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The many-body phenomena in photonic structures are of great interest due to the vast 

area of potential applications. This thesis is devoted to the theoretical investigations of 

collective phenomena in different types of semiconductor structures, in particular, 

parabolic quantum wells, hybrid Bose-Fermi structures, and transition metal 

dichalcogenide monolayers.  

It is shown that the experimentally obtained integrated photoluminescence spectra from 

the parabolic quantum well in a microcavity can be described with the use of the 

semiclassical Boltzmann equations. However, contrary to expectations, the ladder 

mechanism of exciton relaxation does not describe the experimental data, as the 

relaxation processes in the PQW involve transitions from all levels to the ground state. 

The theoretical investigation of the light-mediated superconductivity in hybrid Bose-Fermi 

systems is performed. The critical temperature of the phase transition is shown to 

increase with the density of the polariton condensate and to decrease with the density of 

electron gas in the superconducting layer. Also, a possible mechanism of suppression of 

superconductivity by the external magnetic field is discussed, which differs in the 

considered case from the conventional Meissner effect, because the magnetic field 

penetration depth is longer than the thickness of the superconducting layer. 

The possibility of polariton condensation in microcavities with embedded monolayers of 

transition metal dichalcogenides is discussed. It is shown that these structures are highly 

promising for the room temperature polaritonics. The first observation of the strong 

coupling regime and exciton-polariton modes in WSe2 was realised by our collaborators 

from the Würzburg University. These results have been described by the coupled 

harmonic oscillator approach. 
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Chapter 1: Introduction 

1.1 Excitons and Exciton-Polaritons 

1.1.1 Excitons: general description 

 An exciton is a quasi-particle, composed by an electron and a hole, bound by the Coulomb 

attraction.  The concept of excitons was introduced by Yakov Frenkel [1] for organic molecular 

crystals. These initially proposed excitons are nowadays referred to as Frenkel excitons. They are 

characterised by small interparticle distances: in the initial model an electron and a hole were 

assumed to be localised at the same lattice vertex. They possess high binding energies of the 

order of hundreds of meV. This type of excitons is typically formed in organic crystals. 

Wannier-Mott excitons, proposed in the late 1930s for inorganic semiconductor crystals, have 

rather different properties [2]. In order to estimate their characteristics let us consider an 

electron in the conduction band and a hole in the valence band having effective masses    and 

  , respectively. The interaction potential between these quasi-particles is considered to be the 

standard Coulomb interaction: 

     
  

  
        (1.1) 

where   is the interparticle distance and   is the static dielectric permittivity. Schrödinger 

equation in this case coincides with the well known equation for the hydrogen atom: 
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)          (1.2) 

The solution for the bound states (   ) reads: 

                       (1.3) 

where       compose a set of integer quantum numbers, R is the centre-of-mass coordinate, 

      is a hydrogen-like wave-function,    is a momentum that characterizes the translational 

motion of an electron-hole pair as a unit. Substituting the wave function (1.3) into Eq.(1.2) one 

can find the exciton eigenenergies. Counted from the bottom of the conduction band they can be 

written as: 
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This energy at  =0 is equal to the binding energy of a stationary exciton. When the electron-hole 

interactions in real crystals are taken into account, the expression for the eigenvalues becomes 

more cumbersome [3]. Assuming that the exciton energy can be developed into a series at small 

 , one can write: 

            
  

    
             (1.5) 

where     
  is an effective mass tensor in the s-band: 
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       (1.6) 

which reduces to the simplified expression 
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]
   

  

       (1.7) 

when the energy       depends only on the absolute value of the wave vector. The expression 

(1.5) where only first two terms are left is obtained within the so-called effective mass 

approximation, which is often used in the theory of excitons. 

The main difference between Frenkel and Wannier-Mott excitons is that in the former one the 

electron-hole interaction is much stronger than the intermolecular interactions. In contrast, in 

semiconductors, where the typical Wannier-Mott excitons are formed, the interatomic coupling is 

much stronger than the Coulomb interaction between an electron and a hole, so the latter can be 

treated as a perturbation with respect to the atomic interactions. Usually, these excitons are 

characterized with Bohr radii larger than the lattice constant of the crystal and binding energies of 

the order of several meV. However, there are exceptions: excitons in recently discovered 

monolayers of transition metal dichalcogenides (TMDC) have very high binding energies of the 

order of 0.5 eV. At the same time, they still can be described within the Wannier-Mott model, 

because the characteristic Bohr radius of these excitons is one order of magnitude larger than the 

lattice constant. Some of the properties of TMDC materials are discussed in detail in the last 

chapter of this work.  

In the systems that are studied in this thesis excitons are confined in quantum wells (QWs), which 

are created by sandwiching one type of semiconductor between layers of different 

semiconductors having wider band gaps. Essentially, this means that quasi-particles can move 

freely in two dimensions, while in the direction, perpendicular to the QW layer they acquire 

energies characterized by size quantization quantum numbers. As a consequence of this 

confinement, the momentum conservation in the optical transition must be satisfied only in QW 
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plane. This leads to the possibility of coupling the excitons in QWs with photons that have the 

same parallel to the plane wave vector      and an arbitrary transverse wave vector   . The 

exciton Hamiltonian accounting for the QW potential reads: 

   
  

   
  
  

  

   
  
                

  

        
 ,   (1.8)  

where        and        are confinement potentials for the electron and the hole. The 

Schrödinger equation with this Hamiltonian can be solved numerically. One of the common 

simplified methods of solving this type of equations is the variational approach, which consists in 

minimization of energy over variational parameters, entering the trial wave function. In particular, 

it is common to take the trial wave function expressed in terms of the centre-of-mass and the 

relative motion coordinates [4]: 

                                   (1.9) 

where         is the in-plane radius vector of electron and hole relative motion,          

  
         

     
      (1.10) 

is the exciton centre-of-mass coordinate,               are the electron and hole wave functions 

in the direction perpendicular to the QW plane. If the QW width is smaller than the exciton Bohr 

radius, the function (1.9) can be factorized. After the substitution of function (1.9) into Eq. (1.8) 

and integration one can come to the form of equation similar to the conventional hydrogen atom 

problem, which is exactly solvable. In particular, for the exciton ground state one can find the 

binding energy of the 2D exciton and the Bohr radius: 

  
      

     
   

  
  

 
      (1.11) 

with  

  
    

   

   
   

   
  

    
        (1.12) 

In Chapter 4 we show an example of the variational approach application, finding the exciton 

ground state energy in TMDC monolayers.  

If the characteristic distance between the excitons in a gas is much longer than the exciton Bohr 

radius, excitons can be considered as bosons. The increase of the exciton density leads to the 

increasing role of the screening effects, weakening electron-hole binding, and eventually it leads 

to a phase transition to an electron-hole plasma, also referred to as the excitonic Mott transition. 
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1.1.2 Microcavities 

Optical microcavities (MCs) are essentially electromagnetic resonators that allow for the light 

confinement. In a system, where a QW is embedded into a resonator, the strong coupling regime 

can be achieved, that leads to the formation of new quasi-particles – exciton-polaritons. Such 

systems, depending on the type and quality of a MC, can exhibit unique optical properties, such as 

the Bose-Einstein condensation and polariton lasing, single-photon emission, and many others. 

MC spectra are size-dependent: in a microscale cavity the resonant frequencies are sparser than 

in “macroscale” resonators [5]. The main characteristics of a MC are its quality factor, finesse, and 

field distribution. The quality factor   is a measure of non-ideality of the cavity i.e. the rate at 

which the energy decays from the cavity via different processes such as photon scattering and 

leakage through the mirrors.      is the fraction of energy, lost in a single oscillation period of the 

cavity. Mathematically, the quality factor can be expressed as         , where     is a 

linewidth of a cavity mode. Finesse of a cavity is the ratio of the free spectral range to the 

linewidth of a cavity mode:          . 

Practical realisations of microcavities strongly vary [4, 5]. The conventional realisation is a planar 

MC, which is essentially a Fabry-Pérot cavity comprised of two plane mirrors, distributed Bragg 

reflectors (DBRs), separated by a distance of a few wavelengths of light.  Most semiconductor 

lasers are based on this type of microcavities. Another type of cavities is the micropillar cavity, 

characterised by axial in-plane symmetry, which is widely used in semiconductor photonics. 

Spherical mirror MC allows the confinement of light in all three dimensions. An interesting 

example of the application of such type of resonator is introduced in Ref. [6], where the spherical 

cavity is coupled to an optical fibre, the initial pump excites the whispering gallery mode inside a 

cavity, which further propagates in a fibre as in a waveguide.  
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1.1.2.1 Propagation of light in layered structures 

 

Figure 1.1: A schematic picture of a spatially periodic multilayered structure, consisting  of 
alternating dielectric layers of different widths and refractive indices, with the layers of one type 

containing single QWs placed in their centres. Figure taken from Ref. [7]. 

