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The many-body phenomena in photonic structures are of great interest due to the vast
area of potential applications. This thesis is devoted to the theoretical investigations of
collective phenomena in different types of semiconductor structures, in particular,
parabolic quantum wells, hybrid Bose-Fermi structures, and transition metal
dichalcogenide monolayers.

It is shown that the experimentally obtained integrated photoluminescence spectra from
the parabolic quantum well in a microcavity can be described with the use of the
semiclassical Boltzmann equations. However, contrary to expectations, the ladder
mechanism of exciton relaxation does not describe the experimental data, as the
relaxation processes in the PQW involve transitions from all levels to the ground state.

The theoretical investigation of the light-mediated superconductivity in hybrid Bose-Fermi
systems is performed. The critical temperature of the phase transition is shown to
increase with the density of the polariton condensate and to decrease with the density of
electron gas in the superconducting layer. Also, a possible mechanism of suppression of
superconductivity by the external magnetic field is discussed, which differs in the
considered case from the conventional Meissner effect, because the magnetic field
penetration depth is longer than the thickness of the superconducting layer.

The possibility of polariton condensation in microcavities with embedded monolayers of
transition metal dichalcogenides is discussed. It is shown that these structures are highly
promising for the room temperature polaritonics. The first observation of the strong
coupling regime and exciton-polariton modes in WSe;, was realised by our collaborators
from the Wdirzburg University. These results have been described by the coupled
harmonic oscillator approach.
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Chapter 1: Introduction

1.1 Excitons and Exciton-Polaritons

1.1.1 Excitons: general description

An exciton is a quasi-particle, composed by an electron and a hole, bound by the Coulomb
attraction. The concept of excitons was introduced by Yakov Frenkel [1] for organic molecular
crystals. These initially proposed excitons are nowadays referred to as Frenkel excitons. They are
characterised by small interparticle distances: in the initial model an electron and a hole were
assumed to be localised at the same lattice vertex. They possess high binding energies of the

order of hundreds of meV. This type of excitons is typically formed in organic crystals.

Wannier-Mott excitons, proposed in the late 1930s for inorganic semiconductor crystals, have
rather different properties [2]. In order to estimate their characteristics let us consider an
electron in the conduction band and a hole in the valence band having effective masses m, and
my, respectively. The interaction potential between these quasi-particles is considered to be the
standard Coulomb interaction:

V(r) = i, (1.1)

&r

where r is the interparticle distance and ¢ is the static dielectric permittivity. Schrédinger

equation in this case coincides with the well known equation for the hydrogen atom:

h? h? e?
- Ap ——A, —— |V = EV. 1.2
< 2m, ¢ 2m, " £r> (12)

The solution for the bound states (E' < 0) reads:

Whim = €"RFypn (1), (1.3)
where n, [, m compose a set of integer quantum numbers, R is the centre-of-mass coordinate,
E,(r) is a hydrogen-like wave-function, ik is a momentum that characterizes the translational
motion of an electron-hole pair as a unit. Substituting the wave function (1.3) into Eq.(1.2) one
can find the exciton eigenenergies. Counted from the bottom of the conduction band they can be

written as:

B () = - MK —(1+1)_1 (1.4)
T 2R2e2n2 T 2(m, +my)’ k= m, my '



This energy at k=0 is equal to the binding energy of a stationary exciton. When the electron-hole
interactions in real crystals are taken into account, the expression for the eigenvalues becomes
more cumbersome [3]. Assuming that the exciton energy can be developed into a series at small

k, one can write:

hZ
Es(k) = Es(0) + _*kikj + (1.5)
mu

where m;j is an effective mass tensor in the s-band:

2 -1
m;, = h [%Sa(/? " (1.6)
which reduces to the simplified expression
L [dE]T
=h [W k=0, (17)

when the energy E (k) depends only on the absolute value of the wave vector. The expression
(1.5) where only first two terms are left is obtained within the so-called effective mass

approximation, which is often used in the theory of excitons.

The main difference between Frenkel and Wannier-Mott excitons is that in the former one the
electron-hole interaction is much stronger than the intermolecular interactions. In contrast, in
semiconductors, where the typical Wannier-Mott excitons are formed, the interatomic coupling is
much stronger than the Coulomb interaction between an electron and a hole, so the latter can be
treated as a perturbation with respect to the atomic interactions. Usually, these excitons are
characterized with Bohr radii larger than the lattice constant of the crystal and binding energies of
the order of several meV. However, there are exceptions: excitons in recently discovered
monolayers of transition metal dichalcogenides (TMDC) have very high binding energies of the
order of 0.5 eV. At the same time, they still can be described within the Wannier-Mott model,
because the characteristic Bohr radius of these excitons is one order of magnitude larger than the
lattice constant. Some of the properties of TMDC materials are discussed in detail in the last

chapter of this work.

In the systems that are studied in this thesis excitons are confined in quantum wells (QWs), which
are created by sandwiching one type of semiconductor between layers of different
semiconductors having wider band gaps. Essentially, this means that quasi-particles can move
freely in two dimensions, while in the direction, perpendicular to the QW layer they acquire
energies characterized by size quantization quantum numbers. As a consequence of this

confinement, the momentum conservation in the optical transition must be satisfied only in QW



plane. This leads to the possibility of coupling the excitons in QWs with photons that have the
same parallel to the plane wave vector k” and an arbitrary transverse wave vector k. The
exciton Hamiltonian accounting for the QW potential reads:

h? h? e?

H= =g Ve = g Vi + Ve(ze) + Vi(an) =

-, (1.8)
€|Te _rhl

where V,(z,) and V,(z,) are confinement potentials for the electron and the hole. The
Schrodinger equation with this Hamiltonian can be solved numerically. One of the common
simplified methods of solving this type of equations is the variational approach, which consists in
minimization of energy over variational parameters, entering the trial wave function. In particular,
it is common to take the trial wave function expressed in terms of the centre-of-mass and the

relative motion coordinates [4]:

W(re,rp) = FR)f(P)Uc(2)Up(2p), (1.9)

where p = p, — py, is the in-plane radius vector of electron and hole relative motion, r = (p, 2),

m,r, + myr
R=_—¢&¢ "hh (1.10)
me +my

is the exciton centre-of-mass coordinate, Uy (z;,), U.(z,) are the electron and hole wave functions
in the direction perpendicular to the QW plane. If the QW width is smaller than the exciton Bohr
radius, the function (1.9) can be factorized. After the substitution of function (1.9) into Eq. (1.8)
and integration one can come to the form of equation similar to the conventional hydrogen atom
problem, which is exactly solvable. In particular, for the exciton ground state one can find the

binding energy of the 2D exciton and the Bohr radius:

2D 3D 2D agD
EB - 4E ) aB - _2 ) (1.11)
with
h%e h?
ax’ = —, E =—=5 (1.12)
ue 2pag

In Chapter 4 we show an example of the variational approach application, finding the exciton

ground state energy in TMDC monolayers.

If the characteristic distance between the excitons in a gas is much longer than the exciton Bohr
radius, excitons can be considered as bosons. The increase of the exciton density leads to the
increasing role of the screening effects, weakening electron-hole binding, and eventually it leads

to a phase transition to an electron-hole plasma, also referred to as the excitonic Mott transition.



1.1.2 Microcavities

Optical microcavities (MCs) are essentially electromagnetic resonators that allow for the light
confinement. In a system, where a QW is embedded into a resonator, the strong coupling regime
can be achieved, that leads to the formation of new quasi-particles — exciton-polaritons. Such
systems, depending on the type and quality of a MC, can exhibit unique optical properties, such as

the Bose-Einstein condensation and polariton lasing, single-photon emission, and many others.

MC spectra are size-dependent: in a microscale cavity the resonant frequencies are sparser than
in “macroscale” resonators [5]. The main characteristics of a MC are its quality factor, finesse, and
field distribution. The quality factor Q is a measure of non-ideality of the cavity i.e. the rate at
which the energy decays from the cavity via different processes such as photon scattering and
leakage through the mirrors. Q_1 is the fraction of energy, lost in a single oscillation period of the
cavity. Mathematically, the quality factor can be expressed as Q = w./dw., where dw, is a
linewidth of a cavity mode. Finesse of a cavity is the ratio of the free spectral range to the

linewidth of a cavity mode: f = Aw./dw.

Practical realisations of microcavities strongly vary [4, 5]. The conventional realisation is a planar
MC, which is essentially a Fabry-Pérot cavity comprised of two plane mirrors, distributed Bragg
reflectors (DBRs), separated by a distance of a few wavelengths of light. Most semiconductor
lasers are based on this type of microcavities. Another type of cavities is the micropillar cavity,
characterised by axial in-plane symmetry, which is widely used in semiconductor photonics.
Spherical mirror MC allows the confinement of light in all three dimensions. An interesting
example of the application of such type of resonator is introduced in Ref. [6], where the spherical
cavity is coupled to an optical fibre, the initial pump excites the whispering gallery mode inside a

cavity, which further propagates in a fibre as in a waveguide.



1.1.21 Propagation of light in layered structures

X
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Figure 1.1: A schematic picture of a spatially periodic multilayered structure, consisting of
alternating dielectric layers of different widths and refractive indices, with the layers of one type
containing single QWs placed in their centres. Figure taken from Ref. [7].

In this subsection the propagation of light in planar microcavities (MCs) with embedded QWs is

discussed.

The propagation of light in DBRs as well as in MCs can be modelled by solving Maxwell equations
in each layer of DBR or MC and matching the solutions with boundary conditions. For real
structures this method can be quite complicated and different techniques like FDTD method are
used. However, for planar structures the solution of this problem can be simplified with the use of
the transfer matrix method. Essentially planar DBR can be considered as a 1D periodic structure
because its refractive index is homogeneous in the xy-plane and it is periodic in the z-direction.
The transfer matrix method is a simple and efficient method of solving Maxwell equations in such

structures [4, 8].

For simplicity, only the propagation, perpendicular to the layer plane is considered here. Let us

define the transfer matrix across the layer of a multilayered structure as:

TLCD|Z=O = chZ:L; (1.13)

where L is a width of a single layer and

E(2)

5
~ 1 %E(@)

*@) = (CB (2)

(1.14)

is a vector of amplitudes of electric and magnetic field of incident light, propagating in the z
direction. Substituting the explicit form of solutions of wave equations for the amplitudes of

electric and magnetic fields [8] into Eq.(1.13), one can express the transfer matrix across the layer:



i
T, = < cos(kL) ESIH(kL)>_ (1.15)
insin(kL) cos(kL)

Then the transfer matrix across a structure composed of p layers reads:

1

T = HTi, (1.16)

L=p

where i is a number of layer.

If a QW is embedded in between of layers, the transfer matrix of propagation trough the QW

reads:

1 0
T, = (anQW/tQW 1) , (1.17)

where 1oy and toy = 1+ gy, are the reflection and transmission coefficients of the QW [4]:

iT,
wy—w—i(To+7vy)

Here wy is the renormalized exciton frequency which, in the approximation of infinitely thin QWs,
may be put equal to the exciton frequency, [}, is the exciton radiative decay rate, y is the non-

radiative broadening.

If a layered structure has a period D, then from the transfer matrix method one may derive the

band structure for the infinite DBR by solving the equation:

Ty + Ty

cos(KD) = 5

, (1.19)

where K is a Bloch wave vector.

Figure 1.2 (left panel) shows the propagation of a single femtosecond pulse through the system,
composed of three layers of alternating semiconductors with refractive indices n; and n,, where
the layer with the higher refractive index is embedded between two layers with lower refractive

indices. The shape of the pulse is taken in the Gaussian form:

(t —ty)?

E(zt) = Eoexp< ez
w

) exp(—iwct)exp(—ik,z), (1.20)

where w is the central frequency of the pulse, t,, is a half-duration of the pulse.
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Figure 1.2: The simulation, illustrating the application of the transfer matrix method: the light
propagation in altering semiconductor layers without (left panel) and with (right panel) a QW,
embedded into the central layer. The intensity is shown in logariphmic scale for better contrast.
The refractive index of the edge layers is n; = 1.5, refractive index of the middle layer n, = 2.5.
The central frequency of the incident light pulse is Aiw, = 1.5eV. All; = Ay = 0.01Aw . Dashed
lines show the boundaries between layers and the embedded QW.

The right panel shows the propagation of the same pulse through the system with a QW
embedded in the middle of the central layer. The central frequency of the initial wave-packet is

chosen to be the resonant frequency of the embedded QW.

Let us now consider the structure schematically shown in Figure 1.1, which was first proposed in
Ref. [9]. The structure presents a spatially periodic array of alternating dielectric layers of
different widths and refractive indices, with the layers of one type containing single QWs placed
in their centres. The presence of cylindrical symmetry in the system is assumed, so one can
introduce the in-QW-plane radial coordinate. Here a GaN/Aly3Gay;N DBR with embedded thin
Ing1,GaggsN QWs is considered as a model structure. The thicknesses of the layers and their
refractive indices are taken as d;= 64.8 nm, n, = 2.55, and d, = 115.3 nm, n, = 2.15; the period of
the lattice D = d; + d, is 180.1 nm. For the given parameters the structure exhibits a second
photonic band gap centred to hwg = 3 eV in the QW-free case, see Figure 1.3(a). The QW exciton
resonance energy Awy is tuned close to the lower boundary of the second photonic band gap,
hwy = 2.95 eV. The QW non-radiative decay rate is taken as Ay = 0.1 meV. The radiative decay
rate Al} is a tunable parameter that strongly depends on the applied electric field. Figure 1.3(a)
and Figure 1.3(b) demonstrate the dispersion of the light modes in a modified Bragg mirror
structure without [Figure 1.3(a)] and with [Figure 1.3(b)] embedded periodically arranged narrow
QWs characterized by the radiative decay rate [l; = 2 meV. The presence of QWs leads to two
principal changes in the dispersion of the eigenmodes. The first one is the appearance of four
dispersion branches instead of the two branches of a QW-free structure due to the vacuum field

Rabi-splitting stemming from the QW exciton-photon coupling.
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Figure 1.3: Dispersion of the photonic eigenmodes for the structure (a) without and (b) with
embedded QWs. (c) Equifrequency contours in the reciprocal space showing the structure of
eigenmodes belonging to the lowest dispersion band corresponding to the different values of Iy:
[,= 0 for the red (solid) curves, Iy = 2 meV for the green (dashed) curves, and [}, = 10 meV for the
blue (dash-dotted) curves. Different thicknesses of the curves correspond to different energies w
(from the thickest to the thinnest): 2.94, 2.89, and 2.84 meV, respectively. (d) Inverse exciton-
polariton effective mass tensor components in the structure. The red surface corresponds to the
effective mass in the z direction, m; (z being the growth axis of the structure), and the green
surface corresponds to the in-plane effective mass m,,. The parameters used in the calculation
are given in Ref. [7]. The QW radiative decay rate for (d) is taken as Iy = 2 meV. Figure taken from
Ref. [7].

The latter appears when QW exciton is resonant with an eigenmode of the photonic cavity
structure. The resulting eigenstates of the system are exciton-polaritons. The other change is the
formation of the three-dimensional polaritonic band gap [see Figure 1.3(b)]. It is necessary to
mention that the presence of QWSs pushes the lowest dispersion branch (LPB) to the lower
energies and the higher the value of I}, the greater is the shift. In the limit of weak coupling, the
exciton and photon modes cross. In contrast, the strong coupling manifests itself in the
anticrossing (avoided crossing) of the modes. The dispersion of the structure eigenmodes is
neither photonic nor excitonic, but polaritonic. The increase of the exciton-photon coupling due

to the increase of the exciton radiative decay rate results in the growing energy level repulsion.

Interestingly one can observe the dispersionless excitonic branch (Figure 1.3(b), blue surface),
which appears when the excitonic resonance frequency is close to the boundary of the photonic
band gap, so that the coupling with the closest branch leads to the formation of polariton, while

the coupling with the distant photonic branch is very weak, so only exciton can be formed. The



experimental observation of this mode in the Bragg crystal with embedded quantum wells is

shown in Ref. [10].

Figure 1.3(c) demonstrates equifrequency contours (EFCs) in the (Kkp) plane for a number of
lower branch eigenenergies hw for different values of I,. It is clearly seen that with the increase
of [, opposite branches of EFCs approach each other until the gap in the K direction closes and the

gap in the k, direction opens.

Effective mass tensor is derived from the Equation (1.6):

. 0%w;\™"
Mo =h(==]  ka=Kk, (1.21)
a

and is calculated numerically from the dispersions shown in Figure 1.3(b). The subscript j
numerates dispersion branches. The analytical derivation of the effective mass tensor in the
vicinity of the saddle point (kp = 0,K = 0) is given in Ref. [9]. In the vicinity of the saddle point of
the LPB, the effective mass tensor components mp, =mi,,
have opposite signs. This is clearly seen in Figure 1.3(d) where the dependencies of the inverse in-
plane (green surface) m, and transverse (red surface) m; effective masses on the position in the
first BZ are shown. One can see that m; > 0, while m; < 0. It also should be mentioned that for
the considered model structure the absolute value of m; is at least one order of magnitude lower
than my,. For example, the ratio | m;/m§| at the saddle point is about 20.1 for QW-free structure,
21.6 for the structure with embedded QWs with I; = 2 meV, and reaches 30.7 for the structure
with T; = 10 meV. Such a difference introduces a strong anisotropy to the optical

properties of the considered structure.

An interesting effect that can be observed is the possibility of light speed manipulation in such
structures. The propagating light pulse is again taken in the form of Eq.(1.20). Here the wave

packet with a spatial width p,, exceeding the in-plane structure size is considered.

The intensity of light is assumed to be uniformly distributed in the QW plane in each layer. The
numerical calculations assume the normal incidence geometry. The parameters taken are t,,=50

fsand ty=0.1 ps, hw, = 0.95hwy = 2.8 eV, kp =0.



|E/Ef
30.015
0.0125
0.010
0.0075

0.005

0.0025

30 40

0 10 20
Z(um)

Iy (x2r THz) . (x27x THz)
0 1.0 20 30 660 680 700

10.4

103

||

B

|
€02} | | loa
e [ hI-o: : g
0.1} | Z3mev gy ani
\a ey oy |
0.0l © : @ o0

0 4 8 12 27 28 29
hl'p (meV) hw,(meV)

Figure 1.4: A femtosecond laser pulse propagation in the multilayer structure schematically shown
in Figure 1.1. The parameter Al}is taken as (a) 0 meV (which is equivalent to the absence of QWs
in the structure) and (b) 10 meV. The regular optical patterns shown in (a) and (b) panels describe
the interference of the propagating pulse and the pulses reflected from vacuum-crystal and
crystal-vacuum interfaces. Graphs (c) and (d) demonstrate the parametric dependencies of the
group velocity of light in the z direction vy ,, (a) on I, for a number of fixed values of the wave
packet central frequency component w and (d) on w( for different values of I, with k,=0.
Values of v , are given in units of the speed of light in vacuum c. The vertical dashed lines
correspond to I} in (c) and w( in (d) from (a) and (b). Horizontal dashed lines indicate the group
velocities of the wave packet, with the considered values of [,. Figure taken from Ref. [7].
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Figure 1.4(a) and Figure 1.4(b) demonstrate light pulse propagation in the structure calculated for
different values of I}. In Figure 1.4(a) I;;= 0, which corresponds to the QW-free Bragg mirror. In
Figure 1.4(b) the case of a Bragg mirror with embedded QWSs characterized by a high radiative
decay rate, I'; = 10 meV, is considered. Propagation of light has been modelled in the system
starting with a vacuum layer of width 25D on the left-hand side of the structure. In the middle
part of the system there are 200 periods of photonic crystal, depicted in Figure 1.1 of width D
each. The right-most part represents a 25D thick vacuum layer again. It is clearly seen that v, ,
significantly decreases with the increase of [},. It is also confirmed by Figure 1.4 (c) and Figure 1.4
(d) demonstrating the dependence of v, , on T, for the fixed values of w. and its dependence on
w for several fixed values of I},. Such a tendency can be qualitatively explained as follows. Once
the parameter I increases, the lowest branch moves down in energy, see Figure 1.3(a) and (b).
Since in the vicinity of K, kp = (0 the dependence w(K) for the lowest branch is convex, to
conserve energy the wave packet should reduce its wave vector and group velocity v, ,, (see EFCs
in Figure 1.3(c)). It is important to mention that this conclusion is only correct in a specific
frequency range, namely, for w.; < wqy, where wy is the frequency of the saddle point in the

dispersion curve.

1.13 Quantum description of excitons and MC polaritons

As it was shown in the previous section, it is possible to describe the exciton and polariton modes
in QW structures semi-classically, by solving Maxwell equations together with a relation between
the electric field and displacement field. So each layer except the embedded QW can be modeled
by frequency independent dielectric constant, while in QW the excitonic contribution depends on
frequency. The transfer matrix method helps to solve Maxwell equations effectively and finally
one can obtain the exciton and exciton-polariton dispersions as it is demonstrated in Figure 1.3(a)
and (b). However, this description becomes insufficient for the effects, related to the Bose-
Einstein condensation of these quasi-particles which is essentially a quantum effect. The quantum
description of excitons, and MC polaritons, introduced in Refs. [4, 11], is discussed below. For

simplicity the spin dependence is not taken into account.

1.1.3.1 Excitons
The Hamiltonian of an interacting electronic system reads:

H= f‘?*(r)ﬁo(r)@*(r)dr +%f drar'PT (Pt V(i - PP "), (1.22)

where Hy(r) is the single electron Hamiltonian and V(r — 1') is the Coulomb interaction in the

solid. The Fermi field operator can be expanded in the eigenfunctions of H; i.e.

