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THE FLAVOUR PUZZLE IN GRAND UNIFICATION AND COSMOLOGY

by Fredrik Bjorkeroth

The discovery of neutrino masses and large lepton mixing may be an indication for
an underlying non-Abelian family symmetry in nature, although the measurement of a
relatively large reactor angle effectively ruled out the simplest models of flavour, such as
those predicting tri-bimaximal mixing. However, more sophisticated realisations are still
viable, such as those based on constrained sequential dominance (CSD) with a type-I
seesaw mechanism. We study the CSD(n) class of models, showing how special vacuum
alignments of Standard Model singlet flavons may give rise to highly constrained lepton
mass matrices. A dedicated numerical fit based on y? minimisation gives predictions for
lepton mixing parameters, and excellent agreement with experimental data is found for

n = 3.

The CSD(3) alignments are implemented in several supersymmetric grand unified the-
ories (GUTs) of flavour with discrete family symmetries. We propose fairly complete
models based on A4 x SU(5), A(27) x SO(10), and S4 x SO(10), which are sponta-
neously broken to the minimal supersymmetric Standard Model. Each model leads to
predictive mass matrix structures for both quarks and leptons; in particular, those based
on SO(10) lead naturally to near-universal matrices as sums over low-rank matrices, so-
called universal sequential dominance, giving a natural explanation for fermion mass
hierarchies. Theoretical predictions are underpinned by dedicated x? fits, and in the
S4 x SO(10) model, estimates of the errors using Monte Carlo methods. We show that
thermal leptogenesis from decays of the lightest right-handed neutrino can produce the
observed baryon asymmetry of the Universe in CSD(n), and in the A4 x SU(5) and
A(27) x SO(10) models. GUT breaking, proton decay, doublet-triplet splitting and the

1 problem are also addressed.
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Chapter 1

Introduction

1.1 The Standard Model

The Standard Model (SM) is a remarkably successful theory of quarks and leptons
which has withstood almost every experimental test over the course of decades. Most
recently, the last missing piece, the Higgs boson, was discovered by the ATLAS [7]
and CMS [8] collaborations at the Large Hadron Collider (LHC). The exception to this
success was the discovery of neutrino oscillations [9, 10], which proved experimentally
that neutrinos are massive and undergo flavour mixing. In further departure from the
Standard Model, mixing in the lepton sector appears fundamentally different to that of
quarks, stimulating research into understanding the origin of quark and lepton flavour.
Somewhat frustratingly, no other clear signals of new physics beyond the Standard Model
(BSM) have been detected, although widespread efforts have been made to develop
interesting extended models and identify channels for detecting new physics at the LHC
and future experiments. Conversely, the experimental evidence for the Standard Model is
steadily increasing. It is worth noting that most avenues of investigation for BSM physics
are motivated by theory rather than experimental discrepancies. For instance, one of
the strongest motivations for seeking new physics at TeV scale is the electroweak (EW)
hierarchy problem: what protects the Higgs boson mass from arbitrarily large corrections
from physics at high scale? Furthermore, the scale evolution of the Standard Model
gauge couplings and the apparent quantisation of electric charge point to unification of
the fundamental forces of nature at a scale around 10'® GeV. We will return to these

topics and other theoretical motivations for BSM physics in due course.

1.1.1 Symmetries and fields

Let us first, however, present the Standard Model. It is chiefly defined by two parts: a

set of symmetries, either gauged or global, and a set of fields. The gauge symmetry is

1



2 Chapter 1 Introduction

SU3)c x SU(2), x U(1)y, where SU(3)¢ is the gauge group of quantum chromody-
namics (QCD) [11-13], while SU(2)1 x U(1)y is the electroweak gauge group [14-17].
The subscript L refers to the fact that SU(2), acts only on left-handed particles. The
SU(2);, quantum number is weak isospin, while Y refers to weak hypercharge. The

electroweak group breaks to the U(1) of electromagnetism, i.e.

SUB3)e x SU2), x U(l)y = SU3)c x U(1)em- (1.1)
Field Representation
SUG)e SU@)L Uy
QLi 3 2 1/6
UR; 3 1 2/3
dR; 3 1 -1/3
Ly, 1 2 -1/2
€Ri 1 1 -1
VRi 1 1 0
G° 8 1 0
we 1 3 0
B 1 1 0
H 1 2 1/2

Table 1.1: Standard Model field content.

The field content of the Standard Model is given in Table 1.1, showing their represen-
tations under the gauge group. It contains three types of fields: fermions, gauge bosons
and the Higgs field. The fermions are the constituent parts of atoms, and make up the
matter content of the Universe. As such, they are frequently referred to as “matter”.
Subscripts L and R denote left- and right-handedness, respectively. The subscript 4 is
a family (or generation) index. Qr; = (ur;, dr;) denote the doublets containing left-
handed up and down (i = 1), charm and strange (i = 2), and top and bottom (i = 3)
quarks, while ug; and dg; are the respective right-handed states. An additional colour
SU(3) index is suppressed for clarity. Similarly, Lr; = (v, er;) denote the doublets
of a left-handed charged lepton and its corresponding neutrino (for the electron, muon
and tau), and eg; denote the right-handed charged leptons. Noting that each quark has
three colour degrees of freedom, there are in total 15 chiral states in each family (or 16 if
vg is included). Gauge bosons comprise the gluons G of the unbroken SU(3)¢, and the
W and B bosons of the electroweak SU(2)r, and U(1)y, respectively. Finally, we have
the Higgs field H which, in addition to breaking electroweak symmetry, gives masses to

fermions via Yukawa interactions.

In Table 1.1 we have added three right-handed neutrinos vg;, which are not part of
the original Standard Model. However, the observation of neutrino oscillations requires

neutrinos to have mass. Adding a companion right-handed neutrino to each generation of
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the lepton doublet allows us to write a Yukawa coupling for neutrinos, as done for charged
fermions; this is the minimal extension to the Standard Model that can accommodate
massive neutrinos. Neutrino mass will be discussed in more detail in Section 1.2 and,
alongside understanding the nature and origin of Yukawa interactions, are a central

theme of this work.

Given the above symmetries and fields we write down the Standard Model Lagrangian

as the sum of three parts,
L= Ekinetic + ﬁYukawa + ﬁHiggs‘ (12)

Liinetic contains the kinetic terms for gauge fields and fermions,

- 1 1 1
Liinetic = Y _ 0" Dy = GG — Wi, W — 2By, B, (1.3)
Y

with ¢ running over all fermions. D,, are covariant derivatives, containing a derivative
part 0, and one or several gauge coupling parts, depending on the representation of 1
under the Standard Model group. Colour singlets such as leptons will not couple to
gluons, for instance, while right-handed fermions do not couple to W fields. The quark

doublet is a non-singlet under all groups, such that
D,Qr = (8u — iggGZT‘éU(3) — igWﬁTaSU(Z) — z’g’BHY)QL, (1.4)

where Tg are the generators of the group G, Y is hypercharge, and g3, g and ¢’ are
the gauge coupling constants for SU(3), SU(2) and U(1), respectively. The gauge field

strengths are given in terms of structure constants f%*¢ and €¢ by

G, = 0,G% — 0,G% — g3 f°GhG,
Wi, = 0,W — 9,Wi — ge™Wiwy, (1.5)
B, = 8,B, — 8,B,.

The Higgs Lagrangian is given by
LHiggs = (DuH)T(D“H) - MQHTH - A(HTH)Qa (1.6)

where D, H = (8u—igWﬁT‘gU(2) — %ig’BH)H. Its potential has a minimum with non-zero
field values corresponding to a vacuum expectation value (VEV) v = \/—pu2/(2)\) ~ 174
GeV, which breaks SU(2)r, x U(1)y — U(1)em. The generator @ of U(1)em, correspond-

ing to electric charge, is given by a sum of electroweak generators
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Higgs couplings to SU(2) gauge fields via the covariant derivative gives the the latter
masses on the order of v, while self-couplings give also the Higgs boson a mass. This is
the essence of the Higgs mechanism [18-21]. Moreover, the neutral gauge components
B, and Wlf mix, leading to the physical bosons Z°, which becomes massive, and the
photon A,,, which remains massless and corresponds to the unbroken U(1)em. This shift
between (BH,WIf) and (AH,ZS) bases is characterised by the weak mixing angle Oy,
with sin? @y = 0.2223(21) [22]. It is related to the electroweak gauge couplings g, g’ by

g

Vo +g”

and the weak boson masses by cos 0y = my/mz. The Higgs field also has the correct

cos Oy = (1.8)

quantum numbers to allow it to couple to left- and right-handed fermion fields, giving
an immediate explanation also for fermion masses. This is encoded in the Yukawa

Lagrangian Lyuiawa-

1.1.2 Quark mixing

The quark Yukawa couplings are given by
Lyukewa,Q = —Y{jQriHdr; — Y}QrieH*ug; + h.c., (1.9)

in the weak flavour-eigenstate basis, where 7,7 = 1,2,3 are family indices and ¢ is
the 2 x 2 antisymmetric tensor. There is a mismatch between the flavour and mass
eigenstates, which are related by unitary matrices. More precisely, the up-type quark
mass eigenstates may be obtained by diagonalising Y'* by two unitary matrices V' p
such that

ywdiag — yuyu (T, (1.10)

Similarly, Y% may be diagonalised by matrices VL‘{ r such that
yddisg — ydydydyr, (1.11)

Without loss of generality we may move to the basis where the up-type quark flavour
and mass eigenstates coincide, by performing the transformations Qr; — (V)5 Qrk
and upr; — (Vﬁ);lum. However, as the quark doublet (); is shared among up- and
down-type quarks, we cannot simultaneously diagonalise the down-type quark Yukawa
matrix. The misalignment between bases and resultant mixing between quark flavour
states is encoded in a single unitary matrix known as the Cabibbo-Kobayashi-Maskawa,
(CKM) matrix,

Voxu = VRV, (1.12)



Chapter 1 Introduction 5

The CKM matrix can be parametrised in terms of three Euler angles Hfj and one complex

phase 9. With ¢;; = cos 9;1]- and s;; = sin 0%,

1 0 0 C13 0 5136—1'6‘1 C12 si12 O
VCKM =10 C23 S923 0 1 0 —s12 c12 0. (1.13)
0 —S8923 (€23 —8136i5q 0 C13 0 0 1

This is the parametrisation employed by the Particle Data Group (PDG) [23]. Their
Standard Model values are given in Table 1.2, taken from the UTFit collaboration [24].
We also present the quark masses, extracted from the latest PDG review. As free
quarks have never been observed due to QCD confinement, there is some variability in
how quark masses are defined. For more details, we refer the reader to the PDG review.!
These values are presented for only completeness, and are not used directly in the model
fits presented within this thesis. The reason for this is that mass and mixing parameters
can change considerably with scale; this “running” is governed by renormalisation group
equations and encoded in so-called 3 functions. The parameters depend also on features
of the model itself, including the presence (or not) of supersymmetry. In future chapters
we present the relevant data, run up to high scale and taking into supersymmetric

corrections, to which we can directly compare our models.

Parameter Mass
Val
Parameter e my, /MeV 2.2 fg:g
Degrees Radians me /GeV 1.98 +0.03
6, 12.91 +0.04 0.2254 £0.0007 my /GeV  173.5 £1.1
01, 0.209 +£0.007  0.00364 +0.00013 mq /MeV 4.7 102
63, 2.410 £0.037  0.04207 +0.00064 ms /GeV 96 %
8 69.21 £3.09 1.208 £0.054 my /GeV 418 002
(a) CKM parameters. (b) Quark masses.

Table 1.2: Standard Model experimental quark masses and CKM mixing pa-
rameters, from. CKM parameters are obtained from [24]. Quark masses are
obtained from [23], and are given in the MS scheme, with p ~ 2 GeV for the
light quarks.

1.2 Neutrino mass, mixing and the seesaw mechanism

Charged leptons acquire masses analogously to quarks, via Yukawa couplings to the
Higgs. Meanwhile, in the original formulation of the Standard Model, neutrinos were

massless and therefore no lepton mixing was allowed. The minimal extension which

! We note that the values in Table 1.2 are given in the MS scheme, with pu =~ 2 GeV for the light
quarks.
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permits neutrino masses is by introducing right-handed neutrinos vg, which are gauge
singlets. They couple to the Higgs field in a Yukawa term YZ?ITMEH *vRrj, which gen-
erates neutrino Dirac masses when the Higgs acquires a VEV v, in complete analogy
with charged fermions. Phenomenologically, this would be sufficient to explain observa-
tions, but implies neutrino Yukawa couplings no larger than O(10~!!), many orders of

magnitude below the smallest known coupling (the electron Yukawa), of O(1076).

However, a key feature of right-handed neutrinos that distinguishes the neutrino mass
generation mechanism is that they are Majorana particles, i.e. their own antiparticle.
We may write a mass term directly for the right-handed neutrinos like (Mg)i;jv%,Vr;,
where Mp is an n xn matrix (for n neutrinos), and the charge conjugate v transforms as
a left-handed field.? As this mass term is not constrained by any gauge symmetry, right-
handed neutrinos can be arbitrarily heavy, i.e. Mg > vY”. Under these conditions, left-
handed neutrinos can acquire small Majorana masses via the type-1 seesaw mechanism,
first proposed in [25-28] (see also [29, 30]). Variations of the seesaw mechanism have
also been constructed involving SU(2) Higgs triplets (type-1I) [31-33] or lepton triplets
(type-III) [34, 35].

The lepton Yukawa Lagrangian is thus given by
ﬁYukawa,L = —E?EiHeRj — Y;?ITLZ'EH*VR]' — %(MR)ijVTRiVRj + h.C.. (1.14)

The mass matrix for the 3 + n neutrinos can be written as®

M= ° (1.15)
o(YV)T Mg

A mass term like MITEI/L is forbidden at the renormalisable level by gauge invariance. It
is instead generated at the effective level when right-handed neutrinos are integrated out
of the theory, equivalent to diagonalising M,,. The texture zero in M, becomes populated
by effective couplings that are naturally suppressed by the scale of right-handed neutrinos
which, if these are large, provides a natural explanation for the smallness of neutrino

mass. The light effective neutrino mass matrix m", defined in the convention

L=—im{viv; +he, (1.16)

2 A note on notation: subscripts L and R on the Weyl spinors listed in Table 1.1 refer to the action
under SU(2)yr, i.e. fermions ¢¥r do not couple to W bosons. Under conjugation, denoted by superscript
¢, the chirality of the field changes but the action under SU(2)r, does not, e.g. 1% transforms as a left-
handed field but remains an SU(2)r singlet. At the level of four-component Dirac spinors, conjugation
is defined by ¥¢ = C9T, where C is a 4 X 4 matrix satisfying the relation C~'4*C = —+*T. Occasionally
in the literature L and R refer instead to the components of the Dirac spinor, obtained via the projection
operators Pr/j, = %(1 ++5), e.g. (¢°)r = Prap° is the right-handed component of the Dirac spinor °.
The two pictures are related by noting that % = (Prt))® = PLy® = (¢¥°) L.

3 Assuming the seesaw mechanism is a true description of physics, we require n > 2 in order to
explain neutrino oscillation data that indicates at least two physical neutrinos are massive.
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is given by
m’ = -’ YV Mz (YV)T. (1.17)

To demonstrate the interplay between scales, let us consider a toy model with only one
generation of neutrinos. M, in Eq. 1.15 is now a 2 x 2 matrix, giving a single light
neutrino with mass m” = v?y?/M, where y is a representative Yukawa coupling and
M is the right-handed neutrino mass. The charged fermion Yukawa couplings range
from O(107%) to O(1), with the upper end of that scale typically considered the most
“natural”. For definiteness, let us set y = 0.1. Neutrino oscillation experiments indicate
that at least one neutrino has mass around 50 meV. In this approximation, let us set
m” = 100 meV. Recalling that v = 174 GeV, we arrive at an estimate for the right-
handed neutrino mass
v?y? 12

M ~ g 3 x 1077 GeV. (1.18)

The seesaw scale is naturally very high, implying direct detection of right-handed neu-

trinos is impossible.

Flavour mixing in the lepton sector is encoded in the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix. It differs slightly in form from the CKM matrix due to the fact that
neutrinos may be Majorana particles. The charged lepton Yukawa matrix may be diag-

onalised by unitary matrices U; and Uf, such that
yediag — greye(Ug)t. (1.19)

The light neutrino mass matrix m” is symmetric, and diagonalised by an orthogonal
matrix U, giving
m?» 488 — UVmY (UY)T. (1.20)

Both matrices cannot be diagonalised simultaneously by a basis transformation, leading

to flavour mixing described by the PMNS matrix
Upning = UE(UZ)T. (1.21)

Although this is often referred to as neutrino mixing, contributions to Upyng may
originate from either or both lepton matrices. In the basis where charged leptons are
diagonal, the PMNS matrix relates the neutrino flavour eigenstates |v,) (o = e, u, 7) to

mass eigenstates |v;) (i =1,2,3) by

Vo) =Y (Upnins)ai [14) - (1.22)

%
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In the PDG parametrisation, Upying is described by three mixing angles ij and three

phases 5€, aoq and azp. With ¢;; = cos ij and s;; = sin Hfj,

1 0 0 C13 0 Slge_iéé C12 si2 O
Upymns = [0 co3 523 0 1 0 —S812 €12
ist (1.23)
0 —s93 co3 —s13€ 0 c13 0 0 1

x diag(1, elo/2, eia31/2).

If neutrinos are Dirac particles, the phases as; and «s3; become unphysical, and the
PMNS matrix is exactly analogous to the CKM matrix. In shorthand, we may write the
above as Upyng = R3UL3 R, P

Neutrino oscillation experiments do not measure the neutrino masses directly, and can

12]. = mf — mj2 The absolute scale of

neutrino mass, characterised by the lightest neutrino mass mq, is not known. Moreover,

only constrain the mass squared differences Am

the ordering of neutrino masses is not yet fixed. While it is known that the first and
second neutrinos obey m; < mg (equivalent to Am3; > 0), at current experimental
precision it is not known whether the third neutrino with mass mg is the heaviest, so-
called normal ordering (NO), or the lightest, dubbed inverted ordering (IO). In other
words, the sign of Am2; is undetermined, although global fits to data show a mild
preference for normal ordering [36]. For normal ordering, the strongest hierarchy occurs

when mq is small: for m; <

~

5 meV, mg/ms3 ~ 0.2. Meanwhile an inverted ordering
requires the first and second neutrinos to be similar, i.e. m; < meo, while the third
neutrino is lighter. Observations of the cosmic microwave background (CMB) puts an
upper bound on the sum of neutrino masses > ,m; < 0.23 eV [37]. Bounds on the
neutrino masses are also given by searches for neutrinoless double beta (0v23) decay.
Specifically, the Ov23 decay rate is proportional to the square of the effective Majorana
mass |mgg| = | >, UZm;|. Future experiments may be able to place upper bounds on
|mgs| which is in tension with oscillation data for an inverted hierarchy (or alternatively,

confirm it).

In Table 1.3 we present the current best fit values for normal ordering to the three
14
157
differences Amfj, taken from the NuFit collaboration [36], as well as the measured masses
of the electron, muon and tau [23].

lepton mixing angles 6¢;, Dirac charge-parity (C'P) phase 6* and neutrino mass-squared

1.3 The flavour puzzle

The flavour puzzle can be approached in a number of equivalent ways. For instance, we

may ask:
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Parameter Value

Best fit £10 30 range
sin? 0f, 0.306 +0.012 0.271 — 0.345
0%5/° 33.56 1917 31.58 — 35.99
sin 05, 0.441 0027 0.385 — 0.635
055/° 41.6 715 38.4 — 52.8
sin? 04, 0.02166 +0.00075 0.01934 — 0.02392
0f5/° 8.46 £0.15 7.99 — 8.90
5¢/° 261 25 0 — 360
Am3, /1077 eV? 7.50 TO19 7.03 — 8.09
Am3, /1073 eV? 2.524 008 2.407 — 2.643
me /MeV 0.5109989461 (31)
my /MeV 105.6583745 (24)
m, /GeV 1.77686 (12)

Table 1.3: Standard Model experimental lepton masses and PMNS mixing pa-
rameters, from [23, 36].

e Why are there three families (or generations) of each Standard Model fermion

field, in the same representation of the gauge group, differing only by their mass?

e Why is there such a large hierarchy among fermion masses, ranging from the

lightest neutrino, on the order of meV, to the top quark, with m; ~ 173 GeV?

e Why is flavour mixing in the quark sector, characterised by the CKM matrix,

rather small while lepton mixing, characterised by the PMNS matrix, is large?

e A majority of the free parameters in the Standard Model originate in the Yukawa

couplings of fermions to the Higgs field; do they have a common origin?

The first question can be understood by looking at Table 1.2. For instance, the down,
strange and bottom quarks behave identically under the Standard Model gauge group,
but have respective masses of order 1072, 10~ and 1 GeV, respectively. The particles
can be made distinct by taking into account their different charges under additional
flavour quantum numbers, e.g. strangeness S and bottomness B’, but these quantum
numbers are anyway broken by weak interactions and not particularly illuminating.
Moreover, this does not explain the apparent need for three families, rather than one or
two, and does not forbid a fourth family of quarks, for which there is no experimental

evidence [23].

A compelling hint towards explaining the number three lies in C'P violation: it was
observed by Kobayashi and Maskawa [38] that in a theory with three weakly interacting

families, the mixing matrix (now referred to as the CKM matrix) allows a single complex



10 Chapter 1 Introduction

phase which is not present in a two-family system, leading to interactions which violate
CP. To date, this is the only confirmed source of C'P violation in the Standard Model,
although current experimental hints in the lepton sector [36] indicate that also the
analogous C'P-violating phase in the lepton mixing matrix is non-zero. From a physical
perspective, C'P violation is necessary to explain the baryon-antibaryon asymmetry
of the Universe, which would motivate the existence of three families, although this
observation is complicated by the fact that the observed C'P violation in the Standard
Model in any case is not nearly sufficient to explain the observed baryon asymmetry.

We return to this point in the discussion on baryo- and leptogenesis, below.

In addition to understanding the fact of three families, we are tasked with understanding
why the fermions, both across families and within a single family, have wildly different
masses. As seen in Table 1.2, quark masses range from a few MeV to over 100 GeV, five
orders of magnitude. In addition, the hierarchies in each sector of charged fermions —
up-type quarks, down-type quarks and charged leptons — are not the same, e.g. the ratio
of up and down quark masses m, /mg < 1 differs from that of charm and strange quarks
(me/ms ~ 10), or top and bottom quarks (m¢/my, ~ 50).* Finally, we must explain why
neutrinos, whose masses are no larger than O(100) meV, are many orders of magnitude
lighter than charged fermions. Between the lightest charged fermion (the electron, with
mass me ~ 0.5 MeV) and the neutrinos lies seven orders of magnitude. One compelling

solution has already been presented, in the seesaw mechanism.

Turning to the third question above, we wish to understand why quark mixing, which
is dominated by the Cabibbo angle 6, ~ 13°, is much smaller than lepton mixing,
where all mixing angles are sizeable. This may be tied to the previous question about
mass hierarchies, and can be reformulated as the question why the hierarchy in neutrino
masses appears much milder than those for charged fermions. Moreover it is still not

known with certainty whether the neutrino mass ordering is normal or inverted.

Finally, we note that all the above questions ultimately derive from our lack of under-
standing about the nature of the Yukawa couplings of Standard Model fermions to the
Higgs, from which most masses are thought to derive. The Yukawa sector contains most
of the free parameters of the Standard Model, such that each fermion mass is essentially
an input parameter of the theory. It is certainly possible that the distribution of free
parameters is random, however this is unlikely given the indications of structure in the
distribution of masses across families. In any given theory, there are many factors which
may influence the Yukawa couplings to the Higgs. In this work, we have relied on two
guiding principles which show promise for resolving the flavour puzzle: family symmetry,

and grand unification.

4 The ratios change depending on the scale at which they are evaluated, due to renormalisation group
running of the fermion masses. These numbers are merely indicative.
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1.4 Supersymmetry

Supersymmetry (SUSY) [39-43] has been at the centre of extensive research into physics
beyond the Standard Model for several decades, and remains one of the most compelling
possibilities for new physics, both on theoretical and phenomenological grounds. In this
section, we limit ourselves to summarising the necessary nomenclature, consistent with
that of [44], as well as describing the hierarchy problem and introducing the minimal su-
persymmetric Standard Model (MSSM). This constitutes neither a review of the theory
of supersymmetry (which can extend to aspects of gravity, string theory, and extra di-
mensions), nor of the current experimental status of supersymmetry searches at colliders;

both of these topics have a large associated literature.

1.4.1 A symmetry of fermions and bosons

Supersymmetry is an extension of the Poincaré symmetry of spacetime which relates
fermions and bosons. In other words, a supersymmetry transformation turns a fermionic
state f into a bosonic one b and vice versa, via some operators @ and Q' such that Q | f) =
|b) and @ |b) = |f). These operators carry spin angular momentum, and satisfy certain
commutation and anticommutation relations (the supersymmetry algebra), which are
detailed in [44)].

As the ultimate goal is to embed the Standard Model in a supersymmetric framework,
we must incorporate all (fermion) matter fields, (vector) gauge fields and the (scalar)
Higgs. The irreducible representations of the supersymmetry algebra — supermultiplets —
contain both fermionic and bosonic states. More precisely, each supermultiplet contains
equal numbers of fermionic and bosonic degrees of freedom. The combination of a Weyl
fermion and complex scalar field is referred to as a chiral supermultiplet; these will
house the Standard Model fermions, along with their scalar counterparts, referred to
as sfermions (e.g. stop, sbottom, stau). Meanwhile, the vector gauge fields live within
gauge supermultiplets, along with a spin-1/2 gaugino superpartner (e.g. wino, bino).
Finally, a scalar spin-0 field such as the Higgs can be accommodated in a chiral multiplet,

together with a spin-1/2 superpartner (in the case of the Higgs, a Higgsino).

In the limit where supersymmetry is preserved, the elements of a supermultiplet share
many properties. They have equal masses, and reside in the same representation of the
gauge group. As the supersymmetry generators commute with those of gauge trans-
formations, in the context of the Standard Model group this implies all fields within
a supermultiplet have the same weak hypercharge, weak isospin, and colour charge;

consequently they also have the same electric charge.

The requirement that a supermultiplet contains equal number of fermionic and bosonic

degrees of freedom fails when particles are off-shell, i.e. the supersymmetry algebra
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only closes when the classical equations of motions are satisfied. In order to consistently
define a chiral supermultiplet also off-shell, an auxiliary component field F' is introduced.
It is a complex scalar field, but does not have a kinetic term, and its equation of motion
is simply F' = F* = 0. A similar term D is added to gauge supermultiplets. In short,
a chiral supermultiplet is made up of a Weyl fermion v, complex scalar ¢ and auxiliary
field F', while a gauge supermultiplet contains a gauge field A,,, gaugino A and auxiliary
field D. In theories of flavour, we will see that enforcing vanishing F' terms of new
fields known as driving fields can constrain the vacuum alignments of family symmetry-
breaking fields, leading to predictive mass structures. This mechanism is called F-term

alignment.

In a theory with several chiral supermultiplets v;, the interacting (i.e. non-gauge) part

of a Lagrangian invariant under supersymmetry may be written as
L= YWy, + WiE 41 1.24
=3 Yy +  + h.c., (1.24)
in terms of a single function W known as the superpotential, which is holomorphic over
the scalar fields. W% and W% are given by functional derivatives,

. W . W
wi=" Wi = . 1.25
0; dpido; (1.25)

It can also be shown that the equations of motion of the auxiliary fields F; and their
conjugates are F; = —W* and F * — _J¥'. The free part of the Lagrangian contains
terms F;F* = |F;|?. The auxiliary fields may then be eliminated, giving F;F* =
WiW = |W;|2, which is the form of a scalar potential V (¢, ¢*). The complete scalar
potential includes also contributions from D terms and is given by V = |F;|> + |D;|?. As
this thesis concerns the flavour sector of the Standard Model and its extensions, which

is encoded in the superpotential, D terms will not be considered further here.

A more elegant description of supersymmetry promotes the supermultiplet to an object
known as a superfield. It is defined on a manifold called superspace, which extends the
usual four-component spacetime coordinates by anticommuting spinor coordinates # and
6T. Theories defined in terms of superfields are manifestly invariant under supersym-
metry transformations. Now consider a single chiral superfield ® which describes the
supermultiplet (1, ¢, F'). In appropriately chosen spacetime coordinates x,,, P may be
written as

® = ¢(z) + V20 (x) + 00F (). (1.26)

The superpotential defined above and its derivatives are identically described in terms
of & rather than ¢.
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1.4.2 The hierarchy problem

Having established some of the key components of a supersymmetric theory, we turn
to arguably the greatest motivation for seeking low-scale supersymmetry: the hierarchy
problem. Recall that the Higgs, just like fermions, acquires a mass when electroweak
symmetry is broken. This suggests that the natural scale of the Higgs mass is the
electroweak scale Agw ~ 100 GeV, corroborated by the measurement of mpy ~ 125
GeV. Unfortunately, the Higgs mass is not stable against corrections coming from new
physics at higher scales. For instance, the Higgs propagator is subject to corrections
from loops containing fermions. The loop integral may be regulated by imposing a
momentum cutoff A, on the scale of new physics; corrections to the Higgs mass are
quadratic in this scale, i.e. Am% x A% Even if no new physics and no new scale is
inserted by hand, gravity effects are expected to come into effect at the Planck scale
Mp ~ 10" GeV, implying a tuning of up to 17 orders of magnitude between tree- and
loop-level contributions to m%{, which would need to be performed at every order in

perturbation theory.

In supersymmetry, however, the postulated scalar partners of each Standard Model
fermion give rise to additional loop contributions to the Higgs mass that exactly cancel
the quadratic contribution from the fermion loop. This is due to the fact that the cou-
plings to the Higgs of scalar and fermion components (Ag and Ay, respectively) of a given
supermultiplet are related, namely Ag = |A f|2. By the non-renormalisation theorem [45]
of supersymmetry, this cancellation occurs to all orders. This is promising, but im-
mediately raises a concern: supersymmetry cannot remain unbroken at the electroweak
scale, or these superpartners would already have been discovered. However, the relation-
ship between couplings that yields the successful cancellation of quadratic corrections
is dependent on how supersymmetry is broken. It was understood that the breaking
must be mediated by terms with positive mass dimension, so-called soft supersymmetry

breaking.®

The presence of soft breaking terms runs the risk of reintroducing the very problem it
was intended to resolve, as they induce corrections to the Higgs mass proportional to
the scale soft supersymmetry breaking mgog, i.e. Am%[ ~ mgoft. If meop > mpy, a fine-
tuning reappears. mgof; should therefore not far exceed the electroweak scale. However,
experimental searches at the LHC have failed to find any evidence of supersymmetry,
up to scales of approximately 2 TeV, suggesting naively that a tuning of at least one in
ten is required. This has put a dent in the paradigm of “natural” supersymmetry, but

has not broken it entirely.

5 The expectation is that supersymmetry, if it exists, is an exact symmetry which is broken spon-
taneously, analogous to electroweak symmetry breaking. In this context, the soft parameters are a
parametrisation of our ignorance of how this breaking occurs.
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1.4.3 The minimal supersymmetric Standard Model

Name Particle Superpartner
Field Spin Field Spin
Q 12 Q 0
(s)quarks uf 1/2 u§ 0
e 12 & 0
L 12 L 0
(s)leptons e 12w 0
Gluon/gluino G 1 G 1/2
W boson/wino W 1 W 1/2
B boson/bino B 1 B 1/2
Higgs(ino) H, 0 Hy 1/2
Hy, 0 Hy 1/2

Table 1.4: MSSM field content.

We complete this section by writing down the superpotential of the MSSM, to which the
models presented in subsequent chapters reduce in the low-scale limit. The field content
is given in Table 1.4. Without right-handed neutrinos, the superpotential is

Wussm = Y QiuSHy + Y§QidSHy + Y Lie¢Hy + pHy Ha. (1.27)
All superfields Q, u¢,d¢, L, é¢, H, and H, are defined as left-chiral; the d° and u¢ are
therefore equivalent to right-handed (s)quark states, while e¢ corresponds to the right-
handed (s)electron.® For simplicity, we suppress colour and weak isospin indices, but we
keep family indices. As the superpotential is holomorphic, it is not possible to couple
up-type quarks to the complex conjugate of a single Higgs as done in the Standard Model
(see Egs. 1.9 and 1.14). One must instead introduce a second Higgs doublet H,, with

opposite hypercharge to H; which can couple to up-type fermions.”

The final term in Eq. 1.27 is the p term, and generates masses for the Higgs fields.
As noted above, the Higgs also receives corrections from soft supersymmetry-breaking
terms. In order to avoid tuning problems, neither ought to be much larger than the
electroweak scale. A value p < 1 TeV may be considered natural, but as it is not
protected by any symmetry it can ostensibly take any value, up to Mp. Explaining its
closeness to the electroweak scale is known as the p problem. The (neutral components
of) Higgs fields within H,, and H; acquire VEVs, which consequently break electroweak

symmetry. The VEVs are written v, and vg4, respectively, and satisfy

v2 403 =v? ~ 174 GeV, (1.28)

5 The hats (") indicating superfields will be dropped henceforth.
7 A second Higgs doublet is also required in the MSSM in order to cancel all gauge anomalies.
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where v is the Standard Model electroweak VEV. We may also define the ratio

tan B = -, (1.29)
Vd

as a free parameter in the MSSM.

Theories of supersymmetry generally possess an additional symmetry known as R sym-
metry, which transforms the supercharges into each other, typically given by a global
U(1) symmetry or a discrete Zy. It is often broken to a Zy subgroup, so called R or
matter parity. The MSSM (and many extensions) thereby contains massive particles
which are R-parity odd. The lightest supersymmetric particle (LSP) is therefore stable
and, if electrically neutral, forms an excellent dark matter candidate, in the category of

“weakly interacting massive particles” (WIMP).

1.5 Grand unification

Grand unification was first proposed in [46, 47], and a grand unified theory (GUT) of
quarks and leptons has remained a compelling candidate for BSM physics. Although
the earliest and simplest GUTs, which were non-supersymmetric, have since been ruled
out, more advanced realisations including SUSY GUTs remain viable. In this section
we review the motivations for grand unification, how the Standard Model may be em-
bedded into the SU(5) and SO(10) groups, and discuss briefly the phenomenological

consequences.

1.5.1 Motivation for a unified gauge group

The principle of grand unification is that the Standard Model gauge group SU(3) x
SU(2) x U(1) is embedded in a higher-rank group, which is spontaneously broken at
some scale A, at which the Standard Model gauge couplings must be equal. A is therefore
obviously not the electroweak scale, where the couplings are very different. However,
they change with scale according to their renormalisation group equations, suggesting
they may converge at some higher scale. Remarkably, it was found that the Standard
Model gauge couplings (very nearly) acquired the same value at A = Mgyt ~ 101516
GeV, consequently dubbed the GUT scale.

As the errors on the couplings were reduced, it became evident that exact unification in
the simplest models was not possible. However, the situation could be improved with the
inclusion of supersymmetry. In the MSSM it can be seen that the couplings meet at a
single point at A ~ 10'® GeV, to very good precision. This provides a strong motivation

not only for a GUT, but a SUSY GUT. In Figure 1.1 we see how the gauge couplings,
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reparametrised in terms of «; ! where a; = gf /4n® change with renormalisation scale

Q@ in both the Standard Model and the MSSM.
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Figure 1.1: Renormalisation group evolution of inverse gauge couplings o !
with scale @ for the Standard Model (dashed lines) and MSSM (solid lines).
Figure from [44].

An additional feature of the Standard Model that provides strong motivation for gauge
unification is charge quantisation, namely why quarks have electric charges that are
integer multiples of e/3, where e is the electron charge. While free quarks have not been
observed, all composite particles, whether two-component mesons such as the pion or
three-component baryons such as the proton, are observed to have integer total charge
(in units of e), from which we conclude that all quarks have charges —e/3 if they are
down-type and +2e/3 if they are up-type. The question may also be phrased as one of

why the smallest observed electric charge unit is e/3.

1.5.2 Embedding the Standard Model

Several options exist for the choice of group into which the Standard Model should be
embedded. As the Standard Model group has total rank four, any embedding group
must also be of rank four or greater. A candidate can consist of a single gauge group,
such as SU(5) [46] or SO(10) [48, 49], or a product of groups as the Pati-Salam group
SU(4)c x SU(2), x SU(2)r [47]. While the Pati-Salam group arguably does not consti-
tute true grand unification, as there are still three distinct gauge couplings, it was the
first to propose a unification of quarks and leptons into a single representation, inter-

preting lepton number as the “fourth colour”, and explains electric charge quantisation.

8 In this normalisation, g» = g and g1 = \/5/3g".



Chapter 1 Introduction 17

Moreover it is a subgroup of SO(10). It is possible to construct viable models based
on larger SU(N) groups or the exceptional group Fg, but these will not be discussed

further here.

As the only rank-4 group that fulfils the above requirements, SU(5) may be thought
of as “minimal” unification. The Standard Model gauge fields (gluons and electroweak

bosons) are unified in a single adjoint 24,
24
Ay =D AT, (1.30)
a=1

where T® are the generators of SU(5) and may be written as 5 x 5 matrices. Eight of
these reduce to the generators of SU(3) which give the gluon degrees of freedom while
three reduce to the SU(2) generators which, together with the hypercharge generator,
give the electroweak degrees of freedom. This accounts for half the degrees of freedom
in A,. The remaining 12 are the X and Y gauge bosons, with masses naturally of order
the scale where SU(5) is broken, and which carry both colour and electroweak charges,
allowing for new couplings between quarks and leptons. Moreover, above the unification

scale, all gauge fields Ajj have a single associated coupling, i.e.

5

95=93=9=1/39" (1.31)

SU(5) is broken by the VEV of a new Higgs field ® at high scale, analogous to electroweak
symmetry breaking. As rank is preserved, this Higgs is necessarily in the adjoint 24

representation, and acquires a VEV (®) « diag(2,2,2, -3, —3).

SU(5) accommodates the Standard Model fermions of a single family in two represen-

tations, namely a 5 and 10.9 They may be organised as

dg 0 us  —uy —up —dp
ds —u§ 0 uf —u2 —da
5= d5 |, 10=| w5 —uf 0 —ug —ds|, (1.32)
e Uy U Uus 0 —e€
— e dq do ds e 0

where the subscripts on u and d fields are colour indices, and the GUT multiplets
are defined as left-chiral. Furthermore, the Higgs field, which is an SU(2) doublet, is
minimally contained in a 5 of SU(5). In other words, we simply extend the Standard
Model fundamental doublet to a complete multiplet of the GUT, i.e. the fundamental
5 of SU(5).1% This however leads to an issue known as the doublet-triplet splitting

problem.

9 The bar in the 5 refers to a conjugate or anti-fundamental representation.
10 The two Higgs doublets of the MSSM are contained in a 5 + 5 pair.
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When the GUT group is broken to the Standard Model, the Higgs 5 is decomposed into
two parts: the electroweak Higgs doublet, and an SU (3) triplet. As discussed shortly, the
scale A, which is directly related to the mass of the Higgs triplet, is necessarily very high,
close to Mgut. The natural expectation is for fields arising from the same GUT multiplet
to have equal-scale masses, which in the case of the Higgs either suggests electroweak-
scale triplets (giving very rapid proton decay) or GUT-scale doublets, neither of which
is acceptable. This problem is not unique to SU(5); in appendices we demonstrate how
doublet-triplet splitting may be achieved in specific models based on SU(5) and SO(10),

respectively.

Electric charge is defined in Eq. 1.7 by Q@ = T2+Y in terms of the electroweak generators,
which have natural analogues in SU(5). As these generators are traceless, the sum
of all charges in the fermion 5 = (d,dS,dS, e,v) must equal zero. More precisely,
we get ) = diag(1/3,1/3,1/3,—1,0), which correspond to the known electric charges
of the down antiquark, electron and neutrino and enforces the electron charge to be
exactly three times larger than the down quark charge. Finally, it is worth noting that
SU(5) does not naturally predict right-handed neutrinos, as all observed fermions are
adequately accommodated in the 5+ 10, but they can be added by hand as pure singlet
1s. In the absence of a flavour symmetry which unifies families of fermions, the Standard
Model when embedded in SU(5) consists of at least six matter fields: three each of a 5

and 10, plus another two or three singlets if right-handed neutrinos are desired.

The degree of unification can be improved if one goes to SO(10), where all fermions
of a single family can be united in a spinorial 16, which mandates a particle with
quantum numbers of a right-handed neutrino. The vector bosons are in the adjoint 45
representation. The electroweak Higgs doublets can again reside within a fundamental
representation of the group — a 10 — as the SO(10) product 10 - 16 - 16 contains a
singlet, such that we may write down a Yukawa term. If only a single 10 Higgs is
present, this is the only allowed Yukawa term, implying all particles within a family
have the same mass, which is phenomenologically unacceptable. To construct a theory
with viable Yukawa structures one must add additional Higgs fields; at least one must
anyway be added which spontaneously breaks SO(10). The desirable properties of gauge
coupling unification and charge quantisation in SU(5) are present also for SO(10), as is
the problem of doublet-triplet splitting. Unlike SU(5), which is necessarily broken by
an adjoint Higgs VEV, SO(10) allows more than one path to the Standard Model. It
contains the maximal subgroups SU(5) x U(1) and SU(4) x SU(2) x SU(2) (the Pati-
Salam group). The breaking pattern to either group or to a lower-rank subgroup depends
on the representation of the Higgs field that acquires the VEV. For an overview of
possible breaking schemes, see e.g. [50], where also group theory of SO(10) is discussed.
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1.5.3 Phenomenology

In the Standard Model, the stability of the proton is ensured by conservation of baryon
number B. As has been noted above, a generic prediction of GUTs is new particles which
can mediate interactions that violate B (and lepton number L), such as the X and Y
gauge bosons and Higgs triplets 7. Both can couple either to two quarks (generically
labelled ¢, either @Q;, uf or df) or one quark and one lepton (labelled /¢, either L; or
ef). This leads to annihilation processes like q¢ — X,Y,T — ¢/, and effective four-
fermion interactions gqqf/A2,'! where A is closely related to the mass of the mediating
particle. Consequently the proton is unstable and decays, with an associated lifetime
inversely proportional to its decay rate. As the proton lifetime is strongly constrained
by experiment to be larger than 1031733 years (depending on the decay mode) [23], the
above B-violating interactions must be strongly suppressed.This implies either A is very
large, or the dangerous effective terms (including all relevant higher-order terms) are

forbidden by some symmetry.

For the X and Y bosons, the gqqf interactions are naturally suppressed by A ~ Mgur,
as X, Y are expected to acquire masses from the (super)field that breaks the GUT.
There is ambiguity in the natural expectation for the mass of Higgs triplets, due to the
doublet-triplet splitting problem. However from a phenomenological standpoint they

too must have masses near Mgyr.

There is a second consideration when establishing the masses of new particles: gauge
coupling unification must not be spoiled. If the particles are gauge non-singlets, they
will enter as loop corrections to the running of the relevant couplings, primarily at
energy scales equivalent to their mass. The remarkable unification in the MSSM seen in
Figure 1.1 relies on the assumption that there is no additional field content between the
supersymmetry scale, which is typically taken to be O(TeV), and the GUT scale Mguyr.
Additional fields at an intermediary scale could affect the running of the gauge couplings
and spoil the impressive confluence exhibited in the minimal model. Conversely, in a
non-SUSY GUT, the presence of new physics at an intermediary scale may induce the

necessary corrections to achieve unification.

1.6 Family symmetry

The Standard Model has, in the absence of mass terms, a large accidental global sym-
metry [U(3)]°, i.e. it is the maximal symmetry that preserves the kinetic terms. Each
U(3) can be understood to arise from the freedom to redefine the three families of a
given type of fermion f, where f = Qr,ugr,dr, Lr,er. In its minimal extension with

(also massless) right-handed neutrinos vg, this symmetry is extended to [U(3)]%. While

11 In supersymmetry, the corresponding superpotential term is qqql/A.
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these symmetries are necessarily broken by the observed fermion masses, it is interesting
to consider a scenario where some global symmetry is made manifest at high scale, and
broken spontaneously by the VEV of some scalar field. Such fields, called flavons, are
typically gauge singlets, and often denoted ¢. Fermions 1 couple to these flavon fields
(and the Higgs H), which subsequently acquire VEVs, giving effective Yukawa terms.
In other words, the Standard Model Yukawa parameters are given a dynamical origin.

Schematically,

(@)
A

The manner in which this symmetry is broken, and how fermions couple to flavons,

L~ %¢Hw — L Hapnp — yHynp. (1.33)

dictate the structure of Yukawa and mass matrices. This can give a powerful insight

into the flavour puzzle.

Models have been constructed based on continuous family symmetries such as a global
SU(3) [51, 52]. However the state of the art is to use non-Abelian discrete symmetries
(for reviews, see e.g. [53-56]), which can lead to sharp predictions for mixing parameters,
and do not lead to massless Goldstone modes as in a spontaneously broken continuous
symmetry.'> Whether continuous or discrete, choosing a non-Abelian symmetry has
the immediate consequence that Standard Model fermions are collected in non-trivial
representation of the group: family unification. It is particularly relevant to consider
groups which admit triplet representations, providing an a posteriori justification for
the observation of three families of fermions. The smallest such group is A4, which
describes the symmetries of a tetrahedron. Other popular choices are Sy (describing the
permutation of four elements) and A(27). A4 and Sy are subgroups of SO(3), while the
A(27) is a subgroup of SU(3) and allows both triplet and antitriplet representations; all
three have been implemented in realistic GUT models described in Chapters 3, 4 and 5.

Their representations and product rules are given in Appendix A.

Before moving on to discuss model building with non-Abelian symmetries, we remark on
a very popular alternative based on Abelian symmetry: the Froggatt-Nielsen mechanism
[58]. The idea is to assume a single global U(1) (or Zy if a discrete symmetry is
preferred), and a scalar flavon field £. Fermions are given charges under this U(1) which
dictate their coupling to the ¢ field. In the effective theory below the U(1)-breaking scale
A, the Yukawa couplings Y;; are replaced by effective couplings involving various powers
of £/A. If £ now acquires a VEV somewhat below A (say, an order of magnitude), the
resultant Yukawa matrices are naturally hierarchical, with their structures determined
solely by the U(1) charge assignments. The Froggatt-Nielsen mechanism remains a top
candidate for explaining the existence of mass hierarchies. A complete realisation of this

mechanism requires adding additional field content to make the theory renormalisable.

