure 4.8 shows that the successful leptogenesis points

always satisfy yνatm > yνsol, the hierarchy is not that strong, bearing in mind that the

rank-1 matrix associated with yνatm in Eq. 4.56 has numerically smaller entries than that

associated with yνsol. Consequently both rank-1 matrices will contribute significantly

to the second column of the Yukawa matrix over the successul leptogenesis regions,

reaffirming the earlier conclusion that any analytical approximation is highly non-trivial.

Figures 4.9 and 4.10 show the corresponding right-handed neutrino mass parameters

giving the correct YB to within 20%, satisfying also the phenomenological requirements

for correct neutrino masses and lepton mixing. Figure 4.9 shows input mass parameters
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-0.05 0.00 0.05
0.000

0.002

0.004

0.006

0.008

yatm
ν

ysol
ν

Figure 4.8: Regions where YB is within 20% (light bands) and 10% (darker
bands) of the observed value. Colours mark separated regions in parameter
space, with corresponding regions in Figures 4.9 and 4.10. Dotted lines corre-
spond to yνatm = ±yνsol.
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Figure 4.9: Allowed values of input parameters Matm, Msol, giving YB within
20% of the observed value. The dotted line corresponds to Matm = Msol.

Matm, Msol while Figure 4.10 shows mass eigenvalues M1, M2. The assumed strong

hierarchy M1 �M2 is always realised for successful leptogenesis, as seen in Figure 4.10

where all points satisfy M1 < 0.1M2, i.e. they lie above the dot-dashed line correspond-

ing to M1 = 0.1M2.

There is however no such strong hierarchy between the mass parameters Msol,atm in

Figure 4.9. Although successful leptogenesis points satisfy Msol < Matm over much of

parameter space (the dotted line in Figure 4.9 marks where Matm = Msol), it should be

noted that the trace of the matrix associated with Msol in Eq. 4.56 is about five times

larger than that associated with Matm. We conclude that both these mass matrices will
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Figure 4.10: Allowed values of right-handed neutrino mass eigenvalues M1, M2,
giving YB within 20% of the observed value. The dot-dashed line corresponds
to M1 = 0.1M2.

be important in determining the eigenvalues M1 and M2 over the successful leptogenesis

regions, and simple approximations are generally not reliable.

We find a lower bound on the parameters giving successful leptogenesis, with yνatm & 0.01

and yνsol & 0.002. The narrow red region arises from very particular choices of yνi that

also give the weakest hierarchy of right-handed neutrino masses M1/M2 ∼ 0.1. Note

that the mass M3 does not appear in the approximated decay asymmetries and its effect

on leptogenesis is always negligible. M3 is therefore only constrained by the relation

imposed by SD, namely M3 �M1,2.

The effective neutrino couplings yνi that yield viable leptogenesis (as shown by Fig-

ure 4.8) are within acceptable ranges when compared to the rough approximations given

in Eq. 4.57. We note however that the yνi are different to the effective up-type quark

couplings yui , as given by the fit, required to obtain correct GUT scale masses mu, mc

and mt. This would rule out N1 leptogenesis in a naive SO(10) model, and while it

can be accommodated in this model, there is a price to pay as the yνi necessarily differ

from the yui . In particular, yνatm is larger than its corresponding quark parameter by an

O(100) factor. We will return to this point below.

It is interesting to compare this model to the one introduced in Chapter 3, based on

A4 × SU(5) with two right-handed neutrinos. In that model the neutrino Yukawa and

right-handed Majorana mass matrices may be written as

Y ν =

0 b eiη/2

a 3b eiη/2

a b eiη/2

 , MR =

(
Matm 0

0 Msol

)
, (4.76)
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where a and b are real numbers and Matm = M1 � M2 = Msol. It was found in this

scenario that YB ∝ + sin η, which gives the correct sign of the BAU since η is fixed (in

both models) to be positive by low energy neutrino phenomenology.

To make the connection between models, in the present SO(10) model let us first consider

the regions of parameter space where yνatm � yνsol and Matm � Msol, and the third

neutrino is entirely decoupled (i.e. Mdec → ∞). In these regions of parameter space,

which however do not correspond to the successful leptogenesis regions we have seen,

the matrices in Eq. 4.56 approximate to

Y ν ≈

 yνsol e
iη 3yνsol

3yνsol e
iη yνatm

yνsol e
iη yνatm

 , MR ≈
(
Msole

iη 0

0 Matm

)
. (4.77)

By the arguments presented in [108], this implies YB ∝ − sin η. This can be understood

intuitively by noting that Eqs. 4.76 and 4.77 differ by a column swap in Y ν . Under

this swap, the relative phase between columns flips sign. This gives the wrong sign of

the asymmetry and an antimatter Universe, confirmed by the exact numerical solutions

which show that these regions of parameter space are not allowed, precisely because they

would lead to the wrong sign of the BAU. The correct sign can be achieved, however,

in the regions of parameter space where the above assumptions of a strong hierarchy

between ‘atm’ and ‘sol’ are relaxed. These correspond to the successful regions shown

in Figures 4.8 and 4.9.

We finally note that enforcing the hierarchy Matm � Msol in the present model, as

predicted by the SU(5) model, does not recover the matrix structure of that model (as

seen in Eq. 4.76). In this limit, which also requires yνatm � yνsol � yνdec, the SO(10)

matrices proportional to yνatm and Matm are negligible, and the total Yukawa and mass

matrices approximate to

Y ν ≈ yνsol e
iη


1 3 1

3 9 3

1 3
yνdec

yνsole
iη

 , MR ≈Mν
sol e

iη


1 3 1

3 9 3

1 3
Mν

dec

Mν
sole

iη

 , (4.78)

which are markedly different from the form of Eq. 4.76.

4.5.4 Connecting quark and neutrino parameters

SO(10) unification suggests a deep relationship between quarks and leptons, and while

the above leptogenesis analysis involves only leptons, the results allow us to make state-

ments also about the quark sector. For instance, in naive SO(10) GUT models, the

Yukawa couplings of up-type quarks and neutrinos are the same. By the seesaw mecha-

nism, one derives an expected range for each of the heavy right-handed neutrino masses
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M1,2,3 like 106 : 1010 : 1015. In this model the relation Y u = Y ν does not hold exactly,

due to the presence of an adjoint Higgs H45.

To see this more clearly, let us recast the Yukawa superpotential in Eq. 4.3 in terms of

modified couplings λ̃, as

W 0
Y = ΨiΨjH

u
10

[
φidecφ

j
dec

λ̃
(u)
dec

M2
χ

+ φiatmφ
j
atmξ

λ̃
(u)
atm

M3
χ

+ φisolφ
j
solξ

2 λ̃
(u)
sol

M4
χ

]

+ ΨiΨjH
d
10

[
φidecφ

j
decξ

λ̃
(d)
dec

M3
χ

+ φiatmφ
j
atmξ

2 λ̃
(d)
atm

M4
χ

+ φisolφ
j
solξ

3 λ̃
(d)
sol

M5
χ

]

+ ΨiΨjH16H16

[
φidecφ

j
decξ

3 λ̃
(M)
dec

M2
χM

4
Ωdec

+ φiatmφ
j
atmξ

4 λ̃
(M)
atm

M3
χM

4
Ωatm

+ φisolφ
j
solξ

5 λ̃
(M)
sol

M4
χM

4
Ωsol

]
,

(4.79)

where

λ̃
(u,d,M)
dec

M2
χ

=
2∑

n=0

λ
(u,d,M)
dec,n

〈H45〉nM2−n
χ

,

λ̃
(u,d,M)
atm

M2
χ

=

3∑
n=0

λ
(u,d,M)
atm,n

〈H45〉nM3−n
χ

,

λ̃
(u,d,M)
sol

M2
χ

=

4∑
n=0

λ
(u,d,M)
sol,n

〈H45〉nM4−n
χ

.

(4.80)

The alignment of 〈H45〉 dictates the CG coefficients associated with quarks and leptons,

such that the λ̃ factors are generally different between these sectors. For example, if

the VEV 〈H45〉 is aligned in the B − L direction then 〈H45〉 = v45/3 for quarks and

〈H45〉 = −v45 for leptons. For a general alignment, the practical consequence is that the

real parameters in the mass matrices also differ. However, we assume that 〈H45〉 is real,

such that phases only arise from the phases of flavon VEVs 〈φ〉 and 〈ξ〉.

The quark mass matrices can thus be written as

Y u = yuatm

0 0 0

0 1 1

0 1 1

+ yusole
iη

1 3 1

3 9 3

1 3 1

+ yudec

0 0 0

0 0 0

0 0 1

+ yusde
iηu

0 0 1

0 0 3

1 3 2

 ,

Y d = ydatm

0 0 0

0 1 1

0 1 1

+ ydsole
iη

1 3 1

3 9 3

1 3 1

+ yddec

0 0 0

0 0 0

0 0 1

 .

(4.81)



Chapter 4 A ∆(27)× SO(10) model 123

We are most concerned with the relationship between up-type quark and neutrino

Yukawa couplings. The difference may be parametrised by δi, such that

yui = yνi + δi (4.82)

There is an additional parameter yusd in Y u not present in Y ν . If we were to set this and

the three δi to zero, there would be no difference between the up-type quark and neutrino

Yukawa couplings, and the model would follow the expectation of naive SO(10) models:

three independent parameters, yudec = yνdec, y
u
atm = yνatm, and yusol = yνsol, which can be

eliminated in terms of the GUT scale values for up, charm and top Yukawa couplings

yu, yc, yt.

The numerical fit to the data indicates (see Table 4.3) that yuatm ∼ 10−5. This is the

root of a fine-tuning in the model that arises when we compare it to yνatm, which, in

order to have viable leptogenesis, requires yνatm ∼ 10−3 − 10−2, according to Figure 4.8.

This mismatch between up-type quark and neutrino couplings is a typical problem for

leptogenesis in SO(10) GUT models, and would invalidate leptogenesis in naive SO(10)

models where the couplings need to be equal.

In the model in question it can be accommodated through a cancellation between yνatm

and δatm both of order 10−3 − 10−2, leaving yuatm ∼ 10−5. It should be noted that in

this model, yνatm ∼ 10−3− 10−2 is indeed the expected order of magnitude for the Dirac

neutrino coupling (due to the powers of the superfield ξ). It is yuatm ∼ 10−5, required by

the fit, that turns out to be anomalously small, which is linked to the mass of the (first

generation) up quark, mu.

For completeness, we write down the Yukawa (and right-handed Majorana) matrices in

terms of model parameters. They are

(Y u
ij )
∗ ∼ (Y ν

ij )
∗ =

λ̃
(u)
atm

M3
χ

〈φiatmφ
j
atmξ〉+

λ̃
(u)
sol

M4
χ

〈φisolφ
j
solξ

2〉+
λ̃

(u)
dec

M2
χ

〈φidecφ
j
dec〉 ,

(Y d
ij)
∗ ∼ (Y e

ij)
∗ =

λ̃
(d)
atm

M4
χ

〈φiatmφ
j
atmξ

2〉+
λ̃

(d)
sol

M5
χ

〈φisolφ
j
solξ

3〉+
λ̃

(d)
dec

M3
χ

〈φidecφ
j
decξ〉 ,

(MN
ij )∗ = 〈H16〉2

[
λ̃

(M)
atm

M3
χM

4
Ωatm

〈φiatmφ
j
atmξ

4〉+
λ̃

(M)
sol

M4
χM

4
Ωsol

〈φisolφ
j
solξ

5〉

+
λ̃

(M)
dec

M2
χM

4
Ωdec

〈φidecφ
j
decξ

3〉
]
,

(4.83)

where the complex conjugation arises when moving from the SUSY basis to the seesaw

basis. We have neglected the additional mixed “sol-dec” term in Y u for convenience,

since it has no direct bearing on leptogenesis. The real input parameters of the matrices
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can then be read off explicitly as

yuatm ∼ yνatm = λ̃
(u)
atm|vatm|2|vξ|/M3

χ,

yusol ∼ yνsol = λ̃
(u)
sol |vsol|2|vξ|2/M4

χ,

yudec ∼ yνdec = λ̃
(u)
dec|vdec|2/M2

χ,

ydatm ∼ yeatm = λ̃
(d)
atm|vatm|2|vξ|2/M4

χ,

ydsol ∼ yesol = λ̃
(d)
sol |vsol|2|vξ|3/M5

χ,

yddec ∼ yedec = λ̃
(d)
dec|vdec|2|vξ|/M3

χ,

Matm = λ̃
(M)
atm |vatm|2|vξ|4|vH16

|2/(M3
χM

4
Ωatm

),

Msol = λ̃
(M)
sol |vsol|2|vξ|5|vH16

|2/(M4
χM

4
Ωatm

),

Mdec = λ̃
(M)
dec |vdec|2|vξ|3|vH16

|2/(M2
χM

4
Ωatm

),

η = − arg
[
v2

solvξ/v
2
atm

]
,

η′ = − arg
[
v2

dec/(v
2
atmvξ)

]
.

(4.84)

4.6 Summary of features

In this chapter we have presented a SUSY GUT of flavour, where all known fermions are

united into a single (3, 16) representation of the ∆(27) × SO(10) group. Emphasis has

been put on the Yukawa sector, where the CSD(3) vacuum alignments dictate the matrix

structures of quarks and leptons. In particular, all mass matrices have nearly the same

structure, given as sums over rank-1 matrices. This provides a simple interpretation of

fermion structures without fine-tuning. We have shown that a good fit to data, i.e. a

low χ2, can be achieved in all sectors.

The model is both fairly complete and quite natural: hierarchies arise dynamically from

a renormalisable superpotential that fixes all mass scales in terms of Higgs and flavon

VEVs, shaped by an auxiliary Z9 × Z12 symmetry. Although it requires a rather large

field content (with no field larger than an SO(10) adjoint), the model is capable of

addressing many important problems in GUT model building, including proton decay,

doublet-triplet splitting and the µ problem.

Furthermore, we have shown that, unlike in naive SO(10), the observed baryon asym-

metry of the Universe can be explained by the lightest right-handed neutrino decays

in thermal N1 leptogenesis. This required solving the flavoured Boltzmann equations

numerically, which yielded predictions for the right-handed neutrino masses, or equiva-

lently the elements of the neutrino Yukawa matrix.



Chapter 5

An S4 × SO(10) model

The work presented thus far has had several core aims, chiefly that of explaining the

observed masses and mixing patterns of both quarks and leptons, catalysed by the phe-

nomenological success of sequential dominance in the lepton sector. We have shown how

the CSD(3) alignment can be realised in SUSY GUTs based on both SU(5) and SO(10)

with flavour symmetry, and discussed the implications for leptogenesis. These models

followed the guiding principle of completeness: they are renormalisable theories with a

specific field content that explicitly shows how the Yukawa structures are obtained, the

symmetries are broken, the VEVs aligned, and how to recover the MSSM at low scales.

To achieve all this, these models employ a large field content that resides primarily at

the GUT scale, and most likely cannot ever be directly observed. Moreover, it is less

clear which components are essential for resolving the flavour puzzle specifically.

Drawing from the knowledge gained in the construction of the ∆(27)×SO(10) model of

the previous chapter, as well as recent developments in flavour model building, we aimed

to find a simpler model, where the origin of flavour is made apparent. Those efforts led

to the work in [6], which forms the basis of this chapter, and discusses an S4 × SO(10)

SUSY GUT of flavour.

5.1 A simpler SO(10) GUT of flavour

To begin, let us reiterate some key aspects of the flavour puzzle. We know that charged

fermion masses are very hierarchical, with the up-type quark mass hierarchy mu �
mc � mt being stronger than for the down-type quark masses md � ms � mb, which

resemble more closely the charged lepton masses me � mµ � mτ . The lightest charged

fermion is the electron, with me ∼ 0.5 MeV. Quark mixing, encoded in the CKM matrix,

is small and hierarchical. The discovery of neutrino mass and mixing makes the flavour

problem more acute but also provides new features, namely small neutrino masses, and

125
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large lepton mixing (encoded in the PMNS matrix U) resembling tri-bimaximal (TB)

mixing, but with non-zero reactor angle. The origin, nature and ordering of the neutrino

masses remain open questions, but cosmology suggests that all neutrino masses must be

below about 100 meV [37], making them by far the lightest (known) fermions in nature.

The smallness of neutrino mass may originate in the type-I seesaw mechanism, wherein

a natural way to obtain large lepton mixing and normal neutrino ordering is to assume

the sequential dominance of right-handed neutrinos (which arise naturally in SO(10)),

predicting m1 � m2 � m3 ∼ 50 meV. The magnitude of atmospheric and solar mixing

is determined by ratios of Yukawa couplings, which can easily be large, while the reactor

mixing is typically Ue3 . O(m2/m3) ≈ 0.17, a prediction made over a decade before the

reactor angle was measured.

To obtain precise predictions for mixing one can impose constraints on the Yukawa

couplings, where the CSD(3) scheme is particularly successful, although in this model

it appears in a slightly different form. The flavon vacuum alignments are fixed by a

superpotential which we do not specify here, but is given in a recent publication [96],

where they show that CSD(3) can be enforced by an S4 symmetry. In particular, they

find that the CSD(3) alignments preserve a generator of the symmetry (specifically,

the SU generator). By comparison, ∆(27) cannot enforce the CSD(3) alignments by

symmetry alone, requiring several orthogonality conditions between flavons and a rather

complicated superpotential (found in Appendix C).

After implementing the seesaw mechanism, the flavon VEVs yield a light effective Ma-

jorana neutrino mass matrix,

mν = µ1Y11 + µ2Y22 + µ3Y33, (5.1)

where Yij ∼ 〈φi〉 〈φj〉ᵀ, up to S4 Clebsch-Gordan (CG) factors. While the ability to ex-

press mass matrices as sums over low-rank matrices was known previously, the prospects

for model building were not fully explored. The ∆(27)×SO(10) model applied the above

structure universally across all fermion sectors, which seems quite appealing at first sight.

However, it led to problems in the quark sector, which were fixed by adding an extra

non-universal term in the up-type quark Yukawa matrix, together with some degree of

fine-tuning between matrix coefficients in order to obtain the correct quark masses and

mixing angles.