11



Hotpy j(r) = ER jy, ; (1), (1.23)

where the single electron wave function can be expanded in terms of Bloch waves, and

respectively the field operator can be expressed as

P(r) = — r Z Gy e ()™ (1.24)

k;j=c,v
Here uk,j(r) is a Bloch wave-function, N is a number of unit cells in the lattice, j = ¢, v denotes
the conduction and valence bands and dy; and d,tj are the fermionic annihilation and creation
operators with commutation relations: {&kj, dlj} =0, {&kj, &,tj} = Si,jSk,l. One can substitute the

expression for the field operator into the Hamiltonian and simultaneously introduce creation and

annihilation operators for the holes in the valence band:

Ay = b1y, (1.25)

which means that the annihilation of a single electron with momentum k in the valence band is

equivalent to the creation of a single hole with momentum - k. The Hamiltonian, that neglects all

number non-conserving terms, reads:

7 o rtp 1 ¢ ¢ ocat o
H = Ee(k)akak + Eh(k)bkbk + E Vkl kz,k3 k4, aklcakzcakscak4c
k k

kq,k2,k3,kq
+1 v, v, Vv, vV B-l- B-[- B B
—k1,—kz,—k3—kq “kqic"kyc k3cVkyc
ki,kz,k3,ky
c, vV, Vv C c, v, ¢, v \aT 1t
N Vk11k3:k2;k4 _Vkl,k3,k4,k2 aklcbkzcbk3cak4Cﬁ (1.26)
kq,k2,k3,kq

where Vl; ,iz ,is ,2 (kli, kzj|l7|k3l, k4m), E, and Ej, are the kinetic energies of an electron and

a hole in the effective mass approximation introduced by the Eq.(1.5) with the band gap energy

Eg(0) = E4. The Schrodinger equation for the electron-hole pair reads: He = E¢ with

= zAk,kr d,tBLIO), (1.27)
k,kr

where |0) is a quasi-vacuum state i.e. an empty conduction band and full valence band. Direct

substitution of the wave function leads to the following equation:

(Eo(k) + Ep(K') — E)Ay o — Z( e e = Ve S A = 0. (1.28)
k. k!
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Bloch wave functions in Eq.(1.23) are orthogonal. If both the Coulomb potential and plane wave
factors are slowly varying functions and practically do not change along the unit cell, which is valid
for weakly bound pairs with small relative motion momenta and large separation between

electrons and holes, one can neglect the exchange integral and simplify the Coulomb interaction:

2

f drdr' ——— gi-Ryr+il’ k)T (1.29)

Vc,v,v,c _ 1
2 glr—1r'|

k-l-kod Ncell
Thus taking the Fourier transform of Eq.(1.28) with the simplified interaction potential one can

obtain the Wannier equation for the exciton [2]:

Hey ®(re, ) = E®(1e,T3) (1.30)
L 1 .
O(r,, 1) = EAk,k’ ethretik'Th = \/—an(r) -eKR (1.31)
kK’

with ®(r,, 1) being the two-particle wave-function, expressed in terms of the centre of mass
and relative motion coordinates, that coincides with expression (1.3). H,, coincides with the
Hamiltonian in Eq.(1.8) but with the only difference, that no confined potential is taken into

account.

Eq.(1.27) with substitution of expression (1.31) allows introducing the new exciton creation and

annihilation operators:

éIJ(r’,n = Z Sk ki’ fn (D) @ltl;,tu (1.32)
k'

where f,() is a Fourier transform of f,(r) and l= (myk —m.k")/(m,+ my). The

commutation relations for the exciton operators are:

[é;,’n,,é;n] =0, (1.33)
|éxr e | = 0, (1.34)
[éK’,Tl" élt,n] = Okk'Onn’ — O(nexag); (1.35)

with d being the dimensionality of the considered system. The latter shows that excitons can be

considered as bosons only in the low-density limit. In 2D case this means n,, < 1/a3.

1.1.3.2 Microcavity polaritons

The excitons in QWs can be created by optical excitation. The coupling of the exciton to a photon
mode is normally weak which means the high probability for the exciton to emit a photon into the

free space. However, if the QW, where the exciton is created, is embedded into a MC, the cavity

13



mode can be tuned to be in resonance with the excitonic transition. Then it is possible to achieve
strong coupling regime between the exciton and photon modes resulting in exciton-polariton

modes. The quantum description starts with the Hamiltonian in the rotating wave approximation:

H = Ex(e) ] i, + ) EcChk) BBy, + > h0(y) (@, by, + @i, B, ), (136
ky ky ky

where dk" and Bk” are the exciton and photon annihilation operators, Ex (k) is the energy of the
exciton transition, E¢(k;) is the energy of the cavity mode, and Q is the coupling strength
between the exciton and the cavity photon. The criterion of the strong coupling regime is that
the exciton-photon coupling must dominate over the exciton and photon decay rates i.e.
Q> Ve, Ypn » Where (L is the coupling strength and Yex L and yph‘l are the exciton and photon
lifetimes. In this limit, the Hamiltonian (1.36) can be diagonalized with the Hopfield

transformation:

Pr, = X (k) ay, + C(kyby,, (1.37)
Qk, = —C(kay, + X (ky )by, (1.38)
where
X (k)| = 1(1 + &) (1.39)
2\ 4% + A% (k)
1 A(ky) >
ckp)lf ==(1-—2210 ) _
|k 2< 207 + 220k (1.40)

with cavity detuning A(k;) = E¢(k;) — Ex(k;). X(k;) and C(ky) are the exciton and the cavity
photon Hopfield coefficients which can be understood as the fractions of exciton and photon in

the polariton. Finally, the polariton Hamiltonian reads:

H= Z Epp(ky) 13;"13,(" + Z Eyp (ku)élt” QO (1.41)

k) ky

with energies of new modes given as:

1
Fupap () = 3 [ ) + Bc (k) £ [adk? + 407 (1.42)

Figure 1.5 shows the polariton dispersion for three different detunings.
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Figure 1.5: Polariton mode dispersion (black lines) plotted in arbitrary units for the different
values of detuning: (a) A(k;) = 0.2 (b) A(ky) = 0, (c) A(k;) = —0.2. Dashed lines illustrate the
photon and bare exciton modes.

The two polariton branches can be experimentally observed as two resonances in the reflection

or transmission spectra. An example of such an experiment is given in Chapters 2 and 4.

One of the first observations of strong coupling regime in semiconductor microcavities was done
by Weisbuch et al. [12] in 1992 at T=20 K and then shown at room temperatures by Houdré et al.
in Ref. [13, 14]. The bosonic nature of exciton polaritons was demonstrated in the experiment,
where the parametric amplification of the polaritonic emission in the state k; = 0 was shown
[15]. In this experiment, the pump beam created a population on the lower polariton branch in
the inflection point of dispersion with k; = k,. From this state polaritons could coherently scatter
into the final states: k; = 0 and k; = 2k,,. This scattering process conserves momentum and
energy. The probe beam intensity at k; = 0 was found to be amplified due to the stimulated
scattering into this state, and the emerging probe power was found to be linear with the injected

probe power.

1.2 Bose — Einstein Condensation of Polaritons

The phenomenon of Bose-Einstein condensation (BEC) is known since 1925 when Einstein
predicted that the ability of bosons to accumulate unlimitedly in a degenerate state can lead to a
new phase transition. The experimental realization of the atomic Bose-Einstein condensation was
demonstrated in rubidium atomic gas in 1995 at a temperature of 170 nK [16] and later in sodium
atoms at 2uK [17]. For these experiments Eric Cornell, Wolfgang Ketterle and Carl Wieman were
awarded with the Nobel Prize in Physics in 2001. In this subsection the general theory of BEC is

presented and properties of polaritonic BEC are discussed.
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1.2.1 General description of Bose-Einstein condensation

The distribution of non-interacting bosons staying in the thermal equilibrium at a finite

temperature T reads:

1
fE)=fk.T. 1) = —Gao—prar — 1 (1.43)

where u is the chemical potential and kg is the Boltzmann constant, E generally depends on the
wave vector and is given by the dispersion relation. At high temperatures as well as in the low

density limit the quantum Bose distribution transforms into classical Boltzmann distribution.

At high temperatures the chemical potential is defined by the temperature. However, when u
reaches the energy of the ground state at some critical temperature T, the macroscopic number
of particles begin to occupy the ground state, that can be understood as the condensate

formation.

Figure 1.6(a) shows the distribution function plotted for different values of the chemical potential
increasing from -1.5kgT to -0.0001kzT (the graph is presented in semi-logarithmic plot) in the
ideal 3D gas. The sharp nonlinear increase near E = 0 is observed when the value of the chemical
potential approaches zero (4 — 07), while in semi-log scale the distribution remains linear (i.e.
normal exponential dependence) when the chemical potential is of the order of kgT. This
increase at E — 0 can be naively treated in a way that less energy is needed to add the particle to

the ground state.
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Figure 1.6: (a) The Bose — Einstein distribution function plotted for different values of chemical
potential (b) the fraction of bosons, occupying different energy states in an ideal gas.

The value of the chemical potential is derived from the expression:

N = ) F TR, (1.44)
k
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where N is the fixed number of particles in the system. The value of chemical potential can be
adjusted, so the probability for particles to occupy the ground state can be increased.
Figure 1.6(b) shows the fraction of particles, populating the energy E~E + dE. At low chemical
potentials and at finite temperatures the particles are mostly occupying states with non-zero
energy, because the density of states decreases with energy, contrary to the distribution function.
However, at high chemical potentials the probability to find a particle at zero energy drastically
increases and the ground state population becomes dominant. This fact indicates the possibility of

a phase transition.

In order to derive the critical temperature and the density of the phase transition in the 3D case

one should first express the density of states for a free boson [18]:

vV o2m\3/?
g(E) = m(h—r:) \/E (1.45)

Here V is the system volume and m is the mass of a boson. The total number of bosons in the

system reads:

Here N is the number of particles in the ground state and N,, is the number of particles in all
excited states. The Bose-Einstein condensation occurs whenu — 0, so that Ny(T,u) is
comparable with the total number of particles N(T, 1). The critical temperature can be calculated

from the condition:

Nex(Te,u=0) =N, (1.47)

from which one can understand that the condensation is the saturation of excited states.

The critical density for the phase transition can be found as follows:

(00} (o0} E
Ne= [ or@ae = [ fd e = Notu=0, s
0 0

where g(E) is the density of states given by Eq.(1.45) and f(E) is the distribution function given
by Eq.(1.43). The critical density can be found as follows:

3
e ) ),

where I'(x) and {(x) are defined as:

[ee)

I'(x) = f Exle=¢ dg, (1.50)

0
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3 1 @ Ex—l
{(x) = mof ﬁdf- (1.51)

In the 2D and 1D cases the integral (1.48) diverges because of the different energy dependence of
the density of states. However, it is still possible to describe the condensation when the system is

either finite sized or trapped in a confinement potential.

The detailed description of the BEC in confinement potentials is presented in Refs. [19, 18]. For
the finite size systems of the lateral size L one can describe the BEC as follows. The particle

density is given by:

N(T L) = o, 2 2 ! (1.52)
) =TTz EGO—p)_, :

kio2m P | =

where N, is the population of the ground state, E (k) is the polariton kinetic energy, u is the

chemical potential, and kg is the Boltzmann constant.

Defining N, as the maximum number of particles that can be accommodated in all states but the

ground state, one can write:

1 1
Ne(LT) = Z G (1.53)
kk>2E EXP\ T, T

Here p is set to zero that allows to put bosons into the ground state without limitation, while the
concentration of polaritons in the upper states is constant and equals to N.(L, T). The condensate
density is thus equal to Ny = N — N, . The upper limit for N, is assumed to be the Mott density,

which is calculated by

A
Nyott = — (1.54)
B

where A is the normalization area of 1 cm® and aj is the Bohr radius.

The phenomenon of BEC can be qualitatively understood as follows: if the thermal de Broglie
wavelength is comparable with the distance between particles, the condensation occurs.

Formally, in the 2D case it can be written as follows:

1
3 2mh?\2 1
= ~ 2, .
a5 (kaT) n (155)

Then the critical temperature may be estimated as:
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This qualitative expression renders exciton-polaritons the best candidates for observation of BEC

due to their extremely light mass.

In regard to the polariton condensation, it is instructive to introduce the difference between BEC
and polariton lasing regime. The latter is the phenomenon of coherent emission from the
macroscopically populated ground state. However, the macroscopic population is not enough to
show BEC in the system. Polariton lasers are excited non-resonantly by generating an electron-
hole cloud, from which excitons are formed. Excitons thermalize due to interactions with phonons
and exciton-exciton scattering, settle along the lower polariton branch and then scatter into the
ground state. At this point the particles do not have to be thermalized, which is essential for the
formation of a true BEC. Experimentally, apart from thermal distribution of bosons the
spontaneous vector polarization build-up and long-range spatial coherence are used as BEC

criteria.

1.2.2 Experimental observations of polariton condensates and related phenomena

Emission angle, 6 (degree)
20 20 -10 0 10 20 -20 -10 O 10 20

Energy (meV)
=
>
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In-plane wavevector (104 cm~7)

Figure 1.7: Far-field emission measured at 5 K below and above threshold, proving the formation
of BEC. (a) With increasing excitation power, a sharp and intense peak
is formed in the centre of the emission distribution,corresponding to the lowest momentum state
k, = 0. (b) Same data as in (a) but resolved in energy. Figure taken from Ref. [20].

The first experimental observation of the polariton condensation was shown by Deng and
Yamamoto in GaAs multiple QW MC [21] and by Kaspzak et.al. in a MC based on a CdTe/CdMgTe

QW [20], where the authors demonstrated the condensation into the ground state, the quantum

19



coherence, indicated by the long-range spatial coherence, and sharpening of the temporal
coherence of the emission. The experiment was carried out at T=5 K. Observations of polariton
condensation at room temperatures in different systems were demonstrated in Refs. [22, 23] .
The evidence of non-equilibrium polariton condensates is shown in Ref. [24]. The coherent
emission from macroscopic population of the ground state at room temperatures, the polariton

lasing effect, is discussed in Refs. [25, 26, 27, 28].

1.23 Weakly interacting polariton condensates

Kinetics of a polariton gas may be described with a set of semiclassical Boltzmann rate equations,

accounting for the bosonic nature of polaritons:

dnk,s
dt

k, ks’
=Pps+ Wk’;’nk’,s’(l + yes) = W™ My s(1+ s 1) = Vi s s. (1.57)

Here n; ¢ denotes the population of a state set by a wave vector k and a spin s = *1, Py ¢ defines

an external pumping rate related to binding of electrically or optically (non-resonantly) generated
electron-hole pairs into excitonic particles, and W:,’Ss, is the rate of spontaneous polariton

scattering from the state k, s into the state k’,s’. Eq. (1.57) is the most general form of the rate

equations, which includes two generalized terms for the incoming polaritons and polaritons
scattered away. It may account for various effects through the exact form of W,f,'z,. In particular,
it may describe emission and absorption of lattice phonons into and from the thermal phonon
bath, or nonlinear polariton-polariton scattering processes. In the latter case W,f,’,ss, by itself

depends on the populations of scatterers ny ;.

As discussed above, although the formation of a true BEC is forbidden in the case of low
dimensionality d < 3, a macroscopically populated state of a finite size can appear either in a
confining potential, which removes the divergence in the expression for the critical density due to
discreteness of the spectrum, or in the more experimentally relevant case of a finite size optical
pumping spot. Depending on the relation between the characteristic rates of thermalization and
decay, the steady state of a macroscopically populated polariton quantum state, or the polariton
condensate, may follow either the behaviour of a Bose-Einstein condensate in the limit of fast
thermalization, or the physics of polariton lasers in the opposite, completely non-equilibrium
limit. The absence of a defined transition between the two limiting cases implies a crossover

between polariton lasing and polariton BECs.

In both limiting cases, the formation of an interacting polariton condensate, typically for any
second order phase transition, is related to the emergence of an order parameter, which has the

meaning of the condensate wave function W. If the thermalisation rate of a polariton gas is faster
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than the characteristic rate of polariton decay, typically given by the rate of photon escape from
the cavity and the Hopfield coefficient, then the dissipative and nonequilibrium nature of the
condensate is not important and its coherent evolution is given by the Gross-Pitaevskii equation

(GPE):

IE:

o¥ h2v2
2m

a
+U(r,t) + > |‘P|2] y, (1.58)
which accounts for contact polariton-polariton interactions, stemming from electron and hole
exchange processes, and an external potential U (7, t). The spinor version of GPE is applied when
polarization effects are of importance:

aq 2 a, ) a0\
+Ui(r,t)+7|%_r| +7|w¢| ‘Pi+[>’(aiz—> Yo, (1.59)

2m dy

i ov, _ [_ h2v?
Here the universal interaction nonlinearity constant a is replaced with a pair of interaction
parameters q ,, accounting for the anisotropy of polariton Coulomb interactions. The electron
and hole exchange processes, which provide the major contribution to the polariton repulsion,
are only allowed in the singlet configuration of polariton-polariton scattering, where the two
quasi-particles are in the same spin state. On the contrary, in the triplet configurations, polaritons
weakly attract due to second-order processes with dark excitons of spin +2 being the

intermediate states [29]. The last term in the spinor GPE accounts for the TE-TM splitting of the

planar cavity mode, which is responsible for the optical spin Hall effect [30].

To account for the dissipative nature of polariton condensates in steady states, which require
either optical or electrical pumping, one has to supplement the GPE with non-Hermitian gain and
loss terms:

o¥ h2v?

i +U( t)+a|lP|2+aR
ih—=|— T, — _—
ot 2m 2

2

ih
n+ % (gn—p)|¥P. (1.60)

Here both the gain term gn and the potential term agn/2 are linear in the excitonic reservoir
density n, and y is the rate of polariton decay, which is typically defined by the rate of photon
escape from the cavity. The classical excitonic reservoir, which typically stays in the vicinity of the
inflection point of lower polariton dispersion branch because of the bottleneck effect [31], can in
turn be described by a single semiclassical Boltzmann rate equation on the total reservoir density

n:

an_

i P —[g|¥|?> +Tn + DV?n. (1.61)

Here P is the rate exciton pumping into the reservoir, I is the characteristic rate of exciton decay

at the inflection point of the dispersion, and D is the rate of exciton diffusion in the reservoir.
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1.2.4 Bogoliubov excitations of polariton condensates.

GPE is a classical field equation, as the wave function W is the mean value of the polariton
annihilation operator af () and has the physical meaning of the classical electric field value. It is

therefore valid in the case of macroscopic occupation number of the condensate N > 1.

The elementary excitations of the condensate are related to the small fluctuations ¥ of the
wave function. Since the nature of the fluctuations is quantum, they are described with the

quantized form of GPE with the Hamiltonian, having the following form in the momentum space:

H=) ESala,+= ) al,.al,_ a,a (1.62)
apap 2 p+q“p’ —q “P“p" )

pp'q
where Ez()) =p?/2m is the kinetic energy, or the single particle spectrum. The quantized
condensate wave function is then expressed as ¥ = W + §P, where the fluctuation part is small
compared to the classical one and conserves the total occupation number of the condensate N.
Taking into account that both the ground state creation and anihilation operators may be
replaced with their mean values V/N, and keeping the second order in the perturbations, the

interaction Hamiltonian may be rewritten:

aNz EJ +aN)aja afal 1.63
(E9 + aN) aya, + ayal, + a,a_,). (1.63)
p+0 p#0

It may be diagonalized with the Bogoliubov transformation [32], introducing a set of new

annihilation operators:

N oA At 5 _ A ~t
Ap = Uplp + Vpa_y, Bp = Upl_p + Vplp,. (1.64)

In the new notation the interaction Hamiltonian reads:

aN? 1 1 o
H="r+) Eyala, 5 ) (E)+aN —Ep), (1.65)
D=0 D=0

where ES is the boson dispersion and the Bogoliubov excitation spectrum reads:

= \/(Eg)z + 2aNEY. (1.66)

In the low-energy limit the spectrum is linear with the group velocity c = ,/aN/m. The Bogolon

dispersion is plotted in Figure 1.8.
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Figure 1.8: The spectrum of Bogoliubov excitations of an interacting condensate in dimensionless
units € = E,,/aN and p = p/vmaN, linear dispersion with group velocity c is plotted with dashed
line as a guide for the eye.

The excitations of a polariton laser, or a steady state of a coupled condensate-reservoir systems,
characterized by a wave function ¥, and a reservoir density n,, are then obtained in a similar way

with linearization of the coupled equations [33]:

Y = e Y [1 + yyelkr=00) 4 yreilir-wd] (1.67)

n =no[1 + wy k=08 4 yre-ilkr-wt], (1.68)

Excitations in this case are characterized by complex energy spectra. Positive imaginary parts of
spectra correspond to exponentially growing fluctuations and their presence in a spectrum
signifies a dynamical instability of the condensate-reservoir system. It appears in the case where
the decay rates of the condensate and the reservoir are comparable and the reservoir strongly
affects the condensate dynamics. Its physical origin is in polariton repulsion off the reservoir: a
condensate density fluctuation, locally depleting the reservoir, creates a potential well, which in
turn attracts the condensate and further increases its density. Spatially inhomogeneous
condensates appearing from dynamical instabilities have been very recently observed in single
shots observations of polariton condensation [34]. Typical spectra of a non-equilibrium
condensate excitations in stable and unstable cases are shown in Figure 1.9. Thermally populated
linear spectra of Bogoliubov condensate spectra were experimentally observed in Refs. [35, 36]

(see Figure 1.10).
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Figure 1.9: A scheme of nonequilibrium polariton condensation (a) and typical real (b,d) and
corresponding imaginary (c,e) parts of the excitation spectra, obtained with two sets of
parameters, corresponding to dynamically stable (I' > y) and unstable (I' = y) states of a
nonequilibrium condensate. Reservoir diffusive excitation branch (R) transforms to the dynamical
instability (DI) branch with the change of parameters. Figure taken from Ref. [33].
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Figure 1.10: Polarization dependency of the excitation spectrum for an untrapped condensate
system. (a) A linear plot of the intensity; (b)—(d) three-dimensional logarithmic plots of the
intensity to magnify the excitation spectra. The theoretical curves represent the Bogoliubov

excitation energy Eg (pink line), the quadratic dispersion relations E; p (black line), which start from
the condensate energy, and the non-interacting free-polariton dispersion relation E;p (white line),
which is experimentally determined by the data taken far below the threshold P= 0.001P;;,. Figure
and caption taken from Ref. [36].
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1.3 Summary of the Thesis

In this Chapter | introduced the main properties of excitons and exciton-polaritons in

semiconductors. The properties of these quasi-particles are further discussed in different systems.