12 Discrete symmetries also permit in principle a mechanism to escape the gravity problem of global
symmetries, namely the common understanding that gravitational interactions at the Planck scale do
not respect global symmetries, as discussed in [57]. This may be circumvented in the case of a discrete
symmetry if one assumes it to be the remnant subgroup of a spontaneously broken gauge symmetry, on
the condition that all discrete anomalies cancel within the model.
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For example, each effective term like £"¢)H/A™ can be understood as the result of
integrating out n heavy vector-like fermion pairs. A discrete version of this mechanism
is implemented in a model based on A4 x SU(5) in Chapter 3, giving the up-type quark
Yukawa matrix (which also controls most quark mixing). It demonstrates also that
Abelian and non-Abelian symmetries are not exclusive, and may be used in harmony to

explain flavour structures.

In models with discrete non-Abelian symmetries, flavour structure is dictated by the
alignments of the flavon VEVs which couple to fermions, and which break the original
symmetry, either down to a subgroup, or to nothing. The exact form of the couplings
of these flavons to fermions will inform the structures of the Yukawa and mass matrices.
The first option, where a residual symmetry remains after flavour breaking, leads to so-
called “direct” models of flavour, while the latter, where no part of the original symmetry

is present at low scale, corresponds to “indirect” models.

Direct models are motivated by the presence of accidental symmetries in the lepton
sector, namely a Zo X Zo Klein symmetry in the neutrino mass matrix and a Zs in
the charged lepton matrix. A flavour model postulates a family symmetry G which
is broken in a way that preserves these symmetries. For small groups, only a small set
of alignments can do this, which gives sharp predictions for lepton mixing parameters
that are in conflict with experiment. Perhaps the most popular realisation (prior to the
measurement of a non-zero reactor angle) of the direct approach was to use A4 or Sy
to produce so-called tri-bimaximal (TB) mixing [59, 60], which respects the accidental
symmetries of the mass matrices, and wherein the columns of Upying are proportional to,
respectively, (—2,1,1), (1,1,1) and (0,1, —1). It predicts sin fa3 = 1/v/2, sin 12 = 1/v/3,
f13 = 0 and no C'P violation. The good agreement with data at the time fueled the
interest in flavour models with non-Abelian discrete symmetry. In light of the most

recent data, this approach requires A(6n?) for large values of n [61-65].13

In the indirect approach, there is no requirement for a subgroup of the original symmetry
to remain, i.e. the accidental symmetries of the mass matrices are not identified with any
part of Gp. This allows flavons to acquire a much wider range of alignments, with the
possibility of constructing phenomenologically more successful flavour models, even with
small discrete groups. The price to pay for this freedom is that specifying the vacuum
alignments becomes model-dependent: the precise field content and allowed couplings
will dictate the flavon alignments. The models in Chapters 2, 3 and 4 are all indirect,
while that in Chapter 5 is semi-direct: only part of the accidental symmetry can be

identified with a generator of the family symmetry.

3 An analogous approach based on A(6n?) has also been considered in the quark sector [66-68].



22 Chapter 1 Introduction

1.7 Leptogenesis

In this section we describe the open question of the baryon asymmetry of the Universe,
and its potential resolution via the leptogenesis mechanism. We also calculate the baryon

asymmetry in a toy model of thermal Ny leptogenesis.

1.7.1 The baryon asymmetry of the Universe

The current “standard model” of cosmology is the ACDM model [69], where A refers to
the (positive) cosmological constant responsible for the acceleration of the Universe [70],
and CDM stands for “cold dark matter”. It is a hot Big Bang model, which postulates
an initially very dense, hot Universe that subsequently expands. It is widely believed
that this is preceded by a period of superluminal expansion known as inflation [71-73].
As the Universe cools, hadrons and then light nuclei (hydrogen, helium, lithium) form in
what is known as Big Bang nucleosynthesis (BBN), which then combine with electrons
to form atoms, and eventually larger structures. The ACDM model successfully explains
most cosmological observables, including the existence and anisotropies of the CMB, the
accelerating expansion of the Universe, large scale galaxy structure, and the abundances

of the light elements.

However, it fails to explain why we have only observed primordial matter but not an-
timatter, i.e. the baryon asymmetry of the Universe (BAU). Assuming an inflationary
period, any pre-existing asymmetry would be washed out by the rapid expansion; it must
therefore be generated after inflation and before BBN. The conditions for generating a
BAU are understood, and several mechanisms have been proposed that necessarily ex-
tend beyond the Standard Models of both particle physics and cosmology. The ultimate
goal is to understand a single parameter: the number density of baryons in the Universe.
We are concerned with the difference in baryon and antibaryon densities ng —ng. How-
ever, given that primordial antimatter has not been observed, np > nz (barring some

exotic model). One typically considers the baryon-to-photon ratio

TlB—TZE:(
Ty

ng = 6.10 4 0.04) x 10719, (1.34)

Alternatively, the asymmetry may be normalised by the entropy density, giving
Yp = (0.87 4 0.01) x 10717 (1.35)

See [74, 75] for reviews and [37] for a recent determination of the error.

It was discovered by Sakharov [76] that in a particle physics theory, three conditions
need to be satisfied in order to produce a baryon asymmetry. The first condition is

baryon number (B) violation; clearly, all interactions of the theory cannot preserve the
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net number of baryons. The second condition is charge (C') and charge-parity (CP)
violation. To demonstrate this, let us consider the decay of a particle X into a baryon
g and some other particle p. If C' is conserved, the production rates of baryons and
antibaryons are equal, i.e. I'(X — pq) = I'(X — p7), and no net asymmetry is formed.
Next, consider decays of X into pairs of either left- or right-handed baryons. While
I'(X — qrqr) # T'(X — qrqr) in general, CP conservation dictates I'(X — qrqr) =
I'(X — Grqr) and I'(X — qrqr) = I'(X — Grqr). The total decay rates of X and X

into baryons and antibaryons, respectively, are again equal:
(X — qrqr) +T(X — qrgr) = T(X — qrdr) + T(X — qrqw)- (1.36)

The third condition is that some of the interactions capable of producing a baryon
asymmetry must occur outside of thermal equilibrium. If all relevant processes remain

in equilibrium, any baryon production is washed out by the inverse process, i.e. I'(X —
pq) =T'(pg — X).

In fact all these conditions may be satisfied within the Standard Model itself (without
right-handed neutrinos). However, the size of the BAU generated by the Standard
Model is insufficient to explain the observed np. In particular, it was found that CP
violation in the quark sector was too small [77]. An explanation must therefore come
from new physics, including new sources of C'P violation. One potential solution exists
within GUTSs such as SU(5), where the asymmetry is generated from decays of heavy
gauge bosons. This is now disfavoured, as the generated asymmetry is expected to be
washed out by nonperturbative (B + L)-violating processes known as sphalerons. A
more promising candidate, first proposed by Fukugita and Yanagida [78], is that the
asymmetry is first generated in the lepton sector and subsequently transformed into a

baryon asymmetry by these same sphalerons; this is leptogenesis.

1.7.2 The leptogenesis mechanism

In its original and simplest formulation, leptogenesis postulates two or more heavy
right-handed neutrinos, which decay into lepton-Higgs (or antilepton-Higgs) pairs via
the Yukawa coupling. Although the tree-level matrix element is automatically C P-
conserving and thus decays equally to leptons and antileptons, interference effects at
one loop can lead to C'P violation and a net lepton asymmetry. This relies on a non-
zero PMNS phase 6/, which is currently favoured by global fits to experiment (indeed,
a near-maximal phase 0* ~ —7/2 seems preferred) [36]. It can also be understood that
at least some of these interactions will take place out of thermal equilibrium, when the

temperature of the Universe falls below the energy scale of the decaying neutrinos.

Some fraction of this lepton asymmetry must then be converted into a baryon asymme-
try. The mechanism for this is embedded within the Standard Model, in the form of



24 Chapter 1 Introduction

sphalerons. They are non-perturbative solutions to the classical field equations which
break B (thus fulfilling the last of Sakharov’s conditions) and L, while conserving B — L.
Above the electroweak breaking scale, such sphaleron interactions are in thermal equi-
librium and efficient. Therefore, a net asymmetry in either leptons or baryons will get
mixed into the other. What constitutes a problem for GUT baryogenesis, as sphalerons

wash out the net baryon asymmetry, is in leptogenesis a desirable feature.

Any theory with right-handed neutrinos contains the necessary ingredients for leptoge-
nesis to proceed. Whether or not the correct BAU can be achieved is a quantitative
statement, taking into account not only the size of the produced asymmetry but also
washout effects due to inverse decays or scattering. It turns out leptogenesis is highly
compatible with the type-1 seesaw mechanism, as the required right-handed neutrino
masses are of similar order in both cases. Let us sketch the mechanism in a toy model
of thermal leptogenesis. We limit ourselves here to the non-SUSY case; the mechanism
works very similarly in supersymmetry, up to various numerical coefficients, as we will

see in later chapters.

Thermal leptogenesis refers to the scenario where the right-handed neutrinos N; are
produced in the thermal bath at high temperatures, i.e. the neutrino abundances Ny,
are initially zero. Let us simplify the discussion by assuming the neutrino masses are
very hierarchical, and the dominant contribution to leptogenesis comes from the light-
est neutrino N7. The evolution of the neutrino abundance is given by the Boltzmann

equation
dNp,

dz

]\fje\,q1 is the abundance at thermal equilibrium, and z = M;/T. D is a decay factor,

- D (NNl - Nf&) . (1.37)

which relates the total decay rate I'p and the Hubble expansion rate H, and depends on
z. For a detailed study of what comprises D, see e.g. [79]. We also need to determine
the lepton asymmetry. It is often convenient to consider the B — L asymmetry Np_g,

whose evolution is described by

dNp_p,
dz

= /D (NNl - N}iﬁi) — WNp_1. (1.38)

The first term on the right-hand side is a source term for the B — L asymmetry, given in
terms of the C'P (or decay) asymmetry €1. The second term describes washout, governed
by the factor W which contains information about inverse decays and scattering effects.
Again we refer to [79] for details. Eqgs. 1.37 and 1.38 form a set of coupled differential
equations, which may be solved for thermal initial conditions at z = 0 to give the final
asymmetry N]f:—,_ ; at z > 1. The solution may be parametrised in terms of 1 and a
parameter x1 known as the efficiency factor, by Ngf 1, = €1k£1. The quantity of interest,

the baryon-to-photon ratio np, is then given simply by

N
ng = asphﬂ ~ 0.96 x 1072211, (1.39)
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in the Standard Model, where N7 ~ 37 accounts for the production of photons after
leptogenesis until recombination'* and asph = 28/79 =~ 1/3 is the fraction of the lepton

asymmetry converted into a baryon asymmetry by sphalerons.

In summary, to calculate the BAU one needs to evaluate the CP asymmetry 1 as
well as the decay and washout factors D and W. These depend on the model under
consideration and assumptions made. We leave the discussion on D and W here, but
let us say a few additional words about the C'P asymmetry €1, as it is closely related to
the neutrino Yukawa matrix, which features prominently in the flavour models within
this thesis. It is defined by B

-1

= — 1.40
I'i+14 ( )

€1

where I'; and I'; are the decay rates of N neutrinos decaying, respectively, into ¢H,
lepton-Higgs or ZHZ antilepton-Higgs pairs. It is determined by calculating the inter-
ference between the tree-level diagram and one-loop self-energy and vertex diagrams,

shown in Figure 1.2,'% and given by

m | (ATA)?), .
Gy [(( >)1j}gSM <M;>7 )

N 8 =23 ()\T)\)H M12

where ) is the neutrino Yukawa matrix and ¢SM(z) a loop function given by

) = va (arom () - 22T, (1.42)

1z
In the hierarchical limit @ = (M;/M;)? > 1, this simplifies to ¢°™(z) ~ —3/(2/x).
JH JH JH
//, /E\ //, K ’
N] + N1 N —+ N] .. Nj
¢ H
14 l L

Figure 1.2: Diagrams contributing to C'P asymmetry in neutrino decays.

14 Recombination, referring to when nuclei and electrons combined to form atoms, occurred approxi-
mately 3 x 10° years after the Big Bang, corresponding to T ~ 0.3 V.
5 These and all future interaction diagrams were drawn with JaxoDraw [80].






Chapter 2
Constrained sequential dominance

In this chapter we introduce the framework of sequential dominance for understanding
the nature of neutrino mass and mixing, showing how predictive mass structures may
arise from vacuum alignment of triplet flavons. The contents of this chapter are derived
primarily from work published in [1], where a dedicated numerical analysis is performed
for a class of models known as CSD(n), and [3], which discusses leptogenesis in these
models. As a point of notation, we refer in this chapter to the PMNS parameters as 6;;
and dcp, consistent with the notation in [1, 3]. In other chapters they are denoted Hfj
and 6.

2.1 The sequential dominance framework

As discussed in the Introduction, one of the most attractive possibilities for generating
small neutrino masses is the type-I seesaw mechanism involving two or three right-
handed neutrinos. The effective Majorana mass matrix for the light neutrinos® is given

by the seesaw formula,
m” = —mP Myt (mP)T, (2.1)

where mP” and Mp are the Dirac and right-handed Majorana mass matrices, respec-
tively. A natural way to obtain large lepton mixing and normal neutrino hierarchy
within type-I seesaw is to assume the sequential dominance (SD) of right-handed neu-

trinos [81-83]. The idea behind SD is that there are three right-handed neutrinos 3™,

sol dec dec

vy and vy, where v, usually the heaviest one with mass Mgec, is almost decoupled

from the seesaw mechanism, and is responsible for the lightest physical neutrino mass

my1. Of the remaining two, u%m, with mass My, gives the dominant seesaw contri-

bution and is mainly responsible for the (heaviest) atmospheric neutrino mass mg and

mixing 6s3, while u?%tm, with mass My, gives a subdominant contribution, responsible

1'm" is occasionally referred to as the physical mass matrix.

27
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for the (second-heaviest) solar neutrino mass mg and mixing ;2. SD therefore imme-
diately predicts a normal neutrino mass hierarchy m; < ms < m3. The magnitude of
atmospheric and solar mixing is determined by ratios of Yukawa couplings, which can
easily be large, while reactor mixing is typically UC%MNS < O(mg/ms3) =~ 0.17, as shown
in [84]. This successful prediction was made over a decade before the reactor angle ;3

was measured [85-87].

This argument can be made more precise when we define the neutrino mass matrices
that enter the seesaw formula. In the basis where the right-handed neutrino mass ma-

trix is diagonal, i.e. Mp = diag(Matm, Msol, Mdec), we construct the neutrino Dirac

mass matrix m” from three columns as m” = (mﬂm, ms?)l, mic). Applying the seesaw
formula gives
D D D (D D D
ml/ _ matm(matm)T + msol(msol)T + mdec(mdec)T (2 2)
N M, M, M, ’ '
atm sol dec
where D \t,,D D \t,,,D D \t,,D
(matm) Matm > (msol) Mgol > (mdec) Mec (23)
Matm Msol Mdec ’

To obtain precise predictions for mixing one can go further and impose constraints on the
Yukawa couplings, dubbed constrained sequential dominance (CSD) [88]. The observed
pattern of lepton mixing angles can be understood in the above SD framework as follows.
We work in the basis where the charged lepton and right-handed neutrino mass matrices
are diagonal, known as the flavour basis, such that all mixing originates in the Dirac
matrix mP. If the dominant neutrino ¥&™ has couplings mZ%,, = (0, a1, a2) to (Ve, vy, vr),
then this implies tanfas ~ aj/ag [81, 82] and a bound 6013 < mo/ms [84, 89]. The
subdominant neutrino 3% has couplings m2, = (b, ba,b3) to (ve, vy, v;) which further
yield tan @15 ~ v/2b1/(ba — b3) [83]. However, in practice these estimates are subject to
large corrections beyond the SD approximation, and as the analysis presented in this
chapter will show, the atmospheric and reactor angles in particular depend sensitively
on a choice of phase. By the SD assumption, the mixing angles are of course largely

insensitive to the decoupled neutrino V%ec.

In order to obtain sharp predictions for lepton mixing angles, the relevant Yukawa cou-
pling ratios need to be fixed, for example using vacuum alignment of family symmetry-
breaking flavons. Flavons, their alignments, and how to integrate them into models of
flavour will be discussed more in the next section. The first attempts to use vacuum
alignment within an SU(3) family symmetry to predict maximal atmospheric mixing

m

(tanfaz ~ 1) from equal %™ couplings mL, = (0,a,a) were discussed in [51, 52].

Subsequently, constrained sequential dominance (CSD) [88] was proposed to explain tri-

bimaximal (TB) mixing with a zero reactor angle by using vacuum alignment to fix the

Ufgl couplings to also be equal up to a sign, namely ms[())1 = (b, b, —b).2

2 Note that (0,a,a) - (b,b,—b) = 0. This orthogonality is related to the fact that CSD(1) respects
form dominance, since columns of the Dirac mass matrix in the flavour basis are proportional to the
columns of the unitary PMNS matrix [90, 91].
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Following the measurement of the reactor angle, various types of CSD have been pro-
posed, which preserves the atmospheric couplings and hence an approximate maximal
atmospheric angle tan 3 ~ aj/as ~ 1, while proposing alternative solar couplings as

follows:

e CSD(2): m2, = (b,2b,0) [92],

sol —

e CSD(3): m2, = (b,3b,b) 93],

sol —

e CSD(4): m2, = (b,4b,2b) [94].

All these examples maintain an approximate trimaximal value for the solar leptonic
angle tan 015 ~ v/2b1/(by — b3) ~ 1/v/2, while switching on the reactor angle.® Since
experiment indicates that the bound 613 < mgo/ms3 is almost saturated, these schemes
also require certain phase choices arg[b/a] in order to achieve the desired reactor an-
gle, leading to predictions for the C P-violating phase dcp. The purpose of [1] was to
generalise and then systematically study such patterns of couplings. One may consider
the class of models wherein the dominant (atmospheric) and the subdominant (solar)
right-handed neutrinos have couplings to (ve, vy, v7) given respectively by

mP = (0,a,a), mg)l = (b,nb, (n — 2)b), (2.4)

atm

where n is any positive integer; we refer to this as CSD(n). Before proceeding with the
numerical analysis, we shall justify such a pattern of couplings and show how it may

arise from a more fundamental theory based on a non-Abelian family symmetry.

2.2 Vacuum alignment

2.2.1 Vacuum expectation values of flavons

In the Standard Model, the fermion mass and Yukawa matrices are simply numerical
3 x 3 matrices which collect the various couplings to the Higgs. The basic idea behind
vacuum alignment is to postulate a non-Abelian family symmetry G along with one or
several flavon fields ¢ (or superfields in a supersymmetric context), which are singlets
under the Standard Model gauge group. Flavons couple to fermions, giving rise to
terms which resemble ¢H11p. The symmetry is broken spontaneously at some flavour-
breaking scale A. By analogy with the Higgs mechanism, the flavons acquire vacuum

expectation values, resulting in effective Yukawa terms. The scale A is not fixed by any

3 More recently, CSD(3) with only two right-handed neutrinos has been studied under the moniker
Littlest Seesaw [95-97]. CSD(4), when implemented in unified models with Y* = Y, with the second
column proportional to (1,4,2), predicts a Cabibbo angle §c ~ 1/4 in the diagonal Y% ~ Y basis.
Pati-Salam models have been constructed along these lines [98, 99].
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experimental evidence, but is often predicted by the model. In GUT models considered
in future chapters, we will see that G is naturally broken at the GUT scale, i.e. A ~
Mgyt ~ 10'6 GeV. The family symmetry cannot be present at low scales, as this would
imply fermions unified under G have identical couplings to the Higgs. Because fermions
are in non-trivial representations of G g, the vacuum structure of the theory will inform

the fermion flavour structure.

In all models studied in this thesis, G admits triplet representations, along with any
number of other representations including at least one singlet. Flavons ¢; are then
triplets under G, as are at least one set of Standard Model fermions. As an example,
assume the three lepton SU(2) doublets L; are united in a single triplet representation L
of G, while the right-handed leptons ¢; are singlets. The Lagrangian will then contain
terms resembling (L - ¢;)¢; H /A, where the parentheses ( - ) denote a triplet contraction
into a singlet and the index ¢ runs over the three generations. This example therefore
involves three different flavons which couple exclusively to one family of right-handed
leptons. When the ¢; acquire VEVs, these terms will populate each column of the lepton
Yukawa matrices with values proportional to the alignment of a given flavon VEV. For
instance, the first column of the charged lepton Yukawa matrix Y¢ comes from a term
(L-¢e)lcH. If ¢ acquires a VEV in a particular direction, say ¢. = ve(1,0,0), the (1,1)

element of Y is populated while the (2,1) and (3,1) elements are zero.

The above argument is intended only as a simple illustration of how vacuum alignment
can lead to particular Yukawa and mass structures; a more complete example will be
presented shortly in a supersymmetric context, and explicit vacuum alignment sectors
are given for the models in Chapters 3 and 4. However the connection to the discussion
on CSD(n) can now be made more transparent: the arbitrarily chosen couplings (0, a, a)
and (b, nb, (n — 2)b) of leptons to, respectively, right-handed neutrinos V%m and V?%OI can
be explained if they arise from couplings to flavons that acquire VEVs proportional to

(0,1,1) and (1,n,n — 2).

How can alignments be obtained in a model? In supersymmetry, a consistent prescription
is that of F-term alignment. One postulates a set of superfields A; and O; called driving
fields, which are characterised by having R charge 2, do not acquire VEVs, and do not
couple directly to fermions. They do, however couple to flavons, described by a driving
superpotential Wyyiving, Which is dependent on the symmetries and precise field content
of the model. Their F' term conditions F4, = 0 and Fp, = 0 enforce relations between
components of the triplet flavons ¢, giving rise to particular allowed alignments in the

vacuum.
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2.2.2 Example: CSD(n) from A,

Here we show how a sequence of symmetry and orthogonality conditions can produce
the CSD(n) alignments in a simple MSSM-like model with an A4 family symmetry. The
family symmetry is broken by triplet flavons ¢;. The relevant superpotential terms that

produce the correct Yukawa structure in the neutrino sector are

1 1 1
KHU(L ' (z)atm)ygtm =+ KHU(L ' (ZSSOI)VSCOI + KHU(L ’ ¢deC)V§ec7 (25)

where L is the SU(2) lepton doublet, transforming as a triplet under Ay, while v5,,
Vels Viee are CP conjugates of the right-handed neutrinos and H,, is the up-type Higgs
field. The right-handed neutrinos are A4 singlets but distinguished by some additional

quantum numbers. In the charged-lepton sector,

1 1 1
KHd(L - e )e” + XHd(L )+ XHd(L )T, (2.6)

where e, 1€, 7¢ contain the right-handed electron, muon and tau respectively. The right-

handed neutrino Majorana superpotential is chosen to give a diagonal mass matrix,
MR - diag(Matnh Msoh Mdec)- (27)

Details of the construction of this superpotential (e.g. in terms of flavons), the relative
values of Muim, Mgol, Myec as well as the inclusion of any off-diagonal terms in Mg
will all depend on additional specifications of the model but are not important for this

discussion.

The CSD(n) vacuum alignments arise from effective operators involving three triplet
flavon fields @atm, @sol, and @gec. The subscripts are chosen by noting that ¢, correlates
with the atmospheric neutrino mass ms, ¢¢, with the solar neutrino mass ms, and @gec
with the lightest neutrino mass my, which in CSD is light enough that the associated
third right-handed neutrino can, to good approximation, be thought of as decoupled

from the theory [81]. CSD(n) is defined to be the choice of vacuum alignments

0 1
<¢atm> x (1], <¢sol> X n 5 <¢dec> x |01, (28)
1 n—2 1

where n is a positive integer, and the only phases allowed are in the overall proportion-

4

ality constants.* Such vacuum alignments arise from symmetry-preserving alignments

together with orthogonality conditions [93, 94].

4 In general also the elements of flavon VEVs can have relative signs as in the last alignment in
Eq. 2.9. However, for a given choice of such alignment, orthogonality fixes the relative signs of the
elements of subsequent alignments, with only the overall complex proportionality factor remaining.
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The starting point for understanding the alignments in Eq. 2.8 are the symmetry-

preserving vacuum alignments of A4, namely

1 0 0 +1
o], ol [+, (2.9)
0 1 +1

which each preserve some subgroup of A4 in a basis where the 12 group elements in
the triplet representation are real, i.e. each alignment in Eq. 2.9 is an eigenvector
of at least one non-trivial group element with eigenvalue +1. In a flavour model the
above alignments would also arise from the VEVs of triplet flavons, which however do
not couple to fermions. As such, their immediate role beyond producing the CSD(n)
alignments is unclear, though they may have an impact on early Universe physics, for

example in flavon inflation [100].

The above alignments can be fixed by coupling flavons ¢; to driving fields A; that are
triplets under the family symmetry, by writing down renormalisable terms like A;¢;¢;.
Since each A; has three components, it leads to three separate F' term conditions FA% =
F a2 = F A3 = 0, which can only be satisfied if all components of ¢; are equal or two are

Zero.

The first (atm) alignment in Eq. 2.8, which completely breaks the A4 symmetry, arises

from the orthogonality conditions

0 1
1|l 1],]o], (2.10)
1 -1

involving two symmetry-preserving alignments selected from Eq. 2.9. Next, the align-
ment (2,—1,1) may be obtained by noting that it is orthogonal to the alignment in

Eq. 2.10 and one of the symmetry-preserving alignments,

2 1 0
—1 L], (2.11)
1 —1 1

The CSD(n) (or sol) alignment in Eq. 2.8 is in turn orthogonal to the above alignment,

i.e.

n | L]|-1], (2.12)

where the orthogonality in Eq. 2.12 is maintained for any value of n (not necessarily

integer). To pin down the value of n and show that it is a particular integer requires a
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further orthogonality condition.?

For example, for n = 3, the desired alignment is obtained from the two orthogonality

conditions,
1 2
31 L1-11,| 01, (2.13)
1 1 -1

where the first condition above is a particular case of Eq. 2.12 and the second condition
involves a new alignment, obtained from two of the symmetry-preserving alignments in

Eq. 2.9, namely

1\ /0
o|Lf1],]1]. (2.14)
~1 1/ \o

Using Eq. 2.5, the vacuum alignments in Eq. 2.8 make up the columns of the neutrino

Yukawa matrix, consistent with Eq. 2.4 where m? = (mZ ,mP2, mZL. ). The charged-

lepton Yukawa matrix is chosen to be diagonal, corresponding to the three flavons ¢,

¢ and ¢r acquiring VEVs with alignments

1 0 0
(Pe)oc [Of, (gu)oc | L[, (pr)ox|O]. (2.15)
0 0 1

2.3 Numerical analysis of CSD(n)

We turn now to a dedicated numerical analysis of the general class of CSD(n) models in
the framework described above but independent of a specific model, allowing the positive

integer n to take any integer value. The results of this analysis were first published in

1.

2.3.1 Key features

CSD(n) is a generalisation of examples studied in the literature so far for n = 2,3, 4,
including the original CSD (TB mixing) identified here as CSD(1). As we will see
shortly, after the seesaw mechanism has been implemented, with just two right-handed
neutrinos, the light effective Majorana neutrino mass matrix depends on just two mass
parameters m, and my and a relative phase 1. For each value of n we perform a fit to five

observed neutrino parameters: three mixing angles and two mass-squared differences.

® We could simply use the alignment in Eq. 2.12, where n is a real number to be fitted. However, we
prefer to fix n to be a small positive integer to increase predictivity.
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It is worth mentioning several features of the analysis, and some key results. Firstly, we
find good fits for the CSD(3) and CSD(4) alignments, with favoured values of 1 near
27 /3 and 47 /5, respectively. This is consistent with previous works where 7 is associated
with spontaneous C'P violation of an Abelian Zsn [93] or Zsy [94] symmetry. Unlike
these earlier studies, however, here we perform a systematic fit leading to more robust
results which allow the input phase to be determined from the data on the mixing angles.
Indeed it is reassuring to see the simple rational values of the input phase 27/3 or 47 /5

emerge from the fit.

The value of the C'P phase dcp emerges as a genuine prediction. Moreover, in CSD(n)
with just two right-handed neutrinos, there is a direct link between the oscillation phase
d0cp and the leptogenesis phase, since there is only one phase 1 which is responsible
for both. The more general case with a third approximately decoupled right-handed
neutrino provides a close approximation to this situation. Therefore in both cases,
observation of leptonic C'P violation in low energy neutrino oscillation experiments is

directly linked to cosmological C'P violation, which both vanish in the same limit.

We consider the effect of a third right-handed neutrino giving m%.. o (0,0,1), which
introduces a further mass parameter m. and relative phase &, in order to gauge the effect
of having a non-zero lightest neutrino mass m;. For low values of m,, this provides
a perturbation to the two-neutrino results, leading to an upper limit on the lightest

physical neutrino mass m; < 1 meV for the viable cases.

Though the analysis here is independent of a specific model (such as a GUT), it is
to be understood that the CSD alignments are discussed with a mind to integration
within a more complete model that ideally can explain all fermionic mass and mixing.
The remaining chapters in this thesis are aimed at fulfilling exactly this goal. As such,
numerical results presented here give an important foundational step in an approach to

solving the flavour puzzle.

2.3.2 Mass matrices

Recall from Eq. 1.14 that the charged lepton Yukawa matrix Y¢ and neutrino Yukawa

matrix Y” are defined in a left-right convention by
LM = —H Y Lpierj — HWY{LLivgj + h.c.. (2.16)

where i,j = 1,2, 3 label the three families of lepton doublets Ly, right-handed charged
leptons er; and right-handed neutrinos vg;. The physical effective neutrino Majorana

mass matrix m” is determined from the columns of Y” via the seesaw mechanism,

5 This left-right convention for the Yukawa matrix differs by an Hermitian conjugation compared to
that used in the MPT package [101] due to the right-left (RL) convention used there. Subsequently, the
neutrino mass matrix after seesaw m” also differs by Hermitian conjugation.
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mY = —U?LY”M}?(Y”)T, where m” is defined by
Lh=—Imfsivg; +he., (2.17)
while the right-handed neutrino Majorana mass matrix Mpg is defined by

ch = _%<MR)ijV7]CDLiVRj + h.c.. (218)

v

In these conventions, the CSD(n) mass matrices m” = v,Y” and Mg are given by

0 b 0 Matm 0 0
mP =v,Y"=1a nb 0|, Mg=| 0 My 0 [, (2.19)
a (n—2)b ¢ 0 0 Mgec

where a, b and c are generally complex. The seesaw formula yields

000 1 n n—2 000
My =mee [0 1 1 +mpe® | n n? nin—2) | +mee” 0 0 0],
011 n—2 nn—2) (n—2)? 0 0 1
(2.20)

where m, = |a|?/Magm, mp = |b|>/Mso1 and m. = |¢|?>/Mgec are real and positive, with
the phases displayed explicitly as a = arg[a?], 8 = arg[b?] and v = arg[c?]. One overall
phase multiplying the entire matrix is unphysical. Choosing this to be «, it may be
factored out and then dropped in order to make the term proportional to m, real. This
results in two physical phases, defined by n = 8—a and ¢ = v—a. Hence n = arg[b?/a?]
and ¢ = arg[c?/a?].

We use the PDG parametrisation of the PMNS matrix defined in Eq. 1.23, where
UpmMns = RégU{?)RluP, expressed in terms of three mixing angles 6;;, a Dirac phase
dcp (residing in Up3) and two Majorana phases awoi, az; contained in P. If Y€ is di-
agonal, Upyns is simply the matrix that diagonalises the neutrino mass matrix (up to

charged lepton phase rotations).

2.3.3 Fitting method

Here we describe the method used for finding the best fit of the CSD(n) matrices to
data. We must first clarify that we do not use raw experimental data. Rather, the
“data” corresponds to the predictions of physical observables p; (masses, mixing angles)

and associated uncertainties as obtained by a global fit to true experimental data, where

JIAS {Sin2 012, sin? 013, sin? 0o3, Amgl, Am?ﬂ} (2.21)
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As such we have not performed a global fit to the data, but instead fit the model
parameters, which are collected into a vector x, to the existing results of a global fit.
For a given input vector x one obtains a set of predicted values P;(x) which may be
compared to the corresponding values p;. In this analysis, x = (mg, mp, me,n,§), or a
subset thereof. We use a standard x? test statistic to compare predictions for different

x; optimum x, yielding the best fit, was found by minimising the x? function. The test

X* = ZN: (P(x()f“y (2.22)

=1

statistic x? is defined by’

where N = 5 is the number of input parameters in this analysis, u; are the current
global best fit values to experimental data, and o; are the associated lo errors, while
P; are the model predictions for physical observables, i.e. the (squared sines of) three

lepton mixing angles 6;; and two mass-squared differences Am3; and Am3,.

For definiteness, all “data” pu; is taken from just one of the global fits, namely that of
the NuFit collaboration. The most up-to-date values at the time of publication of [1], on
which much of this chapter is based, were NuFit 2.0 [105], which are given in Table 2.1.
The following discussion is based on those results, which differ slightly from the current
best fit values, which were presented in Chapter 1 and are used in Chapter 5. In NuFit
2.0, the C' P-violating phase dcp is constrained at 1o, but is completely undetermined at

30, and so is left as a pure prediction in this analysis, as are the two Majorana phases.

Value

Parameter

Best fit +10 30 range
sin? 6%, 0.304 *513 0.270 — 0.344
0f5/° 33.48 T8 31.29 — 35.91
sin? 64, 0.451 75052 0.382 — 0.643
05,/° 42.3 T34 38.2 — 53.3
sin 6}, 0.0218 +0.0010  0.0186 — 0.0250
0%5/° 8.50 7029 7.85 — 9.10
5t/° 306 T3 0 — 360
Am3, /107 eV? 750 T512 7.02 — 8.09

Am2, /1073 eV? 2457 £0.047  2.317 — 2.607

Table 2.1: Standard Model experimental neutrino mass-squared differences and
PMNS mixing parameters from NuFit 2.0 [105].

The error o; is equivalent to the standard deviation of the global best fit values if the
global fit distribution of the observable is Gaussian. This is essentially the case for most

fitted observables, with the notable exception of the atmospheric angle #23. As seen in

" This is the standard definition; the implementation used here of y2-minimisation for finding best
fits of models to data is analogous to that in [102], and more recently in [103, 104].
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[105], the Ax? distribution for a3 has two minima on either side of 45°, with a slight
preference for 033 < 45° for normal ordering, and a best fit value o3 = 42.3°. This is
reflected in the asymmetric error f{’;g‘; which in terms of sin2 093 is fg:gg%. So as to not
overstate the error (and consequently underestimate x?), we assume the distribution to
29,, = 0.028.

For best fit values larger than 42.3° this will overestimate the y?, so we are being

be Gaussian about the best fit point, setting og,, = 1.6, or equivalently o,

conservative in presenting our results when the data is not Gaussian.

It is generically true that additional input parameters can improve a model fit. One may
thus be tempted to calculate a reduced chi-squared Xfed, i.e. the x? per degree of freedom
(d.o.f.), where the number of d.o.f. is naively given by the number of observables minus
the number of input parameters. In the conventional picture, a good fit has X?ed ~ 1.
However, as discussed in [106] this interpretation is only valid for linear models; the
PMNS matrix which diagonalises the CSD(n) matrix is certainly not linearly dependent
on the parameters. While x? is a valid tool for comparing models to each other, since it

is not possible to establish an exact number of d.o.f., we cannot reliably define X?ed'

Initially, a coarse Monte-Carlo was used to examine the five-dimensional parameter
space. A random vector z = (mg,my, me,n,§) is chosen, all PMNS parameters are
calculated numerically using the Mixing Parameter Tools (MPT) package for Mathematica
[101], and x? is evaluated. A large-N search of this type reveals the existence of two
distinct regions of low x2. These regions in parameter space are characterised by having
the same approximate values of m, and my, while m, and £ are allowed to take a broad
range of values (in fact £ can take any value at all in [—7, 7]). Meanwhile 7 is constrained
only up to a sign: the two minima then correspond to equal and opposite values of 7.
Refining the input parameter space by allowing only n € (0,7) leaves a single global
minimum region. This minimum is well-defined and generally stable, meaning our x?

statistic is a good test for goodness-of-fit over this space; this is true for all CSD(n).

To demonstrate this, see Figure 2.1, which plots the results of the random search Monte
Carlo for the representative cases CSD(3) and CSD(4), which as we will see are the most
physically interesting cases. Specifically, it plots the lower envelope of x? as a function
of a given input parameter, evaluated for 10% points in the parameter space spanned
by (mgq,my, me,n). Other CSD(n) alignments observe similar behaviours. The shape of
the curves for mg, mp, and 7 show clearly defined minima, while the range of low-y?
values is comparatively wider and includes m. = 0. Nevertheless, although m. may
take a large range of values and produce reasonably good x? fits, it appears to have a
single minimum region. The value of the phase £ does not have a significant effect on
the position and nature of the minimum and is fixed to either of two values, n and 0,

for convenience. These phase choices are discussed below.

Figure 2.2 shows the best fit x? with respect to the two input masses m, and m; for a
two-neutrino model with CSD(3) and CSD(4). It is clear from the contours that both
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(b) CSD(4)

Figure 2.1: Lower envelope of best fit x? in the neighbourhood of the global
best fit of input parameters mq ., 7 for CSD(3) and CSD(4), with fixed &.

input masses are quite tightly constrained. Any fit that gives x? < 50 will correspond
to a deviation from the best fit value of no more than 10-15%. It is also confirmed that
the addition of a third right-handed neutrino does not significantly alter the best fit or
the spread of m, and my, since m, is small (as required by CSD). This lends validity
to our assertion that the two physical neutrino masses mgo 3 are largely derived from

the input masses mgyp, leaving (in the two-neutrino case) only a single phase 7 which
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Figure 2.2: Variation of y? with input masses m, and my for CSD(3) and
CSD(4). The dark blue region corresponds to x? < 5, while the surrounding
regions correspond to x? < 20 and x? < 50.

controls the detailed prediction of the PMNS matrix. Once the single global minimum
is confirmed, numerical minimisation is performed in Mathematica, which preferentially
uses the method of differential evolution to find local minima. Heuristically, it works
by maintaining a population of candidate solutions. This is moved around in parameter
space by choosing new points based on the current population, which are added to the

set if they correspond to a better fit (in this case, a lower x?), otherwise discarded.

2.3.4 Results for two right-handed neutrinos

Here we present results of the fit to data of CSD(n) with two right-handed neutrinos.
In all subsequent plots, a thick solid gridline corresponds to a best fit value of a mixing
angle or neutrino mass, while thin solid gridlines show the 1o limits, and thin dashed

gridlines show the 30 range.

Models with only two right-handed neutrinos are compelling as they are typically highly

predictive. Here, the neutrino mass matrix in Eq. 2.20 simplifies to

0 00 1 n n—2
miy=mq [0 1 1[4+ mpe | n n? n(n—2) |, (2.23)
01 1 n—2 n(n—2) (n-—2)?

with n = § — « after removing an overall unphysical phase «. As this matrix has
rank 2, it immediately predicts the lightest physical neutrino mass to be zero, m; = 0.
Moreover, since m; = 0 in this case mg = \/AmZ, and m3 = \/Am3,. For a given
choice of alignment n, there are three real input parameters mg,, mp and n from which

two light physical neutrino masses ms, ms, three lepton mixing angles, the C P-violating
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phase dcp and two Majorana phases are derived; a total of nine physical parameters from
three input parameters, i.e. six predictions for each value of n. As the Majorana phases
are not known and dcgp is only tentatively constrained by experiment, this leaves five
presently well-measured observables, namely the two neutrino mass squared differences

and the three lepton mixing angles, from only three input parameters.

. Ma my, n b1o 013 s |dcp| @ ma ms 2
(meV) (meV) (rad) (°) (°) () (°) (meV) (meV)

24.8 2.89 3.14 353 0 45.0 0 8.66 49.6 485
19.7 3.66 0 345 7.65 56.0 0 8.85 48.8  95.1
27.3 2.62 217 344 839 445 922 8.69 49.5 3.98
36.6 1.95 2.63 343 8.72 384 120 8.61 49.8  8.82
45.9 1.55 288 342 9.03 344 142 8.53 50.0 33.8
55.0 1.29 3.13 342 930 316 179 8.46 50.2  65.2
63.0 1.12 3.14 341 9.68 31.0 180 8.35 50.6 100
71.0 0984 314 340 9.96 30.6 180 8.25 50.8 135
79.0 0.880 3.14 339 10.2 30.3 180 8.17 51.0 168

© 0 N S O W N

Table 2.2: Best fit parameters for CSD(n) with two right-handed neutrinos. Ad-
ditionally, we predict one massless neutrino with m; = 0 and one zero Majorana
phase.

100 ® [
50

10t Y

Figure 2.3: Best fit x? with respect to n, for CSD(n) with two right-handed
neutrinos.

Table 2.2 shows all best fit parameters with respect to n, while Figure 2.3 plots the
corresponding best fit x2. In Table 2.2, the fitted three input parameters m,, ms and 7
yield nine physical predictions, but only six physical outputs are shown. The undisplayed
outputs are m; = 0 in each case and two Majorana phases, one of which is zero. Both
CSD(3) and CSD(4) have x? < 10, while all others have significantly higher values,
generally increasing with n. We view the fit for n = 3 as a good fit, particularly in
light of the fact that it can naturally predict a C'P phase dcp close to the current

experimental preferred value of ~ —7/2. Similarly the fit for CSD(4) shows promise for
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model building, with a prediction |dcp| = 120°. For n > 4, the largest contribution to

x? is typically fo3, while for n = 3 there is no dominant contribution.
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Figure 2.4: Best fit lepton mixing angles and C P-violating phase with respect
to n, for CSD(n) with two right-handed neutrinos.
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Figure 2.5: Best fit light neutrino masses with respect to n, for CSD(n) with
two right-handed neutrinos.

Figures 2.4 and 2.5 show the variation of physical masses and neutrino mixing angles
with respect to n. Note that, in the conventions defined earlier, a positive value of 7,
namely n € (0,7), yields a negative C'P-violating angle, i.e. dcp € (0,—m), while the
mirror global minimum for n € (—m,0) corresponds uniquely to écp € (7,0). As 7 is
unconstrained (unless some model explicitly restricts its domain), only the absolute value
of dcp can be predicted in this framework. In Table 2.2 we only show positive n values,
for which dcp is negative. It is also worth noting that both CSD(3) and CSD(4) yield
predictions within the preferred range |dcp| ~ 90°+45° but may be distinguished by their
differing predictions for the atmospheric angle 023 ~ 45° and 93 ~ 38°, respectively.
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Figure 2.6: Variation of x? with phase 1, for CSD(n) with two right-handed
neutrinos.

The two input masses m, and my are essentially fitted to the two light neutrino masses
ma, ma after which the entire PMNS matrix is determined from only one parameter,
namely the phase 7. A priori, CSD(n) need not lead to low x? values for any choice of
n, due to the sensitivity of the predictions to the phase 7, yet in fact the results show
that it gives very good fits to the leptonic mixing angles for n = 3,4, for special values
of n, yielding a value of |0cp| as a genuine prediction, along with preferred values for
the lepton angles. This is illustrated in Figure 2.6 which shows the variation of x? with
n, for 1 < n < 9. It is clear that 7 is quite strongly constrained, even for CSD(3) and
CSD(4); with CSD(3), the values (in radians) of  that give x? < 10 are 2.08 < 7 < 2.27,
which is a range of approximately 11°. This range includes the value 27 /3. Such a value
could be produced in a model with a discrete symmetry such as Zsy. As hinted by

the earlier Monte Carlo scan, the neutrino masses are also tightly constrained, for all

CSD(n).

To make the link between x? minimisation and physical prediction more concrete, let
us examine the variation in the three mixing angles with n, as plotted in Figure 2.7, for
the physically most interesting cases of CSD(n) with n = 3,4,5. We see that although
012 is largely insensitive to 7, there is a complicated dependence of the other two mixing
angles on 7, which is different for different n. These plots demonstrate what the x? value
suggests: for some small set of values 7, the predicted mixing angles converge on the
experimental best fit values for CSD(3) and CSD(4). Meanwhile for CSD(5) we begin

to see tension between the fits to 613 and 6a3; this tension grows with large n.
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2.3.5 Results for three right-handed neutrinos

We turn now to the results of the fit for CSD(n) with three right-handed neutrinos. As
in previous figures, a thick solid gridline corresponds to a best fit value of a mixing angle
or neutrino mass, while thin solid gridlines show the 1o limits, and thin dashed gridlines

show the 30 range.

We now extend the analysis to the case of three right-handed neutrinos. Removing the

unphysical overall phase o from Eq. 2.20 gives

00 0 1 n n—2 0 0 0
My =mq [0 1 1 +mpe | n? nn—2)| +mee® 0 0 0
01 1 n—2 n(n—2) (n-—2)?2 00 1

(2.24)

The immediate effect of including a third right-handed neutrino is to switch on a non-
zero value for the lightest physical neutrino mass mj, where previously for the case of

two right-handed neutrinos we had m; = 0.

Since the contribution from the third right-handed neutrino is assumed to be a pertur-
bation to the case of two right-handed neutrinos considered in the previous subsection,
the detailed structure of the third matrix is irrelevant, and it is sufficient to only keep
the most important term in the third matrix. This analysis assumes it to be in the
(3,3) entry, since in unified models where Y" ~ Y this entry is responsible for the top
quark Yukawa coupling (see e.g. [4, 6, 98, 99]). The third term brings in a further
undetermined relative phase £ which complicates the analysis somewhat. As indicated
by the Monte Carlo scan, the results are comparatively less sensitive to this phase &,
particularly for the physically interesting cases of n = 3,4. By considering only the cases
where ¢ = 0 (phase aligned with dominant mass matrix) or £ = n (phase aligned with
subdominant mass matrix), we can illustrate the sensitivity of the results to this phase
without over-complicating the analysis. Such a constraint on the value of &, correspond-
ing to the phase of either of the other matrices that make up m” (proportional to m,

or my) may also arise directly from a model, such as in [98, 99].