In this subsection the propagation of light in planar microcavities (MCs) with embedded QWs is 

discussed.  

The propagation of light in DBRs as well as in MCs can be modelled by solving Maxwell equations 

in each layer of DBR or MC and matching the solutions with boundary conditions. For real 

structures this method can be quite complicated and different techniques like FDTD method are 

used. However, for planar structures the solution of this problem can be simplified with the use of 

the transfer matrix method. Essentially planar DBR can be considered as a 1D periodic structure 

because its refractive index is homogeneous in the   -plane and it is periodic in the  -direction.  

The transfer matrix method is a simple and efficient method of solving Maxwell equations in such  

structures [4, 8]. 

For simplicity, only the propagation, perpendicular to the layer plane is considered here. Let us 

define the transfer matrix across the layer of a multilayered structure as: 

                    (1.13) 

where   is a width of a single layer and 

     (
    

     
)  (

    

 
 
  

      
)     (1.14) 

is a vector of amplitudes of electric and magnetic field of incident light, propagating in the   

direction. Substituting the explicit form of solutions of wave equations for the amplitudes of 

electric and magnetic fields [8] into Eq.(1.13), one can express the transfer matrix across the layer: 
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)       (1.15) 

Then the transfer matrix across a structure composed of   layers reads: 

  ∏  

 

   

         (1.16) 

where   is a number of layer.  

If a QW is embedded in between of layers, the transfer matrix of propagation trough the QW 

reads: 

   (
  

          )        (1.17) 

where      and            are the reflection and transmission coefficients of the QW [4]: 

    
   

            
       (1.18) 

Here    is the renormalized exciton frequency which, in the approximation of infinitely thin QWs, 

may be put equal to the exciton frequency,    is the exciton radiative decay rate,   is the non-

radiative broadening. 

If a layered structure has a period  , then from the transfer matrix method one may derive the 

band structure for the infinite DBR by solving the equation: 

        |
       

 
|        (1.19) 

where   is a Bloch wave vector.  

Figure 1.2 (left panel) shows the propagation of a single femtosecond pulse through the system, 

composed of three layers of alternating semiconductors with refractive indices    and    , where 

the layer with the higher refractive index is embedded between two layers with lower refractive 

indices. The shape of the pulse is taken in the Gaussian form: 

            (
      

 

   
 )                        (1.20) 

where    is the central frequency of the pulse,    is a half-duration of the pulse. 
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Figure 1.2: The simulation, illustrating the application of the transfer matrix method: the light 
propagation in altering semiconductor layers without (left panel) and with (right panel) a QW, 

embedded into the central layer. The intensity is shown in logariphmic scale for better contrast. 
The refractive index of the edge layers is       , refractive index of the middle layer       . 
The central frequency of the incident light pulse is        eV.                 Dashed 

lines show the boundaries between layers and the embedded QW.  

The right panel shows the propagation of the same pulse through the system with a QW 

embedded in the middle of the central layer. The central frequency of the initial wave-packet is 

chosen to be the resonant frequency of the embedded QW. 

Let us now consider the structure schematically shown in Figure 1.1, which was first proposed in 

Ref. [9]. The structure presents a spatially periodic array of alternating dielectric layers of 

different widths and refractive indices, with the layers of one type containing single QWs placed 

in their centres. The presence of cylindrical symmetry in the system is assumed, so one can 

introduce the in-QW-plane radial coordinate. Here a GaN/Al0.3Ga0.7N DBR with embedded thin 

In0.12Ga0.88N QWs is considered as a model structure. The thicknesses of the layers and their 

refractive indices are taken as   = 64.8 nm,    = 2.55, and    = 115.3 nm,    = 2.15; the period of 

the lattice       +    is 180.1 nm. For the given parameters the structure exhibits a second 

photonic band gap centred to      3 eV in the QW-free case, see Figure 1.3(a). The QW exciton 

resonance energy     is tuned close to the lower boundary of the second photonic band gap, 

     2.95 eV. The QW non-radiative decay rate is taken as     0.1 meV. The radiative decay 

rate     is a tunable parameter that strongly depends on the applied electric field. Figure 1.3(a) 

and Figure 1.3(b) demonstrate the dispersion of the light modes in a modified Bragg mirror 

structure without [Figure 1.3(a)] and with [Figure 1.3(b)] embedded periodically arranged narrow 

QWs characterized by the radiative decay rate    = 2 meV. The presence of QWs leads to two 

principal changes in the dispersion of the eigenmodes. The first one is the appearance of four 

dispersion branches instead of the two branches of a QW-free structure due to the vacuum field 

Rabi-splitting stemming from the QW exciton-photon coupling. 
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Figure 1.3: Dispersion of the photonic eigenmodes for the structure (a) without and (b) with 
embedded QWs. (c) Equifrequency contours in the reciprocal space showing the structure of 

eigenmodes belonging to the lowest dispersion band corresponding to the different values of   : 
  = 0 for the red (solid) curves,    = 2 meV for the green (dashed) curves, and    = 10 meV for the 
blue (dash-dotted) curves. Different thicknesses of the curves correspond to different energies   

(from the thickest to the thinnest): 2.94, 2.89, and 2.84 meV, respectively. (d) Inverse exciton-
polariton effective mass tensor components in the structure. The red surface corresponds to the 

effective mass in the   direction,   
   (  being the growth axis of the structure), and the green 

surface corresponds to the in-plane effective mass   
 .  The parameters used in the calculation 

are given in Ref. [7]. The QW radiative decay rate for (d) is taken as    = 2 meV. Figure taken from 
Ref. [7]. 

The latter appears when QW exciton is resonant with an eigenmode of the photonic cavity 

structure. The resulting eigenstates of the system are exciton-polaritons. The other change is the 

formation of the three-dimensional polaritonic band gap [see Figure 1.3(b)]. It is necessary to 

mention that the presence of QWs pushes the lowest dispersion branch (LPB) to the lower 

energies and the higher the value of   , the greater is the shift. In the limit of weak coupling, the 

exciton and photon modes cross. In contrast, the strong coupling manifests itself in the 

anticrossing (avoided crossing) of the modes. The dispersion of the structure eigenmodes is 

neither photonic nor excitonic, but polaritonic. The increase of the exciton-photon coupling due 

to the increase of the exciton radiative decay rate results in the growing energy level repulsion.  

Interestingly one can observe the dispersionless excitonic branch (Figure 1.3(b), blue surface), 

which appears when the excitonic resonance frequency is close to the boundary of the photonic 

band gap, so that the coupling with the closest branch leads to the formation of polariton, while 

the coupling with the distant photonic branch is very weak, so only exciton can be formed. The 
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experimental observation of this mode in the Bragg crystal with embedded quantum wells is 

shown in Ref. [10]. 

Figure 1.3(c) demonstrates equifrequency contours (EFCs) in the (K  ) plane for a number of 

lower branch eigenenergies    for different values of   . It is clearly seen that with the increase 

of    opposite branches of EFCs approach each other until the gap in the K direction closes and the 

gap in the    direction opens. 

Effective mass tensor is derived from the Equation (1.6): 

    
   (

    

   
 )

  

                 (1.21) 

and is calculated numerically from the dispersions shown in Figure 1.3(b). The subscript   

numerates dispersion branches. The analytical derivation of the effective mass tensor in the 

vicinity of the saddle point (        ) is given in Ref. [9]. In the vicinity of the saddle point of 

the LPB, the effective mass tensor components     
        

 
 

have opposite signs. This is clearly seen in Figure 1.3(d) where the dependencies of the inverse in-

plane (green surface)   
  and transverse (red surface)   

  effective masses on the position in the 

first BZ are shown. One can see that   
     while   

   . It also should be mentioned that for 

the considered model structure the absolute value of   
 

 is at least one order of magnitude lower 

than   
 . For example, the ratio |   

    
 | at the saddle point is about 20.1 for QW-free structure, 

21.6 for the structure with embedded QWs with    = 2 meV, and reaches 30.7 for the structure 

with    = 10 meV. Such a difference introduces a strong anisotropy to the optical 

properties of the considered structure. 

An interesting effect that can be observed is the possibility of light speed manipulation in such 

structures. The propagating light pulse is again taken in the form of Eq.(1.20). Here the wave 

packet with a spatial width    exceeding the in-plane structure size is considered. 

The intensity of light is assumed to be uniformly distributed in the QW plane in each layer. The 

numerical calculations assume the normal incidence geometry. The parameters taken are    = 50 

fs and   = 0.1 ps,     = 0.95      2.8 eV,     . 
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Figure 1.4: A femtosecond laser pulse propagation in the multilayer structure schematically shown 
in Figure 1.1. The parameter    is taken as (a) 0 meV (which is equivalent to the absence of QWs 
in the structure) and (b) 10 meV. The regular optical patterns shown in (a) and (b) panels describe 

the interference of the propagating pulse and the pulses reflected from vacuum-crystal and 
crystal-vacuum interfaces. Graphs (c) and (d) demonstrate the parametric dependencies of the 
group velocity of light in the   direction     , (a) on    for a number of fixed values of the wave 

packet central frequency component    and (d) on    for different values of    with   = 0. 