The simulation of light propagation in layered structures described in Section 1.1.2.1 was
demonstrated in Ref. [7], where the semiconductor layered crystal is shown to be suitable for

controlling the group velocity and propagation direction of light as well as its spatial distribution.

The particular form of kinetic equations (1.57) is used to calculate the population of bosons on
each level of the parabolic potential in order to reproduce experimental results and describe the

relaxation processes in Chapter 2.

Bogoliubov excitations over the polariton condensate, demonstrated in section 1.2.4 are used in

Chapter 3, where the light induced superconductivity is discussed.

Chapter 4 is devoted to the discussion of exciton and exciton-polariton properties in novel
semiconductor structures, based on transition metal dichalcogenide monolayers. The variational
approach was used to calculate binding energies of exciton and trions in monolayers of MoSe; in
Section 4.3. The coupled oscillator approach was used to model the polariton dispersion which
was first observed in WSe, based Tamm-plasmon structures in Section 4.4. Polariton
condensation phase diagram was plotted for MoSe, monolayer with method discussed in Section

1.2.1.
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Chapter 2: Bosonic Cascade Laser (BCL)

Recently the research of coherent light sources based on bosonic systems (known as bosers, or
bosonic lasers) has seen a rapid boost [37]. In contrast to conventional lasers based on the
phenomenon of stimulated emission, bosonic lasers are based on stimulated relaxation of bosons
and on the formation of an exciton-polariton condensate [38]. This stimulated relaxation is
triggered by the final state occupation of an energy level within a system, and serves as the
principal tool for building up of a polariton population in a given energy state [39]. The coherence
of boser radiation is the result of spontaneous emission of photons by the condensate after its
occupation exceeds unity [20], making such a system ideal for a low-threshold lasing device. This
Chapter builds upon the idea of the bosonic cascade laser (BCL) introduced by Liew et al. [40] that
is capable of emitting terahertz (THz) radiation, a technologically underdeveloped range of the
electromagnetic spectrum [41]. The BCL uses a cascade mechanism similar to that of the quantum
cascade laser (QCL) [42, 43] in order to generate radiation. Unlike the QCL, which uses multiple
adjacent QWs [44] as the cascade ladder, the BCL cascade [45] is formed by equidistant excitonic
levels in a single parabolic quantum well (PQW) [46, 47]. Although intersubband polariton QCLs
have been proposed [48], these rely upon the need for population inversion between adjacent
subbands, analogous to the QCL. In the BCL, however, the amplification is due to the bosonic
stimulation of radiative transitions between adjacent levels in a cascade. Both the QCL and a
range of other proposed microcavity (MC) systems are capable of generating THz [49, 50], but the
BCL uniquely offers increased amplification created by the final polariton state stimulation within

the confines of a single PQW.

In this Chapter the main theory of the BCL and the results of the photoluminescence experiments
in PQW are discussed. In these experiments the unusual pump-power dependencies of the
photoluminescence (PL) in the PQW sample without the MC are shown, which is believed to be
specifically due to the bosonic cascade relaxation mechanism. The relaxation dynamics of excitons
in MCs with parabolic and rectangular QWs is investigated. The excitons are seen to relax in the
PQW much faster than in a MC with a rectangular QW. Thus, accelerated relaxation in PQW might
be an indication of stimulated relaxation in a bosonic cascade that is in agreement with the BCL

model of Ref. [40]
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2.1 Introduction

2.1.1 THz emitting sources:

The terahertz range of frequencies is considered to be from 100 GHz to 10 THz. This region of
electromagnetic spectrum is very challenging in technical realisation and remains industrially
underdeveloped in comparison to other wavelengths [51]. THz radiation importance stems from
the possibilities of its applications: THz emission demonstrates ability to contrast against
conductors and the emission is non-ionising, rotational and vibrational energies of many organic
and inorganic molecules lie in the THz range, so it is highly essential in medicine and security.
Currently THz devices are being developed for skin-cancer imaging, non-contact spectroscopy,
detection of explosives, corrosion inspection, material characterisation, tomography and many
others [51, 52]. In solid state physics THz radiation can provide additional information regarding
carrier lifetime, carrier dynamics and densities, and electron ionisation in plasma. THz sources can
be classified as broadband, narrowband, or incoherent thermal sources. Broadband radiation is
generated in different materials by ultra-short laser pulses and is used for characterisation of
electro-optic properties of materials; narrowband sources are crucial for high-resolution

spectroscopy applications and will be of particular interest in this Chapter.
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Figure 2.1: THz region that fills the gap between infrared and microwave region of
electromagnetic spectrum.

2.1.2 Quantum cascade laser

In 1971 Kazarinov and Suris [44] proposed electromagnetic wave amplification by means of
stimulated transitions of electrons between quantized subbands in two-dimensional QWs that

could be obtained by growing atomically sharp semiconductor heterostructures.

As the transition energies are defined not by fixed material properties but rather by design
parameters (particularly by layer thickness values of quantum wells), quantum cascade lasers can

be designed for operating wavelengths ranging from a few microns to well above 10 um, or even
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in the THz region. The first working QCL was demonstrated under cryogenic temperatures and in
infrared frequencies with 4.3 um wavelength by Faist et al. [42, 53] in 1994. The QCL implicates
alternating levels of N asymmetric QWs that are stacked adjacently. THz emission occurs, when
electrons, which are injected into the structure by an applied voltage, tunnel through the QWs in

the active region of the structure, causing N identical photons to be emitted.

The laser emission is based on intersubband transitions in multiple QWs. During the cascade
process each electron produces several tenth of photons, while it is passing through the structure.
In 2001 this technology was realised in THz frequencies [54, 55]. A schematic illustration of the
QCL is shown on Figure 2.2. Currently there are reports about room-temperature QCL THz

generation, achieved by internal difference frequency generation [56]

Electron
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Figure 2.2: A schematic illustration of the QCL. In the first QW, an electron is injected resonantly
into the upper energy subband, and can be stimulated to decay to a lower subband level, thereby
emitting a photon. The lower-energy electron then tunnels to the next QW and causes another
intersubband transition and the process continues along the ladder. Figure is taken from Ref. [57].

Despite all advantages of this type of laser the QCL operating regime has limitations: the electron
thermalization rate should be higher than the rate of tunneling transition between QWs, so that
the inversion population can occur. A technological drawback of QCLs is the inherently low total
efficiency, because of the many possibilities that an electron in an upper state can lose its energy
without emission of a photon. For example at high temperatures there is high probability that
electron moves out of the quantum well without relaxation to the ground state. Currently the
devices with efficiencies around 50% have been demonstrated only at cryogenic temperatures
[58, 59]. Another problem is that the edge facet emission of most QCLs creates highly divergent

output beams that are difficult to inject efficiently into small optics or fibres.
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213 Vertical Cavity Surface emitting laser as a source of THz emission

The vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode that emits
radiation in the direction perpendicular to the top surface, contrary to the edge-emitting lasers
that emit from surfaces formed by cleaving the individual chip out of a wafer. First it was

demonstrated in Tokyo by K. Iga et al. [60].

The laser resonator consists of two distributed Bragg reflectors with different reflectivity on the
top and on the bottom and a QW in between. The structure can be integrated in a 2D array
configuration; the low threshold currents enable high density arrays. VCSEL structures
demonstrate high efficiency at low power and lower temperature sensitivity in comparison to
edge-emitting laser diods. Figure 2.3 demonstrates the structural difference between

conventional edge-emitting lasers and VCSEL.

Edge-emitting laser VCSEL
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/
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Figure 2.3: Schematic illustration of edge-emitting laser and VCSEL

The idea of THz VCSEL was proposed in Ref. [50] as an alternative to the model that uses the
transition between the upper and the lower polariton branches in the polariton lasing regime. In
this model THz emission is produced as a result of relaxation from the 2p exciton state to the
lower polariton branch. The two-photon pumping is used to excite the 2p state [61, 62]. The
direct transition from the 2p state with emission of a single photon is forbidden by the selection
rules. However, the 2p exciton may relax radiatively to the lower polariton mode, that is
composed of a 1s exciton and a cavity mode. This transition occurs with emission of a THz photon.
This THz transition pumps the lowest energy polariton state that leads to polariton lasing effect
that in turn stimulates THz transition due to macroscopic occupation of the lower polariton
energy level. The VCSEL design allows operating with an optically allowed THz transition and it

emits THz photons in vertical direction. Also, there is no need in a THz cavity. All these properties
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are significantly advantageous compared with the QCL or the model with transitions from the UPB

to the LPB.

2.2 Theory of Bosonic Cascade Laser

2.2.1 The main proposal

The Bosonic Cascade Laser combines the advantages of QCLs and exciton-polariton lasers: the
emission of multiple THz photons occurs with each injected electron; the threshold is very low

and there is no need for THz cavity.

The first proposal of the BCL emitting in the THz range of frequencies was done by Tim Liew et al.
in 2013 [40]. The exciton cascade is formed in a parabolic potential with equidistant excitonic
levels. The most efficient transitions are allowed between the adjacent levels. The potential can
be realized in different ways such as strain induced traps, optically induced traps and specially

designed micropillars. One of the most promising designs is a parabolic QW embedded into a MC.

In the initial proposal the authors considered the weak coupling regime with the optical mode
resonant with the m™ excitonic level for efficient pumping, while all other levels are supposed to
be uncoupled from the cavity mode. This configuration benefits from the formation of the dark
cascade with long radiative lifetimes. The radiation from the device is polarized in the direction

normal to QW and propagates in the cavity plane in the wave guiding regime.

In order to determine the occupation numbers of the excitonic quantum confined states the

following set of Boltzmann kinetic equations is used:

dN,, Ny,

— =P WN,(Npp—q + 1) + WiNp_1 (N,,, + 1), (2.1)
dN, Ny

—7 =~ A WNewa Ve + 1) = Ne(Ni—10)] +

+W1[Nk—1(Nk + 1) - Nk(Nk+1 + 1)], Vi<k<m- 1, (22)
dN, N,

— =~ T WN (W + 1) = WiNo(Ny + 1), (2.3)

where P is the initial pumping density, N; is the occupation of i-th level, W and W; are the THz
emission and absorption rates respectively, 7 is the lifetime of cascade levels, which includes both

radiative and non-radiative decay rates.
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Figure 2.4: Dependence of the mode occupations in the absence of a THz cavity on pump
intensity, calculated numerically from the kinetic equations (2.1)-(2.3).

Non-radiative lifetime includes losses due to phonon scattering to states with a non-zero in-plane
wave vector. In the case where the THz cavity is presented, one more equation is added to the

system:

m m

dn n

T EE L Ny + D =W ) N (N + D, (24)
dt TTHZ - -

where nry, is the THz mode occupation. In this model it is assumed that the matrix element of
the THz transition is non-zero only for adjacent levels of the cascade and is uniform for all pairs of
levels. Figure 2.4 represents the solution of the system of equations (2.1)-(2.3), in the case where
nryz = 0. In this model the energy levels are occupied by subsequent relaxations of excitons

from the top.

2.2.2 The feasibility of THz transitions

To discuss the feasibility of THz transitions in the parabolic QW one should start from the two-

particle Hamiltonian for an electron and a hole (Eg.(1.8) from section 1.1):

hZ 2 2

h
H= =g Ve =g Vi + Ve(ze) + Vilan) -

_, (2.5)
glre - rhl

This Hamiltonian consists of kinetic energy terms for an electron and a hole, potential terms and
the Coulomb interaction. One can rewrite this Hamiltonian in terms of centre-of-mass and relative

motion coordinates:

hZ 2 2

e
— 2 2
H——va—vaﬁ'V(Ze,Zh)—;, (26)
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where p = m,my/(m, + my), M =m, + my, p = |r, — ry|. The QW potential is considered to
have the form (z,, z,) = C,z2 + Crz2 , which may be expressed in the coordinates of centre-of
mass and relative motion:

(ChmZ + Com})z? 2

M2 + M (Chme - Cemh)ZZ. (27)

V=(C,+C)Z%+

Here the last term mixes the internal and the centre-of mass degrees of freedom, provided that
the pre-factor is not equal to zero. This term is extremely important because it allows the
transitions between states, where the level index and orbital angular momentum are changed by
1 unit. Note that such transitions would be forbidden by selection rules in the absence of this
term. From now on it is assumed that 2p state to 1s state transition energy is matched to the level

spacing.

THz

1s 2p

Figure 2.5: A schematic illustration of the cascade mechanism in parabolic potential: 2p exciton
changes its angular momentum and transforms into 1s state with finite probability. After this
process the radiative transition to the lower state occurs on a terahertz frequency.

Figure 2.5 qualitatively explains the relaxation process: the left parabolic ladder corresponds to
energy levels of the 1s exciton and the right one corresponds to the energy levels of the 2p
exciton. In general, there is always a probability that the 2p exciton transforms into the 1s exciton
with the same energy (shown by orange arrow). At the same time the radiative transition from 2p
to 1s state and back is allowed by selection rules. So, if the energy distance between levels is the
same in both ladders, the relaxation can be described as follows: at first the exciton changes its
orbital quantum number but stays at the same energy level and then decays to the lower state

(yellow arrow in Figure 2.5) with emission of THz photon (black arrow). With the description
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above one can construct the wave function of the eigenstate of the cascade ladder, which is a

mixture of 1s and 2p states (the notation of Ref. [40] is used):

—_ - \/E . .

223 Steady state solutions and the comparison with the fermionic case

The analytical solutions of the system (2.1)-(2.3) can be obtained in the steady state regime in the
absence of THz cavity, so % =0 and nry, = 0. Also, N; > 1and Wyt < 1. The steady state

populations obtained from the rate equations read:

N, = No ! (2.9)

YT Wor(Ny + 1) Wt '
N Ni-1 (1 +N +1) LY (2.10)

KT N+ 1\, k-2 Wor % '

This leads to the general expression:

Ny ~ Ny + — vo<l<[mj (2.11)

21 ~ Vo WOT ='=17 ’ .
N211~N0+—\7’O<l<[ |, (2.12)

where [n] denotes rounding up to the nearest integer and |n] denotes rounding down. The

populations of the pumped level and the ground level read:

N (1 +N ) P (2.13)
m\Wer . ™Y T w '
St oy (2.14)
T m4+2 2W,t m even, '
Ng= L ML odd 2.15
T+l 2w %% (2.15)

From these equations the THz emission rate reads:

dnTHz

m? +2m( 2m—1

Ny + oW, ) V m even (2.16)

_WOZNk(Nk 1+ 1) =

dnry, (m+1)? (m?+1)(2m+3)
= Ny + \4 dd. 2.17
dt 4z 0 24W, 72 mo (2.17)

In the case where Ny >> 1 the quantum efficiency can be expressed as:

1dnqy,
P dt

—>[§]>1,m>2.

34



The fermionic case is completely different from the bosonic cascade model, since the bosonic
stimulation of the THz emission is not possible in the absence of a THz cavity. Rate equations

(2.1)-(2.3) then are transformed into the following:

dN,, N,
2 _p_ M woN,, 2.19
dt T 07tm ( )
dN, Ny,
No _ _No (2.21)
dt 1 0T '

In the steady state regime these equations yield:

Ny =P ( Wor )m (2.22)
o ="t 1+ W()T ’ '
P WoT m—-k+1
N :—(—) V1i<k<m. 2.23
K= Wo \T+ Wt m (2.:23)

Figure 2.6 shows the dynamical population of energy levels, obtained by solving the kinetic
equations (2.1)-(2.3) (bosonic case) and (2.19)-(2.21) (fermionic case). One can see that in the
fermionic case all particles remain at the pumped level, while all other levels are nearly empty.
This can be seen from the equation  (2.23) where, if Wyt < 1, then N,,, = Pt. The THz emission

rate is equal to Wy N,,, and the quantum efficiency then is WyN,,,/P = Wyt < 1.

The description above was discussed in the case where the particle, which follows a sequence of
transitions in the ladder, is an exciton. If the parabolic QW is embedded into a MC, so that the
exciton levels are coupled with a cavity mode and the strong coupling regime is reached, the new
polaritonic energy levels are not equidistant, so to create a polariton cascade laser one should
alter the profile of the QW. However, in the weak coupling regime it is still possible to use a MCin
order to enhance either the pumping level of the ladder, or, on the contrary, enhance the
emission from the ground state. The last example is presented in the experiment discussion in

Section 2.3.
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Figure 2.6: The time-dependence of energy level populations obtained by numerical simulation of
a) Egs. (2.1)-(2.3) — bosonic case, and b) equations (2.19)-(2.21) — fermionic case. W=1500s",
P:106W0. The radiative decay time is constant and equal to T =53 ps.

Figure 2.7 shows the quantum THz emission rate and the quantum efficiency of the BCL,
calculated in the framework of the described model. From the data, shown in Figure 2.7(a) one
can calculate the possible THz emission power that can be generated by the device: let us assume
GaAs PQW with energy difference between levels equal to 6 meV. Thus, if there are 5 energy
levels in the QW, for the number of initial pumped photons P =8x10"W, the lasing power can
reach about 0.3 mW, depending on the value of W,,. However these estimations are very rough:

for the final power estimation the influence of phonon interaction should be studied carefully.

2.24 Double bosonic stimulation of the THZ emission

In general, the bosonic stimulation principle is equivalent to the statement that the probability of

N bosons to be found in a single quantum state is equal to the probability to find distinguishable
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particles in the same state multiplied by N!. The more familiar statement is that for N bosons

staying in the same state the probability of the N+1% boson to be found in the same state is
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Figure 2.7: Dependence of the THz emission rate on pump intensity in the absence of a cavity for
different numbers of modes in the chain (values of m are marked on the plot). Solid curves show
results from numerical solutions of Egs. (2.1)-(2.3). Dashed curves show the results of Eq.(2.4)
with W, = 0, that are valid for high pump powers. (b) Dependence of the quantum efficiency on
pump intensity [the values of m are the same as in (a)].

(c) Time dynamics form =6, P = 3 X 1013W,. The parameters are W, = 8.3 x 107 and
nry, = 0. Figure and caption taken from Ref. [40].

(N+1) X the probability for distinguishable particles. A nice proof of this statement is shown in
Ref. [63]. The coefficient (N+1) is referred to as the bosonic stimulation factor. It has been already

introduced in Egs. (2.1)-(2.3).

Let us now consider the following structure: a QW is embedded into a MC, so that polaritonic
energy levels are equidistant, and the whole system is placed into a THz resonator. The resonator
increases the radiative lifetime of the THz photons and also increases the emission probability due
to the Purcell effect. Then the system of Eqgs. (2.1)-(2.3) should be solved simultaneously with the

equation(2.4) describing the population of the THz mode, which will be non-zero in this case.

The emission of polaritons increases the population of the THz mode, which in turn increases the
polaritonic stimulated emission transition rate between adjacent levels. So it can be treated as
double bosonic stimulation in the system. It is essential to notice that Egs.(2.1)-(2.4) do not
include the interaction with a reservoir. In the case where bosons in the ladder interact with the

reservoir, excitons may relax in energy down the ladder without emission of THz photons.
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Ref. [45] provides a detailed analysis, including the equation for the reservoir population
dynamics and the quantum efficiency dependence on the interactions with the reservoir. The next
section shows that in real systems these interactions are not negligible, although the phonon

relaxation is taken into account differently from Ref. [45].

2.3 Experimental study and modelling of relaxation processes in

parabolic QWs

The experiment discussed below is intended to describe the exciton relaxation dynamics in
bosonic cascades. Two parabolic QW samples with and without Bragg reflectors were explored in
order to find the optimal structure characteristics for the Bosonic Cascade Laser. The PL spectra of
a PQW MC sample was compared with that of a conventional MC with embedded QWs to
demonstrate that the weak coupling lasing in a PQW sample can be achieved. The relaxation
dynamics in a conventional QW MC and in the PQW MC was studied by the non-resonant pump-
pump excitation method. A drastic difference in the relaxation characteristics between the two
samples was found. The semiclassical Boltzmann equations similar to Eq.(2.1)-(2.3) were
employed to reproduce the evolution of excitonic populations within the PQW as a function of the
pump power and the output intensity evolution as a function of the pump-pump pulse delay.
Fitting the PQW data has confirmed the anticipated cascade relaxation, paving the way for such a

system to produce terahertz radiation.

231 Experimental methods:

PQW samples without and with DBRs (denoted S1 and S2 respectively) have been studied, and
their relaxation and excitation characteristics have been compared to a planar MC sample with
rectangular QWs (S3). All samples were fabricated with the molecular beam epitaxy. S1 contains
an InGaAs/GaAs PQW of width = 50 nm at the top of the potential well, and the parabolic profile
was achieved by altering the indium concentration during the growth process from 2% at the
InGaAs/GaAs interface to 6% in the middle of the QW (see inset in Figure 2.9(a)). Sample S2 was
fabricated similarly with an Al,Ga;_,As/Aly15GagssAs QW of = 50 nm width, where the parabolic
profile was achieved by altering the concentration of aluminium along the z-axis of the sample
from 5% in the middle of the QW to 12% near the interface. The MC was formed with two DBRs,
each with 17 and 22 Aly15GaggsAs/AlAs paired layers. The Q-factor of the MC is approximately
2000 and the PQW was placed in the middle of 3A\/2 intracavity spacing. Finally a 5A/2 planar GaAs
cavity, sample S3, consisting of 32 and 35 Alg15GaggsAs/AlAs DBR pairs and 12 rectangular QWs
was studied. The Q-factor of this MC is approximately 12000.
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Figure 2.8: The schematic illustration of experimental setup for the charachterisation of sample S1
without PQW. The laser beam is collected on a lense in front of the sample, then the central part
of the reflected beam is used for the PL analysis. WLM denotes wavelength meter.