Tables 2.3 and 2.4 show the results for the best fit physical parameters (masses, mixing
angles and dcp) and input parameters, respectively, for the case £ = 0. Similarly,
Tables 2.5 and 2.6 show the best fit physical and input parameters for the case & = 7.
As in the two right-handed neutrino case, only CSD(3) and CSD(4) can achieve x? < 10.
More generally for each CSD(n), the associated x? values are slight improvements over
the two-neutrino case, which is expected as there is an additional free parameter m..
However, by the SD assumption, the third right-handed neutrino is nearly decoupled
from the theory, constraining m. to be small. As noted previously, evaluating the
number of excess degrees of freedom is non-trivial. One may cautiously regard x? values

between unity and, say, up to 10 as encouraging, bearing in mind also that dcp is not
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n the 013 O3 |ocp| ma ms 9
©) ) ) () (meV) (meV) (meV)

1 33.5 0.293 41.4 245 0.874 8.71 49.6 474
2 345 7.65 56.0 0 0 8.85 48.8  95.1
3 33.6 837 446 81.3 0.278 8.69 49.5  2.59
4 33.0 870 388 89.1 0.692 8.64 49.7  6.51
5 324 892 35,6 89.2 0.964 8.62 49.9 25.1
6 31.8 9.04 33.6 88.6 1.12 8.61 50.0 43.1
7 313 912 323 87.9 1.22 8.61 50.1 58.1
8 31.0 9.29 320 875 1.23 8.57 50.1 70.9
9 30.7 944 321 86.9 1.22 8.54 50.2 82.4
Table 2.3: Best fit physical parameters for CSD(n) with £ = 0.

n Mg mp me n
(meV) (meV) (meV) (rad)
1 23.3 2.81 5.77 1.62
2 19.7 3.66 0 0
3 26.0 2.60 1.77 2.1
4 32.3 1.94 4.75 2.48
5 38.3 1.52 7.10 2.65
6 44.5 1.25 9.81 2.74
7 50.7 1.06 10 2.81
8 57.3 0.92 10 2.85
9 64.0 0.82 10 2.88

Table 2.4: Best fit input parameters for CSD(n) with £ = 0.

, P2 i O foce| ma ms N
©) ) ) () (meV) (meV) (meV)

1 333 0.069 442 180 0.197  8.66 49.6 477
2 345 7.65 56.0 0 0 8.85 48.8  95.1
3 33.7 837 448 927 0.092  8.69 49.5  3.14
4 33.0 867 39.0 123 0.215  8.62 49.7  5.53
5 325 893 352 149 0.307 855 50.0 27.6
6 32.1 927 331 180 0.356  8.46 50.2  56.8
7 320 966 326 180 0.364 8.34 50.6  92.4
8 320 995 321 180 0.358  8.24 50.9 129
9 32.0 102 31.7 180 0.341 8.15 51.1 163
Table 2.5: Best fit physical parameters for CSD(n) with & = 7.
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Mg my me n

(meV) (meV) (meV) (rad)

24.5 2.75 1.26 0

19.7 3.66 0 0

27.3 2.61 0.558  2.16
36.8 1.93 1.30 2.63
46.5 1.52 1.85 2.91
55.4 1.27 2.15 3.14
63.4 1.10 2.2 3.14
714 0.97 2.16 3.14
79.3 0.87 2.05 3.14

© 00 O UL i W N -

Table 2.6: Best fit input parameters for CSD(n) with £ = 7.

included in the fit, and also that the error on the atmospheric angle f»3 is asymmetric.
In the light of all of the above, there is some variability in the y? values, and they should

be interpreted with care.

As n increases, the fit prefers a stronger hierarchy of input neutrino masses m, and
my, while the contribution from m. becomes stronger. The input mass parameters m,,
my and m, are allowed to be free apart from an upper limit imposed on m. < 10 meV
in order not to violate the SD condition. In the case of £ = 0, m. reaches the soft
upper bound of 10 meV for CSD(n > 7). Note that a fit that requires a large m, is
not CSD. A proper analysis of such a non-CSD model necessarily includes contributions
from elements of the third matrix (proportional to m.e®®) other than the largest (3,3)
element, which have been neglected thus far. This would destroy the predictivity of the
scheme which makes CSD(n) so appealing. This justifies imposing the chosen upper
bound on m.. However for the successful cases CSD(3) and CSD(4), the best fit values
of m. are comfortably below 10 meV, so these cases naturally prefer a quite decoupled
third right-handed neutrino for which the upper limit of m, is irrelevant. Consequently,
restricting our analysis to only examine two values of £ appears justified for small n.
For larger n, the overall contribution from the third matrix is larger, yet nevertheless

fails to significantly improve the (poor) fit to data.

Among physical parameters, of particular note in Tables 2.3 and 2.5 is the C P-violating
phase dcp, which is close to £90° for CSD(3), for both choices of . Furthermore, the
alignment of £ with the dominant or subdominant mass matrix appears to greatly affect
the prediction for dcp for other n, suggesting a relationship between 7, £ and dcp. Notice
that when £ = 7, the best fit of both is 180° for n > 6. An analytic treatment would be
required for a deeper understanding of their connection, which we did not perform, but
note that this behaviour only appears for CSD(n > 6) with poor fits which are of less

physical relevance.
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Figures 2.8 and 2.9 show the variation of the best fit physical parameters as a function
of n. In Figure 2.8 we see that the reactor angle increases with n while the atmospheric
and solar angles decrease. Examining the 30 ranges (dashed lines) we also see that 6a3
is typically worst fit (only CSD(3) lies within the 1o bounds), and is also least sensitive

to the choice of phase £, which can otherwise improve the fit of 615 or 613 at large n.

Note the similarities between the predictions in Figures 2.8 and 2.9 and the corresponding
figures for models with two neutrinos (Figures 2.4 and 2.5). The primary difference when
a third neutrino is introduced is that 675 is pushed to a lower value. The two-neutrino
case has been studied in depth more recently in [95], where they provide exact mixing
angle sum rules. In particular, they find that tanf = [(1 — 3sin?#6;3)/2]"/? for any
n. As 613 is relatively small, 019 ~ 1/ V2 to good approximation, in agreement with
the result in Figure 2.4. However, no such analytical results are available for the three-
neutrino scenario; the addition of one complex free parameter, coupled with the fact
that all matrix elements are sizeable, allows for non-trivial modifications to the mixing
angles. In the absence of analytical results, which may or may not be attainable, and are
anyway beyond the scope of the numerical analysis presented here, it is not immediately
clear why 612 is dominantly affected when a third neutrino is introduced. The best
fit values of my in Figure 2.9 indicates that it can vary greatly with n for some phase
choices. It is however unlikely that this can be used to constrain models in the near
future, as the mass scale is well below current experimental bounds of > m, < 0.23 eV

37).8

The variation of x? with respect to the phase 7 and the third input neutrino mass m..
is shown in Figure 2.10, for CSD(n) with 3 <n < 5. As in the case with two neutrinos,
7 is quite tightly constrained. Meanwhile, m, typically has a rather large range of
acceptable values, particularly when £ = 0, and does not appear strongly correlated
with 1. Similarly, the best fit values of the physical lightest neutrino mass m; lie in
rather shallow minima of x2, as shown in Figure 2.11 where the dashed line refers to the

& = 0 case, while the solid line refers to the £ = 7 case.

Figures 2.13 and 2.14 show the dependence on the lightest neutrino mass m; of the
predicted mixing angles and neutrino masses, respectively, while Figure 2.12 shows the
variation of best fit input parameters with m;. We see in Figure 2.12 that m. and my
are closely correlated, while best fit m,; are not strongly affected by the introduction
of a third neutrino. Meanwhile in Figure 2.13, the variation is primarily in 612 when mq
is small. Again in these plots the dashed line refers to the £ = 0 case, while the solid

line refers to the £ = 7 case.

We observe that the choice of phase ¢ has a small effect on the x? value of the global

minimum, but can noticeably shift its location in parameter space. Naturally the largest

8 At time of publication of [1], the most current Planck results were [107], which give approximately
the same bound.
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Figure 2.10: Best fit x? with respect to the phase 1 and third input neutrino
mass m.. The dark blue region corresponds to x? < 5, while surrounding regions
correspond to x2 < 20 and x? < 50. The best fit points are indicated by stars.
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Figure 2.12: Variation of the best fit input parameters with m;. Dashed and
solid lines refer, respectively, to € = 0 and £ = 7.

effect is on the best fit value and range of validity of m., but it also contributes to
interference between the three mass matrices in Eq. 2.24. The practical effect is that
each of the three vacuum alignments contribute in varying amounts to each of the three
PMNS mixing angles depending on the relative phase between the matrices, which can
be seen particularly in Figure 2.13, where the choice of ¢ alters the shape of the variation
of the mixing angles. As noted earlier, the addition of a third neutrino appears to most
dramatically affect the solar angle #12, in contrast to the two-neutrino model, where it
is essentially constant. The physical neutrino masses in Figure 2.14 are comparatively

far less sensitive to changes in &.
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£=1.
2.3.6 Special cases: CSD(3) and CSD(4) with fixed phases

It is interesting that the optimal fit for the CSD(3), with x? = 2.59(3.14), corresponds
to a choice of input phase |n| = 2.10(2.16) = 0.6697(0.6827), for the £ = 0 (£ = n)
cases, respectively. Its closeness to the value 27/3, independently of &, is a compelling
quality in favour of flavour models that predict additional Zsy symmetries, which tend
to predict quantised phases as multiples of 7/3. This motivates a x? analysis with a
fixed value of n = 27/3, for a reduced input vector z = (mgq, mp, mc). The resulting
input and output parameters for fixed n = 27/3 are given in Table 2.7. The best fits
give x? = 2.59(5.25), for the £ = 0 (£ = 7)) cases, respectively, marginally worse than in
the case of unconstrained 7 fits which gave x? = 2.59(3.14).
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Best fit val
Parameter s vaue

§=0 &=n
mg /meV 259  26.7
my /meV 2.60 2.64
me /meV 1.80  0.88

my /meV 029 0.14
may /meV 8.71  8.63
ms /meV 48.2  49.7

012 /° 321 33.3
O1s /° 8.74  8.54
Oos /° 46.2  45.8
6cp| /° 90.2  89.1

Table 2.7: Best fit input and output values for CSD(3) with fixed input phase
n =2m/3.

Turning to the other promising candidate, CSD(4), we see that, for £ = 0 (£ = n), we
have x? = 6.51(5.53) for |n| = 2.48(2.63) = 0.797(0.84r), which is close to 47 /5. It is
meaningful to examine the parameter space for a fixed phase n = :l:%’r and £ =0 (as in
[98]) or & = n (as in [99]), although in such realistic models charged lepton corrections
also play a role. The fit yields x? = 7.20(14.7) with corresponding input and output

parameters given in Table 2.8.

Parameter Best fit value

£=0 &=n
me /meV 33.0 354
my /meV 1.94  1.99
me /meV 442 1.60
my /meV  0.66  0.26
ma /meV 8.65  8.49
ms /meV 49.7  50.2

th2 /° 33.5 327
013 /° 8.68  9.05
tas /° 382 413
|6cp]| /° 93.6 112

Table 2.8: Best fit input and output values for CSD(4) with fixed input phase
n = 4m /5.

2.4 Leptogenesis in CSD(n) models

In this section we show how successful N leptogenesis may be realised in CSD(n) models,
based on the work in [3]. In [3] we also applied the results to an A4 x SU(5) SUSY GUT
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which realises the CSD(3) vacuum alignment. This model and its leptogenesis predic-
tions will be discussed in Chapter 3. Recall that the leptogenesis mechanism involves at
least two right-handed neutrinos, whose C'P-violating decays give rise to a lepton asym-
metry, which is subsequently converted into a baryon asymmetry by sphalerons. By the
SD assumption, the third right-handed neutrino is almost decoupled from the theory.
As demonstrated in the above numerical analysis, it has only minor effect on predictions
for low-scale neutrino parameters. Its contribution to leptogenesis will also be negligible,
so here we consider the class of models involving only two right-handed neutrinos. We
begin by establishing the link between the phase n in the light neutrino mass matrix m",
as defined in Eq. 2.23, and the leptogenesis phase. Next, the baryon asymmetry of the
Universe (BAU) from thermal N; leptogenesis is calculated in the CSD(n) framework,
and numerical results are presented for the most viable cases, namely 3 < n < 5. The
leptogenesis calculation primarily follows the method described in [108], which builds on
previous efforts in [109-111] towards understanding the importance of flavour in thermal

leptogenesis.

2.4.1 Link between the C' P and leptogenesis phases

In the original form of CSD, i.e. TB mixing or CSD(1), the columns of the neutrino

Dirac mass matrix m?”

in the flavour basis were orthogonal to each other and conse-
quently the C'P asymmetries for cosmological leptogenesis vanished [108, 112]. Following
the subsequent observation that leptogenesis also vanished for a range of other family
symmetry models [113-115], this undesirable feature was eventually understood [116] to
be a general consequence of seesaw models with form dominance [90, 91], i.e. in which
the columns of mP” in the flavour basis are proportional to the columns of the PMNS

matrix.

For general CSD(n), leptogenesis does not vanish since the columns of m” are not
orthogonal. To be precise, mL , = (0,a,a) and m2, = (b,nb, (n — 2)b) from Eq. 2.4
are not orthogonal for n > 1. The original CSD(n = 1) case satisfies form dominance
since (0,a,a) - (b,b, —b) = 0, and leptogenesis vanishes in this case. CSD(1) is anyway
excluded due to observed reactor angle and confirmed by our analysis, which gives
x2 ~ 500. Interestingly, since the seesaw mechanism in CSD(n) with two right-handed
neutrinos only involves a single phase 7, both the leptogenesis asymmetries and the
neutrino oscillation phase dcp must necessarily originate from 7, providing a direct link

between the two C P-violating phenomena in this class of models.

Before delving into a detailed analysis, let us sketch this dependence to understand its
significance. The produced baryon asymmetry Yp from leptogenesis in CSD(n) models

with two right-handed neutrinos satisfies, following the arguments in [108],

Yp o £sinm, (2.25)
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where the “4” sign applies to the case My, <€ Mg, and the “—” sign holds for the
case Mgy < Maytm. Since the observed baryon asymmetry Yp is positive, it follows
that for Mum <€ Mo sinn must be positive, while for Mg, < Myt sinn must be
negative. We have seen that, for CSD(n), positive 7 is associated with negative dcp and
vice versa. Although the global fits do not distinguish the sign of 7, the present hint
that dcp ~ —m/2 would require positive . Then in order to achieve positive Yp we
require Myt < Mgo1. Leptogenesis with two right-handed neutrinos with this relation
was considered in [117], however those results are geared towards preserving TB mixing.
Leptogenesis was has also been studied for CSD(2) [92], which involves two texture
zeroes. Here we find a link for CSD(n), even with only one texture zero, due to the

appearance of only a single phase 7 in the seesaw mechanism.

The above conclusions remain approximately true when the nearly-decoupled third right-
handed neutrino is introduced. As discussed in [108], the relative size of the additional

contribution to the C'P asymmetry when a third neutrino is present? is O(m./ms) ~ 0.1.

2.4.2 Calculating the baryon asymmetry

A sketch of the Nj leptogenesis mechanism was presented in the Introduction for the
minimally extended Standard Model (by three right-handed neutrinos). Since all models
considered in subsequent chapters are supersymmetric, and indeed the vacuum align-
ment mechanism discussed earlier is based on solutions to F-term equations of various
superfields, it is prudent to consider also leptogenesis in a supersymmetric context. This
will involve additional contributions from sneutrino decays, which in practice primarily
results in modifications to several constants in the calculation. We must also take into
account flavour effects, where we distinguish between the flavour indices (e, i, 7) of the

leptons produced by neutrino decays.

A note on notation: as discussed in the Introduction, the final BAU can be parametrised
in terms of a CP asymmetry part and an efficiency part. Commonly in the literature
the symbols ¢ and k are used, respectively. In flavour-dependent scenarios the BAU is
given by the sum over contributions in each flavour, i.e. np x Y o< > o Eaka. Here we
instead write the C'P asymmetries and efficiency factors as €1, and 71, respectively,
consistent with notation in [3], which builds on work in [108]. The subscript “1” refers

to the fact that we are considering only the contribution from N; decays.

At the theory level, the inputs that determine the size of the lepton asymmetry due to

right-handed neutrino decays are the neutrino Yukawa matrix )\, and the right-handed

9 A third right-handed neutrino is necessary in the realistic Pati-Salam models based on CSD(4) in
[98, 99]. In these models the new phase is either given by £ = 0 or £ = 7, so no new leptogenesis phase
appears. However the mechanism for leptogenesis is necessarily quite different in these models, since the
lightest right-handed neutrino of mass Matm is too light to generate successful leptogenesis in its decays.
Instead one must rely on the decays of the second lightest right-handed neutrino of mass Mso [118].
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neutrino Majorana mass matrix M. In the basis where charged leptons are diagonal,

the relevant terms are defined by the superpotential

c
Natm

WV = yeilthLiNc + yéolHLiNs',: 1 + MatmNc

atm 0. atm

My NE,NE (2.26)

ol»

where L; are three families of lepton doublets, and the right-handed neutrinos N¢,,, and

atm
N¢

sol
Y and ygol make up the first and second column, respectively, of A,. Assuming the

(with real positive masses My and My, respectively) do not mix. The couplings

CSD(n) relations in Eq. 2.4, the Yukawa matrix and (conjugated) right-handed mass

matrix in this basis are

0 b M, 0
A= |a nb , M€ = , (2.27)
a (n—2)b 0 M,
where we have written M| = Myt and My = Mg, with M7 < Mo, in anticipation of

the result that the lighter right-handed neutrino is the dominant (atm) one.'°

The above superpotential specifies the basis used for the leptogenesis calculations. This
basis choice (the leptogenesis or SUSY basis) differs from that used in the earlier nu-
merical analysis (the seesaw basis), by complex conjugation. This must be taken into
account when comparing to numerical results for neutrino parameters at low scale. The
two bases and the dictionary between them will be discussed below, but for the calcu-
lation that follows it is sufficient to consider a, b, Mo as free parameters (with a, b

complex).

The degree to which flavour effects play a role in determining the BAU depends on which
Yukawa interactions are in thermal equilibrium at temperatures T' ~ M. Generically, at
high temperatures the interaction rate of a given charged lepton, which is proportional
to the square of the Yukawa coupling [119], is smaller than the expansion rate of the
Universe, characterised by the Hubble parameter. When the temperature drops, charged
lepton interactions become efficient and successively come into thermal equilibrium,
first the tau (which has the largest coupling), followed by the muon and eventually
the electron. In leptogenesis this can be translated into a statement about the right-
handed neutrino mass, such that three distinct regimes must be considered, which are
summarised in [108]. The flavour-independent regime, i.e. where all charged lepton

flavours are out of equilibrium, corresponds in the MSSM to

M; > (1 +tan? B) x 1012 GeV. (2.28)

10 Since M€ is diagonal, there is no distinction between the parameters atm,sol ad mass eigenstates

M; 5. This will not be the case when we consider leptogenesis in a A(27) x SO(10) SUSY GUT in
Chapter 4. It is therefore valuable to introduce a more general notation here.
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The two-flavour regime, where the tau is treated separately but the electron and muon

are indistinguishable, corresponds to

(1+tan?B) x 10 GeV < M; < (14 tan®B) x 10'? GeV. (2.29)
Finally, the regime where all flavours are to be treated separately corresponds to

(1 +tan?B) x 10°GeV < M; < (1 +tan? B) x 107 GeV. (2.30)

The corresponding values in the Standard Model can be attained by setting tan 5 = 0

in the above inequalities.

It will turn out that for the models of interest M; ~ (40 — 100) x 10 GeV. The results
therefore appear to post-justify the flavour-dependent treatment only for tan 5 > 10.
However as it turns out, our results for the three-flavour case are almost identical to
those for the flavour-independent case. The reason is that the efficiency factors for the u
and 7 flavours turn out to be equal, i.e. 11, = 11,,, while the asymmetry for the electron
flavour is zero, €1, = 0, so there is no overall contribution to Yp there. In this case
one may define an efficiency factor '™ = M, = M, and asymmetry e; = > €14 such
that the BAU is proportional to 7", as will become clear from the following results.
The only difference between the flavour-independent and flavour-dependent cases, in the
considered models, is in the detailed solutions to the Boltzmann equations which involve
differences in a numerical matrix A (defined below) which only appears logarithmically
in determining the washouts. The main consequence of this is that the above condition
tan 8 > 10 becomes relaxed, and our results are valid for any value of tan 8 to good
approximation. However, for clarity, we shall perform the calculation using the full

three-flavour treatment.

The total BAU Ypg is obtained as a sum over the individual contributions in each lepton

flavour Ya,, by .
Yp = — g Y, 2.31
B =37 Ao> (2.31)

The individual flavour contributions are in turn given by
YA& = 771704[YN1 + YN1]51,Q7 (232)

where 711, are efficiency factors and €1, are the CP asymmetries. In the Boltzmann

approximation for the MSSM, i.e. assuming the same statistics for fermions and bosons,

45

. . = 228.75, 2.33
g g (2.33)

Y'N1 =~ Y]\71 =~

where g, is the effective number of degrees of freedom in the MSSM. The factors Yy, &

are (s)neutrino number densities and may be interpreted as normalisation constants.
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The expression (per flavour index) for the C'P asymmetry is [108]

1 Im [(Al)la(Ai)‘v)12()"I)2a] MSSM (M22> ) (2.34)

Ela= — —=
T M1 M

MSSM(x)

The loop factor g is given by

P - V3 (2 o (122)). e

For large z, i.e. M; < M, we have

M2 M
MSSM 2 1
—= |~ -3—. 2.36
g ( 1 _,12> VA (2.36)

For the CSD(n) matrix A\, defined in Eq. 2.27, the flavour dependent asymmetries are

€le = 0,
_ 3%( ) Im[a*?b?]

7 VA A PP (2.37)
3 M Im[a*?b?]

€1, = _S?E(n —1)(n—-2) T

Note that

n—2
1,0 = < n )81““. (2.38)

We define the phase 7 that is relevant for leptogenesis as
n = — argla**b?]. (2.39)

This naming convention is not coincidental, as it will be shown to be equal to that which

appears in the CSD(n) neutrino mass matrix m”.

Having established the factor Yy, + YNI and the €1, asymmetries, it remains to de-
termine the (flavour-dependent) efficiency factors 7; . These arise from solutions to
the supersymmetric flavour-dependent Boltzmann equations given in [108]. These equa-
tions do not have simple analytical solutions, and are more readily solved numerically.
Generically, the efficiency factors 7y o depend in a rather complicated fashion on A,.
This is doubly true in cases where the right-handed neutrino mass matrix is not already
diagonal; moving into the flavour basis adds a layer of complexity to the result. Exactly
this scenario is encountered in Chapter 4, where a similar leptogenesis calculation is
performed in a A(27) x SO(10) SUSY GUT. However, in the minimal CSD(n) frame-
work presented here, we will find that 7 o essentially depends only on the input mass
parameter m,, in such a way that we may use results available in [108] to calculate 7; q.

We therefore defer a detailed discussion of the Boltzmann equations to Chapter 4.
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As seen in [108], 71 o may be expressed as a function of two quantities: logg|AaaKal
(no sum) and K =) K,. Aaq are the diagonal elements of a numerical matrix A. In

the MSSM and in the three-flavour regime, it is given by the numerical 3 x 3 matrix

_ 9 6 6

110 55 55

_ 3 19 1
3 1 19

40 30 30

The elements of A depend on which interactions are in thermal equilibrium at the
temperatures where leptogenesis takes place. The parameters K, are referred to as
decay factors, and essentially describe the degree to which the asymmetry is washed
out: K, > 1 may be considered strong washout, while K, < 1 is weak washout. They
are themselves functions of so-called effective neutrino mass parameters my o, such that
Ko = Lo (2.41)

Myissm

where m3qqy &~ (1.58 x 1073 eV) sin? B is the equilibrium neutrino mass, and

,02

Mo = A 1aA) a1 =2 2.42
mia = (A)1a( )1M1 (2.42)

With A\, given in Eq. 2.27, and recalling that v, = v sin 3, the mass parameters are

mie =0, miy, = mir = |a (2.43)
Because 11, = M1, we also obtain K, = K. From Eq. 2.40 we obtain A4,, = A;; =
—19/30. Thus we conclude that 11, = 71 . Furthermore, the expression for m; , = m1 -
in Eq. 2.43 corresponds exactly to the definition for the dominant input mass parameter
mg in the light neutrino mass matrix m”, as defined in Eq. 2.20 (for general CSD(n))
and Eq. 2.23 (for two right-handed neutrinos). It provides us with another immediate

link between leptogenesis parameters and the neutrino mass matrix.

We may now return to the expression for the observed asymmetry Yp as per Egs. 2.31
and 2.32, where

10
Y=o Za: MY, + Y Jeta- (2.44)

Inserting the approximations for Yy, and Yy, from Eq. 2.33 and the asymmetries €1 o
from Eq. 2.37 yields

10 45 45 | n—2
Yp = 371 <771,u |:27T4_g*:| El,u + m,r [27r4g :| 51,#)

N n

- (2.45)
10, Ty 45 ) (m2 (8 My Tl
~ 3w g, n 81 Mo |a|? '
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Expressing this in terms of the phase 7 defined in Eq. 2.39, noting that Im[a*2b%]/|a?| =

—|b|%sinn, we arrive at

675 M

= Wﬁzm’u (n — 1)2|b|? sin7. (2.46)
*

B

Finally, we note that |b|?/My o my, the subdominant input mass parameter in m”.
Thus the final baryon asymmetry Yp in Eq. 2.46 depends explicitly on my and 7 (which
will shortly be shown to be identical to that in m") and implicitly on m, through the
efficiency factor 71 . The dependence on the integer n is also clear. Note in particular
that the case n = 1 gives Yp = 0, i.e. that TB mixing cannot give a non-zero baryon

asymmetry, reproducing the known result.

2.4.3 Constraining leptogenesis with neutrino data

In order to constrain leptogenesis in CSD(n) we use information about low energy neu-
trino masses and mixing. As discussed earlier (see Eqgs. 2.16 — 2.18), the lepton matrices

and seesaw mechanism are defined by

ﬁLR + ,Cf = _Hdi/z‘;fLieRj - Hu}/;ljl'fLiVRj — %(MR)ijZ%iVRj + h.c. (2.47)
The seesaw formula in this basis is m” = —v2Y? My (Y")T, where m” is defined by
55 = —%m%lfiiym + h.c.. There is a simple dictionary between the seesaw basis and

the SUSY basis in Eq. 2.26, as follows: Y” = (\,)*, while Mg = (M¢)* = M¢. Hence

the CSD(n) relations in Eq. 2.27 become, in the seesaw basis,

b*
M 0
Y= |a* nb . Mp=|" . (2.48)
0 M
a* (n—2)b*

Recall that the seesaw mechanism produces the effective neutrino mass matrix

0 00 1 n (n—2)
m’=mg [0 1 1| +mpe” n n? n(n—2) |, (2.49)
01 1 (n—2) n(n—2) (n-—2)?

where m, = v2|a|?/Mj, my = v2|b|? /My, and the phase 7 is defined as
n = argla®/b?). (2.50)

This definition of the phase 7 is consistent with Eq. 2.39, providing the link between
leptogenesis and low energy neutrino phenomenology. The sign of 7 fixes the leptonic

Dirac phase dcp. Specifically, a positive 1 uniquely leads to negative dcp, and wvice
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versa. As experimental data hints at dcp ~ —7/2, the a posteriori preferred solution
has positive 1. The sign of 1 also has high energy cosmological significance: as seen in
Eq. 2.46, it controls the sign and magnitude of the BAU. As noted earlier, N, < N,
and positive n predict a positive BAU, as desired.

The remainder of this section is devoted to the numerical CSD(n) results for both
neutrino phenomenology and leptogenesis. The dependence on my is made apparent by
rewriting Eq. 2.46 as

675 Mlmb

= 3ty an(n — 1)?sinn. (2.51)
* u

B

We will limit our analysis to those values of n which produce reasonable fits to data,
namely n = 3,4,5, as only these give x> < 50. For convenience, the relevant results
from Table 2.2 are reproduced in Table 2.9, along with their predictions for the lepton
mixing angles, C'P violating phase and neutrino masses. Note that we have now fixed
7 to be positive, corresponding to negative dcp. This will ensure the correct sign of the

baryon asymmetry.

We reiterate that values of m,, my and 7 that may be characterised as providing “good”
fits (or at least fits with x? close to the minimal value) lie comfortably within £10% of
their respective best fit values. We are left with an expression for Yz that is linear in M7,
multiplied by a numerical factor that ultimately depends only on n. Taking into account
the variability of the mass matrix parameters, we estimate that the numerical factor may
also vary by up to £10% without significantly impacting the fits to neutrino masses and
mixing angles. In terms of placing bounds on M, this far outweighs the current error
on the experimental value for Yz, which is approximately +0.6%. It is also worth noting
that CSD(2) predicts a best fit with n = 0, while CSD(n) with n > 5 predict best fits
with 7 = 7, both giving sinn = 0, which implies a zero baryon asymmetry. This further

justifies neglecting those cases here.

Mg mp n tho b3 fa3  dcp ma ms3 2
(meV) (meV) (rad) (°) (°) () (°) (meV) (meV)

3 273 2.62 217 344 839 445 -92.2  8.69 49.5  3.98
4  36.6 1.95 2.63 343 8.72 384 -120 8.61 49.8  8.82
5 459 1.55 2.88 342 9.03 344 -142 853 50.0  33.8

Table 2.9: Best fit parameters for CSD(n) with two right-handed neutrinos, for
3<n<b.

With m, fixed by the fit, we may estimate logq(Au.K,) = logo(Ar+K), from the
results in Eqgs. 2.40 — 2.43, with which we obtain the efficiency factors from the solu-
tions to the Boltzmann equations given in [108]. Hence, for n = (3,4,5), we obtain
the corresponding efficiency factors 7, = (0.0236,0.0166,0.0126). Inserting numerical

values also for my and 7 from Table 2.9 into Eq. 2.51, we arrive at the predictions for
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the right-handed neutrino masses'!

M,
DB3): Yg~22x107" | — My ~ 4.0 x 10'°
CSD(3) B x 10 [1010 GeV} = M 0 x 10'° GeV,
_ M,
D4): Yg~15x10"" | — — My ~ 5.8 x 1010 2.52
CSD(4) B~ 1.5x10 [1010GeV} = M ~58x10" GeV, (2.52)

M
CSD(5): Yp~0.86x 1071 [1010ée\/] = M; ~10x 10" GeV.

With M; fixed in each case, |a| may be calculated to be O(1073) using m, = v2|a|?/Mj,
since my is known. On the other hand only the combination mj, = v2|b|?/Mx is fixed
by neutrino data and the separate parameters |b| and M, are not determined from

leptogenesis.

2.5 Summary

In this chapter we have described the sequential dominance framework, which provides
a natural understanding of the smallness of neutrino mass and large lepton mixing in
the context of the type-I seesaw mechanism. We have analysed the phenomenology of
the CSD(n) class of models, where the dominant right-handed neutrino couples to the
three families of left-handed neutrinos with strengths proportional to (0, 1,1), while the
subdominant right-handed neutrino couples with strengths proportional to (1,n,n — 2),
for an integer n, and shown how these couplings can arise from the vacuum alignments

of flavons that are triplets under a discrete family symmetry.

Models with both two and three right-handed neutrinos have been considered, in the
flavour basis, for 1 < n < 9. A x? fit shows that good agreement with experimental
global fits can be attained for n = 3,4. In particular, CSD(3) with two right-handed
neutrinos yields a very minimal and successful model of neutrinos, involving only three

free parameters: two mass parameters m,; and a phase 7.

This phase has significance for both leptonic C'P violation and leptogenesis. The Dirac
C'P phase dcp is predicted by the fit to be approximately +7 /2 for CSD(3), and +27/3
for CSD(4), and 0 or m for other n. Within CSD(n), we have also calculated the
contribution to the baryon asymmetry of the Universe Yp from thermal leptogenesis.
The flavoured C'P asymmetries are found to be proportional to sin7n. Coupled with the
requirement that Yp > 0 requires > 0, which predicts dcp < 0, in agreement with
current experimental hints. These results represent a promising foundational step for a

more complete model of leptons, and cosmology.

1 We have used sin 8 & 1 which is a good approximation for tan 3 > 3.






Chapter 3

An A4 X SU(5) model

As noted in the Introduction, the Standard Model, although highly successful, leaves
many unanswered questions in its wake, such as: what (if anything) stabilises the Higgs
boson mass? Does charge quantisation and the apparent unification of gauge forces at
high scale originate from grand unification? What is the origin of the three families of
quarks and leptons and their pattern of masses, mixing and C'P violation? Why is CP
so accurately conserved by the strong interactions? In this chapter we discuss a proposed
model capable of addressing all the above questions. The basic ingredients of the model
are supersymmetry together with an SU(5) grand unified theory, flavoured by an Ay
family symmetry. The majority of this chapter is adapted from work published in [2],
which defines the model, while the discussion on leptogenesis was originally published
in [3].

3.1 The minimal flavoured GUT

The model is minimal in the sense that SU(5) is the smallest GUT group and Ay is
the smallest family symmetry group that admits triplet representations. Also, below
the GUT scale, the model yields the minimal supersymmetric Standard Model (MSSM)
supplemented by a minimal two right-handed neutrino seesaw mechanism. It is realistic
in the sense that it provides a successful (and natural) description of the fermion mass
and mixing spectrum, including spontaneous C'P violation, while resolving the strong
CP problem. It is fairly complete in the sense that GUT and flavour symmetry breaking
are addressed, including doublet-triplet splitting, Higgs mixing and the origin of the
MSSM g term, all of which are detailed in Section C.1 of Appendix C. We emphasise the
predictive nature of the model in the lepton sector, realising the very successful CSD(3)
vacuum alignments analysed in the previous chapter. Here they originate from the
vacuum alignment of A4 triplets, fully determined by the field content and symmetries.

The single phase 7 in the neutrino mass matrix is fixed to a discrete choice. We select

63
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1 = 2m/3 from the nine complex roots of unity arising from spontaneous C'P violation
of a Zg x Zg discrete symmetry, by a mechanism proposed in [120]. Such a spontaneous
C' P-violating scenario had been proposed previously in order to account for the smallness
of C'P violation in the soft SUSY sector [121, 122].

We also employ a ZI discrete R symmetry as the origin of MSSM matter parity (as in
[123, 124]), ensuring in principle a viable WIMP dark matter candidate. Doublet-triplet
splitting is achieved via the missing partner (MP) mechanism [125, 126], as advocated
for flavoured GUT's in [127]. The model predicts very sparse charged lepton and down-
type quark Yukawa matrices, with five texture zeroes, and Yukawa elements involving
simple SU(5) Clebsch-Gordan (CG) ratios of 4/9 and 9/2 for the first and second fam-
ilies, respectively, with m,/mp = 1 for the third family, all in excellent agreement with
their experimental values run up to the GUT scale [128, 129]. Quark mixing originates
predominantly from a non-diagonal and naturally hierarchical up-type quark Yukawa
matrix, controlled by the Zg symmetry. Quark CP violation, however, comes exclu-
sively from a single off-diagonal element in the down-type quark Yukawa matrix. By
contrast, to excellent approximation all lepton mixing and C'P violation originates from
the neutrino mass matrix, whose structure is controlled by the A4 and the Zg symmetries
via CSD(3).

Although there have been several attempts in the literature at constructing an A4 x
SU(5) SUSY GUT of flavour (for an incomplete list see e.g. [130-139]), many of the
previous models predicted mixing very close to tri-bimaximal and are by now excluded.
For some examples of SU(5) SUSY GUTs with different family symmetries, see [140—
143]. It will take some time and (experimental) effort to resolve all these models. The
most promising models are those that make testable predictions while being theoretically

complete and consistent.

This is a non-minimal model from the perspective of counting degrees of freedom, as
there are many different chiral superfields in this model, indeed almost exactly a hundred.
It is however important to note that we are explicitly presenting a renormalisable model.
Any non-renormalisable terms generated below the Planck scale are required to have a
specific well-defined realization through multiple renormalisable terms involving heavy
messenger fields that can be integrated out around the GUT scale. The resulting effective
theory is actually more predictive than otherwise, with a normal neutrino mass hierarchy,
a zero lightest neutrino mass, and all lepton mixing angles and C'P phases predicted.
We would argue that the model presented here is amongst the most viable and complete
SUSY GUTs of flavour consistent with current data.
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3.2 The Yukawa sector

3.2.1 Field content and symmetries

The model involves a superpotential invariant under Ay x SU(5) X Zg X Zg as well as
a ZE discrete R symmetry and C'P at the GUT scale, where all symmetries, including
CP, are spontaneously broken along supersymmetric flat directions to give the MSSM.
The purpose of this section is to describe those aspects of the model pertaining to the
Yukawa sector, i.e. the quark and lepton masses and mixing. The flavour sector of the
model is very important in our approach, since we make a serious attempt to understand

and, where possible, predict the experimentally observable fermion masses and mixing

matrices.

Field Representation

Ay SUB) Z¢ Zg ZEF
F 3 5 0 0 1
T 1 10 b 0 1
T5 1 10 7 0 1
T3 1 10 0 0 1
N 1 1 7 3 1
NS 1 1 8 3 1
r 1 1 0 3 1 Field Representation
Hj 1 5 0 0 0 Ay SU(B) Zg Zs LY
H 1 5 2 0 0 =
Hy U 24 3 0 0 ? i g ; 8 1
Aoy 1 24 0 0 0 ~ 1 E 6 o0 1
Hy 145 40 2 X, 1 5 3 0 1
H 1 1 5 0 0 Y. 1" 5 3 0 1
13 1 1 2 0 0 Xs 1 5 6 0 1
0, 1 1 1 3 0 X7 1 5 2 0 1
02 1 1 1 4 0 X3 1" 5 7 0 1
be 3 1 0 0 0 X9 1 5) 0 0 1
6 3 1 3 0 0 X 1" 50 0 1
br 3 1 7 0 0 X111 1 5) 1 3 1
b1 3 1 3 2 0 X121 5 7 5 1
b9 3 1 1 3 0 Xi3 1 5) 2 3 1
b3 3 1 3 1 0 X4 1 5 6 5 1
b4 3 1 2 1 0 >, 1 5 i 0 0
®s5 3 1 6 2 0 i 1 5 i 0 2
b6 3 1 5 2 0

(b) Messenger superfields. The 16 ¥ messen-
(a) Matter and symmetry-breaking superfields  gers are indexed by their (non-zero) Zg charge
with even R charge. i1=1,...,8.

Table 3.1: Superfields which specify the Yukawa sector of the model.
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The Zy symmetries are Abelian discrete groups which denote discrete roots of complex
roots of unity. For example, a Zg charge of n is equivalent to a charge e2™/9 - Quch
symmetries are often referred to as shaping symmetries, which serve to forbid unwanted
terms in the superpotential. From a model-building perspective, these choices of N are
free, as are the field charges, although in this model N are chosen as multiples of three,
as these can lead to discrete phase choices in the fermion mass matrices that include
the value 27 /3, identified in the previous chapter as particularly suitable for CSD(3)
in the neutrino sector. How this may arise is discussed in Section C.1 of Appendix C.

Meanwhile, under the R symmetry Zf, the superpotential has an overall charge of 2.

Table 3.1a shows the matter superfields F', T; that contain the quarks and leptons, as
well as the right-handed neutrino superfields N and double-seesaw superfield I, all of
which carry unit ZF charge. Apart from the A, x SU(5) assignments of F' ~ (3,5),
T; ~ (1,10), Nf ~ (1,1), under Zg they transform as F' ~ 0, T; ~ (5,7,0), Nf ~ (7,8).
Unlike the rest of the quarks and leptons, the right-handed neutrinos are further charged
under Zg (as are some of the symmetry-breaking scalars). Table 3.1a also contains the
six Higgs superfields, generally denoted H (but also A) which serve to break the SU(5)
gauge symmetry. The two light MSSM Higgs doublet superfields H,, and Hy will emerge
from Hj and a mixture of Hy and Hyz. The superfield £ which breaks Zg is particularly
central to this theory, as it is responsible for both right-handed neutrino masses and the
up-type quark mass hierarchy. Finally we have the 6; superfields which break Zg and
help to control neutrino Dirac masses, and nine A4-breaking triplet flavons generally

denoted ¢, with various vacuum alignments, responsible for large lepton mixing.

With these assignments, only the top quark gets a mass from a renormalisable Yukawa
coupling H5T3T3 (which has Z% charge 2 as required for an allowed superpotential term).
All the other quark and lepton Yukawa couplings must arise through higher-order terms.
This provides the basic reason why most of the Standard Model Yukawa couplings appear
to be so small. Also the hierarchy among lighter quarks is addressed: more precisely,
the observed hierarchy of Yukawa couplings between the three families will be explained
via a discrete Zg version of the Froggatt-Nielsen mechanism [58]. Originally conceived in
terms of a global U(1) symmetry, the mechanism involves the superfield £ which gains a
VEV (¢) slightly below the scale M at which the symmetry (in our case, Zg) breaks, e.g.
(&) /M ~ 0.1. Fermions couple to different powers of £, such that the Yukawa matrices
are populated by powers of (£) /M. This introduces hierarchies in the Yukawa matrices.
In this model, the low VEV of ¢ controls the hierarchy in the up-type quark sector, and

also, in part, the smallness of the down quark and electron.

In order to enhance predictivity we need the messengers listed in Table 3.1b, which is
the price we pay for having a renormalisable theory at the GUT scale. We denote these
superfields either as fermion messengers, X;, or scalar messengers, Y;, depending on
whether they carry similar quantum numbers to, respectively, the quarks and leptons

(with odd Z% charge) or the symmetry-breaking scalars (with even Z charge). The
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fermion messengers X; carry similar quantum numbers to down-type quarks and charged
leptons (and neutrinos). Scalar messengers ¥; have quantum numbers similar to Hs (the
superfield that gives the top quark a renormalisable mass term). The ¥; messengers do
not get VEVs, which means we need not consider the effect of diagrams with ¥; in

external legs to the masses of Standard Model fermions.

The messengers group themselves in pairs of two superfields with a renormalisable bare
mass coupling which respects all the symmetries. Their masses are therefore expected to
be around the GUT scale. Although there will be in general distinct masses for different
pairs, for simplicity we take the masses of all such pairs to be M and set this equal to
the GUT scale in our numerical estimates. We emphasise that the successful predictions
of the model in the lepton sector (namely predicting the PMNS matrix) is independent

of the specific values of these mass parameters.

3.2.2 Up-type quarks

Apart from the top quark mass, which originates from a renormalisable Yukawa coupling,
the remaining up-type quark Yukawa couplings appear from higher-order terms that
result from combining several renormalisable terms involving 3; messengers and the
GUT singlet superfield €. To be precise, the up-type quark Yukawa couplings arise from
tower diagrams shown in Figure 3.1. For example, the most suppressed coupling arises
from the first diagram in Figure 3.1. Other (less suppressed) couplings arise from the
diagrams where at the base one has the respective T;T;, with a shorter tower leading up
to Hs. The renormalisable H57137T5 operator responsible for the top quark mass is the
last diagram in Figure 3.1. Due to the cyclic nature of the Z symmetries, we are able

to write down terms like MY5%7, which as an overall Zg charge of 9, equivalent to 0.

H;
i
I
L
2791 S [;15
i I
Y2 Lo ___
S| | H: H:
25* 5 E7>I< f I) |
I | I I
i Y2 Lo __ Lo ___
Egl ¢ ig,l g 27' E 27' § H5
X X X X :
?‘)L____ ?"ﬂ_____ ?QL____ ?QL____ [ flf)
! § ! 3 3! 3 ! § ;! § |
% * * % * |
B! 5! o N N .
1
T T Th T, T T3 Ty T Ts T3 Ty T3

Figure 3.1: Diagrams responsible for the up-type quark Yukawa couplings.
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The effective superpotential responsible for the up-type Yukawa couplings is

Nij
Wup = uin5Tz‘T]’ <]§W> . (31)

The resulting symmetric Yukawa matrix for up-type quarks is

(B s e
s=uw (5) | @ el (32
1

where € = (£) /M ~ 0.1. The explicit form of Y* is given in Eq. 3.14 and includes
the coefficients w;;, which are O(1) and, by enforcing CP conservation at the GUT
scale, necessarily real. Thus, the hierarchy of the up quark masses as well as the CKM
mixing angles are given by powers of §~ . Due to the structure of this matrix, any phase
introduced by (£) can be reabsorbed by appropriate redefinition of the three T; fields,

so Y does not contain a source of CP violation.

3.2.3 Down-type quarks and charged leptons

When considering the Yukawa structures of down quarks and charged leptons we must
inevitably discuss A4 triplet flavons. As a point of terminology, we refer to as “flavons”
any superfields that are GUT singlets transforming non-trivially under the family sym-
metry and that get VEVs. In particular not only A4 but also Zg and Zg are family
symmetries, so we also refer to £ as a flavon. The assignments of all the flavons under
the family symmetries appear in Table 3.1a. Indeed, since the three families of F' trans-
form as a triplet of A4, all terms like T; Hs F' require a contraction with at least one Ay

triplet flavon to be invariant.

15 (/%T {'175 1?24 Qlu
I I I I I
I I I I I
I I I I I
T X1 Xo F Ty X3 Xy X5 X F
(a) (b)
B e O !
I I I I I I
I I I I I I
! (Agy) ! (Agg) ! (Agg) (Hy) !
T X7 Xs Xy X0 F T X7 Xy Xy X F
(c) (d)

Figure 3.2: Diagrams responsible for the down-type quark and charged lepton
Yukawa terms.