Against this backdrop, we present an S4 × SO(10) SUSY GUT of flavour in which

CSD(3) is embedded. Our guiding principles are firstly simplicity, involving the fewest

number of low-dimensional fields, secondly naturalness, and thirdly completeness, which

includes ensuring doublet-triplet splitting. What does natural mean? For us it means

that we have a qualitative explanation of fermion mass and mixing hierarchies with all

dimensionless parameters O(1), and in particular that the Yukawa matrices are obtained

from sums of low-rank matrices, where each matrix in the sum naturally accounts for the
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mass of a particular family, analogous to sequential dominance in the neutrino sector.

This qualitative picture of “universal sequential dominance” is underpinned by a detailed

quantitative fit of the fermion spectrum.

In order to achieve this, we shall introduce two Higgs 10s, Hu
10 and Hd

10, which will

give rise at low energy to the MSSM Higgs doublets, Hu and Hd, respectively, with no

appreciable Higgs mixing effects. Neutrinos and up-type quarks, which couple to Hu
10,

have Yukawa matrices with the universal structure as in Eq. 5.1. The charged leptons and

down-type quarks, which couple to Hd
10, have Yukawa matrices with a different universal

structure where Y11 is replaced by Y12 ∼ 〈φ1〉 〈φ2〉ᵀ. Quark mixing originates primarily

in the down-type quark sector, with the down and strange quark masses successfully

realised by having a zero entry in the (1,1) element of the down-type quark Yukawa

matrix Y d, as in the Gatto-Sartori-Tonin (GST) approach [206], with a milder hierarchy

among down-type quarks as compared to up-type quarks.

The model accurately fits all available quark and lepton data, and predicts a leptonic

CP phase δ` that deviates significantly from maximal. Since quark mixing dominantly

originates from Y d, analytical estimates for the quark mixing angles can be obtained.

A hierarchy in the flavon VEVs fixes the scales of all but one parameter, with all di-

mensionless couplings in the renormalisable theory naturally O(1). The model reduces

to the MSSM, and we demonstrate how a µ term of O(TeV) can be realised, as well as

doublet-triplet splitting, with Planck scale proton decay operators suppressed. In order

to achieve the above we also require auxiliary Z2
4 and ZR4 symmetries and a spectrum of

messenger fields.

We would like to emphasise that the model presented here is very different from earlier

models based on S4×SO(10) [166–169] (see also [170–172]).1 Firstly, the full symmetry

is different, since we invoke an extra Z2
4 × ZR4 symmetry, while earlier works use a Zn

[167–169]. Furthermore, we only allow small Higgs representations 10 (fundamental),

16 (spinor) and 45 (adjoint) and not the large Higgs representations such as the 126 and

120 which are used in the other approaches. As a consequence our neutrino masses follow

from a type-I seesaw mechanism, rather than a type-II seesaw employed in other papers.

In further contrast, we do not allow Higgs mixing: the MSSM Higgs doublets Hu and

Hd emerge directly from Hu
10 and Hd

10, respectively, whereas in [166–169] they arise as

unconconstrained linear combinations of doublets contained in 10- and 126-dimensional

Higgs fields. In addition we consider doublet-triplet splitting. These features are largely

absent from earlier works.

Another important difference is that we have used the CSD(3) vacuum alignments in

[96], whereas the vacuum aligments used in most previous works were geared towards

TB mixing, and do not naturally provide a large reactor angle. Indeed this model, as

1 Previous works on SO(10) models with non-Abelian discrete flavour symmetries are found in [147,
148, 161–165, 173, 174], and further flavoured GUTs can be found in citenonAbelian. More recently, a
generalised approach to flavour symmetries in SO(10) is considered in [207, 208].
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those discussed earlier, is motivated by the success of CSD(3) in the neutrino sector,

with an emphasis now on a simpler realisation in SO(10) and a natural description of

all hierarchies.

5.2 The model

5.2.1 Basic features

In the present model quarks and leptons are unified in ψ, a (3′, 16) representation of

S4 × SO(10), and with Hu,d
10 in (1, 10) and φi in (3′, 1) representations. The idea is

that the up-type quark Yukawa matrix Y u and neutrino Yukawa matrix Y ν arise from

effective terms like

Hu
10(ψφ1)(ψφ1) +Hu

10(ψφ2)(ψφ2) +Hu
10(ψφ3)(ψφ3), (5.2)

where the group contraction in each bracket is into an S4 singlet. These non-renormalisable

operators will have denominator scales of order MGUT, determined by the VEVs of addi-

tional Higgs adjoint 45s, leading to various CG factors. The resultant Yukawa matrices

Y u and Y ν are sums of rank-1 matrices as in Eq. 5.1, with independent coefficients

multiplying each rank-1 matrix. We assume the flavon vacuum alignments

〈φ1〉 = v1

 1

3

−1

 , 〈φ2〉 = v2

 0

1

−1

 , 〈φ3〉 = v3

0

1

0

 . (5.3)

We note that these alignments preserve the SU generator of S4. These differ from the

alignments considered previously, but give equivalent predictions for neutrino mixing

parameters, and are considered a variant of CSD(3), as discussed in [96]. Their VEVs

are driven to scales with the hierarchy

v1 � v2 � v3 ∼MGUT, (5.4)

so that each rank-1 matrix in the sum contributes dominantly to a particular family,

giving a rather natural understanding of the hierarchical Yukawa couplings whereby

yu ∼ v2
1/M

2
GUT, yc ∼ v2

2/M
2
GUT, yt ∼ v2

3/M
2
GUT, and similarly for the neutrino Yukawa

couplings. In this discussion we shall not provide an explanation for this hierarchy of

VEVs, nor shall we repeat the vacuum alignment superpotential responsible for the

alignments in Eq. 5.3, found in [96]. Since the expansion breaks down for the third

family, in the complete model we shall find a renormalisable explanation of the third-

family Yukawa couplings. The right-handed neutrino Majorana mass matrix will also

have the same universal form, leading to the seesaw mass matrix as in Eq. 5.1.
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The down-type quark Yukawa matrix Y d and charged lepton Yukawa matrix Y e arise

from terms like

Hd
10(ψφ1)(ψφ2) +Hd

10(ψφ2)(ψφ2) +Hd
10(ψφ3)(ψφ3), (5.5)

introducing a mixed term involving φ1 and φ2, leading to a new rank-2 Yukawa structure

Y12 ∼ 〈φ1〉 〈φ2〉ᵀ. In the Yukawa matrices Y d and Y e, Y11 is replaced by Y12, which has

two consequences: it enforces a zero in the (1,1) element of Y d, giving the GST relation

for the Cabibbo angle, i.e. θq12 ≈
√
yd/ys, and also leads to a milder hierarchy in the

down and charged lepton sectors. Both features are welcome.

We need additional symmetries and fields to ensure the above structures, provide renor-

malisable third family Yukawa couplings, give the desired Clebsch-Gordan relations to

distinguish down-type quarks from charged leptons, achieve doublet-triplet splitting,

and obtain the MSSM Higgs doublets Hu and Hd from Hu
10 and Hd

10, respectively.

5.2.2 Field content and superpotential

The full superfield content of the model is given in Table 5.1. It contains the following:

a “matter” superfield ψ containing all known Standard Model fermions, three triplet

flavons φ which acquire CSD(3) vacuum alignments, two Higgs 10s containing one each

of the electroweak-scale Higgs SU(2) doublets, a spinor H16 which breaks SO(10) (and,

along with the singlet ρ, gives masses to the right-handed neutrinos), as well as several

Higgs adjoints. The χ superfields are messengers that are integrated out below the

GUT scale, and are given GUT-scale masses by the VEV of HZ
45. We assume that the

MSSM Higgs doublets Hu, Hd lie completely inside, respectively, the SO(10) multiplets

Hu
10, H

d
10. This is justified in Section C.4 of Appendix C.

Two Z4 shaping symmetries help to forbid unwanted mixed flavon Yukawa terms. We

also assume a discrete R symmetry ZR4 , under which the superpotential has total charge

two, and which is broken at the GUT scale by the HB−L
45 VEV to ZR2 , the usual R (or

matter) parity in the MSSM, ensuring a stable LSP. It also controls the µ term and

helps ensure that only two light Higgs doublets (and no Higgs triplets) are present in

the effective MSSM. ZR4 is the smallest R symmetry that can achieve the above, and is

specially motivated within SO(10) [124]. We shall also assume a spontaneously broken

CP symmetry at the high scale.

At the GUT scale, the renormalisable Yukawa superpotential is given by

W
(GUT)
Y = ψφaχa + χaχaH

Z
45 + χaχaH

u
10 + ρχ3H16 +Mρρρ

+ χbχ
′
b

(
HX

45 +HY
45

)
+ χ′bχ

′
bH

d
10 + χ1χ2H

d
10,

(5.6)
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Field
Representation

S4 SO(10) Z4 Z4 ZR4
ψ 3′ 16 1 1 1

Hu
10 1 10 0 2 0

Hd
10 1 10 2 0 0

H16 1 16 2 1 0
H16 1 16 1 2 0

HX,Y
45 1 45 2 1 0

HZ
45 1 45 1 2 0

HB−L
45 1 45 2 2 2

φ1 3′ 1 0 0 0
φ2 3′ 1 2 0 0
φ3 3′ 1 0 2 0

(a) Matter, Higgs and flavon superfields.

Field
Representation

S4 SO(10) Z4 Z4 ZR4
χ1 1 16 3 3 1
χ1 1 16 0 3 1
χ2 1 16 1 3 1
χ2 1 16 2 3 1
χ3 1 16 3 1 1
χ3 1 16 0 1 1
χ′3 1 16 3 2 1
χ′2 1 16 1 0 1

ρ 1 1 2 2 1

(b) Messenger superfields.

Table 5.1: Field content giving the Yukawa superpotential in Eq. 5.6.

where we sum over indices a = 1, 2, 3 and b = 2, 3, and have suppressed O(1) coefficients

λ that multiply each term. Furthermore, there are several crucial terms that appear

suppressed by one Planck mass MP . These are

W
(Planck)
Y =

χaχaH16H16

MP
+
ψψφ3H

d
10

MP
, (5.7)

where a = 1, 2, 3. The first term couples H16 to fermions via the messengers. The second

is allowed by the symmetries and will be shown to contribute at the order of the smallest

GUT-scale terms to the fermion Yukawa matrices, and thus cannot be ignored.

The adjoint Higgs superfields acquire VEVs at the GUT scale, i.e. 〈Hk
45〉 ∼ MGUT,

which are generally complex. HX,Y,Z
45 gain different (Standard Model-preserving) VEVs,

providing CG factors which separate the quark and lepton masses. The VEVs of φ1

and φ2 are assumed to acquire VEVs well below the GUT scale, i.e. 〈φ1,2〉 � MGUT,

while 〈φ3〉 ∼ MGUT, which is therefore also the scale at which the flavour symmetry is

broken, along with CP . We note that no residual CP symmetry remains at low scales.

As 〈φ3〉 is near the messenger scale, the process of integrating out messengers χ3, χ3 is

not trivial. The correct procedure and the consequences of having a flavon VEV near

MGUT are discussed in detail below, where we verify also that the third family Yukawa

couplings are renormalisable at the electroweak scale.

The diagrams giving the mass and Yukawa matrices are drawn in Figures 5.1 – 5.3.

The three diagrams in Figure 5.1 correspond to the ultraviolet completion of the three

terms in Eq. 5.2, while those in Figure 5.2 are the completion of the terms in Eq. 5.5.

The diagrams ensure correct S4 group theory contractions and introduce CG coefficients

due to the HX,Y,Z
45 VEVs. These diagrams are analogous to how the seesaw mechanism
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replaces the Weinberg operator for neutrino mass. Of course neutrino mass itself in this

model is more subtle, since both the Dirac and right-handed Majorana masses arise from

these diagrams.

Each diagram leads to a 3×3 matrix, whose internal structure is dictated by the vacuum

alignment of the relevant flavon VEVs in Eq. 5.3. The Yukawa and mass matrices are

consequently given as a sum over these matrices. A prominent feature is a texture zero

in the (1,1) element of Y d and Y e, which realises the GST relation for the Cabibbo

angle. The exact matrices that we fit to data are given below.

〈HZ
45〉 〈HZ

45〉

Hu
10φ1 φ1

ψ ψχ̄1 χ1 χ1 χ̄1

〈HZ
45〉 〈HZ

45〉

Hu
10φ2 φ2

ψ ψχ̄2 χ2 χ2 χ̄2

〈HZ
45〉 〈HZ

45〉

Hu
10φ3 φ3

ψ ψχ̄3 χ3 χ3 χ̄3

Figure 5.1: Diagrams coupling ψ to Hu
10, giving the up-type quark and Dirac

neutrino Yukawa terms.

〈HZ
45〉 〈HZ

45〉

Hd
10φ1 φ2

ψ ψχ̄1 χ1 χ2 χ̄2

〈HX,Y
45 〉 〈HX,Y

45 〉

Hd
10φ2 φ2

ψ ψχ̄2 χ′
2 χ′

2 χ̄2

〈HX,Y
45 〉 〈HX,Y

45 〉

Hd
10φ3 φ3

ψ ψχ̄3 χ′
3 χ′

3 χ̄3

Figure 5.2: Diagrams coupling ψ to Hd
10, giving the down-type quark and

charged lepton Yukawa terms.

〈HZ
45〉 〈HZ

45〉

H16φ3 φ3

ψ ψχ̄3 χ3 χ3 χ̄3

H16

ρ ρ

Mρ 〈HZ
45〉 〈HZ

45〉

H16φa φa

ψ ψχ̄a χa χa χ̄a

H16

MP

Figure 5.3: Diagrams coupling ψ to H16, giving the right-handed neutrino mass
terms. One copy of the right-hand diagram may be drawn for each of a = 1, 2, 3,
although for a = 3, its contribution is negligible compared to the left diagram.

Planck-scale operators suppressed by one power of the Planck mass MP , beyond those

in Eq. 5.7, are forbidden by the symmetries. However we expect additional effective

operators arising in the model, suppressed by at least two powers of the Planck mass

M2
P . These include terms involving all possible contractions of S4 multiplets ψ and φi,

which are forbidden at the renormalisable level, but allowed by the symmetries. The

largest of these terms can be O(M2
GUT/M

2
P ) ∼ 10−6. We will assume these contributions

are negligible, but note that such corrections may pollute the texture zero in Y d.

5.2.3 Clebsch-Gordan factors

An adjoint of SO(10) can acquire a VEV aligned in the direction of any of the four U(1)

subgroup generators that commute with the Standard Model, or a combination thereof.
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There are four such U(1) symmetries, labelled U(1)X , U(1)Y , U(1)B−L, U(1)T 3
R

. U(1)X

arises from the breaking SO(10) → SU(5) × U(1)X . U(1)Y is the Standard Model

hypercharge which arises when SU(5)→ SU(3)×SU(2)L×U(1)Y . The other two U(1)

arise when SO(10) is broken along the Pati-Salam chain, via a LR-symmetric gauge

group. Their generators are not linearly independent; two of them may be expressed

in terms of the other two. The VEVs of HX,Y,Z
45 may be written as linear combinations

of these alignments. Without loss of generality we may assume 〈HX
45〉 and 〈HY

45〉 align

in the “X” and “Y ” directions, respectively, while 〈HZ
45〉 is a linear combination of the

two.

Fermions couple to these VEVs with strengths that depend on their associated U(1)

charges, which are different for quarks and leptons. HB−L
45 is assumed to gain a VEV in

the direction that preserves B − L, generating GUT-scale masses for Higgs triplets via

the Dimopoulos-Wilczek (DW) mechanism [184–186]. Our implementation of the DW

mechanism is described in Appendix C.

Up-type quarks and Dirac neutrinos couple to HZ
45 (see Figure 5.1). As 〈HZ

45〉 is arbitrary,

there is no hard prediction for the ratio between quark and neutrino Yukawa couplings

within a family. However, as all flavons φa couple to this VEV in the same way, flavour

unification demands that the same ratio hold for all families. Therefore, once Y u is

determined, Y ν is also fixed, such that Y ν ∝ Y u to good approximation, up to an

overall CG factor, with small deviations for the third family.

Meanwhile, the down-type quarks and charged leptons couple to HX
45 and HY

45 (see Fig-

ure 5.2). Unlike the up sector, where matter always couples to the same SO(10) adjoint

VEV, each diagram like Figure 5.2 involving a different flavon will couple to a different

linear combination of VEVs. This introduces CG factors non-trivially into Y d and Y e.

As such, there is no fixed relationship between down-type quark and charged lepton

Yukawa couplings, neither within a family, nor across families. They are nevertheless

expected to be of the same order.

5.2.4 Renormalisability of the third family

Next, we show that naive integration over messenger fields is not possible for the third

family, due to the large VEV of φ3. We reiterate that there is an assumed hierarchy of

flavon VEVs, such that v1 � v2 � v3 ∼ MGUT, implying it is not possible to formally

integrate out the messengers χ3 which couple to the flavon φ3.

To explore this further, let us single out the terms in WY involving these fields and Hu
10

(the same method applies to terms coupling to Hd
10). Suppressing O(1) couplings, the

relevant terms are

W
(3)
Y = ψφ3χ3 +HZ

45χ3χ3 + χ3χ3H
u
10. (5.8)
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After fields acquire VEVs (with 〈φ3〉 = v3(0, 0, 1)), we have

W
(3)
Y = v3ψ3χ3 + 〈HZ

45〉χ3χ3. (5.9)

These two terms are of comparable order.