Values of      are given in units of the speed of light in vacuum  . The vertical dashed lines 

correspond to    in (c) and    in (d) from (a) and (b). Horizontal dashed lines indicate the group 
velocities of the wave packet, with the considered values of   . Figure taken from Ref. [7]. 
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Figure 1.4(a) and Figure 1.4(b) demonstrate light pulse propagation in the structure calculated for 

different values of   . In Figure 1.4(a)   = 0, which corresponds to the QW-free Bragg mirror. In 

Figure 1.4(b) the case of a Bragg mirror with embedded QWs characterized by a high radiative 

decay rate,    = 10 meV, is considered. Propagation of light has been modelled in the system 

starting with a vacuum layer of width 25  on the left-hand side of the structure. In the middle 

part of the system there are 200 periods of photonic crystal, depicted in Figure 1.1 of width   

each. The right-most part represents a 25  thick vacuum layer again. It is clearly seen that      

significantly decreases with the increase of   . It is also confirmed by Figure 1.4 (c) and Figure 1.4 

(d) demonstrating the dependence of      on    for the fixed values of    and its dependence on 

   for several fixed values of   . Such a tendency can be qualitatively explained as follows. Once 

the parameter    increases, the lowest branch moves down in energy, see Figure 1.3(a) and (b). 

Since in the vicinity of        the dependence      for the lowest branch is convex, to 

conserve energy the wave packet should reduce its wave vector and group velocity     , (see EFCs 

in Figure 1.3(c)). It is important to mention that this conclusion is only correct in a specific 

frequency range, namely, for      , where    is the frequency of the saddle point in the 

dispersion curve.  

1.1.3 Quantum description of excitons and MC polaritons 

As it was shown in the previous section, it is possible to describe the exciton and polariton modes 

in QW structures semi-classically, by solving Maxwell equations together with a relation between 

the electric field and displacement field. So each layer except the embedded QW can be modeled 

by frequency independent dielectric constant, while in QW the excitonic contribution depends on 

frequency. The transfer matrix method helps to solve Maxwell equations effectively and finally 

one can obtain the exciton and exciton-polariton dispersions as it is demonstrated in Figure 1.3(a) 

and (b). However, this description becomes insufficient for the effects, related to the Bose-

Einstein condensation of these quasi-particles which is essentially a quantum effect. The quantum 

description of excitons, and MC polaritons, introduced in Refs. [4, 11], is discussed below. For 

simplicity the spin dependence is not taken into account. 

1.1.3.1 Excitons 

The Hamiltonian of an interacting electronic system reads: 

 ̂  ∫ ̂     ̂     ̂
       

 

 
∫      ̂     ̂      ̂       ̂    ̂        (1.22) 

where       is the single electron Hamiltonian and         is the Coulomb interaction in the 

solid. The Fermi field operator can be expanded in the eigenfunctions of    i.e.  
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 ̂             
                (1.23) 

where the single electron wave function can be expanded in terms of Bloch waves, and 

respectively the field operator can be expressed as  

 ̂    
 

√ 
∑  ̂  

       

        
           (1.24) 

Here         is a Bloch wave-function,   is a number of unit cells in the lattice,       denotes 

the conduction and valence bands and  ̂   and  ̂  
  are the fermionic annihilation and creation 

operators with commutation relations: { ̂    ̂  }    { ̂    ̂  
 }          . One can substitute the 

expression for the field operator into the Hamiltonian and simultaneously introduce creation and 

annihilation operators for the holes in the valence band: 

 ̂     ̂    
         (1.25) 

which means that the annihilation of a single electron with momentum   in the valence band is 

equivalent  to the creation of a single hole with momentum – . The Hamiltonian, that neglects all 

number non-conserving terms, reads:  

 ̂  ∑      ̂ 
  ̂ 

 

 ∑      ̂ 
  ̂ 

 

 
 

 
∑             

                

           

 ̂   
  ̂   

  ̂    ̂   

 
 

 
∑                 

                

           

 ̂   
  ̂   

  ̂    ̂   

 ∑ (            

                               

                  ) ̂   
  ̂   

  ̂    ̂    

           

    (1.26) 

where              

                
  ⟨       | ̂|       ⟩,    and    are the kinetic energies of an electron and 

a hole in the effective mass approximation introduced by the Eq.(1.5) with the band gap energy 

        . The Schrödinger equation for the electron-hole pair reads:   ̂     with  

  ∑     

    

 ̂ 
  ̂

  
   〉       (1.27) 

where   〉 is a quasi-vacuum state i.e. an empty conduction band and full valence band. Direct 

substitution of the wave function leads to the following equation: 

           
           ∑  

           
         

           
          

    

          (1.28)  
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Bloch wave functions in Eq.(1.23) are orthogonal. If both the Coulomb  potential and plane wave 

factors are slowly varying functions and practically do not change along the unit cell, which is valid 

for weakly bound pairs with small relative motion momenta and large separation between 

electrons and holes, one can neglect the exchange integral and simplify the Coulomb interaction:  

 
           
        

 

     
 ∫     

  

       
                         (1.29) 

Thus taking the Fourier transform of Eq.(1.28) with the simplified interaction potential one can 

obtain the Wannier equation for the exciton [2]: 

 ̂                         (1.30) 

         ∑     

    

              
 

√ 
              (1.31) 

with          being the two-particle wave-function, expressed in terms of the centre of mass 

and relative motion coordinates, that coincides with expression (1.3).  ̂   coincides with the 

Hamiltonian in Eq.(1.8) but with the only difference, that no confined potential is taken into 

account. 

Eq.(1.27) with substitution of expression (1.31) allows introducing the new exciton creation and 

annihilation operators: 

 ̂   
  ∑            

    

 ̂ 
  ̂

  
       (1.32) 

where       is a Fourier transform of       and                       The 

commutation relations for the exciton operators are: 

[ ̂
     
   ̂   

 ]           (1.33) 

[ ̂       ̂    
]          (1.34) 

[ ̂       ̂   
 ]            (     

 )      (1.35) 

with   being the dimensionality of the considered system. The latter shows that excitons can be 

considered as bosons only in the low-density limit. In 2D case this means         
 . 

1.1.3.2 Microcavity polaritons 

The excitons in QWs can be created by optical excitation. The coupling of the exciton to a photon 

mode is normally weak which means the high probability for the exciton to emit a photon into the 

free space. However, if the QW, where the exciton is created, is embedded into a MC, the cavity 
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mode can be tuned to be in resonance with the excitonic transition. Then it is possible to achieve 

strong coupling regime between the exciton and photon modes resulting in exciton-polariton 

modes. The quantum description starts with the Hamiltonian in the rotating wave approximation: 

  ∑      

  

 ̂  

  ̂  
 ∑      

  

 ̂  

  ̂  
 ∑  

  

    ( ̂  

  ̂  
  ̂  

 ̂  

 )   (1.36) 

where  ̂  
 and  ̂  

 are the exciton and photon annihilation operators,        is the energy of the 

exciton transition,        is the energy of the cavity mode, and   is the coupling strength 

between the exciton and the cavity photon.  The criterion of the strong coupling regime is that 

the exciton-photon coupling must dominate over the exciton and photon decay rates i.e. 

            where   is the coupling strength and    
   and    

   are the exciton and photon 

lifetimes. In this limit, the Hamiltonian (1.36) can be diagonalized with the Hopfield 

transformation: 

 ̂  
       ̂  

       ̂  
      (1.37) 

 ̂  
        ̂  

       ̂  
      (1.38) 

where  

|     |
 
 

 

 
(  

     

√          
)      (1.39) 

|     |
 
 

 

 
(  

     

√          
)      (1.40) 

with cavity detuning                    .       and       are the exciton and the cavity 

photon Hopfield coefficients which can be understood as the fractions of exciton and photon in 

the polariton. Finally, the polariton Hamiltonian reads:  

  ∑       

  

 ̂  

  ̂  
 ∑        ̂  

  ̂  
 

  

    (1.41) 

with energies of new modes given as: 

           
 

 
[              √     

     ]     (1.42) 

Figure 1.5 shows the polariton dispersion for three different detunings. 
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Figure 1.5: Polariton mode dispersion (black lines) plotted in arbitrary units for the different 
values of detuning: (a)           (b)        , (c)           . Dashed lines illustrate the 

photon and bare exciton modes. 

The two polariton branches can be experimentally observed as two resonances in the reflection 

or transmission spectra. An example of such an experiment is given in Chapters 2 and 4.  