The relevant diagrams are shown in Figure 3.2. After integrating out the messengers X,

which acquire large masses as a result of either explicit mass terms or GUT-scale Higgs
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VEVs, we obtain effective operators of the form

H: H=H. H:
Waown = d33M5T3(¢7’F) + da2 %7\542 = To(¢pF) + du <A5§>2T1(¢6F)
Hye 2 (3.3)
+ dio > Ty (¢ F),

(A24) (Ha4)

where d;; are O(1) couplings. The light MSSM doublet Hy is a combination of the
doublets inside Hs and Hg, as discussed in Section C.1.2, hence the da term also
leads to a relevant Yukawa coupling. The alignments of the respective VEVs of ¢, , -

(discussed in Section 3.4) are

1 0 0
<¢e> =2 |0], <¢M> =v 1], <¢T> =vr |0}, (34)
0 0 1

such that, apart from the term multiplying di2, the contraction appearing with 77 23
isolates the respective Fi 3 family. This would lead to diagonal Yukawa structures if

not for the additional term connecting 77 (¢, F) (see Figure 3.2d).

The resulting effective Yukawa matrices are, schematically,

<£> Ve <£> U.“

5 0
Uhoy,  UA24VH2y
Vip~Yi~ | 0 it (3.5)
0 0 ‘%

where vy,, and v, are the respective VEVs of Aoy and Hay (defined in Eq. 3.6 below).
The off-diagonal term in Y© also provides a tiny contribution to left-handed charged
lepton mixing, 6{, ~ mc/m,, which may safely be neglected. It also introduces C'P
violation to the CKM matrix via the phase of (£).

Furthermore, because the underlying renormalisable theory is known, the diagrams in
Figure 3.2 are the only contributions for each family. The SU(5) contractions and
associated CG coefficients appearing for each family are unique [127-129]. With GUT-
scale symmetry breaking as discussed in Appendix C, each of the scalars here get a VEV

with the group structure

(H5)® = 68 va/ V2,
(Hig) = (612 — 81083 — 452516 0/ V.
(Hoy)§ = diag(2,2,2, -3, —3) vy,
(Aag)f = diag(2,2,2, -3, —3) va,,,

(3.6)
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where the indices run over a,b,c=1,...,5. This leads to the GUT-scale predictions
YE’>€3 -1 Y262 — g E — }/261 — % (37)
Y v, 20 vg o vgh o9

The explicit forms of Y¢ and Y, including CG and d;; coefficients, are given later in

Egs. 3.15 and 3.16, respectively.

3.2.4 Neutrinos

In order to obtain the CSD(3) vacuum alignment in this model we couple the neutrinos to
a set of flavons, distinguished by the Zg symmetry. Of the superfields in Table 3.1a, only
the right-handed neutrinos and some of the flavons are charged under this symmetry. For
clarity, we relabel two of the flavon fields as ¢atm = ¢3 and ¢go1 = @4, to highlight their
N7 to denote the right-handed

neutrino that dominantly leads to the atmospheric neutrino mass, and Ng;, = NJ as

role in producing neutrino mixing. We also write N§, , =
that which contributes mainly to the solar neutrino mass. The relevant terms in the
superpotential giving neutrino masses are thus
W, — o HsF 22 e Hy P 2l e & NGmNg NSNS 3.8
v ="Y1Hs 02) atm T Y2115 62) so1+93ﬁr atmVatm T YaENi N, (3-8)
where Mt refers to the mass scale of the superfield I'. The flavons ¢am and ¢y gain
VEVs

0 1
<¢atm> =Vatm | 1], <¢sol> =Usol | 3|, (39)
1 1

where vatm and vy, are generally complex. Denoting the phases of VEVs as p; = argv;,
only the relative phase patm—psol between the VEVs is physically relevant. The flavon &
(already responsible for the up-type quark masses) is also acting as a Majoron [144] by

generating hierarchical right-handed neutrino masses.

H5 (r‘batm H5 @svl
I I I I
I I I I
I I I I
! () ! ! (6) !
Niim Xz Xu F N X Xio F
(a) (b)
3 3 €
I I I
I I I
I I I
I I I
1 1 I I,
]V‘ftm I r j\f:tm [Vscol 1\7:01
(c) (d)

Figure 3.3: Diagrams responsible for the Dirac neutrino Yukawa terms.



Chapter 3 An Ay x SU(5) model 71

At the effective level, the Dirac terms result from coupling the neutrinos (and Hs) t0 ¢atm
and ¢ via the flavon 6, (an Ay singlet carrying Zg charge). The corresponding diagrams
with associated messengers appear in Figure 3.3. In turn, the Majorana mass term for
Ngom

only to

is also non-renormalisable and we refer to I' as the respective messenger. It couples

and simply provides the non-renormalisable mass term for N¢ , suppressed

atm atm>
relative to the mass of NJ;,. As I' has the quantum numbers of a third right-handed
neutrino, one can also consider this field as mediating a double-seesaw mechanism. The
mixing term §“6]\7§tlﬂlec()1 /M?, though allowed by the symmetries, is absent as there is no
combination of messengers able to produce it. We write (£) = |v¢|e?’¢, where pg is chosen
from a discrete set of available phases, as shown in Appendix C. This phase originates

from the spontaneous breaking of a discrete Abelian symmetry, in this case Zg.

We will now show that pe and patm — psol fix the relative phases within the effective
neutrino mass matrix and consequently the leptonic mixing angles. Recall from the
discussion in Chapter 2 (see Eqgs. 2.16 — 2.18) that low-scale neutrino parameters are
defined in the seesaw basis, which differs from the one in which the superpotential is
defined (the SUSY basis) by complex conjugation. Within this model, let us assume
that the charged lepton Yukawa matrix is essentially diagonal, i.e. corrections from the
off-diagonal element Y are negligible. The superpotential in Eq. 3.8 leads, in the SUSY

basis, to neutrino matrices

0 b ys (€)°
M=1|a 3|, M= M , (3.10)
a b 0 Y4 <£>

where a = y1va4m/ (02) and b = yavs01/ (f2). The corresponding matrices Y and Mg in
the seesaw basis are given by Y = (\,)* and Mg = (M€)*. The seesaw formula yields

the light neutrino matrix

000 1 31
m’ =m0 1 1| +me” |3 9 3], (3.11)
11 1 31

where m, = v2|a|?/(ys|ve[?/M) and mp = v2[b|?/(ya|ve|). We have multiplied through-
out by an overall phase which we subsequently drop, keeping only the (physical) relative
phase

n=—pe =+ 2(patm_psol)a (312)

where we recall the above definitions of phases,

pe = arg <§> 3 Patm — Psol = arg[vath:OIL (313)

and that C'P conservation at high energies ensures that y; and M are real.
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By arguments given in Sections 3.4 (discussing vacuum alignment) and C.1 (discussing
GUT breaking), we can restrict the physical phase 7 to one of the nine complex roots
of unity. The values n = +27/3 are preferred by CSD(3). Note that the model predicts
a normal neutrino mass hierarchy, namely ms > my > m; = 0, which will be tested
in the near future. The sign of 17 has phenomenological significance, as it fixes the
leptonic Dirac phase 6¢. Specifically, a positive 7 uniquely leads to negative ¢, and wvice
versa. As experimental data hints at §¢ ~ —m /2, the a posteriori preferred solution has
positive n = 427 /3. We saw in the last chapter that the sign of 7 also has cosmological
significance: a positive 7, together with the requirement that the baryon asymmetry of
the Universe (BAU) is positive, implies that the lightest right-handed neutrino should

be Ni = Ng,,, while N§ = N, is heavier, which is the natural ordering in our model.

3.3 Numerical fit to data

The structure of the Yukawa matrices and neutrino mass matrix is set by the theory, up
to O(1) coefficients. The VEVs of the fields &, Aoq and Hyy are at or near the GUT scale,
but otherwise undetermined. This freedom coincides with the choice of coefficients in
the Yukawa matrices, providing no extra degrees of freedom in the determination of the
Yukawas other than to provide the appropriate scale. The same is true for the flavon
fields ¢., ¢, and ¢, which provide the necessary hierarchy in the down-type quark and

charged lepton Yukawa sector.

The neutrino matrix m" is given in Eq. 3.11. Letting v; represent the VEV of a field f,

the Yukawa matrices are
urr €Y uinl€? wis|€?|

Y" = U12\§~3! u22\§~2! U23’§:’ ) (3-14)

U13\§~2’ U23\§~’ u33

1 .
—dy; yvﬁveL dio ’1)51)“’ e 0
4 ’v/\24 ’ ‘UA24UH24 ’

1 |[VH 54Vl
vi=— Haa : 3.15
NG 0 2dao e 0 (3.15)
v.
0 0 d33|]\2|
1
- |”f”e|2 0 0
9 |UA24|
1 lvevu| |V Hg U
Y= " | g, ¢ g, H2a 0] 0 ) (3.16)
\/i 2 |UA24UH24’ - M?
0 0 g V]

M
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As already remarked, the phases in Y* from powers of (£) = |v¢|e’?¢ can be removed
by field redefinitions. Without loss of generality we have rephased fields such that the
only phase appearing in Y¢ and Y¢ is the phase ¢ as shown in Eqgs. 3.15 and 3.16, so
all quark C'P violation originates from the single phase ¢ appearing in Y. In turn, ¢ is

determined by a combination of phases coming from various field VEVs; more precisely

(= Pe — 2pH24 — PAoy- (317)

As long as it is reasonably far from zero, it can produce the necessary C'P violation.
Different choices of ¢ do not affect the goodness-of-fit, corresponding simply to different
but equally valid choices of O(1) coefficients. For our fit we choose ¢ = 7/3. Note that
the corresponding phase in Y3, does not contribute to leptonic C'P violation, since this

term does not affect left-handed mixing, to an accuracy of O(me/m,).

To fit the real coefficients w;j, d;;, mq and m;, we minimise a x? function, previously

defined in Eq. 2.22, given by

X = i <P(x()f_“>2 (3.18)

=1

relating the physical predictions P;(x) for a given set of input parameters = to the best-fit

value p; and associated error o;.

As in Chapter 2, the fit presented here uses best fit values and errors from the NuFit
collaboration, version 2.0 [105], for PMNS parameters ij and neutrino mass-squared
differences Am%j. These are given in Table 2.1. At the time of publication of [2], on
which much of this chapter is based, these were the most up-to-date values. Recall also
from Section 2.3.3 that the errors o; are equivalent to the standard deviation of a fit
to a Gaussian distribution. For most parameters, this is a valid interpretation, with
the exception of the (lepton) atmospheric angle 053, which has a bimodal distribution.
For a normal hierarchy, the distribution is roughly centered on 053 = 45°, with a local
minimum in both the first and second octant. The best fit value is in the first octant,
with 953 = 42.3°. As in Chapter 2, we approximate its distribution by a Gaussian about

42.3°, setting Tps, = 1.6°.

In the fit of this Ay x SU(5) model, N = 18, corresponding to six mixing angles Hfj
(leptons) and ng (quarks), the CKM phase 07, nine Yukawa eigenvalues for the quarks
and charged leptons, and two neutrino mass-squared differences Am3; and AmZ,. We
use the PDG parametrisation of the PMNS and CKM matrices. In the NuFit 2.0 global
fit the leptonic phase §¢ is poorly constrained at 1o (and completely unconstrained at
30), so is not fitted but left as a pure prediction of the model, as are the (completely
unconstrained) Majorana phases ag; and as;. As the model predicts only two massive
left-handed neutrinos, i.e. my; = 0, one Majorana phase is zero, which we take to be

31 = 0.
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The running of best-fit and error values to the GUT scale are generally dependent on
supersymmetry parameters, notably tan 3, as well as contributions from supersymmetric
threshold corrections. We extract the GUT scale CKM parameters and all Yukawa
couplings (with associated errors) from [145] for judicious choices of tan 5. In further
reference to [145], we choose for the parameter 7, parametrising the threshold corrections
a value 7, = —0.24375; a non-zero value is required primarily to account for a (small)
difference in b and 7 Yukawa couplings. The data to which we compare the model
(including the threshold correction) is given in Table 3.2. This parametrisation of the

supersymmetric threshold corrections and running is discussed in Appendix B.

Best fit £1o0

Parameter

tanfB =5 tan g = 10
04, /° 13.027 £0.0407  13.027 £0.0407
0%, /° 0.1802 +0.0140 0.1802 +0.0140
03, /° 2.054 40.192 2.054 +0.192
§9/° 69.21 £3.09 69.21 +3.09
Yu /1076 2.92 £0.906 2.88 +0.893
ye /1073 1.43 +0.0501 1.41 +0.0493
ye /1071 5.34 £0.171 5.20 £0.157
yq /1076 4.81 £0.529 4.84 +0.533
ys /1075 9.52 +0.514 9.59 +0.518
yp /1073 6.95 £0.0896 7.01 £0.0914
Ye /1076 1.97 £0.0118 1.98 0.0119
Yy, /1074 4.16 £0.0249 4.19 £0.0251
y, /1073 7.07 £0.0364 7.15 £0.0371

Table 3.2: Experimental CKM and charged fermion Yukawa parameters, run
up to the GUT scale, assuming the MSSM [145]. The SUSY-breaking scale is
set at 1 TeV. We have included an overall contribution from threshold correc-
tions corresponding to 7, = —0.225 which affects primarily the b quark Yukawa
coupling yp.

Minimisation by differential evolution was performed in Mathematica, yielding the set of
physical parameters in Table 3.3 and corresponding O(1) input coefficients in Table 3.4,
with an associated x? = 7.98 for tan 8 = 5 and x? = 7.84 for tan 3 = 10. The largest
single contribution to y? is from the fit to the atmospheric angle %3. The non-zero
Majorana phase is predicted to be as; = 72°, and is insensitive to tan 3, as indeed are

all the mixing angles and phases.

In this fit, the VEVs of £, Aoy, Ha4 and the three ¢, , are fixed by hand in terms of
the scale M, which is taken to be the GUT scale, i.e. M ~ 3 x 10'6 GeV. Similarly,
the Higgs doublet VEV enters only implicitly through m, and my, but is understood to
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take the value vy = 174 GeV. We set
ve =6 x1072M,  wp,, = M, VE,, = 3 x 1071 M, (319)
ve = 1073 M, v, = 1073 M, vy =5 x 1072M. '

The value of v is chosen to accommodate not only the fit to Y* parameters but also
to control the p-term. Meanwhile the approximate factor 3 split between wvy,, and
VH,, assists in establishing a hierarchy between the e and p families. With the above
numerical values for the VEVs, the Yukawa matrices can be expressed in terms only of

O(1) coefficients and the complex phase (, as

1.296 x 1075 - uy; 2.16 x 107% - ugs 3.6 x 1073 - uy3
Y= 216x107% - ug; 3.6x1073 w9y 6x1072 w93 |,
3.6 x 1073 - us; 6 x 1072 - uso Us3
. 1.5 x 1077 - dyq 2 x 1074 dyqes 0
yi=_— 0 6 x 107 - doy 0 : (3.20)
V2 )
0 5x107% - dss
6.67 x 1076 - dyy 0 0
ye = 2x 1074 dyge® 2.7x1073-d 0
\@ 12€ 22 ,
0 0 5x 107~ - ds3

In order to understand the significance of the y? fit, and assess the strength of the
model overall, it is prudent to enumerate the parameters and predictions of the model.
The nominal parameter count at the GUT scale is very large, owing to the diverse
field content. However, at the scale where we are able to make predictions, many of
these parameters combine to give a constrained set of free parameters that need to be
determined. Notably, the VEVs of Higgs and flavon fields such as those given in Eq. 3.19
do not constitute true degrees of freedom, as they can be absorbed by redefining other

parameters.

Relevant parameters that require consideration include: six w;;, four d;;, masses m,
and my, phases n and (, the threshold factor 7, and tan 5, for a total of 16 input
parameters. However three of these parameters, namely tan 3, n and (, are fixed prior
to the fit. Finally, the factor 7, affects only the coupling ¥, and is fitted by hand. The
model fits 18 observables, ten in the quark sector and eight in the lepton sector. In
addition the model predicts the leptonic CP phase 6%, two Majorana phases (one of

which is zero) and a massless physical neutrino.
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Parameter Value

tan =5 tanf =10
01, /° 13.027 13.027
01, /° 0.180 0.180
03, /° 2.054 2.054
54 /° 69.18 69.18
Yo /1076 2.92 2.88
Yo /1073 1.43 1.41
yr /1071 5.34 5.20
yq /1076 4.30 4.33
ys /1070 9.51 9.58
yp /1073 7.05 7.13
0%, /° 34.3 34.3
0%, /° 8.67 8.67
053 /° 45.8 45.8
5t /e —86.7 —86.7
Am3; /1075 eV? 7.38 7.38
Am?, /1073 eV? 2.48 2.48
Ye /1076 1.97 1.98
Y /1074 4.16 4.19
y, /1073 7.05 7.13

Table 3.3: Best fit physical quark and lepton parameters.

Value

Parameter

tanf =5 tanf =10
Ul 0.9566 0.9182
U192 0.7346 0.7087
U13 0.7198 0.6910
U929 0.5961 0.5768
U93 0.3224 0.3095
U33 0.5435 0.5218
di1 2.133 4.236
di2 0.8363 1.661
dao 1.108 2.200
dss 1.021 2.034
me /meV 26.57 26.57
mp /meV 2.684 2.684

Table 3.4: Best fit input quark Yukawa coefficients u;; and d;;, and neutrino
mass parameters m, and mp, with fixed n = 27/3, ( = 7/3.



Chapter 3 An Ay x SU(5) model 7

3.4 Flavon alignment

Thus far it has simply been assumed that the A4 triplet VEVs are aligned in spe-
cial directions, corresponding to CSD(3). These alignments are in fact also fixed by a
renormalisable superpotential, which we present here, including all terms allowed by the
symmetries. In doing so, the role of the Zg symmetry becomes clearer. The method is
that of F-term alignment, which necessitates the addition of several new fields. This set
of superfields A; and O;; with Zf charge 2, i.e. the driving sector, is listed in Table 3.5.

The alignment superpotential is'

Walign ~ Apdudu + Ardrdr + Az(dp202 + ¢261)
+ Ocpedp + Ocrpepr + Opurdpépr
+ Oc39eP3 + O2302¢3 + O1201902 + O130193
+ 050,05 + 0250205 + Ouedude + Os60506 + Osadeda + O140104.

(3.21)

The inclusion of the Zg symmetry is necessary to ensure each driving field is isolated
from all others, such that their F' terms depend only on flavons. This leads to an array
of vanishing F-term conditions that force mutual orthogonality between many of the
vacuum alignments. As F' terms and the orthogonality conditions necessary to produce
CSD(3) were discussed in Section 2.2 of the previous chapter, we shall not repeat them

here, and state only the results, namely

1 0 0
(¢e) o [ O], <¢u> < 1], (pr)oc O],
0 0 1
2 1 0
<¢1> x| -11, <¢2> X 1 ) <¢3> x (1], (3'22)
1 -1 1
1
<¢4> <3, <¢5> x 0], <¢6> X 0
1 1 -1

The VEVs (containing two zero entries) of the flavons ¢, , r appear in the down-type
quark and charged lepton Yukawa matrices Y¢, Y¢, while the flavons ¢34 (redubbed
Gatm,sol) appear in the neutrino Yukawa matrix Y and subsequently the mass matrix
after seesaw, m”. It is the special structure of these vacuum alignments, combined with
the phase n in m”, that leads to the very successful prediction of the leptonic mixing

angles (as described in Section 3.3). The remaining VEVs are not directly relevant to

! Note that the O (and P) fields that are neutral under Zg couple to Hs Hs£™ (with some power of
€), e.g. PaoHsHgs. We do not discuss these further as the respective F' terms do not affect the alignment
nor the origin of the u-term.
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the masses and mixings of Standard Model fermions, but help shape the VEVs of ¢atm
and ¢sol'

Field Representation
Ay SU(B) Zo Z¢ ZF

A, 3 1 3 0 2
A; 3 1 4 0 2
As 3 1 7T 0 2
Ocp 1 1 6 0 2
@) 1 1 2 0 2 ]
OZT . . : 0 ) Field Representation _
O, 1 1 6 5 9 Ay SUGB) Zo Ze Zy
O12 1 1 5 1 2 P, 1 1 3 0 2
O13 1 1 3 3 2 Poo 1 1 7 0 2
Ous 1 1 0 4 2 Py 1 1 7 5 2
Oa5 1 1 2 1 2 P 1 1 6 4 2
Ous 1 1 1 4 2 Py 1 1 5 4 2
Os6 1 1 7 2 2 Psy 1 1 4 4 2
Ops 1 1 2 3 2 Py 1 1 3 4 2
O14 1 1 4 3 2 Py, 1 1 1 3 2

(a) Alignment superfields. (b) Phase-fixing superfields.

Table 3.5: Superfields driving family symmetry breaking.

With the direction of the A4 triplet flavons ¢ fixed, we turn now to a discussion of how

*
sol

mechanism which does this by adding a number of fields P;; that are A4 and SU(5)
singlets, also given in Table 3.5, and which resemble the O;; fields except they do not

to fix the relative phase patm — psol = arg[vatmv.,] to a discrete choice. We present a

force orthogonality between the flavons ¢.

These fields and their respective charge assignments result in the invariant superpotential

terms

Wonase = Pee(¢etbe + M? + P2) + Pup(udy + Z2Zs + Py,)
+ Pea(pepa + 0102) + Paa(d2¢2 + 0161)
+ Pre(@1¢e + d60r) + Pra(Pads + ¢56r) + Paa(P3ds + dede)
+ Py’ (6363 + 010 + d56c) + Par (6267 + 0306 + 6465),

(3.23)

where each term technically has an associated real coupling A which is O(1) and may
be made positive by field redefinitions. We omit these for simplicity as they have no
effect on the general argument presented here, with one caveat: the two superfields Pgléz
have exactly the same quantum numbers but different A couplings to flavons. Due to

this duplication there are two independent relations between the flavon VEVs involving
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different A couplings which leads to an additional constraint on the phases of the respec-
tive VEVs. Exact values of these A are not specified; it suffices that they are not equal.
Furthermore, the primary role of the SU(5) adjoint fields Zy and Z3, which couple to
P,,, is in the GUT-breaking mechanism. Their phases are fixed separately by other
superpotential terms (see Eq. C.1).

We begin the analysis of the terms in Eq. 3.23 by noting they do not affect the alignments
of the flavons ¢. The corresponding F' terms for each field P;; produces a set of coupled
equations that admit a solution where none of the A, O, and P fields but all the flavons
obtain a VEV. Omitting the A coefficients, these VEVs have the structure

1

Ue ~ M7 vlt ~ (UZQUZ;;)Qv

1.5 1
Ur ~ (UZQ UZs) 33, v1 ~ (UZ2UZ3) 2 U%,

1.1 4 11
vg ~ (Vz,Vz,) 6 M3 vy, vy ~ (Vz,Uz4) 6 M3 3,

o P (3.24)

vy ~ M7 s, v ~ (Vz,vz5) 6 M3 03,

1. 7 3 —1 b _9
Vo, ~ (UZQUZ3)6M 3 v, Vo, ~ (UZ2UZ3) 6 M3 A

vo = vp = vyg = 0.

Regarding the magnitudes of the VEVs, two comments are in order. We assumed above
that M sets the scale of the VEV of ¢., which is in contradiction with our previous
assumption that it be O(1073)M. This violates our simplifying assumption that all
mass scales are equal, and demonstrates that some spectrum of mass scales is in fact
required in this model. As for the VEV wvs, it is driven to a specific scale A3 radiatively
[146].2 Writing p; = argv;, this VEV structure gives (up to multiples of 7) the phase

relation
2 1

P4 = 3 é(ng + PZ3) + p3, (3.25)

where n is an integer, and similar relations for the other flavons as linear combinations
of p3, (pz, + pz,;) and multiples of 27/3. This is an important equation since it fixes the
relative phase p3 — p4 = Patm — Psol IN terms of %(pz2 + pz,). We show in Appendix C
that pz, + pz, = Q’TT’“/, where we also establish that pe = %, for integers k, k’. From
Eq. 3.12, n = —p¢ + 2(patm—psol ), S0 we conclude that 7 is one of the nine complex roots

of unity.

3.5 Aspects of GUT breaking

Let us now summarise features of the complete model related to the breaking of SU(5)
down to the Standard Model, including the resolution to the doublet-triplet splitting

problem. We also find that new proton decay operators are naturally suppressed in this

% For examples of this mechanism in other models, see e.g. [147-151].
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model due to the presence of flavour symmetries. The bulk of this discussion on GUT

breaking is deferred to Section C.1 of Appendix C.

GUT breaking in this model arises from a superpotential involving adjoint Higgs super-
fields Ha4, Aa4, and the flavon £, and is driven by three SU(5) adjoints Z; 2 3. These were
briefly encountered in the term P,,Z>Z3 which appears in the flavon driving superpoten-
tial in Eq. 3.23. The superpotential, given in Eq. C.1, contains two non-renormalisable
terms which come from renormalisable diagrams involving new adjoint messengers T.
All adjoints acquire GUT-scale VEVs which break SU(5) to the Standard Model gauge
group. The Zf R symmetry is also broken at this scale, with a residual Zs matter parity

remaining.

Doublet-triplet splitting proceeds by the MP mechanism, which requires the addition of
several new particles: at least one pair in the 50 + 50 representations of SU(5), and (at
least) one 75, which acquires a GUT-scale VEV. In this model, we label the 50 and 50
by €;, and the 75 by II;; they are listed in Table C.1b, giving rise to the superpotential
in Eq. C.5. The mechanism works as follows: first, we forbid any terms where the
Higgs superfields Hy 5 and H; 75 (all containing MSSM-like doublets) couple to adjoint
Higgs, which would give the doublets GUT-scale masses. They couple instead to the
50 + 50 superfields €2;, which do not contain SU(2) doublets (that are not also colour
non-singlets). The Higgs doublet mass matrix is therefore zero at this stage, while the
triplet mass matrix, which mixes triplets within the 5-, 45- and 50-dimensonal Higgs
superfields, is populated by elements depending on (II;) ~ M, with all eigenvalues at
the GUT scale. The MSSM g term instead arises due to a single term H5H4—5H1£8/M8
allowed by the symmetries and messengers. As () < M, this term is highly suppressed,
giving p < M.

A classic problem in any GUT is that it allows for interactions that mediate proton
decay, which must be kept under control. We find in this model that proton decay from
new operators is strongly suppressed, due to the presence of multiple symmetries. Most
dangerous are the “dimension-5” operators which lead to B-violating operators like gqq/
at the low scale (for a discussion of dimension-6 operators we refer the reader to [127]).
In SU(5), the relevant terms resemble TTTF, which are forbidden by the symmetries

of the model. However, related higher-order operators are allowed of the form

VA Nijk
LT (fw) , (3.26)

where the extra superfields shown are needed for such terms to be invariant under
the symmetries. Since we are working with a renormalisable theory, in order for such
effective term to be present at the GUT scale with M ~ Mguyr, there must be messengers
allowing them. In this case, an analysis of the SU(5) index structure revels there should

either be messengers that in SU(5) representations 10 or 5 that are also charged under
ZR,
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As one can confirm from Table 3.1b, our model has neither: 10 messengers were not
used, and the 5 messengers are all neutral under Z{. We conclude therefore that our
symmetry content, together with the existing set of messengers, do not allow any such
GUT scale-suppressed operators that would lead to excessively fast proton decay to be
generated. The operators in Eq. 3.26 may in principle be generated by physics at the
Planck scale, with the scale M replaced by the Planck mass, leading to highly suppressed

proton decay.

3.6 The strong CP problem

This model has the rather serendipitous benefit of containing a possible solution to the
strong C'P problem, of the Nelson-Barr type [152-155]. Before demonstrating how this
solution appears in the model, let us review the problem itself. Although generally not

written down, the Standard Model allows the term

9260
3272

GG, (3.27)

where G is the gluon field strength and G its dual. The phase 6 can a priori take any
value; it is reasonable to assume it is O(1). This term breaks C' P, which is problematic
as there is no evidence that C'P is broken in the strong sector — all known C'P violation

is mediated by W bosons.

One may imagine that some form of CP symmetry may be enforced that prohibits the
dangerous topological term. However, the effective angle 6y also receives corrections
from the quark mass matrices, encoded in an angle 6, = arg det[M“M¢?]. Therefore we
should consider the physical angle § = 6y — 6,. The most stringent experimental bounds
on # come from measurements of the neutrino electron dipole moment [156], and set an
upper bound

6 <1071, (3.28)

Some degree of C'P violation must exist in the quark mass matrices due to a non-zero
phase 0%, suggesting that even if g = 0 is enforced by the theory, strong C P violation

might re-emerge in 6,.

In short, ensuring such an extremely small value is non-trivial. It is possible that there
is simply a cancellation of one in 10'° such that the physical angle 0 is sufficiently small,
although this fine-tuning is aesthetically unappealing. It is also interesting to compare
this to C'P violation related to the weak interaction in the quark sector. The relevant
quantity is the Jarlskog invariant J9 ~ det[Y“Y“T, YdeT], which, when compared to
data, is required to be non-vanishing, and indeed in the standard parameterisation,

requires a large phase angle 69 ~ 1.
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In the literature there are two popular mechanisms for solving the strong C'P problem,
based on very different physical principles.® Perhaps the most popular solution is the
Peccei-Quinn mechanism [158, 159]. The key ingredients are a global U(1) pg symmetry
and one new scalar field ¢ charged under the symmetry. Moreover, some coloured
particles (either known or newly imagined ones) are also charged under this U(1)pg,
which is spontaneously broken by the VEV of ¢, giving rise to a Goldstone mode known
as the axion. This axion couples via a QCD anomaly to GG, giving rise to a term that
of the same form as the topological term in Eq. 3.27. In the vacuum, the axion naturally
relaxes the total topological term to zero, thereby solving the strong C'P problem. The
QCD axion is also an excellent dark matter candidate, offering an alternative to the
WIMP paradigm.

An alternative, which does not rely on the introduction of new symmetries or field
content per se, is known as the Nelson-Barr resolution. The idea relies on being able to
set 6y and 6, individually to zero. The former is rather trivially done by assuming a C'P
symmetry at the high scale that forbids the term proportional to 6y. Next, one must

0719 and in particular

ensure that after spontaneous violation of C' P, one maintains 6 < 1
0, < 1071% while at the same time allowing a large CKM phase §7. We proceed by
example, showing how this is achieved in this A4 x SU(5) model, demonstrating also

the practical difficulties associated with this approach.

The solution lies in the particular forms of the quark Yukawa matrices. Recall from
Egs. 3.2 and 3.5 that the quark Yukawa matrices take the form

(Eve (&)

I 0
€4 53 52 U?\M UA24VH24
u ~ ~ VU
Yo~ e ¢, Yi'~| o 7’}[\242” 01, (3.29)
1 v
0 0 =
M

where £ = (€) /M, and v; denote the VEVs of various superfields. First, note that Y%
can be made explicitly real by rephasing quark fields. If p; = arg (£), all phases may be
eliminated by multipling the first row and column by e~2"¢, and the second row and
column by e~%¢. Next, the diagonal elements of Y can also be made real by appropriate
rephasings. A single phase remains in the (1,2) element of Y, which sources the CKM
phase. On the other hand, the determinant of Y'¢ is real, simply given by the product
of the diagonal entries, due to the fact that the (2,1) element is zero. In other words,
arg det[Y"Y9] is zero. But this is simply the definition of §,, nominally suggesting that
the strong C' P problem has been solved, as a result of particular matrix structures in the

model. This is similar to the original proposal by Nelson and Barr, where the triangular

3 In principle a third possibility exists: if the up quark is massless, there is one additional degree
of freedom in the quark mass matrix which may be used to rotate away the strong CP angle, i.e. it
becomes unphysical. However, a massless up quark is now ruled out by experiment [23] and lattice QCD
[157].
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form of Yukawa matrices was proposed, although in our model 6, vanishes due to the

triangular form of Y'¢ only, with Y* being non-triangular and real.

On the other hand, the triangular matrix structure relies on a zero Yukawa coupling
del, which can conceivably be spoiled by higher-order corrections, violating the bound
0, < 10~ 1%, For a successful resolution of the strong C'P problem, such corrections to
the Yukawa matrices must be forbidden or sufficiently suppressed. Encouragingly, in our
model such higher order corrections are absent at the field theory level with the specified
messenger sector. Pollution in the Yukawa matrix would arise from the coupling of the
bilinears T5 Hs or ToHzs to the bilinear ¢.F'. Since these terms are non-renormalisable,
we require messengers to form them. The messengers that could produce such terms are
the X; fields in Table 3.1b, but the only allowed connection to ¢.F with these messengers
is T} Hg (contributing to Y{%). The required Y5} = 0 appears protected from higher-order

corrections.

Before declaring victory, we must also consider the effect of corrections arising from
interactions at the Planck scale, since such operators only have to respect the symmetries
of the model, and do not require a specified messenger sector to generate them. The

lowest-order contribution comes from the term®*

Pe
it (3.30)

T, H

With a general choice of phase, such a term would lead to §, ~ 10~*, which is far too big.
This contribution to 6; may be avoided by a judicious choice of GUT-breaking phases.
As stated in Eq. 3.17, the physical phase in the down-type quark Yukawa matrix is
¢ = pe — 2PHyy — PAss- The new Planck-suppressed term has a phase ¢! = —pg + 2pa,, -
Choosing a relation between phases 2pp,, = pa,, gives ¢ = —(’ and the contribution to
6, vanishes. As shown in Section C.1 (see Eq. C.2), these phases are discretised, given
as third roots of real O(1) parameters \;, which are coefficients of the renormalisable
GUT-breaking superpotential. The relation 2p,, = pa,, which makes the contribution

to 6, vanish, occurs in one in three cases.

The second-largest contribution comes from a term

£ ¢e
TyH s >—CF, (3.31)
M3

giving 0; ~ 1071 which is several orders of magnitude below the current experimental
bound. Any other Planck-suppressed terms allowed by the symmetries are at higher
order, so we need not consider them. Finally, extra contributions may come from
supersymmetry-breaking terms. If we assume that there is no extra C'P violation in
this sector, which is controlled by the (spontaneously) C P-violating flavons, such con-

tributions to § are also expected to be negligible [160]. In summary, the model can

4 This term would also give a contribution to lepton angles of 0(1073) which is negligible.
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resolve the strong C'P problem without introducing an axion, even in the presence of

higher-order operators.

3.7 Leptogenesis

In Section 2.4 it was shown that the CSD(n) vacuum alignments can, for 3 < n < 5,
explain the observed baryon asymmetry of the Universe through N; leptogenesis. That
calculation first appeared in [3], which also discusses leptogenesis in the A4 x.SU(5) model
of this chapter. In fact, the implementation of CSD(3) in this model conforms closely
to the simplest scenario, characterised by two right-handed neutrinos with a diagonal
mass matrix Mg, a diagonal charged lepton Yukawa matrix Y¢, and the two columns of
the neutrino Yukawa matrix Y” populated by the CSD(n) alignments proportional to
(0,1,1) and (1,n,n—2). The main deviation in the current model from this setup is that
Y€ is not quite diagonal: it contains also a non-zero (1, 2) element. However, its effect on
the leptogenesis calculation is negligible: the necessary basis transformation that makes
Y€ diagonal induces negligible corrections (of O(1%)) to the CSD(3) alignment.

As such, we can immediately apply the results from Chapter 2 to this model. We recall
that the leptogenesis calculation is performed in the SUSY basis, defined as in Eq. 2.26
by

NC

atm

W, = yziithLiNC + yéolHLiNscol + MatmNc

atm atm

Mo Ngo1 Neo (3.32)
with diagonal charged leptons and right-handed neutrinos, and where the columns of
the neutrino Yukawa matrix A, are yatm = (0,a,a) and yso1 = (b,nb,(n — 2)b). We
immediately identify the right-handed neutrino masses M7 = My, and My = Mg,).
This may be compared to the superpotential in Eq. 3.8 that defines the neutrino sector
in the Ay x SU(5) model,

2
1
W, = y1H5F7N§tm + y2H5F¢&Nscol + y37N§tmNaCutrn =+ y4§Nscolecol7 (333)

(62) (62) My
we identify the parameters a, b, M; and My as
e e (vg)z, Mj = yave. (3.34)
(62) (62) Mr
For convenience we can also specify the parameters of m”,
TG 0 N G I 10
My ys (62)" 0 | Mz |ya (02)° v

As noted in Section 2.4, the Yukawa matrices A, and Y" corresponding to the SUSY

and seesaw bases, respectively, are related by conjugation, i.e. YV = (A))*.
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Recall that the final asymmetry Yp may be written as a sum over lepton flavour contri-
butions, Yp = (10/31) > YA, , where

Ya, =malYn + Y leta (3.36)

The C'P asymmetry €1 arises from the interference between diagrams describing right-
handed neutrino decays, while the efficiency factors 71, contain information about
washout. In CSD(n), we find (see Eq. 2.51)

675 Mymy -
i TnLM(n —1)*sinn. (3.37)

The dependence on the model parameters my, My and Ms is explicit, while the efficiency

factors 11, depend on my.

The relevant best fit input parameters from our model are given in Table 3.4, with corre-
sponding physical predictions in Table 3.3. In order to calculate 71 o one generally needs
to solve the associated Boltzmann equations. However, by the arguments presented in
the Chapter 2, in the CSD(n) framework we may use known results from [108] to esti-
mate 71 . The parameters m; o were also discussed earlier (see Eq. 2.43), where it was
shown that m;, = mi, = m,. The model fit gives m, = 26.57 meV, which implies
log1o(Auuk,) = logg(Ar-Kr) = 1.027. With this we obtain, from the solutions given
in [108],

M, = M,r ~ 0.0236. (3.38)

The decay asymmetries given in Eq. 2.37 are calculated by

9 = 3¢ = B sin
W7 1,7 I 02 si 2 3 n ( )
~ . X 170 .

Using the above estimates, we may obtain from Eq. 2.51 the BAU for this model,

—_— A4
1010 GeV (3.40)

M
YBz2.2x10_11[ ! ]
Comparison with the experimental value of Yp thus fixes the lightest right-handed neu-
trino mass to

M = 3.9 x 10'° GeV. (3.41)

As shown in Eq. 3.34, in this model the right-handed neutrino mass is My = y3(ve)?/Mr,
where Mr is the renormalizable mass of the messenger I' that allows this term and can
be Mr ~ Mp. This fixes the arbitrary dimensionless constant to be y3 ~ 0.3, hence the
BAU is achieved without extra tuning of parameters. Fixing the mass M; also fixes the

parameter a in the Yukawa matrix to be a ~ 0.006, defined in Eq. 3.34.
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3.8 Summary of features

We have presented a SUSY GUT based on SU(5) with an Ay X Zg X Zg family symmetry
and a discrete Z¥ R symmetry, which is broken to the MSSM with matter parity. It
realises the CSD(3) vacuum alignments with (nearly) diagonal charged leptons, which
successfully explains all observed neutrino masses and mixing with only three free param-
eters, while predicting a C'P phase 6¢ ~ +n /2. Tt can also explain the observed baryon
asymmetry of the Universe by thermal leptogenesis from the lightest right-handed neu-
trino. In the quark sector, mixing occurs from a discrete variant of the Froggatt-Nielsen

mechanism, while C'P violation arises from a single term in the down-type quark sector.

The model is renormalisable at the GUT scale, with both GUT and family symmetry
breaking addressed (the former in an appendix), ensuring also doublet-triplet splitting
via the missing partner mechanism, and a u term as low as TeV scale. In addition,
proton decay from higher-dimensional operators are shown to be strongly suppressed.
The strong C'P problem is resolved in the model without the inclusion of axions, due to

the particular Yukawa matrix structures predicted by the model.



Chapter 4

A A(27) X SO(10) model

Given the phenomenological success of the CSD(3) alignments and their incorporation
into the SU(5) SUSY GUT of the previous chapter, we wished to see if CSD(3) can also
be realised in SO(10), which features a more elegant and complete unification of quarks
and leptons; A(27) was found to be a suitable candidate for the family symmetry. For
a list of flavoured GUTs based on SO(10) with discrete family symmetry, see [147, 148,
161-174]. Family and gauge unification leads in this model to distinct structures for the
fermion mass matrices, and a successful fit of model parameters to the known masses
and mixing parameters is found. The contents of this chapter are derived primarily from

[4], where the model was first proposed, and [5], which discusses thermal leptogenesis.

4.1 Overview of the model

The model is based on A(27) x SO(10), with a C'P symmetry at the high scale. The
choice of A(27) is primarily due to the fact that it has both triplet and antitriplet
representations. It is not possible to construct any invariant with only two triplets
(or two antitriplets), which is convenient as is immediately forbids many potentially
dangerous terms involving the superfield ¥, which is a spinorial 16 of SO(10) and a
triplet of A(27) and thereby unifies all known fermions into a single representation. In
addition, the non-trivial singlets of A(27) are useful, as they are used to give rise to
C P-violating phases that are related to the group rather than arbitrary parameters in
the Lagrangian.! We therefore describe this as spontaneous geometrical C'P violation
[175-183], in this model in a novel form, as it fixes relative phases between distinct
flavons. The model has many attractive features, including the use of only the lower-
dimensional “named” representations of SO(10), i.e. the singlet, fundamental, spinor

or adjoint representations. SO(10) is broken via SU(5) with doublet-triplet splitting

! The latter scenario was encountered in the A4 x SU(5) model of Chapter 3, where the single input
phase 7 in the neutrino mass matrix was constrained to one of the ninth roots of unity.

87
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achieved by a version of the Dimopoulos-Wilczek (DW) or missing VEV mechanism
[184-186].

The model is renormalisable at the GUT scale, and also involves a discrete Zg x Zqs X
7L symmetry. We identify all global symmetry groups other than Z% as family (or
flavour) symmetries, which are broken close to the GUT-breaking scale to yield the
MSSM supplemented by a right-handed neutrino seesaw mechanism. Z# is a discrete R
symmetry and the origin of the MSSM matter parity which protects the LSP, a possible
WIMP dark matter candidate.

The model is realistic in the sense that it provides a successful (and natural) descrip-
tion of the quark and lepton (including neutrino) mass and mixing spectra, including
spontaneous C'P violation. The low-scale Yukawa structure is dictated by the coupling
of matter to A(27) antitriplets ¢ whose VEVs are aligned in the CSD(3) directions by
a superpotential. Light physical Majorana neutrinos masses emerge from a specific im-
plementation of the seesaw mechanism within SO(10). Furthermore, the model is fairly
complete in the sense that both GUT and family symmetry breaking are addressed,
including doublet-triplet splitting and the origin of the MSSM g term.

The basic goal of the flavour sector in these models is to couple the Standard Model
fermions to flavons @am, @sol and @qec Which acquire CSD(3) VEVs

0 1 0
;ﬁatm x|1], ésol x |31, adec x [0]. (4'1)
1 1 1

We achieve this in a way that is compatible with an SO(10) GUT, where all fermion
states are united such that left- and right-handed fermions transform equally under
the family symmetry. Since SO(10) constrains the Dirac couplings of all leptons and
quarks to be equal within a family, up to possible Clebsch-Gordan (CG) factors, it is
actually rather non-trivial that the successful scheme in the lepton sector will translate
to success in the quark sector. We find that we can attain good fits to data for quark and
lepton masses, mixings and phases. In a sense this degree of unification is a significant
improvement over the SU(5) model in the previous chapter, wherein only the three
generations of fermion 5s were unified into a triplet of the A4 family symmetry (while

the 10s and neutrino 1s were family singlets).
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4.2 Yukawa sector

4.2.1 Field content and superpotential

The most important field content is given in Table 4.1, while in Table 4.2 we list the
messenger superfields with R charge 1, which are integrated out to give the superpo-
tential in Eq. 4.3. The MSSM matter content is collected in V. Higgs superfields are
typically denoted by their SO(10) representation, with two 10s that couple respectively
to the up-type and down-type MSSM matter at the low scale. Specifically, the two
MSSM Higgs SU(2) doublets H,, and Hy arise from H}, and H{,, where one only gets
a VEV in the H, direction and the other in the H; direction. If we didn’t have the two
Hyy we would get the erroneous relation

mfj tan 8 = mj, (4.2)
which gives no CKM mixing. The Hiyg breaks SO(10) — SU(5) and gives masses to

right-handed neutrinos.

Field Representation
A(27) SO(10) Zg Zq2 7ZF

] 3 16 0o 0 1
HY, 1 10 6 0 0
HE, 1 10 5 0 0
Hys 1 45 0 0 0
H/s 1 45 0 3 0
Hpw 1 45 6 0 2
Hig 1 16 6 0 0
Hig 1 16 2 0 2
Ddec 3 1 6 0 0
Patm 3 1 1 0 0
Psol 3 1 5 6 0
¢ 1 1 1 0 0

Table 4.1: Matter, Higgs and CSD(3) flavon superfields.

The flavons ¢; are antitriplets under A(27), named in accordance with their respective
roles in the CSD(3) scheme. The messengers are typically indexed by their Zg charge,

while each prime tick (') corresponds to an additive Z;o charge of 3.

The Hys obtains a VEV that breaks SU(5) to the Standard Model group, i.e. SU(5) —
SU(3) x SU(2) x U(1). As we will see, it also provides the necessary CG coefficients
to give the correct masses to Standard Model fermions. Since it has no Z charge and
the messengers are in the 16 representation, these can have a renormalizable mass or a

mass depending on (Hys).
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Field Representation

A(27)  SO(10) Zg Z1g ZF
Xi 1 16 1€ {1,56,7F 0 1
Xi 1 16 i€{8,4,3,2} 0 1
Xi 1 16 ie{567 6 1
X/ 1 16 i€{4,3,2} 6 1
X6 1 16 6 3 1
X5' 1 16 3 9 1
Q; 1 1 i€0,..,8} 0 1
944 1 1 i€{3,4,5,6} 6 1

Table 4.2: Messengers with unit R charge.