Näıvely, ψ3 may be interpreted as the set of third-family particles. The problem with

this picture is that it has a large coupling to χ3, which induces a mass for ψ3 via the

second term in Eq. 5.9. This clearly does not correspond to the physical third-family

states (top quark and third Dirac neutrino), which are massless above the electroweak

scale. To obtain the physical (massless) states, which we label t, we rotate into a physical

basis (ψ3, χ3)→ (t, χ), such that t does not couple to χ3. This basis change is given by

ψ3 =
〈HZ

45〉 t+ v3 χ

r
, χ3 =

−v3 t+ 〈HZ
45〉χ

r
; r =

√
v2

3 + 〈HZ
45〉

2
. (5.10)

Physically, it may be interpreted as follows: inside the original superpotential WY lie

the terms

WY ⊃ χ3χ3H
u
10 ⊃

v2
3

v2
3 + 〈HZ

45〉
2 t tH

u
10, (5.11)

which generate renormalisable mass terms for the top quark and the third Dirac neutrino

at the electroweak scale.

The factors that multiply the renormalisable Yukawa couplings can in principle modify

the third row and column of a given fermion Yukawa matrix independently of any par-

ticular vacuum alignment. They depend on the alignment of the SO(10) adjoint VEV

in question, and the corresponding CG factors. In principle this can alter the relation

Y ν ∝ Y u, which is the natural prediction. For simplicity, we assume these coefficients

are all 1.

5.2.5 Proton decay

As noted in previous chapters, we must consider also the model predictions for proton

decay. We reach similar conclusions for the present model as in earlier discussions.

Recall that the proton lifetime is constrained by experiment to τp & 1032 years [23].2 In

SUSY SO(10) GUTs, proton decay can be mediated by heavy gauge bosons and or Higgs

SU(3) triplets, with the dominant contribution involving triplet Higgsinos. The decay

width depends on details of SUSY breaking and the coupling texture of the triplets. It

has been shown that the experimental constraints are met when triplets are at the GUT

scale [189, 190]. As shown in Appendix C, this is the case here.

2 As noted in the previous chapter, the proton lifetime bounds vary with the decay mode, giving
τp > 1031−33 years. For simplicity, we consider only a single bound here.
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The existence of additional fields in the model may also allow proton decay from effective

terms of the type

gQQQL
〈X〉
M2
P

. (5.12)

Such terms must obey the constraint g 〈X〉 < 3 × 109 GeV. In our model, the largest

contribution of this type comes from the term

ψψψψ
HB−L

45 (HX,Y
45 HZ

45)2

M6
P

⇒ 〈X〉 =
(MGUT )5

M4
P

∼ 103 GeV. (5.13)

The constraint on 〈X〉 is easily met, so proton decay from such terms is highly sup-

pressed.

5.3 Mass matrices and analytical estimates

5.3.1 Mass matrices

We present here the Yukawa and mass matrices, which will be used in the numerical

fits below. A detailed derivation is given below, in Section 5.3.3. We begin by defining

numerical matrices

Y11 =

1 1 3

1 1 3

3 3 9

 , Y22 =

0 0 0

0 1 1

0 1 1

 , Y33 =

0 0 0

0 0 0

0 0 1

 ,

Y12 =

0 1 1

1 2 4

1 4 6

 , YP =

 0 0 −1

0 2 0

−1 0 0

 .

(5.14)

We note that all matrices derive from triplet products like (ψφi)(ψφj), with S4 sin-

glet contractions in each bracket, except YP which derives from the Planck-suppressed

operator ψψφ3H
d
10.

The up, down, charged lepton and Dirac neutrino Yukawa matrices (Y u, Y d, Y e and

Y ν respectively) and right-handed neutrino mass matrix MR arising from Figures 5.1

– 5.3, assuming that the MSSM Higgs doublets Hu and Hd arise from Hu
10 and Hd

10,

respectively, may then be expressed as

Y u = yu1 e
iηY11 + yu2Y22 + yu3 e

iη′Y33,

Y ν = yν1e
iηY11 + yν2Y22 + yν3e

iη′Y33,

MR = MR
1 e

iηY11 + MR
2 Y22 + MR

3 e
iη′Y33,

Y d = yd12e
i η

2Y12 + yd2e
iαdY22 + yd3e

iβdY33 + yP eiγYP ,

Y e = ye12e
i η

2Y12 + ye2e
iαeY22 + ye3e

iβeY33 + yP eiγYP .

(5.15)
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The flavon VEVs va are complex, with the fixed phase relation

η = arg

[
v1

v2

]2

= −2π

3
, (5.16)

given (up to a sign) by the superpotential that fixes the alignments. The remaining

phase η′ is determined by the fit.

The light neutrino mass matrix is obtained by the seesaw mechanism. Both Y ν and

MR have the same structure, namely both are sums over the same rank-1 matrices Y11,

Y22 and Y33. By the proof given in the previous chapter (see Section 4.2.4), the light

neutrino matrix mν will also have this structure, i.e.

mν = µ1e
iηY11 + µ2Y22 + µ3e

iη′Y33

= µ1e
iη

1 1 3

1 1 3

3 3 9

+ µ2

0 0 0

0 1 1

0 1 1

+ µ3e
iη′

0 0 0

0 0 0

0 0 1

 ,
(5.17)

where the parameters µi are given in terms of the parameters yνi and MR
i simply by

µi = v2
u

(yνi )2

MR
i

. (5.18)

As shown in the Introduction, the flavons yield a light neutrino mass matrix mν , where

the normal hierarchy m1 � m2 � m3 then corresponds to µ3 . µ1 � µ2. Achiev-

ing this hierarchy after seesaw implies that the right-handed neutrino masses are very

hierarchical, as we will see below.3

5.3.2 Analytical estimates

The mass matrices involve the following real free parameters: yui , ydi , yei , µi, and yP (a

total of 13). Recalling that η is fixed by flavon vacuum alignment, we have the following

further free parameters: η′, αd,e, βd,e, and γ (a total of six). The scales of the real

parameters are mostly fixed by the scales of the flavon VEVs, v1,2,3. We set the flavon

VEV scales to some appropriate values,

v1 ≈ 0.002MGUT, v2 ≈ 0.05MGUT, v3 ≈ 0.5MGUT, (5.19)

where we set MGUT ' 1016 GeV. The terms giving MR
1,2 and yP in MR and Y d,e

derive from terms suppressed by one Planck mass MP . As they arise from unspecified

dynamics, the scale of these parameters is not very well defined. For definiteness, we set

3 While the model does not mathematically forbid an inverted hierarchy, we have checked that the
corresponding predictions for neutrino masses and mixing angles would always give a bad fit to data. It
would also require parameter choices that strongly violate the naturalness principle employed here.
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MP ' 1019 GeV and again assume the associated coefficients are close to one. Recall

also that MR
3 is at the GUT scale due to the term ρχ3H16.

We may estimate the parameters of the matrices defined in Eq. 5.15 as follows: set all

O(1) coefficients to exactly one, and ignore CG factors by setting all adjoint Higgs VEVs

to MGUT ' 1016 GeV. Then the Yukawa couplings are estimated to be

yu1 ∼ yν1 ∼ v2
1/M

2
GUT ≈ 4× 10−6,

yu2 ∼ yν2 ∼ yd2 ∼ ye2 ∼ v2
2/M

2
GUT ≈ 2.5× 10−3,

yu3 ∼ yν3 ∼ yd3 ∼ ye3 ∼ v2
3/M

2
GUT ≈ 0.25,

yd12∼ ye12∼ v1v2/M
2
GUT≈ 1× 10−4,

yP ∼ v3/MP ≈ 5× 10−4.

(5.20)

The right-handed neutrino mass parameters are estimated to be

MR
1 ∼ 4× 107 GeV, MR

2 ∼ 2.5× 1010 GeV, MR
3 ∼ 1016 GeV. (5.21)

This very strong hierarchy implies negligible right-handed neutrino mixing, such that

the mass eigenvalues closely correspond to the above values. As each parameter contains

several O(1) coefficients λ and CG factors, the above numbers only represent order of

magnitude estimates.

As we will see in the numerical fit below, the above estimates are in good agreement

with the values that produce a good fit to data, with a single exception: the parameter

MR
1 , which is primarily responsible for the lightest right-handed neutrino mass, should

be a factor O(0.01) times the estimate above in order to give the correct light neutrino

mass spectrum. This can be understood by inserting the above estimates for yν1 and

MR
1 into the expression for µ1 in Eq. 5.18, which suggests µ1 ∼ 0.01 meV, whereas we

will see the fit prefers a value of O(1) meV. The necessary factor can be achieved by

assuming one or more coefficients deviates from unity.

One may also obtain approximate expressions for the quark mixing angles in terms

of quark Yukawa couplings as follows. The very strong hierarchy in the three real

parameters of Y u is correlated with that in the physical Yukawa eigenvalues of up,

charm and top quarks. We therefore expect negligible contributions from the up sector

to quark mixing. This implies that not only do the four real parameters in the down

sector, ydi and yP , fix the down-type Yukawa eigenvalues, they also must reproduce the

observed CKM mixing angles.

Let us consider Y d, keeping only the leading terms in each element. For simplicity,

we ignore free phases. As noted above, yd12 ∼ yP < yd2 � yd3 . We also define y′2 =



Chapter 5 An S4 × SO(10) model 137

yd2 + 2yd12 + 2yP . Then

Y d ≈

 0 yd12 yd12 − yP
yd12 y′2 y′2 + 2(yd12 − yP )

yd12 − yP y′2 + 2(yd12 − yP ) yd3

 . (5.22)

In the small angle approximation, the mixing angles can be estimated by

θq12 ≈
Y d

12

Y d
22

=
yd12

y′2
, θq13 ≈

Y d
13

Y d
33

=
yd12 − yP

yd3
, θq23 ≈

Y d
23

Y d
33

=
y′2 + 2(yd12 − yP )

yd3
. (5.23)

The down-type Yukawa eigenvalues are given by yd ≈ (yd12)2/y′2, ys ≈ y′2, yb ≈ yd3 .

Solving for yd12, y′2 and yd3 , we have, to good approximation, yd12 ≈
√
ydys, y

′
2 ≈ ys,

yd3 ≈ yb. Reintroducing these into our estimates for mixing angles, we get

θq12 ≈
√
yd
ys
, θq13 ≈

√
ydys − yP
yb

, θq23 ≈
ys + 2(

√
ysyd − yP )

yb
. (5.24)

Note that the first equality is exactly the GST relation [206], which is in good agreement

with data. In fact, the GST relation, which predicts θq12 ' 0.224 for the central values of

yd and ys, is in mild tension with experimental data, which gives θq12 ' 0.227. Possible

modifications to the GST result have been proposed [209], e.g. adding a correction like√
yu/yc, which can be realised by a texture zero also in Y u. Alternatively, one may

exploit the statistical uncertainties on each of the down and strange quark masses. A

small deviation from their central values can predict a slightly different θq12.

On the other hand, the mixing angles θq13 and θq23 are less precisely estimated, as the

parameter yP can be as large as yd12, and the final result will depend on the relative phase

between yd12 and yP . Note however that both mixing angles depend in the same way on

yd12 − yP . Generally, the approximations in Eq. 5.24 predict some tension between θq13

and θq23, which are too large and too small, respectively. This tension cannot be resolved

simply by tuning yP .

5.3.3 Full derivation of matrices

For completeness, we here derive the precise forms of the Yukawa and Majorana mass

matrices, taking into account the vacuum alignments of the adjoint Higgs superfields.
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The renormalisable superpotential given by Eqs. 5.6 and 5.7, with explicit O(1) cou-

plings, is

WY = λφaψφaχa + λχaχaχaH
Z
45 + χaχa

(
λuaH

u
10 + λNa

H16H16

MP

)
+ χbχ

′
b

(
λXb H

X
45 + λYb H

Y
45

)
+ λdbχ

′
bχ
′
bH

d
10

+ λd12χ1χ2H
d
10 + λρ3ρχ3H16 +Mρρρ+ λdP

ψψφ3H
d
10

MP
,

(5.25)

where a sum over a = 1, 2, 3 and b = 2, 3 is understood. Recall from Eq. 5.3 the flavon

vacuum alignments 〈φ1〉 = v1(1, 3,−1), 〈φ2〉 = v2(0, 1,−1), 〈φ3〉 = v3(0, 1, 0). The

singlet product which occurs in ψφa above, i.e. 3′ × 3′ → 1, is given by (AB) = A1B1 +

A2B3 + A3B2. To account for this nontrivial product as well as the field redefinition

ψ2 → −ψ2 (this overall sign is unphysical), we define the vectors 〈φ̃i〉 = IS4 〈φi〉, where

IS4 =

1 0 0

0 0 −1

0 1 0

 . (5.26)

This gives

〈φ̃1〉 = v1

1

1

3

 , 〈φ̃2〉 = v2

0

1

1

 , 〈φ̃3〉 = v3

0

0

1

 . (5.27)

Next, we introduce notation to specify the relevant components of a VEV 〈Hk
45〉, cor-

responding to unique CG factors. The index k labels the adjoint, i.e. k = X,Y, Z, or

B−L. After the GUT is broken and ψ is decomposed into MSSM gauge multiplets, the

part of an adjoint VEV which couples to a given multiplet f is denoted

Hk
45 → 〈Hk

45〉f , (5.28)

where f = Q, uc, dc, L, ec, or νc. The H16 gets a VEV in the direction which preserves

SU(5), which we call the (singlet) νc direction. Its VEV only affects the right-handed

neutrino mass matrix and is simply denoted v16.
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We extract the Yukawa matrices from diagrams in Figures 5.1 – 5.3. Taking into account

nontrivial S4 products (as above), we have

Y u
ij =

∑
a=1,2

λua
(λφa)2 〈φ̃a〉i 〈φ̃a〉j

(λχa)2 〈HZ
45〉Q 〈HZ

45〉uc
+

(λφ3 )2 〈φ̃3〉i 〈φ̃3〉j
(λφ3 )2v2

3 + (λχ3 )2 〈HZ
45〉Q 〈HZ

45〉uc
,

Y ν
ij =

∑
a=1,2

λua
(λφa)2 〈φ̃a〉i 〈φ̃a〉j

(λχa)2 〈HZ
45〉L 〈HZ

45〉νc
+

(λφ3 )2 〈φ̃3〉i 〈φ̃3〉j
(λφ3 )2v2

3 + (λχ3 )2 〈HZ
45〉L 〈HZ

45〉νc
,

MR
ij =

∑
a=1,2

λNa v
2
16

MP

(λφa)2 〈φ̃a〉i 〈φ̃a〉j
(λχa)2 〈HZ

45〉νc 〈HZ
45〉νc

+ v2
16

(
(λρ3)2

Mρ
+
λN3
MP

)
(λφ3 )2 〈φ̃3〉i 〈φ̃3〉j

(λφ3 )2v2
3 + (λχ3 )2 〈HZ

45〉νc 〈HZ
45〉νc

,

Y d
ij = λd2

(λφ2 )2 〈φ̃2〉i 〈φ̃2〉j
[λX2 〈HX

45〉+ λY2 〈HY
45〉]Q[λX2 〈HX

45〉+ λ2Y 〈HY
45〉]dc

+ λd3
(λφ3 )2 〈φ̃3〉i 〈φ̃3〉j

(λφ3 )2v2
3 + [λX3 〈HX

45〉+ λY3 〈HY
45〉]Q[λX3 〈HX

45〉+ λ3Y 〈HY
45〉]dc

+ λd12

λφ1λ
φ
2 〈φ̃1〉i 〈φ̃2〉j

λχ1λ
χ
2 〈HZ

45〉Q 〈HZ
45〉dc

+ λdP
YP v3

MP
,

Y e
ij = λd2

(λφ2 )2 〈φ̃2〉i 〈φ̃2〉j
[λX2 〈HX

45〉+ λY2 〈HY
45〉]L[λX2 〈HX

45〉+ λ2Y 〈HY
45〉]ec

+ λd3
(λφ3 )2 〈φ̃3〉i 〈φ̃3〉j

(λφ3 )2v2
3 + [λX3 〈HX

45〉+ λY3 〈HY
45〉]L[λX3 〈HX

45〉+ λ3Y 〈HY
45〉]ec

+ λd12

λφ1λ
φ
2 〈φ̃1〉i 〈φ̃2〉j

λχ1λ
χ
2 〈HZ

45〉L 〈HZ
45〉ec

+ λdP
YP v3

MP
.

(5.29)

The last term in Eq. 5.25 is a singlet coming from three S4 triplets and gives rise to the

final terms in Y d and Y e, where YP is the numerical matrix defined in Eq. 5.14.

5.4 Numerical fit

5.4.1 χ2 minimisation and Monte Carlo methods

Our model determines the Yukawa couplings and mixing parameters at the GUT scale,

which is also the highest flavour-breaking scale. As in the analyses of Chapters 3 and

4, the values from experiments must be run up to the GUT scale, taking into account

supersymmetric radiative threshold corrections. This analysis has been performed in

[145], and their parametrisation of the corrections is summarised in Appendix B. Most

parameters do not significantly affect the fit, so are simply set to reasonable values.

Specifically, we set MSUSY = 1 TeV, tanβ = 5 and η̄q = η̄` = 0. We also find that

a good fit can be achieved for a rather large value η̄b = −0.8. The choices of SUSY
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parameters tanβ and η̄b are here empirically determined to give a good fit of the model

to data. It is clear from the fit that large (negative) η̄b is required, affecting primarily

the bottom quark Yukawa coupling yb. In order to keep yb perturbative, we must assume

reasonably small tanβ. In the region of 5 < tanβ < 10 or so, the fit is rather insensitive

to the exact choice. Neutrino data is taken from the NuFit global fit, version 3.0 [36].

To find the best fit of the model to data, we minimise a χ2 function, defined as in

Eq. 2.22 by

χ2 =
∑
i

(
Pi(θ)− P obs

i

σi

)2

, (5.30)

where P obs
i and σi are the experimental best fits and errors, respectively, and we have

used θ instead of x to denote the input parameters. As already noted, in order for

a minimum χ2 to correspond to the maximum likelihood, the statistical uncertainties

should be symmetric (Gaussian). In earlier fits based on the NuFit 2.0 data, we needed

to carefully consider the bimodality of the atmospheric mixing angle θ`23; experimental

data could not conclusively resolve the octant, i.e whether θ`23 is larger or smaller than

45◦. While this remains true in the current global fit, the preference for the first octant

(for normal ordering) is stronger, with a central value 41.6◦. We will assume this is the

true value.