One of the first observations of strong coupling regime in semiconductor microcavities was done 

by Weisbuch et al. [12] in 1992 at  =20 K and then shown at room temperatures by Houdré et al. 

in Ref. [13, 14]. The bosonic nature of exciton polaritons was demonstrated in the experiment, 

where the parametric amplification of the polaritonic emission in the state      was shown 

[15]. In this experiment, the pump beam created a population on the lower polariton branch in 

the inflection point of dispersion with      . From this state polaritons could coherently scatter 

into the final states:      and       . This scattering process conserves momentum and 

energy. The probe beam intensity at      was found to be amplified due to the stimulated 

scattering into this state, and the emerging probe power was found to be linear with the injected 

probe power. 

1.2 Bose – Einstein Condensation of Polaritons 

The phenomenon of Bose-Einstein condensation (BEC) is known since 1925 when Einstein 

predicted that the ability of bosons to accumulate unlimitedly in a degenerate state can lead to a 

new phase transition. The experimental realization of the atomic Bose-Einstein condensation was 

demonstrated in rubidium atomic gas in 1995 at a temperature of 170 nK [16] and later in sodium 

atoms at 2µK [17]. For these experiments Eric Cornell, Wolfgang Ketterle and Carl Wieman were 

awarded with the Nobel Prize in Physics in 2001. In this subsection the general theory of BEC is 

presented and properties of polaritonic BEC are discussed. 
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1.2.1 General description of Bose-Einstein condensation 

The distribution of non-interacting bosons staying in the thermal equilibrium at a finite 

temperature T reads: 

              
 

               
      (1.43) 

where   is the chemical potential and    is the Boltzmann constant,   generally depends on the 

wave vector and is given by the dispersion relation. At high temperatures as well as in the low 

density limit the quantum Bose distribution transforms into classical Boltzmann distribution. 

At high temperatures the chemical potential is defined by the temperature. However, when   

reaches the energy of the ground state at some critical temperature   , the macroscopic number 

of particles begin to occupy the ground state, that can be understood as the condensate 

formation. 

Figure 1.6(a) shows the distribution function plotted for different values of the chemical potential 

increasing from -1.5     to -0.0001    (the graph is presented in semi-logarithmic plot) in the 

ideal 3D gas. The sharp nonlinear increase near     is observed when the value of the chemical 

potential approaches zero (    ), while in semi-log scale the distribution remains linear (i.e. 

normal exponential dependence) when the chemical potential is of the order of    .  This 

increase at     can be naively treated in a way that less energy is needed to add the particle to 

the ground state. 

 

Figure 1.6: (a) The Bose – Einstein distribution function plotted for different values of chemical 
potential (b) the fraction of bosons, occupying different energy states in an ideal gas.  

The value of the chemical potential is derived from the expression: 

       ∑         

 

      (1.44) 
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where   is the fixed number of particles in the system. The value of chemical potential can be 

adjusted, so the probability for particles to occupy the ground state can be increased. 

Figure 1.6(b) shows the fraction of particles, populating the energy       . At low chemical 

potentials and at finite temperatures the particles are mostly occupying states with non-zero 

energy, because the density of states decreases with energy, contrary to the distribution function. 

However, at high chemical potentials the probability to find a particle at zero energy drastically 

increases and the ground state population becomes dominant. This fact indicates the possibility of 

a phase transition.   

In order to derive the critical temperature and the density of the phase transition in the 3D case 

one should first express the density of states for a free boson [18]: 
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√        (1.45) 

Here   is the system volume and   is the mass of a boson. The total number of bosons in the 

system reads: 

                             (1.46) 

Here    is the number of particles in the ground state and     is the number of particles in all 

excited states. The Bose-Einstein condensation occurs when    , so that         is 

comparable with the total number of particles       . The critical temperature can be calculated 

from the condition: 

                    (1.47) 

from which one can understand that the condensation is the saturation of excited states. 

The critical density for the phase transition can be found as follows: 
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where      is the density of states given by Eq.(1.45) and      is the distribution function given 

by Eq.(1.43). The critical density can be found as follows: 
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where      and      are defined as: 
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In the 2D and 1D cases the integral (1.48) diverges because of the different energy dependence of 

the density of states. However, it is still possible to describe the condensation when the system is 

either finite sized or trapped in a confinement potential. 

The detailed description of the BEC in confinement potentials is presented in Refs. [19, 18]. For 

the finite size systems of the lateral size   one can describe the BEC as follows. The particle 

density is given by: 
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where    is the population of the ground state,       is the polariton kinetic energy,   is the 

chemical potential, and    is the Boltzmann constant. 

Defining    as the maximum number of particles that can be accommodated in all states but the 

ground state, one can write: 
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Here    is set to zero that allows to put bosons into the ground state without limitation, while the 

concentration of polaritons in the upper states is constant and equals to          The condensate 

density is thus equal to         . The upper limit for    is assumed to be the Mott density, 

which is calculated by 

       
 

   
         (1.54) 

where   is the normalization area of 1 cm2 and    is the Bohr radius. 

The phenomenon of BEC can be qualitatively understood as follows: if the thermal de Broglie 

wavelength is comparable with the distance between particles, the condensation occurs.  

Formally, in the 2D case it can be written as follows: 
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        (1.55) 

Then the critical temperature may be estimated as: 
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        (1.56) 

This qualitative expression renders exciton-polaritons the best candidates for observation of BEC 

due to their extremely light mass. 

In regard to the polariton condensation, it is instructive to introduce the difference between BEC 

and polariton lasing regime. The latter is the phenomenon of coherent emission from the 

macroscopically populated ground state. However, the macroscopic population is not enough to 

show BEC in the system. Polariton lasers are excited non-resonantly by generating an electron-

hole cloud, from which excitons are formed. Excitons thermalize due to interactions with phonons 

and exciton-exciton scattering, settle along the lower polariton branch and then scatter into the 

ground state. At this point the particles do not have to be thermalized, which is essential for the 

formation of a true BEC. Experimentally, apart from thermal distribution of bosons the 

spontaneous vector polarization build-up and long-range spatial coherence are used as BEC 

criteria. 

1.2.2 Experimental observations of polariton condensates and related phenomena 

 

Figure 1.7: Far-field emission measured at 5 K below and above threshold, proving the formation 
of BEC. (a) With increasing excitation power, a sharp and intense peak 

is formed in the centre of the emission distribution,corresponding to the lowest momentum state 
    . (b) Same data as in (a) but resolved in energy. Figure taken from Ref. [20]. 

The first experimental observation of the polariton condensation was shown by Deng and 

Yamamoto in GaAs multiple QW MC [21] and by Kaspzak et.al. in a MC based on a CdTe/CdMgTe 

QW [20], where the authors demonstrated the condensation into the ground state, the  quantum 
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coherence, indicated by the long-range spatial coherence, and sharpening of the temporal 

coherence of the emission. The experiment was carried out at  = 5 K. Observations of polariton 

condensation at room temperatures in different systems were demonstrated in Refs. [22, 23] . 

The evidence of non-equilibrium polariton condensates is shown in Ref. [24]. The coherent 

emission from macroscopic population of the ground state at room temperatures, the polariton 

lasing effect, is discussed in Refs. [25, 26, 27, 28]. 

1.2.3 Weakly interacting polariton condensates 

Kinetics of a polariton gas may be described with a set of semiclassical Boltzmann rate equations, 

accounting for the bosonic nature of polaritons: 

     

  
       

     
                      

                                  (1.57) 

Here      denotes the population of a state set by a wave vector   and a spin     ,      defines 

an external pumping rate related to binding of electrically or optically (non-resonantly) generated 

electron-hole pairs into excitonic particles, and  
     
    is the rate of spontaneous polariton 

scattering from the state     into the state      . Eq. (1.57) is the most general form of the rate 

equations, which includes two generalized terms for the incoming polaritons and polaritons 

scattered away. It may account for various effects through the exact form of  
     
   . In particular, 

it may describe emission and absorption of lattice phonons into and from the thermal phonon 

bath, or nonlinear polariton-polariton scattering processes. In the latter case  
     
    by itself 

depends on the populations of scatterers     . 

As discussed above, although the formation of a true BEC is forbidden in the case of low 

dimensionality    , a macroscopically populated state of a finite size can appear either in a 

confining potential, which removes the divergence in the expression for the critical density due to 

discreteness of the spectrum, or in the more experimentally relevant case of a finite size optical 

pumping spot. Depending on the relation between the characteristic rates of thermalization and 

decay, the steady state of a macroscopically populated polariton quantum state, or the polariton 

condensate, may follow either the behaviour of a Bose-Einstein condensate in the limit of fast 

thermalization, or the physics of polariton lasers in the opposite, completely non-equilibrium 

limit. The absence of a defined transition between the two limiting cases implies a crossover 

between polariton lasing and polariton BECs. 