The Yukawa superpotential that produces the quark and lepton mass matrices is

2 (u) 3 A®
WU HY |7 I & z atm n

WY = ‘I/z\I’jHlo ¢dec¢decngo <H45>n M)%—n atm atmgz M3 n
NO) 3\ @

sol n sd,1 sd,2

SOI¢SQ { n + ¢ 01¢ ec£< : + 2 )
l Z (Hs)" My W\ (Hig)® My, (Hi)® (Has)

2@ 4 (d)

A
d dec n 2 atm,n
+ W, W, Hyy ¢dec¢decg E M3 nt (b tm(zsat;mé~ 7;0: W

(d%
Ol¢5ol§ Z Sojnwﬁ n

o -
—|—\I’i\IfjHﬁ5Hﬁ5 (bfiec decf M)%]\chdec +¢atm atmg Wﬁ;am
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¢ | 55 )\gol
sol¥sol M 1 )

(4.3)

)

where A;°7 are constants, presumed O(1). The singlet field £ acquires a VEV slightly be-
low the GUT scale, and is primarily responsible for the mass hierarchy between fermions
through the Froggatt-Nielsen mechanism. In fact, the VEV of £ arises in two different
contexts: explicitly as in the superpotential above, as well as implicitly in the actual
triplet flavon VEVs themselves, which are driven to slightly different scales by the su-
perpotential. The details of this mechanism are discussed in Section C.2 of Appendix C.
Each term in the above superpotential has an associated scale derived from the VEVs of
the messengers that produce it. These are generally different, but for simplicity we refer
to them all as M, when they are produced by pairs of SO(10) spinor messengers x and

X- We make a special note of cases where scale differences have important consequences
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for the model, in particular writing Mq, ., Mo and Mgq_, as the combinations of

atm

messenger masses that appear in these respective terms.

While the superpotential in Eq. 4.3 is rather complex, due to the presence of multiple
sums over A parameters, mass scales, and the VEV of Hys, these sums result in a single
numerical factor each at low scales. The apparent complexity of the exact superpotential
obscures the quite simple and regular structure that ultimately dictates the fermion
mass and Yukawa matrix structure. To see this structure more clearly, we suppress all

numerical factors, which yields

Wy = ‘111\11] H%O [&éec 7éec + &fxtm;bgmtmg + a)éol;bgo]éa + ;béola)éecé]
+ \Ili\I/ijlOé“ [Zbéeciglec + ﬁgtmiitmg + 52015510152} (4'4)
+ qll\l’] HEHE§3 [aéeca%ec + a);tma)itmg + a)éol(gzong] N

The first line will give up-type quark and neutrino Yukawa couplings, the second gives
down-type quark and charged lepton Yukawa couplings, while the last line gives right-
handed neutrinos Majorana masses. Each antitriplet flavon pair ¢'¢’ corresponds to a
numerical 3 x 3 matrix. With the exception of the pair ¢gPqec, the resultant matrices
are all rank 1. It is immediately clear that there is a large degree of uniformity in the
Yukawa superpotential, which is reflected in the mass and Yukawa matrices presented

shortly.

The renormalisable superpotential that gives Eq. 4.3 can be inferred from the diagrams
that produce each term, which are given in Figures 4.1, 4.2 and 4.6. We now proceed
to establish the fermion mass matrices, including the light neutrino mass matrix after

seesaw.

4.2.2 Dirac mass matrices

The diagrams involving messengers that give the Yukawa terms in the up sector are
shown in Figure 4.1, while the diagrams for the down sector are in Figure 4.2. Note
that in these and all future diagrams, solid lines correspond to fields with odd R-charge,

while dashed lines signify even R-charge.

There are several more diagrams that can be written wherein messenger pairs couple to
the Hys. Specifically, since the Hys has no charge under any of the Z symmetries and
is a real representation, it may replace a renormalizable mass diagram as in Figure 4.3.
This is the reason for the sum of terms with different powers of (Hys) and M, appearing

in the superpotential.

The Hys acquires a VEV with a magnitude vys ~ Mgur, which breaks SU(5) to the

Standard Model group, and leads to CG relations which separate the fermion Yukawa
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Figure 4.1: Diagrams coupling ¥ to H}j,, giving the up-type quark and Dirac
neutrino Yukawa terms.

couplings. As an example, consider the down-type quarks: at the low scale, the super-
potential resembles

5 Y Y2 Y3
Wassm ~ drdrHg < + + > : 4.5

M% vs My vis (4.5)
We may use the parameters y; to fit all the masses.? We assume Hys acquires a real
VEV; the superpotential that fixes (Hys) is given in Section C.3 of Appendix C. The
linear combinations of coefficients y; thus yield a single effective real coefficient which is

typically different for each generation, and different for each of the up, down, charged

lepton, and neutrino sectors.

As noted above, a consequence of SO(10) unification and the superpotential structure
is that all fermion Dirac matrices have the same generic structure. More precisely, after

the flavons acquire VEVs in the CSD(3) alignment, the Dirac mass matrices are given

2 For the third family we have three y;, with four for the second family, and five for the first family.
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Figure 4.2: Diagrams coupling ¥ to Hflo, giving the down-type quark and
charged lepton Yukawa terms.

MX <> |

Figure 4.3: Diagram showing the replacement of a messenger mass term by a
H,5 VEV. The symmetries of the model allow for any mass insertion M, to be
replaced by an Hysxx vertex, leading to extra superpotential terms.

by
mf = M(J; <$atm>z <$atrn>] =+ Mﬁc <;bsol>Z (€7>501>] + /'Lilc <§$dec>l <;bdec>]
0 0 0 1 31 0 0 O (4.6)
_ f ,2ipatm f ,2ipsol f 2ipdec '
=mje 0 1 1|+mgze 39 3| +mye 00 0],
011 1 31 0 0 1

where sz are coefficients derived from the H fdd, Hys and £ VEVs, and p; are the phases

of flavon VEVs. This structure however does not include an additional contribution to
up quark mass matrix, which arises from a mixed term in Wy (Eq. 4.3, line 2). Allowed
by the symmetries and messengers, it is proportional to ¢so1Pdec, and couples to H 1o but

not H {lo. This term leads to the additional contribution to the up quark mass matrix

001
mé e 0 0 3 (4.7)
13 2

This mixed term is not allowed for the H¢, due to a lack of messengers able to produce it.
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In Figure 4.4, we see how this mixed term would have had to be built with an H¢,. Since
there is no field x# to build this diagram, it isn’t allowed. There are no messengers that
allow us to build other mixed terms (involving different pairs of flavons); even if there
were, they would be highly suppressed. Without the term in Eq. 4.7, the fit to CKM

parameters is quite poor, whereas with this term included, a good fit can be found.

(Hs) | (Hs)
S S 72

T Xi X5 X3 Xe X7 X

L — - — =51

d 7
'sol 5 H 10 5 @dec
I
I
I
I
1

X6 X3 1

Figure 4.4: Hypothetical diagram that would produce a mixed term involv-

ing H flo, bsol and Pgec. As the required messenger X7 is absent, this term is
forbidden.

The mixed term does not contribute to down-type quarks or charged leptons, since it
only involves Hjj,. Furthermore, due to its structure it does not contribute to neutrino
masses either. To see this we may decompose the contribution to neutrinos from the
diagram in Figure 4.1d, at the SU(5) level. We adopt the naming convention where the
SU(5) representation is labelled by its dimension, with its parent SO(10) field given as
a subscript. The left-handed neutrinos are in 5g and the right-handed neutrinos are
the 1y. The hypothetical diagram would be in Figure 4.5. We see that the part of
the diagram that is emphasized with a red circle involves one adjoint and two SU(5)

singlets. This is zero, therefore the whole diagram is zero.

Qgsol f 24H45 5Hluo 24H45 C“gd("“
l l l l I l
I I I I I I
! ! ! I
5y Sy Sxé’ Sy 5% Ly ~ 1y, 1y

Figure 4.5: Null contribution from the ¢goPqec mixed term to neutrinos.

As (Hys) is assumed real, the only phases contributing to the mass matrices are therefore
Patm, Psol and pdec, the phases of (Patm), (Bsol) and (Pyec) respectively, as well as pe, the
phase of (¢). We define the dominant phase as the phase of the second (sol) matrix in

the seesaw basis where the first (atm) matrix is real, i.e.

- 2
UE—ﬁ%lg%%ﬂ@]:—%%m—%mJ—%- (48)

Similarly the subdominant phase of the third (dec) matrix is

— 2
#zﬂm[iz¥é]=4mm—%m+%. (19)

It will turn out that these definitions of the phases apply also for the effective neutrino

mass matrix after seesaw.



Chapter 4 A A(27) x SO(10) model 95

4.2.3 Neutrinos

The right-handed neutrino Majorana terms (last two lines of Eq. 4.3) are produced by
the diagrams in Figure 4.6. If we decompose these diagrams into SU(5) components, the
base line would be all singlets. Therefore there can be no contribution coming from the
Hys nor the Hjy and there is no mixed term allowed. In other words, the diagrams shown
are the only contributions to the right-handed neutrino mass matrix. Even though they
appear suppressed by many orders of the messenger scales, these terms attain scales
that are phenomenologically desirable. It is usual for the right-handed neutrino masses
to be in the range 10'% — 1014 GeV. The VEV Hyg breaks SO(10) — SU(5) and thus is
at or slightly above the GUT scale, while the messenger scales, generically labelled M,
are yet higher, such that messengers may be integrated out. Recalling that £ gains a
VEV roughly an order of magnitude below the GUT scale, we have £ < (Hyg) < M and

this way we may obtain the correct scale for right-handed neutrino masses.

q_bdec H 16 g |§ ? H 16 &dec

v XS X6 QG Qg Qr, Q4 524 Qr; Qg Q(, X6 Xi{ s
(a)

¢ 6o

anmn

I S
g
g
F==-=-=-mm
X
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[=2]

v Xs X1 X7 xe 4 Qs Qo Qo Qs 4 Q7 Q xa Xs \J
(b)

Q?sol ?

F == ==/

Hrg
1
1
1
1
L

F == ==un

§ Hﬁ 6 (Esol
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(©

Figure 4.6: Diagrams responsible for the right-handed neutrino Majorana
masses.

The right-handed Majorana mass matrix is constructed using the same flavon pairs as
the Dirac matrices, and will have the same structure, as given in Eq. 4.6. It is also true,
though not immediately obvious, that this mass matrix structure is realised also for the
light Majorana neutrinos after seesaw. This will be proven shortly, but let us present
here a heuristic description of this mechanism. To this end, it is helpful to consider
the neutrino sector after breaking SO(10) — SU(5), where the left- and right-handed
neutrinos v and v¢ are contained respectively in a 5 and 1 of SU(5), in triplets of the

family symmetry. We denote the 5 by F and the singlet by N¢. The Dirac mass matrix
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is then sourced by the terms

)\(’;) 5 -~ -~ )\(Vl)§2 -~ _ )\((il’) _ B
H%O aTE(¢ath)(¢atmNC) + ;\04—7;(1(¢801F)(¢801NC) + ﬁi%c<¢decF)<¢dech) )

(4.10)
when the HY), ¢ and ¢ fields acquire VEVs. Pairs of terms in parentheses, like (¢F) and
(¢pN€), signify a contraction of a A(27) triplet-antitriplet pair, yielding a flavour singlet.

In a similar fashion, the right-handed Majorana matrix originates from the terms

)‘(]t\/[)€4 _ _ )\(1‘11)55 -~ -~
<HEHFS> W(QﬁatmNC)(qﬁatmNc) + ]\ﬂ)T(d)SOINC)(QSSOINC)
X Qatm X Qsol (4 11)
ASM)§3 B _ )
+ L((bdech)((ﬁdech)
MﬁMédec

We have made a distinction between the average scales of the messengers that produce
each of the above three terms, giving us three distinct mass scales for the Q-type messen-
gers, denoted Mq,,,., Mq_, and Mg, .. We will see that the best fit to data suggests that
the third effective neutrino mass is small, in accordance with the sequential dominance
(SD) assumption. Implementing the seesaw mechanism, this translates to a requirement
that the third right-handed neutrino is essentially decoupled. This implies its mass,
which originates from the final term in Eq. 4.11, is very large. This can be achieved if
MQ doe < MQ MQ

atm? sol *

Collecting the Higgs and ¢ fields along with A coefficients into generic parameters x (with

dimensions of inverse mass), we can write Eqs. 4.10 and 4.11 in the simplified form

"igtm(aath)(&atmNC) + K/SVOI(J)SOIF)((ESOINC) + ﬁgeo(&decF)(a)dech)

_ _ - _ N _ (4.12)
+ Ei\{m(qsatmNc)((batmNc) + /ié}(é[l((bsolNC)(qssolNC) + Rggc(gbdecNC)(édech)?

noting also that generically ¥ < ™. This can be written in block diagonal matrix

form as

;bath (EatmNc (}solF a)solNc asdecF (Edech

PatmF 0 Katm

Patm N Katm “%m

Psol F 0 Kol ; (4.13)
Psal N Kol Kol

PdecF 0 Kdec

P c v
¢dec N Kdec Kdec
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with all other elements zero. Diagonalisation gives, to O((x”/k™)?), the effective Wein-

berg operators

KV 2 KY
_( atm) (Cbatm )(a)ath) ( SOI) (QbsolF)(d)so ) ( dec)

atm K/sol dec

((js dec )(asdecF)' (414)

These in turn reproduce a light neutrino Majorana mass matrix of the form given in
Eq. 4.6.

Finally, we must take into account an overall complex conjugation of the Yukawa and
right-handed Majorana matrices when shifting from the SUSY basis (in which the
Yukawa superpotential is defined) to the seesaw basis. This basis change was discussed

in Chapter 2 (see Egs. 2.16 — 2.18) and we only repeat the conclusions, namely that
V=),  Mp= (M), (4.15)

where Y, Mp are in the seesaw basis and A,, M€ are in the SUSY basis. We proceed

in the seesaw basis, wherein

000 1 31 00 0
YV=r" 02 01 1| +62023]3 9 3| +65020 0 0],
01 1 1 3 1 0 0 1
(4.16)
000 1 31 000
MR:anévzgm 01 1 +n§§1*v;‘§1 39 3 +ﬁ§§jv§§c 000
01 1 1 3 1 00 1

using the effective parameters introduced in Eq. 4.12. To verify that the relative phases
are again 1 and 7' (as defined in Egs. 4.8 and 4.9), we may insert VEVs of all fields

(denoted vy for given field f) to give an effective neutrino matrix

0 00O 1 31 0 00
m’ =pee® 0 1 1| +me® |3 9 3| +ue”|0 0 0], (4.17)
01 1 1 3 1 0 01
where
Ua = (vHito)Z ()\;tl)n)2M4atm (Ugtmvﬁ)Q o= —arg (UHw)2 Ugtm
a — b - b
(r)? A3 vdvg | (vr)? v
[y = (UHiLO)Q (/\éol))QMQs (v 52017)42“)2 = —arg (UHf0)2 Us201 (4.18)
(UHT)Z )\i(])\;[)MZL 1152011)2 ’ _(UHE)Q Ve ’
| (on)? QGPMa, v e | () v
fe = (vg )2 M 02 03|’ T=TAs (vg)% v |’
Hrg )\dec MX dec”¢ L Hyg £

and where messenger masses and A couplings are all real due to CP conservation. As
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before, the physical phases n and 7" are defined as the relative phases between the three

rank-1 matrices that make up m”, i.e.

v v2,
n=p-a=—ag |:,;O:| + arg % :_2(psol_pa‘cm)_,0§7
¢ ¢ (4.19)
I — U?lec ’Ugtm
n=7—-—a=—arg |3 | +arg 2 = _2(pdec_patm)+,0§7
Ye ve

which is identical to Egs. 4.8 and 4.9.

4.2.4 The seesaw mechanism with universal rank-1 structures

The heuristic argument above for how the seesaw mechanism is implemented was first
presented for the case of tri-bimaximal mixing in [147, 187]. However one may worry that
the combinations of right-handed neutrinos that are integrated out, namely (@atmN¢),
(DsolN€), (daecN€) are not mass eigenstates. One may also worry that the mechanism
only works for tri-bimaximal mixing where the flavon alignments are mutually orthog-
onal. We now present a more rigorous discussion of how the seesaw mechanism is
implemented in this model, showing that the above result is in fact robust. The core
proof, that the effective neutrino mass matrix has the structure given in Eq. 4.6, does not
depend on symmetry or the special CSD(3) alignments, requiring only that the Dirac
and heavy Majorana matrices be expressable as linear combinations of the same three

rank-1 matrices.

A symmetric n x n matrix M of rank n can be written as a sum over n rank-1 matrices
M;

M = Z M; = Za@zﬁbg? (4.20)
i—1 i—1

where ¢; are column vectors of length n and «; are constants. In our flavour model, ¢;
can be identified with the flavon VEV alignments, up to a constant of proportionality.

The neutrino Yukawa and right-handed Majorana matrices may be written

YY = y1 My + y2 M + y3sMs,

(4.21)
Mp = ri My + roMs + r3Ms,
where M; x ¢¢T and y;, r; are constants. Recalling the seesaw formula
m’ = —v2YMpH(Y")T, (4.22)

determining m" requires finding the inverse of Mg. Applying once again the parametri-
sation in Eq. 4.20, we may express My U in terms of some other rank-1 matrices M 1

M 2 and M 3. These are chosen such that the coefficients multiplying each rank-1 matrix
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is 1/ry, i.e.
1 ~ 1~ 1 ~
3

-1 _
Z\4R = —
1 2

This defines the matrices M ;- Their connection to the matrices M; can be understood

by taking the definition of the inverse,

M, M, M
I'=MpMpy' = (riMi + roMa + r3Ms) ( 24 3)
It T2 r3
:M1]~W1+QM2]~W1+EM3]~W1+T—1M1]~W2+M2]~W2+EM3M2 (4.24)
"1 1 r2 9
+ EM1]~W3 + QM2]~W3 + M3]~W3
7"3 ’r‘3

The requirement that the definitions in Eqs. 4.21 and 4.23 hold simultaneously for any
r; fixes the products M; M j» giving

MMy + MyMg + M3M3 = I,

- (4.25)
MiMj = O, for ¢ 7&]

By a similar consideration of the equivalent relation I = My ! Mp, we obtain also

MMy + MyMy + MsMs =1,

~ (4.26)
MZ‘Mj = O, for 4 75]

Now consider the trivial relation Mr = MrMp Y Expanding Mg and My 1in terms

of their respective rank-1 matrices, and matching coefficients r;, we arrive at the rule
M;M;M; = M;, (4.27)

which is simply the pseudoinverse of M; [188].

Returning to the seesaw formula, and noting that Y” = (Y”)7, we have

m’ = —vY'Mg'Y"
M, My M
= —v2(y1 My + y2M> + ysM3) <Tll + =24 3) (y1 My + ya Mo + y3 M3).

T2 T3
(4.28)
Expanding the parentheses and using Eqs. 4.25, 4.26 and 4.27, we arrive at
2 2 2
m? = 12 (ylMl + %20, 4 y3M3) , (4.29)
1 T2 T3

which is the same form as Y and Mpg.
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This proof can also be understood in the language of vacuum alignments, as demon-
strated in [5]. Recalling Eq. 4.20, we express each rank-1 matrix by M; = ¢;¢], where it
is understood that ¢ represents the VEV of a triplet flavon. Again, the neutrino Yukawa
and right-handed Majorana matrices are written Y = Zl y;M; and Mp = El riM;, re-
spectively, as in Eq. 4.21. Now let us consider a new set of column vectors gzgi, ggi, (/Ei,

which are orthogonal to the original ones, and satisfy the conditions
1o =i,  i,j=a,b,c (4.30)
For example, for the column vectors corresponding to CSD(3),

@bl = (O> L, 1)7 ¢2 = (1>37 1)7 ¢3 = (O>O7 1)7 (4'31)

the corresponding column vectors which satisfy Eq. 4.30 are
61 =(-3,1,0), o= (1,0,0), ¢3=(2,—1,1). (4.32)

Given these new vectors, we can define some new rank-1 matrices M; = @@T Then the
inverse of the heavy right-handed Majorana matrix is uniquely given by Eq. 4.23, in terms
of r; (the coefficients of Mp). It can easily be verified explicitly that this result satisfies
MRMﬁl = [ using Eq. 4.30, which implies that the cross-terms vanish, i.e. Mi]\~4j = 0.
It is also worth noting that the orthogonality condition in Eq. 4.30 is sufficient for
immediately computing the unique solution for the inverse. As such, this derivation
reverses the earlier argument, wherein the orthogonality condition (Egs. 4.25 and 4.26)
arises from the requirement that the identity hold for any coefficients r; multiplying
the rank-1 matrices. Now, starting with the orthogonality of vectors ¢, QNS (Eq. 4.30),
we uniquely fix the coefficients of the inverse My ! to be 1/r;. Both formulations are

equivalent, and valid for any linearly independent vectors ¢.

4.2.5 Renormalisability of the top quark

The superpotential in Eq. 4.3 is written as a set of effective terms, divided by various
powers of messenger scales which are O(MguT). The degree of suppresion in each term is
largely controlled by the power of the singlet £, which as noted above acts as a Froggatt-
Nielsen (super)field. We assume all terms containing at least one power of {/M can be
safely expressed by an effective term after integrating out messengers. Only one term
does not contain any insertions of £, and requires more care. Specifically, the first term
in Eq. 4.3 is primarily responsible for the up-type third family fermions (notably, the

top quark), and is written naively as

2 (u)

U0 HY B ) ___deem 4.33
] 10¢dec¢decnz:0 <H45>n M)%fn ( )
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When ¢gec gets a VEV like (0,0, vgec), With vgec assumed to be near the GUT scale,

these terms reduce to

2 (u)
2 u dec,n
Ve s WaHYy Y ——t (4.34)
e = (Hys)" My™"

In fact we can only consistently write these non-renormalisable terms when @dec) < M,,
but we actually have (Pqec) ~ M, so simple integration of the messengers is not possible.
It turns out the physical top (and third Dirac neutrino) are not exactly aligned with
the third component of W. We therefore need to work out the mixing between the
messengers and W. Such mixing technically occurs for all terms, but as noted above,

this is only necessary in practice for the least-suppressed term above.

To prove that this in fact gives us a renormalisable top mass, it is sufficient to examine

the first term in the above sum (with n = 0). It is sourced by the renormalisable terms

W ~ WoqecXs + MyxeXs + HigXeXe, (4.35)

where we suppress O(1) couplings. In matrix form, this gives

0 0 Vdec/2 Us
W (U xe ws) | 0 (H) M2 || x| (4.36)
vaee/2 My/2 0 ) \xs

Since (H}j)) < vdgec ~ My, diagonalising this mass matrix reveals two heavy and one
light eigenstate, the latter being at the electroweak scale and which we can associate
with the third family, and crucially with the top quark. Supposing vqec ~ My, the

electroweak scale eigenstate is

1
t~— (VU3 + xg). 4.37
75 ¥+ x0) (4.37)
In other words the third family up-type fermion, specifically the top quark, is a linear
combination of W3 and x¢, where the latter has a renormalizable coupling to the Higgs.
The other eigenstates have masses at the GUT scale and are therefore identified as
messenger eigenstates. We will revisit this topic of the renormalisability of the third

family in the next chapter in the context of an Ss x SO(10) model.

4.3 Family symmetry and GUT breaking

In this section we summarise how the flavour symmetries and GUT group are broken
at high scale to the MSSM group with R parity, deferring the details of the discussion
to Appendix C. Family symmetry breaking, and the specific implementation of the

F-term alignment mechanism which produces the CSD(3) alignments, is given in full
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in Section C.2. The product rules for triplets and antitriplets of A(27) are listed in
Appendix A. Meanwhile, GUT breaking, doublet-triplet splitting, and the smallness of

the p term are all addressed in Section C.3.

4.3.1 Flavon alignments

Here we sketch the method for obtaining CSD(3), and give key results. The CSD(3)
alignments, which fully break the flavour symmetries (with no residual symmetries re-
maining), are obtained by initially considering the “special” alignments of A(27). They
are characterised by having either two zeros (e.g. (0,0,1)) or three equal magnitudes,
with phases that are powers of w = ¢2™/3 (e.g. (1,1,1) or (1,w,w?)). They may be
procured by coupling triplet and antitriplet flavons ¢ and ¢ to driving fields A;, A;,
which are also triplets or antitriplets. A number of singlet driving fields O; are intro-
duced whose F' terms force orthogonalities between flavons, ultimately fixing the VEVs
of three antitriplets to the CSD(3) alignments; these alone couple directly to . All

flavons and driving fields involved in this mechanism are given in Tables C.2a and C.2b.

All flavon VEVs are also driven to particular scales. To do this, we introduce driving
fields P; and messengers (; (listed in Table C.3) which force additional relations. De-
noting the magnitudes of flavon VEVs v;, the relevant flavons turn out to be related
by

2 2 f ! 2 2 g s 2
VUgol X W <Mg) Udec> Vatm X <M<> Udec> (4.38)

where the constants of proportionality are given as a product of various real O(1) renor-
malisable couplings. Since (§) /M¢ < 1, we conclude that vgec > Vatm ~ vUsol. These
relations also result in fixed relative phases between flavons, such that the physical

phases in the fermion mass matrices, defined in Eqgs. 4.8 and 4.9, are given by

7= —arg [fl (€] = - g,

atm

(4.39)

o = —arg [ L] g

These phases are in fact completely fixed. The VEV of ¢ is fixed by the GUT-breaking
potential given in Appendix C (see Eq. C.28), and fixes the phase of (£) to a ninth root

of unity; by the cancellation of this phase we finally have
n =0. (4.40)

Strictly speaking these phases are fixed only up to a relative phase 7, depending on
the signs of the real constants. However, this additional phase is unphysical, as it may

always be subsumed into other real parameters at the low scale.
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4.3.2 GUT breaking

We proceed by summarising key features of GUT and R symmetry breaking. Here
we are particularly interested in those aspects relevant for understanding the flavour
puzzle. SO(10) is broken by the VEV of a Higgs 16 + 16 pair to SU(5), and then by
the VEVs of Higgs 45s to the Standard Model group. Symmetry breaking arises from
a rather complicated superpotential (see Eq. C.28) involving adjoints Hus, H)s, Hpw,
spinors H g 15, and two driving singlets Z, Z”. Their I' terms ensure all the above
fields get non-zero VEVs, which break both the GUT and R symmetry at the GUT
scale. Various higher-order terms are realised in the renormalisable theory by diagrams
involving new messenger superfields Z;, ¥;, T, with associated scales My, Ms, M~.
The superpotential also contains several terms like Z@&jg”, i.e. coupling Z to flavon
triplet-antitriplet pairs and some power of £, which are allowed by the symmetries and

messengers, which links the flavon and Higgs VEVs.

Of particular interest are the VEVs of Hys and &, which play important roles in the
Yukawa sector. As Hys is a pure singlet under all flavour symmetries, we may write
down infinitely many terms involving progressively higher powers of Hys. For simplicity
we keep only the first two terms, which are of the form X (AjoHys + )\11H£’5/M%), where

X is a combination of other superfields (see Eq. C.28 for the exact form). Its own F-term

Vg5 = 1/—@1\@. (4.41)
A11

By a choice of \ parameters, we may take vy5 as real. The VEV of ¢ is fixed by the

equation gives Hys a VEV,

F-term conditions for H f(’)d and given in terms of some real O(1) coefficients A by

1/9
(&) = (iii;) Ms. (4.42)

In other words, its phase is given by pe = 27n/9 for some integer n.

Doublet-triplet splitting is achieved by implementing the DW mechanism. The idea is
that Higgs 10s, Hfdd, are given masses through their coupling to a 45, Hpy, whose
VEV is aligned in such a way that only the triplet components in the 10s couple to
(Hpw ), while the doublets do not couple to the VEV. For this reason, the mechanism
is sometimes known as the “missing VEV mechanism”. In SO(10), the VEV may be
written as

(Hpw) = vpw diag(1,1,1,0,0) ® ios, (4.43)

where o9 is a 2 x 2 Pauli matrix. The alignment (1, 1,1,0,0) may be viewed as “SU(5)-
like”;? the first three components therefore couple to the SU(3) part, while the zero
components couple to the SU(2) part.

3 Note however that the alignment (1,1, 1,0,0) is not a valid alignment in an SU(5) GUT, as it is not
traceless. In SO(10), due to the product with o2, the tracelessness condition is automatically fulfilled.
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This leaves several massless Higgs doublets: two in each Hig, as well as one in each of
Hy6 and Hig. In the MSSM, only two of these are massless, while the others should
also acquire large masses, so as not to spoil successful gauge coupling unification. In
other words, we also have a “doublet-doublet” splitting problem. The solution in this
model is similar in nature to that of the previous A4 x SU(5) model: we write down the
superpotential compatible with the symmetries and field content involving two or more
of the Higgs superfields containing SU(2) doublets, which also couple to various powers
of £&. We write down the mass matrix, and find that there is one eigenvalue which is
suppressed by £8/M7 < M, which we identify as the p term. With the freedom due to
O(1) parameters and messenger scales, we can arrange for y ~ 1 TeV without significant
tuning. Moreover we identify the MSSM Higgs doublets arising almost entirely from a
single 10 each with negligible mixing, i.e. H, ~ 2(H})) and Hy ~ 2(H{).

4.3.3 Proton decay

As in the previous A4 x SU(5) model, a characteristic feature of SO(10) GUTs is the pre-
diction of proton decay, mediated by extra gauge bosons or by the triplets accompanying
the Higgs doublets. We must ensure that our model does not lead to an unacceptable de-
cay rate, and obeys the bound on the proton lifetime, which we assume to be 7, > 1032
years. We do not here consider the individual predictions for different decay modes,
which have different associated experimental bounds giving 7, > 1031733 years [23]. In
SUSY SO(10) GUTs the main source for proton decay comes from triplet Higgsinos,
whose decay width is dependent on SUSY breaking and the specific coupling texture of
the triplets. In general the constraints are barely met when the triplets are at the GUT
scale [189, 190], as in this model.

Again we find that that proton decay from dangerous dimension-5 operators resembling
qqql is strongly suppressed, due to the presence of multiple symmetries (for a discussion
of dimension-6 operators we refer the reader to [127]). As all matter is contained in
the same U ~ (3,16) representation of SO(10), we consider YWWW. However this is
forbidden by A(27), which does not allow products of only triplets (or only antitriplets)
unless there are three of them — or some multiple of three. To build this effective term
at higher order we require at minimum one ¢, as well as some superfield with R charge
2; one such candidate is the field Z, which is a singlet under all other symmetries and
plays a role in GUT breaking (see Section C.3). To ensure the Zg 12 symmetries are

respected may require additional fields such as £&. We are therefore interested in terms
like _ .
Z¢ (&€
Uooy— | = 4.44
i () (4.49)
for some integer n. In the renormalisable theory, for this type of effective term to be

present at M ~ Mgy requires appropriate messengers. Specifically, we would need
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messengers that are A(27) triplets, which are completely absent from our model. Hence

such terms can not be produced at (or below) the GUT scale.

They may, however, arise with Planck-scale suppression M ~ Mp. The lowest-order
term arising from fields that aquire non-vanishing VEVs (and therefore contribute to

proton decay) is

Zf 3
AAA ¢deg€ : (4.45)
Mp
which would generate proton decay terms of the type
X
0Q0eL'Y) (4.46)

9
Mg

where g is a dimensionless coupling and (X) is a generic VEV of a field, as discussed in
[191]. These terms must be suppressed enough to generate a proton lifetime 7, > 1032

years, which is achieved when

g(X) <3x10 GeV. (4.47)
In our model,
Z) vdee (£)°
(X) = M ~ 150 GeV, (4.48)
MP

such that with O(1) dimensionless couplings, proton decay is very suppressed.

4.4 Numerical fit

4.4.1 Mass matrices

We turn to a numerical fit of all known quark and lepton mass and mixing parameters.

At the low scale, the VEVs of flavons and messenger fields combine to give the mass
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matrices
, 00 0 1 3 00 0 00 1
m . ., o
o=y (001 1| dyge™ 3 9 3 +yre™ (000 0f Fyfe™ [0 0 3],
“ 01 1 1 3 00 1 1 3 2
. 000 3 000
m d d_in d_in’
szyl 0 1 1]+ye |3 9 3|+yze 00 0,

01 1 3 00 1
. 00 0 3 00 0
T—:y5011+y§em393+y§ei"’ 00 0],
d

01 1 3 00 1

000 3 000
m' =pa |0 1 1|4+me™ |3 9 3|+pe™ |0 0 0

01 1 3 00 1

(4.49)
We recall that 7 = 27/3 and 7/ = 0, while the remaining phase 7} is free.

Assuming all superpotential terms have O(1) couplings, we may derive a “natural” scale
for each of the coefficients ylf . Firstly, we recall that there are several messenger scales
present in our model. The ones that appear in ylf are M, M¢, Mq,_., Mq_, and Mq_,, .
As previously established, we have (§) < M¢ < M,. More specifically, we will assume
the ratios © ©

—= > 0.5, —= <0.1. 4.50

M ™ M, ~ ( )
We further define the GUT scale by Mgut = v45 < M,. Finally, as discussed previously,

we assume that Mq,, =~ Mq_, > Mq,.., by roughly one order of magnitude.

sol

The coefficients ylf derive from can be obtained from the superpotential in Eq. 4.3. For

a given fermion type f = u,d, e, they take a generic form

; B B N )\gp
Yl = PatmPatm&” 2 e Vs el
! s nz% (Hys)" My
. N
yg = ¢sol¢sol§N_2 Z . (4'51)

(Hys)" MY

; N A%)
7 = N—-2 N
Y3 = PdecPdec§ P —"— e
nz% (Hys)" My

n=0

where A are O(1) couplings and N is a number between two and five. We will assume
there are no large cancellations between terms in the sums. The flavon VEVs were

discussed briefly above (and in more detail in Appendix C); they may be approximated
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by
3 Z ()" - e
(bdec) ~ Maur, (Patm) ~ WMGUTa (Gsol) ~ MZ/QMGUT- (4.52)

We note immediately that these VEVs have large powers of (§) /M, which is primarily
bounded below (see Eq. 4.50). This translates to only a loose upper bound on the fitting

parameters.

We expect the fitted coefficients yzf to be of the approximate scales

Pi>Ax107t 2 4x107%, ¢8> 4x1070  pe~1072 eV,

e >8x107%, 5 28x107% 48 >8x1075  puy~1072 eV, (453)
Yy~ 1, ys ~ 1071, y§ ~ 107", pie ~107% eV,

yi > 5x 1074

Smaller parameter values than given above are allowed, as there may be cancellations
within the sums that make up each parameter, although this scenario is indicative of
some tuning. Nevertheless, we see how SO(10) unification implies similar hierarchies
among all charged fermions. It also suggests up-type quark masses are larger than
for down-type quarks and charged leptons, by roughly one order of magnitude, due to
one fewer insertion of (£). This is welcome as far as the second and third family are
concerned, but potentially problematic for the first family, given that the up quark is
lighter than the down quark.

4.4.2 Best fit results

To fit the real coeflicients yf', 5 4, yilﬂ,?w Y123, and pepc as well as the phase nj, we
minimise a x? function that relates the physical predictions P;(z) for a given set of input
parameters x to their current best-fit values p; and their associated errors, denoted ;.

The x? function, first defined in Eq. 2.22, is given by

X = i <P(12_“>2 (4.54)

=1

Neutrino masses and PMNS parameters are obtained from the NuFit collaboration. As
in Chapters 2 and 3, the most recent global fit results at the time of publication of [4],
on which much of this chapter is based, was NuFit 2.0 [105].

In further reference to previous discussions (see Sections 2.3.3, 3.3), the errors o; are
equivalent to the standard deviation of a fit to a Gaussian distribution, which is a good
representation of the data for most physical parameters; the exception is the (lepton)

atmospheric angle 5, which has a bimodal distribution. For a normal hierarchy (as
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predicted by the model), the distribution is broadly centered on maximal atmospheric
angle, i.e. 0, ~ 45°, with a small preference for 6}, to be in the first octant. We wish to
extend the scope of the previous analyses, which simply assumed the preference for the
first octant was true. As such, we here consider two possible scenarios when performing

our fit.

e Scenario 1: we assume that the (weak) preference for 64, < 45° is true, and
approximate its distribution by a Gaussian about Iy, = 42.3°, setting Op, = 1.6°

as the error.

e Scenario 2: we remain octant-agnostic by assuming a Gaussian distribution centred

at the midpoint between the two 1o bounds, i.e. HoL, = 45.9° with Tpl, = 3.5°.

A separate x? fit was performed for each scenario.

Here, N = 18, corresponding to six mixing angles ij (neutrinos) and ng (quarks), the
CKM phase §9, nine Yukawa eigenvalues for the quarks and charged leptons, and two
neutrino mass-squared differences Am3; and Am3;. We note however that the free
input parameters controlling the quark and lepton sectors are distinct, and thus the two
sectors may be considered separately, constrained only by the requirement that related
parameters are of comparable scales. We use the PDG parametrisation of the PMNS
and CKM matrices. Experimentally, the leptonic phase 6¢ is poorly constrained and
left as a pure prediction of the model, as are the (completely unconstrained) Majorana
phases s and ag;. The bound on the sum of neutrino masses coming from cosmology
is not included in the fit but is anyway easily met for strongly hierarchical neutrinos

predicted by the SD framework.

The running of best-fit and error values to the GUT scale are generally dependent on
supersymmetry parameters, notably tan 5, as well as contributions from supersymmet-
ric threshold corrections. These are discussed in Appendix B. We extract the GUT-
scale CKM parameters and all Yukawa couplings (with associated errors) from [145] for
tan 8 = 5. The value of tan § is found not to have a significant impact on the quality
of our model, so we only present results for tan 3 = 5 here. Furthermore, we find that
our model is essentially unaffected by threshold corrections, so we simply assume them
to be zero. Using the notation defined in [145], and summarised in Appendix B, this is

equivalent to setting the parameters 7; to zero.

Table 4.3 shows the best fit of the model to quark masses and CKM parameters, as
well as the 1o ranges from experimental data (run up to the GUT scale) for reference.
The corresponding set of model parameters is given in Table 4.4. Table 4.5 shows
the analogous best fit of the model to lepton masses and PMNS parameters, also with
data 1o ranges, where applicable. It includes also predictions for currently unmeasured

parameters, including the two Majorana C'P phases and the effective neutrino mass
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Parameter  Value Data fit 1o range

6%,/° 13.020 12.985 — 13.067
6%, /° 0.2023  0.1866 — 0.2005
61,/° 2238 2.202 — 2.273
51/° 69.89  66.12 — 72.31

my /MeV  0.602  0.351 — 0.666
me /MeV 2495 240.1 — 257.5
my /GeV  93.37  89.84 — 95.77
mg /MeV 0511 0.744 — 0.929
ms /MeV 1580  15.66 — 17.47
my /GeV  0.947  0.925 — 0.948

Table 4.3: Best fit quark sector observables at the GUT scale, with experimental
lo ranges from [145]. The SUSY-breaking scale is set to 1 TeV, tan 5 = 5, and
no threshold corrections are assumed.

Parameter  Value

Yt /1075 3.478
yy /1074 2.075
yy /1071 5.389
Y4 /1073 5.774
ny 1.6297
yd /1074 -3.199
yd /1070 2.117
yd /1072 2.792
n 27/3
n 0

Table 4.4: Quark sector input parameter values, with 7,7’ fixed by the theory.

Imgg|. The corresponding input parameters are given in Table 4.6. The total x? is 17.3

and 16.7 for scenario 1 and 2, respectively (see discussion on 645 above).

In the quark sector there are seven real input parameters plus three phases, two of which
are fixed by the model, that we fit to six quark masses and four CKM parameters.* The
quark contribution to the total x? is 16.0, by far the largest contribution, and consists

almost entirely of an approximately 3.50 deviation in the down quark mass mg.

In the lepton sector there are six real input parameters plus two fixed discrete phases
that we fit to three charged lepton masses, two neutrino mass-squared differences and
three mixing angles (a total of eight observables). The associated contribution to the

total x? is 1.3 and 0.7 for scenario 1 and 2, respectively. Note the two different data

4 Note that in [4], a fit was conducted with several extra phases in the quark sector, giving a better
fit with x* = 2. These phases resulted from assuming an imaginary VEV of the SO(10) adjoint Has
(see Table 4.1) which appears in sums in Eq. 4.3. The model fixes its VEV to be either strictly real
or imaginary. However, this would necessarily introduce extra phases in the lepton sector, spoiling the
predictivity of the CSD(n) scheme with fixed n = 27 /3. It was then discovered that a good fit can be
achieved even in the more predictive case where (Hys) is real, and all (but one) phases are fixed.
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Parameter Value Data fit 1o range
Scenario 1  Scenario 2

0, /° 33.13 32.94  32.83 — 34.27

0t /° 8.59 8.55 8.29 — 8.68

oL, /o 40.81 40.63 — 43.85
3 46.65  42.40 — 49.40

5t /e 280 275 192 — 318

me /MeV 0.342 0.342  0.340 — 0.344

my /MeV 72.25 72.25  71.81 — 72.68

m, /GeV 1.229 1.229  1.223 — 1.236
AmZ, /1075 eV? 7.58 7.46 7.33 — 7.69
Am2, /1073 eV? 2.44 2.47 2.41 — 2.50

mi /meV 0.32 0.38

mg /meV 8.64 8.65

ms /meV 49.7 49.7

> m; /meV 58.7 59.4

g /° 264 264

sy /° 323 333

Imgg| /meV 2.46 2.42

Table 4.5: Best fit lepton observables at the GUT scale, with experimental 1o
ranges from [105, 145]. The SUSY-breaking scale is set to 1 TeV, tan 3 = 5,
and no threshold corrections are assumed.

Value

Parameter

Scenario 1  Scenario 2
y$ /1073 2.217 -1.966
ys /1070 -1.025 1.027
ys /1072 3.366 3.790
e /meV 26.60 25.90
wy /meV 2.571 2.546
e /meV 2.052 2.461
7 27/3
A 0

Table 4.6: Lepton sector input parameter values, with 1,7’ fixed by the theory.



Chapter 4 A A(27) x SO(10) model 111

fit 1o ranges for 953 in Table 4.5, depending on the choice of scenario. Although the
fit does not constitute a full analysis of the parameter space, it agrees with the results
of the more dedicated numerical analysis of CSD(n) models in Chapter 2. The most
significant different between the SO(10) model presented here and the idealised model
considered previously is that the charged lepton mass matrix is non-diagonal. In fact,

small charged lepton corrections appear to improve the fit slightly.

It is also worth noting that on one hand the model successfully fits all measured lepton
parameters, and predicts a Dirac C'P phase §° ~ —m/2 = 270°, which is in good agree-
ment with the current hints from data. In fact, when this model was first conceived
[4], the NuFit global fit [105] preferred ¢ =~ 306°, while more recent results [36] suggest

8¢ ~ 261°, which is somewhat closer to the predicted values in Table 4.5.

On the other hand, two generic predictions for the lepton sector, namely a normal neu-
trino hierarchy and a very small effective neutrino mass mgg < 3 meV, are unfortunately
very difficult to test directly. Nevertheless these predictions would rule the model out in
the event that an inverted neutrino ordering is observed. As noted in the Introduction,
an inverted ordering is currently disfavoured by global fits to neutrino oscillation data
albeit to low significance, and is also being constrained by cosmology which may be able

to settle this question decisively within the foreseeable future.

4.5 Leptogenesis

Conventional wisdom when discussing leptogenesis in SO(10) suggests that the lightest
right-handed neutrino N; has a mass that is too low to produce the correct baryon
asymmetry of the Universe (BAU). It can be understood as follows: there is a very
strong hierarchy in the up-type quark masses, with m, : me : my ~ 1075 : 1073 : 1,
while the hierarchy among neutrinos is comparatively mild. Assuming a normal ordering
mi1 < mg < ms, we have my : mg : mg ~ 1072 :1071 : 1. If up-type quark and neutrino
Dirac couplings are assumed equal in naive SO(10), producing the correct hierarchy in
the neutrino Majorana masses after seesaw requires a large hierarchy in the right-handed
neutrino masses M; that is stronger even than the quark hierarchy, like 106 : 1010 : 101°.
The typically cited lower bound [192] on the lightest mass M; which can successfully
realise N7 leptogenesis is

M; > 10° GeV. (4.55)

While this bound is slightly malleable [109], a mass M; ~ 10° GeV is too light for
traditional leptogenesis. Typically one proceeds by considering Na leptogenesis [193,
194], which has been studied in detail for SO(10)-inspired models [195-199] (for further
work on leptogenesis in SO(10), see [200-205]). We here show that in a flavoured
SO(10) SUSY GUT model where the naive quark and neutrino Yukawa structures may

be modified, N7 leptogenesis is indeed possible, and the N1 mass can be made to respect
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the traditional bound. This section is chiefly based on our work in [5], showing how

leptogenesis may be realised in the above A(27) x SO(10) model.

4.5.1 Mass and Yukawa parameters

As discussed previously, a compelling feature of the model is that the mass matrices in
each sector (including the light neutrinos after seesaw) have the same universal structure,
and the phases and mixing angles are guided by the flavour symmetry. In particular the
phases in both quark and lepton sectors are determined by relative phases of flavons.®
This leads also to a rather predictive scenario for leptogenesis, which ultimately allows
us to constrain some of the free parameters of the model (and indirectly the mass of the

right-handed neutrinos) in order to obtain the correct baryon asymmetry.

For the following calculation, we use the notation consistent with [5], which is slightly
different to that used previously within this chapter. We write the charged lepton and

neutrino Yukawa matrices Y¢” and right-handed neutrino mass matrix Mg as

000 1 3 1 0 0
Y =yin [0 1 1] +ulrem (3 9 3] +yse™ [0 0 0],
01 1 1 3 1 0 1
(4.56)
000 1 31 000
Mpr = Mam [0 1 1 +Msolem 39 3 +Mdeceml 000
011 1 31 00

The model fixes n = 27/3, ' = 0, while the effective couplings ;" and M; (with

i = atm, sol, dec) are real and dimensionless with the natural hierarchies

Y > Y >y,

(4.57)
Mdec > Matm > Msol-

These relations are a direct consequence of the superpotential in Eq. 4.3 and the symmetry-
breaking sector that fixes the flavon VEVs, although, apart from these general expecta-
tions, we shall regard the y; and M; as free parameters. The subscripts ¢ = atm, sol, dec
differ from those in Eq. 4.51, where simply i = 1,2,3, respectively. This is done to
emphasise the connection of each parameter to the flavons ¢atm, @sol, Pdec, and to the

SD framework. Similarly, we write the light neutrino matrix as

00 0 13 1 000
M’ = flagm |0 1 1| + o€ |3 9 3| + paece™ [0 0 0], (4.58)
01 1 131 00 1

® The quark sector is largely not relevant for leptogenesis calculations, with the exception of the top
mass m¢, which appears when AL = 1 scatterings like gt — H — ¢N are taken into account.
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where p; = (yélvu)Q/Ml and flatm > fisol 2 ,deec-6

Low-scale experimental data can only fix the combination of neutrino Dirac and Majo-
rana parameters encoded in the p;, and do not allow the three right-handed neutrino
mass parameters Maytm, Mgol, Mgec to be disentangled from the Yukawa couplings v/,
Yiols Ygeer Leptogenesis on the other hand is a high-scale phenomenon: the requirement
that the BAU is produced entirely from thermal Nj leptogenesis may constrain the
Yukawa couplings 2, ¥t;, which enables the right-handed neutrino mass parameters
Mot and Mg, to be constrained, thereby also the lightest two right-handed neutrino
mass eigenvalues M; and Mo, assuming the third mass M3 to be much heavier. The
relation between the parameters My, My, and the eigenvalues My, Mo is rather com-
plicated since the mass matrix Mg is not diagonal, but according to SD we should have

Mgee &= M3z much heavier than the others and thus essentially decoupled.