For our model, the input parameters are θ = {yui , ydi , yei , yP , µi, η′, αd,e, βd,e, γ}, and the

observables are given by Pi ∈ {θqij , δq, yu,c,t, yd,s,b, θ`ij , ye,µ,τ ,∆m2
ij}. As the lepton CP

phase δ` is (still) not well measured, we do not include it in the fit, leaving it as a pure

prediction. While we fit to the neutrino mass-squared differences, the model predicts

the masses outright, including the lightest neutrino mass m1, as well as the Majorana

phases α21,31.

χ2 minimisation is an effective tool for finding a best fit point parameter space, and

for comparing models to each other. For this model we went further, supplementing

the fit with a Markov Chain Monte Carlo (MCMC) analysis, allowing us to gain more

insight into the model predictions, in particular the likely ranges for mass and mixing

parameters in the model. The broad aim is to estimate the probability distribution of

parameters in the model, given the available data.4 In the language of Bayesian inference,

this is the posterior probability density. Once this is known, we may identify regions

of highest posterior density (hpd), which correspond to the most likely predicted values

of physical parameters, and construct so-called 95% credible intervals, which contain

those parameter values that collectively have a 95% chance of being the true predicted

value by the model (given the data). These are analogous to, but philosophically very

different from, the often cited confidence intervals associated with frequentist analyses.

Confidence intervals correspond to those values of a parameter where, in 95% of iterations

of an experiment repeated many times, the measured value of an experiment will lie.

4 These methods for exploring the parameter space were foreshadowed in the analysis of CSD(n) in
Chapter 2, where we plotted χ2 as functions of the inputs (see Figures 2.1 and 2.2).



Chapter 5 An S4 × SO(10) model 141

To estimate the posterior distributions we used the Metropolis-Hastings algorithm [210],

which repeatedly samples from the parameter space, preferentially revisiting regions that

correspond to higher likelihood (a lower χ2). It falls within a particular class of Monte

Carlo methods based on Markov chains, which have as a key characteristic that the each

iteration depends only on the last sample, and has no “memory” of previous iterations.

The algorithm works as follows:

1. Generate a set of input parameters θ.

2. Calculate the relevant observables Pi(θ).

3. Calculate the likelihood L(θ), defined as

L(θ) ≡ exp

[
−χ

2

2

]
, (5.31)

in terms of the standard χ2 test statistic, defined above.

4. Generate a new set of input parameters θ′. There is some freedom in how this new

set is selected, discussed below.

5. Calculate L(θ′) and the acceptance ratio

α ≡ L(θ′)
L(θ)

, (5.32)

which describes the relative likelihood of the two points in parameter space.

6. If α > 1, we automatically accept θ′ as the new starting point, so θ′ → θ. If α < 1,

we accept θ′ only with probability α, i.e. the new starting point is randomly chosen

to be either θ′, with a probability α, or θ, with a probability 1− α.

7. Repeat from step 2.

A few additional notes on the method are in order. The random choice when α < 1

allows for the possibility of moving from a point in parameter space with lower χ2 to

a (somewhat) higher one. This ensures one does not get trapped in a shallow local

minimum. In a large and complicated parameter space such as the one considered here,

several local minima may exist; it is important that the MCMC algorithm can sample

from all such regions. In the infinite limit, the chain will visit (and revisit) each region

for an amount of time proportional to the likelihood (itself proportional to the posterior

probability).

Meanwhile, the shape of the distribution from which the next point θ′ is chosen is a

free parameter in the algorithm, and affects the rate of convergence. Conventionally,

the proposal distribution is chosen such that no more than half of proposed sets θ′ are

accepted. A common choice, which we employed, is to choose each new θ′j from a normal
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distribution centered around the previous θj , with some appropriate standard deviation

σ, typically a few percent of the mean value. We set σ = 2%.

The initial starting set constitutes another free choice, chosen from physical consider-

ations within the model itself. In this model with universal sequential dominance, we

have rather well-defined expectations for the natural values of the input parameters.

For instance, we anticipate yu3 to be closely related to the top quark mass; yu3 = yt thus

serves as an appropriate starting point. However, we allow an initial burn-in period,

which allows the algorithm to “forget” the initial state. To calculate a hpd interval, one

plots the posterior distribution and identifies the region(s) with the tallest peaks; these

do not need to be connected.

5.4.2 Results

Observable
Data Model

Central value 1σ range Best fit Interval

θ`12 /
◦ 33.57 32.81 → 34.32 33.62 31.69 → 34.46

θ`13 /
◦ 8.460 8.310 → 8.610 8.455 8.167 → 8.804

θ`23 /
◦ 41.75 40.40 → 43.10 41.96 39.47 → 43.15

δ` /◦ 261.0 202.0 → 312.0 300.9 280.7 → 308.4
ye /10−5 1.017 1.011 → 1.023 1.017 1.005 → 1.029
yµ /10−3 2.147 2.134 → 2.160 2.147 2.121 → 2.173
yτ /10−2 3.654 3.635 → 3.673 3.654 3.616 → 3.692
∆m2

21 /10−5 eV2 7.510 7.330 → 7.690 7.515 7.108 → 7.864
∆m2

31 /10−3 eV2 2.524 2.484 → 2.564 2.523 2.443 → 2.605
m1 /meV 0.441 0.260 → 0.550
m2 /meV 8.680 8.435 → 8.888
m3 /meV 50.24 49.44 → 51.05∑
mi /meV < 230 59.36 58.49 → 60.19

α21 67.90 -25.19 → 87.49
α31 164.2 19.98 → 184.5

Table 5.2: Model predictions in the lepton sector, at the GUT scale, with ex-
perimental 1σ ranges from [105, 145]. We set tanβ = 5, MSUSY = 1 TeV and
η̄b = −0.8. The lepton contribution to the total χ2 is 0.03. δ` as well as the
neutrino masses mi are pure predictions of our model. The model interval is a
Bayesian 95% credible interval.

We present the best fit (minimum χ2) of the model to physical observables (Yukawa

couplings and neutrino mass and mixing parameters) in Tables 5.2 and 5.3, which also

include the central values and 1σ ranges from data. Figure 5.4 shows the associated

pulls, and Table 5.4 shows the corresponding input parameter values. The fit gives

χ2 ≈ 3.4. A second minimum with χ2 ≈ 4 was also found, leading primarily to a

different prediction for δ`, as discussed below, although we shall not present the full fit

parameters for this case.
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Observable
Data Model

Central value 1σ range Best fit Interval

θq12 /
◦ 13.03 12.99 → 13.07 13.02 12.94 → 13.10

θq13 /
◦ 0.039 0.037 → 0.040 0.039 0.036 → 0.041

θq23 /
◦ 0.445 0.438 → 0.452 0.439 0.426 → 0.450

δq /◦ 69.22 66.12 → 72.31 69.21 63.22 → 73.94
yu /10−6 2.988 2.062 → 3.915 3.012 1.039 → 4.771
yc /10−3 1.462 1.411 → 1.512 1.493 1.445 → 1.596
yt 0.549 0.542 → 0.556 0.547 0.532 → 0.562
yd /10−5 2.485 2.212 → 2.758 2.710 2.501 → 2.937
ys /10−4 4.922 4.656 → 5.188 5.168 4.760 → 5.472
yb 0.141 0.136 → 0.146 0.137 0.126 → 0.143

Table 5.3: Model predictions in the quark sector at the GUT scale, with experi-
mental 1σ ranges from [145]. We set tanβ = 5, MSUSY = 1 TeV and η̄b = −0.8.
The quark contribution to the total χ2 is 3.38. The model interval is a Bayesian
95% credible interval.
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Figure 5.4: Pulls for the best fit of the model to data. Quark parameters are
given in blue, and lepton parameters in yellow. The corresponding best fit values
are shown in Tables 5.2 and 5.3.

Parameter Value

yu1 /10−6 3.009
yu2 /10−3 1.491
yu3 0.549
yd12 /10−4 −1.186
yd2 /10−4 6.980
yd3 0.137
yP /10−4 1.243

Parameter Value

ye12 /10−4 1.558
ye2 /10−3 2.248
ye3 /10−2 3.318
µ1 /meV 2.413
µ2 /meV 27.50
µ3 /meV 2.900

Parameter Value

αd 0.043π
βd 0.295π
αe 1.692π
βe 1.755π
γ 0.918π
η′ 1.053π

Table 5.4: Best fit input parameter values. The model has 13 real parameters:
yui , ydi , yei , µi and yP . While η is fixed by flavon alignment to −2π/3, there are
six additional free phases: η′, αd,e, βd,e and γ. The total χ2 is 3.4.
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We see from Tables 5.2, 5.3 and Figure 5.4 that both quark and lepton sectors are fitted

to within 1σ of the values predicted by global fits to experiment. The biggest pulls are

in down-type quark Yukawa couplings yd,s,b and θq23. As shown in Section 5.3.2, θq23

is approximately given by the ratio ys/yb, which is typically too small. Furthermore,

attempts to increase θq23, e.g. by tuning yP , tends to increase θq13, which is then too

large. This tension can be ameliorated by assuming large threshold corrections, i.e. by

setting η̄b = −0.8, although some tension remains among the above parameters, which

deviate by about 1σ.

Tables 5.2 and 5.3 also include a Bayesian 95% credible interval for each observable.

The interval for a given parameter corresponds to the hpd region, marginalised over the

other parameters. Recall that this may be interpreted as follows: given the data, there

is a 95% probability that the true model value of that observable resides in the stated

interval. For many observables, these probability distributions are essentially Gaussian,

centred around the best fit value. This is not always the case: the distributions for θ`12

and θ`23 are asymmetric, consisting of two partially overlapping peaks. Moreover, the

hpd region for δ` consists of two completely distinct intervals, which contain the best fit

values 300.9◦ (as seen in Table 5.2) and 233.9◦ (corresponding to a second best fit point

with χ2 ≈ 4). Their associated 95% credible intervals are given by 280.7 < δ` < 308.3

and 225.1 < δ` < 253.2, respectively. We note that neither region includes maximal

CP violation δ` = 270◦, which is close to the prediction from CSD(3) with diagonal

charged leptons. In short, charged-lepton corrections induce a deviation from maximal

CP phase, which can either be positive or negative, depending on the phases of Y e.

5.5 Summary of features

We have constructed a rather simple, natural and complete SO(10) model of flavour

with a discrete S4 × Z2
4 × ZR4 symmetry, where all Yukawa matrices derive from the

VEVs of triplet flavons with CSD(3) alignments. It is simple in the sense that the field

content is reasonably minimal, with small Higgs representations of SO(10) consisting

of two 10s which contain the MSSM doublets, a Higgs spinor pair 16 + 16, and three

adjoint Higgs 45s, which provide necessary Clebsch-Gordan factors that distinguish

charged leptons and down-type quarks. It is natural in the sense that Yukawa and mass

matrices consist of sums of low-rank matrices, each of which contributes dominantly to a

particular family, i.e. universal sequential dominance. It is complete in the sense that it

is renormalisable, and addresses doublet-triplet splitting, the µ-problem, Higgs mixing

and proton decay.

The model successfully reproduces all observed fermion masses and mixing. Analytical

estimates are underpinned by a detailed numerical analysis, employing also Monte Carlo

methods to give credible intervals for all predicted parameters. There is no tuning of
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O(1) parameters necessary to explain the mass hierarchies of charged fermions, account-

ing also for the milder hierarchy in down-type quarks compared to up-type quarks. The

model simultaneously realises large lepton mixing and small quark mixing, as well as the

GST relation for the Cabibbo angle, θq12 ≈
√
yd/ys via a texture zero in the down-type

Yukawa matrix Y d. In the lepton sector an excellent fit to data is found, predicting a

normal neutrino hierarchy and lightest neutrino mass m1 . 0.5 meV. The CP phase δ`

was not fitted, but left as a pure prediction. Two distinct regions are preferred, with

corresponding best fit values δ` ≈ 301◦ and 234◦. We emphasise that the model predicts

significant deviation from both zero and maximal CP violation.





Chapter 6

Conclusion

In the previous four chapters of this thesis we have discussed various aspects of the

flavour puzzle and their potential resolutions within SUSY GUTs with discrete family

symmetries. Before discussing the impact and outlook for the future, let us reiterate the

most compelling features of the work presented within this thesis. They can be sum-

marised in a number of key concepts: naturalness, completeness, simplicity, predictivity.

In Chapter 2 we discussed the sequential dominance framework, with particular focus

on a numerical analysis of the CSD(n) class of models describing neutrino mass and

mixing, considering models of both two and three right-handed neutrinos. We showed

how CSD(n) can arise from the vacuum alignments of family triplet flavons φ. A χ2

fit was performed for integer n ≤ 9, and an excellent agreement with data was found

for the case n = 3, with also n = 4 showing promise. In particular CSD(3) with two

right-handed neutrinos offers a highly predictive and successful setup, where the entire

PMNS matrix is essentially fixed by a single phase η in the neutrino mass matrix. It

also predicts a the leptonic CP -violating phase δ` very close to maximal, which coincides

with current experimental hints. These rather small values of n are promising from the

perspective of model building, as they are more readily achieved in indirect models of

flavour based on orthogonality arguments.

We found that the χ2 measure offers a simple and effective way of examining parameter

space, and for comparing models, and has been dispatched for every model considered

within this thesis. However, the interpretation and robustness of the χ2 statistic is

subject to a number of subtleties, which we have also addressed at every step. These

include the non-Gaussianity of the data (i.e. the results of a particular global fit) and

the decision about whether to include δ` in the χ2 fit or leave it as a pure prediction of

the model. Additionally, we have considered how best to treat those parameters which

do not significantly affect the fit, such as the “decoupled” neutrino mass parameter mc

and associated phase, and those which may be fixed by theory, such as n, or the phase

η, which may be fixed by a discrete symetry.
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We have also considered the cosmological consequences in general CSD(n) models, by

studying thermal leptogenesis, showing that the observed baryon asymmetry of the

Universe can be explained through decays of the lightest right-handed neutrino N1.

This process can depend strongly on flavour effects, and the predictions for the BAU

depend on the value of n; interestingly, the smallest value giving non-zero BAU is found

to be n = 3. In this highly constrained framework, we can also make a direct link

between the phase η which controls the PMNS matrix parameters and the phase which

appears in the CP asymmetries εi appearing in leptogenesis calculations. Notably, we

showed that a preference for δ` ∼ −π/2 in oscillation experiments implies, in CSD(n),

that the BAU is positive.

The above analysis serves as a promising start for a more complete resolution to the

flavour puzzle. We subsequently constructed several models based on CSD(3) with

a unifying gauge group, each of which has its own strengths and shortcomings. In

Chapter 3 we constructed a “minimal” model based on A4 × SU(5), so called because

A4 is the smallest group that admits triplet representations – a partial explanation for

the origin of three families of fermions – and SU(5) is the smallest GUT group that

contains the Standard Model. With only two active right-handed neutrinos, it also

realises the most minimal and predictive incarnation of CSD(3).

The second guiding principle was completeness: we aimed to construct a model that

resolves as many open questions in particle physics as possible simultaneously. Charge

quantisation is guaranteed by the GUT group, as is gauge coupling unification, which

is protected from dangerous corrections by ensuring only the two MSSM Higgs doublets

remain at low scales. GUT breaking, proton decay, doublet-triplet splitting and the µ

problem are also addressed and resolved. The focus, however, was on the viability of the

Yukawa sector, where the model predicts quark and lepton masses and mixing patterns

are in agreement with data. In the quark sector, mixing occurs from a discrete variant

of the Froggatt-Nielsen mechanism, while CP violation arises from a single term in the

down-type quark sector. The lepton sector realises a rather “clean” implementation of

CSD(3) considered previously, ensuring a good fit. As a consequence, the successful

predictions for leptogenesis in CSD(n) are also carried over into this model. Serendip-

itously, the model can also resolve the strong CP problem of QCD without relying on

axions, due to the highly constrained nature of the quark Yukawa matrices, itself a result

of the family symmetries.

While SU(5) offers perhaps the simplest “upgrade” of the Standard Model with CSD(n)

into a fully fledged GUT, the presumed existence of heavy right-handed neutrinos heavily

favours SO(10), where they are automatic. We therefore constructed two successful

models based on SO(10), where CSD(3) arises from ∆(27) and S4, respectively. Both

have the enviable feature that all known fermions are contained at the high scale within

a single representation Ψ (or ψ) of the symmetries at high scale. However, beyond this
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point there are many differences, both in the approach taken to model building and the

physical predictions.

In the ∆(27)×SO(10) presented in Chapter 4, the emphasis once again lay on complete-

ness. Symmetry breaking, proton decay and doublet-triplet splitting were addressed, as

were doublet-doublet splitting and the µ term. SO(10) offers a much greater challenge

for explaining flavour than SU(5), as total unification of fermions within a family näıvely

implies that they couple identically to Higgs doublets and that the Yukawa matrices are

all equal, giving incorrect mass relations between fermions and no flavour mixing. In

order to produce a viable model, new perspectives are required. Here, by coupling Ψ to

flavons, we developed a framework – universal sequential dominance – where both the

hierarchies among fermions and non-zero mixing can be explained in a transparent and

rather simple way. All Yukawa matrices are given as sums over rank-1 matrices, with

each part understood to be responsible for one non-zero eigenvalue. This replicates the

CSD(3) prediction for the form of the neutrino mass matrix in all sectors. A priori, this

has no reason to work for quarks, and even in the lepton sector we needed to be careful

that corrections coming from a decidedly non-diagonal charged lepton Yukawa matrix

do not spoil the successful CSD(3) predictions for the PMNS parameters. With a small

tweak in the up-type quark sector, we could indeed achieve a good fit of the model to

data.

While completeness is an admirable goal, both the above models necessarily have very

large field content. Sharp predictions are made possible by having a renormalisable

theory at the GUT scale, with the immediate consequence that we require a rather large

number of messenger superfields in order to attain exactly the desired superpotential. In

the S4×SO(10) model presented in Chapter 5, our focus lay instead on minimality, here

interpreted as employing the smallest possible field content, and naturalness, where all

hierarchies (such as those between fermion masses) arise dynamically, and renormalisable

superpotential terms all have O(1) coupling strengths. Certainly this model is more

minimal than previous efforts, with a considerably smaller field content, and a rather

simple superpotential responsible for all Yukawa and mass terms. This simplicity is

partly due to the absence of a singlet flavon (in the previous two models labelled ξ)

acting as a Froggatt-Nielsen field.