The samples were mounted in a close-cycle cryostat to reach a temperature of roughly 5 K.
Samples S2 and S3 were excited non-resonantly above the MC stopband by femtosecond pulses
from a Ti:Sa laser. The laser spot size was approximately 50 um. S1 was excited with a CW laser
resonantly tuned to the exciton resonance in the barrier layers (to the 12th quantum confined
excitonic state, see Figure 2.9). Such pump conditions allow creating excitons rather than
electron-hole pairs. To study the exciton relaxation dynamics of S2 and S3 a pump-pump
technique was used, whereby two pump pulses separated by a variable delay are used to excite a
sample non-resonantly with great temporal resolution giving the time-integrated intensity of the
PL as a function of the delay. The dynamics measured on a new MC sample containing a single
PQW (S2) was compared with the data taken on a reference sample that is a state of the
art strong coupling MC containing 12 embedded QWs and characterized by a Q-factor of 12000.
Both sets of data may be described within the kinetic model that allows revealing the role of key
parameters of microcavities, namely, the relaxation and radiative decay rates, the number of

intermediate exciton subbands.

At first the bare parabolic QW (sample S1) was characterized in order to verify that equidistant
exciton states had been achieved. In Figure 2.9 the modulated reflectance spectrum is presented
(red curve) and subsequently fitted (solid black line) and up to 11 distinct excitonic states can be
resolved. The energy spacing between the neighboring resonances is about 6 meV, or 1.45 THz.
The inset in Figure 2.9(a) shows the potential profile for excitons in PQW (blue line) and the
positions of equidistant quantum confined excitonic states (horizontal black lines), which creates

the bosonic cascade ladder.
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A simple analysis of the reflectivity spectrum is performed generalizing the theory developed in
Refs. [64, 65] for the case of several exciton quantum confined states to fit the modulated
reflection data. The modulation technique was used to reduce a noise and to stretch weak
features connected to the excited quantum confined excitonic states. Following the non-local
dielectric response theory [64], the amplitude reflection coefficient for a QW with several exciton

resonances can be expressed in the form:

Nmax .
i(—1)N-1ITyeton

N )l L
ow = Won — @ — i(Toy + Ty)

(2.24)

Here wgy is the resonance frequency, [,y and ['yare the radiative and nonradiative damping rates
for a system of N levels. The phase @y in this equation takes into account a possible asymmetry
of the QW potential. Reflectivity R(w), from the structure with a top barrier layer of thickness Ls

and a QW layer of thickness Lqw, is calculated using the transfer-matrix approach:

2

To1 + Towe??
01~ QW , (2.25)

R(w) =

1+ TOlrQWeZi(p

where 1y is the amplitude reflection coefficient from the sample surface. The phase is ¢ = K(Lj +
Low/2), where K is the photon wave vector in the heterostructure. The calculated derivative
reflectivity spectrum is shown in Figure 2.9(a) (black curve). The peak integrated PL spectra of the
sample S1 at different excitation powers has been measured (see Figure 2.9(b)). It was found that
the power increase gives rise to the increase of PL intensity from the lowest exciton state
followed by its saturation, contrary to the model set out in Ref. [40], where the highest level is
seen to populate first, and the lowest level establishing a population last. Simultaneously, the
intensity of the PL from the excited exciton states increases super-linearly with pump power and
then also saturates. The similar behaviour of PL is observed for exciton states under further
increase of the pump power. The full set of the PL data consisting of about 500 spectra was
analysed by deconvolution of each spectrum into a set of Lorentzian resonances, corresponding
to different exciton transitions. Such deconvolution fits the experimentally observed spectra, if
the wavelength of excitation coincides with one of the exciton resonances in PQW or with the
exciton resonance in barrier layers. In this case, the pump directly creates excitons rather than
uncoupled electron-hole pairs, the relaxation of which differs from exciton relaxation. If electron-
hole pairs are created by the non-resonant excitation, a broad structureless background appears
in the PL spectra. It should be stressed that the observed behaviour of the time integrated PL
intensities of resonant exciton peaks is a characteristic of PQWs. This is a clear indication that
excitons created by resonant excitation relax via cascade between neighbouring energy levels. A

reference rectangular QW of thickness of about 90 nm was studied by the same technique and
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found that no new exciton lines appear in the PL spectra with the pump power increase. To
identify the ability of the PQW to act as a polariton laser [39] the PQW sample inside a MC was
studied. Heterostructures acting as polaritonic lasers usually contain multiple thin QWs (of
roughly 10 nm in width) to increase the oscillator strength of the excitonic transition in order to
establish strong coupling. S2, however, contains only one PQW of about 50 nm width. The larger
QW thickness and stronger overlap of the electron and hole wave functions in the PQW provides
a sufficiently strong exciton-photon coupling to reach the strong coupling regime and polariton

lasing possible [66].

Only the lowest energy exciton state in the parabolic QW is strongly coupled to the cavity mode in
the low excitation regime. All other states are in the weak coupling regime due to the low overlap
of exciton centre-of-mass wave-functions and the cavity mode. Figure 2.10(a) shows the
dependencies of polariton mode energies on the laser spot position on the sample S2. One can
see that the detuning between the exciton and photon resonances is dependent on the spot
position. The anticrossing of polariton modes is clear evidence of the strong coupling regime. In
the anticrossing range the reflectivity spectrum exhibits three distinct minima; these can be
attributed to the coupling of the heavy-hole and light-hole excitons [67] to the cavity mode. The
Rabi splitting of the relating polariton states is about 6 meV. The pump-power dependence of PL
intensity for sample S2 is shown in Figure 2.10(b) (blue curve). The threshold-like increase of the
intensity is clearly observed. The identification of the polariton or conventional laser threshold is
guestionable without additional experiments. What is important is that the PL intensity rises
exponentially with pump power below the threshold. At the pulsed excitation this is an indication
of the switching of the system to the lasing regime within a limited time window, which becomes
longer as the pump power increase. The linewidth narrowing at the threshold pump power is
clearly seen at in Figure 2.10(b) (red curve). This is considered as an indication that the stimulated

relaxation occurs in sample S2.
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Figure 2.9: (a) A-modulated reflectivity spectrum of sample S1 containing parabolic QW without
MC (red curve) and modelled spectrum (black curve). Vertical dashed lines mark equidistant
guantum confined excitonic states in the PQW. Inset: the potential profile for excitons (left axis)
and distribution of indium content across the QW layer (right axis) are shown. (b) Pump power
dependencies of integral PL from different quantum confined excitonic states. The pump
wavelength was tuned to the exciton resonance in the barrier layer. The integral PL for each
transition was obtained by deconvolution of the PL spectra into a set of Lorentzians.The inset
presents the same curves plotted in logarithmic scale to show the low power region. Figure taken
from Ref. [68].
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Figure 2.10: (a) The energy position of features in reflectance spectra of sample S2 as a function of
the laser spot position on the sample (blue dots). Dashed lines marked as CM, LE, and HE are the
energy positions of cavity mode, light-hole exciton and heavy-hole exciton respectively. Light-hole
exciton is considered to be weakly coupled with the cavity mode. (b) Dependence of PL intensity
(blue curve) and PL linewidth (red curve) on the excitation power; Figure taken from Ref. [68].
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2.3.2 Pump — pump experiments
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Figure 2.11: The schematic illustration of experimental setup for pump-pump experiment

The pump-pump method employed in the experiment allowed highlighting relaxation processes in
the PQW within the MC that may be hidden for studies by the conventional time resolved
spectroscopy methods due to the reflection from the DBRs [69]. The important property of the
stimulated cascade relaxation is its strong dependence on population of the lower-lying exciton
state [40]. In the pump-pump method, the first pulse creates an initial density of excitons and the
delayed second pump pulse creates additional excitons at the pumped level. Relaxation of these
excitons strongly depends on the population of lower energy excitonic levels created by the first
pump pulse. If this population is large enough, the stimulated relaxation is triggered and
accelerated. This acceleration should result in the nonlinear increase of the total PL signal excited
by both pump pulses in the case of competing radiative and non-radiative channels of polariton
recombination. The PL intensity should depend on the delay between two pulses; no nonlinear PL
increase should occur at very large delays, where the excitons created by the first pulse relax and
recombine before the second pulse arrives. The proposed method was employed for a
comparative study of two samples S2 and S3. The samples were cooled down in a cryostat to 5 K
and pumped by two femtosecond pulsed beams. The time integrated PL spectra were measured
as functions of the delay between the pulses. Spatially broad pulses were intentionally used in
order to reduce the effects of diffusion and lateral polariton drift. A detailed treatment of the
formation dynamics of polariton condensates accounting for the drift and diffusion of
photoexcited carriers and excitons is presented in the recent paper [70]. The goal of the present
study is to reveal the specifics of momentum space relaxation in bosonic cascade structures, so
the spatial dynamics of exciton clouds and polariton condensates in such structures is not taken

into account.
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Figure 2.13 shows the delay dependencies of time integrated PL spectra of sample S2 with PQW
(a) and of sample S3 with multiple rectangular QWs (b) at the pump powers 0.25P;, + 1.7 Py,
where Py is the threshold pump power for each the sample. P, = 16mW for the sample S2 and
Pip= 1.1mW for S3. The spectral diffusion as well as appearance of the additional spectral peaks
are clearly observed at positive delays for both the samples. However, time scales for these
processes are different. For sample S2 the second peak is developing from 30 to 50 ps, while for

sample S3 it takes much longer delays, from 10 to 200 ps.

Figure 2.13shows the delay dependencies of the PL intensity measured for the samples S2 and S3
at different excitation powers of both pulses. The delay dependencies of spectrally resolved PL
intensities are taken at the energies E = 1.5698 eV (left panel) and E = 1.5399 eV (right panel)
corresponding to the peaks in the PL spectra. The pump powers are chosen close to the threshold
of lasing. There are several peculiarities in these dependencies. Firstly, there is a strong increase
of the PL at a relatively small delay. At the same time, the range of these delays is considerably
smaller for PQW (150 ps) than that for rectangular QWs (several hundred ps). These means that
the relaxation processes in the PQW is considerably faster than in the rectangular QWs. Secondly,
additional features in these dependencies are observed. For PQW, a relatively narrow dip at zero
delay is clearly seen. No such dip is observed for rectangular QWSs. This is an indication of
significant difference in relaxation processes in these two samples. Thirdly, some asymmetry of
the dependencies for positive and negative delays is observed in both samples. It is caused by the
difference in pump powers of first and second pulses. If the weak pulse comes first (negative
delay), the exciton population is relatively s mall, consequently the bosonic stimulation is weak,
and the relaxation of excitons created by the weak pulse is relatively slow. When the strong pulse
comes first (positive delay), the stimulated relaxation is accelerated compared to the case of a
weak pulse coming first. Finally, an additional peak of PL intensity is observed at the positive
delay, if the power of the strong pulse is beyond the threshold. To understand the second peak at

the positive delays one should discuss the time dependence of PL intensity.

In Ref. [71] the PL kinetics has been studied at different exciting powers for both below and above
the threshold of polariton lasing Pyy. It was found that when the power P < Py, the PL intensity
slowly rises and reaches its maximum at t;= 100 ps. At later times the PL intensity slowly
decreases with characteristic decay time t, = 400 ps. When the pump power exceeds the
threshold, a strong pulse of polariton laser emission appears at time t; with the 10-20 ps pulse
duration. Such temporal behaviour of PL intensity allows assuming the following origin of the
second peak in the pump dependencies shown in Figure 2.13. When the sample is pumped by two
pulses and the first pulse power is above the threshold two maxima of the polariton laser

emission may be seen. The reason is that the number of excitons remaining after the first pulse of
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polariton lasing peak and of excitons created by the second pump pulse is sufficient for the
formation of the second peak of polariton laser emission. These effects with polariton lasing
appearing twice are expected to be present in the sample S2 with PQW in MC as well as in the
sample S3 with rectangular QW in MC. But the time delay and the width of the second peak
strongly depends on the relaxation dynamics. Thus in the sample S2 the relaxation is faster than in

the sample with a rectangular QW in MC.

233 Modelling

Exciton relaxation and dynamics in GaAs MCs has been extensively studied in conventional QWs
[72, 73], particularly in what concerns the phonon mediated relaxation. In order to analyse the
experimental data obtained for the PQW, the rate equations introduced by Liew et al. have been
used by us with minor modifications. Let us consider m distinct excitonic levels in a PQW. The

dynamics of population of each of the levels can be described by the following system of rate

equations:
dN N,
SR TN Wiy (N + D)+
dt T, 4
=1
a 2 a
+5Nm—1(Nm + 1)(Nm—2 + 1) - ENmNm—z(Nm—l + 1): (2.26)
dN N, o
—E-pl+p2-—E4 Z W;Nis;(Ne + 1) —
dt Tk -
i=1
k-1
a
= W (N + 1) + 5 Ny (N + D W + 1) =
i=1

a 2 a 2
_g(Nk+1 + 1)“NiNiyo + ENk—ZNk(Nk—l +1)% —

a
_ENI?—l(Nk + DNz + 1) + a(Ny, + 12Ny 1 Njp—q —

—aNg(Ngsr + D0y + 1), k=2.m-1, (2.27)
m-—1

dN,; N,

=T Y Wl + D +

dt Ty 4
i=1

a 2 a 2
+§N2 (N, + D(N; + 1) — EN1N3(N2 + 1)2. (2.28)
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Here N; denotes to the occupation of the ground level of PQW, Nnis the occupation of the highest
level, and N is the occupation of k-level with k =2 ... m — 1, a terms describe the exciton-

exciton scattering in the system. Terms PL(0) and P? describe the initial two pulse excitation

where the second pulse comes with a delay 7. Terms —% fork = 2...m describe both radiative
k

and non-radiative decay rate of excitons at each level, where non-radiative decay describes losses
due to phonon scattering to states with a nonzero in-plane wave vector, k; # 0. For the first

level, only the radiative recombination is taken into account.

The model (2.26)-(2.28) neglects the absorption of THz photons in the bosonic cascades, which is
valid in the absence of external THz cavity. These equations are similar to the system (2.1)-(2.3)
but here one assumes that the population on each level depends on contributions from all levels,
from which the transition is allowed. As was discussed in the previous section the optical
transition is allowed only between levels with wave-functions of different parity. Matrix elements
W; describe the transition from any level k to any other level k — i in the cascade. Transitions
between adjacent levels may be mediated by the emission of THz radiation as suggested in Ref.
[40]. Let us generalize this model and consider the transitions between all the levels, which is
described in the above equations by summation over all levels. This generalisation can be made
under two assumptions: firstly the actual profile of the potential may not be strictly given by the
form of Eq.(2.7). Secondly the reservoir may be taken into account, assuming that phonon
scattering allows for non-radiative transitions, and the final population can be described within
the same model. In the modelling it was assumed that the pumping is centred at one of the
middle levels of the cascade, k, meaning that upward scattering is possible from this level. The
upward scattering due to exciton-exciton interaction populates all the levels up to the highest one
labelled m. For the structure under study, the exciton-exciton scattering is found to change the
amplitude of the PL signal, but does not affect the most important features of the exciton
dynamics. The exciton-exciton scattering plays a minor role in our experiments and the

corresponding terms in rate equations can be safely omitted.

In the experiment in the Section (2.3.2), the system is excited by femtosecond pulses which are
relatively broad in energy and capable of pumping several energy levels of the cascade
simultaneously. To account for the spectral broadening of the pulse in the model, it is assumed
that polaritons are excited not only at the level k, but also at the nearest levels k — 1 and k + 1. In
the numerical simulations, the cascade is considered to have the maximum number of occupied
exciton levels m = 9 with the level k = 6 receiving the major part of input pulses power, 2P/3, and

levels k = 5, 7, receiving 1/6 of total input power each.
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The following parameters are used in the calculations: W; = 1500 s* ,W, = W, = 500 s™, W; =
100s™, Ws = 2500 st Ty = 11 ps, 7= 55 ps, and t,= 22 ps. where Tg, Tp, Ty are the decay times
for the ground level, pumped levels, and levels above the pumped one, respectively. Figure 2.12
shows the time evolution of exciton densities at each energy level in the QW, plotted for two
different delays between the pulses. As seen from the figure, the population dynamics is quite
complex. If the system is excited by a single pulse (solid lines in Figure 2.12), pumped levels 5-7
are populated and other levels are almost empty at the initial time interval (t < 10 ps) after the
pulse. Due to the high exciton density at the level 5, N5 >> 1, the Bose-stimulated relaxation from

the upper levels 6 and 7 is switched on and the population of this level dramatically increases.

x10® | —_—

0 50 100 150 200
t (ps)

Figure 2.12: Time evolution of exciton densities at each level in the QW. Solid lines are calculated
for zero delay between pulses and dashed lines show the same for zdeisy= —5 ps. Figure taken from
Ref. [68].

The population of level 5 reaches its maximum at t = 5 ps, while levels 6 and 7 become empty. The
low-lying levels, i = 4 ... 1, are slowly populated while the exciton density is not reached a critical
value for Bose-stimulated relaxation. This critical value is achieved for the level 4 first because, in
the framework of the model, the relaxation between adjacent levels is more efficient, so
W, > W,..W,. This explains the threshold-like increase of population of the level 4 at time t = 30
ps. Similarly, populations of levels 3 and 2 rapidly increase at time t = 60 ps and t = 120 ps,
respectively (see respective curves in Figure 2.12). However, the population of the lowest exciton
level 1, is not efficiently boosted via this pathway because of the low population of the adjacent

level 2. Therefore, the model assumes that there is a direct relaxation of excitons from the
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pumped level 5 to the lowest level. As one will see below, this process explains the second

maximum observed experimentally in pump-pump experiments (see Figure 2.13, left panel).

As discussed in the previous subsection, radiative transitions between levels, where the wave
functions have the same parity, are forbidden. However, through the modelling process it was
found that transitions W, and W, are essential to fit the second peak appearing at the 50 ps
delay. So the possible explanation that is consistent with the theory of BCL are that the phonon

transitions to k=0 state also play a role. So in this model these transitions are taken into account

N . . . .
separately from the terms — T—k that describes the phonon scattering to states with a nonzero in-
k

plane wave vector, k; # 0. These non-radiative losses also compete with the relaxation
processes. The integral magnitude of losses depends on the time, spent by excitons at the excited
levels. This time can be drastically shortened and, respectively, the PL yield can be increased, if
appropriate experimental conditions initiating the Bose stimulated relaxation are fulfilled, in
particular, the excitation power, which should be close to the threshold power for polariton lasing
[74, 75]. Separation of the excitation pulse in two pulses also helps controlling the population of
different exciton levels (see Figure 2.12) and, hence, the non-radiative losses. Once the excitons
created by the first pulse have relaxed to the fifth level (it takes about 5 ps), the excitons created
by the second pulse delayed by 7 =5 ps rapidly relax from the sixth and seventh levels to the fifth
one via Bose-stimulated process. This stimulation gives rise to the increased population of level 5
relative to that obtained for zero delay, as one can conclude comparing solid and dashed lines N5
in Figure 2.12. The corresponding increase of population is observed also for other levels. In
particular, a remarkable increase of population is observed for level 1, which is the key point for
understanding of the dip in the delay dependence of PL intensity observed experimentally (see
Figure 2.13, left panel). Figure 2.14 shows the integral PL intensity, lri, as a function of the delay

between pulses, 7, , for two excitation powers with total power, P+ P < Py, where Py, is the

delay?
threshold power for polariton lasing. Curves lirepresent the contribution of each transition term
having form Wi-1Ni (N1 + 1) for i =2 ... 6, into the total PL. As one can see from the figure, the
modelling predicts a dip in the PL intensity at the small delays. It is clear from the discussion
above that the dip is due to the increase of PL intensity at the delay increases up to several

picoseconds.
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Figure 2.13: Experimental measurements discussed in the end of the subsection 2.3.2: PL spectra
measured as a function of the delay between the pump pulses for sample S2 with PQW (left
panel) and sample S3 containing multiple rectangular QWs in a MC (right panel). Figure taken
from Ref. [68].
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Figure 2.14: Modelling of pump-pump signal with use of rate equations: delay dependencies of
total PL intensity l».from the ground exciton level, and separate contributions of each transition
I;=W;_{N; (N; +1)fori=2...6, plotted for two different values of pump powers:

(a) P1y= 0.3 X Prpy, P2y= 0.25 % Ppp,-and (b) Piqy= 0.7 x Ppp;, P3y= = 0.25 X Prp,.. Figure taken
from Ref. [68].

The further increase of delay between the pulses gives rise to the depopulation of level 5 when
the second pulse arrives. As a result the Bose-stimulated relaxation of levels 6 and 7 excited by
the second pulse becomes less efficient and the non-radiative losses increase. This explains the
decrease of PL intensity at delays 7 = 10 ... 40 ps (see Figure 2.14(b)). However, when the delay T >
40 ps, the population of the ground exciton level is so large (N; < 1) that the direct Bose-
stimulated relaxation from level 6 described by term W5Ng (N;+ 1) becomes an efficient pathway
for the exciton relaxation to the ground level. Respectively, efficient depopulation of level 6
occurs that results in the decrease of non-radiative losses. These processes explain the
appearance of a second peak at the delay dependence of PL intensity. The calculated behaviour of
total PL intensities at weak and strong pumping qualitatively reproduces the experimental results

(compared to Figure 2.13).

The PL intensity for the conventional rectangular QW can be modelled with the same set of
equations (2.26)-(2.28). However due to the large separation of energy levels the initial pumping

populates only single energy levels, while neighbouring levels stay empty. This leads to the
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disappearance of the dip in the PL profile as it is shown in the experiment (Figure 2.13, right

panel).