In both limiting cases, the formation of an interacting polariton condensate, typically for any 

second order phase transition, is related to the emergence of an order parameter, which has the 

meaning of the condensate wave function  . If the thermalisation rate of a polariton gas is faster 
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than the characteristic rate of polariton decay, typically given by the rate of photon escape from 

the cavity and the Hopfield coefficient, then the dissipative and nonequilibrium nature of the 

condensate is not important and its coherent evolution is given by the Gross-Pitaevskii equation 

(GPE): 
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    ]          (1.58) 

which accounts for contact polariton-polariton interactions, stemming from electron and hole 

exchange processes, and an external potential       . The spinor version of GPE is applied when 

polarization effects are of importance: 
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      (1.59) 

Here the universal interaction nonlinearity constant   is replaced with a pair of interaction 

parameters      , accounting for the anisotropy of polariton Coulomb interactions. The electron 

and hole exchange processes, which provide the major contribution to the polariton repulsion, 

are only allowed in the singlet configuration of polariton-polariton scattering, where the two 

quasi-particles are in the same spin state. On the contrary, in the triplet configurations, polaritons 

weakly attract due to second-order processes with dark excitons of spin    being the 

intermediate states [29]. The last term in the spinor GPE accounts for the TE-TM splitting of the 

planar cavity mode, which is responsible for the optical spin Hall effect [30].  

To account for the dissipative nature of polariton condensates in steady states, which require 

either optical or electrical pumping, one has to supplement the GPE with non-Hermitian gain and 

loss terms: 
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      ]         (1.60) 

Here both the gain term    and the potential term       are linear in the excitonic reservoir 

density  , and   is the rate of polariton decay, which is typically defined by the rate of photon 

escape from the cavity. The classical excitonic reservoir, which typically stays in the vicinity of the 

inflection point of lower polariton dispersion branch because of the bottleneck effect [31], can in 

turn be described by a single semiclassical Boltzmann rate equation on the total reservoir density 

 : 

  

  
   [       ]                (1.61) 

Here   is the rate exciton pumping into the reservoir,   is the characteristic rate of exciton decay 

at the inflection point of the dispersion, and   is the rate of exciton diffusion in the reservoir. 
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1.2.4 Bogoliubov excitations of polariton condensates. 

GPE is a classical field equation, as the wave function   is the mean value of the polariton 

annihilation operator       and has the physical meaning of the classical electric field value. It is 

therefore valid in the case of macroscopic occupation number of the condensate    .  

The elementary excitations of the condensate are related to the small fluctuations    of the 

wave function. Since the nature of the fluctuations is quantum, they are described with the 

quantized form of GPE with the Hamiltonian, having the following form in the momentum space: 
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where   
        is the kinetic energy, or the single particle spectrum. The quantized 

condensate wave function is then expressed as  ̂      ̂, where the fluctuation part is small 

compared to the classical one and conserves the total occupation number of the condensate  .  

Taking into account that both the ground state creation and anihilation operators may be 

replaced with their mean values √ , and keeping the second order in the perturbations, the 

interaction Hamiltonian may be rewritten: 
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    (1.63) 

It may be diagonalized with the Bogoliubov transformation [32], introducing a set of new 

annihilation operators: 
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   ̂     ̂      ̂ 

      (1.64) 

In the new notation the interaction Hamiltonian reads: 
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where   
  is the boson dispersion and the Bogoliubov excitation spectrum reads: 

   √(  
 )

 
      

        (1.66) 

In the low-energy limit the spectrum is linear with the group velocity     √    . The Bogolon 

dispersion is plotted in Figure 1.8. 
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Figure 1.8: The spectrum of Bogoliubov excitations of an interacting condensate in dimensionless 

units         and     √   , linear dispersion with group velocity   is plotted with dashed 

line as a guide for the eye.  

The excitations of a polariton laser, or a steady state of a coupled condensate-reservoir systems, 

characterized by a wave function    and a reservoir density   , are then obtained in a similar way 

with linearization of the coupled equations [33]: 

         [     
           

           ]     (1.67) 

    [     
           

           ]     (1.68) 

Excitations in this case are characterized by complex energy spectra. Positive imaginary parts of 

spectra correspond to exponentially growing fluctuations and their presence in a spectrum 

signifies a dynamical instability of the condensate-reservoir system. It appears in the case where 

the decay rates of the condensate and the reservoir are comparable and the reservoir strongly 

affects the condensate dynamics. Its physical origin is in polariton repulsion off the reservoir: a 

condensate density fluctuation, locally depleting the reservoir, creates a potential well, which in 

turn attracts the condensate and further increases its density. Spatially inhomogeneous 

condensates appearing from dynamical instabilities have been very recently observed in single 

shots observations of polariton condensation [34]. Typical spectra of a non-equilibrium 

condensate excitations in stable and unstable cases are shown in Figure 1.9. Thermally populated 

linear spectra of Bogoliubov condensate spectra were experimentally observed in Refs. [35, 36] 

(see Figure 1.10). 
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Figure 1.9: A scheme of nonequilibrium polariton condensation (a) and typical real (b,d) and 
corresponding imaginary (c,e) parts of the excitation spectra, obtained with two sets of 

parameters, corresponding to dynamically stable (   ) and unstable (   )  states of a 
nonequilibrium condensate. Reservoir diffusive excitation branch (R) transforms to the dynamical 

instability (DI) branch with the change of parameters. Figure taken from Ref. [33]. 

 

Figure 1.10: Polarization dependency of the excitation spectrum for an untrapped condensate 
system. (a) A linear plot of the intensity; (b)–(d) three-dimensional logarithmic plots of the 

intensity to magnify the excitation spectra. The theoretical curves represent the Bogoliubov 

excitation energy    (pink line), the quadratic dispersion relations     (black line), which start from 

the condensate energy, and the non-interacting free-polariton dispersion relation     (white line), 

which is experimentally determined by the data taken far below the threshold P= 0.001   . Figure 

and caption taken from Ref. [36]. 
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1.3 Summary of the Thesis 

In this Chapter I introduced the main properties of excitons and exciton-polaritons in 

semiconductors. The properties of these quasi-particles are further discussed in different systems. 

The simulation of light propagation in layered structures  described in Section 1.1.2.1 was 

demonstrated in Ref. [7], where the semiconductor layered crystal is shown to be suitable for 

controlling the group velocity and propagation direction of light as well as its spatial distribution. 

The particular form of kinetic equations (1.57) is used to calculate the population of bosons on 

each level of the parabolic potential in order to reproduce experimental results and describe the 

relaxation processes in Chapter 2. 

Bogoliubov excitations over the polariton condensate, demonstrated in section 1.2.4  are used in 

Chapter 3, where the light induced superconductivity is discussed. 

Chapter 4 is devoted to the discussion of exciton and exciton-polariton properties in novel 

semiconductor structures, based on transition metal dichalcogenide monolayers. The variational 

approach was used to calculate binding energies of exciton and trions in monolayers of MoSe2 in 

Section 4.3. The coupled oscillator approach was used to model the polariton dispersion which 

was first observed in WSe2 based Tamm-plasmon structures in Section 4.4.  Polariton 

condensation phase diagram was plotted for MoSe2 monolayer with method discussed in Section 

1.2.1. 
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Chapter 2: Bosonic Cascade Laser (BCL) 

Recently the research of coherent light sources based on bosonic systems (known as bosers, or 

bosonic lasers) has seen a rapid boost [37]. In contrast to conventional lasers based on the 

phenomenon of stimulated emission, bosonic lasers are based on stimulated relaxation of bosons 

and on the formation of an exciton-polariton condensate [38]. This stimulated relaxation is 

triggered by the final state occupation of an energy level within a system, and serves as the 

principal tool for building up of a polariton population in a given energy state [39]. The coherence 

of boser radiation is the result of spontaneous emission of photons by the condensate after its 

occupation exceeds unity [20], making such a system ideal for a low-threshold lasing device. This 

Chapter builds upon the idea of the bosonic cascade laser (BCL) introduced by Liew et al. [40] that 

is capable of emitting terahertz (THz) radiation, a technologically underdeveloped range of the 

electromagnetic spectrum [41]. The BCL uses a cascade mechanism similar to that of the quantum 

cascade laser (QCL) [42, 43] in order to generate radiation. Unlike the QCL, which uses multiple 

adjacent QWs [44] as the cascade ladder, the BCL cascade [45] is formed by equidistant excitonic 

levels in a single parabolic quantum well (PQW) [46, 47]. Although intersubband polariton QCLs 

have been proposed [48], these rely upon the need for population inversion between adjacent 

subbands, analogous to the QCL. In the BCL, however, the amplification is due to the bosonic 

stimulation of radiative transitions between adjacent levels in a cascade. Both the QCL and a 

range of other proposed microcavity (MC) systems are capable of generating THz [49, 50], but the 

BCL uniquely offers increased amplification created by the final polariton state stimulation within 

the confines of a single PQW.  