It also realises a more sophisticated implementation of universal sequential dominance,

explaining all fermion hierarchies by assuming only a rather mild hierarchy in the VEVs

of flavons, i.e. 〈φ1〉<〈φ2〉<〈φ3〉, each separated by one order of magnitude. In this sense

the hierarchy conundrum, although not entirely resolved, has been considerably amelio-

rated. The milder hierarchy among down-type quarks compared to up-type quarks is

explained by a mixed term involving φ1φ2, giving a texture zero in the (1,1) element of

Y d, realising the GST relation. We therefore have a natural explanation for a compar-

atively large Cabibbo angle, and why the up quark (originating from a term involving

φ2
1) is so light.
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Neutrino mixing arises in accordance with CSD(3), whose phenomenological success is

now well-established, although we must necessarily take into account mixing coming

from charged leptons. One effect is to alter the standard prediction for the CP -violating

phase δ`: in standard CSD(3), it is maximal, i.e. δ` ≈ 270◦, while the numerical fit

above shows is necessarily deviates from maximal. This prediction may be tested in

future experiments. In the analysis of this model we also supplemented the standard χ2

fit with new numerical tools, namely Monte Carlo methods and credible intervals. This

enabled us to more fully understand the parameter space.

Moreso than the previous two models, the S4 × SO(10) model is a work in progress.

While the low-scale Yukawa predictions are rather well understood from the analysis

presented within this thesis, several assumptions are made that need to be addressed if

the model is to be truly complete. We have not, for instance, proved that the CSD(3)

alignments, derived elsewhere in a non-GUT framework, can be realised within this

model. To do so, we must show that the additional field content necessary for fixing the

VEV alignments are compatible with all the symmetries of the present model, and that

no new terms appear in the effective Yukawa superpotential which spoil the predictive

matrix structures. However, recall that the vacuum alignments preserve a generator of

S4, and as such are at least partially motivated purely on symmetry grounds. There is

consequently a reasonable expectation that these alignments can arise naturally in any

model with spontaneously broken S4.

Although doublet-triplet splitting and the µ problem have been considered in this model,

we have not shown explicitly how SO(10) is broken to the MSSM. This should be

addressed in a complete model. Similarly, we have not discussed leptogenesis within this

model, although some generic inferences can be made as to how a baryon asymmetry may

be generated in this model. The structure of the neutrino Yukawa matrix Y ν is tightly

constrained to resemble the up-type quark matrix Y u, up to an overall O(1) factor. The

seesaw relation and the numerical fit to light neutrino masses thereby strongly constrain

the right-handed neutrino masses. We conclude that the lightest right-handed neutrino

N1 with a mass M1 ∼ 106 GeV is too light to produce the observed BAU, and that N2

thermal leptogenesis will be required. The second-to-lightest right-handed neutrino in

our model has a mass of O(1010) GeV, which is in the preferred range. However, in

N2 leptogenesis one must account for washout due to inverse decays into N1. To verify

that thermal leptogenesis is indeed viable, one should calculate all relevant parameters,

e.g. decay asymmetries, efficiency factors, taking into account also flavour effects. The

resultant constraints on the neutrino Yukawa couplings may test the prediction in this

model of Y ν ∝ Y u.

Beyond the specific models presented here, and beyond CSD(n), there are a number of

topic in SUSY GUTs, and particularly those of flavour, which merit further study. First,

we note that the earlier models reproduce the MSSM with conserved matter parity at

low scale, itself broken at TeV scale. This is among the most studied supersymmetric
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extensions of the Standard Model and among the most constrained. In a more complete

phenomenological study, experimental constraints on SUSY observables would also be

taken into account. As we have seen, to achieve a good fit to data for all quarks and

fermions, we must assume some SUSY threshold corrections to the running of Yukawa

parameters. For instance in Chapter 3, these corrections ensured the equality of bottom

quark and tau lepton masses at the GUT scale, as predicted by the model. What

underlying SUSY model is thus required in order to reproduce the necessary corrections?

This would be a natural and compelling avenue for probing the SUSY GUTs discussed.

Furthermore, while the SU(5) model in Chapter 3 contains a solution to the strong CP

problem by the Nelson-Barr mechanism, no such solution is available in the SO(10)

models of Chapters 4 and 5. A natural candidate solution is to introduce a Peccei-

Quinn symmetry and an axion. It may be realised rather trivially by introducing the

axion as a new field which is essentially decoupled from the existing fields. However,

as these models already contain a number of gauge singlets – notably, family symmetry

triplet flavons – and spontaneously broken global symmetries, it is interesting to examine

whether an axionic solution to the strong CP problem can be realised more compactly

with the available field content. Some early efforts in this direction have been made, but

are as yet inconclusive.

Finally, a complete model ought also to include a candidate inflaton.1 Again, it is

possible that a member of the flavon sector, which contains many scalars including singlet

and triplet flavons as well as driving fields, may be the inflaton. Such a scenario, proposed

in [100], is worth further study. While deemed beyond the scope of this thesis, the author

has studied inflation in another context [211], namely whether “resonant” leptogenesis

may be realised in a model of chaotic sneutrino inflation involving two nearly-degenerate

heavy right-handed neutrino superfields, whose scalar parts are responsible for inflation.

1 This presumes, of course, that inflation is the correct description of the early moments of the
Universe, which is widely accepted, although many variations on the theme have been proposed.





Appendix A

Properties of discrete groups

A.1 S4 and A4

The group theory properties of S4 and A4 are well-known. Here we summarise the

relevant group properties, including the Kronecker products, as presented in [212]. S4

has five irreducible matrix representations: two triplets 3 and 3′, which are independent,

one doublet 2, and two singlet representations 1 and 1′. The A4 subgroup has only one

triplet representation 3, and three singlets 1, 1′ and 1′′. All group elements can be

expressed as products of generators S, T and U . The form of these generators depend

on the choice of basis. For the S4 × SO(10) model presented in Chapter 5, we use

the basis where the generator T is diagonal, with elements of unit length and phases

that are products of ω = ei2π/3 [55]. Note that the A4 × SU(5) model in Chapter 3

employs another basis, which we will describe shortly. The matrix representations in

the diagonal-T basis are given in Table A.1.

Representation
S4 3,3′ 2 1,1′

A4 3 (1′′,1′) 1

Generator

S
1

3

−1 2 2
2 −1 2
2 2 −1

 (
1 0
0 1

)
1

T

1 0 0
0 ω2 0
0 0 ω

 (
ω 0
0 ω2

)
1

U

1 0 0
0 0 1
0 1 0

 (
0 1
1 0

)
±1

Table A.1: Generators of the S4 and A4 groups in the diagonal-T basis.

The Kronecker products of the group representations are basis-independent, but the

values of the Clebsch-Gordan coefficients depend on the basis. Let us consider first
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S4. In a given product x(′) ⊗ y(′) → z(′), where x, y, z denote the dimensions of the

representations, we indicate the number of primes which appear by n, e.g. 3⊗ 3′ → 3′

has n = 2 primes. The product rules can then be given in a compact form, as follows.

Products involving at least one singlet or doublet are given by

1(′) ⊗ 1(′) → 1(′) αβ,

1(′) ⊗ 2 → 2 α

(
β1

(−1)nβ2

)
,

1(′) ⊗ 3(′) → 3(′) α

β1

β2

β3

 ,

2⊗ 2 → 1(′) α1β2 + (−1)nα2β1,

2⊗ 2 → 2

(
α2β2

α1β1

)
,

2⊗ 3(′) → 3(′) α1

β2

β3

β1

+ (−1)nα2

β3

β1

β2

 ,

(A.1)

while products of two triplets going into either a singlet, doublet or another triplet are

given by

3(′) ⊗ 3(′) → 1(′) α1β1 + α2β3 + α3β2,

3(′) ⊗ 3(′) → 2

(
α2β2 + α3β1 + α1β3

(−1)n(α3β3 + α1β2 + α2β1)

)
,

3(′) ⊗ 3(′) → 3(′)

α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3

 [n even],

3(′) ⊗ 3(′) → 3(′)

2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α3β1 − α1β3

 [n odd].

(A.2)

The A4 product rules in this basis can be found by dropping all primes, and identifying

the two components of the S4 doublet by 1′′ and 1′. The non-trivial products are given
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by

1′ ⊗ 1′′ → 1 αβ,

1′ ⊗ 3 → 3 α

β3

β1

β2

 ,

1′′ ⊗ 3 → 3 α

β2

β3

β1

 ,

3⊗ 3 → 1 α1β1 + α2β3 + α3β2,

3⊗ 3 → 1′ α3β3 + α1β2 + α2β1,

3⊗ 3 → 1′′ α2β2 + α3β1 + α1β3,

3⊗ 3 → 3 + 3

2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α3β1 − α1β3

+

α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3

 .

(A.3)

However, in the A4 × SU(5) model of Chapter 3, we use instead the basis where S is

diagonal, called the real basis, as the generators S, T and U are all real [213]. In the

triplet representation, we then have

S =

1 0 0

0 −1 0

0 0 −1

 , T =

0 1 0

0 0 1

1 0 0

 . (A.4)

This yields the product rules for two triplets

3⊗ 3 → 1 α1β1 + α2β2 + α3β3,

3⊗ 3 → 1′ α1β1 + ω2α2β2 + ωα3β1,

3⊗ 3 → 1′′ α1β1 + ωα2β2 + ω2α3β1,

3⊗ 3 → 31 + 32

α2β3

α3β1

α1β2

+

α3β2

α1β3

α2β1

 .

(A.5)

A.2 ∆(27)

∆(27) belongs to a class of discrete non-Abelian groups known as ∆(3n2). These are

isomorphic to the semidirect product of the cyclic group Z3 with Zn × Zn; n = 2 gives

the familiar A4 group, while n = 3 gives ∆(27). The ∆(3n2) class has been studied in

detail in [214]. The key aspects relevant to model building are the representations of the

group and their product rules. ∆(27) contains two irreducible triplet representations

and nine singlets, which are labelled 1rs, with r, s = 0, 1, 2. It is also the smallest in this

class to contain a conjugate representation, referred to as an antitriplet.
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The ∆(27) rules for taking the product of a triplet A = (a1, a2, a3) and an antitriplet

B̄ = (b̄1, b̄2, b̄3) are

[AB̄]00 ≡ (a1b̄
1 + a2b̄

2 + a3b̄
3)00

[AB̄]01 ≡ (a1b̄
3 + a2b̄

1 + a3b̄
2)01

[AB̄]02 ≡ (a1b̄
2 + a2b̄

3 + a3b̄
1)02

[AB̄]10 ≡ (a1b̄
1 + ω2a2b̄

2 + ωa3b̄
3)10

[AB̄]11 ≡ (ωa1b̄
3 + a2b̄

1 + ω2a3b̄
2)11

[AB̄]12 ≡ (ω2a1b̄
2 + ωa2b̄

3 + a3b̄
1)12

[AB̄]20 ≡ (a1b̄
1 + ωa2b̄

2 + ω2a3b̄
3)20

[AB̄]21 ≡ (ω2a1b̄
3 + a2b̄

1 + ωa3b̄
2)21

[AB̄]22 ≡ (ωa1b̄
2 + ω2a2b̄

3 + a3b̄
1)22

(A.6)

where ω ≡ ei2π/3. The product of two triplets or two antitriplets yields, respectively,

an antitriplet or a triplet. There are three possible products that can be made in each

case, labelled I (identity), S (symmetric) and A (antisymmetric). Defining triplets

A = (a1, a2, a3), B = (b1, b2, b3) and antitriplets Ā = (ā1, ā2, ā3), B̄ = (b̄1, b̄2, b̄3), their

products are given by

[AB]I ≡ (a1b1, a2b2, a3b3)02

[ĀB̄]I ≡ (ā1b̄1, ā2b̄2, ā3b̄3)01

[AB]S ≡ (a2b3 + a3b2, a3b1 + a1b3, a1b2 + a2b1)02

[ĀB̄]S ≡ (ā2b̄3 + ā3b̄2, ā3b̄1 + ā1b̄3, ā1b̄2 + ā2b̄1)01

[AB]A ≡ (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)02

[ĀB̄]A ≡ (ā2b̄3 − ā3b̄2, ā3b̄1 − ā1b̄3, ā1b̄2 − ā2b̄1)01

(A.7)

Note that the bar on antitriplets serve merely a reminder of their assignment under

∆(27).
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Running Yukawa parameters

In order to compare models defined at the GUT scale, as in Chapters 3, 4 and 5, to

experimental data which describes fermion mass and mixing parameters at Standard

Model scales, we must take into account two things: renormalisation group running and

SUSY threshold effects. These effects have been examined by others in [145], where

they develop a useful parametrisation of the SUSY threshold effects, and also perform

the running, producing data sets which may be incorporated into model-building efforts.

This section summarises the key features of that work relevant to the analyses in the

above-mentioned chapters.

B.1 Parametrisation of threshold corrections

In supersymmetric extensions of the Standard Model, there are corrections to the Yukawa

couplings induced by loops involving SUSY particles, which become relevant at (or near)

the scale at which SUSY is broken. Furthermore, these couplings are run from the

SUSY scale to the GUT scale using the renormalisation group equations. The MSSM

contains a large number of parameters which describe the soft breaking of SUSY and

resultant sparticle spectrum. In the absence of a model of SUSY breaking, we know

neither the scale of SUSY breaking, nor the sparticle mass spectrum. In such cases one

commonly assumes a common scale MSUSY where all superpartners are integrated out

simultaneously. From considerations of the electroweak hierarchy problem, this scale

should not significantly exceed ∼ 1 TeV.

Corrections to the Yukawa couplings at the threshold MSUSY can be parametrised. In

[145], they introduce a set of parameters ηi, which account for contributions which are

tanβ-enhanced, noting that others are expected to give corrections at less-than-percent

level. A connection is made between the Standard Model and MSSM Yukawa matrices
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via matching conditions

Y u
SM ' Y u

MSSM sin β̄,

Y d
SM ' (1 + diag(η̄q, η̄q, η̄b))Y

d
MSSM cos β̄,

Y e
SM ' (1 + diag(η̄`, η̄`, 1))Y e

MSSM cos β̄.

(B.1)

For more details on the origin of these parameters, we refer the reader to the original

paper. We do however note here that corrections to the τ Yukawa coupling yτ are

subsumed into a redefinition β → β̄. In the limit where threshold corrections to yτ are

negligible, this reduces to the usual β. In all cases in this thesis, such a scenario is

assumed.

The models described in this thesis reduce to the MSSM. As such, we are concerned

with the MSSM Yukawa couplings, so we may rearrange Eq. B.1 to give an expression

for each MSSM coupling, as

yMSSM
u,c,t ' ySM

u,c,t csc β̄,

yMSSM
d,s ' (1 + η̄q)

−1 ySM
d,s sec β̄,

yMSSM
b ' (1 + η̄b)

−1 ySM
b sec β̄,

yMSSM
e,µ ' (1 + η̄`)

−1 ySM
e,µ sec β̄,

yMSSM
τ ' ySM

τ sec β̄.

(B.2)

The CKM matrix will also be altered by these threshold corrections. The authors note

that, to good approximation, θq12 and δq are not affected by SUSY threshold corrections.

The MSSM mixing angles (at MSUSY) are given by

θq,MSSM
i3 ' 1 + η̄b

1 + η̄q
θq,SM
i3 ,

θq,MSSM
12 ' θq,SM

12 ,

δq,MSSM ' δq,SM.

(B.3)

These values are then run up to the GUT scale using the renormalisation group errors,

i.e. yMSSM
i → yMSSM@GUT

i . Those may then be compared to the GUT model predictions.

The analysis in [145] shows that the running depends primarily on the parameters η̄b and

β̄. They provide the necessary GUT-scale values for the observables defined in Eqs. B.2

and B.3, as functions of these SUSY parameters.

Meanwhile, the neutrino mass and mixing parameters are expected to be largely insen-

sitive to group running. As the experimental uncertainties are larger than in the quark

sector, these will dominate the overall error.

Let us summarise the particular choices for SUSY parameters made in each model pre-

sented in this thesis. In all cases we assume MSUSY = 1 TeV. In the A4 × SU(5) model
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in Chapter 3, we set η̄b = −0.24375. Note that this does not imply five orders of pre-

cision, rather the datasets from which we extract quark couplings give the input values

in discrete intervals; for η̄b, they are multiples of ±0.01875. All other threshold param-

eters are set to zero, while for tanβ we consider two cases, tanβ = 5 and 10. In the

∆(27) × SO(10) model of Chapter 4, we find the fit is rather insensitive to threshold

corrections, and simply set all η̄i parameters to zero. As it was found that tanβ has

only marginal effects on the quality of the fit (as long as it was not much larger than

10), we also assume tanβ = 5 for convenience.

Conversely, in the S4×SO(10) model of Chapter 5 the threshold corrections play a crucial

role in achieving a good fit to data. It is sufficient to assume only one of the threshold

parameters, namely η̄b, is non-zero, however it must take a rather large negative value

η̄b = −0.8. This has two primary effects. One is to shift the bottom quark Yukawa

coupling by an amount proportional to η̄b, the second is to alter the relative running

of quark masses and CKM mixing angles θq13,23 such that the tension (described in

Chapter 5) between Yukawa and CKM parameters is sufficiently ameliorated. The effect

on group running is dominated by η̄b. Any particular choice of η̄q will scale the d and s

Yukawa couplings as well as θq13 and θq23 without affecting the running, a shift which can

largely be subsumed into the free parameters yd1,2. We do find that the running of fermion

Yukawa couplings can change noticeably for large tanβ & 25. However, generically the

model prefers a smaller value of tanβ, so we focus on this region of parameter space.1

For 5 . tanβ . 15, the Yukawa couplings run uniformly regardless of the precise value

of tanβ. The shift by an overall factor cosβ in Y d,e can again be subsumed into the

parameters yd,e1,2,3. For definiteness, we set tanβ = 5.