2.4 Conclusions

Present experiments and modelling shed light on the exciton dynamics in bosonic cascades, the
pump-pump method being a powerful tool for the study of the fast relaxation dynamics at the
non-resonant pumping. When the only one pump pulse is used for excitation, the relaxation
occurs via one pathway. Using the second pulse allows one to switch the relaxation between
different pathways depending on delay between the pulses which is demonstrated experimentally
and through modelling. The qualitative agreement was found between the theoretical model of a
BCL in a PQW system and experimental results. Because the pump-pump method is based on
strong nonlinearity of PL yield on the pump power, which is close to the threshold, the
guantitative agreement of the theory and the experiment was not reached. However, the
modelling showed that there are two different pathways for relaxation in the system. The first
pathway is the relaxation via cascade transitions, where all levels are being filled, and the second
pathway is the direct transition from the pumped level to the ground one. By taking these
pathways into account, the model may be generalized for larger number of levels or for other
initial conditions. Taking into account the fact that minimum in the PL at zero delay occurs only if
polaritons are exited on at least two adjacent levels, it is possible to explain the difference in PL
for PQW and bare QW shown in Figure 2.13 the levels in bare QW stand far from each other and
polaritons are excited only at one energy level. Due to this there is no minimum at zero delay
between pump pulses. Nevertheless, the relaxation process in the bare QW still may be described

by the rate equations, but with different values of parameters.

The consequential continuation in the development of the BCL model would be implementing the
phonon interactions into the theory and finding experimental structures, where phonon

relaxation can be reduced.

In this work | have reproduced the results of the paper [40], plotted extra results for the fermionic

case and provided modelling support for the relaxation dynamics in the experiment [68].
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Chapter 3: Polariton — mediated superconductivity

The phenomenon of superconductivity is one of the most fascinating problems of modern physics.
Since its discovery in metals in 1911 at cryogenic temperatures plenty of experimental
developments were made, so now there are compounds acquiring superconducting properties at
temperatures over 160K. However, there is no unified explanation of this phenomenon and the

theoretical aspects of high-temperature superconductivity still have to be developed.

In this Chapter | discuss one of possible mechanisms of superconductivity — light induced
superconductivity. This theory is built upon the conventional model of attractive electron-electron
interaction, but the phonon mediation is replaced by the mediation by excitations of an exciton-
polariton BEC. The structures that are proposed to be suitable for observation of the effect
pertain to the class of hybrid Bose-Fermi structures — layered semiconductor crystals
with embedded QWs, where the QW with BEC is adjacent to the QW with a 2D

electron gas (2DEG). This structure is schematically shown in Figure 3.1.

DBR l

DBR ‘A

Figure 3.1: A schematic illustration of the hybrid Bose-Fermi structure, discussed in this Chapter.
Figure taken from Ref. [76].

The two subsystems (BEC and 2DEG) exhibit different quantum effects as a result of their
statistics. In Refs. [77, 78] the softening of polariton dispersion and transition of BEC into the
supersolid phase are demonstrated. At the same time a 2DEG may exhibit superconducting and
CDW state [79]. The last is an ordered quantum fluid of electrons where the electrons form a

standing wave pattern.

This Chapter is devoted to the investigations on superconductivity in a 2DEG layer in the weak
coupling regime, meaning that the electrons in the 2DEG QW are weakly coupled to the polaritons
in the adjacent QW, and implying the validity of the Bardeen-Cooper-Schrieffer theory. In
particular, the dependence of the critical temperature on the magnetic field and the densities of

2DEG and polariton BEC was investigated. Bearing in mind the recent appearance of new
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materials based on TMDC monolayers that exhibit unique excitonic properties, this type of

superconductivity can possibly be observed in TMDC microcavities.

3.1 Introduction

One of the most gripping phenomena in the modern physics is the superconductivity. It was
discovered in 1911 by the Dutch physicist H. Kamerlingh-Onnes, who observed an abrupt
vanishing of the resistivity of solid mercury at T = 4.15 K. Later the same observations at different
temperatures were done in lead, tin, thallium, uranium, and other metals. The investigations on
the decay time of superconducting currents showed fascinating results: in 1963 J. File and R. Mills
studied the decrease of the superconducting current in a Nby 7527325 solenoid by measuring the
magnetic field with the nuclear magnetic resonance method. The experiment showed that the

characteristic decay time of the current is longer than 100000 years [80].

Superconductors exhibit unusual properties in the presence of magnetic fields. In 1933 W.
Meissner and R. Ochsenfeld demonstrated that if a superconductor is cooled down below the
critical temperature in the external magnetic field, the field lines are completely ejected from the
bulk of a sample [81]. Such materials are called type I superconductors. Their superconducting
properties completely vanish at the critical value of the magnetic field B,. Type II
superconductors exhibit a completely different behaviour: there are two critical values of
magnetic field B¢, and B, . In the region below B¢, the magnetic field stays at the surface of the
superconductor, while in the region B¢, < B < B, the magnetic field penetrates inside the bulk
and superconducting vortices are formed. The metal still remains in the superconducting state,
however, the magnetic field flux through it is not equal to zero. Typically B¢, > B¢, , which allows
applications of these materials in engineering. Nowadays all superconducting magnets are based

on the Type Il superconductors.

Later in 1950s the isotope effect that is the dependence of the superconducting critical
temperature on the nuclear mass was shown [82, 83, 84], proving the important role of the lattice
and electron-phonon interactions in superconductivity. The explanation of the isotope effect was
given by Frohlich in Ref. [85], where the electron-phonon interaction was first theoretically

described.

The theoretical investigations of superconductivity began in 1935, with the introduction of the
London equations [86]. The main assumption of the London’s model was that electrons in
superconductors form circular currents that fully screen the applied magnetic field. By relating

this superconducting current with the magnetic field the Meissner effect was described. This
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theory is purely phenomenological and has a few drawbacks, where the main one is the

underestimation of the magnetic field penetration depth.

Later L. Landau and V. Ginzburg created a model that described the second order phase transition
from metallic conductivity to superconductivity with a non-linear Schrodinger-like equation. The
second order phase transition theory is based on the assumption that there exists an order
parameter, which describes the loss of symmetrical properties of the system. The order
parameter is zero at the normal state, and it deviates from zero continuously in the ordered state.
In the description of superconductivity this order parameter was assumed to be proportional to
the density of carriers of the superconducting current. The theory successfully described the
Meissner effect and the distinction of the two types of superconductors. Later it was shown that
the Ginzburg-Landau theory is the limiting case of the full microscopic model, valid at

temperatures close to the phase transition temperature.

3.2 BCS approximation

The breakthrough in the investigations of the superconductivity phenomenon came in 1957
when John Bardeen, Leon Cooper, and John Robert Schrieffer published the seminal paper on the

microscopic theory of superconductivity (BCS model) [87].

This work is based on two main previously established properties of the Fermi gases in solids. The
first one is the existence of an effective attraction between two electrons that stems from the
phonon mediation. Instead of using the realistic microscopic treatment of the interaction,
Bardeen et al. used the toy “jellium” model, where the artificial and structureless background
charge interacts electrostatically with itself and with the electrons. The electron-electron

potential (Bardeen-Pines potential) in this model reads:

(3.1)

2
Ugp(w,q) = wph(q) ],

02
e(q? + q7r) [1 Ter- EAC)
where ¢ is the dielectric permittivity, qrr is the dielectric screening constant, hw,y, is the phonon
dispersion, hw is the exchanged (phonon) energy and q is the exchanged (phonon) wave vector.

The Fourier transform of this potential is time-dependent that reflects the retardation effect.

The second development was done by L. Cooper. In 1956 he found that two electrons near the
Fermi level are unstable towards the formation of a Cooper pair for an arbitrarily small attractive
interaction and the energy of this bound state is lower than the energy of an unbound electron-
electron pair on the Fermi surface [88]. So one would expect that the many body electronic

system is unstable towards the formation of a new ground state, formed by Cooper pairs of
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electrons. This final step accounting for the collective nature of superconducting state completed

the microscopic description of the superconductivity phenomenon.

The BCS Hamiltonian can be expressed in the form:
H :Zgafa +Zv el et eien (3.2)
BCS kCoCho ki CrrCogl C-k'LCK'D .
k,o kK’
where &, = €, — i, €, = h?k?/2m*, u is the chemical potential, cA,JEG, Cre are the electron
creation and annihilation operators. Vy ;s is the interaction potential between the electrons with
corresponding absolute values of momenta. This Hamiltonian can be rewritten in the mean field

approximation, accounting for the term <611Téik1> # 0, which corresponds to the Cooper pair
wave function in superconducting state. Introducing the fermionic Bogoliubov transformation

[89], that reads:

et = wdt — viden, (3.3)

Gt = WpPrr + vl (3.4)

and after some math one can introduce the superconducting ground state wave function, which is

the quasi-vacuum in the new basis of quasi-particles, called bogolons.

Vko|Wres) = 0. (3.5)

In terms of the initial electron creation and annihilation operators |Wg.s) can be rewritten as:

Wes) = | [+ vecreinlon, 3.6)
k

where |0) is the Fermi sea, u; and vy, are the parameters, satisfying the condition u,2c + v,f =1.
The minimization of the expectation value of the Hamiltonian (3.2) in the ground state allows

determining these parameters and leads to the self-consistent condition:

Ak’
A= Z Vi ———
i 2 /f,f, + AL

where A= 1/N Yt Vi {C_pr1Exr1) is the gap function, that can be expressed in terms of uy, vy,

and Ej, = /f,f, + A,Zc, is the quasi-particle excitation energy.

Assuming that the interaction potential V. is constant and attractive in the certain frequency

(3.7)

range, i.e.

_V! |‘>;k|! |‘>;k'| < Wp

V, 1={ 3.8
WZ10, 16 €] = wp, (3.8)
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where wp is the phonon Debye frequency, the gap function is independent on the wave vector
and it is constant in the region of the attractive potential. Then the gap equation (3.7) may be

simplified to:

1—Vzl (3.9)
_ZkEk' '

The summation in the Eq.(3.9) can be replaced by integration over energy, which leads to

fl(A)D
d
1=NVf —E,
; /€2+A2

with V' being the density of states at the Fermi surface in the normal state. If NV « 1, that

(3.10)

means the weak coupling condition being satisfied, then

1
A= 2 the(_W). (3.11)

At finite temperatures this equation may be generalized as follows:

. . E(€)

U(E — €)AE, T) tank

AGT) = - f <2kBT>d
2E@)

— 0o

g, (3.12)

where U(¢ — &') is an arbitrary potential, kg is the Boltzmann constant. The critical temperature
T, of the phase transition is then determined as the temperature, at which the gap function turns

to zero. Substituting the potential (3.8) into the Eq.(3.12) one can find T as:

1
kgT. = 1.13 hwp exp (— W) (3.13)

Qualitatively, the BCS mechanism can be understood as follows: a single electron, moving in the
lattice of ions creates a distortion in the ion positions, producing the local uncompensated
positive charge. Due to the difference in the electron and ion masses the lattice response is much
slower, compared to the electron motion. So at a later time this charge attracts another electron,
when the first one is away at a long distance, which can be of the order of 100 nm. At such
distances the Coulomb repulsion does not affect these electrons, so that a bound state can b
formed. Being composed bosons, the Cooper pairs are subject to the collective phenomena,
similar to superfluidity. The superfluid current of Cooper pairs is responsible for the

superconductivity.
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33 Exciton-polariton mediated superconductivity

The typical transition temperature in superconducting metals is of the order of several Kelvin. In
order to increase this temperature one may try to increase either the Debye energy or the

interaction strength in Eq.(3.13).

The Cooper model predicted that the pair of electrons can be formed at any arbitrary attraction,
independently on its nature and interaction strength. Hence, phonons are by no means a unique
agent possibly providing for the electron-electron attraction. In the light of this, in 1964 the idea
of exciton mediated superconductivity was first proposed by W. Little [90]. Then a further
development to this proposal was done by V. Ginzburg [91] and D. Allender et al. [92], who
considered layered metal-semiconductor structures as candidates for exciton-mediated
superconductivity. The goal set by these authors was to increase the cutoff frequency by replacing
the phonon mediation by the virtual exciton mediation. However, the experimental attempts to
realize this idea faced two major obstacles: firstly, the energy cost of creating an excitation in the
semiconductor layer is very high. Secondly, the retardation effect in such systems is suppressed,
because the average speed of the exciton, created due to the interactions in metal and
semiconductor is high in comparison to the speed of sound, which means that the resulting
Cooper pairs would be small in size and the Coulomb repulsion cannot be neglected. Most likely
for these two reasons, the exciton-mediated superconductivity was never observed. A significant
development towards the implementation of the exciton-mediated superconductivity was made
by Laussy et al. in Ref. [93], where the authors suggested that excitations in a BEC of exciton-
polaritons can play the role of mediators of Cooper pairing. Accounting for the possibility of the
room-temperature polariton BEC this mechanism potentially can lead to the formation of a

superconducting state at room temperatures as well.

The proposed structure for the studies of exciton BEC-mediated superconductivity is shown in
Figure 3.1. It consists of a pair of DBRs and two adjacent QWs placed at the maximum of the
optical field confined in a MC. One QW contains a 2DEG which can be created by the doping. The
neighbouring QW contains a BEC of exciton polaritons that can be pumped optically. It is
essential, that in this model there is no difference if there is a thermal equilibrium or a driven-

dissipative BEC in the QW.
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3.3.1 Interaction Hamiltonian
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Figure 3.2: Fermi surface average in 3D and 2D case. Vectors k4 and k, are the initial vectors of
the two electrons lying on the Fermi surface. The vector q is the exchange wave vector between
the interacting electron pair. Figure taken from the Ref. [94].

As in the BCS approach, here it is assumed that only the electrons that stay on the Fermi surface
can form Cooper pairs. The model microscopic Hamiltonian, describing the interactions in the

layered system reads [94]:

H= Z Eyoi (K)alay + Z Eo(K)ele, + Z Ve(@E ol _abiaChs
k k kl,kz,q

2 st a At a4 At A oA
+ Z X VX(q)cklckﬁ_qakﬁqak2 + Z Ay, Oy, 1 qOky+q 0Ky (3.14)
k1,k2,q k1,k2,q
where Ej,; (k) and E, (k) are the in-plane polariton and 2DEG dispersions, V. and Vy are the
electron-electron Coulomb interaction and the electron-exciton interaction respectively, U is the

polariton-polariton interaction strength.

The electron-electron Coulomb repulsion in this model is given by the conventional Yukawa

potential, which accounts for the 2DEG screening:
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(3.15)
where k is the screening constant, A is the normalization area.

The electron-polariton interaction in the Hamiltonian (3.14) is the most important part, because it
essentially determines the shape of the interaction potential. The electron in a 2DEG QW interacts
with the excitonic part of the polariton, so the interaction depends on the excitonic Hopfield
coefficient. Taking into account only the direct interactions and eliminating the exchange

interactions one can write the matrix element of electron-exciton interaction as:
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VX = flIJ)?(QIrelrh)lp*(klrl)V(rlvre'rh)LPX(Q're:rh)lp(k:rl)drldredrh: (3.16)

where the electron wave function is a plane wave and the exciton is assumed to be in the 1s-

state:
Y(k, 1) = ie”“l (3.17)
VA
2 Uy,(z,)Uy(z . _Ix
LPX(Q:rler) = _MelQRXe ag, (3.18)
A ap

Ry and ry are the exciton centre of mass and relative motion coordinates, ap is the exciton Bohr
radius, Uy, (z,), U.(2.) are the electron and hole envelop wave functions in the direction normal
to the QW plane. Taking into account the dipole moment of the exciton in the direction

perpendicular to the QW plane, the electron-exciton matrix element can be expressed as:

_ede_qL Be ﬂh
WD == (a5 G T Gaes
ele L 1 1
" 2qea [[1 T (Boqag/DT 1+ (ﬁhan/Z)ZP/Z]' 3.19)

where ., , = m,/(m, + my), m,, are the effective electron and hole masses, L is the distance
between the 2DEG and BEC QWs, d is the dipole moment [95]. One can see that the interaction
can be enhanced by increasing the dipole moment of excitons, which in turn can be controlled by

applying an external electric field.

The polariton-polariton interaction stems from the interaction of the excitonic parts of the
polaritons. It is common to assume that this interaction does not depend on a wave vector and
spin. The direct dipole-dipole interactions appear to be negligible in comparison to exchange
interactions. Under these assumptions the polariton-polariton matrix element takes the form

[96]:

_ 6agEpX*

S (3.20)

Knowing the matrix elements of the interactions one can continue with reducing the Hamiltonian
(3.14) to the form of the BCS Hamiltonian (3.2), in order to leave only the electron-electron
interaction for the electron pairs. The main difference between the present and the BCS effective

interactions is that in the case of polariton mediation the Coulomb repulsion cannot be neglected.

The Hamiltonian transformation starts from the mean field approach, applied to the polariton

condensate i.e. d,quk = (d}:w)&k + &Lq(dk) and (@) = \/ANy6y o, where Ny is the polariton
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density in the condensate. Then the diagonalisation of the Hamiltonian via the Bogoliubov

transformation leads to the following form:
H = Hel + Hbog + HC + Hel—bogr (321)
where the Coulomb interaction and the free electron energy stay unchanged and

Hbog + Hel—bog = Z Ebog(k)B]tBk + z M(q)éli-ék+q(5iq+5q); (3-22)
k k,q

with Ep,4 being the dispersion of elementary excitations of the condensate, q = ky — k3, q* =
2k2(1 + cosB). Schematically the exchanged wave vector is shown on Figure 3.2. In the case of

polariton BEC Ej, 4 takes the form:

Epog (k) = \/ (Epor1(k) + 2AUN,)Eppy (K, (3.23)

with E"pol(k) = Epo1(k) — Epo1(0). The renormalized electron-bogolon interaction reads:

_ Epog (@) — Epol(‘l)
M(q) = w/ANOXZVX(q)\/ZAUNO ~ Erog (@) + Epol(q)' (3.24)

Applying the Frohlich transformation to the Hamiltonian (3.21) one can obtain the BCS-like form:

Heff = Z Eeéli-ék + Z Veffél-cl-lék1+qé;cl-2+q6k2’ (325)
k ki.kz2.q

where Vs is a sum of the Coulomb repulsion and the bogolon-mediated attractive part:

Verr(w,q) = Ve(q) + Vo (q, w), (3.26)

where

2M2 (q)Ebog (q)

) = Gy~ By (@)

(3.27)

One can see that this interaction is proportional to the density of particles in the condensate so V,

can be controlled by optical pumping.

By averaging over the Fermi surface one can obtain the energy dependent interaction potential.

This averaging physically means that the interaction is isotropic:

AN 2m
Up(@) = 5o [ (VaCw, @) + Ve(@)a. (3.28)
0

In order to define the critical temperature of superconducting phase transition, the interaction

(3.28) is used in the gap-equation (3.12) .
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3.3.2 Modelling results

|
Top DBR
AlAs/Al 3sGageshs | [
with p-doped top gate
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Figure 3.3: Schematic illustration of the GaAs MC design, proposed by T. Fink, S. FIt, and A.
Imamoglu

In this section the described approach is used to model the effect in the real layered structure
based on GaAs/AlGaAs QWs. The schematic illustration of the structure is shown in Figure 3.3. In
order to induce a stationary exciton dipole moment, the polariton condensate is expected to be
subject to an external gate voltage in the growth direction as shown in Figure 3.3. The

parameters, used in the calculations are shown in Appendix A.

Figure 3.4 shows the characteristic values of the conduction and valence bands for different gate
voltages. In order to calculate the dipole moment of the excitons in the condensate the
normalized wave functions W.(z) and W, (z) were obtained for the electron and the hole, using
the software nextnano, that implements finite difference methods to solve the k.p-Schrodinger-

Poisson equation. The dipole moment is given by:

ed = ef (W( D2 — | ¥a(2)D)zdz,

In the right panel of the Figure 3.4 the exciton dipole moment dependence on the external gate is
shown. One can see that the dipole moment reaches a maximum value of 13 nm before the
external gate breaks the exciton. The total exciton density N, is also affected by the external bias,
due to the thermal dissociation of weakly bound excitons. Therefore, the external gate will play

an important role, since it affects simultaneously the exciton population and the dipole moment.
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Figure 3.4: Exciton QW. The valence(red) and conduction(blue) band are divided in 3 subregions
separated by dashed vertical lines. Region | (R.l) corresponds to Al 0.18Ga o.:2AS, R.Il corresponds
to GaAs and R.lll is Al 0.85Ga 0.15As. The black lines show the electron | ¥, ( z)|? and
hole |¥}, ( z)|? probability densities shifted to their respective eigenvalue for a) V;=0andb) V=
—75kV /em. Right panel: Exciton dipole dz as a function of the external gate voltage 1,

Figure 3.5 represents the results of interaction potential calculations and the solution of the gap
equation. As one can see from the Eq.(3.27) the magnitude of the interaction potential increases
linearly with N,. This is illustrated by Figure 3.5(a), where it is clear that the higher N, is, the
higher is the magnitude and the broader is the attraction region. This effect is observed in a wide
range of polariton density values. The only essential limitation to this mechanism of SC is the Mott
transition from an exciton (exciton-polariton) condensate to an electron-hole plasma. On the
contrary, Figure 3.5(b) shows that a high electron density leads to the decreasing magnitude of
the negative part of the potential that corresponds to the attraction between electrons. The
obtained result is important for designing microstructures exhibiting HTSC, as it demonstrates the
advantage of fully semiconductor heterostructures over the metal-semiconductor

heterostructures.

Taking into account the complexity of the interaction the gap equation (3.12) with substituted
interaction (3.27) is solved numerically. Here | solve it using the iteration method. The example of

solution is shown in Figure 3.5(c) and (d).