In this Chapter the main theory of the BCL and the results of the photoluminescence experiments 

in PQW are discussed. In these experiments the unusual pump-power dependencies of the 

photoluminescence (PL) in the PQW sample without the MC are shown, which is believed to be 

specifically due to the bosonic cascade relaxation mechanism. The relaxation dynamics of excitons 

in MCs with parabolic and rectangular QWs is investigated. The excitons are seen to relax in the 

PQW much faster than in a MC with a rectangular QW. Thus, accelerated relaxation in PQW might 

be an indication of stimulated relaxation in a bosonic cascade that is in agreement with the BCL 

model of Ref. [40] 
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2.1 Introduction 

2.1.1 THz emitting sources: 

The terahertz range of frequencies is considered to be from 100 GHz to 10 THz. This region of 

electromagnetic spectrum is very challenging in technical realisation and remains industrially 

underdeveloped in comparison to other wavelengths [51]. THz radiation importance stems from 

the possibilities of its applications: THz emission demonstrates ability to contrast against 

conductors and the emission is non-ionising, rotational and vibrational energies of many organic 

and inorganic molecules lie in the THz range, so it is highly essential in medicine and security.  

Currently THz devices are being developed for skin-cancer imaging, non-contact spectroscopy, 

detection of explosives, corrosion inspection, material characterisation, tomography and many 

others [51, 52]. In solid state physics THz radiation can provide additional information regarding 

carrier lifetime, carrier dynamics and densities, and electron ionisation in plasma. THz sources can 

be classified as broadband, narrowband, or incoherent thermal sources.  Broadband radiation is 

generated in different materials by ultra-short laser pulses and is used for characterisation of 

electro-optic properties of materials; narrowband sources are crucial for high-resolution 

spectroscopy applications and will be of particular interest in this Chapter.  

 

Figure 2.1: THz region that fills the gap between infrared and microwave region of 
electromagnetic spectrum. 

2.1.2 Quantum cascade laser 

In 1971 Kazarinov and Suris [44] proposed electromagnetic wave amplification by means of 

stimulated transitions of electrons between quantized subbands in two-dimensional QWs that 

could be obtained by growing atomically sharp semiconductor heterostructures.  

As the transition energies are defined not by fixed material properties but rather by design 

parameters (particularly by layer thickness values of quantum wells), quantum cascade lasers can 

be designed for operating wavelengths ranging from a few microns to well above 10 μm, or even 
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in the THz region. The first working QCL was demonstrated under cryogenic temperatures and in 

infrared frequencies with 4.3 µm wavelength by Faist et al. [42, 53] in 1994. The QCL implicates 

alternating levels of N asymmetric QWs that are stacked adjacently. THz emission occurs, when 

electrons, which are injected into the structure by an applied voltage, tunnel through the QWs in 

the active region of the structure, causing N identical photons to be emitted. 

The laser emission is based on intersubband transitions in multiple QWs. During the cascade 

process each electron produces several tenth of photons, while it is passing through the structure. 

In 2001 this technology was realised in THz frequencies [54, 55]. A schematic illustration of the 

QCL is shown on Figure 2.2. Currently there are reports about room-temperature QCL THz 

generation, achieved by internal difference frequency generation [56] 

 

Figure 2.2: A schematic illustration of the QCL. In the first QW, an electron is injected resonantly 
into the upper energy subband, and can be stimulated to decay to a lower subband level, thereby 

emitting a photon. The lower-energy electron then tunnels to the next QW and causes another 
intersubband transition and the process continues along the ladder. Figure is taken from Ref. [57]. 

Despite all advantages of this type of laser the QCL operating regime has limitations: the electron 

thermalization rate should be higher than the rate of tunneling transition between QWs, so that 

the inversion population can occur. A technological drawback of QCLs is the inherently low total 

efficiency, because of the many possibilities that an electron in an upper state can lose its energy 

without emission of a photon. For example at high temperatures there is high probability that 

electron moves out of the quantum well without relaxation to the ground state. Currently the 

devices with efficiencies around 50% have been demonstrated only at cryogenic temperatures 

[58, 59]. Another problem is that the edge facet emission of most QCLs creates highly divergent 

output beams that are difficult to inject efficiently into small optics or fibres. 
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2.1.3 Vertical Cavity Surface emitting laser as a source of THz emission 

The vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode that emits 

radiation in the direction perpendicular to the top surface, contrary to the edge-emitting lasers 

that emit from surfaces formed by cleaving the individual chip out of a wafer. First it was 

demonstrated in Tokyo by K. Iga et al. [60]. 

The laser resonator consists of two distributed Bragg reflectors with different reflectivity on the 

top and on the bottom and a QW in between. The structure can be integrated in a 2D array 

configuration; the low threshold currents enable high density arrays. VCSEL structures 

demonstrate high efficiency at low power and lower temperature sensitivity in comparison to 

edge-emitting laser diods. Figure 2.3 demonstrates the structural difference between 

conventional edge-emitting lasers and VCSEL. 

 

Figure 2.3: Schematic illustration of edge-emitting laser and VCSEL 

The idea of THz VCSEL was proposed in Ref. [50] as an alternative to the model that uses the 

transition between the upper and the lower polariton branches in the polariton lasing regime. In 

this model THz emission is produced as a result of relaxation from the 2p exciton state to the 

lower polariton branch. The two-photon pumping is used to excite the 2p state [61, 62]. The 

direct transition from the 2p state with emission of a single photon is forbidden by the selection 

rules. However, the 2p exciton may relax radiatively to the lower polariton mode, that is 

composed of a 1s exciton and a cavity mode. This transition occurs with emission of a THz photon. 

This THz transition pumps the lowest energy polariton state that leads to polariton lasing effect 

that in turn stimulates THz transition due to macroscopic occupation of the lower polariton 

energy level. The VCSEL design allows operating with an optically allowed THz transition and it 

emits THz photons in vertical direction. Also, there is no need in a THz cavity. All these properties 
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are significantly advantageous compared with the QCL or the model with transitions from the UPB 

to the LPB. 

2.2 Theory of Bosonic Cascade Laser 

2.2.1 The main proposal 

The Bosonic Cascade Laser combines the advantages of QCLs and exciton-polariton lasers: the 

emission of multiple THz photons occurs with each injected electron; the threshold is very low 

and there is no need for THz cavity. 

The first proposal of the BCL emitting in the THz range of frequencies was done by Tim Liew et al. 

in 2013 [40]. The exciton cascade is formed in a parabolic potential with equidistant excitonic 

levels. The most efficient transitions are allowed between the adjacent levels.  The potential can 

be realized in different ways such as strain induced traps, optically induced traps and specially 

designed micropillars. One of the most promising designs is a parabolic QW embedded into a MC.  

In the initial proposal the authors considered the weak coupling regime with the optical mode 

resonant with the  th excitonic level for efficient pumping, while all other levels are supposed to 

be uncoupled from the cavity mode. This configuration benefits from the formation of the dark 

cascade with long radiative lifetimes.  The radiation from the device is polarized in the direction 

normal to QW and propagates in the cavity plane in the wave guiding regime. 

In order to determine the occupation numbers of the excitonic quantum confined states the 

following set of Boltzmann kinetic equations is used: 
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                                (2.3)  

where   is the initial pumping density,    is the occupation of  -th level,   and    are the THz 

emission and absorption rates respectively,   is the lifetime of cascade levels, which includes both 

radiative and non-radiative decay rates.  
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Figure 2.4: Dependence of the mode occupations in the absence of a THz cavity on pump 
intensity, calculated numerically from the kinetic equations (2.1)-(2.3).  

Non-radiative lifetime includes losses due to phonon scattering to states with a non-zero in-plane 

wave vector. In the case where the THz cavity is presented, one more equation is added to the 

system: 
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where      is the THz mode occupation. In this model it is assumed that the matrix element of 

the THz transition is non-zero only for adjacent levels of the cascade and is uniform for all pairs of 

levels.  Figure 2.4 represents the solution of the system of equations (2.1)-(2.3), in the case where 

      . In this model the energy levels are occupied by subsequent relaxations of excitons 

from the top. 

2.2.2 The feasibility of THz transitions 

To discuss the feasibility of THz transitions in the parabolic QW one should start from the two-

particle Hamiltonian for an electron and a hole (Eq.(1.8) from section 1.1): 

   
  

   
  
  

  

   
  
                

  

        
    (2.5) 

This Hamiltonian consists of kinetic energy terms for an electron and a hole, potential terms and 

the Coulomb interaction. One can rewrite this Hamiltonian in terms of centre-of-mass and relative 

motion coordinates: 
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where        /       ,   =     ,          . The QW potential is considered to 

have the form             
      

  , which may be expressed in the coordinates of centre-of 

mass and relative motion: 

          
  

(    
      

 )  

  
  

 

 
                (2.7)  

Here the last term mixes the internal and the centre-of mass degrees of freedom, provided that 

the pre-factor is not equal to zero. This term is extremely important because it allows the 

transitions between states, where the level index and orbital angular momentum are changed by 

1 unit. Note that such transitions would be forbidden by selection rules in the absence of this 

term. From now on it is assumed that 2p state to 1s state transition energy is matched to the level 

spacing.   