1 One must also be careful that the corrections, which are calculated at one loop, remain perturbative.
For large tanβ, the b coupling can easily be larger than 1, beyond which we cannot trust one-loop results.





Appendix C

Symmetry breaking in models

C.1 GUT breaking in A4 × SU(5)

In this section we discuss the aspects of the model described in Chapter 3 that relate to

grand unification, including how the R symmetry and the GUT gauge group are spon-

taneously broken. We then describe the details of the missing partner (MP) mechanism

giving heavy Higgs triplets.

C.1.1 SU(5) and ZR
4 breaking

We refer to the superfields involved in GUT and R symmetry breaking as the scalar

sector. This includes several superfields found in Table 3.1a, and repeated in Table C.1a

for convenience. In addition we introduce new superfields given in Table C.1b.

The Υ messengers form pairs; their mass scale, unprotected by any symmetry, is near

the highest scale of the theory, which we represent generically as M . The GUT breaking

superpotential with non-renormalisable terms is then

WGUT = Z1

(
MΛ24 +

λ1

M2
H24ξ

3 + λ2Z
2
1

)
+ Z2

(
λ3

M2
Λ24ξ

3 + λ4Z
2
2

)
+ Z3

(
λ5H

2
24 + λ6Z

2
3

)
.

(C.1)

We have five GUT adjoint superfields, three of which (the Z fields) are charged by 2

and two (Λ24 and H24) by 0 under the R symmetry. Also appearing in WGUT is the

Majoron ξ, the GUT singlet field which we have seen is involved in giving mass to several

Standard Model fermions and whose VEV breaks lepton number by giving the right-

handed neutrinos their Majorana mass. The supression of the non-renormalisable terms

in Eq. C.1 come precisely from the mass of the Υ messengers, as displayed in Fig. C.1.
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Field
Representation

A4 SU(5) Z9 Z6 ZR4
F 3 5̄ 0 0 1
T1 1 10 5 0 1
T2 1 10 7 0 1
T3 1 10 0 0 1

H5 1 5 0 0 0
H5̄ 1 5̄ 2 0 0
H24 1′ 24 3 0 0
Λ24 1′ 24 0 0 0
H45 1 45 4 0 2
H45 1 45 5 0 0

ξ 1 1 2 0 0

(a) Relevant superfields from Table 3.1a.

Field
Representation

A4 SU(5) Z9 Z6 ZR4
Z1 1′′ 24 0 0 2
Z2 1′′ 24 3 0 2
Z3 1′ 24 3 0 2

Υ1 1′ 24 7 0 0
Υ2 1′′ 24 2 0 2
Υ3 1′ 24 5 0 0
Υ4 1′′ 24 4 0 2
Υ5 1′ 24 4 0 0
Υ6 1′′ 24 5 0 2
Υ7 1′ 24 2 0 0
Υ8 1′′ 24 7 0 2
Υ9 1 75 0 0 0
Υ10 1 75 0 0 2
Υ11 1 75 6 0 0
Υ12 1 75 3 0 2

Ω1 1 50 4 0 2
Ω2 1 50 3 0 0
Ω3 1 50 1 0 2
Ω4 1 50 8 0 0
Π1 1 75 6 0 2
Π2 1 75 3 0 0

(b) Extended scalar sector.

Table C.1: Superfields that govern GUT and R-symmetry breaking.

A renormalisable term of the form Z2H24Π2, allowed by the symmetries, has been

dropped to make the discussion more transparent. This term mixes the VEVs of the

GUT breaking scalars with the ones in the MP mechanism so they should be naturally

around the same scale M ∼ MGUT. Beyond this, its practical effect is minimal: the

fields obtain VEVs with or without this term. Since the VEVs get very complicated

when this “mixing” term is included, we ignore it for simplicity, simply bearing in mind

that VEVs from both sets of fields are related.

ξ ξ

Z1 H24Υ1 Υ4Υ3Υ2

ξ

(a)

ξ ξ

Z2 Λ24Υ5 Υ8Υ7Υ6

ξ

(b)

Figure C.1: Diagrams giving the non-renormalisable terms in Eq. C.1.
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WGUT has a non-trivial minimum

vZ1 = − i2
2/3λ1λ

1/3
4 λ

1/6
6

31/2λ2λ3λ
1/2
5

M, vH24 =
λ1λ

1/3
4 λ

1/3
6

λ
2/3
2 λ3λ5

M,

vZ2 =
i21/3λ1λ

1/6
6

31/2λ
2/3
2 λ3λ

1/2
5

M, vΛ24 =
21/3λ2

1λ
2/3
4 λ

1/3
6

λ2λ2
3λ5

M,

vZ3 =
iλ1λ

1/3
4

31/2λ
2/3
2 λ3λ

1/2
5 λ

1/6
6

M, 〈ξ〉3 =
21/3λ

1/3
4

λ
1/3
2 λ3

M3,

(C.2)

where all the adjoint scalars get a VEV of the form 〈Φ24〉 = vΦ24 diag(2, 2, 2,−3,−3).

By themselves, the F -terms associated with WGUT also allow a trivial minimum where

the magnitude of each VEV vanishes. But after SUSY is broken and we consider the

effects of the small contribution from radiative breaking [215] to the scalar components

of the GUT-breaking superfields (as we did for the A4-breaking flavons in Section 3.4),

the stationary point with vanishing magnitudes is no longer a minimum due to the

radiatively induced negative squared mass term. To a very good approximation the true

minima are given by the magnitudes in Eq. C.2, which are now a lower energy state

than the trivial F -term solution. We conclude that Eq. C.1 can generate GUT and

R-symmetry breaking at high scale, with ZR4 broken to ZR2 (standard R parity) by the

Zi VEVs.1

A slightly unappealing issue with WGUT is that the minimum requires some non-O(1)

choice of λ parameters if we are to obtain a hierarchy between the VEVs of H24 and

Λ24, and an appropriate value for 〈ξ〉 /M (as shown in Eq. 3.19). These requirements

come from the successful fit to up and down quark and charged lepton masses (see

Section 3.3) and partly also for the µ term, as will be discussed shortly. However, since

the messengers will in general have different masses (recall we set them all equal to M

only for simplicity), the λ parameters need not be as hierarchical as Eq. C.2 appears

to indicate. For example, if the masses of messengers Σ are slighly larger than the

GUT-scale masses of messengers Υ, this would allow all λ to be O(1).

We note also that, although we are considering a situation where the superpotential

parameters (the M and λ couplings) are real due to CP conservation, the VEVs of the

GUT-breaking scalars may be complex, since they depend on nth-order roots of real

numbers. As noted in Section 3.4, the phases of the fields ξ, Z2 and Z3 are relevant for

establishing the physical phase η in the neutrino mass matrix, which controls neutrino

masses and mixing. We see immediately that ρξ = 2πk
9 , for integer k, i.e. one of nine

roots of unity. While ρZ2 and ρZ3 individually can be any of six roots, originating in the

factor λ
1/6
5 , their product Z2Z3 cancels this factor such that the largest root is a third,

giving ρZ2 + ρZ3 = 2πk′

3 , for integer k′.

1 Because ZR4 is broken at a high scale, the no-go theorem from [216] does not apply to our model
and we verified that all the components of the SU(5) adjoints acquire GUT-scale masses.
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C.1.2 Doublet-triplet splitting, Higgs mixing and the µ term

Given that we have a number of GUT representations containing weak doublets and

colour triplets we turn now to a brief discussion of how doublet-triplet splitting is

achieved in this model via the MP mechanism, with the fields listed in Table C.1b.

We have a superpotential

WΠ = Π1

(
λ7Π2

1 +MΠ2 +
λ8

M2
Π4

2

)
, (C.3)

which gives Π, the 75s of SU(5), their VEVs

vΠ1 = − 1

161/3λ
1/2
7 λ

1/6
8

M, vΠ2 = − 1

4λ
1/3
8

M, (C.4)

which are aligned with the Standard Model singlet inside the SU(5) 75. The non-

renormalisable term in WΠ comes from the diagram in Fig. C.2.

Π2 Π2

Π1 Π2Υ9 Υ12Υ11Υ10

Π2

Figure C.2: Diagram giving the non-renormalisable term in WΠ.

With Eq. C.4, the MP mechanism proceeds through the superpotential

WMP = H5̄Ω1Π2 +H5Ω2Π1 + ξΩ1Ω2 +H45Ω3Π2 +MH45H45 +MΩ3Ω4

+H5̄H45Π2 +H5H45Π1

(
ξ

M

)8

,
(C.5)

where we have suppressed coupling constants for convenience. The very high-order non-

renormalisable term at the end arises through the Σ messengers listed in Table 3.1b in

Chapter 3.2 Strictly speaking this term does not participate in splitting the masses of

doublets and triplets, rather it is the source of the µ term in our model, as shown below.

The terms in WMP generate mixing between the 45s and 5s of SU(5). The mass matrix

for the triplets contained in the 45s and 5s is

M3 = 3ᵀ


0 vΠ2 vΠ2 0

vΠ1 ξ̃
8 M 0 vΠ2

vΠ1 0 〈ξ〉 0

0 0 0 M

3, (C.6)

2 Recall that half the Σi participate in constructing up-type Yukawa terms, as illustrated in Figure 3.1.
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where

3 = (3(H5̄), 3(H45), 3(Ω2), 3(Ω4)) ,

3 = (3(H5), 3(H45), 3(Ω1), 3(Ω3)) ,
(C.7)

and once again ξ̃ = vξ/M . Taking 〈Π1,2〉 ∼ M , the eigenvalues of this mass matrix are

all of order M (i.e. at the GUT scale), leading us to conclude there are no light triplets.

Conversely, for the doublets we have the matrix

M2 =
(
2(H5̄) 2(H45)

)( 0 vΠ2

vΠ1 ξ̃
8 M

)(
2(H5)

2(H45)

)
. (C.8)

It is clear that were it not for ξ̃8, the determinant of this mass matrix would vanish.

We may rotate to the basis of the MSSM Higgs doublets Hu,d and a pair of very heavy

doublets HH
u,d, (

2(H5̄)

2(H45)

)
≈ 1√

2

(
1 −1

1 1

)(
HH
d

Hd

)
,(

2(H5)

2(H45)

)
≈
(
ξ̃8 1

−1 ξ̃8

)(
HH
u

Hu

)
.

(C.9)

The usual MSSM term µHdHu comes from this mechanism with

µ ∼ vΠ1vΠ2

M
ξ̃8, (C.10)

where vΠ1 provides the necessary ZR4 breaking. Using the approximate values from

Eq. 3.19 for flavon and Higgs VEV magnitudes, we see that ξ̃8 ∼ 1.6 × 10−10MGUT. If

we choose the couplings at the vertices of the tower that generates the ξ8 term to be

∼ 0.5 we may get a term µ ∼ O(102 − 103) GeV without any fine-tuning.

C.2 Family symmetry breaking in ∆(27) × SO(10)

We turn now to the ∆(27) × SO(10) model described in Chapter 4. In this section we

show how the CSD(3) alignments are produced by F -term alignment and orthogonality

arguments. We further write down a superpotential which drives the VEVs of the

flavons, such that they acquire expectation values at a fixed scale (slightly below the

GUT scale), with phases fixed to discrete roots of unity. In particular, the relative phases

between φatm, φsol and φdec are constrained to discrete choices, which subsequently fixes

the physical phases η, η′ in the lepton mass matrices to exact values.
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C.2.1 Obtaining the CSD(3) alignments

Field
Representation

∆(27) SO(10) Z9 Z12 ZR4
φdec 3̄ 1 6 0 0

φatm 3̄ 1 1 0 0

φsol 3̄ 1 5 6 0

φ1 3̄ 1 0 4 0

φ7 3̄ 1 0 5 0
φ0 3 1 2 6 0
φ2 3 1 3 7 0
φ8 3 1 1 8 0
φ4 3 1 3 0 0
φ6 3 1 0 11 0

σ0
00 100 1 0 1 0
σ0

01 101 1 0 1 0
σ1

01 101 1 0 0 0

(a) Flavons.

Field
Representation

∆(27) SO(10) Z9 Z12 ZR4
A1 3 1 0 8 2
A3 3 1 3 0 2
Ā0 3̄ 1 7 5 2
Ā4 3̄ 1 6 0 2

O02 102 1 0 5 2
O00 100 1 6 1 2
O1

00 100 1 5 5 2
O1

01 101 1 5 0 2
O2

02 102 1 3 1 2
O′202 102 1 6 0 2
O2

00 100 1 0 8 2
O2

01 101 1 0 8 2
O3

00 100 1 8 11 2
O′300 100 1 7 4 2
O4

01 101 1 1 11 2
O4

00 100 1 3 10 2

(b) Driving superfields.

Table C.2: Superfields responsible for obtaining CSD(3) vacuum alignments.

The flavons involved in this alignment mechanism are given in Table C.2a, and the

necessary driving fields are given in Table C.2b. The special directions for ∆(27) are

VEVs with two zeros, and VEVs with 3 equal magnitudes, with phases that are powers

of ω = ei2π/3. There are three distinct ways to obtain either the (0, 0, 1) class of VEV

or the (1, 1, 1) class of VEV [217]. One of the possibilities that we make use of here uses

invariants built out of an antitriplet and triplet, and out of three triplets, of the type

c[Aφ]00 + cI [A[φφ]I ]00 + cS [A[φφ]S ]00, (C.11)

where φ is an antitriplet unrelated to triplet φ and A is itself a triplet, giving rise to

three F terms

cφ1 + cIφ1φ1 + 2cSφ2φ3 = 0,

cφ2 + cIφ2φ2 + 2cSφ3φ1 = 0,

cφ3 + cIφ3φ3 + 2cSφ1φ2 = 0.

(C.12)
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To obtain the VEVs we require in the (0, 0, 1) and (1, 1, 1) classes of VEVs, an economical

solution is the superpotential

WV 0 = ca[φ0A0]00σ
0
00 + cb[φ0A0]02σ

0
01

+ cc[A1φ1]00M + cd[A1φ1]02σ
1
01

+ ce[A3φ3]00M + cf [A3[φ4φ4]I ]00 + cg[A3[φ4φ4]S ]00

+ ch[φ4A4]00M + ci[[φ3φ3]IA4]00 + cj [[φ3φ3]SA4]00

+O02[φ2φ3]01 +O00[φ2φ1]00,

(C.13)

where the cx (x = a, . . . , j) are coefficients that we show explicitly, and the coefficients

for the other terms are not shown as they aren’t relevant when taking the respective F

term. The triplet flavon φ0 is aligned to (1, ω, ω2) similarly to how the antitriplet flavon

φ1 is aligned to (1, 1, 1), through the alignment antitriplet A0 or triplet A1 and flavon

singlets σ0
00, σ0

01 VEVs with a relative phase of ω and σ1
01 taking a real VEV.

The antitriplet flavon φ3 is aligned in a (0, 0, 1) direction together with the triplet φ4.

This proceeds from the F terms of the components of A3 and A4, which are of the

type shown in Eq. C.12. Taken together the six equations only allow a discrete set of

solutions where both flavons are aligned in the same direction. One of the solutions has

them aligned like (0, 0, v3) and (0, 0, v4),3 with their magnitudes v3 and v4 fixed. The

relevant VEV magnitudes are

v3
3 = −cec

2
h

cfc
2
i

M3, v3
4 = −c

2
ech
c2
fci

M3, 〈σ1
01〉 = − cc

cd
M. (C.14)

We impose trivial CP symmetry on the flavons, including the triplets and antitriplets.

This is consistent with the contractions that make invariants with the 10i set of singlets

that we are using. Since the coupling constants cx are forced to be real by CP conser-

vation, up to minus signs (which can be reabsorbed into the real coefficients) the VEVs

v3,4 can have a phase only as a third root of unity while 〈σ1
01〉 has to be real. We expect

this mass scale M to be around the GUT scale and with O(1) c parameters, these VEVs

should be at this scale also. The triplet φ2 is then forced into the (0, y2, z2) direction

due to the alignment singlet O02 and the alignment singlet O00 ensures y2 = −z2 by

orthogonality with (1, 1, 1).

In order to have CSD(3) we want the directions (0, 1, 1) and (1, 3, 1). We can use a chain

of orthogonality relations, where in ∆(27) they must be between triplet and antitriplets.

Using the three directions above we can arrive at (0, 1, 1) through orthogonality with φ2

and φ4, by

WV 1 = O1
00[φ2φ5]00 +O1

01[φ4φ5]02. (C.15)

3 The phenomenologically viable solution is where both flavons are aligned in the (0, 0, 1) direction,
another possibility is that they would both be aligned in the (1, 1, 1) direction.



168 Appendix C Symmetry breaking in models

With this we obtain a φ5 antitriplet in the (0, 1, 1) direction (note the []02 contraction

matches the first component of the antitriplet with the third component of the triplet,

putting the zero in the right place in φ5).

In order to get to (1, 3, 1) we require a (2,−1, 1) direction, which itself requires (1, 1,−1).

To obtain the latter we also duplicate the φ5 direction in a triplet φ6 (other than them

having VEVs in the same direction, φ5 and φ6 are unrelated). This may be achieved by

the superpotential

WV 2 = O2
02[φ6φ3]01 +O′202[φ2φ7]01 +O2

00[φ6φ7]00 +O2
01[φ6φ7]02. (C.16)

The first two orthogonalities ensure a zero in the first component of φ6, i.e. (0, y6, z6),

and that φ7 is aligned in a direction (x7, x7, z7). The other two mutual orthogonalities

give 0x7 + y6x7 + z6z7 = 0 and 0x7 + y6z7 + z6x7 = 0, which complete the (0, 1, 1)

and (1, 1,−1) alignments. Strictly speaking, this alignment allows both an undesired

solution where we get (0, 1,−1) with (1, 1, 1) and the desired solution of (0, 1, 1) with

(1, 1,−1).