It is assumed that only the electrons on the Fermi surface form Cooper pairs. Here it means that
only the point A(0) has a physical meaning. If A(0) > 0, then Cooper pair can be formed. The

critical temperature T can be defined as the temperature below which A(0) is not equal to zero.
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Figure 3.5: The magnitude of effective interaction potential as a function of (a)density of
polaritons N, and (b) density of electrons in 2DEG QW.The color shows the magnitude in
dimensionless units.Blue region corresponds to the effective attraction between electrons, red
region represents the repulsion.The inset presents the profile of the potential at the particular
concentration N,. Graphs (c) and (d) show the solution of the gap-equation. (c): A(0) as a function
of temperature. The critical temperature T, in this case is equal to 33K. (d): solution of the Eq.(5)
at T = T¢. The results are presented for the potential with N, = 8 x 10"'cm™ and

No =6 x 10™ cm™. Figure taken from Ref. [76].

Figure 3.6 represents the critical temperature of the superconductivity phase transition as a
function of the electron density in a 2DEG QW. The green line shows the temperature that
corresponds to the Fermi-energy, the other lines represent the dependencies of T, on the
electron density for different values of exciton-polariton density. One can see that the increase of
the electron density N, leads to the reduction of the critical temperature. The coloured area
shows the range of parameters where the theory is applicable. The limitations for the theory are
the following: firstly, the thermal energy of electrons at the critical temperature must be lower
than the Fermi energy. Otherwise, one cannot assume that electrons forming the Cooper pairs are
located at the Fermi surface. Secondly, the absolute value of the gap-energy must be lower than

the Fermi energy. In

Figure 3.6 the area of validity of the discussed approach is limited by Er = kgT line. The density
Ny =4X 10'2cm™ is apparently beyond the Mott transition threshold, therefore high Tc
predicted by this line is unrealistic and is presented only for showing the tendency of T, growth.
On the other hand, the exciton-polariton density N, = 4 X 101! cm™ is achievable in realistic QW

structures based on GaAs, so critical temperatures of the order of a few tens of Kelvin must be
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achievable in semiconductor structures. The superconducting currents may be observed in the

considered structures until the critical current density is achieved.

600
— F /K
500 - s 11 2
N —N,=4-10"" cm’
400+ N\ —N,=9-10" cm?
%3 E —— N,=4-10" cm™
e 300
200 |
100
0 (1) —————
2

1
N_(10"cm?)

Figure 3.6: The dependence of TC on the concentration of electrons in 2DEG QW, plotted for
three different polariton concentrations NO. Dashed parts of the curves show the region where
the theory is not applicable. Curves 1 and 2 represent the parameters of the condensate that are
achievable in a realistic GaAs-based semiconductor structures. Figure taken from Ref. [76].

It can be conveniently derived from the superconducting gap A(0) as in Ref. [97]:

_ eN,A(0)

3.30
hk (3.30)

Je
Figure 3.7(a) shows the critical current j., calculated as a function of the electronic density N,
and temperature. One can see that the highest current density corresponds to the lowest

concentrations and the lowest temperatures on the graph, that fully agrees with the qualitative

analysis.

Let us now discuss the behaviour of exciton-mediated superconductors in the presence of
external magnetic fields. It is known that in bulk superconductors the Meissner effect exists until
the critical magnetic field is achieved. This field is linked to the critical current. Namely, the critical
field induces a surface current equal to j.. Once the surface currents, providing a full screening of
the magnetic field inside the superconductor, exceed the critical current, the superconductivity is
suppressed. In Ref. [76] in 2D system the magnetic field direction perpendicular to the QW plane
was considered. The superconducting layer is much thinner than the typical penetration length of
the magnetic field into the superconductor, so the Meissner effect cannot be observed. The
superconductivity is still suppressed by the magnetic field in this case, but the gap vanishes at the
critical field B.,. In order to find B, and the critical temperature the magnetic field in the gap

equation is accounted for, using the condition A(0,T, B.,) = 0. The field reduces the density of
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electronic states in the 2DEG layer which leads to the increase of the radius of the Fermi circle. A
minor effect is the modification of the electron-exciton interaction potential due to the shrinkage

of the exciton Bohr radius.

N

3 4
Ng(10"cm™2

Figure 3.7: (a) The dependence of the critical current j. on the temperature and electron
concentration. (b)Fermi wave vector (red curve) and critical temperature(blue curve) as a function
of magnetic field B. N, = 8 x 10" cm . The Dingle broadening of Landau Levels I is taken to be
0.3 meV, that corresponds to the cyclotron energy hw, at B=0.2T. Figure taken from Ref. [76].

To account for the magnetic field effect on kg, the authors used the expression for the radii of the
circles in the reciprocal space, that correspond to Landau levels in the quasi-classical

approximation [98]:

1\ 2eB
k (p Z)h ,p=012... (3.31)

Electrons may occupy quantum states in the I’ vicinity of these circles, where T is the Dingle
broadening of Landau levels dependent on the structural disorder and scattering processes. The
area occupied by electrons in the reciprocal space at each circle at zero temperature may be

found as:

2mrl’
= 21k, 6ky, 6ky th (3.32)

The Fermi wave-vector is expressed as kr = kj;, where the index M can be found from the

condition:

, Mol , &

— S, <N, < —Z S 3.33

(2m)2 Zo p 2m2 ] p (3:33)
p= p=

Figure 3.7(b) shows kg and T as functions of magnetic field B for the fixed electron and polariton
densities. All parameters are the same that were used for potential calculation for GaAs-structure.
In this case N, = 8 X 101! cm?, N, = 6 x 10! cm™, the Dingle broadening of Landau levels is

taken to be to 0.3 meV. At low magnetic fields given by the condition Aiw, < T it is assumed that
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kr = kr(B = 0), neglecting the weak oscillations of kr due to the oscillating electron density of

states [99].

3.4 Conclusions and perspectives

The modelling of the results reported in the previous section showed that fully semiconductor
structures, combining doped and undoped QWs provide higher critical temperatures than metal-
semiconductor structures. This can be explained by the fact that exciton mediated attraction
weakens with the increase of the Fermi energy faster than the Coulomb repulsion does. In the
absence of magnetic field this model yields the critical temperatures of the order of 50 K in
realistic GaAs-based microcavities. Also, it is shown that magnetic fields may strongly affect the
Fermi wave-vector ki, which is why the critical temperature decrease and eventually vanishes at
B, =AT. The increase of kr accounts for the reduction of the effective area occupied by each
electron in the real space due to the cyclotron motion. The used quasi-classical approximation is
limited at strong quantizing magnetic fields. As long as the quantum Hall regime is not established
and the number of filled Landau levels N > 1, the quasi-classical approach is applicable. In our
case, the number of occupied Landau levels is over 10 even at B~ 4 T, which allows one to
consider the quasi-classical result as a trustworthy approximation. Other effects which may
influence B, include the electron Zeeman splitting and edge current effects. GaAs/AlGaAs QWs
are characterized by low Lande factors g~ 0.01 depending on the actual heterostructure
parameters. The electron Zeeman splitting in the considered range of magnetic fields B~4T is of

the order of a few peV and it is negligible with respect to other characteristic energy scales.

My contribution to this work includes reproduction of the results, obtained by Fabrice Laussy in
Ref. [94] and calculating the critical temperature as a function of the electron and polariton
densities. | also analysed the behaviour of the critical temperature as a function of magnetic field
described in Subsection 3.3.2 and calculated the critical currents shown in Figure 3.7(a). The

results of this work are published in a peer reviewed journal (see Ref. [76]).

All these calculations are done in the framework of the BCS approximation, which actually means
that the interaction between electrons in 2DEG layer and the condensate is weak enough,
NV « 1. In particular, this implies that a small dipole moment d is induced. In addition, neither
properties of the condensate, nor changes induced to the condensate wave function by the 2DEG
are taken into account in the model. If the condition of weak coupling is not satisfied, the Migdal-
Eliashberg theory should be preferential over our model in order to find the critical temperature.
In Refs. [77, 78] the effect of the 2DEG on the condensate, which leads to the formation of the

supersolid phase is discussed. The interplay between the condensate in the supersolid state and

67



the 2DEG can break superconductivity and lead to the formation of charge density wave state in
the 2DEG layer. The latter effect in hybrid Bose-Fermi structures is still not fully theoretically
described and might be quite promising for investigations. The problem of the exciton-mediated
superconductivity in the limit of the strong coupling regime becomes particularly interesting
considering the appearance of a new material platform based on TMDC monolayers, that exhibit
unique excitonic properties in comparison to the conventional semiconductors (see Chapter 4 for

the discussion).

Finally, even within the BCS model there are still interesting problems left to be explored. In
particular, in Ref. [92] the interplay between the exciton and phonon mediated superconductivity
was discussed. It is shown that if the exciton mediation is considered simultaneously with the
phonon one, the critical temperature is increased. In Ref. [100] it is shown that the presence of
one mediation mechanism enhances the other, resulting in the resonant increase of the critical
temperature. It would be interesting to find realistic parameters for the structure, where the BCS
approach is applicable and construct the full picture of the critical temperature behaviour at
different limits by finding the electron density in 2DEG layer, at which the phonon mediation

becomes negligible in comparison to the exciton mediation.

Currently there are some reports, showing that a light-induced superconducting state can be
found in some cuprates and fullerenes [101, 102]. However, there is no evidence of light-induced
superconductivity in hybrid Bose-Fermi structures. The observation of this phenomenon in such
systems at any temperature would be a significant breakthrough and will open new frontiers in

polaritonics.
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Chapter4: TMDC monolayers as novel materials for

Polaritonics

Inspired by the discovery of graphene, the field of two dimensional (2D) materials has rapidly
extended to a larger variety of atomically thin materials. Within this field, the group of transition
metal dichalcogenides (TMDCs) has attracted a great attention due to its unique physical
properties. In this Chapter the recent experiments investigating the excitonic properties of TMDC

monolayers are discussed and their theoretical description is presented.

4.1 Introduction

TMDC materials were well known since the early 60-s of the previous century [103]. These
materials are characterized by strong covalent interatomic bonds in the plain of a single layer and
weak Van der Waals forces between the neighboring atomic layers. This is the reason why they
are used as dry lubricants in mechanical systems. The major interest in these materials arose in
the last decade, after the discovery of graphene [104]. The subsequent research showed that the
transition from 3D-crystals to 2D films dramatically changes the physical properties of the TMDC.
Since 2010 2D films of TMDCs are subject to an intensive research. In this chapter we shall
consider atomically thin TMDC. This means in particular, that the layer thickness is orders of
magnitude thinner than the characteristic wavelength of light corresponding to the excitonic

transitions involved. For TMDC monolayers the layer thickness is about several angstroms.

Different TMDC monolayers demonstrate either metallic or semiconducting properties depending
on the metallic element constituting the compound. As discussed in review [105] compounds
MoX, and WX, are semiconducting, while, for example, NbX, and TaX, are metallic. The main
interest to semiconducting TMDC films arose when it was discovered that the band gap transition
in the M-point, which is indirect for the bulk materials, changes to the direct one in a TMDC
monolayer. The typical value for the energy gap lies in the optical range. For example, in MoS,

E4~2 eV, that corresponds to the orange light.

A TMDC monolayer is a material characterized with a chemical formula MX,, where M is a
transition metal element and X is a chalcogen atom, typically these are S, Se and Te. In TMDC
structures the layer of metallic atoms is gripped between two layers of chalcogens. Each metallic
atom is connected to two chalcogens, so the elementary cell consists of three atoms. From the
top the monolayer exhibits a graphene-like hexagonal structure, but with two different atoms in

vertices. The example of such a structure is shown in Figure 4.1(a).
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Figure 4.1: (a)Elementary cell and hexagonal structure of MoSe,, picture taken from Ref. [106]. (b)
False-color optical microscopy image of the WSe, flake, used in experiment discussed in Section
4.4 (monolayer in red shaded area). Figure taken from Ref. [107].

All ways to synthesize these materials can be divided into 2 groups: top-down methods and
bottom-up methods. In top down methods the 2D film is isolated from the bulk material by
application of an external force; in bottom-up processes atoms are deposited onto a substrate by

chemical or thermal reaction in order to form the 2D film.

Among top-down methods the most widely used way to obtain the monolayers is the mechanical
exfoliation, where the atomically thin films are peeled from the bulk crystal by micromechanical
cleavage, using an adhesive tape. The advantage of this method is that it is a low-cost process that
allows synthesizing high purity samples that can be used for fundamental research and for
fabrication of devices. An exfoliated flake can be easily recognized by putting it on a substantially
thick substrate that yields clear optical contrast between the wafer and the sample flake. The
number of layers in the flake can be clearly recognized by the optical contrast. In 2012 the
technique allowing for the laser reduction of the thickness of a TMDC sample down to a
monolayer [108] has been established. However, this method does not allow for controlling the
flake size and it is thus not suitable for large-scale applications. Figure 4.1 b shows the monolayer

of WSe,, obtained by exfoliation, that was used for the experiment in the Section 4.4.

Other top-down methods to produce 2D TMDC, that are widely used, are liquid phase
preparations [109], ultrasonic and chemical exfoliation. These methods can be used for obtaining

large quantities of exfoliated films.

Bottom-up techniques mainly include various chemical vapor deposition methods (CVD), that at
first became widely used for graphene film synthesis and this method allowed for a large scale
device fabrication and hydrothermal synthesis. Recently some CVD methods of the growth of

TMDC monolayers have been reported ( [110], [111], [112]).

70



4.1.1 Electronic properties:

For digital logic transistors, that are one of the most important applications of semiconductor
materials, the most important properties are high conductivity, high charge carrier mobility,
needed for fast operation, high ratio of on-state and off-state conductance and low off state
conductance. The mobility of the carriers mostly depends on the Coulomb scattering that occurs
at charged impurities in the monolayer, scattering on acoustic and optical phonons and on surface
or interface phonons. All these mechanisms play a role at different temperatures. The room
temperature mobility in semiconducting TMDC monolayers is limited to ~410 cm® V' s
Presently, the on/off current ratio reaches up to 10® in MoS, monolayers. In Ref. [113] an example

of the field effect transistor based on TMDC monolayer was demonstrated.

The future directions of TMDC electronics lie in the development of high performance flexible
logical components. Another potential application is based on the TMDC monolayer analogue of
high-electron-mobility transistors, that are conventionally fabricated from planar junctions of
semiconductors of different band gaps [105]. In these devices the semiconductor that is
characterized by a smaller band gap is highly doped, while the other one is left undoped. If the
two layers are brought into contact the electrons from the doped layer move into the undoped
layer and are free to move with minimum scattering from dopants. TMDCs can be adapted to this
device architecture because the different TMDCs have a range of band gaps and similar lattice

constants.

4.1.2 Excitonic properties:

WS, bulk WS, monolayer

=

E; (Hartree)

L M K r

Figure 4.2: The band structures calculated from first-principles density functional theory (DFT) for
bulk and monolayer WS,. The horizontal dashed lines indicate the Fermi level. The arrows indicate
the fundamental bandgap (direct or indirect). The top of the valence band (blue) and bottom of
the conduction band (green) are highlighted. Figure taken from the Ref. [114].
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The direct gap in semiconducting TMDC monolayers occurs due to the quantum confinement and
the resulting change in the hybridization between p orbitals on chalcogenide atoms and d orbitals
at the metal atoms [115]. Because of this transition from indirect to direct gap, the TMDC
monolayers demonstrate a set of interesting optical properties. TMDC monolayers have band
gaps in the optical range of frequencies (see Table 4-1). The simple Wannier—Mott model
describing an exciton as a hydrogen-like atom yields the following value of the exciton binding
energy E;, and the exciton Bohr radius ag, respectively:

2ue* eh?
b :Wz O.SEV; apg = 2’1,{62

~6A (4.1)

Such a high binding energy is achieved due to the heavy electron and hole masses that govern the
reduced mass u. Monolayer parameters taken for this calculation are tunable by a mechanical
strain or an electric field, examples of the measured dielectric constants at a particular energy for
different TMDC monolayers are given in the Table 4-1. Nevertheless, this does not change the fact
that the exciton binding energy in these materials is orders of magnitude higher than in
conventional semiconductors: for comparison, in GaAs the binding energy E, = 0.01 eV, while

the band gap E; = 1.5 eV.

WS, WSe, MoS, MoSe,
E, (V) 2.05 Ref. [116] | 1.66Ref.[117] | 1.88Ref.[117] | 1.58 Ref.[116]
€ 16 18 21 26

Table 4-1: Band gaps and real parts of the complex in-plane dielectric functions of monolayer
MoS,, MoSe,, WS,, and WSe,, over photon energies of 1.5 eV. Imaginary part for this frequency is
equal to zero. Proper measurements of dielectric functions are shown in Ref. [118]

In semiconducting TMDC monolayers the conduction and valence band edges are situated in two
unequal K-points of the hexagonal Brillouin zone. The two valleys K and K’ are separated in the
momentum space. Due to the heavy atomic masses there is a strong spin-orbit coupling.
However, unlike graphene, TMDC monolayer crystals do not possess inversion symmetry. As
discussed in [119], this leads to a giant spin splitting of both valence and conduction bands. The
splitting has opposite signs in the two valleys, which allows selective optical pumping of these
valleys by controlling the polarization of light [120]. As a consequence, it is possible to create
polarized LEDs in TMDC p-n junctions, where the electric field populates the carriers in the
selected valley and the reversion of the field direction changes the polarization of the emitted

light.

Finally, the strong Coulomb interaction allows for observation of trions in doped semiconducting

TMDC monolayers. In comparison to conventional semiconductors these charged quasi-particles,
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combined either of two electrons and a hole or of two holes and an electron have high binding
energies. They exhibit have valley selective optical properties and can be manipulated by electric

fields.

4.1.3 Applications of semiconducting TMDC monolayers

Recently quite a few applications of 2D semiconducting TMDC materials were reported [121, 122,
123]. In Ref. [124] the authors report an observation of sharp emission lines at the edges of WSe,,

that reveal the effect of photon antibunching which is an attribute of single photon emitters.

By integration of WS, into a photonic microdisk cavity researchers from the Berkeley University
demonstrated a monolayer excitonic laser [125]. The authors note that selective pumping in one
set of two distinct valleys may lead to lasing in a confined valley that paves the way to the

development of valley optoelectronics.

The demonstration of Schottky-diode-like solar cell is shown in Ref. [126]. In this experiment the
monolayer of photoactive WS, was sandwiched between two graphene monolayers that played
the role of electrodes. It was shown that the photocurrent strongly depends on illumination of the

sample. Also, there are reports on the demonstration of ultrafast optical photodetectors [127].

The integration of 2D materials with external photonic structures allows enhancing light-matter
interactions in monolayers. In particular, the use of optical cavities enables significant
manipulation of optical density of states, which leads to the modification of emission and
absorption properties. In Ref. [128] the authors integrate a graphene monolayer into a Fabry-
Perot MC. This results in the 26-fold enhancement of light absorption. The use of intrinsic
polaritonic resonances is another approach for enhancing the light-matter interaction. Plasmon-
polaritons and phonon polaritons were demonstrated in graphene monolayer and in 2D
hexagonal boron nitride. Exciton-polaritons were demonstrated in semiconducting TMDC
monolayers. Recently, the physics of strong light—matter coupling between a single flake of
MoS, and a cavity resonance in a Fabry—Perot resonator structure was discussed [129]. However,
the comparably broad PL emission of the monolayer used for these findings (60 meV [129]), which
was grown by chemical vapour deposition, render the unambiguous identification of the full
characteristic polariton dispersion relation, in particular, in non-resonant PL experiments,
challenging. The polariton formation with a single monolayer of MoSe, was subsequently
demonstrated at cryogenic temperatures [130], enabled by its narrow linewidth (11 meV at 4K
and 35meV at 300K). Exfoliated WSe, monolayers exhibit comparable linewidths and have a
strongly enhanced luminescence yield under ambient conditions [131], suggesting their suitability

for room-temperature polaritonics. As discussed in Ref. [132], TMDC materials are good
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candidates to observe the room temperature Bose-Einstein condensate of exciton-polaritons,
which is essential for technological applications. In the following sections a few experiments

demonstrating exciton and polariton properties are reviewed.

4.2 Excitons in MoSe, monolayer

In this section the excitonic properties of MoSe, monolayers are considered in relation to three
different photonic structures. Temperature dependent reflectivity measurements on a MoSe,
monolayer are discussed in order to quantify the relevant temperature dependent parameters of
the exciton resonance. In particular, the area of absorption resonance and the linewidth are
studied in order to determine relative oscillator strength. In addition, these two parameters
measured in the experiment are used to determine the strength of the exciton coupling with an
optical mode in different optical structures, namely, open-cavities, Tamm-plasmon based devices
and monolithic Bragg structures. All calculations are based on the coupled oscillator model and
numerical transfer-matrix simulations. Finally, the polariton condensation phase diagram is
calculated for MoSe, assuming the thermal equilibrium Bose-Einstein condensation in a finite size
system, to elucidate the possibility of observing the polariton condensation at ambient

conditions.