 

Figure 2.5: A schematic illustration of the cascade mechanism in parabolic potential: 2p exciton 
changes its angular momentum and transforms into 1s state with finite probability. After this 

process the radiative transition to the lower state occurs on a terahertz frequency. 

Figure 2.5 qualitatively explains the relaxation process: the left parabolic ladder corresponds to 

energy levels of the 1s exciton and the right one corresponds to the energy levels of the 2p 

exciton.  In general, there is always a probability that the 2p exciton transforms into the 1s exciton 

with the same energy (shown by orange arrow).  At the same time the radiative transition from 2p 

to 1s state and back is allowed by selection rules. So, if the energy distance between levels is the 

same in both ladders, the relaxation can be described as follows: at first the exciton changes its 

orbital quantum number but stays at the same energy level and then decays to the lower state 

(yellow arrow in Figure 2.5) with emission of THz photon (black arrow).  With the description 
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above one can construct the wave function of the eigenstate of the cascade ladder, which is a 

mixture of 1s and 2p states (the notation of Ref. [40] is used): 

    〉  
        〉            〉

√ 
      (2.8) 

2.2.3 Steady state solutions and the comparison with the fermionic case 

The analytical solutions of the system (2.1)-(2.3) can be obtained in the steady state regime in the 

absence of THz cavity, so 
   

  
   and       . Also,      and      . The steady state 

populations obtained from the rate equations read: 
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This leads to the general expression: 
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where ⌈ ⌉ denotes rounding up to the nearest integer and ⌊ ⌋ denotes rounding down. The 

populations of the pumped level and the ground level read: 
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From these equations the THz emission rate reads: 
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In the case where      the quantum efficiency can be expressed as: 
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The fermionic case is completely different from the bosonic cascade model, since the bosonic 

stimulation of the THz emission is not possible in the absence of a THz cavity. Rate equations 

(2.1)-(2.3) then are transformed into the following: 
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In the steady state regime these equations yield: 
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Figure 2.6 shows the dynamical population of energy levels, obtained by solving the kinetic 

equations (2.1)-(2.3) (bosonic case) and (2.19)-(2.21) (fermionic case). One can see that in the 

fermionic case all particles remain at the pumped level, while all other levels are nearly empty. 

This can be seen from the equation  (2.23) where, if      , then      . The THz emission 

rate is equal to      and the quantum efficiency then is     /       . 

The description above was discussed in the case where the particle, which follows a sequence of 

transitions in the ladder, is an exciton.  If the parabolic QW is embedded into a MC, so that the 

exciton levels are coupled with a cavity mode and the strong coupling regime is reached, the new 

polaritonic energy levels are not equidistant, so to create a polariton cascade laser one should 

alter the profile of the QW. However, in the weak coupling regime it is still possible to use a MC in 

order to enhance either the pumping level of the ladder, or, on the contrary, enhance the 

emission from the ground state.  The last example is presented in the experiment discussion in 

Section 2.3. 
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Figure 2.6: The time-dependence of energy level populations obtained by numerical simulation of 
a) Eqs. (2.1)-(2.3) – bosonic case, and b) equations (2.19)-(2.21) – fermionic case.   =1500 s-1, 

 =106   . The radiative decay time is constant and equal to   53 ps. 

Figure 2.7 shows the quantum THz emission rate and the quantum efficiency of the BCL, 

calculated in the framework of the described model. From the data, shown in Figure 2.7(a) one 

can calculate the possible THz emission power that can be generated by the device: let us assume 

GaAs PQW with energy difference between levels equal to 6 meV. Thus, if there are 5 energy 

levels in the QW, for the number of initial pumped photons P =8 1013   the lasing power can 

reach about 0.3 mW, depending on the value of   . However these estimations are very rough: 

for the final power estimation the influence of phonon interaction should be studied carefully. 

2.2.4 Double bosonic stimulation of the THZ emission 

In general, the bosonic stimulation principle is equivalent to the statement that the probability of 

N bosons to be found in a single quantum state is equal to the probability to find distinguishable 
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particles in the same state multiplied by N!. The more familiar statement is that for N bosons 

staying in the same state the probability of the N+1st boson to be found in the same state is  

 

Figure 2.7:  Dependence of the THz emission rate on pump intensity in the absence of a cavity for 
different numbers of modes in the chain (values of m are marked on the plot). Solid curves show 

results from numerical solutions of Eqs. (2.1)-(2.3). Dashed curves show the results of Eq.(2.4) 
with     , that are valid for high pump powers. (b) Dependence of the quantum efficiency on 

pump intensity [the values of m are the same as in (a)].  
(c) Time dynamics for   = 6,           . The parameters are              and 

      . Figure and caption taken from Ref. [40]. 

(N+1)   the probability for distinguishable particles. A nice proof of this statement is shown in 

Ref. [63]. The coefficient (N+1) is referred to as the bosonic stimulation factor. It has been already 

introduced in Eqs. (2.1)-(2.3). 

Let us now consider the following structure: a QW is embedded into a MC, so that polaritonic 

energy levels are equidistant, and the whole system is placed into a THz resonator. The resonator 

increases the radiative lifetime of the THz photons and also increases the emission probability due 

to the Purcell effect.  Then the system of Eqs. (2.1)-(2.3) should be solved simultaneously with the 

equation(2.4) describing the population of the THz mode, which will be non-zero in this case.  

The emission of polaritons increases the population of the THz mode, which in turn increases the 

polaritonic stimulated emission transition rate between adjacent levels. So it can be treated as 

double bosonic stimulation in the system.  It is essential to notice that Eqs.(2.1)-(2.4) do not 

include the interaction with a reservoir. In the case where bosons in the ladder interact with the 

reservoir, excitons may relax in energy down the ladder without emission of THz photons.  
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Ref. [45] provides a detailed analysis, including the equation for the reservoir population 

dynamics and the quantum efficiency dependence on the interactions with the reservoir. The next 

section shows that in real systems these interactions are not negligible, although the phonon 

relaxation is taken into account differently from Ref. [45]. 

2.3 Experimental study and modelling of relaxation processes in 

parabolic QWs 

The experiment discussed below is intended to describe the exciton relaxation dynamics in 

bosonic cascades. Two parabolic QW samples with and without Bragg reflectors were explored in 

order to find the optimal structure characteristics for the Bosonic Cascade Laser. The PL spectra of 

a PQW MC sample was compared with that of a conventional MC with embedded QWs to 

demonstrate that the weak coupling lasing in a PQW sample can be achieved. The relaxation 

dynamics in a conventional QW MC and in the PQW MC was studied by the non-resonant pump-

pump excitation method. A drastic difference in the relaxation characteristics between the two 

samples was found. The semiclassical Boltzmann equations similar to Eq.(2.1)-(2.3) were 

employed to reproduce the evolution of excitonic populations within the PQW as a function of the 

pump power and the output intensity evolution as a function of the pump-pump pulse delay. 

Fitting the PQW data has confirmed the anticipated cascade relaxation, paving the way for such a 

system to produce terahertz radiation. 

2.3.1 Experimental methods: 

PQW samples without and with DBRs (denoted S1 and S2 respectively) have been studied, and 

their relaxation and excitation characteristics have been compared to a planar MC sample with 

rectangular QWs (S3). All samples were fabricated with the molecular beam epitaxy. S1 contains 

an InGaAs/GaAs PQW of width ≈ 50 nm at the top of the potential well, and the parabolic profile 

was achieved by altering the indium concentration during the growth process from 2% at the 

InGaAs/GaAs interface to 6% in the middle of the QW (see inset in Figure 2.9(a)). Sample S2 was 

fabricated similarly with an AlxGa1−xAs/Al0.15Ga0.85As QW of ≈ 50 nm width, where the parabolic 

profile was achieved by altering the concentration of aluminium along the z-axis of the sample 

from 5% in the middle of the QW to 12% near the interface. The MC was formed with two DBRs, 

each with 17 and 22 Al0.15Ga0.85As/AlAs paired layers. The Q-factor of the MC is approximately 

2000 and the PQW was placed in the middle of 3λ/2 intracavity spacing. Finally a 5λ/2 planar GaAs 

cavity, sample S3, consisting of 32 and 35 Al0.15Ga0.85As/AlAs DBR pairs and 12 rectangular QWs 

was studied. The Q-factor of this MC is approximately 12000. 
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Figure 2.8: The schematic illustration of experimental setup for the charachterisation of sample S1 
without PQW. The laser beam is collected on a lense in front of the sample, then the central part 

of the reflected beam is used for the PL analysis. WLM denotes wavelength meter. 