The next step is obtaining the (2,−1, 1) as a triplet. For this we want to use the (0, 1, 1)

antitriplet direction, and the antitriplet with the recently obtained (1, 1,−1) direction,

by

WV 3 = O3
00[φ8φ7]00 +O′300[φ8φ5]00. (C.17)

Finally, by orthogonality

WV 4 = O4
01[φ2φ9]02 +O4

00[φ8φ9]00, (C.18)

one obtains the (1, 3, 1) direction as an antitriplet. We did not need to align a (1, 0,−1)

direction as the [. . .]02 contraction with the triplet (0, 1,−1) (φ2) puts its zero together

with the second component of the antitriplet φ9.

Noting now that the VEVs of antitriplets φ3, φ5 and φ9 are the desired directions for

φdec, φatm, and φsol respectively, we now rename them to match the notation used in

earlier discussions, so v3 = vdec and

φ3 ≡ φdec, φ5 ≡ φatm, φ9 ≡ φsol. (C.19)

This notation is also used in Table C.2b, which summarises the field content and their

representation under the symmetries. For the sake of completeness we collect all align-

ment terms into one superpotential

WV = WV 0 +WV 1 +WV 2 +WV 3 +WV 4, (C.20)
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such that, omitting the coefficients, we have

WV = [φ0A0]00σ
0
00 + [φ0A0]02σ

0
01 + [A1φ1]00M + [A1φ1]02σ

1
01

+ [A3φ3]00M + [A3[φ4φ4]I ]00 + [A3[φ4φ4]S ]00

+ [φ4A4]00M + [[φ3φ3]IA4]00 + [[φ3φ3]SA4]00

+O02[φ2φ3]01 +O00[φ2φ1]00 +O1
00[φ2φatm]00 +O1

01[φ4φatm]02

+O2
02[φ6φdec]01 +O′202[φ2φ7]01 +O2

00[φ6φ7]00 +O2
01[φ6φ7]02

+O3
00[φ8φ7]00 +O′300[φ8φatm]00 +O4

01[φ2φsol]02 +O4
00[φ8φsol]00.

(C.21)

We summarise the alignments produced by the above superpotential as follows:

〈φ0〉 ∝ (1, ω, ω2), 〈φ1〉 ∝ (1, 1, 1),

〈φ2〉 ∝ (0, 1,−1), 〈φdec〉 ∝ (0, 0, 1),

〈φ4〉 ∝ (0, 0, 1), 〈φatm〉 ∝ (0, 1, 1),

〈φ6〉 ∝ (0, 1, 1), 〈φ7〉 ∝ (1, 1,−1),

〈φ8〉 ∝ (2,−1, 1), 〈φsol〉 ∝ (1, 3, 1).

(C.22)

C.2.2 Driving the flavon VEVs

To drive the flavon VEVs, we introduce a set of superfields given in Table C.3. They are

GUT singlets with nontrivial representations under ∆(27) and the Z symmetries, and

couple to the flavons.

Field
Representation

∆(27) SO(10) Z9 Z12 ZR4
P1 100 1 8 1 2
P2 100 1 1 6 2
P3 101 1 2 0 2
ζi 100 1 i ∈ {0, 1, 2, 3} 1 2
ζ̄i 100 1 i ∈ {0, 6, 7, 8} 11 0
ζ ′i 101 1 i ∈ {3, 4, 5} 0 2
ζ̄ ′i 102 1 i ∈ {4, 5, 6} 0 0

Table C.3: Field content for driving the flavon VEVs.

To obtain the necessary superpotential we need to add more messengers ζ, ζ̄, with a

characteristic mass Mζ , also listed in Table C.3. The superpotential which drives the
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flavons is

Wφ = P1

[
κ1

(
ξ

Mζ

)4

φ̄decφ6 − κ2φ̄atmφ6

]
+ P2

[
κ3φ̄solφ4 − κ4φ̄decφ0

]
+ P3

[
κ5φ̄solφ0 − κ6

(
ξ

Mζ

)3

φ̄atmφ4

]
,

(C.23)

where κi are real dimensionless constants. To acquire a good fit to data without tuning,

we need to assume that 〈ξ〉 . Mζ . The F -term equations for the P fields give rela-

tionships between the VEVs of the flavons that couple to the Standard Model particles.

The (nontrivial) representations of the P fields under ∆(27) are chosen specifically so

that the pairs of flavon VEVs they are multiplied by do not give zero when they acquire

VEVs.

The constants κi are forced to be real by CP conservation, but the VEV 〈φ0〉 has

complex components that introduce phases to the other VEVs. Specifically, the terms

multiplied by the constants κ4,5 obtain the following factors when contracting the ∆(27)

triplets:

[〈φ̄sol〉 〈φ0〉]02 = 2vsolv0, [〈φ̄dec〉 〈φ0〉]00 = ω2vdecv0, (C.24)

so we may effectively treat as κ4 carrying a factor of ω2.

Solutions to the F -term equations for the P fields yield VEVs for the important flavons

φsol and φatm, while 〈φdec〉 is given in Eq. C.14 (recall that v3 ≡ vdec). It is useful to

note the relation v4 = cjv
2
dec/(chM), which can be seen from comparing the VEVs in

Eq. C.14. We obtain

v2
sol = ω2 κ4κ6ch

2κ3κ5cj

(
ξ

Mζ

)7

v2
dec, v2

atm =
κ2

1

4κ2
2

(
ξ

Mζ

)8

v2
dec, (C.25)

where, since 〈ξ〉 /Mζ < 1, we conclude that vdec � vatm ∼ vsol. Given these VEVs, the

physical phases defined in Chapter 4 (see Eqs. 4.8, 4.9) are given by

η = − arg

[
v2

sol

v2
atm

〈ξ〉
]

= − arg[ω2],

η′ = − arg

[
v2

dec

v2
atm

1

〈ξ〉

]
= 9 arg[〈ξ〉],

(C.26)

where the real coupling constants cx, κi do not contribute to phases. These phases are

in fact completely fixed. As will be shown shortly, the phase of 〈ξ〉 is a ninth root of

unity; by the cancellation of this phase we finally have

η =
2π

3
, η′ = 0. (C.27)

Strictly speaking these phases are fixed only up to a relative phase π, depending on

the signs of the real constants. However, this additional phase is unphysical, as it may
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always be subsumed into other real parameters at the low scale.

C.3 GUT breaking in ∆(27) × SO(10)

Next, we describe how, in the model described in Chapter 4, SO(10) is broken down to

the MSSM via SU(5). We also show how doublet-triplet splitting is achieved, and how

only two light Higgs doublets are present below the GUT scale, as in the MSSM.

C.3.1 Breaking potential and diagrams

The superpotential that breaks SO(10) is given by

WGUT = M2Z+λ1Z
3 +λ2ZZ

′′2 +λ3Z
′′H ′245 +λ4Z

H ′445

M2
Υ

+
ZH16H16

MΣ

(
λ5H

d
10 +λ6

ξ8

M8
Σ

Hu
10

)
+
ZH16H16

MΣ

(
λ8

ξ

MΣ
Hd

10 +λ7H
u
10

)
+λ9ZH

2
DW

ξ6

M6
Z

+HDW
ξ3

M2
Z

(
λ10H45 +λ11

H3
45

M2
Υ

)
+H16H16

(
λ12ξ+

λ13

MZ
φ1φ8

)
+Z

(
λ14

ξ6

M6
Z

φ7φ2 +λ15
ξ8

M8
Z

φ1φ8 +λ16
ξ5

M5
Z

φsolφ4 +λ17
ξ2

M2
Z

φsolφ0 +λ18φdecφ4

)
.

(C.28)

The renormalisable diagrams that give rise to this superpotential are given4 in Figure C.3

(giving lines 1 and 3) and Figure C.4 (giving line 2), and the corresponding messenger

fields (Σ, Υ and Zi) are detailed in Table C.4. Most fields are familiar from the Yukawa

sector discussed previously, while the field HDW is an SO(10) adjoint that governs

doublet-triplet splitting, as we will see shortly. Note that the model also includes Z0

(but not Z̄0) which we label Z, and that Υ6 has the same quantum number as HDW

(see Table 4.1). Requiring that all F terms vanish yields a set of equations that fixes

the VEVs of the above superfields.

The first line contains terms involving different powers of Z, Z ′′ and H ′45, which ensures

that their corresponding F -term conditions fix all VEVs to be non-zero. The exact

expressions for the VEVs are complicated and thus are not shown, since they are not

enlightening.

The second line has terms involving the fields Hu,d
10 that will be discussed carefully in

the next section on doublet-triplet splitting. At this level, the fields Hu,d
10 have a zero

VEV, so any term involving two of them does not contribute to the F -term equations.

4 We omit those diagrams with seven or eight powers of ξ, as they are constructed in a similar way
using the same messengers but are not particularly illuminating.
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Field
Representation

∆(27) SO(10) Z9 Z12 ZR4
Z 1 1 0 0 2
Z ′′ 1 1 0 6 2

Zi 1 1 i ∈ {1, ..., 8} 0 2
Z̄i 1 1 i ∈ {1, ..., 8} 0 0

Σ6,7 1 16 6, 7 0 2
Σ3,2 1 16 3, 2 0 0

Σ̃i 1 16 i ∈ {0, ..., 8} 0 2

Σ̃i 1 16 i ∈ {0, ..., 8} 0 0

Υ3,2 1 45 3, 2 0 0
Υ6,7 1 45 6, 7 0 2

Υ′′′ 1 45 0 9 0
Υ′ 1 45 0 3 2

Υ′′ 1 45 0 6 0
Υ′′ 1 45 0 6 2

Table C.4: Messenger superfields required for the doublet and triplet mass
terms.

The F -term conditions coming from Hu,d
10 themselves relate the H16,16 VEVs and also

fixes the VEV of ξ to be

〈ξ〉 =

(
λ5λ7

λ8λ6

)1/9

MΣ, (C.29)

which subsequently fixes the phase of 〈ξ〉 to be one of the ninth roots of unity.

At this stage it is relevant to consider superfields HDW and Υ6, which have the same

quantum numbers. In terms of superfields Υa
6, Υb

6, the mass term for the messenger pair

reads MΥ(caΥ
a
6 + cbΥ

b
6)Υ3. We define Υ6 ≡ (caΥ

a
6 + cbΥ

b
6) and HDW as the orthogonal

combination. The F term with respect to Υ3 forces Υ6 to have a zero VEV, meaning

it won’t contribute elsewhere and justifies identifying it as half of the messenger pair.

Therefore, the third line contains different powers of HDW and H45 and gives them

VEVs.

The model actually allows an infinity of terms involving H45, each with a higher power

of this field. We keep only the first two terms since they are enough to give the H45 a

general VEV, whereas adding the other terms will make its VEV look more complicated,

but will not affect the physics. Its own F -term equation fixes its VEV to be

v45 =

√
−λ10

λ11
MΥ, (C.30)

which must define the GUT scale, while we choose the signs of λ10,11 so that it is real.

The F term for ξ will fix the VEV of H16,16. The F terms coming from H16,16 will drive
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the VEVs of the flavons φ7 and φ2 (seen on line 2).

The last line, allowed by the symmetries and messengers, only adds terms to the F

terms for Z and ξ, relating their VEVs to the flavon ones. The flavon F terms will fix

some of the O field VEVs. The VEVs 〈H16,16〉 specifically break SO(10)→ SU(5). The

VEVs 〈H45, H
′
45, HDW 〉 specifically break SU(5) → SU(3) × SU(2) × U(1). The VEV

〈ξ〉 completely breaks Z9. Finally, the VEVs 〈Z,Z ′′〉, carrying 2 units of charge under

ZR4 , break it into the usual ZR2 R parity at the GUT scale.

H ′
45 H ′

45

Z H ′
45Υ

′′′
Υ′′Υ

′′
Υ′

H ′
45

(a)

H16 φ̄7

H16 φ2Z̄1 Z8

(b)

H45 H45

HDW Υ3 Υ6

ξ ξ

ξZ̄2Z̄3 Z7Z6

(c)

H45 H45

HDW Υ3 Υ6

ξ ξ

ξZ̄3Υ3 Z6Υ6

ξ

Z̄2 Z7

(d)

Figure C.3: Diagrams that give rise to GUT-breaking terms.

C.3.2 Obtaining two light Higgs doublets

The Higgs doublets and triplets contained within the Hu,d
10 and H16,16 superfields acquire

masses, in a way dictated by the model such that all triplets are heavy, while only two

light Higgs doublets remain at low scales, which we may associate with the MSSM Higgs

doublets. Recall that this splitting of doublet and triplet masses is important because

any light coloured Higgs states would lead to very rapid proton decay. We solve the

doublet-triplet splitting by the familiar Dimopoulos-Wilczek (DW) mechanism [184–

186]. In SO(10) there is a further complication, as each 10 has two SU(2) doublet

states within it, and we have two additional doublets from the H16,16. Only two of these

six doublets should be light, so as to reduce to the MSSM.
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Hu
10 Z

Hu
10 ξ ξ ξ ξ ξ ξ

Z6 Z̄3 Z5 Z̄4 Z4 Z̄5 Z3 Z̄6 Z2 Z̄7 Z1 Z̄8

(a)

Hu
10 ZΣ̄6 Σ3

H16H16

(b)

Hd
10 ZΣ̄7 Σ2 Σ̄6 Σ3

H16H16 ξ

(c)

HDW Hu
10Υ2 Υ7

Hd
10ξ

(d)

Hd
10 ZΣ̃2

¯̃Σ7

H16H16

(e)

Figure C.4: Diagrams that give rise to doublet-triplet splitting.

The superpotential that gives masses to doublets is

Wµ = ZHu
10H

u
10

ξ6

M6
Z

+ ZHu
10H

d
10

ξ7

M7
Z

+ ZHd
10H

d
10

ξ8

M8
Z

+ ξH16H16

+
Z

MΣ

(
H16H16H

d
10 +

ξ8

M8
Σ

H16H16H
u
10 +H16H16H

u
10 +

ξ

MΣ
H16H16H

d
10

)
,

(C.31)

where we suppress O(1) couplings for convenience. The corresponding diagrams that

produce the non-renormalisable terms are given in Figure C.4. The second line is a

reproduction of the second line in Eq. C.28, while the first line includes those terms

involving more than one insertion of Hu,d
10 , which had previously been omitted.

The fields H16,16 contain doublets that mix with the ones in Hu,d
10 , and will also con-

tribute to masses, since they both get VEVs above the GUT scale. Defining H̃16,16 =

〈H16,16〉 /MΣ, we assume it to be reasonably close to 1. We similarly define ξ̃ ∼
〈ξ〉 /MZ ∼ 〈ξ〉 /MΣ, where MZ and MΣ are the typical scales of the messengers that

produce Eq. C.31. We will find that they are necessarily different from the scale Mζ

that governs the flavon driving potential.

In order to make the connection to the two MSSM Higgs doublets, we denote the Hu-like

doublets inside a given Higgs field by 2u(H), where H ∈ {Hu
10, H

d
10, H16}. The Hd-like

doublets are named similarly, replacing the subindex u→ d. In other words, we collect
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the Higgs doublets into two vectors

2u =
(
2u(Hu

10), 2u(Hd
10), 2u(H16)

)
,

2d =
(
2d(H

u
10), 2d(H

d
10), 2d(H16)

)
.

(C.32)

The doublet mass matrix can then be written as

M2 = 2ᵀ
d

 ξ̃6 ξ̃7 H̃16

ξ̃7 ξ̃8 ξ̃H̃16

H̃16ξ̃
8 H̃16 ξ/ 〈Z〉

 〈Z〉2u. (C.33)

Its eigenvalues m2 are

m2 ∼ ξ̃ 〈Z〉 , ξ̃ 〈Z〉 , ξ̃8 〈Z〉 . (C.34)

Two doublets receive large masses, which we assume are slightly larger than MGUT such

that they don’t upset gauge coupling unification. The remaining eigenvalue is suppressed

by a factor ξ̃8. We can choose the mass of the Z and Σ messengers so that ξ̃ ∼ 0.03,

i.e. ξ̃8 〈Z〉 ∼ 1 TeV. This generates the MSSM µ term ξ̃8 〈Z〉HuHd at the correct scale,

where we make the connection between MSSM Higgs doublets and the doublets defined

above by

Hu ≈ 2u(Hu
10), Hd ≈ 2d(H

d
10). (C.35)

We turn to showing how all triplets acquire large masses via the DW mechanism. It

is based on having an SO(10) 45, which we call HDW , that obtains a VEV with the

structure

〈HDW 〉 =

(
0 〈HU(5)〉

− 〈HU(5)〉 0

)
, (C.36)

which is traceless regardless of the structure of 〈HU(5)〉. We can actually choose 〈HU(5)〉 =

v45 diag(1, 1, 1, 0, 0) such that it contributes only to the mass of the triplets. This align-

ment of 〈HU(5)〉 is not possible in an SU(5) adjoint representation (as its trace does not

vanish) but is possible in SO(10), and is the direction which preserves B −L. The field

HDW has R charge 2 and Z9 charge 6, allowing us to write the term

WDT = HDWH
u
10H

d
10

ξ

MΥ
, (C.37)

where, due to the antisymmetry of 〈HDW 〉, only the mixed term is possible. The renor-

malisable diagram that produces this term is given in Figure C.4.

By analogy to Eq. C.32, we define Higgs triplets 3u(H) and 3d(H) arising from Hu
10,

Hd
10 and H16 by

3u =
(
3u(Hu

10), 3u(Hd
10), 3u(H16)

)
,

3d =
(
3d(H

u
10), 3d(H

d
10), 3d(H16)

)
.

(C.38)
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The terms involving these triplets arising from the superpotential in Eq. C.31 produces

the mass matrix

M3 = 3ᵀ
d

 ξ̃6 ξ̃ 〈HDW 〉 / 〈Z〉 H̃16

ξ̃ 〈HDW 〉 / 〈Z〉 ξ̃8 ξ̃H̃16

H̃16 ξ̃
8 H̃16 ξ/ 〈Z〉

 〈Z〉3u, (C.39)

where the only structural difference between this and M2 in Eq. C.33 is in the (1,2) and

(2,1) entries, which arise from Eq. C.37. All the eigenvalues of this matrix are at the

scale ξ̃ 〈Z〉 ∼MGUT, i.e. there are no light triplet eigenstates, which gives doublet-triplet

splitting.