4.2.1 Experimental methods:

MoSe, monolayers were deposited onto 285 nm thermal oxide on Si wafers via conventional
exfoliation from bulk MoSe, crystals. The SiO, thickness was chosen to be 285 nm to improve the
monolayer contrast. Exfoliated MLs were characterized using Raman and P spectroscopy, and
their thickness was determined via atomic force microscopy measurements. Micro-reflectivity
spectra were taken under white-light illumination of a tungsten halogen lamp. The light source
and setup cover a reliable spectral range from 1.5 to 2.2 eV. Following the convention of Refs.
[133, 134] , the reflectance contrast AR/R was obtained according to AR/R = (Rsimpe —
Rsubstrate)/ Rsubstrate Whereas Rsample is the reflectivity of the monolayer on the substrate and Reypstrate
is the reflectivity of the uncovered substrate. The excitonic absorption manifests as Gaussian
shaped signals in the reflectance contrast spectra. In order to deduce the energy, linewidth and
amplitude of the absorption resonances, a background subtraction and fitting process was done.
To ensure an appropriate background subtraction, transfer matrix calculations for the reflectivity
background without excitonic absorption were carried out. Even though the acquired amplitude
does not provide an absolute absorption value, the product of linewidth and amplitude is a

guantity proportional to the exciton oscillator strength [120].
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4.2.2 Theory

In order to calculate the Rabi splitting evolution with temperature hQ(T), two approaches were
used. Firstly, the following equation, obtained with the coupled oscillator approach was used to
account for the temperature-induced quenching of the Rabi-splitting via broadening of the

excitonic resonance [135]:

ha(T) = jvmz_<w)? .
2

Here, V(T) is the coupling strength, AE,(T) is the exciton linewidth and AE, is the cavity
linewidth. V(T) is a function of the oscillator strength f(T), the effective cavity length L.sand the

effective number of individual monolayers in the cavity ng

f(T) *nggpr
Legr

V(T) ~ (4.3)

The initial values to carry on the simulation T = 4K for V=36 meV and AE, =1.6 meV were taken
from reference [130]. Then, A(T) was calculated for higher temperatures using the measured
relative values for f(T) and AE,(T). In addition, the visibility parameter ¥ was calculated

according to:

V(T)
4(AE,(T) + AE,)

9(T) = (4.4)

The value of 9(T) above 0.25 indicates that the strong coupling regime can be distinctively

observed in transmission, reflectivity or PL spectra [136].

Secondly, the transfer matrix calculations were conducted for the reflectivity of a MoSe,
monolayer, hypothetically integrated into the open cavity design described in Ref. [130]. The

dielectric function e(w) of the MoSe, monolayer was modelled as a Lorentz oscillator:

f(T)
w2 (T) — w? —iAEL(T)w

e(w) = g + (4.5)

Here g, is the background dielectric function and Aw, is the exciton energy. &, = 26 was taken
from Ref. [137] and the initial value for f(T) was adjusted to 0.4 to match the splitting calculated
according to Eq.(4.2). The linewidth and the oscillator strength entering the expression for £(w)

were adjusted for each temperature value according to the reflectivity results. The complex

refractive index fi(w) = n + ik was derived from 7i(w) = /€(w) and used for the transfer matrix

calculations. Finally, the reflectivity spectrum for each temperature is simulated with the
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respective refractive indices assuming a monolayer thickness of 0.65 nm. The splitting is deduced

from the spectra and correlated with temperature.

Open cavity Monolithic cavity Tamm structure

Gold

Si0, layer

Si0, layer

Si0,/TiO,
dielectric mirror

N

Figure 4.3: Schematic illustration of the open cavity design, a fully monolithic cavity and a Tamm
plasmon structure. The cavity length can be adjusted in the open cavity approach by changing the
vertical position of the top mirror indicated by the black arrows. Figure taken from Ref. [138].

In order to compare the open cavity design with other photonic architectures, the same dielectric
functions were taken for additional transfer matrix calculations. All three considered photonic

architectures are illustrated in Figure 4.3. The monolithic cavity mirrors consist each of eight
TiO,/SiO, layer pairs with :—n thickness. The MoSe, monolayer is embedded between two ﬁ SiO,

layers, with thicknesses adjusted to tune the cavity mode in resonance with the exciton energy.
The structure design that supports Tamm-plasmon modes consists of the identical bottom
dielectric mirror, followed by a SiO,/MoSe, ML/SiO, core and a 50 nm layer of gold on the top.
Here again, the SiO, layer thicknesses were adjusted to ensure spectral resonance conditions. The
resulting splitting was used to calculate the coupling strength V at 4K according to Eq.(4.2). Taking
f(T) into consideration, the visibility parameter evolutions 9(T) for the alternative cavity designs

were calculated as well.

In order to check if the strong coupling regime could also lead to the polariton Bose-Einstein
condensation, the approach discussed in Ref. [4] and in Section 1.2.1 was used to calculate a
polariton phase diagram. The phase diagram provides an estimate of the critical polariton density

N¢ required for the polariton condensation at a given temperature T¢.

4.2.3 Experimental Results and discussion:

The micro-reflectivity spectra and their temperature evolution are the experimental basis for the
following parameter deduction and calculations. Figure 4.4a presents a typical reflectance
contrast spectrum of a MoSe, monolayer compared with its derivative for better feature
identification. The peaks labelled A and B corresponding to excitons from the two spin-orbit split

transitions at the K point of exciton are discussed.

76



The dependence of the A exciton feature on temperature is shown in Figure 4.4b. With increasing
temperature, the distinct absorption at 1.653 eV shifts to lower energies, quenches in intensity
and broadens. The evolution of energy, linewidth and amplitude with temperature are presented
in Figure 4.5. The exciton energy decreases due to the thermal band gap narrowing, which is in
good agreement with the PL temperature dependence [106], and it can be well fitted by the
Varshni formula E; = Ey — (aT?)/(T + B), where E, is the energy offset for T=0 K and a and f§
are fitting parameters [139]. The fitting yields E, = 1.653 eV, @ = 4.12« 10~*eV/K and B =

137.7 K, which is in a good agreement with previous results [140].
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Figure 4.4: Reflectivity spectra of a MoSe, monolayer: (a) reflection contrast spectrum (blue) and
its derivative (yellow). (b) reflection contrast spectra around the A exciton at various temperature
between 5K and 300K. Figure taken from Ref. [138].

The linewidth exhibits a steady increase as a function of temperature, typical for the phonon-
induced broadening mechanism. The initial linewidth at 4 K (19 meV) is broader than the one
previously observed in PL (12 meV), whereas the linewidth at room temperature (33 meV) is in a
good agreement with literature PL measurements (34 meV) [130]. However, as the linewidth
depends on the substrate and charging condition of the monolayer, different observations are not
necessarily in contradiction. Furthermore, the absorption linewidths were compared with PL
linewidths that were taken from a smaller illumination area. Averaging over the larger
illumination area of about 10 um, potentially containing more defects or flake edges, can lead to

absorption linewidth broadening. The linewidth broadening was fitted by

1
AEx(T) = AEx,O + AEX,AP * T 4 AEX,OP T (4.6)
eksT — 1
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Figure 4.5: Temperature evolution of the deduced parameters energy (a), linewidth (b) and
amplitude (c) and the normalized product of linewidth and amplitude (d), which were used in
subsequent calculations. Figure taken from Ref. [138].

Here AE, , is the exciton linewidth at 0 K, AE, 4p is the linear broadening constant attributed to
the acoustic phonon dephasing [141], AE, op is the optical phonon broadening constant and E}

is the phonon energy of the longitudinal optical phonon. E;, was fixed at 30 meV*, which

2 mevV

resulted in fitting parameters of AE,, =19.4meV, E,p = 15510 and AE,pp =

8.6 meV.

The amplitude drops almost linearly by 60% from 4K to 300K. This decrease is a natural
consequence of the linewidth broadening. However, the product of amplitude and linewidth, a
measure for the integrated absorption area, drops also steadily by 30% in the same temperature
range, which suggests a temperature-induced decrease of the exciton oscillator strength. A
comparable decrease in the oscillator strength with temperature has been observed in MoS,

[120].

The oscillator strength of the exciton is determined by both the optical matrix element and the
available bright exciton states. While the optical matrix element is not affected by the
temperature, the available exciton states inside the light cone are functions of temperature.
Therefore, the overall reduction of oscillator strength with temperature naturally follows from the

reduced fraction of bright excitons at higher temperatures [142]. The remaining fraction occupies
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optically dark states. Excitons absorbed inside the light cone may thermalize and redistribute in

the reciprocal space before being reemitted and thus contributing to the optical reflectivity. The

temperature dependence of this effect stems from the temperature-induced decrease of the

phonon scattering times in MoSe, monolayers [143]. The radiative decay rate [};, which is

proportional to the oscillator strength, enters the expression for the integrated absorbtion
__2nlyl

=1 [135] and must be averaged over the exciton ensemble. Assuming the Boltzmann
0

distribution of excitons, the radiative decay rate is estimated as [yH(T) =T,(T =0)[1—
exp(—T,/T)] , where T, is the characteristic temperature dependent on the exciton frequency
and effective mass [144]. The integrated absorption of light by excitons is linear in the averaged
radiative decay rate provided that the radiative broadening is small compared to the non-
radiative broadening. The last assumption is valid at temperatures above 100K [143]. Thus, the
relative oscillator strength in Figure 4.5(d) can be fitted by the function Ty~1 — exp(—T,/T),
with Ty = 300K. This is because the quantity plotted in Figure 4.5(d) is proportional to the
radiative decay rate. Note that this temperature is significantly higher in MoSe, than those typical

for large radii Wannier-Mott excitons in conventional semiconductor QWs [142].

The experimentally measured temperature evolution of the exciton linewidth and oscillator
strength was used as an input for the Rabi splitting and the visibility calculations described in the
theory section. The results of both these calculations, coupled oscillator approach (Eq.(4.2)) and
the numerical transfer matrix simulation, are presented in Figure 4.6. The first approach results in
low-temperature Rabi splitting value of 17.5 meV. This is in a good agreement with the
experimentally acquired Rabi splitting of 20 meV from Ref. [130], which is not surprising as the
input coupling strength was deduced from the experiment. The remaining difference is attributed
to the broader exciton linewidth measured in our experiment and the negligence of the lateral
mode confinement used in the reference cavity [130]. In the transfer matrix simulation, the
oscillator strength (Eq. (4.3)) was adjusted in a way that the simulation result matches 17.5 meV.
This procedure provides a realistic estimate for the exciton oscillator strength in monolayer
MoSe,, a requirement for the transfer matrix simulations. The Rabi splitting is consistent for both
approaches up to 200 K. However, at higher temperatures the results obtained with the two
methods deviate and the transfer matrix simulation yields the oscillator strength, which decreases
more rapidly. This slight deviation stems from the simplifications in the coupled oscillator
approach. The transfer matrix approach is more reliable, thus it is only used in the following

calculations.
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Figure 4.6: The temperature evolution of the visibility (a) and the Rabi splitting (b) for the open
cavitiy design, the monolithic cavity and the Tamm plasmon design. a) The visibility evolution of a
low Q monolithic cavity simulation is added (dark blue diamonds). The visibility limit of 0.25 is
indicated by the green, dashed line. b)In addition, the analytic calculation for the open cavity
design is presented (red squares). Figure taken from Ref. [138].

Yet, it should be noted that the calculated reflectivity spectrum for 250K does not exhibit two
clearly distinguishable peaks anymore and the splitting can only be determined by fitting two
Gaussian peaks to a broad reflectivity feature. For 300K no splitting can be determined from the
simulated spectrum. Both observations are confirmed by the visibility parameter, which drops
below 0.25. for temperatures above 250K. At lower temperatures the visibility remains well above

0.25, indicating that the system remains in the strong coupling regime.

The Rabi splitting for the monolithic cavity and for the Tamm plasmon sample is significantly
higher (29.3 meV and 33.5 meV at 4K, respectively) and follows a similar decrease as for the open
cavity (down to 19.9 meV and 25.0 meV at 300 K, respectively). The significant difference in
monolithic and Tam cavities compared to the open cavity design is explained by a stronger mode
confinement equivalent to a shorter effective cavity length (Eqg. (4.3)). Although the monolithic
cavity exhibits a lower Rabi splitting than the Tamm plasmon sample, the visibilities behave
reversely (0.76 and 0.60 at 4 K, respectively) due to the narrower monolithic cavity linewidth of
0.2 meV compared to 8.4 meV for the Tamm plasmon structure. Nevertheless, the visibility
evolutions of the Tamm structure and the monolithic cavity converge towards higher
temperatures (0.34 and 0.37 at 300 K, respectively). In the Tamm plasmon design, the decrease in
the oscillator strength does not affect the visibility to the same degree since it is strongly

dependent on the cavity linewidth. Its broad linewidth can be also understood as the result of the

. . _ A . .
comparatively low quality factor Q of the Tamm structure (Q~* = E—EC,Eph being the photonic
ph

mode energy), which is about 200 for the calculated structure. In contrast, the Q factors for open
and monolithic cavity are 3600 (2050 [130]) and 8250, respectively. Despite of the large difference
in Q-factor between the Tamm structure and the monolithic cavity, the visibility remains at a

comparable level, because the cavity linewidth contribution is small for both structures compared
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to the higher excitonic linewidth contribution. In particular, at high temperatures, the latter
contributes even more strongly, which reduces the difference between the Q factors even
further. In order to illustrate the influence of the Q factor more clearly, the visibility of the
monolithic cavity with a lower @ factor of 1300 is additionally simulated. This decrease stems
from the reduction of the number of mirror pairs from ten to six. The resulting visibility evolution,
plotted in Figure 4.6(a), shows a clear but small reduction in visibility. Overall, the calculated
visibilities of the Tamm structure and the monolithic cavities reach comparable levels at room
temperature, indicating that the mode volume is the more relevant parameter in this regime. This
visibility level should be high enough to observe the strong coupling at room temperature.
Nevertheless, the fabrication of both designs ensuring spectral resonance is more challenging
than for the open cavity. The challenge lies in the overgrowth of the monolayer since
conventional deposition methods such as sputtering can damage the monolayer. Nevertheless,
this task appears achievable since TMDC monolayers have been successfully overgrown by
dielectrics [145]. An additional step towards room temperature strong coupling could be the use

of multiple, but distinctly separated monolayers as suggested by Dufferwiel et al., which increases

the splitting by a factor of \/Ney.

101“1:---—-—---—————T —————————————
1013} ____________________________

10”4 — 1 Monolayer
10'"{ — 3 Monolayer
1010; 5 Monolayers

i —10 Monolayers
10° 4

10°4 BEC of polaritons
1074
10°4
10°4
10* 4
10° — e 22

1 10 100 1000

Temperature (K)

Density (1/cm?)

Bose-Gas

Figure 4.7: The phase diagram for a various numbers of MoSe, monolayers: Each solid line
separates the Bose-gas regime from polariton condensation regime according to Eq.(1.53). The
upper density limit for polariton condensation is given by the Mott density (dashed lines for one

(black) and ten monolayers (blue), respectively). The upper temperature limit depends on the
strong coupling requirements (9 > 0.25), indicated by the shaded area above 400 K (estimated
temperature limit for one monolayer). Figure taken from Ref. [138].

The calculated phase diagram is presented in Figure 4.7. It shows the critical polariton density for
different numbers of MoSe, monolayers in the system. At T= 1K the density is as low as 3.5x10°

cm™, independent of the ML number. However, at room temperature, it is possible to decrease
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the critical density from 1.4x10% cm™to 1.8x10" cm™ by varying from one to ten monolayers
due to the increased Rabi splitting, which results in a reduction of the effective polariton mass.
Simultaneously, the upper limit (Mott density) rises significantly from 8x10"* cm™ for one ML and
up to 8x10" cm™ for ten MLs. The comparably high Mott density is due to the small Bohr radius
of 2 nm in our system. These calculations assume the following parameters: m,, = 1075 m,,
uw=04m,, L=10um, ag = 2 nm. Rabi splitting for 1 monolayer is taken to be 20 meV. Even
more importantly, the upper temperature limit is not defined by the exciton binding energy as for
excitons in GaAs (on the order of 100 K), but only by the strong coupling conditions (the
temperature for thermal exciton breaking can be expected to be above the decomposition
temperature of the monolayer). It is shown that the strong coupling threshold depends on the
thermal broadening of the exciton linewidth, the thermal decrease of the oscillator strength and
the cavity design. Here a visibility value of 0.25 was used as an indicator for the strong coupling
threshold, which yields 250 K for the open cavity design and 400 K (linear extrapolation of the
visibility evolution) for both the monolithic cavity and the Tamm plasmon design. For multiple
monolayers integrated into any of the structures this limit will further increase as indicated by the
shaded area in Figure 4.7. As a result, the phase field for polariton condensation enlarges
significantly. Most importantly, the critical polariton condensation density for one monolayer is
only 9x10" cm™ at 300 K, which is well below the Mott density. For multiple monolayers the
range between critical condensation density and Mott density increases even further. From these
considerations, it seems feasible that polariton condensation may be observed at room
temperature. It is essential to point out that additional parameters such as exciton lifetime,
exciton quantum efficiency, exciton-phonon scattering rate will play a crucial role in achieving a

critical polariton density.

4.3 The interplay between excitons and trions in a monolayer of

MoSe,

43.1 Experimental observations

Trions are charged quasi-particles, combined of two electrons and a hole (X') or two holes and an
electron (X*). At first these complexes were discussed theoretically in [146, 147] and observed
experimentally in CdTe QWs. In conventional semiconductors trion binding energy that is defined
as the energy, required to split the trion into a neutral exciton and an unbound electron or hole,
reaches the value of several meV, while the exciton binding energy is several tens of meV. Recent
experiments in TMDC monolayers showed that not only exciton binding energy increases

significantly, but trion binding energy rises up to 30 meV.
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In this section the influence of free carriers in the monolayer on exciton and trion binding
energies is discussed. In the experiment monolayers of MoSe2 were deposited onto 285 nm
thermal oxide on Si wafers via conventional exfoliation from bulk crystals. PL spectra were
recorded at 5 K, via non-resonant monolayer excitation. The excitation laser is utilized to create
excitons and trions in the monolayer as well as to activate additional carriers in the
heterostructure. The amount of photodoping was increased at cryogenic temperatures, using
higher excitation powers and longer optical illumination times, which is a realistic configuration
for polariton experiments in the non-linear regime. The changes in the trion dissociation energy of
the order of several meV were observed, which reflects that both the exciton and the trion

binding energies in MoSe2 sensibly depend on the excess carrier density in the monolayer.
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Figure 4.8: (a) Power series of PL spectra normalized to the excitonic resonance. (b) Ratio of
integrated peak intensities as a function of time and excitation power.
Figure taken from [148].

Figure 4.8(a) shows the power dependent PL emission of the exciton and trion complexes. Each
spectrum is normalised to the excitonic signal. One can see that the trion dominance increases
with the excitation power and the non-resonant pump laser induces additional electrons in the
sample, which favours the formation of trionic complexes. Another way to generate free carriers
in the monolayer, which is more controllable, is the adjusting of illumination time of the
monolayer. This method is rather effective, because the photoexcitation process of additional
free carriers takes place on a very slow timescale. Figure 4.8(b) shows the ratio of integrated peak
intensities as a function of time and excitation power. At the smallest excitation powers the
exciton PL signal is still dominating the spectrum. However, even with constant pump power, the
X'/X fraction is already monotonously increasing with time, exhibiting a saturation behaviour. This
indicates a self-limiting activation process, typical for the successive activation of a finite number
of defect states. An increase in the pump power then leads to a further increase of this ratio,

which serves as a proportional measure for the number of electrons per exciton in the system.
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The evolution of the energies of both the exciton and the trion as a function of the exposure time
are subject to a step-wise increase of the pump power shown in Figure 4.10(a). One can see that
as the excitation power is increased, both the X and the X- signal experience a similar red-shift,
resulting from the power-induced renormalization of the band gap of the monolayer. The
contribution of the microscopic processes of this renormalization are not fully determined
(dielectric screening vs. sample heating), however are of a minor importance in this study, since
the energy scale is approximately two orders of magnitude smaller than the correlation energies
of the excitonic complexes. Another effect, which can be directly observed in Figure 4.10(a) is the
shift of both the X and X- signal as the pump laser intensity is kept at the same level. Here, the
behaviour of both resonances is fundamentally different: as the pump intensity is kept constant
and charges successively accumulate in the monolayer, the X feature is subject to a continuous
blueshift in energy, whereas the X- feature is redshifted by a similar magnitude (hundreds of eV
up to one meV). The blueshift of the exciton in the presence of an accumulating electron gas is a
signature of a renormalization of the exciton binding energy. In the presence of additional
screening, the Coulomb coupling between electrons and holes is reduced and the excitonic

emission energy eventually approaches the free carrier band gap.

Due to the pump powers, yielding exciton densities well below the Mott density in MoSe:
monolayers (around 10™-10" carriers /cm?, as was defined in Section 4.2) the shift of the exciton

in the experiment is significantly smaller than the exciton binding energy

The redshift of the energy of the trion, on the other hand, is a strong indication that the trion
binding energy is enhanced by the electron reservoir, which over-compensates the screening
induced blueshift of the exciton. In order to directly correlate the trion dissociation energy with
the approximate number of excess carriers per exciton, the energy (Ex — Ex-) is plotted as a
function of the X-/X ratio in Figure 4.10(b). One can see that trion dissociation energy appears to
be linear function of the intensity ratio between X- and X, and thus of the number of electrons in

the monolayer.

4.3.2 Theory

A qualitative explanation of the increase of the trion binding energy in QWSs was given in Ref.
[149] in relation to the experiments on the absorption of light in a CdTe QW, containing a 2DEG.
The separation between trion and exciton peaks turned out to be linear in n,: Ex — E,. = Ef" +
cEp with ¢ =~ 1. Here EL" is the trion binding energy, and Ep is the electron Fermi energy
calculated from the bottom of the conduction band. An exciton is considered as an ionized trion.

The energy that is needed to remove one electron from the trion is equal to E,ET in the limit
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ne =0 and Ef" + Ep at finite electron densities, due to the fact that one electron should be
moved up in energy to the Fermi level while all lower conduction band states are occupied. Thus,
this effect stems from the combined effect of the Pauli exclusion principle and many-body
interactions. Investigations done in Refs. [120, 150] confirm this linear dependence of the trion
binding energy in TMDC monolayers with small differences in estimations of coefficient c. In this
discussion, as in the experiment described above, it is assumed that the trion is negatively
charged due to the residual n-type doping commonly observed in TMDC monolayers. The model
[149] fails to describe the behaviour of the exciton-trion energy splitting in the limit of high
concentrations of free electrons, where it predicts unphysical negative values. In order to
reproduce the experimental data taken in a wide range of free electron densities one needs to go
beyond the oversimplified model [149] and calculate separately the exciton and trion binding
energies, see e.g. [120]. Here the variational approach is used for the calculation of exciton and
trion states that has an advantage of simplicity and still captures the behaviour of the system both

at low and high electronic densities.