Before proceeding with the calculation of the BAU, let us recapitulate the results of
the leptogenesis analysis in Chapter 2 (see Section 2.4), which is based on the work
in [3]. There we discussed N; leptogenesis in a class of models with CSD(n) vacuum
alignments, leading to rather a rather simple expression for the final BAU in terms of
the parameters of the light neutrino mass matrix m” (see Eq. 2.46). A special case of

this class of models was considered in Chapter 3, in the context of an A4 x SU(5) model.

Previous results depended crucially on several features of said class of CSD(n) models,
namely 1) diagonal charged leptons, 2) only two right-handed neutrinos with 3) a di-
agonal Majorana mass matrix, as well as 4) a neutrino Yukawa matrix Y” where each
column is proportional to one of the CSD(n) vacuum alignments. To elaborate on the
final point, the first and second columns of Y resembled (0, a,a) and (b, nb, (n — 2)b)
respectively, where a, b are complex numbers (see e.g. Eq. 2.27) collecting various O(1)
couplings and (magnitudes of ) flavon VEVs. Notably, each element of Y was expressed
in terms of only one complex free parameter, greatly simplifying the resultant expression
for the BAU. In particular, the only phase dependence was a single explicit factor sinn,
with 7 = arg[b?/a?].

None of the above conditions apply here. It is immediately apparent that neither the
charged leptons nor the right-handed neutrinos are diagonal (conditions 1 and 3, respec-
tively), and unification under A(27) x SO(10) demands three right-handed neutrinos
rather than two (condition 2). Finally, the CSD(3) alignments are not neatly arranged
in columns of Y (condition 4), which is now necessarily symmetric due to SO(10)
unification. As a consequence, each element of Y is a non-trivial combination of real
parameters y; and 7, while its phase will depend on the relative magnitudes of these

parameters.

5 For completeness, all effective parameters are given explicitly in terms of VEVs and O(1) parameters
at the end of this section (see Eq. 4.84).



114 Chapter 4 A A(27) x SO(10) model

Despite the increased complexity, it is tempting to derive also in this scenario analyti-
cal estimates for the C'P asymmetries €; , akin to those in Eq. 2.37. To do so requires
transforming into the flavour basis where charged leptons and right-handed neutrinos are
diagonal, which modifies Y”. Analytical approximations for this basis transformation
are discussed in Appendix D along with some estimates for the resultant C'P asymme-
tries. However, the resultant neutrino Yukawa matrix in the flavour basis depends rather
intricately on all the input parameters, and the physical consequences are not easily dis-
cerned. Only in the limit where rather severe simplifications are made do the analytical
approximations for the CP asymmetries yield distinct predictions. It was concluded
that the limited scope of the approximate expressions did not provide much additional
value, and are therefore not presented in [5], which relies entirely on numerical solutions

to the Boltzmann equations.

To conclude this discussion, we define the neutrino Yukawa matrix A,, in the flavour
basis. The charged lepton and right-handed neutrino mass matrices may be diagonalised

by a set of unitary matrices generically labelled U, V', such that

Ver YV = diag(ye, s yr),
‘/eLYeTYe‘/eTL = dlag(y27 yia y72') = %RYeYET‘/jR) (459)
UnMNUR = diag(My, My, Ms).

As Y€ in Eq. 4.56 is complex-symmetric, we have V;R = VECZ Ay is thus given by

Xy = Ve YVUR, (4.60)

where the complex conjugation accounts for the shift between seesaw and leptogenesis

bases, as discussed in earlier chapters (see e.g. Section 2.4).

4.5.2 Boltzmann equations

Having defined the lepton matrices that consitute the primary model input into the
leptogenesis calculations, we proceed to establish the Boltzmann equations for flavoured
N1 leptogenesis, whose solution ultimately yields the desired BAU. This calculation
primarily follows the method described in [108].

As we are considering thermal leptogenesis, we assume a reheating temperature T >
M. Moreover, the model establishes a strong hierarchy in right-handed neutrino mass
eigenvalues M7 < My < M3, demonstrated in Appendix D. We may therefore use the
approximation whereby an asymmetry is generated only by the lightest right-handed

neutrino. Under these conditions, as in Chapter 2 (see Eqgs. 2.31 and 2.32), we may
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parametrise the final BAU Yp as

10
Y=g Y + Nl] Zelana (4.61)

Each €1, is the C'P asymmetry of N neutrinos in a particular lepton flavour «, while
N (previously labelled 71 ,) is an efficiency factor which contains the dependence on
washout from inverse decays and scattering, and is typically different for each flavour .
Yy, &, are (s)neutrino number densities and serve as normalisation factors. In the fully
flavoured regime, calculating 7, requires solving the Boltzmann equations in terms of
the decay factors K, and a numerical 3 x 3 flavour coupling matrix A. As will be seen

shortly, n, typically takes values 0 < n, < 0.2.

The flavoured decay asymmetries €1, are defined by
(4.62)

where T'1o, ' are the decay rates of Ny neutrinos decaying, respectively, into £, H,
lepton-Higgs or /,H; antilepton-Higgs pairs, in a given flavour a. T'; and Ty are the
corresponding total decay rates (summed over flavour). An analogous decay asymmetry
€1,4 may be defined for neutrinos decaying into (o H slepton-Higgsino pairs, and similarly
we may define €7 ,, and €7 4 for N sneutrino decays. In the MSSM, to which the SO(10)
model reduces, all these decay rates are equal, i.e. €14 = €14 = €7, = €7 5-

e e

Assuming M3 is large enough that the N3 neutrino does not participate in leptogenesis,

in the hierarchical approximation M7 < My, €1, can be expressed as

Im | (AD)1a (A A) 12(A]) 24
€10 = i ]gMSSM (M2> ) (463)

87 (A:r)\u)n M

Ay is the neutrino Yukawa matrix in the flavour basis. Recall from Eq. 2.36 that the

factor g™5SM is, in the limit where M; < Ms, well approximated by

M2 M
MSSM 2 1

Given the highly non-trivial mass and Yukawa matrix structures, to rigorously show that
N leptogenesis can be achieved in this model, we cannot rely on approximations to these
matrices, which may only be valid in small regions of parameter space. Moreover, unlike
the discussions in Chapters 2 and 3, the efficiency factors 7, are not fixed by the fit to
neutrino mixing data (recall that in those calculations, 1, depended only on the input
parameter m, in the neutrino mass matrix m”, which was known to good precision).

Rather, we solve the Boltzmann equations for the evolution of the N; neutrino and
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B — L asymmetry densities numerically. This allows us to derive bounds on the neutrino

Yukawa couplings by performing a scan over parameter space.

The solutions are chiefly dependent on the decay factors K, (themselves dependent on
the neutrino Dirac matrix) and the matrix A that encodes flavour coupling effects that
modify the lepton asymmetries in individual flavours. In the three-flavour case, K, and
the total decay factor K are defined by

v2(A)1a(A)a1
K, = u—a”a7 K = K,, 4.
o > (455)

where my =~ 1.58 x 1073 eV is the equilibrium neutrino mass (in the MSSM). Recall that

in the three-flavour case, the numerical matrix A in the MSSM is given by

—93/110  6/55  6/55
A=| 3/40 -19/30 1/30 |. (4.66)
3/40  1/30 —19/30

The Np neutrino density is given by Yy, , with the density at thermal equilibrium given
by Y. We define AYy, = Yy, — Yy, as well as corresponding AYy =Yg — YJ%? for
the sneutrino density Y5 . The equilibrium density for leptons and sleptons are denoted
Y, 4 and Yéeq. We use

45 45

22K (2), Y, = Y;q ~ omig.”

qu —vea

=Y 4.67
Ny N 27T4g* ( )

The function KCa(z) and its companion K;(z) which appears below are modified Bessel

functions of the second kind.

The total B/3 — L, asymmetries (including both fermion and scalar matter) are given

by Ya,. The Boltzmann equations may be written as

dy;
Tiﬁ = —2DfiAYy,, (4.68)
dYs

diﬁ _ —2Df1AYN1, (4.69)
dYa, K,
— ot =261 DA(AYy, + AYy) + W2y Eﬁ AasYa,. (4.70)

The decay and washout terms D and W are defined as

eq eq

K1(2) Ki(z) Yo, + Yy
D=K W=K L 4.71
lez(z)’ Zng(z) Y;qﬂf;q (4.71)

The functions fi(z) and fy(z) parametrise the contributions from AL = 1 scatterings.

We use the results from [79], wherein they consider scatterings involving neutrinos and
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top quarks but not gauge bosons, nor do they consider thermal effects. The functions

may be approximated by

fi(2) & fol2) & 2 [m (1 + g) + I[g] (1 + éi) , (4.72)
where K
a= KoMy /M) (4.73)
while the ratio Kg/K is given by
Ks _ 9 mi (4.74)

K 4w gnv?’

where my; is the top quark mass (at the leptogenesis scale), M), ~ 125 GeV is the Higgs
mass, and gy, = 2. In the limit where scattering effects are neglected, fi(z) = fa(z) = 1.
The top mass is fitted by the SO(10) model at the GUT scale, at m; = 92.8 GeV.
Assuming the running between GUT and leptogenesis scales is relatively minor, we use

this benchmark value.

Let us rewrite the parametrisation in Eq. 4.61 as Yp = Yy > €147, where Yy =
(10/31)[Yn, + Y, |:<1 is now interpreted as a normalisation constant that ensures 0 <
Ne < 1. We may factor out the decay asymmetry €1, from the Boltzmann equation
for each of the three YA, in Eq. 4.70, leading to a set of equations for the efficiency
factors 7,. Furthermore, if we neglect the small off-diagonal elements of the matrix A,
the efficiencies in each flavour decouple and may be solved individually in terms of the
decay factors K,. More precisely, for fixed K/|AqaKal, Na(z — 00) is a function only
of Apa Ko Eq. 4.70 may be rewritten as

d o AoaozKoa
Yool — 9D fi (AN, + AYy, ) + W

dz

J2Yona. (4.75)

4.5.3 Results

The above final step, i.e. assuming A to be diagonal, is not strictly speaking necessary
when solving the above equations numerically, as the increased computational load of
using the full A matrix is negligible. However, it allows us to examine the properties
of n, independently of the details of the Yukawa matrix and of the lepton flavour «,
using instead K, as inputs. In Figure 4.7 we show the variation in 7., in agreement

with the results in [108]. The grey lines show 7, when scatterings are switched off, i.e.

fi=f=1

In the solutions presented below, we will solve Eqgs. 4.68 — 4.70 in terms of the full A-
matrix. The only relevant parameters in the A(27) x SO(10) model which are not fixed
by the fit to lepton data are either the set of three neutrino Dirac couplings y; or the
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Figure 4.7: Variation in the efficiency factor 7, with |AaaKa|. K, are decay
constants and A,, the diagonal elements of a numerical coupling matrix. The
grey lines show 7, when scatterings are switched off.

three right-handed neutrino Majorana couplings M; (i = dec, atm, sol). Once either set
has been chosen, the other is fixed by the seesaw relation j; = (v,y?)?/M;. We choose

as inputs the Dirac couplings.

Due to the structure of SO(10), we anticipate these to be roughly equal to the up-type
quark Yukawa couplings. As we will find, there exists some tension between the up-quark
and neutrino sectors. We begin by noting that the third neutrino does not significantly
affect the results. Thus it is most interesting to examine the ¥4, — y%, space, while
setting yj.. = 0.5. Given the seesaw relation and that p3 ~ 1 meV, the third neutrino

N3 has a mass M3 ~ Mye. ~ MguT.

Figure 4.8 shows the values of the neutrino Dirac parameters y;,, and y%, which produce
the correct Yp, to within 10% and 20% (darker and lighter shades, respectively) as well
as satisfying the phenomenological requirements for correct neutrino masses and lepton
mixing. Each distinct region of parameter space in Figure 4.8 is marked in a different
colour, which correlate also with the colours in Figures 4.9 and 4.10. Although the dotted
line (indicating Yatm = £Yso1) in Figure 4.8 shows that the successful leptogenesis points
always satisfy y4.,, > &, the hierarchy is not that strong, bearing in mind that the
rank-1 matrix associated with ¢4, in Eq. 4.56 has numerically smaller entries than that
associated with y% . Consequently both rank-1 matrices will contribute significantly
to the second column of the Yukawa matrix over the successul leptogenesis regions,

reaffirming the earlier conclusion that any analytical approximation is highly non-trivial.

Figures 4.9 and 4.10 show the corresponding right-handed neutrino mass parameters
giving the correct Yp to within 20%, satisfying also the phenomenological requirements

for correct neutrino masses and lepton mixing. Figure 4.9 shows input mass parameters
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Figure 4.8: Regions where Yp is within 20% (light bands) and 10% (darker
bands) of the observed value. Colours mark separated regions in parameter
space, with corresponding regions in Figures 4.9 and 4.10. Dotted lines corre-
spond to y%,, = Lk .
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Figure 4.9: Allowed values of input parameters M, Msol, giving Yp within
20% of the observed value. The dotted line corresponds to Mutm = Mgol.

Matm, My while Figure 4.10 shows mass eigenvalues M1, M>. The assumed strong
hierarchy M; < My is always realised for successful leptogenesis, as seen in Figure 4.10
where all points satisfy M7 < 0.1M>, i.e. they lie above the dot-dashed line correspond-
ing to My = 0.1Ms.

There is however no such strong hierarchy between the mass parameters Mg atm in
Figure 4.9. Although successful leptogenesis points satisfy Mg, < Matm over much of
parameter space (the dotted line in Figure 4.9 marks where Myt = My,)), it should be
noted that the trace of the matrix associated with Mg, in Eq. 4.56 is about five times

larger than that associated with Myt,. We conclude that both these mass matrices will
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Figure 4.10: Allowed values of right-handed neutrino mass eigenvalues My, Mo,
giving Yp within 20% of the observed value. The dot-dashed line corresponds
to M1 = 0.1Mo.

be important in determining the eigenvalues M7 and Ms over the successful leptogenesis

regions, and simple approximations are generally not reliable.

2 0.01

~

We find a lower bound on the parameters giving successful leptogenesis, with y%,,,
and y2; > 0.002. The narrow red region arises from very particular choices of y;" that
also give the weakest hierarchy of right-handed neutrino masses M;/Ms ~ 0.1. Note
that the mass M3 does not appear in the approximated decay asymmetries and its effect
on leptogenesis is always negligible. Mg is therefore only constrained by the relation
imposed by SD, namely M3 > M s.

The effective neutrino couplings y? that yield viable leptogenesis (as shown by Fig-
ure 4.8) are within acceptable ranges when compared to the rough approximations given
in Eq. 4.57. We note however that the y; are different to the effective up-type quark
couplings ', as given by the fit, required to obtain correct GUT scale masses m,,, m.
and m. This would rule out N leptogenesis in a naive SO(10) model, and while it
can be accommodated in this model, there is a price to pay as the y} necessarily differ
from the y;'. In particular, yy;, is larger than its corresponding quark parameter by an
O(100) factor. We will return to this point below.

It is interesting to compare this model to the one introduced in Chapter 3, based on
Ay x SU(5) with two right-handed neutrinos. In that model the neutrino Yukawa and

right-handed Majorana mass matrices may be written as

0 ben/2

. Maym 0

Y'=1|a 3bem?|, MR:< ¢ ) (4.76)
a bel’n/g 0 Msol
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where a and b are real numbers and My, = My € My = M. It was found in this
scenario that Yp oc 4+ sinn, which gives the correct sign of the BAU since 7 is fixed (in

both models) to be positive by low energy neutrino phenomenology.

To make the connection between models, in the present SO(10) model let us first consider
the regions of parameter space where yy,, > yo, and Mum > Mo, and the third
neutrino is entirely decoupled (i.e. Mge. — o0). In these regions of parameter space,
which however do not correspond to the successful leptogenesis regions we have seen,

the matrices in Eq. 4.56 approximate to

Yeol 6“7 3Ysol ( M, et 0 )
VY& |3yl e Y |, Mr= : (4.77)
v i v 0 Matm

Yso1 € Yatm
By the arguments presented in [108], this implies Y5 o« —sinn. This can be understood
intuitively by noting that Eqgs. 4.76 and 4.77 differ by a column swap in Y". Under
this swap, the relative phase between columns flips sign. This gives the wrong sign of
the asymmetry and an antimatter Universe, confirmed by the exact numerical solutions
which show that these regions of parameter space are not allowed, precisely because they
would lead to the wrong sign of the BAU. The correct sign can be achieved, however,
in the regions of parameter space where the above assumptions of a strong hierarchy
between ‘atm’ and ‘sol’” are relaxed. These correspond to the successful regions shown
in Figures 4.8 and 4.9.

We finally note that enforcing the hierarchy My, < Mo in the present model, as
predicted by the SU(5) model, does not recover the matrix structure of that model (as
seen in Eq. 4.76). In this limit, which also requires y% , < y%, < y4,.. the SO(10)
matrices proportional to y%,, and My, are negligible, and the total Yukawa and mass

matrices approximate to

1 3 1 1 3 1
YV a gl e |39 yS’ . Mp~MZen|3 9 M3V : (4.78)
1 3 —Zdec 1 3 dec
Yeor€” M, e

which are markedly different from the form of Eq. 4.76.

4.5.4 Connecting quark and neutrino parameters

SO(10) unification suggests a deep relationship between quarks and leptons, and while
the above leptogenesis analysis involves only leptons, the results allow us to make state-
ments also about the quark sector. For instance, in naive SO(10) GUT models, the
Yukawa couplings of up-type quarks and neutrinos are the same. By the seesaw mecha-

nism, one derives an expected range for each of the heavy right-handed neutrino masses
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M 2 3 like 106 : 100 : 10'5. In this model the relation Y* = Y does not hold exactly,
due to the presence of an adjoint Higgs Hys.

To see this more clearly, let us recast the Yukawa superpotential in Eq. 4.3 in terms of

modified couplings ), as

0 i S\éU) ) (1‘5) i 2 ~(u1)
WY = \Ijll:[IJHiLO ¢éec f:lec MeQC + ¢ tm¢atm ]\341311 + ¢;Ol¢solg SO
X
S‘Eid) 2 A ((ti) 3 S\(d%
+ \I’ W HIO ¢dec¢dec = + ¢ tm¢atm ]\}Zn + (z) 01¢sol ]\?)5
X X (4.79)
el 3 <(:1M) 4 ~({c‘4) ‘
+ \Ill‘;[lJHEHE ¢fiec dec§ X e;dec ¢ tm¢atm£ M3X412atm
e ]
SO 1 ’
> M qol
where
S\(u,d,M) (u,d,M)
dec o Z dec,n
M2 H45 M2 n’
J(wd M) (ltt ,d, M)
atm _ a m,n 4.80
5 (wd M) (u d,M )
sol _ Z sol n
Mg (Has)" M

The alignment of (Hy5) dictates the CG coefficients associated with quarks and leptons,
such that the X\ factors are generally different between these sectors. For example, if
the VEV (Hys) is aligned in the B — L direction then (Hys) = v45/3 for quarks and
(Has) =
real parameters in the mass matrices also differ. However, we assume that (Hys) is real,

such that phases only arise from the phases of flavon VEVs (¢) and ().

—uwy5 for leptons. For a general alignment, the practical consequence is that the

The quark mass matrices can thus be written as

0 0 O 3 0 0 O 0 0 1
Ve=yho |01 1| +y%e™ 3 9 3| +yic|[0 0 0 +y%4e™ 0 0 3],
0 1 1 3 0 0 1 1 3 2
0 0 O 3 0 0 O
d_ . d d _in d
Y¢ = Yatm |0 1 1] +ysq€ 39 3| +Ygee |0 0 O
0 1 1 3 0 0 1

(4.81)
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We are most concerned with the relationship between up-type quark and neutrino

Yukawa couplings. The difference may be parametrised by §;, such that
Yy =y +0; (4.82)

There is an additional parameter y% in Y* not present in Y”. If we were to set this and
the three d; to zero, there would be no difference between the up-type quark and neutrino
Yukawa couplings, and the model would follow the expectation of naive SO(10) models:
three independent parameters, yi.. = Ygees Yatm = Yatm> and ys, = ye;, which can be

eliminated in terms of the GUT scale values for up, charm and top Yukawa couplings

Yuy Yes Yt-

The numerical fit to the data indicates (see Table 4.3) that y%, ~ 1075, This is the
root of a fine-tuning in the model that arises when we compare it to %, which, in
order to have viable leptogenesis, requires %, ~ 1073 — 1072, according to Figure 4.8.
This mismatch between up-type quark and neutrino couplings is a typical problem for
leptogenesis in SO(10) GUT models, and would invalidate leptogenesis in naive SO(10)

models where the couplings need to be equal.

In the model in question it can be accommodated through a cancellation between y};,,
and Sam both of order 1073 — 1072, leaving y%,, ~ 107°. It should be noted that in
this model, 3%, ~ 1073 — 1072 is indeed the expected order of magnitude for the Dirac
neutrino coupling (due to the powers of the superfield ¢). It is y%,, ~ 1075, required by
the fit, that turns out to be anomalously small, which is linked to the mass of the (first

generation) up quark, m,,.

For completeness, we write down the Yukawa (and right-handed Majorana) matrices in

terms of model parameters. They are

Ao PN R N
(Y;QJL)* ~ (}/;;)* = J\Z—Ign< ;tm zltm£> + ]\;)4 < ;olgbgolf >+ MGQC <¢fiec Zlec>’
X X X
d R (P
(Yi5)" ~ (¥5)" = A};f( atm Phtm& ) MSZ’ (Peo1Pl€”) + Mig'f (PdecPecs) -
o0 son (4.83)
()" = {H) | fmpa— (Gum@unt’) + gy Gladua’)
X atm X sol
W
+ T <¢éec¢fjecg > )
MiMédec

where the complex conjugation arises when moving from the SUSY basis to the seesaw
basis. We have neglected the additional mixed “sol-dec” term in Y™* for convenience,

since it has no direct bearing on leptogenesis. The real input parameters of the matrices
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can then be read off explicitly as

Y ~ Yom = Mot Vatm | ve] /M2,
Yy ~ Yoy = Ao [vsol [*ve |2/ M,
Yoo ™ Yoo = Nyen|vaec|?/ M2,
Y ~ Youm = M| Vatm|*[ve]? /ML,
yhy ~ o = N3 vl 2|ve /M2,
Yoo ~ Yoo = Mo [Vaee 2 [vel /M2, (4.84)
Matm = Ao [Vatm v Jurr |2/ (MM ),
Mot = NP lvsor P velPorr |2/ (MEME, ),
Maee = Mo [vec | *|ve P lurr |2/ (M2MS,, ),
n = —arg (V3¢ /Vaim]

"= —arg [vee/ (Vimve)] -

n

4.6 Summary of features

In this chapter we have presented a SUSY GUT of flavour, where all known fermions are
united into a single (3, 16) representation of the A(27) x SO(10) group. Emphasis has
been put on the Yukawa sector, where the CSD(3) vacuum alignments dictate the matrix
structures of quarks and leptons. In particular, all mass matrices have nearly the same
structure, given as sums over rank-1 matrices. This provides a simple interpretation of
fermion structures without fine-tuning. We have shown that a good fit to data, i.e. a

low x?, can be achieved in all sectors.

The model is both fairly complete and quite natural: hierarchies arise dynamically from
a renormalisable superpotential that fixes all mass scales in terms of Higgs and flavon
VEVs, shaped by an auxiliary Zg X Zi2 symmetry. Although it requires a rather large
field content (with no field larger than an SO(10) adjoint), the model is capable of
addressing many important problems in GUT model building, including proton decay,

doublet-triplet splitting and the p problem.

Furthermore, we have shown that, unlike in naive SO(10), the observed baryon asym-
metry of the Universe can be explained by the lightest right-handed neutrino decays
in thermal N; leptogenesis. This required solving the flavoured Boltzmann equations
numerically, which yielded predictions for the right-handed neutrino masses, or equiva-

lently the elements of the neutrino Yukawa matrix.



Chapter 5

An S4 X SO(10) model

The work presented thus far has had several core aims, chiefly that of explaining the
observed masses and mixing patterns of both quarks and leptons, catalysed by the phe-
nomenological success of sequential dominance in the lepton sector. We have shown how
the CSD(3) alignment can be realised in SUSY GUTs based on both SU(5) and SO(10)
with flavour symmetry, and discussed the implications for leptogenesis. These models
followed the guiding principle of completeness: they are renormalisable theories with a
specific field content that explicitly shows how the Yukawa structures are obtained, the
symmetries are broken, the VEVs aligned, and how to recover the MSSM at low scales.
To achieve all this, these models employ a large field content that resides primarily at
the GUT scale, and most likely cannot ever be directly observed. Moreover, it is less

clear which components are essential for resolving the flavour puzzle specifically.

Drawing from the knowledge gained in the construction of the A(27) x SO(10) model of
the previous chapter, as well as recent developments in flavour model building, we aimed
to find a simpler model, where the origin of flavour is made apparent. Those efforts led
to the work in [6], which forms the basis of this chapter, and discusses an Sy x SO(10)
SUSY GUT of flavour.

5.1 A simpler SO(10) GUT of flavour

To begin, let us reiterate some key aspects of the flavour puzzle. We know that charged
fermion masses are very hierarchical, with the up-type quark mass hierarchy m, <
me € my being stronger than for the down-type quark masses myg < mg < my, which
resemble more closely the charged lepton masses m, < m, < m,. The lightest charged
fermion is the electron, with m, ~ 0.5 MeV. Quark mixing, encoded in the CKM matrix,
is small and hierarchical. The discovery of neutrino mass and mixing makes the flavour

problem more acute but also provides new features, namely small neutrino masses, and

125
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large lepton mixing (encoded in the PMNS matrix U) resembling tri-bimaximal (TB)
mixing, but with non-zero reactor angle. The origin, nature and ordering of the neutrino
masses remain open questions, but cosmology suggests that all neutrino masses must be

below about 100 meV [37], making them by far the lightest (known) fermions in nature.

The smallness of neutrino mass may originate in the type-I seesaw mechanism, wherein
a natural way to obtain large lepton mixing and normal neutrino ordering is to assume
the sequential dominance of right-handed neutrinos (which arise naturally in SO(10)),
predicting m; < mo < ms ~ 50 meV. The magnitude of atmospheric and solar mixing
is determined by ratios of Yukawa couplings, which can easily be large, while the reactor
mixing is typically Ueg < O(ma/ms) ~ 0.17, a prediction made over a decade before the

reactor angle was measured.

To obtain precise predictions for mixing one can impose constraints on the Yukawa
couplings, where the CSD(3) scheme is particularly successful, although in this model
it appears in a slightly different form. The flavon vacuum alignments are fixed by a
superpotential which we do not specify here, but is given in a recent publication [96],
where they show that CSD(3) can be enforced by an Sy symmetry. In particular, they
find that the CSD(3) alignments preserve a generator of the symmetry (specifically,
the SU generator). By comparison, A(27) cannot enforce the CSD(3) alignments by
symmetry alone, requiring several orthogonality conditions between flavons and a rather

complicated superpotential (found in Appendix C).

After implementing the seesaw mechanism, the flavon VEVs yield a light effective Ma-

jorana neutrino mass matrix,
m” = Y11 + p2Y2e + p3Yss, (5.1)

where Yj; ~ (¢;) (¢;)7, up to Sy Clebsch-Gordan (CG) factors. While the ability to ex-
press mass matrices as sums over low-rank matrices was known previously, the prospects
for model building were not fully explored. The A(27)x SO(10) model applied the above
structure universally across all fermion sectors, which seems quite appealing at first sight.
However, it led to problems in the quark sector, which were fixed by adding an extra
non-universal term in the up-type quark Yukawa matrix, together with some degree of
fine-tuning between matrix coefficients in order to obtain the correct quark masses and

mixing angles.

Against this backdrop, we present an Sy x SO(10) SUSY GUT of flavour in which
CSD(3) is embedded. Our guiding principles are firstly simplicity, involving the fewest
number of low-dimensional fields, secondly naturalness, and thirdly completeness, which
includes ensuring doublet-triplet splitting. What does natural mean? For us it means
that we have a qualitative explanation of fermion mass and mixing hierarchies with all
dimensionless parameters O(1), and in particular that the Yukawa matrices are obtained

from sums of low-rank matrices, where each matrix in the sum naturally accounts for the
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mass of a particular family, analogous to sequential dominance in the neutrino sector.
This qualitative picture of “universal sequential dominance” is underpinned by a detailed

quantitative fit of the fermion spectrum.

In order to achieve this, we shall introduce two Higgs 10s, H}, and H¢), which will
give rise at low energy to the MSSM Higgs doublets, H,, and H, respectively, with no
appreciable Higgs mixing effects. Neutrinos and up-type quarks, which couple to Hij,
have Yukawa matrices with the universal structure as in Eq. 5.1. The charged leptons and
down-type quarks, which couple to H iio, have Yukawa matrices with a different universal
structure where Y77 is replaced by Yia ~ (¢1) (¢2)7. Quark mixing originates primarily
in the down-type quark sector, with the down and strange quark masses successfully
realised by having a zero entry in the (1,1) element of the down-type quark Yukawa
matrix Y%, as in the Gatto-Sartori-Tonin (GST) approach [206], with a milder hierarchy

among down-type quarks as compared to up-type quarks.

The model accurately fits all available quark and lepton data, and predicts a leptonic
CP phase §° that deviates significantly from maximal. Since quark mixing dominantly
originates from Y?, analytical estimates for the quark mixing angles can be obtained.
A hierarchy in the flavon VEVs fixes the scales of all but one parameter, with all di-
mensionless couplings in the renormalisable theory naturally O(1). The model reduces
to the MSSM, and we demonstrate how a p term of O(TeV) can be realised, as well as
doublet-triplet splitting, with Planck scale proton decay operators suppressed. In order
to achieve the above we also require auxiliary Z2 and ZF symmetries and a spectrum of

messenger fields.

We would like to emphasise that the model presented here is very different from earlier
models based on Sy x SO(10) [166-169] (see also [170-172]).! Firstly, the full symmetry
is different, since we invoke an extra Z2 x Z symmetry, while earlier works use a Z,
[167-169]. Furthermore, we only allow small Higgs representations 10 (fundamental),
16 (spinor) and 45 (adjoint) and not the large Higgs representations such as the 126 and
120 which are used in the other approaches. As a consequence our neutrino masses follow
from a type-I seesaw mechanism, rather than a type-1I seesaw employed in other papers.
In further contrast, we do not allow Higgs mixing: the MSSM Higgs doublets H,, and
H, emerge directly from Hi and H{,, respectively, whereas in [166-169] they arise as
unconconstrained linear combinations of doublets contained in 10- and 126-dimensional
Higgs fields. In addition we consider doublet-triplet splitting. These features are largely

absent from earlier works.

Another important difference is that we have used the CSD(3) vacuum alignments in
[96], whereas the vacuum aligments used in most previous works were geared towards

TB mixing, and do not naturally provide a large reactor angle. Indeed this model, as

! Previous works on SO(10) models with non-Abelian discrete flavour symmetries are found in [147,
148, 161-165, 173, 174], and further flavoured GUTs can be found in citenonAbelian. More recently, a
generalised approach to flavour symmetries in SO(10) is considered in [207, 208].
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those discussed earlier, is motivated by the success of CSD(3) in the neutrino sector,
with an emphasis now on a simpler realisation in SO(10) and a natural description of

all hierarchies.

5.2 The model

5.2.1 Basic features

In the present model quarks and leptons are unified in v, a (3',16) representation of
S4 x SO(10), and with Hﬁ;d in (1,10) and ¢; in (3',1) representations. The idea is
that the up-type quark Yukawa matrix Y* and neutrino Yukawa matrix Y arise from

effective terms like

Hio (Y1) (1) + Hig(¥o2)(V2) + Hig(¥e3)(ves), (5.2)

where the group contraction in each bracket is into an .54 singlet. These non-renormalisable
operators will have denominator scales of order MgyT, determined by the VEVs of addi-
tional Higgs adjoint 45s, leading to various CG factors. The resultant Yukawa matrices
Y% and Y” are sums of rank-1 matrices as in Eq. 5.1, with independent coeflicients

multiplying each rank-1 matrix. We assume the flavon vacuum alignments

0 0
(1) =v1 | 3|, (P2)=w2| 1 |, (P3)=w3|1]. (5.3)
-1 -1 0

We note that these alignments preserve the SU generator of Sy. These differ from the
alignments considered previously, but give equivalent predictions for neutrino mixing
parameters, and are considered a variant of CSD(3), as discussed in [96]. Their VEVs

are driven to scales with the hierarchy
v K vg K vz ~ Maur, (5.4)

so that each rank-1 matrix in the sum contributes dominantly to a particular family,
giving a rather natural understanding of the hierarchical Yukawa couplings whereby
Yu ~ v}/ MEurs Yo ~ V3 /MEyr, Yt ~ v3/MEyT, and similarly for the neutrino Yukawa
couplings. In this discussion we shall not provide an explanation for this hierarchy of
VEVs, nor shall we repeat the vacuum alignment superpotential responsible for the
alignments in Eq. 5.3, found in [96]. Since the expansion breaks down for the third
family, in the complete model we shall find a renormalisable explanation of the third-
family Yukawa couplings. The right-handed neutrino Majorana mass matrix will also

have the same universal form, leading to the seesaw mass matrix as in Eq. 5.1.
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The down-type quark Yukawa matrix Y% and charged lepton Yukawa matrix Y arise

from terms like

H(0n) (o) + Hiy(V2) (Vpa) + Hig(Vs) (Vebs), (5.5)

introducing a mixed term involving ¢1 and ¢9, leading to a new rank-2 Yukawa structure
Yia ~ (¢1) (¢2)T. In the Yukawa matrices Y4 and Y€, Y1, is replaced by Yia, which has
two consequences: it enforces a zero in the (1,1) element of V¢, giving the GST relation
for the Cabibbo angle, i.e. 6], = \/M, and also leads to a milder hierarchy in the

down and charged lepton sectors. Both features are welcome.

We need additional symmetries and fields to ensure the above structures, provide renor-
malisable third family Yukawa couplings, give the desired Clebsch-Gordan relations to
distinguish down-type quarks from charged leptons, achieve doublet-triplet splitting,
and obtain the MSSM Higgs doublets H,, and H,; from H{, and H flo, respectively.

5.2.2 Field content and superpotential

The full superfield content of the model is given in Table 5.1. It contains the following:
a “matter” superfield ¢ containing all known Standard Model fermions, three triplet
flavons ¢ which acquire CSD(3) vacuum alignments, two Higgs 10s containing one each
of the electroweak-scale Higgs SU(2) doublets, a spinor Hyg which breaks SO(10) (and,
along with the singlet p, gives masses to the right-handed neutrinos), as well as several
Higgs adjoints. The y superfields are messengers that are integrated out below the
GUT scale, and are given GUT-scale masses by the VEV of H 425. We assume that the
MSSM Higgs doublets H,,, H; lie completely inside, respectively, the SO(10) multiplets
HiY, H{lo. This is justified in Section C.4 of Appendix C.

Two Z4 shaping symmetries help to forbid unwanted mixed flavon Yukawa terms. We
also assume a discrete R symmetry Z, under which the superpotential has total charge
two, and which is broken at the GUT scale by the H, fg_L VEV to Z?, the usual R (or
matter) parity in the MSSM, ensuring a stable LSP. It also controls the p term and
helps ensure that only two light Higgs doublets (and no Higgs triplets) are present in
the effective MSSM. ZE is the smallest R symmetry that can achieve the above, and is
specially motivated within SO(10) [124]. We shall also assume a spontaneously broken
CP symmetry at the high scale.

At the GUT scale, the renormalisable Yukawa superpotential is given by

GUT _ _
Wy(/ ) = YV PaXa + XaXaHAlZE) + XaXaHiLO + PX3HE + Mppp

+ Xox3 (Has + His) + xpxpHio + x1x2Hi,
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Representation
Field e so(10) 7z, 7. 2R
P 3 16 1 1 1 Representation

Field

Hij 1 10 0 2 0 Sy SO(10) Zy Z, ZE
g 116210 i 116 0 3 1
Hig 1 16 1 2 0 % 1 16 L3
Hg' 1 450 2 10 X2 116 2 3 1
Hg 1 45 1 2 0 s 1 16 3 1 1
Hg' 1 45 2 2 2 s 116 0 1 1
1 3 1 0 0 0 ; 116 3 2 1
P2 3 1 2 0 0 X2 1 16 1 0 1
¢3 3 1 0 2 0 p 1 1 9 9 1
(a) Matter, Higgs and flavon superfields. (b) Messenger superfields.

Table 5.1: Field content giving the Yukawa superpotential in Eq. 5.6.

where we sum over indices a = 1,2,3 and b = 2, 3, and have suppressed O(1) coefficients
A that multiply each term. Furthermore, there are several crucial terms that appear

suppressed by one Planck mass Mp. These are

W}(/Planck) _ XaXaHfﬁHﬂ; + ¢¢¢3H{l0’

Mp My (5.7)

where a = 1,2, 3. The first term couples Hyg to fermions via the messengers. The second
is allowed by the symmetries and will be shown to contribute at the order of the smallest

GUT-scale terms to the fermion Yukawa matrices, and thus cannot be ignored.

The adjoint Higgs superfields acquire VEVs at the GUT scale, i.e. (HE) ~ Mgur,
which are generally complex. Hig’y’z gain different (Standard Model-preserving) VEVs,
providing CG factors which separate the quark and lepton masses. The VEVs of ¢
and ¢o are assumed to acquire VEVs well below the GUT scale, i.e. (¢12) < Mgur,
while (¢3) ~ Mgur, which is therefore also the scale at which the flavour symmetry is
broken, along with C'P. We note that no residual C' P symmetry remains at low scales.
As (¢3) is near the messenger scale, the process of integrating out messengers xs, X3 is
not trivial. The correct procedure and the consequences of having a flavon VEV near
Mgaur are discussed in detail below, where we verify also that the third family Yukawa

couplings are renormalisable at the electroweak scale.

The diagrams giving the mass and Yukawa matrices are drawn in Figures 5.1 — 5.3.
The three diagrams in Figure 5.1 correspond to the ultraviolet completion of the three
terms in Eq. 5.2, while those in Figure 5.2 are the completion of the terms in Eq. 5.5.
The diagrams ensure correct S4 group theory contractions and introduce CG coeflicients

due to the Hig’y’z VEVs. These diagrams are analogous to how the seesaw mechanism
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replaces the Weinberg operator for neutrino mass. Of course neutrino mass itself in this
model is more subtle, since both the Dirac and right-handed Majorana masses arise from

these diagrams.

Each diagram leads to a 3 x 3 matrix, whose internal structure is dictated by the vacuum
alignment of the relevant flavon VEVs in Eq. 5.3. The Yukawa and mass matrices are
consequently given as a sum over these matrices. A prominent feature is a texture zero
in the (1,1) element of Y¢ and Y®, which realises the GST relation for the Cabibbo

angle. The exact matrices that we fit to data are given below.

=
5

¢1 oS Hyj, ¢ o3 Hij 3

(HE) (H) (HZ) (H) (H)
voox1ox1 o ox1oxx ¥ voXe X2 X2 X2 ¥ YooX3s X3 X3 X3 Y

Figure 5.1: Diagrams coupling 1 to Hjj, giving the up-type quark and Dirac
neutrino Yukawa terms.
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(HE) (H) (His™)
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Figure 5.2: Diagrams coupling 1 to Hfo, giving the down-type quark and
charged lepton Yukawa terms.

s g g 3 ¢a g Hig ¢

L (HE) M, 1 (HE) L (HE) S (HE)

! ! ! ! ! - !
voXs xs PP X3 Xz U Y Xe Xe“Xa  Xa U

Figure 5.3: Diagrams coupling 9 to Hig, giving the right-handed neutrino mass
terms. One copy of the right-hand diagram may be drawn for each of a = 1,2, 3,
although for a = 3, its contribution is negligible compared to the left diagram.

Planck-scale operators suppressed by one power of the Planck mass Mp, beyond those
in Eq. 5.7, are forbidden by the symmetries. However we expect additional effective
operators arising in the model, suppressed by at least two powers of the Planck mass
M]%. These include terms involving all possible contractions of Sy multiplets ¢ and ¢;,
which are forbidden at the renormalisable level, but allowed by the symmetries. The
largest of these terms can be O(M&yr/M3) ~ 1076, We will assume these contributions

are negligible, but note that such corrections may pollute the texture zero in Y.

5.2.3 Clebsch-Gordan factors

An adjoint of SO(10) can acquire a VEV aligned in the direction of any of the four U(1)

subgroup generators that commute with the Standard Model, or a combination thereof.
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There are four such U(1) symmetries, labelled U(1)x, U(1)y, U(1)p_7, U(l)Tg- U(l)x
arises from the breaking SO(10) — SU(5) x U(1)x. U(1)y is the Standard Model
hypercharge which arises when SU(5) — SU(3) x SU(2)r, x U(1)y. The other two U(1)
arise when SO(10) is broken along the Pati-Salam chain, via a LR-symmetric gauge
group. Their generators are not linearly independent; two of them may be expressed
in terms of the other two. The VEVs of Hig’Y’Z

of these alignments. Without loss of generality we may assume (Hz) and (HJ5) align

may be written as linear combinations

in the “X” and “Y” directions, respectively, while (HZ) is a linear combination of the

two.

Fermions couple to these VEVs with strengths that depend on their associated U(1)
charges, which are different for quarks and leptons. H fg_L is assumed to gain a VEV in
the direction that preserves B — L, generating GUT-scale masses for Higgs triplets via
the Dimopoulos-Wilczek (DW) mechanism [184-186]. Our implementation of the DW

mechanism is described in Appendix C.

Up-type quarks and Dirac neutrinos couple to HZ (see Figure 5.1). As (HZ) is arbitrary,
there is no hard prediction for the ratio between quark and neutrino Yukawa couplings
within a family. However, as all flavons ¢, couple to this VEV in the same way, flavour
unification demands that the same ratio hold for all families. Therefore, once Y is
determined, Y is also fixed, such that Y¥ «x Y* to good approximation, up to an

overall CG factor, with small deviations for the third family.

Meanwhile, the down-type quarks and charged leptons couple to H, fg and H }/5 (see Fig-
ure 5.2). Unlike the up sector, where matter always couples to the same SO(10) adjoint
VEV, each diagram like Figure 5.2 involving a different flavon will couple to a different
linear combination of VEVs. This introduces CG factors non-trivially into Y'¢ and Y©.
As such, there is no fixed relationship between down-type quark and charged lepton
Yukawa couplings, neither within a family, nor across families. They are nevertheless

expected to be of the same order.

5.2.4 Renormalisability of the third family

Next, we show that naive integration over messenger fields is not possible for the third
family, due to the large VEV of ¢3. We reiterate that there is an assumed hierarchy of
flavon VEVs, such that v; < va < v3 ~ MguT, implying it is not possible to formally

integrate out the messengers y3 which couple to the flavon ¢3.

To explore this further, let us single out the terms in Wy involving these fields and H7j,
(the same method applies to terms coupling to Hfo). Suppressing O(1) couplings, the

relevant terms are
3 _ _
W)(/) = o33 + HisxsXs + xaxsHip- (5.8)
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After fields acquire VEVs (with (¢3) = v3(0,0,1)), we have

WY = vgihsXs + (HE) x3Xs. (5.9)
These two terms are of comparable order.

Naively, 1)3 may be interpreted as the set of third-family particles. The problem with
this picture is that it has a large coupling to X3, which induces a mass for 3 via the
second term in Kq. 5.9. This clearly does not correspond to the physical third-family
states (top quark and third Dirac neutrino), which are massless above the electroweak
scale. To obtain the physical (massless) states, which we label ¢, we rotate into a physical

basis (13, x3) — (t, x), such that ¢ does not couple to 3. This basis change is given by

HZ)t —vgt+ (HE
vy = TN -y TR\ fg g (60)

Physically, it may be interpreted as follows: inside the original superpotential Wy lie

the terms 9

v
Wy D xaxsHiy D ——2—— tt Hjf, (5.11)
v + (HE)
which generate renormalisable mass terms for the top quark and the third Dirac neutrino

at the electroweak scale.

The factors that multiply the renormalisable Yukawa couplings can in principle modify
the third row and column of a given fermion Yukawa matrix independently of any par-
ticular vacuum alignment. They depend on the alignment of the SO(10) adjoint VEV
in question, and the corresponding CG factors. In principle this can alter the relation
Y" o Y, which is the natural prediction. For simplicity, we assume these coeflicients

are all 1.

5.2.5 Proton decay

As noted in previous chapters, we must consider also the model predictions for proton
decay. We reach similar conclusions for the present model as in earlier discussions.
Recall that the proton lifetime is constrained by experiment to 7, > 1032 years [23].2 In
SUSY SO(10) GUTSs, proton decay can be mediated by heavy gauge bosons and or Higgs
SU(3) triplets, with the dominant contribution involving triplet Higgsinos. The decay
width depends on details of SUSY breaking and the coupling texture of the triplets. It
has been shown that the experimental constraints are met when triplets are at the GUT
scale [189, 190]. As shown in Appendix C, this is the case here.