C.4 GUT breaking in S4 × SO(10)

Finally, we turn to the model described in Chapter 5. As in the above discussions, the

effective theory below the GUT scale contains more fields than the MSSM. In particular,

the Hu,d
10 Higgs multiplets contain dangerous colour triplets mediating proton decay, and

additional doublets that, if light, could spoil gauge coupling unification. Those extra

fields need to be heavy, while ensuring the MSSM doublets are (initially) massless. This

splitting can be achieved in our model. Note that we have not specified exactly how

the GUT is broken. However, it is understood that GUT breaking occurs (as in the

∆(27) × SO(10) model) when spinorial and adjoint Higgs superfields acquire VEVs,

which break SO(10) to the Standard Model via SU(5). These are already present in the

model.

The splitting mechanism involves superfields given in Table 5.1, as well as several new

ones, given in Table C.5. The singlet ξ obtains a VEV slightly above the GUT scale.

The H16 generates a mass for the H16 and also gets a VEV in the RH neutrino (νc)

direction, thus breaking SO(10) → SU(5). HB−L
45 is the only R-charged field that gets

a VEV, breaking ZR4 to the usual R parity. This splitting mechanism needs three extra

messenger pairs, listed in Table C.5.

With them, we may write the superpotential (ignoring dimensionless couplings)

W = HB−L
45

(
Hu

10H
d
10 + ζ2ζ2 +H16χu +H16χd

)
+H16H

u
10χu +H16H

d
10χd +H16H16ζ1 + ξ (ζ1ζ2 + χuχu + χdχd)

+HB−L
45

(
H16H16H

d
10

MP
+
H16H16H

u
10

MP
+Hu

10H
d
10

(HX,Y,Z
45 )4

M4
P

)
,

(C.40)
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Field
Representation

S4 SO(10) Z4 Z4 ZR4
ξ 1 1 2 2 0

χ̄u 1 16 2 1 2
χu 1 16 0 1 0
χ̄d 1 16 1 0 0
χd 1 16 1 2 2

ζ1 1 45 1 1 2
ζ2 1 45 1 1 0

Table C.5: Messengers involved in doublet-triplet splitting.

where we assume that the VEV 〈ξ〉 &MGUT , so that we may integrate out the messenger

fields and obtain the effective superpotential

WH = HB−L
45

(
Hu

10H
d
10 +

(H16H16)2

〈ξ〉2
+
H16H16H

u
10

〈ξ〉 +
H16H16H

d
10

〈ξ〉

+
H16H16H

d
10

MP
+
H16H16H

u
10

MP
+Hu

10H
d
10

(HX,Y,Z
45 )4

M4
P

)
.

(C.41)

The three terms suppressed by 〈ξ〉 are allowed by the integration of three messenger

pairs.

We assume that the superfields H16,16, Hk
45 (k = X,Y, Z,B − L) get GUT-scale VEVs,

i.e. v16,16 ≈ vk45 ≈ MGUT , through an unspecified mechanism. H16,16 get VEVs in the

νc direction. HB−L
45 gets a VEV aligned in the B−L direction, which splits doublet and

triplet Higgs masses through the DW mechanism, discussed earlier. The mechanism can

be also understood by considering the decomposition of the Hu,d
10 into the Pati-Salam

group. The triplets behave as a sextuplet of SU(4) while the doublets are singlets.

Since U(1)B−L ⊂ SU(4), the triplets get a mass from the first term of Eq. C.41 while

the doublets do not. In the last term, all the SO(10) adjoints can be contracted to a

singlet, so they affect doublets and triplets equally.

To demonstrate the mechanism, we construct the doublet and triplet mass matrices. We

define the dimensionless scale parameters y = MGUT/MP , z = MGUT/ 〈ξ〉. We label

the up-type doublets inside a given Higgs representation H by 2u(H), and down-type

doublets by 2d(H). We define triplets 3u(H) and 3d(H) analogously. H can be either
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Hu
10, Hd

10 or H16,16. Doublets and triplets are collected in vectors

2u =
(
2u(Hu

10), 2u(Hd
10), 2u(H16)

)
,

2d =
(
2d(H

d
10), 2d(H

u
10), 2d(H16)

)
,

3u =
(
3u(Hu

10), 3u(Hd
10), 3u(H16)

)
,

3d =
(
3d(H

d
10), 3d(H

u
10), 3d(H16)

)
.

(C.42)

The mass matrices M2 and M3 are given by

M2 = 2ᵀ
d

y
4 0 y

0 −y4 z

y z z2

2u,

M3 = 3ᵀ
d

1 0 y

0 −1 z

y z z2

3u.

(C.43)

The triplet mass matrixM3 has three eigenvalues ofO(MGUT). The doublet mass matrix

has two eigenvalues at O(MGUT) and one at O(y4MGUT), which we identify with the µ

term. Since y ≈ 10−3 we have µ ∼ 1 TeV, which is the desired order. Furthermore, the

light eigenvectors of M2 define the MSSM doublets Hu,d as

Hu ≈ 2u(Hu
10) +

y

z
2u(Hd

10), Hd ≈ 2d(H
d
10) +

y

z
2u(Hd

10), (C.44)

where the contribution of O(y) is negligible, so that the MSSM doublets are located as

required by the Yukawa structure of the model.
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Approximations to lepton

matrices in ∆(27) × SO(10)

The CP asymmetry ε in leptogenesis calculations is defined in the flavour basis, where

the charged lepton and right-handed neutrino mass matrices are diagonal. In the

∆(27)×SO(10) model of Chapter 4, they are decidedly non-diagonal. One may neverthe-

less attempt to parametrise the necessary basis transformation and derive an analytical

approximation of the neutrino Yukawa matrix in the flavour basis. This appendix de-

scribes our efforts to do so, although it was concluded that the resultant expressions are

too complicated to be practical.

D.1 Matrices and model fit results

We first recapitulate the key elements of the lepton Yukawa sector. Defining numerical

matrices Yi as

Yatm =

0 0 0

0 1 1

0 1 1

 , Ysol =

1 3 1

3 9 3

1 3 1

 , Ydec =

0 0 0

0 0 0

0 0 1

 , (D.1)

the charged lepton and neutrino Yukawa matrices, Y e and Y ν , and the left- and right-

handed neutrino mass matrices, mν and MR, may be written as

Y e = ye1Yatm + ye2e
iηYsol + ye3e

iη′Ydec,

Y ν = yνatmYatm + yνsole
iηYsol + yνdece

iη′Ydec,

mν = µatmYatm + µsole
iηYsol + µdece

iη′Ydec,

MR = MatmYatm +Msole
iηYsol +Mdece

iη′Ydec.

(D.2)

179
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The parameters µi are defined by the seesaw relation in sequential dominance, i.e.

µi =
v2
u(yνi )2

Mi
. (D.3)

A numerical fit determines the parameters yei and µi, but not yνi and Mi separately, i.e.

of the six degrees of freedom in the neutrino sector, only three are fixed. The best fit

values are given in Table 4.6 and reproduced here in Table D.1.

Parameter
Value

Scenario 1 Scenario 2

ye1 /10−3 2.217 -1.966
ye2 /10−5 -1.025 1.027
ye3 /10−2 3.366 3.790
µatm /meV 26.60 25.90
µsol /meV 2.571 2.546
µdec /meV 2.052 2.461
η 2π/3
η′ 0

Table D.1: Lepton sector input parameter values, with η, η′ fixed by the theory.

D.2 Charged lepton diagonalisation

As the charged leptons are strongly hierarchical, we expect small mixing in this sector,

which suggests a perturbative approach is valid when diagonalising Y e. Moreover, as

Y e is fixed by the fit, we can directly test this hypthesis. We write

Y e =

 ye2e
iη 3ye2e

iη ye2e
iη

3ye2e
iη ye1 + 9ye2e

iη ye1 + 3ye2e
iη

ye2e
iη ye1 + 3ye2e

iη ye1 + ye2e
iη + ye3

 (D.4)

As Eq. D.4 is symmetric, it may be diagonalised by a unitary matrix U via

U eY e(U e)ᵀ = diag(ye, yµ, yτ ), (D.5)

where U e is defined as the unitary matrix that diagonalises the (Hermitian) squared

matrix, i.e U e(Y e)†Y e(U e)† = diag(y2
e , y

2
µ, y

2
τ ). This unitary matrix may in turn be
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parametrised in terms of three rotation angles θe12, θe13 and θe23 and several phases, i.e.

U e = P eδR
e
23U

e
13R

e
12P

e
ϕ

=

δ
e
e 0 0

0 δeµ 0

0 0 δeτ


1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1


× diag(e−iϕ

e
1/2, e−iϕ

e
2/2, 1),

(D.6)

where cij = cos θeij and sij = sin θeij . Note that the Majorana phases ϕ1,2 differ from

those in the PDG parametrisation, where Pϕ → Pα = diag(1, eiα21/2, eiα31/2).

In the perturbative approximation, where ye2 � ye1 � ye3, the mixing angles (for charged

leptons) are

θe12 ≈
∣∣∣∣Y e

12

Y e
22

∣∣∣∣ ≈ 3ye2
ye1 + 9ye2 cos η

, (D.7)

θe13 ≈
∣∣∣∣Y e

13

Y e
33

∣∣∣∣ ≈ ye2
ye3
, (D.8)

θe23 ≈
∣∣∣∣Y e

23

Y e
33

∣∣∣∣ ≈ ye1 + 3ye2 cos η

ye3
. (D.9)

Inserting the best fit values from Table D.1, this approximation gives

θe12 ≈ 0.770◦, θe13 ≈ 0.0174◦, θe23 ≈ 3.842◦. (D.10)

Exact numerical diagonalisation gives

θ12 = 0.806◦, θ13 = 0.0195◦, θ23 = 3.825◦, (D.11)

showing that the approximation works well.

D.3 Right-handed neutrino diagonalisation

The right-handed neutrino Majorana matrix has a very strong hierarchy between the

third matrix and the first two, i.e. Matm,sol � Mdec, per the sequential dominance

assumption. The consequence of this hierarchy in Majorana mass coefficients is that we

naturally assume small mixing between the first two families of right-handed neutrinos

and the third. We define a diagonalising matrix UM analogously to U e above, such that

UMMR(UM )ᵀ = diag(M1,M2,M3). We write MR as

MR =

Msole
iη 3Msole

iη Msole
iη

3Msole
iη Matm + 9Msole

iη Matm + 3Msole
iη

Msole
iη Matm + 3Msole

iη Matm +Msole
iη +Mdec

 . (D.12)
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Näıvely, the mixing angles can again be approximated by

θM12 ≈
∣∣∣∣(MR)12

(MR)22

∣∣∣∣ ≈ 3Msol√
M2

atm + 18MatmMsol cos η + 81M2
sol

,

θM13 ≈
∣∣∣∣(MR)13

(MR)33

∣∣∣∣ ≈ Msol

Mdec
,

θM23 ≈
∣∣∣∣(MR)23

(MR)33

∣∣∣∣ ≈ Matm + 3Msol cos η

Mdec
.

(D.13)

Given the expected mass hierarchy Matm,sol �Mdec, we expect these approximations to

work well for θM13 and θM23 , while the validity for θM12 depends on the hierarchy between

Matm and Msol which is less firmly established and requires further study.

Ultimately this depends on the best fit values µatm,sol and the ratio yatm/ysol between

coefficients of the Dirac neutrino matrix. To see this, we rearrange the seesaw relations

to give Mi = (vuyi)
2/µi, where i = atm, sol. Defining

α ≡ y2
atm

y2
sol

=
µatm

µsol

Matm

Msol
≈ 10

Matm

Msol
, (D.14)

we arrive at

θM12 ≈
3√

µ2
sol

µ2
atm

α2 +
18µsol cos η

µatm
α+ 81

≈ 1√
0.0011α2 − 0.10α+ 9

. (D.15)

The function θM12 (α) is plotted in Figure D.1. The set blue points is obtained by numerical

diagonalisation of MR for a randomly generated set of inputs yi. As anticipated, the

result is insensitive to the third family. We find the the analytical approximation works

well for a large range of α. If we assume Y ν ≈ Y u, we can compare Yatm,sol to the

corresponding quark best fit values yu1,2. This gives α ≈ 0.028, which is marked in the

figure.

However, a small shift is present between the approximation in Eq. D.13, denoted by the

solid yellow line, and the exact results. We note that the above result assumes mixing

is small enough that sin θ ≈ tan θ ≈ θ and cos θ ≈ 1, which breaks down for large θ.

Small α implies that the upper-left block of Y ν (or equivalently, MR) is dominated by

the rank-1 matrix proportional to ysol (Msol). The mixing angle may then be read off

as tan θM12 ≈ θM12 ≈ 1/3. But arctan(1/3)/(1/3) = 3 arccot 3 ≈ 0.965, a discrepancy of

3 − 4%. We multiply θM12 (α) by this correction factor to give the dotted yellow line in

Figure D.1, which is in excellent agreement. The peak at α ≈ 45 arises because cos η,

found in the denominator of θM12 , is negative; if η ≈ π, θM12 (α) blows up and is not a

reliable approximation.
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Yν≈Yu
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θ12
M /°

Numerical Analytical approx. Analytical + correction

Figure D.1: Variation in θM12 with α ≡ (yatm/ysol)
2. Blue points are from nu-

merical diagonalisation. Yellow lines plot the analytical result in Eq. D.13, with
and without a correction factor 3 arccot 3.

We have also derived analytical expressions for the right-handed neutrino mass eigenval-

ues by doing a series expansion in the mass parameters. We need to consider two cases,

depending on the relative sizes of Matm and Msol. In both cases M3 ≈ Mdec, while we

have

• Case 1: Matm . 10Msol.

M1 ≈
Matm

10
, M2 ≈ 10Msol +

9 cos η

10
Matm. (D.16)

• Case 2: Matm �Msol.

M1 ≈Msol, M2 ≈Matm + 9Msol cos η. (D.17)

In both cases, M1 is necessarily an order of magnitude smaller than M2.

D.4 Neutrino Yukawa matrix in the flavour basis

With an understanding of mixing in Y e and MR, we can establish the neutrino Yukawa

matrix Y ν in the flavour basis. Recall that it is given by

Y ν,fb = U eY ν(UM )ᵀ. (D.18)
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As a first attempt, let us ignore all phases in U e,M and assume all angles are small. We

approximate the diagonalising matrices by

U e ∼

 1 θe12 θe13

−θe12 1 θe23

−θe13 −θe23 1

 , UM ∼

 1 θM12 θM13

−θM12 1 θM23

−θM13 −θM23 1

 . (D.19)

Keeping only the largest contributions in the product, Y ν′ approximates to

Y ν′ ∼ Y ν − θM12e
iη

 3ysol 0 0

9ysol 0 0

yatm + 3ysol 0 0

− ydec

 0 0 θe13

0 0 θe23

θM13 θM23 0

 . (D.20)

The first correction term is proportional to θM12 . As discussed above, if Y ν ≈ Y u, θM12 ≈
0.33. These corrections can therefore of the same size as the original elements, meaning

particularly the (1,1) and (2,1) elements may be significantly suppressed, depending on

relative phases.

The second correction comes from smearing of the large (3,3) element ydec into the third

row and column. While θe13,23 and θM13,23 are small, ydec is sufficiently large that it may

still give a significant contribution. Particularly, as θe23 ∼ 0.065 ≈ 4◦, the (2,3) element

gets a correction several times larger than the original value. The exact size of this

correction is directly correlated with the value of ydec, which is unknown. However, the

terms of the third column are not expected to be strongly contributing to leptogenesis,

as the loop contributions from N3 neutrinos are very suppressed compared to N2 in the

hierarchical assumption.

There are nevertheless indications that there are corrections of an equal order of mag-

nitude. Whether this leads to enchancements or cancellations in the elements of Y ν

depends on the relative phases between terms. Let us keep only those contributions

involving either θM12 or ydec, but keeping all phases δe,Me,µ,τ , ϕe,M1,2 . Then

Y ν′ ≈ yatm

 0 0 0

−θM12e
iσ21 eiη22 eiη23

−θM12e
iσ31 eiη32 eiη33



+ ysole
iη

 eiη11 − 3θM12e
iσ11 3eiη12 + θM12e

iσ12 eiη13

3eiη21 − 9θM12e
iσ21 9eiη22 + 3θM12e

iσ22 3eiη23

eiη31 − 3θM12e
iσ31 3eiη23 + θM12e

iσ23 eiη33



+ ydece
iη

 0 0 −θe13e
iσc13

0 0 −θe23e
iσc23

−θM13e
iσc31 −θM23e

iσc32 eiη33

 ,

(D.21)
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where

η11 = δee + δMe − ϕe1/2− ϕM1 /2, σ11 = δee + δMµ − ϕe1/2− ϕM1 /2,

η12 = δee + δMµ − ϕe1/2− ϕM2 /2, σ12 = δee + δMe − ϕe1/2− ϕM2 /2,

η13 = δee + δMτ − ϕe1/2, σ21 = δeµ + δMµ − ϕM1 /2− ϕe2/2,
η21 = δeµ + δMe − ϕM1 /2− ϕe2/2, σ22 = δeµ + δMe − ϕe2/2− ϕM2 /2,

η22 = δeµ + δMµ − ϕe2/2− ϕM2 /2, σ31 = δeτ + δMµ − ϕM1 /2,

η23 = δeµ + δMτ − ϕe2/2, σ32 = δeτ + δMe − ϕM2 /2,

η31 = δeτ + δMe − ϕM1 /2, σc13 = δeτ + δMτ − ϕe1/2 + δe,

η32 = δeτ + δMµ − ϕM2 /2, σc23 = δeτ + δMτ − ϕe2/2,
η33 = δeτ + δMτ , σc31 = δeτ + δMτ − ϕM1 /2 + δM ,

σc32 = δeτ + δMτ − ϕM2 /2.

(D.22)

Unfortunately there are no obvious simplifications that can be made to these phase

relations.
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