43.2.1 The variational method

The variational approach is based on the minimization of a solution of Schréodinger equation with

a trial wave-function that depends on a parameter.

The Schrodinger equation for the wave function W(p) of the electron-hole relative motion in the

plane of the layer in cylindrical coordinates reads:

—_R21d8, 9\ [
——=(p $) - f Jo(kp)Vekdk — Eyy
0

Y(p) =0, 4.7
20 0 9p (P) (4.7)

MeMmp

where u = is the reduced mass of electron-hole relative motion, J,(kp) is the zeroth order

Mmet+mp

Bessel function, I/ is the screened Coulomb potential.

Here the free carriers are described as a degenerate Fermi gas at zero temperature. The exclusion
effect associated with the phase space filling is taken into account. All electronic states below the
Fermi level are assumed to be occupied, which is why they cannot contribute to the exciton
state. Taking into account this exclusion effect the trial function of the exciton can be written in

the form [151]:

W(p) = f Jo(kp)f (O kdk, (4.8)
0
B
£ = —2 0k - kp), (4.9)
(A+k2)2
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where O(k — kg)is the Heaviside function, kg = ./2mn,p, n,p is the density of free carriers,
A is a variational parameter, inversely proportional to squared exciton Bohr radius. Formula (4.8)
is the Hankel transform analogous to the Fourier transform in Cartesian coordinates. B can be

found from the normalization condition:

ZH.fm‘P(p)zpdp =1. (4.10)
0

In the limiting case of ny,p = 0 the introduced wave function reduces to the hydrogen-like wave

function:

Y(p) = ;%exp (— —), (4.11)

where a is the exciton Bohr radius. Varying the parameter A the exciton binding energy can be

found as the minimum value of E,,, where:

—h%1 0

a [o}0)
———(p%) - Of Jo(kp)Vekdk |W(p)pdp.  (4.12)

E =21‘L’f v

4.3.2.2 Trion wave function

For the trion case the problem can be simplified: one can assume that the two electrons (We
consider a negatively charged trion X to be specific, while the X" case can be considered without
loss of generality) are in the singlet state so that they are characterized by orthogonal spin
functions and identical spatial wave functions. The trion binding energy may be found as the
solution of the Coulomb problem with a hole of charge +e and mass m; and an electron pair of
charge —2e and mass 2m,. In this case the trion wave function can be expressed as a sum of two
parts, corresponding to the electrons composed by the states that lie below and above the Fermi

level respectively:

W(p) = f Jo(kp)fir () kdlk (4.13)
0
B C
for(l) = —— 0k — kp) + ———— O (kg — ), (4.14)
(A+k?)2 (D + k?)2

where A and D are variational parameters and B, C can be found from normalization conditions.
Here the exclusion principle is taken into account for both electrons: the photoexcited electron

can only be formed by free states, while the resident electron can only be taken from the states
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below the Fermi level. The good estimate for the trion binding energy is found in a similar

manner as in Ref. [152] by minimization over both variational parameters A and D.

4.3.2.3 Screened Coulomb Interaction in thin films:

The standard screened interaction potential in 2D case reads:

e

oc(k) =
here e is the electric charge, ¢ is the dielectric constant of the medium, kg is the screening
2

Zg,,mee
£h2

constant, that is defined as kg, = , with g, being the valley degeneracy factor and m,

being the electron mass.

However, two effects are not taken into account: firstly this expression yields an unphysical result
that the screening is independent on the density of free carriers, which means that the electrons
at low densities screen as effectively as at high density. Another effect that is not taken into

account is the screening dependence on the thickness of the layer.

The screening dependence on the thickness of the layer was discussed in Ref. [153, 154]. It was
shown that with the decrease of the thickness of a film, placed in between two media with
dielectric constants, that are much lower that the dielectric constant of the film, the Coulomb
interaction between holes and electrons significantly increases. In the case where the distance
between two charges p is longer than the thickness of the layer, the interaction potential takes

the form:

mee' &+ & p) (81 + & p)]
1% = H —|-Y, - 4.16

where € is the dielectric constant of the monolayer, &, and ¢, are the dielectric constants of
surrounding media, e.g. substrate and vacuum, d is the thickness of the layer. This potential takes
into account the strong contrast in dielectric constants and is valid in the case where d is much
shorter than the exciton Bohr radius and the dielectric constants of the surrounding media are

much lower than the dielectric constant of the monolayer.

In the more general case, the interaction potential can be found by solving the Poisson equation

in the reciprocal space, where the interaction potential takes the form:

oc(k) = _e(li)k ) (4.17)
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where €(k) = 1 + 2my,pk is the dielectric function that is dependent on the wave vector in the
2D case, x,p - is polarizability of 2D layer. The Hankel transform of this potential results in the

following interaction in the direct space:

Vee(p) = 4;; |Ho (%) ~Y, (rﬂo)] (4.18)

where the parameter 1y, = 2my,p has the dimensionality of length and depends on the

polarizability of the system, Hy and Y are Struve and Neumann functions, respectively.

The asymptotic properties of Struve and Bessel functions allow representation of the interaction

(4.18) in the form:

1
lim Ve (p) ~ =, (4.19)

p—-© p
lim V,..(p) 1[1(p)+c] 4.20
lim Vs (o . n 2re , (4.20)

where C = 0.577 is the Euler constant. The interaction that takes into account both asymptotic

forms reads:

p
p+To

Vee(p) = —%[ln( )+ (C+1n Z)e_%]. (4.21)

In the limit p > 1, the effective potential acts as an unscreened 3D Coulomb potential, while in

the opposite limit p — 0 it weakens logarithmically.

Also, one can see that the logarithmic divergence in the expression (4.21) weakens with the
increase of polarizability, which means that the screening is more effective for highly polarisable

systems.

In order to take into account the presence of free carriers in the system, one should modify the
dielectric function £(k). For simplicity it is instructive to discuss its modification in the reciprocal
space. In general, in the system, where the layer with electrons is sandwiched between an
insulator and a semiconductor, the polarizability y,p becomes intrinsically dependent on the
wave vector [155] and the dielectric function becomes nonlocal and takes the form of a dielectric
tensor [156, 157]. This modification affects the parameter 1y in the formula (4.18) and the total
expression for the interaction becomes relatively cumbersome. However, in the case where the
doped semiconductor is placed into homogeneous media with homogeneous dielectric constant,
the expression for the dielectric tensor can be simplified. To be explicit the dielectric function can

be taken in the form [155]:
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( s
| g(1+k), k < 2k
2k
1-[1-|=E
-5

= 2
e(k) { Kq
It can be seen, that for small wave vectors the screening remains the same, while at k >2kp the

(4.22)
el 1+—

1/2
P ] , k> 2kp,

screening effect falls off much more intensively. As kr tends to zero with the density of free
carriers, the screening affects smaller range of wave vectors k. The modified screened Coulomb

interaction V. in the reciprocal space, that takes this modification into account, reads:
2
/ Ks 7y
e'k (1 4 (7)) (1 — 0k — 2kp)\/T = (2kp/I)P)

Here &' is the mean dielectric constant that takes into account the substrate. In this expression

Ve = (4.23)

the direct layer thickness dependence is disregarded.
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Figure 4.9: The comparison of interaction energies given in the form (4.16) (blue curve )and
Hankel transform of formula (4.23) (red curve). The free carrier density, used in the calculation is
n;p=10 cm. The inset demonstrates the exciton energy (4.12) calculated by variational
approach, where the minimum represents exciton binding energy. The corresponding coordinate
is exciton Bohr radius.

Figure 4.9 shows the screened Coulomb interaction in the form of the potential (4.18), that takes
into account only the thickness of a monolayer (red curve), the Hankel transformation of
interaction (4.23) (blue curve), and corresponding exciton energies, calculated by the variational
approach. As discussed above, to define the interaction, that accounts for both effects
simultaneously, one should separately calculate the polarizability and use the formula (4.18), or,
alternatively, use 1y as a fitting parameter. One can see from the inset of Figure 4.9, that in the

absence of free carriers the variational approach yields the value of exciton binding energy Ep =
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350 meV, that is slightly below the generally accepted value of ~ 400 meV. This discrepancy may

stem from the drawbacks of the computational technique.
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Figure 4.10: (a) Evolution of excition and trion energy with illumination time and excitation power.
(b) Trion dissociation energy as a function of X-/X ratio. (c) Calculated binding energy of X and X-
modelled with the variational approach. Eg(X) is he exciton binding energy, Ez(X) is the trion peak
energy calculated from the bottom of conduction band. The difference AE is the trion binding
energy. Figure taken from [148].
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433 Experimental results and discussion

The described method was used to estimate the exciton and trion binding energies in a MoSe,
monolayer. The following parameters were used in the calculations: m, =0.7m,,
my, =0.5mg, € =11, that averages monolayer dielectric constant and the substrate dielectric
constant. In the experiment it is essential to take the presence of free carriers into account, so the
interaction (4.23) is used in calculations. The results for exciton and trion binding energies at
different electron densities calculated with the described model are shown in Figure 4.10(c). Trion
binding energy changes linearly with the density. It can be seen that the binding energies in the
presence of free carriers calculated with this approach are somewhat lower than the

experimental values for MoSe,. However, the model qualitatively agrees with experiment.

4.3.4 Perspectives

The described model of variational approach that is used to calculate the trion binding energy has
its advantages, because it takes into account the phase space filling. However, in general the
discussed model is oversimplified, because it is built on the assumption that for a singlet spin
configuration two electrons in a trion can share the same coordinate-dependent wave-function
like in He atoms, or double charged quantum dots. The major drawback of the model is that the
effective exciton approach does not take into account correlations between two electrons in the

trion, as well as Coulomb repulsion.

Commonly, the full trion Hamiltonian in real space reads:

h? h?
Hy = ~ (V,Zn + V,Zaz) - val Vo2 = Velp) = Ve(p2) + Ve(lpr — p21),  (4.24)
h

where p; = pL; — pm, P2 = P2 — Pm, M}, is a single hole effective mass [158]. In Refs. [159, 160,
161] the authors calculate the excitonic spectrum and trion binding energy within this model with
the interaction potential (4.18). However, the screening is introduced only as a free parameter
Ty = 2mx,p, Where y,p is the polarizability of the system. In general, the screening in TMDC

monolayers is dynamical and there is no simple way to take it into account.

So finally there is a room for further development of the theory, for example it will be instructive
to provide the comparison between two models and to develop the approach, which allows for

correct estimation of screening effects.

The possible experimental applications would be the development of lasers based on trion or

trion-polariton modes. For example, under applied magnetic field it is possible to create the
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equidistant ladder of energy levels for trion-polaritons, which, in principle, can be used for the

creation of the THz cascade laser.

4.4 Polaritons in WSe, monolayer

In this section the experiment on observation of plasmon-polaritons in a Tamm-plasmon structure
is discussed. In order to demonstrate the strong coupling regime at ambient conditions the WSe,
monolayer was embedded in a compact Tamm-plasmon photonic microstructure, composed of a
dielectric distributed Bragg reflector (DBR), a polymer layer and a thin gold cap. In this experiment
the characteristic energy—momentum dispersion relations of the upper and the lower polariton
branch at ambient conditions are mapped out by angle-resolved PL and reflection measurements.

This is the first observation of the strong coupling regime in WSe, monolayer.
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Figure 4.11: Tamm-monolayer device. (a) Schematic illustration of the Tamm-plasmon device with
the embedded WSe, monolayer. The monolayer is capped with a polymer, whose thickness
primarily determines the frequency of the device’s optical resonance. (b) PL spectrum of the WSe,
monolayer before capping, recorded under ambient conditions. The dominant emission is
identified to stem from the A-valley exciton. Inset: false-colour optical microscopy image of the
used WSe, flake (monolayer in red shaded area; scale bar, 20 mm). (c) Calculation of the
electromagnetic field intensity in the heterostructure and the optical resonance (inset). The
Tamm-plasmon features a strongly enhanced field maximum close to the surface of the structure,
which coincides with the vertical position of the monolayer in the device.

Figure taken from Ref. [107].

Figure 4.11 shows a sketch of the device, employed in the experiment — (a), the characteristic
profile from the A-valley exciton with a linewidth of 37.5 meV — (b), and the vertical optical mode
profile obtained by a transfer matrix calculation, the corresponding refractive indices of the layer
sequence and the resulting reflectivity spectrum without embedded monolayer — (c). The sample
was held at 300 K and angle-resolved PL spectra was studied. The embedded monolayer was
excited via a non-resonant continuous wave laser at a wavelength of 532 nm at an excitation

power of 3 mW.

In Figure 4.12(a) the PL spectra extracted from the device at various in-plane momenta are

presented. At an in-plane momentum of 1.84 pm™ (corresponding to an emission angle of 12.67°),
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a minimum peak distance between the two prominent features was observed which was
identified as the lower and upper polariton branch. These two branches feature the characteristic
anti-crossing behaviour with a Rabi splitting of 23.5 meV, the key signature of the strong coupling
regime. This strong coupling regime is primarily a result of the tight mode confinement provided
by the Tamm-structure. Figure 4.12(b) depicts the fully mapped out energy-momentum
dispersion relation of the two polariton resonances by plotting the corresponding peak energies
as a function of the in-plane momentum. As expected for coupled oscillators with different
effective masses, the characteristic potential minimum was observed in the lower polariton
branch with a modest negative detuning of A = E. — Ex = -11.7 meV. This negative detuning
condition leads to an effective polariton mass of 1.45 x 10° m. at the bottom of the lower
polariton, where m, is the free electron mass. Furthermore, the characteristic transition from a
light particle close to k|| = 0 to a heavy, exciton-like particle at large k;; values can be observed.
The corresponding Hopfield coefficients, which characterize the excitonic and photonic fraction of
the lower polariton (|X|*> vs. |C|? respectively) are plotted as a function of the in-plane
momentum in Figure 4.12(c). The potential minimum, which is formed in the lower polariton
branch, is another key signature of an exciton-polariton in the presence of vertically confined
field. It furthermore provides a well-defined final energy state with a distinct effective mass,
which is crucial for advanced parametric and stimulated scattering experiments [162]. A key
advantage of exciton polaritons, as compared to other composite bosons (such as excitons), is the
possibility to conveniently tune the depth of this attractive potential, and simultaneously the
particles’ effective masses as well as light-versus-matter composition by changing the detuning
between the light and the matter oscillators. In addition, reflectivity measurements were carried
out in the experiment to provide further evidence that the device worked in the strong coupling
regime. The results are presented in Figure 4.12(d) and were analyzed and fitted the same way as
for the PL data. Similarly compared to the PL experiment, there is a clear appearance of two

normal modes that can be well described by the coupled oscillator model.

For the sake of clarity, the reflectivity spectra is inverted, thus the reflection dips appear as
positive signals in the graph. In Figure 4.12(e) the graph shows the extracted values of the
reflection resonances as a function of the in-plane momentum, which allows reconstructing the
polariton dispersion relation. The dispersion features the characteristic avoided crossing

behaviour with a Rabi splitting of 14.7 meV.

In order to interpret the experimental data, the dispersions were fitted with the coupled oscillator

model:

Epn + ihlpy hQ/2 ay @
RQOJ2 E,y + ihTa + A] 6] = £ ) (4.25)
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where Epj, and E,y are the photon and exciton energies, respectively, A is the detuning between

the two modes, I, and Iy are the photon and the exciton mode broadening.

The eigenvectors represent the weighting coefficients of exciton and photon fraction and

hQ represents the Rabi splitting in the system. Solving the dispersion equation:

(4.26)

ot [Eph + AT, — B hQ/2 ] [a] o
ﬁ — Y,

hQ/2 E,y + ihley + A—E
one can obtain two polariton branches. The result of this modelling is shown in Figure 4.12(b) and
Figure 4.12(c) (solid lines) along with the experimental data (symbols). The fitting was carried out
via solving the optimization problem with detuning, Rabi splitting and photon mass used as
parameters. As the exciton mass is several orders of magnitude larger than the photon mass, it
does not affect the result of the simulation and its value is taken to be 0.8 m,, as defined in Ref.
[163] The dashed lines show photon and exciton energies as a function of the in plane wave

vector k”.

Another part of the experiment addresses the occupation of the polariton states in the device,
operated under ambient conditions. The overall, momentum-resolved PL spectrum of the
structure is plotted in Figure 4.13(a). In stark contrast to previous reports discussing polariton
emission with TMDC materials at room temperature [129], a pronounced occupation of the low
energy states in the lower polartion branch and a reduced occupation of the excited polariton
states are observed. The following model was used to analyze the luminescence experiment: In a
first approximation, due to the comparably low particle numbers and high temperatures, a
Boltzmann distribution law for the particles is assumed: N;~exp(—E;/kgT), where N; and E;
denote i-state population and energy, and kg is the Boltzmann constant. The modeled PL is thus
generated by a polariton gas at room temperature (T = 300 K). Another important assumption is
that the emission stems from the photonic mode only and is broadened in energy according to
the Lorentz distribution. This allows relating the PL intensity to the photonic Hopfield coefficients

via:

(4.27)

|CLy | exp(—E; (k) /ksT)
1(k,E)~Z E-EGOY + 15

where I, is the broadening of the photonic mode and the i-index spans over the two polariton

branches. The value of I,, = 15 meV is extracted from the experimental data.
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Figure 4.12: Exciton-polariton formation with Tamm-plasmons. (a) PL spectra recorded from the
coupled device at room temperature at various in-plane momenta (depicted in a waterfall
representation). Two pronounced resonances evolve in the system, which feature the
characteristic anti-crossing behaviour of exciton-polaritons. (b) Energy—momentum dispersion
relation of the lower and upper polariton branch at room temperature: the polariton energies are
extracted by fitting spectra at various in-plane momenta (solid symbols). The coupled oscillator
approach is employed to fit the data and to demonstrate agreement between experiment and
theory (lines). (c) Plot of the exciton and photon fraction of the lower polariton branch as a
function of the in-plane momentum extracted from coupled oscillator fit. (d) Inverted reflectivity
spectra at different in-plane momenta. (e) Energy— momentum dispersion relation extracted from
the reflectivity spectra. Figure taken from Ref. [107].
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Figure 4.13: Experimental and theoretical polariton dispersion relations in the studied Tamm
structure. (a) Room-temperature false colour intensity profile of the full polariton dispersion
relation extracted from the PL measurements. (b) Model of the full dispersion by assuming a
Boltzmann distribution of the quasi-particles with an effective temperature of 300 K c),d),e),f) the
dispersion, modelled at higher temperatures; Figure taken from Ref. [107].
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The experimental results and the theoretically calculated dispersion relation are plotted in Figure
4.13(a) and (b), respectively. Figure 4.13 (c),(d),(e), and (f) present additional theoretical
simulations showing the momentum-resolved PL intensity as a function of temperature ranging
from 300 K to 1500 K. The exciton-polariton gas in microcavities is usually out of thermal
equilibrium with the crystal lattice because of the pumping and dissipation processes. The
comparison with the experimental data in Figure 4.13(a) shows that the polariton gas is not
cooled down to the lattice temperature in the experiments, and it may be characterized by an
effective temperature of 300-500 K. Also, it should be noted that the emission from the upper
polariton branch is amplified due to the high value of the photonic Hopfield coefficient at this

branch at high momenta.

Here a good agreement between the theory and the experiment is achieved. While the used
model is phenomenological and cannot account for any dynamic and microscopic effects in the
system, it already serves as the first indicator that, despite the pronounced dissipation, polariton

relaxation is indeed significant.

4.5 Conclusions

In conclusion, a clear evidence for the formation of exciton-polaritons was observed in a hybrid
dielectric and polymer Tamm-plasmon-polariton device featuring an integrated single atomic
layer of the transition metal dichalcogenide WSe,. The distinct polariton dispersion relation was
shown in angle-resolved PL and reflectivity measurements, both polariton branches were resolved
including the characteristic parabolic energy minimum and the flattening towards the exciton
band. The experimental data is supported by a coupled harmonic oscillator model, and a very
good agreement is achieved both for the energy evolution of the polariton resonances as well as
for the population of polariton eigenstates. This work represents a significant step towards the
implementation of polariton condensates and non-linear experiments in the strong coupling

regime based on single layers or stacks of several layers of TMDCs.

For future work it will be of particular interest for TMDC polaritonic experiments to harness the
unique spinor and valley physics inherited by the atomic monolayers. Combining plasmonics and
2D active media in the strong light-matter coupling regime certainly carries great potential for
building new architectures of highly integrated, non-linear optical circuits and logic devices which
are operated at ultra-low powers and close to terahertz frequencies. The observation of room
temperature polaritons paves the way towards the realization of hybrid Bose-Fermi system with

integrated monolayers for the observation of exciton-polariton mediated superconductivity.
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The experimental work described in this Chapter was carried out in the University of Wiirzburg, in
the group lead by Dr. Christian Schneider. My contribution to this work includes theoretical
simulations for the experiments, with the exception of simulations conducted in order to prepare
the experimental samples. In particular, | calculated phase diagram and fitted oscillator strength
in Section 4.2.3, partially developed variational approach and provided subsequent calculations in
the Section 4.3 and provided modelling in Section 4.4. Finally | took part in preparation of the

parts of the manuscripts that were further published in peer reviewed journals.
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Appendix A

Parameter Meaning Value
£ Permittivity 13.1
Be Electron reduced mass 0.063 my
Bn Hole reduced mass 0.45m,
L Distance between wells 10 nm
K Coulomb screening length 10 nm
ag Exciton Bohr radius 90A
R, Exciton Rydberg 4.1 meV
d Dipole moment 10 nm
2g Rabi splitting 10 meV
X Hopfield coefficient 1/v2
m, Polariton mass 10°m,
UA Polariton Interaction 0.24 peV pm?
d Dipole moment 10 nm

Table A-1the parameters, used in the calculations of the electron-electron interaction potential
for GaAs-based structure in Chapter 3:
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