2 As noted in the previous chapter, the proton lifetime bounds vary with the decay mode, giving
T > 1031733 years. For simplicity, we consider only a single bound here.
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The existence of additional fields in the model may also allow proton decay from effective
terms of the type
saeQL ) (5.12)
P
Such terms must obey the constraint g (X) < 3 x 10° GeV. In our model, the largest

contribution of this type comes from the term

B—L,7X,Y
Hys " (Hys HE)?
Mp,

(Maur)®

i~ 10° GeV. (5.13)

Py

= (X)=

The constraint on (X) is easily met, so proton decay from such terms is highly sup-

pressed.

5.3 Mass matrices and analytical estimates

5.3.1 Mass matrices

We present here the Yukawa and mass matrices, which will be used in the numerical
fits below. A detailed derivation is given below, in Section 5.3.3. We begin by defining

numerical matrices

1 1 3 0 0 O 0 0 O
Yn=1[|11 3], Yoo=10 1 11, Ys3=10 0 0],
3 3 01 1 0 0 1
(5.14)
0 1 1 0O 0 -1
Yo=1|1 2 4|, Yp=|0 2 0
1 4 6 -1 0 O

We note that all matrices derive from triplet products like (v¢;)(¢¢;), with Sy sin-

glet contractions in each bracket, except Yp which derives from the Planck-suppressed
operator wq/)ngHfO.

The up, down, charged lepton and Dirac neutrino Yukawa matrices (Y%, Y¢, Y*¢ and
YV respectively) and right-handed neutrino mass matrix M® arising from Figures 5.1
— 5.3, assuming that the MSSM Higgs doublets H, and H, arise from H}, and H{,,

respectively, may then be expressed as

Y= yiei 4+ ysYar + yie Y,

YV = yYe"Yi + YyYoo +  y4e™ Yas,
MR = MReYy) + MEYay + Mite™ Vi, (5.15)
V4= ylhe'2 Vi) + yge®Vay + yfeYas + y e Yp,

Y= 5yt Yia + y5e* Vay +  yfe P Yas + 4 e Yp.
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The flavon VEVs v, are complex, with the fixed phase relation

U1 2 2w (5 1 6)

=arg |—| =——, .
n g v 3

given (up to a sign) by the superpotential that fixes the alignments. The remaining

phase 7/ is determined by the fit.

The light neutrino mass matrix is obtained by the seesaw mechanism. Both Y* and
MP® have the same structure, namely both are sums over the same rank-1 matrices Y71,
Y29 and Y33. By the proof given in the previous chapter (see Section 4.2.4), the light

neutrino matrix m” will also have this structure, i.e.

m” = 1€Y11 + paYar + pze™ Yaz
1 1 3 0

A 0 0 g 0 0 O (5‘17)
=we |1 1 3| +pe |0 1 1| +wpse 10 0 0],
3 3 9 01 1 0 0 1

where the parameters p; are given in terms of the parameters y; and MZR simply by

V)2
Yi
Z<M% - (5.18)

pi = v

As shown in the Introduction, the flavons yield a light neutrino mass matrix m”, where
the normal hierarchy m; < me < mg then corresponds to pus < p1 < pa. Achiev-

ing this hierarchy after seesaw implies that the right-handed neutrino masses are very

hierarchical, as we will see below.3

5.3.2 Analytical estimates

The mass matrices involve the following real free parameters: y;', yf, ys, Mi, and y¥ (a
total of 13). Recalling that 7 is fixed by flavon vacuum alignment, we have the following
further free parameters: 7/, age, Bae, and v (a total of six). The scales of the real
parameters are mostly fixed by the scales of the flavon VEVs, vy 23. We set the flavon

VEV scales to some appropriate values,
v = 0.00QMGUT, Vo X 0~05MGUT7 vy =~ 0'5MGUT7 (519)

where we set Mgyt ~ 10 GeV. The terms giving MEQ and y” in M® and Y€
derive from terms suppressed by one Planck mass Mp. As they arise from unspecified

dynamics, the scale of these parameters is not very well defined. For definiteness, we set

3 While the model does not mathematically forbid an inverted hierarchy, we have checked that the
corresponding predictions for neutrino masses and mixing angles would always give a bad fit to data. It
would also require parameter choices that strongly violate the naturalness principle employed here.
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Mp ~ 10" GeV and again assume the associated coefficients are close to one. Recall
also that M1 is at the GUT scale due to the term px3Hyg.

We may estimate the parameters of the matrices defined in Eq. 5.15 as follows: set all
O(1) coefficients to exactly one, and ignore CG factors by setting all adjoint Higgs VEVs
to Mgyt ~ 10'6 GeV. Then the Yukawa couplings are estimated to be

Yoo~y ~ v/ MEp ~4x 1078,

Yy~ yd ~ys ~ 03 /M2 ~2.5 x 1078,

Yy~ ~ yd ~ oy ~ v MG ~0.25, (5.20)
Yy ~ Sy ~ viva /MGy~ 1 x 1074,

yP ~ w3/Mp ~5x107%
The right-handed neutrino mass parameters are estimated to be
MP ~4x 10" GeV, Mit~25x10"Y GeV, Mt~ 10'° GeV. (5.21)

This very strong hierarchy implies negligible right-handed neutrino mixing, such that
the mass eigenvalues closely correspond to the above values. As each parameter contains
several O(1) coefficients A\ and CG factors, the above numbers only represent order of

magnitude estimates.

As we will see in the numerical fit below, the above estimates are in good agreement
with the values that produce a good fit to data, with a single exception: the parameter
M#, which is primarily responsible for the lightest right-handed neutrino mass, should
be a factor O(0.01) times the estimate above in order to give the correct light neutrino
mass spectrum. This can be understood by inserting the above estimates for y{ and
MlR into the expression for p; in Eq. 5.18, which suggests p; ~ 0.01 meV, whereas we
will see the fit prefers a value of O(1) meV. The necessary factor can be achieved by

assuming one or more coefficients deviates from unity.

One may also obtain approximate expressions for the quark mixing angles in terms
of quark Yukawa couplings as follows. The very strong hierarchy in the three real
parameters of Y* is correlated with that in the physical Yukawa eigenvalues of up,
charm and top quarks. We therefore expect negligible contributions from the up sector
to quark mixing. This implies that not only do the four real parameters in the down
sector, yz‘-i and y¥, fix the down-type Yukawa eigenvalues, they also must reproduce the

observed CKM mixing angles.

Let us consider Y?, keeping only the leading terms in each element. For simplicity,

we ignore free phases. As noted above, yilQ ~yP < yg < yg. We also define y, =
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yd + 2y¢, + 2y”. Then
0 yd Yty — y"
Vi [y, vh yh + 20yl —y") | - (5.22)

uly —y" yh+ 20yl — y") yg

In the small angle approximation, the mixing angles can be estimated by

NY1d2_3/i2 Nﬁ_y?Q*yP NYQ%:yéJF%yilz*yp)

oy~ T2 Ve gy VT
d 7 d 4 d d
Y3 Y2 Y3s Y3 Y35 Y3

The down-type Yukawa eigenvalues are given by yq &~ (v%)2/%h, ys ~ yh, yp =~ y4.

Solving for y&y, y5 and y§, we have, to good approximation, ¥y ~ \/yays, ¥y ~ Vs,
y¢ = y,. Reintroducing these into our estimates for mixing angles, we get
g~ Y e aYs — y" g1 Ys T 2/UsY —y") 04
25y YsE T T s " : (5.24)
S

Note that the first equality is exactly the GST relation [206], which is in good agreement
with data. In fact, the GST relation, which predicts 67, ~ 0.224 for the central values of
yq and ys, is in mild tension with experimental data, which gives 67, ~ 0.227. Possible
modifications to the GST result have been proposed [209], e.g. adding a correction like
\/M, which can be realised by a texture zero also in Y*. Alternatively, one may
exploit the statistical uncertainties on each of the down and strange quark masses. A

small deviation from their central values can predict a slightly different 67,.

On the other hand, the mixing angles 6], and 63, are less precisely estimated, as the
parameter y can be as large as y{@, and the final result will depend on the relative phase
between ny and y*. Note however that both mixing angles depend in the same way on
yilQ — yP. Generally, the approximations in Eq. 5.24 predict some tension between 9‘113
and 02,, which are too large and too small, respectively. This tension cannot be resolved

simply by tuning y*.

5.3.3 Full derivation of matrices

For completeness, we here derive the precise forms of the Yukawa and Majorana mass

matrices, taking into account the vacuum alignments of the adjoint Higgs superfields.
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The renormalisable superpotential given by Eqgs. 5.6 and 5.7, with explicit O(1) cou-
plings, is

H—+H-—
Wy = A2%daXa + AXaXaHLs + XaXa (AZH%O +AY “)

Mp
TG (N HS + M Hs) + i i (5.25)
Hd
+ A?QXlXQHflO + )\ngE}HE + Mppp + )\%%’

where a sum over a = 1,2,3 and b = 2,3 is understood. Recall from Eq. 5.3 the flavon
vacuum alignments (¢1) = v1(1,3,—1), (¢2) = v2(0,1,-1), (¢3) = v3(0,1,0). The
singlet product which occurs in ¥ ¢, above, i.e. 3' x 3’ — 1, is given by (AB) = A1 By +
Ao Bs + A3Bsy. To account for this nontrivial product as well as the field redefinition
19 — —1)y (this overall sign is unphysical), we define the vectors <q§l> = Ig, (¢i), where

1 0 0
Is,=[0 0 —1]. (5.26)
01 O
This gives
1 0 0
(G)=wvi|1], (do)=wa|1]|, (gs)=ws|O]. (5.27)
3 1

Next, we introduce notation to specify the relevant components of a VEV (H f5>, cor-
responding to unique CG factors. The index k labels the adjoint, i.e. £k = X,Y, Z, or
B — L. After the GUT is broken and ) is decomposed into MSSM gauge multiplets, the
part of an adjoint VEV which couples to a given multiplet f is denoted

Hi€5 - <Hfs>f, (5.28)

where f = Q,u® d° L, e, or v°. The Hiz gets a VEV in the direction which preserves
SU(5), which we call the (singlet) v¢ direction. Its VEV only affects the right-handed

neutrino mass matrix and is simply denoted vig.
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We extract the Yukawa matrices from diagrams in Figures 5.1 — 5.3. Taking into account

nontrivial Sy products (as above), we have
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L (A9)? (Ba); (93),
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PN (HE), (HE) . 7 Mp

+ A

Y5 =X

+A

The last term in Eq. 5.25 is a singlet coming from three Sy triplets and gives rise to the

final terms in Y¢ and Y, where Yp is the numerical matrix defined in Eq. 5.14.

5.4 Numerical fit

5.4.1 x? minimisation and Monte Carlo methods

Our model determines the Yukawa couplings and mixing parameters at the GUT scale,
which is also the highest flavour-breaking scale. As in the analyses of Chapters 3 and
4, the values from experiments must be run up to the GUT scale, taking into account
supersymmetric radiative threshold corrections. This analysis has been performed in
[145], and their parametrisation of the corrections is summarised in Appendix B. Most
parameters do not significantly affect the fit, so are simply set to reasonable values.
Specifically, we set Msysy = 1 TeV, tan8 = 5 and 7, = 7y = 0. We also find that
a good fit can be achieved for a rather large value 7, = —0.8. The choices of SUSY
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parameters tan S and 7, are here empirically determined to give a good fit of the model
to data. It is clear from the fit that large (negative) 7 is required, affecting primarily
the bottom quark Yukawa coupling ¥,. In order to keep y;, perturbative, we must assume
reasonably small tan 8. In the region of 5 < tan 8 < 10 or so, the fit is rather insensitive

to the exact choice. Neutrino data is taken from the NuFit global fit, version 3.0 [36].

To find the best fit of the model to data, we minimise a y? function, defined as in

Eq. 2.22 by
-P'i o _Ppbs 2
=) <( )= F > : (5.30)

- g
i

where PiObs and o; are the experimental best fits and errors, respectively, and we have
used 6 instead of z to denote the input parameters. As already noted, in order for
a minimum y? to correspond to the maximum likelihood, the statistical uncertainties
should be symmetric (Gaussian). In earlier fits based on the NuFit 2.0 data, we needed
to carefully consider the bimodality of the atmospheric mixing angle 953; experimental
data could not conclusively resolve the octant, i.e whether 65, is larger or smaller than
45°. While this remains true in the current global fit, the preference for the first octant
(for normal ordering) is stronger, with a central value 41.6°. We will assume this is the

true value.

For our model, the input parameters are 6 = {y}", yzd, Ys,yp, i, ', Qde, Bd,e, Y}, and the
observables are given by P; € {03]-,5q,yu,cvt,ydﬁ’b,ﬁfj,ye%T,Amfj}. As the lepton CP
phase 6° is (still) not well measured, we do not include it in the fit, leaving it as a pure
prediction. While we fit to the neutrino mass-squared differences, the model predicts
the masses outright, including the lightest neutrino mass m;, as well as the Majorana

phases 21 31.

x? minimisation is an effective tool for finding a best fit point parameter space, and
for comparing models to each other. For this model we went further, supplementing
the fit with a Markov Chain Monte Carlo (MCMC) analysis, allowing us to gain more
insight into the model predictions, in particular the likely ranges for mass and mixing
parameters in the model. The broad aim is to estimate the probability distribution of
parameters in the model, given the available data.* In the language of Bayesian inference,
this is the posterior probability density. Once this is known, we may identify regions
of highest posterior density (hpd), which correspond to the most likely predicted values
of physical parameters, and construct so-called 95% credible intervals, which contain
those parameter values that collectively have a 95% chance of being the true predicted
value by the model (given the data). These are analogous to, but philosophically very
different from, the often cited confidence intervals associated with frequentist analyses.
Confidence intervals correspond to those values of a parameter where, in 95% of iterations

of an experiment repeated many times, the measured value of an experiment will lie.

4 These methods for exploring the parameter space were foreshadowed in the analysis of CSD(n) in
Chapter 2, where we plotted x? as functions of the inputs (see Figures 2.1 and 2.2).
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To estimate the posterior distributions we used the Metropolis-Hastings algorithm [210],
which repeatedly samples from the parameter space, preferentially revisiting regions that
correspond to higher likelihood (a lower x?). It falls within a particular class of Monte
Carlo methods based on Markov chains, which have as a key characteristic that the each
iteration depends only on the last sample, and has no “memory” of previous iterations.

The algorithm works as follows:
1. Generate a set of input parameters 6.

2. Calculate the relevant observables P;(6).

3. Calculate the likelihood L(6), defined as

2
L(6) = exp [—2] , (5.31)
in terms of the standard x? test statistic, defined above.

4. Generate a new set of input parameters §’. There is some freedom in how this new

set is selected, discussed below.

5. Calculate L(#") and the acceptance ratio

(5.32)

which describes the relative likelihood of the two points in parameter space.

6. If a > 1, we automatically accept 6’ as the new starting point, so ¢/ — 6. If a < 1,
we accept 0 only with probability «, i.e. the new starting point is randomly chosen

to be either ', with a probability «, or 6, with a probability 1 — «.

7. Repeat from step 2.

A few additional notes on the method are in order. The random choice when a < 1
allows for the possibility of moving from a point in parameter space with lower x? to
a (somewhat) higher one. This ensures one does not get trapped in a shallow local
minimum. In a large and complicated parameter space such as the one considered here,
several local minima may exist; it is important that the MCMC algorithm can sample
from all such regions. In the infinite limit, the chain will visit (and revisit) each region
for an amount of time proportional to the likelihood (itself proportional to the posterior

probability).

Meanwhile, the shape of the distribution from which the next point €’ is chosen is a
free parameter in the algorithm, and affects the rate of convergence. Conventionally,
the proposal distribution is chosen such that no more than half of proposed sets 6’ are

accepted. A common choice, which we employed, is to choose each new 93 from a normal
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distribution centered around the previous 6;, with some appropriate standard deviation

o, typically a few percent of the mean value. We set o = 2%.

The initial starting set constitutes another free choice, chosen from physical consider-
ations within the model itself. In this model with universal sequential dominance, we
have rather well-defined expectations for the natural values of the input parameters.
For instance, we anticipate y3 to be closely related to the top quark mass; y3 = y; thus
serves as an appropriate starting point. However, we allow an initial burn-in period,
which allows the algorithm to “forget” the initial state. To calculate a hpd interval, one
plots the posterior distribution and identifies the region(s) with the tallest peaks; these

do not need to be connected.

5.4.2 Results

Observable Data Model
Central value lo range Best fit Interval

0%y /° 33.57 32.81 — 34.32 33.62 31.69 — 34.46
0fs/° 8.460 8.310 — 8.610 8.455 8.167 — 8.804
05 /° 41.75 40.40 — 43.10 41.96 39.47 — 43.15
§t /e 261.0 202.0 — 312.0 300.9 280.7 — 308.4
ye /1070 1.017 1.011 — 1.023 1.017 1.005 — 1.029
Yy, /1073 2.147 2.134 — 2.160 2.147 2.121 — 2.173
yr /1072 3.654 3.635 — 3.673 3.654 3.616 — 3.692
Am32, /107° eV? 7.510 7.330 — 7.690 7.515 7.108 — 7.864
Am3, /1073 eV? 2.524 2.484 — 2.564 2.523 2.443 — 2.605
my /meV 0.441 0.260 — 0.550
my /meV 8.680 8.435 — 8.888
ms /meV 50.24  49.44 — 51.05
> m; /meV < 230 59.36 58.49 — 60.19
Qo1 67.900  -25.19 — 87.49
as1 164.2 19.98 — 184.5

Table 5.2: Model predictions in the lepton sector, at the GUT scale, with ex-
perimental 1o ranges from [105, 145]. We set tan 8 = 5, Mgysy = 1 TeV and
7, = —0.8. The lepton contribution to the total x? is 0.03. 6¢ as well as the
neutrino masses m; are pure predictions of our model. The model interval is a
Bayesian 95% credible interval.

We present the best fit (minimum x?) of the model to physical observables (Yukawa
couplings and neutrino mass and mixing parameters) in Tables 5.2 and 5.3, which also
include the central values and 1o ranges from data. Figure 5.4 shows the associated
pulls, and Table 5.4 shows the corresponding input parameter values. The fit gives
x?2 ~ 3.4. A second minimum with x?> ~ 4 was also found, leading primarily to a
different prediction for ¢, as discussed below, although we shall not present the full fit

parameters for this case.
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Observable Data Model
Central value lo range Best fit Interval

i, /° 13.03 12.99 — 13.07 13.02 12.94 — 13.10
6%, /° 0.039 0.037 — 0.040 0.039 0.036 — 0.041
034 /° 0.445 0.438 — 0.452 0.439 0.426 — 0.450
01 /° 69.22 66.12 — 72.31 69.21 63.22 — 73.94
Yy /1076 2.988 2.062 — 3.915 3.012 1.039 — 4.771
yc/lo_3 1.462 1.411 — 1.512 1.493 1.445 — 1.596
Yt 0.549 0.542 — 0.556 0.547 0.532 — 0.562
yq /1075 2.485 2.212 — 2.758 2.710 2.501 — 2.937
ys /1074 4.922 4.656 — 5.188 5.168 4.760 — 5.472
b 0.141 0.136 — 0.146 0.137 0.126 — 0.143

Table 5.3: Model predictions in the quark sector at the GUT scale, with experi-
mental 1o ranges from [145]. We set tan 8 = 5, Mgysy = 1 TeV and 7, = —0.8.
The quark contribution to the total x? is 3.38. The model interval is a Bayesian
95% credible interval.

-0.5¢

-1.0t

Figure 5.4: Pulls for the best fit of the model to data. Quark parameters are
given in blue, and lepton parameters in yellow. The corresponding best fit values
are shown in Tables 5.2 and 5.3.

Parameter  Value Parameter Value Parameter  Value
y¥ /1076 3.009 yS, /1074 1.558 g 0.0437
yy /1073 1.491 ys /1073 2.248 Ba 0.2957
Yy 0.549 ys /1072 3.318 Qe 1.6927
ydy /1074 —1.186 p /meV 2413 Be 1.7557
yd /1074 6.980 po /meV  27.50 7y 0.9187
y4 0.137 ps /meV 2.900 n 1.0537

y? /1074 1.243

Table 5.4: Best fit input parameter values. The model has 13 real parameters:
T yld, y¢, p; and y©. While 7 is fixed by flavon alignment to —27/3, there are
six additional free phases: 1, age, Ba.e and 7. The total x? is 3.4.
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We see from Tables 5.2, 5.3 and Figure 5.4 that both quark and lepton sectors are fitted
to within 1o of the values predicted by global fits to experiment. The biggest pulls are
in down-type quark Yukawa couplings yg4sp and 635. As shown in Section 5.3.2, 64,
is approximately given by the ratio ys/yp, which is typically too small. Furthermore,
attempts to increase 0;, e.g. by tuning y”, tends to increase 615, which is then too
large. This tension can be ameliorated by assuming large threshold corrections, i.e. by
setting 7, = —0.8, although some tension remains among the above parameters, which

deviate by about 1o.

Tables 5.2 and 5.3 also include a Bayesian 95% credible interval for each observable.
The interval for a given parameter corresponds to the hpd region, marginalised over the
other parameters. Recall that this may be interpreted as follows: given the data, there
is a 95% probability that the true model value of that observable resides in the stated
interval. For many observables, these probability distributions are essentially Gaussian,
centred around the best fit value. This is not always the case: the distributions for 6%,
and 953 are asymmetric, consisting of two partially overlapping peaks. Moreover, the
hpd region for §¢ consists of two completely distinct intervals, which contain the best fit
values 300.9° (as seen in Table 5.2) and 233.9° (corresponding to a second best fit point
with x? ~ 4). Their associated 95% credible intervals are given by 280.7 < §* < 308.3
and 225.1 < 8¢ < 253.2, respectively. We note that neither region includes maximal
CP violation 6 = 270°, which is close to the prediction from CSD(3) with diagonal
charged leptons. In short, charged-lepton corrections induce a deviation from maximal

CP phase, which can either be positive or negative, depending on the phases of Y°.

5.5 Summary of features

We have constructed a rather simple, natural and complete SO(10) model of flavour
with a discrete Sy x Z3 x 7L symmetry, where all Yukawa matrices derive from the
VEVs of triplet flavons with CSD(3) alignments. It is simple in the sense that the field
content is reasonably minimal, with small Higgs representations of SO(10) consisting
of two 10s which contain the MSSM doublets, a Higgs spinor pair 16 + 16, and three
adjoint Higgs 45s, which provide necessary Clebsch-Gordan factors that distinguish
charged leptons and down-type quarks. It is natural in the sense that Yukawa and mass
matrices consist of sums of low-rank matrices, each of which contributes dominantly to a
particular family, i.e. universal sequential dominance. It is complete in the sense that it
is renormalisable, and addresses doublet-triplet splitting, the p-problem, Higgs mixing

and proton decay.

The model successfully reproduces all observed fermion masses and mixing. Analytical
estimates are underpinned by a detailed numerical analysis, employing also Monte Carlo

methods to give credible intervals for all predicted parameters. There is no tuning of
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O(1) parameters necessary to explain the mass hierarchies of charged fermions, account-
ing also for the milder hierarchy in down-type quarks compared to up-type quarks. The
model simultaneously realises large lepton mixing and small quark mixing, as well as the
GST relation for the Cabibbo angle, 6%, ~ \/M via a texture zero in the down-type
Yukawa matrix Y% In the lepton sector an excellent fit to data is found, predicting a
normal neutrino hierarchy and lightest neutrino mass m; < 0.5 meV. The C' P phase &
was not fitted, but left as a pure prediction. Two distinct regions are preferred, with
corresponding best fit values 6¢ ~ 301° and 234°. We emphasise that the model predicts

significant deviation from both zero and maximal C'P violation.






Chapter 6

Conclusion

In the previous four chapters of this thesis we have discussed various aspects of the
flavour puzzle and their potential resolutions within SUSY GUTs with discrete family
symmetries. Before discussing the impact and outlook for the future, let us reiterate the
most compelling features of the work presented within this thesis. They can be sum-

marised in a number of key concepts: naturalness, completeness, simplicity, predictivity.

In Chapter 2 we discussed the sequential dominance framework, with particular focus
on a numerical analysis of the CSD(n) class of models describing neutrino mass and
mixing, considering models of both two and three right-handed neutrinos. We showed
how CSD(n) can arise from the vacuum alignments of family triplet flavons ¢. A x?
fit was performed for integer n < 9, and an excellent agreement with data was found
for the case n = 3, with also n = 4 showing promise. In particular CSD(3) with two
right-handed neutrinos offers a highly predictive and successful setup, where the entire
PMNS matrix is essentially fixed by a single phase 7 in the neutrino mass matrix. It
also predicts a the leptonic C P-violating phase 6¢ very close to maximal, which coincides
with current experimental hints. These rather small values of n are promising from the
perspective of model building, as they are more readily achieved in indirect models of

flavour based on orthogonality arguments.

We found that the x? measure offers a simple and effective way of examining parameter
space, and for comparing models, and has been dispatched for every model considered
within this thesis. However, the interpretation and robustness of the y? statistic is
subject to a number of subtleties, which we have also addressed at every step. These
include the non-Gaussianity of the data (i.e. the results of a particular global fit) and
the decision about whether to include 6¢ in the x2 fit or leave it as a pure prediction of
the model. Additionally, we have considered how best to treat those parameters which
do not significantly affect the fit, such as the “decoupled” neutrino mass parameter m,
and associated phase, and those which may be fixed by theory, such as n, or the phase

1, which may be fixed by a discrete symetry.

147



148 Chapter 6 Conclusion

We have also considered the cosmological consequences in general CSD(n) models, by
studying thermal leptogenesis, showing that the observed baryon asymmetry of the
Universe can be explained through decays of the lightest right-handed neutrino Nj.
This process can depend strongly on flavour effects, and the predictions for the BAU
depend on the value of n; interestingly, the smallest value giving non-zero BAU is found
to be n = 3. In this highly constrained framework, we can also make a direct link
between the phase 1 which controls the PMNS matrix parameters and the phase which
appears in the C'P asymmetries ¢; appearing in leptogenesis calculations. Notably, we
showed that a preference for 6 ~ —7/2 in oscillation experiments implies, in CSD(n),
that the BAU is positive.

The above analysis serves as a promising start for a more complete resolution to the
flavour puzzle. We subsequently constructed several models based on CSD(3) with
a unifying gauge group, each of which has its own strengths and shortcomings. In
Chapter 3 we constructed a “minimal” model based on Ay x SU(5), so called because
Ay is the smallest group that admits triplet representations — a partial explanation for
the origin of three families of fermions — and SU(5) is the smallest GUT group that
contains the Standard Model. With only two active right-handed neutrinos, it also

realises the most minimal and predictive incarnation of CSD(3).

The second guiding principle was completeness: we aimed to construct a model that
resolves as many open questions in particle physics as possible simultaneously. Charge
quantisation is guaranteed by the GUT group, as is gauge coupling unification, which
is protected from dangerous corrections by ensuring only the two MSSM Higgs doublets
remain at low scales. GUT breaking, proton decay, doublet-triplet splitting and the u
problem are also addressed and resolved. The focus, however, was on the viability of the
Yukawa sector, where the model predicts quark and lepton masses and mixing patterns
are in agreement with data. In the quark sector, mixing occurs from a discrete variant
of the Froggatt-Nielsen mechanism, while C'P violation arises from a single term in the
down-type quark sector. The lepton sector realises a rather “clean” implementation of
CSD(3) considered previously, ensuring a good fit. As a consequence, the successful
predictions for leptogenesis in CSD(n) are also carried over into this model. Serendip-
itously, the model can also resolve the strong C'P problem of QCD without relying on
axions, due to the highly constrained nature of the quark Yukawa matrices, itself a result

of the family symmetries.

While SU (5) offers perhaps the simplest “upgrade” of the Standard Model with CSD(n)
into a fully fledged GUT, the presumed existence of heavy right-handed neutrinos heavily
favours SO(10), where they are automatic. We therefore constructed two successful
models based on SO(10), where CSD(3) arises from A(27) and Sy, respectively. Both
have the enviable feature that all known fermions are contained at the high scale within

a single representation ¥ (or 1) of the symmetries at high scale. However, beyond this
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point there are many differences, both in the approach taken to model building and the

physical predictions.

In the A(27) x SO(10) presented in Chapter 4, the emphasis once again lay on complete-
ness. Symmetry breaking, proton decay and doublet-triplet splitting were addressed, as
were doublet-doublet splitting and the pu term. SO(10) offers a much greater challenge
for explaining flavour than SU(5), as total unification of fermions within a family naively
implies that they couple identically to Higgs doublets and that the Yukawa matrices are
all equal, giving incorrect mass relations between fermions and no flavour mixing. In
order to produce a viable model, new perspectives are required. Here, by coupling ¥ to
flavons, we developed a framework — universal sequential dominance — where both the
hierarchies among fermions and non-zero mixing can be explained in a transparent and
rather simple way. All Yukawa matrices are given as sums over rank-1 matrices, with
each part understood to be responsible for one non-zero eigenvalue. This replicates the
CSD(3) prediction for the form of the neutrino mass matrix in all sectors. A priori, this
has no reason to work for quarks, and even in the lepton sector we needed to be careful
that corrections coming from a decidedly non-diagonal charged lepton Yukawa matrix
do not spoil the successful CSD(3) predictions for the PMNS parameters. With a small
tweak in the up-type quark sector, we could indeed achieve a good fit of the model to
data.

While completeness is an admirable goal, both the above models necessarily have very
large field content. Sharp predictions are made possible by having a renormalisable
theory at the GUT scale, with the immediate consequence that we require a rather large
number of messenger superfields in order to attain exactly the desired superpotential. In
the Sy x SO(10) model presented in Chapter 5, our focus lay instead on minimality, here
interpreted as employing the smallest possible field content, and naturalness, where all
hierarchies (such as those between fermion masses) arise dynamically, and renormalisable
superpotential terms all have O(1) coupling strengths. Certainly this model is more
minimal than previous efforts, with a considerably smaller field content, and a rather
simple superpotential responsible for all Yukawa and mass terms. This simplicity is
partly due to the absence of a singlet flavon (in the previous two models labelled &)

acting as a Froggatt-Nielsen field.

It also realises a more sophisticated implementation of universal sequential dominance,
explaining all fermion hierarchies by assuming only a rather mild hierarchy in the VEVs
of flavons, i.e. (¢1) <(p2) <(¢3), each separated by one order of magnitude. In this sense
the hierarchy conundrum, although not entirely resolved, has been considerably amelio-
rated. The milder hierarchy among down-type quarks compared to up-type quarks is
explained by a mixed term involving ¢; ¢, giving a texture zero in the (1,1) element of
Y9, realising the GST relation. We therefore have a natural explanation for a compar-
atively large Cabibbo angle, and why the up quark (originating from a term involving
#?) is so light.
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Neutrino mixing arises in accordance with CSD(3), whose phenomenological success is
now well-established, although we must necessarily take into account mixing coming
from charged leptons. One effect is to alter the standard prediction for the C P-violating
phase ¢%: in standard CSD(3), it is maximal, i.e. 6° ~ 270°, while the numerical fit
above shows is necessarily deviates from maximal. This prediction may be tested in
future experiments. In the analysis of this model we also supplemented the standard x?2
fit with new numerical tools, namely Monte Carlo methods and credible intervals. This

enabled us to more fully understand the parameter space.

Moreso than the previous two models, the Sy x SO(10) model is a work in progress.
While the low-scale Yukawa predictions are rather well understood from the analysis
presented within this thesis, several assumptions are made that need to be addressed if
the model is to be truly complete. We have not, for instance, proved that the CSD(3)
alignments, derived elsewhere in a non-GUT framework, can be realised within this
model. To do so, we must show that the additional field content necessary for fixing the
VEV alignments are compatible with all the symmetries of the present model, and that
no new terms appear in the effective Yukawa superpotential which spoil the predictive
matrix structures. However, recall that the vacuum alignments preserve a generator of
5S4, and as such are at least partially motivated purely on symmetry grounds. There is
consequently a reasonable expectation that these alignments can arise naturally in any

model with spontaneously broken Sjy.

Although doublet-triplet splitting and the p problem have been considered in this model,
we have not shown explicitly how SO(10) is broken to the MSSM. This should be
addressed in a complete model. Similarly, we have not discussed leptogenesis within this
model, although some generic inferences can be made as to how a baryon asymmetry may
be generated in this model. The structure of the neutrino Yukawa matrix Y is tightly
constrained to resemble the up-type quark matrix Y*, up to an overall O(1) factor. The
seesaw relation and the numerical fit to light neutrino masses thereby strongly constrain
the right-handed neutrino masses. We conclude that the lightest right-handed neutrino
N; with a mass M; ~ 105 GeV is too light to produce the observed BAU, and that Ny
thermal leptogenesis will be required. The second-to-lightest right-handed neutrino in
our model has a mass of O(10'°) GeV, which is in the preferred range. However, in
Ny leptogenesis one must account for washout due to inverse decays into Ni. To verify
that thermal leptogenesis is indeed viable, one should calculate all relevant parameters,
e.g. decay asymmetries, efficiency factors, taking into account also flavour effects. The
resultant constraints on the neutrino Yukawa couplings may test the prediction in this
model of Y” & Y.

Beyond the specific models presented here, and beyond CSD(n), there are a number of
topic in SUSY GUTs, and particularly those of flavour, which merit further study. First,
we note that the earlier models reproduce the MSSM with conserved matter parity at

low scale, itself broken at TeV scale. This is among the most studied supersymmetric
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extensions of the Standard Model and among the most constrained. In a more complete
phenomenological study, experimental constraints on SUSY observables would also be
taken into account. As we have seen, to achieve a good fit to data for all quarks and
fermions, we must assume some SUSY threshold corrections to the running of Yukawa
parameters. For instance in Chapter 3, these corrections ensured the equality of bottom
quark and tau lepton masses at the GUT scale, as predicted by the model. What
underlying SUSY model is thus required in order to reproduce the necessary corrections?

This would be a natural and compelling avenue for probing the SUSY GUTs discussed.

Furthermore, while the SU(5) model in Chapter 3 contains a solution to the strong C'P
problem by the Nelson-Barr mechanism, no such solution is available in the SO(10)
models of Chapters 4 and 5. A natural candidate solution is to introduce a Peccei-
Quinn symmetry and an axion. It may be realised rather trivially by introducing the
axion as a new field which is essentially decoupled from the existing fields. However,
as these models already contain a number of gauge singlets — notably, family symmetry
triplet flavons — and spontaneously broken global symmetries, it is interesting to examine
whether an axionic solution to the strong C'P problem can be realised more compactly
with the available field content. Some early efforts in this direction have been made, but

are as yet inconclusive.

Finally, a complete model ought also to include a candidate inflaton.! Again, it is
possible that a member of the flavon sector, which contains many scalars including singlet
and triplet flavons as well as driving fields, may be the inflaton. Such a scenario, proposed
in [100], is worth further study. While deemed beyond the scope of this thesis, the author
has studied inflation in another context [211], namely whether “resonant” leptogenesis
may be realised in a model of chaotic sneutrino inflation involving two nearly-degenerate

heavy right-handed neutrino superfields, whose scalar parts are responsible for inflation.

! This presumes, of course, that inflation is the correct description of the early moments of the
Universe, which is widely accepted, although many variations on the theme have been proposed.






Appendix A

Properties of discrete groups

Al S;and Ay

The group theory properties of Sy and A4 are well-known. Here we summarise the
relevant group properties, including the Kronecker products, as presented in [212]. Sy
has five irreducible matrix representations: two triplets 3 and 3’, which are independent,
one doublet 2, and two singlet representations 1 and 1’. The A4 subgroup has only one
triplet representation 3, and three singlets 1, 1’ and 1”. All group elements can be
expressed as products of generators S, T" and U. The form of these generators depend
on the choice of basis. For the Ss x SO(10) model presented in Chapter 5, we use
the basis where the generator T is diagonal, with elements of unit length and phases
that are products of w = €™/3 [55]. Note that the A4 x SU(5) model in Chapter 3
employs another basis, which we will describe shortly. The matrix representations in

the diagonal-T" basis are given in Table A.1.

/ /
Representation S4 3’ 3 (1//2 1) ! ’11
10
2 - 1 < ) 1
( 5 0 1
1 0 0
Generator 0 w2 0 w 0
0 w?
0 0 w
1 00
0 01 <(1) é) +1
010

Table A.1: Generators of the Sy and A4 groups in the diagonal-T basis.

The Kronecker products of the group representations are basis-independent, but the

values of the Clebsch-Gordan coefficients depend on the basis. Let us consider first
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Sy. In a given product x) @ y) — z(), where x, y, z denote the dimensions of the
representations, we indicate the number of primes which appear by n, e.g. 3 ® 3’ — 3’
has n = 2 primes. The product rules can then be given in a compact form, as follows.

Products involving at least one singlet or doublet are given by

10010 = 10 af,

B
10 @2 - 2 ,
®2 — o ((_1)n52>

b
1) %30 — 30) al B,

B3
22— 10 a1z + (—1)" a1,

202 — 2 a2f2)
a1 4

,32 53
230 - 30) ap [ Bs [+ (=) | B |,
B1 P2

while products of two triplets going into either a singlet, doublet or another triplet are
given by

30) @30 — 10) 181 + azf3 + asfa,
( a2fs + azf + 1S3 )

30 230 52
(—=1)™(a3f3 + 182 + a2f)

aofl3 — a3z

30 & 30 — 30 a1 Py — g [n even], <A2)
azfi — a1B3
20181 — afiz — a3

3" @30 — 30) 20303 — a1f8 — gy | [n odd].

20080 — a3f1 — 133

The A4 product rules in this basis can be found by dropping all primes, and identifying

the two components of the Sy doublet by 1” and 1’. The non-trivial products are given



Appendix A Properties of discrete groups 155

by
1’1" -1 afs,
B3
13 -3 alpBr],
B2
B2
1"%3 — 3 alps|,
B (A.3)
33 —>1 a1y + a2 + asfa,
33 -1 azfB3 + a1B2 + agf,
33— 1" azfB2 + azfBi + a1 B3,
20181 — azf3 — a3 23 — s
33 —>3+3 20383 — a1f2 —aofr | + | a1ffe — af
2092 — asf — a1 3 azf1 — a13

However, in the A4 x SU(5) model of Chapter 3, we use instead the basis where S is
diagonal, called the real basis, as the generators S, T and U are all real [213]. In the

triplet representation, we then have

0 010
S = -1 0], T=1(0 0 1 (A.4)
0 0 -1 100
This yields the product rules for two triplets
33 -1 181 + agfz + asfs,
33 =1/ a1 81 + wlasfe + waspi,
33— 1" a1 + wazfs + wasf,
(A.5)
azf33 asf2
3®3 — 31+ 32 asfr | + | a1Bs
a1 2 s

A2 A(27)

A(27) belongs to a class of discrete non-Abelian groups known as A(3n?). These are
isomorphic to the semidirect product of the cyclic group Zs with Z,, x Z,; n = 2 gives
the familiar A4 group, while n = 3 gives A(27). The A(3n?) class has been studied in
detail in [214]. The key aspects relevant to model building are the representations of the
group and their product rules. A(27) contains two irreducible triplet representations
and nine singlets, which are labelled 1,5, with r,s = 0,1, 2. It is also the smallest in this

class to contain a conjugate representation, referred to as an antitriplet.
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The A(27) rules for taking the product of a triplet A = (aj,a2,a3) and an antitriplet
B = (b, b%,b3) are

AB 00 = all_)l + CLQZ_)Q + a363)00

ABo1 = (a1b® + agd* + a352)01

ABlo2 = (a1b® + asb® + asl_)l)oz

[AB]Joo = (

[ABJo1 = (

[AB]Jo2 = (

[AB]yo = (CLJ)I + w2asdb® + wa353)10

[AB)11 = (warb® + azb! + w?azb®)1y (A.6)
[AB]12 = (w?a1b® + wagb® + asb) 1

[AB]20 = (a1b" + wagh® + w?asb®)s

[AB]21 = (w?a1b® 4 axb® + wazb?)a;

[AB)ay = (warb® + w?agh® + azb' )22

where w = €27/3. The product of two triplets or two antitriplets yields, respectively,
an antitriplet or a triplet. There are three possible products that can be made in each
case, labelled I (identity), S (symmetric) and A (antisymmetric). Defining triplets
A = (a1,a2,a3), B = (b1,b2,b3) and antitriplets A = (a',a? a®), B = (b',b%,b%), their

products are given by

[AB]; = (a1b1, az2bz, azbs)oz

[AB]; = (@'d', a2, a%b) o

[AB]s = (a2bs + asba, agby + a1bs, a1by + azby)o2 (A7)
[AB)s = (@%0® + ab2, @' + a'b®, a'b® + ab o

[AB]a = (a2b3 — asba, azby — a1bs, a1ba — azb1)o2

[AB]4 = (a%0® — @*b%, @bt — a'v?, a'v® — a’bh)oy

Note that the bar on antitriplets serve merely a reminder of their assignment under
A(27).
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Running Yukawa parameters

In order to compare models defined at the GUT scale, as in Chapters 3, 4 and 5, to
experimental data which describes fermion mass and mixing parameters at Standard
Model scales, we must take into account two things: renormalisation group running and
SUSY threshold effects. These effects have been examined by others in [145], where
they develop a useful parametrisation of the SUSY threshold effects, and also perform
the running, producing data sets which may be incorporated into model-building efforts.
This section summarises the key features of that work relevant to the analyses in the

above-mentioned chapters.

B.1 Parametrisation of threshold corrections

In supersymmetric extensions of the Standard Model, there are corrections to the Yukawa
couplings induced by loops involving SUSY particles, which become relevant at (or near)
the scale at which SUSY is broken. Furthermore, these couplings are run from the
SUSY scale to the GUT scale using the renormalisation group equations. The MSSM
contains a large number of parameters which describe the soft breaking of SUSY and
resultant sparticle spectrum. In the absence of a model of SUSY breaking, we know
neither the scale of SUSY breaking, nor the sparticle mass spectrum. In such cases one
commonly assumes a common scale Mgysy where all superpartners are integrated out
simultaneously. From considerations of the electroweak hierarchy problem, this scale

should not significantly exceed ~ 1 TeV.

Corrections to the Yukawa couplings at the threshold Msysy can be parametrised. In
[145], they introduce a set of parameters 7;, which account for contributions which are
tan S-enhanced, noting that others are expected to give corrections at less-than-percent

level. A connection is made between the Standard Model and MSSM Yukawa matrices
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via matching conditions

Yy = Yatssn sin 3,
Vi~ (1 + diag(7g; 1g, b)) Vs cos B, (B.1)
Yéu = (1 + diag(7e, 7, 1)) Vg €os B-

For more details on the origin of these parameters, we refer the reader to the original
paper. We do however note here that corrections to the 7 Yukawa coupling y, are
subsumed into a redefinition 8 — /. In the limit where threshold corrections to ¥, are
negligible, this reduces to the usual 8. In all cases in this thesis, such a scenario is

assumed.

The models described in this thesis reduce to the MSSM. As such, we are concerned
with the MSSM Yukawa couplings, so we may rearrange Eq. B.1 to give an expression

for each MSSM coupling, as

MSSM ., , SM 2}
yu7c,t - yu,c,t Csc 57

yg/’[sSSM ~ (1+ ﬁq)_l yﬁ}\s/[ sec 3,
yp SN o (14 7) gy M sec B, (B.2)
MSSM ~ (1 + 77/6)_1 SM sec B’

Yeu Ye,u
MSSM

yp SV o g2 M sec 5.
The CKM matrix will also be altered by these threshold corrections. The authors note
that, to good approximation, 67, and §7 are not affected by SUSY threshold corrections.
The MSSM mixing angles (at Mgsysy) are given by

PLMSSM. 1+ pa:SM
i3 “14g B
g
6‘17MSSM ~ 997SM (B.S)
12 =Vi2 5

5q,MSSM ~ 5q,SM

These values are then run up to the GUT scale using the renormalisation group errors,
ie. yZMSSM — y}\ASSM@GUT. Those may then be compared to the GUT model predictions.
The analysis in [145] shows that the running depends primarily on the parameters 7, and

8. They provide the necessary GUT-scale values for the observables defined in Eqgs. B.2

and B.3, as functions of these SUSY parameters.

Meanwhile, the neutrino mass and mixing parameters are expected to be largely insen-
sitive to group running. As the experimental uncertainties are larger than in the quark

sector, these will dominate the overall error.

Let us summarise the particular choices for SUSY parameters made in each model pre-

sented in this thesis. In all cases we assume Mgysy = 1 TeV. In the A4 x SU(5) model
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in Chapter 3, we set 7, = —0.24375. Note that this does not imply five orders of pre-
cision, rather the datasets from which we extract quark couplings give the input values
in discrete intervals; for 7, they are multiples of +£0.01875. All other threshold param-
eters are set to zero, while for tan 8 we consider two cases, tan 5 = 5 and 10. In the
A(27) x SO(10) model of Chapter 4, we find the fit is rather insensitive to threshold
corrections, and simply set all 7; parameters to zero. As it was found that tan S has
only marginal effects on the quality of the fit (as long as it was not much larger than

10), we also assume tan = 5 for convenience.

Conversely, in the Sy x.SO(10) model of Chapter 5 the threshold corrections play a crucial
role in achieving a good fit to data. It is sufficient to assume only one of the threshold
parameters, namely 7, is non-zero, however it must take a rather large negative value
7, = —0.8. This has two primary effects. One is to shift the bottom quark Yukawa
coupling by an amount proportional to 7, the second is to alter the relative running
of quark masses and CKM mixing angles 9(1]3723 such that the tension (described in
Chapter 5) between Yukawa and CKM parameters is sufficiently ameliorated. The effect
on group running is dominated by 7. Any particular choice of 7, will scale the d and s
Yukawa couplings as well as 6], and 03, without affecting the running, a shift which can
largely be subsumed into the free parameters yil’Q. We do find that the running of fermion
Yukawa couplings can change noticeably for large tan § > 25. However, generically the
model prefers a smaller value of tan 3, so we focus on this region of parameter space.!
For 5 < tan g8 < 15, the Yukawa couplings run uniformly regardless of the precise value
of tan 8. The shift by an overall factor cos 8 in Y% can again be subsumed into the

parameters yf’g 3. For definiteness, we set tan 8 = 5.

1 One must also be careful that the corrections, which are calculated at one loop, remain perturbative.
For large tan 3, the b coupling can easily be larger than 1, beyond which we cannot trust one-loop results.






Appendix C

Symmetry breaking in models

C.1 GUT breaking in A; X SU(5)

In this section we discuss the aspects of the model described in Chapter 3 that relate to
grand unification, including how the R symmetry and the GUT gauge group are spon-
taneously broken. We then describe the details of the missing partner (MP) mechanism

giving heavy Higgs triplets.

C.1.1 SU(5) and Z% breaking

We refer to the superfields involved in GUT and R symmetry breaking as the scalar
sector. This includes several superfields found in Table 3.1a, and repeated in Table C.1a

for convenience. In addition we introduce new superfields given in Table C.1b.

The T messengers form pairs; their mass scale, unprotected by any symmetry, is near
the highest scale of the theory, which we represent generically as M. The GUT breaking

superpotential with non-renormalisable terms is then

A A
Waur = 21 (MA24 + WZHMEO’ + )\2212> + 2 (]\;’2/\2453 + )\4222>

+ Z5 (\sH3y + X Z3) .

(C.1)

We have five GUT adjoint superfields, three of which (the Z fields) are charged by 2
and two (Agq and Hog) by 0 under the R symmetry. Also appearing in Wgyr is the
Majoron &, the GUT singlet field which we have seen is involved in giving mass to several
Standard Model fermions and whose VEV breaks lepton number by giving the right-
handed neutrinos their Majorana mass. The supression of the non-renormalisable terms

in Eq. C.1 come precisely from the mass of the T messengers, as displayed in Fig. C.1.
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Field Representation

Ay SU(B) Zo Z¢ ZF

A 1 24 0o o0 2

Zs 1" 24 3 0 2

Z3 v 24 3 0 2

T 1 24 7 0 O

Yo 1" 24 2 0 2

T3 1 24 5 0 0

Ty 1" 24 4 0 2

1 /

Field Representation Ts 1” 24 4 0 0
Ay SU(B) Zg Ze ZE Yo 1 24 5 0 2

- Ty 1 24 2 0 0

Hj 1 5 0 0 0 T 1 75 3 0 2
Hy 15200 QO 1 5 4 0 2
Ayg 1724000 Q 1 50 1 0 2
Hes 1 4 40 2 0 1 5 8 0 0
Hg 145 5 0 0 m 1 75 6 0 2
13 1 1 2 0 0 Iy 1 75 3 0 0

(a) Relevant superfields from Table 3.1a. (b) Extended scalar sector.

Table C.1: Superfields that govern GUT and R-symmetry breaking.

A renormalisable term of the form ZsHo4Ilo, allowed by the symmetries, has been
dropped to make the discussion more transparent. This term mixes the VEVs of the
GUT breaking scalars with the ones in the MP mechanism so they should be naturally
around the same scale M ~ Mgur. Beyond this, its practical effect is minimal: the
fields obtain VEVs with or without this term. Since the VEVs get very complicated
when this “mixing” term is included, we ignore it for simplicity, simply bearing in mind
that VEVs from both sets of fields are related.

£ § £ 3 £ £

I I I I I I

I I I I I I

I I I I I I

I I I I I I
— - — - L - = — L e - - -~ S e Ky S
Zl Tl TQ T3 T-l H24 Z? T5 6 T7 TS A24

(a) (b)

Figure C.1: Diagrams giving the non-renormalisable terms in Eq. C.1.
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Waut has a non-trivial minimum

2PN LA
AT a2 Mot =2y
27375 2 315
.21/3 1/6 21/3 2 2/3 1/3
Uz, = % ’ VAoy = M]\L (C.2)
312025\ A2 A2 A5
oy — i)\lA}l/3 3 _ 21/3)\}1/3 3
T312) 2NN A3

where all the adjoint scalars get a VEV of the form (®24) = ve,, diag(2,2,2,—-3,-3).
By themselves, the F-terms associated with Wgur also allow a trivial minimum where
the magnitude of each VEV vanishes. But after SUSY is broken and we consider the
effects of the small contribution from radiative breaking [215] to the scalar components
of the GUT-breaking superfields (as we did for the A4-breaking flavons in Section 3.4),
the stationary point with vanishing magnitudes is no longer a minimum due to the
radiatively induced negative squared mass term. To a very good approximation the true
minima are given by the magnitudes in Eq. C.2, which are now a lower energy state
than the trivial F-term solution. We conclude that Eq. C.1 can generate GUT and
R-symmetry breaking at high scale, with Z% broken to ZI (standard R parity) by the
Z; VEVs.!

A slightly unappealing issue with Wgyr is that the minimum requires some non-O(1)
choice of A\ parameters if we are to obtain a hierarchy between the VEVs of Hsy and
Agy, and an appropriate value for (§) /M (as shown in Eq. 3.19). These requirements
come from the successful fit to up and down quark and charged lepton masses (see
Section 3.3) and partly also for the p term, as will be discussed shortly. However, since
the messengers will in general have different masses (recall we set them all equal to M
only for simplicity), the A\ parameters need not be as hierarchical as Eq. C.2 appears
to indicate. For example, if the masses of messengers ¥ are slighly larger than the

GUT-scale masses of messengers T, this would allow all A to be O(1).

We note also that, although we are considering a situation where the superpotential
parameters (the M and A couplings) are real due to C'P conservation, the VEVs of the
GUT-breaking scalars may be complex, since they depend on n''-order roots of real
numbers. As noted in Section 3.4, the phases of the fields £, Zs and Z3 are relevant for

establishing the physical phase 1 in the neutrino mass matrix, which controls neutrino

masses and mixing. We see immediately that pe = 2L9k, for integer k, i.e. one of nine

roots of unity. While pz, and pz, individually can be any of six roots, originating in the

factor )\é/ 6, their product ZsZ3 cancels this factor such that the largest root is a third,

giving pz, + pz, = 2%’“,, for integer k’.

! Because Z£ is broken at a high scale, the no-go theorem from [216] does not apply to our model
and we verified that all the components of the SU(5) adjoints acquire GUT-scale masses.
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C.1.2 Doublet-triplet splitting, Higgs mixing and the p term

Given that we have a number of GUT representations containing weak doublets and
colour triplets we turn now to a brief discussion of how doublet-triplet splitting is
achieved in this model via the MP mechanism, with the fields listed in Table C.1b.

We have a superpotential

A
Wi =1L (Aﬂ% + MTly + MSQH;*) , (C.3)
which gives II, the 75s of SU(5), their VEVs
1 1
v = —————— M v, = M (C4)

162N SV

which are aligned with the Standard Model singlet inside the SU(5) 75. The non-
renormalisable term in Wi comes from the diagram in Fig. C.2.

1, 1, 11y

: : :
I I I
I I I
S S Gt Ky S R

Iy Ty Ty Ty Toio 1L,

Figure C.2: Diagram giving the non-renormalisable term in Wry.

With Eq. C.4, the MP mechanism proceeds through the superpotential

Wap = HzOq1lp + H5QoIly + £Q1Q0 + Hip Q311 + M Hgz Hys + MQ38y
¢ 8 (C.5)

+ HsHy5115 + Hs Hi 11y (M) ;

where we have suppressed coupling constants for convenience. The very high-order non-
renormalisable term at the end arises through the 3 messengers listed in Table 3.1b in
Chapter 3.2 Strictly speaking this term does not participate in splitting the masses of

doublets and triplets, rather it is the source of the p term in our model, as shown below.

The terms in Wyp generate mixing between the 45s and 5s of SU(5). The mass matrix

for the triplets contained in the 45s and 5s is

0 v, v, O

Ms =37 vnlgs M 0 v
o, 0 (§) 0

0 0 0 M

3, (C.6)

2 Recall that half the ¥; participate in constructing up-type Yukawa terms, as illustrated in Figure 3.1.
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where

(C.7)

and once again é = v¢/M. Taking (Il 2) ~ M, the eigenvalues of this mass matrix are
all of order M (i.e. at the GUT scale), leading us to conclude there are no light triplets.

Conversely, for the doublets we have the matrix

My = (2(H5) 2(Hy)) (vn0§8 UMHQ) ( 22((255))) (C.8)

It is clear that were it not for §~8, the determinant of this mass matrix would vanish.

We may rotate to the basis of the MSSM Higgs doublets H,, 4 and a pair of very heavy

doublets Hf &
2(Hs) \ _ 1 (1 =1\ (H]
2(Hg))  v2\1 1)\ Hy)’ o
2(Hs)\ _ (& 1\ (HI 0
2(Hy))  \-1 &)\ H, )’

The usual MSSM term uHgH, comes from this mechanism with

UI1, V11,

TR (C.10)

/’L ~
where vy, provides the necessary Z% breaking. Using the approximate values from
Eq. 3.19 for flavon and Higgs VEV magnitudes, we see that &8 ~ 1.6 x 10~ Mgyr. If
we choose the couplings at the vertices of the tower that generates the &8 term to be

~ 0.5 we may get a term pu ~ O(102 — 103) GeV without any fine-tuning.

C.2 Family symmetry breaking in A(27) x SO(10)

We turn now to the A(27) x SO(10) model described in Chapter 4. In this section we
show how the CSD(3) alignments are produced by F-term alignment and orthogonality
arguments. We further write down a superpotential which drives the VEVs of the
flavons, such that they acquire expectation values at a fixed scale (slightly below the
GUT scale), with phases fixed to discrete roots of unity. In particular, the relative phases
between daim, dsol and Pqec are constrained to discrete choices, which subsequently fixes

the physical phases 7, 7’ in the lepton mass matrices to exact values.
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C.2.1 Obtaining the CSD(3) alignments

Field Representation
A(27) SO(10) Zg 72 ZF
. - A 3 1 0 8 2
Field Representation _ A; ) . 5 . )
] A(_27) SO(10) Zg Zio 7% i 3 . -5
Pdec 3 1 6 0 0 Ay 3 1 6 0 2
Patm 3 1 L0 0 5L 1 1 0 5 2
Psol 3 ! 5> 60 Ooo Loo 1 6 1 2
1 3 1 04 0 ol 1y 1 5 5 2
7 3 1 05 0 ol 1y 1 5 0 2
o 3 1 260 52 gy 1 3 1 2
02 02
P8 3 1 L8 0 g2 gy 1 0 8 2
Z 3 1 300 92 gy 1 0 8 2
6 3 1 0 110 93 1y 1 § 11 2
a0 Loo 1 0 0 og Loo 1 T4 2
o 1ol 1 0 0 o4 11 1 111 2
by Lot 1 0 0 O3 Loo 1 3 10 2
(a) Flavons. (b) Driving superfields.

Table C.2: Superfields responsible for obtaining CSD(3) vacuum alignments.

The flavons involved in this alignment mechanism are given in Table C.2a, and the
necessary driving fields are given in Table C.2b. The special directions for A(27) are
VEVs with two zeros, and VEVs with 3 equal magnitudes, with phases that are powers
of w = ¢?™/3. There are three distinct ways to obtain either the (0,0,1) class of VEV
or the (1,1,1) class of VEV [217]. One of the possibilities that we make use of here uses

invariants built out of an antitriplet and triplet, and out of three triplets, of the type

c[Adloo + ci[A[pd]1]oo + cs[A[dd]s]oo, (C.11)

where ¢ is an antitriplet unrelated to triplet ¢ and A is itself a triplet, giving rise to

three I’ terms

cd' + crdr¢1 + 2c5¢203 = 0,
c@® + crpaga + 2csp3p1 = 0, (C.12)
cd® + crdzps + 2csp1¢2 = 0.
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To obtain the VEVs we require in the (0,0, 1) and (1,1, 1) classes of VEVs, an economical

solution is the superpotential

Wyo = caloAoloooy + cs[¢0Ao]o200;
+ ce[A1d1]ooM + cq[A1ér]oz20,
+ ce[As3d3looM + cf[As[pada]iloo + cg[As[Paa]sloo (C.13)
+ cpldaAs]ooM + ci[[3ds]1As]oo + ¢;[[P303] s Adoo
+ Oo2[d203]01 + Ooo[¢261]00,

where the ¢, (z = a,...,J) are coefficients that we show explicitly, and the coefficients
for the other terms are not shown as they aren’t relevant when taking the respective F
term. The triplet flavon ¢y is aligned to (1, w,w?) similarly to how the antitriplet flavon
¢ is aligned to (1,1,1), through the alignment antitriplet Ay or triplet A; and flavon
singlets 0y, 09, VEVs with a relative phase of w and o taking a real VEV.

The antitriplet flavon ¢3 is aligned in a (0,0, 1) direction together with the triplet ¢y.
This proceeds from the F terms of the components of As and A4, which are of the
type shown in Eq. C.12. Taken together the six equations only allow a discrete set of
solutions where both flavons are aligned in the same direction. One of the solutions has
them aligned like (0,0,v3) and (0,0,v4),> with their magnitudes vs and vy fixed. The
relevant VEV magnitudes are

CeCr ey,

v = M3, 3= M3, (ob) = —SeM (C.14)

2 2 ..
cres CrCi Cd

We impose trivial C P symmetry on the flavons, including the triplets and antitriplets.
This is consistent with the contractions that make invariants with the 1¢; set of singlets
that we are using. Since the coupling constants c, are forced to be real by C P conser-
vation, up to minus signs (which can be reabsorbed into the real coefficients) the VEVs
v34 can have a phase only as a third root of unity while (o¢;) has to be real. We expect
this mass scale M to be around the GUT scale and with O(1) ¢ parameters, these VEVs
should be at this scale also. The triplet ¢o is then forced into the (0,2, z2) direction
due to the alignment singlet Ogy and the alignment singlet Ogg ensures yo = —z3 by
orthogonality with (1,1,1).

In order to have CSD(3) we want the directions (0,1,1) and (1,3,1). We can use a chain
of orthogonality relations, where in A(27) they must be between triplet and antitriplets.
Using the three directions above we can arrive at (0, 1, 1) through orthogonality with ¢o
and ¢4, by

Wyt = Ogold2ds]oo + Op1 [P46s]o2- (C.15)

3 The phenomenologically viable solution is where both flavons are aligned in the (0,0, 1) direction,
another possibility is that they would both be aligned in the (1,1, 1) direction.
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With this we obtain a ¢5 antitriplet in the (0,1,1) direction (note the [Joo contraction
matches the first component of the antitriplet with the third component of the triplet,
putting the zero in the right place in ¢5).

In order to get to (1,3,1) we require a (2, —1, 1) direction, which itself requires (1,1, —1).
To obtain the latter we also duplicate the ¢5 direction in a triplet ¢g (other than them
having VEVs in the same direction, ¢5 and ¢g are unrelated). This may be achieved by

the superpotential

W2 = Oy [d60s]o1 + O [dadrlor + Ofgldsdrloo + Oy [d6drlo2- (C.16)

The first two orthogonalities ensure a zero in the first component of ¢g, i.e. (0,ys, 26),
and that ¢7 is aligned in a direction (27,7, 27). The other two mutual orthogonalities
give Ox7 + yer7 + 2627 = 0 and 0x7 + ys2z7 + z6x7 = 0, which complete the (0,1,1)
and (1,1,—1) alignments. Strictly speaking, this alignment allows both an undesired
solution where we get (0,1, —1) with (1,1,1) and the desired solution of (0,1,1) with
(1,1,-1).

The next step is obtaining the (2, —1,1) as a triplet. For this we want to use the (0,1,1)
antitriplet direction, and the antitriplet with the recently obtained (1,1, —1) direction,
by

Wiz = O3 [psdrloo + O [PsPslo0- (C.17)
Finally, by orthogonality
Wys = O [d2bo]oz + Ogolbsdoloo, (C.18)

one obtains the (1,3, 1) direction as an antitriplet. We did not need to align a (1,0, —1)
direction as the [...]Jo2 contraction with the triplet (0,1, —1) (¢2) puts its zero together

with the second component of the antitriplet ¢q.

Noting now that the VEVs of antitriplets ¢3, ¢5 and ¢g are the desired directions for
Odecs Patm, and @y respectively, we now rename them to match the notation used in

earlier discussions, SO V3 = vVqec and

($3 = adeca &5 = (Eatmy &9 = &sol- (019)

This notation is also used in Table C.2b, which summarises the field content and their
representation under the symmetries. For the sake of completeness we collect all align-

ment terms into one superpotential

Wy = Wy + Wy + Wya + Wys + Wy, (C.20)
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such that, omitting the coeflicients, we have

Wy = [¢0Aolooag + [boAolozotr + [A1¢1)ooM + [A1éiloao,
+ [A3¢3]oo M + [Az[pagaliloo + [Az[pada]s]oo
+ [paAd)ooM + [[@3¢3]rAaloo + [[P3¢3] s Ad]oo
+ Opz[d2¢3]o1 + Ooold2¢1]00 + Ogod2datm]oo + Op: [P4atm]oz
+ Oz ld6Pdeclor + Ofald267]or + Ofod6broo + Ofy [P6dr]02
+ Ofold8d7]00 + Of[dsPatmloo + Op1 [$20sot)oz + Ogoldsdsolloo-

(C.21)

We summarise the alignments produced by the above superpotential as follows:

s Wy 2)7 <;b1
_1)7 <9$dec

<($atm

(7
<($sol

C.2.2 Driving the flavon VEVs

) o< (1,1,1),

) < (0,0, 1),

) o (0,1,1), (C.22)
) o (1,1, 1),

) o (

1,3,1).

To drive the flavon VEVs, we introduce a set of superfields given in Table C.3. They are

GUT singlets with nontrivial representations under A(27) and the Z symmetries, and

couple to the flavons.

Field Representation
A(27) SO(10) Zg YAD) Zf

P 1oo 1 8 1 2
P, 1o 1 1 6 2
P 101 1 2 0 2
G 1oo 1 1€ {0, 1,2, 3} 1 2
G Loo 1 i€{0,6,7,8% 11 0
Cz/ 101 1 1€ {3, 4, 5} 0 2
¢! Loz 1 i€ {4,5,6} 0 0

Table C.3: Field content for driving the flavon VEVs.

To obtain the necessary superpotential we need to add more messengers ¢,(, with a

characteristic mass M¢, also listed in Table C.3. The superpotential which drives the
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flavons is

4
W¢ =P |k1 <A§C) diec¢6 - "32Q§atm¢6 + P ["JSQESOIQZM - /‘34(ngec¢0]

(C.23)
+ Py

)

_ €\%-
K5®s01P0 — K6 <M<> Gatm P4

where k; are real dimensionless constants. To acquire a good fit to data without tuning,
we need to assume that () < M¢. The F-term equations for the P fields give rela-
tionships between the VEVs of the flavons that couple to the Standard Model particles.
The (nontrivial) representations of the P fields under A(27) are chosen specifically so
that the pairs of flavon VEVs they are multiplied by do not give zero when they acquire
VEVs.

The constants x; are forced to be real by C'P conservation, but the VEV (¢g) has
complex components that introduce phases to the other VEVs. Specifically, the terms
multiplied by the constants x4 5 obtain the following factors when contracting the A(27)
triplets:

[(Bso1) (B0)]o2 = 2vso1v0, [(@dec) (B0)]00 = wVdecvo, (C.24)

so we may effectively treat as k4 carrying a factor of w?.

Solutions to the F-term equations for the P fields yield VEVs for the important flavons
bsol and Patm, while (Pgec) is given in Eq. C.14 (recall that v3 = vqec). It is useful to
note the relation vy = ¢;v3../(cpM), which can be seen from comparing the VEVs in
Eq. C.14. We obtain

2 2 R4KkeCh § ! 2 2 "0% § ° 2
Vgl = W m (Mc> Udec> Vatm = 47% (MC) Vdec» (C.25)

where, since (§) /M < 1, we conclude that vgec > Vatm ~ Usol. Given these VEVs, the
physical phases defined in Chapter 4 (see Eqs. 4.8, 4.9) are given by

n=—arg [fl (€] = - g,

atm

(C.26)

o = —arg [ Y ] = ot

where the real coupling constants c;, k; do not contribute to phases. These phases are
in fact completely fixed. As will be shown shortly, the phase of (£) is a ninth root of

unity; by the cancellation of this phase we finally have
n =0. (C.27)

Strictly speaking these phases are fixed only up to a relative phase 7, depending on

the signs of the real constants. However, this additional phase is unphysical, as it may
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always be subsumed into other real parameters at the low scale.

C.3 GUT breaking in A(27) x SO(10)

Next, we describe how, in the model described in Chapter 4, SO(10) is broken down to
the MSSM via SU(5). We also show how doublet-triplet splitting is achieved, and how
only two light Higgs doublets are present below the GUT scale, as in the MSSM.

C.3.1 Breaking potential and diagrams

The superpotential that breaks SO(10) is given by

14

H
Wour = M?Z+MZ34 022" + M2 HY + M2
T

8

ZH=H
<>\5Hii0+)\6HiJ0>+1616 <)\8 5 Hilo‘F)\?H%o)

. ZHi6H16 S
ME My, My,

My,
6 3

+AgZH}§W% +Hpw §
Z

H} i3 —
= (NoHus + 1= |+ HigHr | A =2
M2 < 10H45+ A1 >+ 16 16( 12§+MZ¢1¢8>

M3
& - £ - & - & - -

+7Z <)\14¢7¢2+)\15¢1¢8+)\16¢s01¢>4+>\17¢sol<l50+)\18¢dec¢4> .
M3 M} M} M3

(C.28)

The renormalisable diagrams that give rise to this superpotential are given? in Figure C.3
(giving lines 1 and 3) and Figure C.4 (giving line 2), and the corresponding messenger
fields (X, T and Z;) are detailed in Table C.4. Most fields are familiar from the Yukawa
sector discussed previously, while the field Hpy is an SO(10) adjoint that governs
doublet-triplet splitting, as we will see shortly. Note that the model also includes Z
(but not Zy) which we label Z, and that Y has the same quantum number as Hpy
(see Table 4.1). Requiring that all F' terms vanish yields a set of equations that fixes
the VEVs of the above superfields.

The first line contains terms involving different powers of Z, Z” and H};, which ensures
that their corresponding F-term conditions fix all VEVs to be non-zero. The exact
expressions for the VEVs are complicated and thus are not shown, since they are not

enlightening.

The second line has terms involving the fields Hfdd that will be discussed carefully in
the next section on doublet-triplet splitting. At this level, the fields Hfdd have a zero

VEV, so any term involving two of them does not contribute to the F-term equations.

4 We omit those diagrams with seven or eight powers of £, as they are constructed in a similar way
using the same messengers but are not particularly illuminating.
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Field Representation

A(27) SO(10) Zg YAVR/A
Z 1 1 0 0 2
Z" 1 1 0 6 2
Z; 1 1 ie{l,..,8 0 2
Z; 1 1 ie{l,..,8 0 0
Y67 1 16 6,7 0 2
Y3 1 16 3,2 0 0
i 1 16 ic{0,...84 0 2
> 1 6 ie{0,.,8) 0 0
T30 1 45 3,2 0 0
Yo7 1 45 6,7 0 2
X 1 45 0 9 0
T’ 1 45 0 32
1" 1 45 0 6 0
Y 1 45 0 6 2

Table C.4: Messenger superfields required for the doublet and triplet mass
terms.

The F-term conditions coming from Hfdd themselves relate the 4 5 VEVs and also
fixes the VEV of £ to be

2SN
(€)= <>\8)\6> My, (C.29)

which subsequently fixes the phase of () to be one of the ninth roots of unity.

At this stage it is relevant to consider superfields Hpy and Yg, which have the same
quantum numbers. In terms of superfields Tg, Tg, the mass term for the messenger pair
reads My (c, T + Cng)Tg. We define T = (¢, T§ + chg) and Hpw as the orthogonal
combination. The F term with respect to Y3 forces T4 to have a zero VEV, meaning
it won’t contribute elsewhere and justifies identifying it as half of the messenger pair.
Therefore, the third line contains different powers of Hpy and Hys and gives them
VEVs.

The model actually allows an infinity of terms involving Hys, each with a higher power
of this field. We keep only the first two terms since they are enough to give the Hys a
general VEV, whereas adding the other terms will make its VEV look more complicated,
but will not affect the physics. Its own F-term equation fixes its VEV to be

A

vis = | — 2 M, (C.30)

A11
which must define the GUT scale, while we choose the signs of Aig 11 so that it is real.
The F' term for £ will fix the VEV of H 4 5. The F' terms coming from H,4 15 will drive
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the VEVs of the flavons ¢7 and ¢2 (seen on line 2).

The last line, allowed by the symmetries and messengers, only adds terms to the F
terms for Z and &, relating their VEVs to the flavon ones. The flavon F' terms will fix
some of the O field VEVs. The VEVs (H;4 15) specifically break SO(10) — SU(5). The
VEVs (Hys, Hjs, Hpw) specifically break SU(5) — SU(3) x SU(2) x U(1). The VEV
(€) completely breaks Zg. Finally, the VEVs (Z, Z"), carrying 2 units of charge under
ZE, break it into the usual Z& R parity at the GUT scale.

His His His Hig o7
I I I
I I I : :
I I I I I
I I I I I
_Z___ ,fu/ _,r_, ,_r//_ f,,_l__f_[/_ __7__L§_X_Z_J__(£_
45 1 1 8 2
(a) (b)
me ome o §
I I I I
I I I I
I I I I
- — — - L ¢ — - 3¢ — - b ¢ — - - -~
Hpw Y3 Y¢ Z3 Zs Zy Zp §
(c)
He — Hs ¢ ¢ ;
I I I I I
I I I I I
I I I I I
- — —_ —_L = = 4 - = - e — = =L - ¢ = d - - -

= »
Hpw T3 ¢ Y3 Yo Zy Zs Zo Zy 'S
(d)

Figure C.3: Diagrams that give rise to GUT-breaking terms.

C.3.2 Obtaining two light Higgs doublets

The Higgs doublets and triplets contained within the A i“dd and H,g 15 superfields acquire
masses, in a way dictated by the model such that all triplets are heavy, while only two
light Higgs doublets remain at low scales, which we may associate with the MSSM Higgs
doublets. Recall that this splitting of doublet and triplet masses is important because
any light coloured Higgs states would lead to very rapid proton decay. We solve the
doublet-triplet splitting by the familiar Dimopoulos-Wilczek (DW) mechanism [184—
186]. In SO(10) there is a further complication, as each 10 has two SU(2) doublet
states within it, and we have two additional doublets from the H;g 1. Only two of these
six doublets should be light, so as to reduce to the MSSM.
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O
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
T N T VS S Sy NNV S SN v U TN O DU
Hiy Zs Zy Zy Zy Zy Zs Zs Zg Zy Zy Zi Zs Z
(a)
e ¢
I I | I I
I I ] I I
I I ] I I
VAN [ S T Y T S R
HY S 3 Z HY 2,7 %, S I Z
(b) (c)
¢ H{, ];{16 flfm
; ; | |
| | I I
| | I I
T N i Sl
Hpw T, 7Y; Hij Hiy Yo Xy Z

(d) ()

Figure C.4: Diagrams that give rise to doublet-triplet splitting.

The superpotential that gives masses to doublets is

6 7 8
W, = ZH;LOH%% + ZH}‘OH{’ZO% + ZH{IOH{IO% + ¢Hi6Hpg

Z Z Z

Z i & § d
+ Miz <H16H16H10 + @HlﬁHlﬁH% + HTGHTGH%O + EHEHEHN R

(C.31)

where we suppress O(1) couplings for convenience. The corresponding diagrams that
produce the non-renormalisable terms are given in Figure C.4. The second line is a
reproduction of the second line in Eq. C.28, while the first line includes those terms

involving more than one insertion of H i‘o’d, which had previously been omitted.

The fields H, 15 contain doublets that mix with the ones in Hﬁ;d, and will also con-

tribute to masses, since they both get VEVs above the GUT scale. Defining 1':[16@ =
(Hy6 1) /Ms, we assume it to be reasonably close to 1. We similarly define £ ~
(€) IMz ~ (§) /Ms, where Mz and My, are the typical scales of the messengers that
produce Eq. C.31. We will find that they are necessarily different from the scale M,

that governs the flavon driving potential.

In order to make the connection to the two MSSM Higgs doublets, we denote the H,,-like
doublets inside a given Higgs field by 2,(H), where H € {H, H{,, Hiz}. The Hy-like

doublets are named similarly, replacing the subindex u — d. In other words, we collect
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the Higgs doublets into two vectors

2u = <2u(HiLO)7 2U(Hii0)7 2U(Hﬁj)> )

(C.32)
24 = (2a(Hy). 24(H1y), 24(Hh) ).

The doublet mass matrix can then be written as

& & Hyg
Mp=20 [ & & ¢l | (2)2.. (C.33)
fllﬁgs E[16 f/ <Z>

Its eigenvalues mo are

ma ~E(Z), £(2), £(2). (C.34)
Two doublets receive large masses, which we assume are slightly larger than Mgyt such
that they don’t upset gauge coupling unification. The remaining eigenvalue is suppressed
by a factor 58. We can choose the mass of the Z and 3 messengers so that é ~ 0.03,
i.e. £€8(Z) ~ 1 TeV. This generates the MSSM p term &3 (Z) H,Hy at the correct scale,
where we make the connection between MSSM Higgs doublets and the doublets defined
above by
H, ~ 2,(HY),  Hy~24HL). (C.35)

We turn to showing how all triplets acquire large masses via the DW mechanism. It
is based on having an SO(10) 45, which we call Hpy, that obtains a VEV with the

structure
_ 0 (Hys))
(Hpw) = (_ (Hy) 0 ) , (C.36)

which is traceless regardless of the structure of (Hy(5)). We can actually choose (Hy (5)) =
vy5 diag(1,1,1,0,0) such that it contributes only to the mass of the triplets. This align-
ment of (H(s)) is not possible in an SU(5) adjoint representation (as its trace does not
vanish) but is possible in SO(10), and is the direction which preserves B — L. The field

Hpw has R charge 2 and Zg charge 6, allowing us to write the term

§

Wpr = HDWH{LOH?OMiT’ (C.37)

where, due to the antisymmetry of (Hpyw ), only the mixed term is possible. The renor-
malisable diagram that produces this term is given in Figure C.4.
By analogy to Eq. C.32, we define Higgs triplets 3,(H) and 34(H) arising from Hjj,
H¢) and Hyg by

8, = (3u(H}o), 3u(H1y). 3u(H)) .

(C.38)
84= (Ba(Hy). 3a(H1y), 34(Hh)).
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The terms involving these triplets arising from the superpotential in Eq. C.31 produces

the mass matrix

] £s & (Hpw) /(Z) ffﬁa
Mg =3, | & (Hpw) /(Z) &8 {Hyg | (2) 3, (C.39)
Hyg €8 Hig §/(Z)

where the only structural difference between this and Ms in Eq. C.33 is in the (1,2) and
(2,1) entries, which arise from Eq. C.37. All the eigenvalues of this matrix are at the
scale f (Z) ~ Mgur, i.e. there are no light triplet eigenstates, which gives doublet-triplet
splitting.

C.4 GUT breaking in Sy X SO(10)

Finally, we turn to the model described in Chapter 5. As in the above discussions, the
effective theory below the GUT scale contains more fields than the MSSM. In particular,
the H ﬁ;d Higgs multiplets contain dangerous colour triplets mediating proton decay, and
additional doublets that, if light, could spoil gauge coupling unification. Those extra
fields need to be heavy, while ensuring the MSSM doublets are (initially) massless. This
splitting can be achieved in our model. Note that we have not specified exactly how
the GUT is broken. However, it is understood that GUT breaking occurs (as in the
A(27) x SO(10) model) when spinorial and adjoint Higgs superfields acquire VEVs,
which break SO(10) to the Standard Model via SU(5). These are already present in the

model.

The splitting mechanism involves superfields given in Table 5.1, as well as several new
ones, given in Table C.5. The singlet £ obtains a VEV slightly above the GUT scale.
The Hi¢ generates a mass for the Hig and also gets a VEV in the RH neutrino (v°)
direction, thus breaking SO(10) — SU(5). Hiz * is the only R-charged field that gets
a VEV, breaking ZJ to the usual R parity. This splitting mechanism needs three extra

messenger pairs, listed in Table C.5.
With them, we may write the superpotential (ignoring dimensionless couplings)
W=Hg" (Hfonlo + C2C2 + HigXu + H167<d)

+ HegHYy X + HigHyxa + Hi6HgC1 + € (C1C2 + XuXu + XaXd) (C.40)
HoHHY  HygHygHY HSYZ)4
+ H4B57L ( 16*1161110 + 1641164110 + H}‘OH{%( 45 ) ’

Mp Mp M2



Appendix C Symmetry breaking in models 177

Representation
Field =g "so(10) 7, 7, 2R
¢ 1 1 2 2 0
Xu 1 16 2 1 2
Xu 1 16 0 1 0
Xd 1 16 1 0 0
Xd 1 16 1 2 2
(1 1 45 1 1 2
(a2 1 45 1 1 0

Table C.5: Messengers involved in doublet-triplet splitting.

where we assume that the VEV (£) > Mgy, so that we may integrate out the messenger

fields and obtain the effective superpotential

(HieHpg)? | HygHgHYy | HisHigHf

_l’_
(€)? € €
(HX,Y,Z)4) (C.41)

= g (i

45
1
My

HHgHY,  HigHigHY, d
e T T, T i Hio
The three terms suppressed by (£) are allowed by the integration of three messenger

pairs.

We assume that the superfields Hrg 4, HY (k= X,Y,Z,B — L) get GUT-scale VEVs,
Le. vg75 & vlff) ~ Mgur, through an unspecified mechanism. Hyg, get VEVs in the
v¢ direction. H fg_L gets a VEV aligned in the B — L direction, which splits doublet and
triplet Higgs masses through the DW mechanism, discussed earlier. The mechanism can
be also understood by considering the decomposition of the Hféd into the Pati-Salam
group. The triplets behave as a sextuplet of SU(4) while the doublets are singlets.
Since U(1)p_1, C SU(4), the triplets get a mass from the first term of Eq. C.41 while
the doublets do not. In the last term, all the SO(10) adjoints can be contracted to a
singlet, so they affect doublets and triplets equally.

To demonstrate the mechanism, we construct the doublet and triplet mass matrices. We
define the dimensionless scale parameters y = Mqur/Mp, 2 = Mgur/ (§). We label
the up-type doublets inside a given Higgs representation H by 2,(H), and down-type
doublets by 2,4(H). We define triplets 3,,(H) and 34(H) analogously. H can be either
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HY H{, or Hyg ;6. Doublets and triplets are collected in vectors

The mass matrices Mo and Mg are given by

My = 2]

Ms = 3]

y
0
Y
1
0
Y

0y
-yt 2| 2,
z 22
0
-1 2z | 3.
z 2’2

(C.42)

(C.43)

The triplet mass matrix M3 has three eigenvalues of O(Mguyr). The doublet mass matrix

has two eigenvalues at O(Mqgut) and one at O(y*Mayt), which we identify with the p

term. Since y ~ 10~3 we have pu ~ 1 TeV, which is the desired order. Furthermore, the
light eigenvectors of Mz define the MSSM doublets H,, 4 as

Yy
Hy =~ 24(H{y) + gzu(HfIOX

(C.44)

where the contribution of O(y) is negligible, so that the MSSM doublets are located as

required by the Yukawa structure of the model.



Appendix D

Approximations to lepton
matrices in A(27) x SO(10)

The CP asymmetry ¢ in leptogenesis calculations is defined in the flavour basis, where
the charged lepton and right-handed neutrino mass matrices are diagonal. In the
A(27)xS0O(10) model of Chapter 4, they are decidedly non-diagonal. One may neverthe-
less attempt to parametrise the necessary basis transformation and derive an analytical
approximation of the neutrino Yukawa matrix in the flavour basis. This appendix de-
scribes our efforts to do so, although it was concluded that the resultant expressions are

too complicated to be practical.

D.1 Matrices and model fit results

We first recapitulate the key elements of the lepton Yukawa sector. Defining numerical

matrices Y; as

0 00 1 3 1 0 00
Yatm =101 1], 1/501 =13 9 3|, Ydec =10 0 0], (D'l)
01 1 1 3 1 0 01

the charged lepton and neutrino Yukawa matrices, Y¢ and Y, and the left- and right-

handed neutrino mass matrices, m” and Mg, may be written as

Y= yfyatm + y;einyvsol + ygemlydeca
YV = ygtmyatm + ysyolein}/;ol + y(li/ecein Ydeca (D 2)
m’ = ,uatrnYatm + Usoleinifsol + Mdecein Yiec,

MR = Mathatm + Msoleinyéol + Mdeceinlydec-

179
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The parameters p; are defined by the seesaw relation in sequential dominance, i.e.

avy)? (D3)

A numerical fit determines the parameters y{ and p;, but not y; and M; separately, i.e.
of the six degrees of freedom in the neutrino sector, only three are fixed. The best fit

values are given in Table 4.6 and reproduced here in Table D.1.

Value

Parameter

Scenario 1  Scenario 2
ys /1073 2.217 -1.966
yS /107° -1.025 1.027
ys /1072 3.366 3.790
Patm /meV 26.60 25.90
fsol /meV 2.571 2.546
fdec /meV 2.052 2.461
n 27/3
' 0

Table D.1: Lepton sector input parameter values, with n, 7’ fixed by the theory.

D.2 Charged lepton diagonalisation

As the charged leptons are strongly hierarchical, we expect small mixing in this sector,
which suggests a perturbative approach is valid when diagonalising Y. Moreover, as
Y€ is fixed by the fit, we can directly test this hypthesis. We write

yse  3yse™ yse™
Y= |3yse” yf+9yse™  yf+ 3yse” (D-4)
yse'  yi +3yse  yf +yse +ys

As Eq. D.4 is symmetric, it may be diagonalised by a unitary matrix U via

UYS(U*)T = diag(Ye, Yu, yr), (D.5)

where U® is defined as the unitary matrix that diagonalises the (Hermitian) squared

matrix, i.e U¢(Y)Ye(U®) = diag(yg,yﬁ,yz). This unitary matrix may in turn be
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parametrised in terms of three rotation angles 07,, 675 and 055 and several phases, i.e.

U = Py RysUis Ri» Py

5: 0 0 1 0 0 C13 0 813671‘5 C12 si2 O
= 0 52 0 0 C23 5923 0 1 0 —S12 C12 0 (DG)
0 0 (576. 0 —S8923 (€23 —8136“S 0 C13 0 0 1

X diag(e*w?/z, e 5/2, 1),

where ¢;; = cos ij and s;; = sin ij. Note that the Majorana phases ¢ 2 differ from
those in the PDG parametrisation, where P, — P, = diag(1, glo21/2 em31/2).

In the perturbative approximation, where y§ < y{ < vy, the mixing angles (for charged

leptons) are

Yio| 3Y5

e ~ . D.7
12 }/232 ?/f 4 gyg cosn ( )
Ye ye
e 13 2
fg &~ | =2 | & =, (D.8)
Y3 Y3
YG e 3 e
05 ~ | 22| ~ yl—I_—nyOSn. (D.9)
Y3 Y3
Inserting the best fit values from Table D.1, this approximation gives
075 ~ 0.770°, {3 ~ 0.0174°, 055 ~ 3.842°. (D.10)
Exact numerical diagonalisation gives
612 = 0.806°, 013 = 0.0195°, fo3 = 3.825°, (D.11)

showing that the approximation works well.

D.3 Right-handed neutrino diagonalisation

The right-handed neutrino Majorana matrix has a very strong hierarchy between the
third matrix and the first two, i.e. Maymsol < Mqgec, Per the sequential dominance
assumption. The consequence of this hierarchy in Majorana mass coefficients is that we
naturally assume small mixing between the first two families of right-handed neutrinos
and the third. We define a diagonalising matrix UM analogously to U¢ above, such that
UMMR(UM)T = diag(My, Mo, M3). We write Mp as

Msolein 3Msolein Msolein
Mp = 3Msolem Matm + 9]\45016“7 Matm + 3Msolem . (D12)
Msolein Magm + 3Msolein Matm + ]Wsolei77 + Maec
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Naively, the mixing angles can again be approximated by

oM A (MRr)12| _ 3Mo1
12 ~ ~ :
(MR)22 \/Ma2tm + 18 Magm Mso1 cos 1 + 81 M2
oM | M)z | Mot (D.13)
(MR)33|  Mgec
oM ~ (MR)23 ~ Magm + 3Mgo) cos 7
(MR)33 Mgec

Given the expected mass hierarchy Mg so1 < Mgec, We expect these approximations to
work well for 9{‘{3{ and 9%, while the validity for 9% depends on the hierarchy between
Matm and Mg, which is less firmly established and requires further study.

Ultimately this depends on the best fit values fiatmsol and the ratio yatm/ysol between
coefficients of the Dirac neutrino matrix. To see this, we rearrange the seesaw relations

to give M; = (v¥y;)?/p;, where i = atm, sol. Defining

o= ygtm — Hatm Matm ~ 10Matm (D.14)
y5201 Hsol Msol Msol ’
we arrive at
3 1
O = 2 ¥ /0.0011a? = 0.100 + 9 (D-15)
1 . a® — 0.10a
Peol 02 4 Sitsol COSTI g1
lu’atm :u'atm

The function 624 («) is plotted in Figure D.1. The set blue points is obtained by numerical
diagonalisation of Mp for a randomly generated set of inputs y;. As anticipated, the
result is insensitive to the third family. We find the the analytical approximation works
well for a large range of a. If we assume Y ~ Y, we can compare Yy, o1 to the
corresponding quark best fit values yj'y. This gives a ~ 0.028, which is marked in the

figure.

However, a small shift is present between the approximation in Eq. D.13, denoted by the
solid yellow line, and the exact results. We note that the above result assumes mixing
is small enough that sinf =~ tanf =~ 6 and cosf ~ 1, which breaks down for large 6.
Small « implies that the upper-left block of Y” (or equivalently, Mp) is dominated by
the rank-1 matrix proportional to yso) (Mso1). The mixing angle may then be read off
as tan 0} ~ 04 ~ 1/3. But arctan(1/3)/(1/3) = 3arccot 3 ~ 0.965, a discrepancy of
3 — 4%. We multiply 0} (a) by this correction factor to give the dotted yellow line in
Figure D.1, which is in excellent agreement. The peak at oo = 45 arises because cos,
found in the denominator of 9{‘/2[ , is negative; if n ~ , 9% (a) blows up and is not a

reliable approximation.
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Figure D.1: Variation in 0% with & = (Yatm/¥so1)?. Blue points are from nu-
merical diagonalisation. Yellow lines plot the analytical result in Eq. D.13, with
and without a correction factor 3 arccot 3.

We have also derived analytical expressions for the right-handed neutrino mass eigenval-
ues by doing a series expansion in the mass parameters. We need to consider two cases,
depending on the relative sizes of My, and Mgo. In both cases M3 ~ Mg, while we

have

e Case 1: Matm S 10Msol‘

M 9
Myor 22 s 10Mag o A, (D.16)
10 10
e Case 2: Mytm > Mg,.
My~ My, My~ Mg + 9Mao) cOS ). (D.17)

In both cases, M; is necessarily an order of magnitude smaller than Ms.

D.4 Neutrino Yukawa matrix in the flavour basis

With an understanding of mixing in Y¢ and Mg, we can establish the neutrino Yukawa

matrix Y” in the flavour basis. Recall that it is given by

yuth = geyr(uM)T, (D.18)
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As a first attempt, let us ignore all phases in UM and assume all angles are small. We

approximate the diagonalising matrices by

L 05 05 1o 0
Usn [ =05, 1 05|, UM~ —6M 1 0M]. (D.19)
—05 —05 1 —05 03 1

Keeping only the largest contributions in the product, Y approximates to

3ysol 0 0 0 0 (123
YV ~ YV — 9{\/216”7 9Ysol 0 0] — Ydec 0 0 953 : (D'2O)
Yatm + 3Ysol 0 0 9% 9% 0

The first correction term is proportional to #74. As discussed above, if Y” ~ Y% M ~
0.33. These corrections can therefore of the same size as the original elements, meaning
particularly the (1,1) and (2,1) elements may be significantly suppressed, depending on

relative phases.

The second correction comes from smearing of the large (3,3) element yge. into the third
row and column. While 675 o5 and 9%,23 are small, yqec is sufficiently large that it may
still give a significant contribution. Particularly, as 655 ~ 0.065 ~ 4°, the (2,3) element
gets a correction several times larger than the original value. The exact size of this
correction is directly correlated with the value of y4ec, which is unknown. However, the
terms of the third column are not expected to be strongly contributing to leptogenesis,
as the loop contributions from N3 neutrinos are very suppressed compared to Ny in the

hierarchical assumption.

There are nevertheless indications that there are corrections of an equal order of mag-
nitude. Whether this leads to enchancements or cancellations in the elements of Y”
depends on the relative phases between terms. Let us keep only those contributions

involving either 0} or ygec, but keeping all phases 52’%7, 4,0;]2\4 Then

0 0 0
VY Yatm _9{\/2161‘021 eingz einzg
_9% elosl  pins2 oins3
elmi _ 39%&011 3eimz 1 g%eiom etms
T ot | 3eimn — 9gMeion  ggim | 39M gioas  geines (D.21)
el _ 39%&031 3ein2s 1 9%6i023 o33
0 0 —9%6”53
+ ydecei77 0 0 —9§3€i053 ,
—0% €751 _0% €752 o33
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where
7711=6§+5£/[—cp§/2—9011\/[/2, 0112554-53/[—@?/2—9011‘/[/2,
e = 65+ 00 — o5 /2 — b /2, o012 = 0¢ + 05" — ¢§/2 - 3" /2,
s = 0¢ + M — 5 /2, oo =6+ 60 — o /2 — ¢5/2,
a1 = 65+ M — oM /2 — o5 /2, 092 = 05+ 61 — 05/2 — /2,
T2 = 6, + 04 — 05/2 — ¢3! /2, 031 = 07 + 0, — o1’ /2, (D.22)
nos = 85 + 62 — 05/2, 032 = 05 + 62 — 3! /2,
1 =07+ 6 — 1! /2, of = 07 + 67 — pf/2+ 6",
N2 = 0%+ 641 — o3 /2, 0%y = 0f + 67 — ¢5/2,
N33 = 0¢ 4 6M, 05 =65+ M — oM /2 4 §M

05 = 05 + 611 — 3" /2.

Unfortunately there are no obvious simplifications that can be made to these phase

relations.
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