The samples were mounted in a close-cycle cryostat to reach a temperature of roughly 5 K. 

Samples S2 and S3 were excited non-resonantly above the MC stopband by femtosecond pulses 

from a Ti:Sa laser. The laser spot size was approximately 50 µm. S1 was excited with a CW laser 

resonantly tuned to the exciton resonance in the barrier layers (to the 12th quantum confined 

excitonic state, see Figure 2.9). Such pump conditions allow creating excitons rather than 

electron-hole pairs. To study the exciton relaxation dynamics of S2 and S3 a pump-pump 

technique was used, whereby two pump pulses separated by a variable delay are used to excite a 

sample non-resonantly with great temporal resolution giving the time-integrated intensity of the 

PL as a function of the delay. The dynamics measured on a new MC sample containing a single 

PQW (S2) was compared with the data taken on a reference sample that is a state of the 

art strong coupling MC containing 12 embedded QWs and characterized by a Q-factor of 12000. 

Both sets of data may be described within the kinetic model that allows revealing the role of key 

parameters of microcavities, namely, the relaxation and radiative decay rates, the number of 

intermediate exciton subbands. 

At first the bare parabolic QW (sample S1) was characterized in order to verify that equidistant 

exciton states had been achieved. In Figure 2.9 the modulated reflectance spectrum is presented 

(red curve) and subsequently fitted (solid black line) and up to 11 distinct excitonic states can be 

resolved. The energy spacing between the neighboring resonances is about 6 meV, or 1.45 THz. 

The inset in Figure 2.9(a) shows the potential profile for excitons in PQW (blue line) and the 

positions of equidistant quantum confined excitonic states (horizontal black lines), which creates 

the bosonic cascade ladder. 
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A simple analysis of the reflectivity spectrum is performed generalizing the theory developed in 

Refs. [64, 65] for the case of several exciton quantum confined states to fit the modulated 

reflection data. The modulation technique was used to reduce a noise and to stretch weak 

features connected to the excited quantum confined excitonic states. Following the non-local 

dielectric response theory [64], the amplitude reflection coefficient for a QW with several exciton 

resonances can be expressed in the form: 

    ∑
               

               

    

   

      (2.24) 

Here     is the resonance frequency,     and   are the radiative and nonradiative damping rates 

for a system of N levels. The phase    in this equation takes into account a possible asymmetry 

of the QW potential. Reflectivity R(ω), from the structure with a top barrier layer of thickness Lb 

and a QW layer of thickness LQW, is calculated using the transfer-matrix approach: 

     |
           

            
|

 

      (2.25)  

where     is the amplitude reflection coefficient from the sample surface. The phase is   = K(   + 

   /2), where K is the photon wave vector in the heterostructure. The calculated derivative 

reflectivity spectrum is shown in Figure 2.9(a) (black curve). The peak integrated PL spectra of the 

sample S1 at different excitation powers has been measured (see Figure 2.9(b)). It was found that 

the power increase gives rise to the increase of PL intensity from the lowest exciton state 

followed by its saturation, contrary to the model set out in Ref. [40], where the highest level is 

seen to populate first, and the lowest level establishing a population last. Simultaneously, the 

intensity of the PL from the excited exciton states increases super-linearly with pump power and 

then also saturates. The similar behaviour of PL is observed for exciton states under further 

increase of the pump power. The full set of the PL data consisting of about 500 spectra was 

analysed by deconvolution of each spectrum into a set of Lorentzian resonances, corresponding 

to different exciton transitions. Such deconvolution fits the experimentally observed spectra, if 

the wavelength of excitation coincides with one of the exciton resonances in PQW or with the 

exciton resonance in barrier layers. In this case, the pump directly creates excitons rather than 

uncoupled electron-hole pairs, the relaxation of which differs from exciton relaxation. If electron-

hole pairs are created by the non-resonant excitation, a broad structureless background appears 

in the PL spectra. It should be stressed that the observed behaviour of the time integrated PL 

intensities of resonant exciton peaks is a characteristic of PQWs. This is a clear indication that 

excitons created by resonant excitation relax via cascade between neighbouring energy levels. A 

reference rectangular QW of thickness of about 90 nm was studied by the same technique and 



 

41 

found that no new exciton lines appear in the PL spectra with the pump power increase. To 

identify the ability of the PQW to act as a polariton laser [39] the PQW sample inside a MC was 

studied. Heterostructures acting as polaritonic lasers usually contain multiple thin QWs (of 

roughly 10 nm in width) to increase the oscillator strength of the excitonic transition in order to 

establish strong coupling. S2, however, contains only one PQW of about 50 nm width. The larger 

QW thickness and stronger overlap of the electron and hole wave functions in the PQW provides 

a sufficiently strong exciton-photon coupling to reach the strong coupling regime and polariton 

lasing possible [66]. 

Only the lowest energy exciton state in the parabolic QW is strongly coupled to the cavity mode in 

the low excitation regime. All other states are in the weak coupling regime due to the low overlap 

of exciton centre-of-mass wave-functions and the cavity mode. Figure 2.10(a) shows the 

dependencies of polariton mode energies on the laser spot position on the sample S2. One can 

see that the detuning between the exciton and photon resonances is dependent on the spot 

position. The anticrossing of polariton modes is clear evidence of the strong coupling regime. In 

the anticrossing range the reflectivity spectrum exhibits three distinct minima; these can be 

attributed to the coupling of the heavy-hole and light-hole excitons [67] to the cavity mode. The 

Rabi splitting of the relating polariton states is about 6 meV. The pump-power dependence of PL 

intensity for sample S2 is shown in Figure 2.10(b) (blue curve). The threshold-like increase of the 

intensity is clearly observed. The identification of the polariton or conventional laser threshold is 

questionable without additional experiments. What is important is that the PL intensity rises 

exponentially with pump power below the threshold. At the pulsed excitation this is an indication 

of the switching of the system to the lasing regime within a limited time window, which becomes 

longer as the pump power increase. The linewidth narrowing at the threshold pump power is 

clearly seen at in Figure 2.10(b) (red curve). This is considered as an indication that the stimulated 

relaxation occurs in sample S2. 
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Figure 2.9: (a) λ-modulated reflectivity spectrum of sample S1 containing parabolic QW without 
MC (red curve) and modelled spectrum (black curve). Vertical dashed lines mark equidistant 

quantum confined excitonic states in the PQW. Inset: the potential profile for excitons (left axis) 
and distribution of indium content across the QW layer (right axis) are shown. (b) Pump power 

dependencies of integral PL from different quantum confined excitonic states. The pump 
wavelength was tuned to the exciton resonance in the barrier layer. The integral PL for each 

transition was obtained by deconvolution of the PL spectra into a set of Lorentzians.The inset 
presents the same curves plotted in logarithmic scale to show the low power region. Figure taken 

from Ref. [68]. 
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Figure 2.10: (a) The energy position of features in reflectance spectra of sample S2 as a function of 
the laser spot position on the sample (blue dots). Dashed lines marked as CM, LE, and HE are the 

energy positions of cavity mode, light-hole exciton and heavy-hole exciton respectively. Light-hole 
exciton is considered to be weakly coupled with the cavity mode. (b) Dependence of PL intensity 
(blue curve) and PL  linewidth (red curve) on the excitation power; Figure taken from Ref. [68]. 
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2.3.2 Pump – pump experiments 

 

Figure 2.11: The schematic illustration of experimental setup for pump-pump experiment 

The pump-pump method employed in the experiment allowed highlighting relaxation processes in 

the PQW within the MC that may be hidden for studies by the conventional time resolved 

spectroscopy methods due to the reflection from the DBRs [69]. The important property of the 

stimulated cascade relaxation is its strong dependence on population of the lower-lying exciton 

state [40]. In the pump-pump method, the first pulse creates an initial density of excitons and the 

delayed second pump pulse creates additional excitons at the pumped level. Relaxation of these 

excitons strongly depends on the population of lower energy excitonic levels created by the first 

pump pulse. If this population is large enough, the stimulated relaxation is triggered and 

accelerated. This acceleration should result in the nonlinear increase of the total PL signal excited 

by both pump pulses in the case of competing radiative and non-radiative channels of polariton 

recombination. The PL intensity should depend on the delay between two pulses; no nonlinear PL 

increase should occur at very large delays, where the excitons created by the first pulse relax and 

recombine before the second pulse arrives. The proposed method was employed for a 

comparative study of two samples S2 and S3. The samples were cooled down in a cryostat to 5 K 

and pumped by two femtosecond pulsed beams. The time integrated PL spectra were measured 

as functions of the delay between the pulses. Spatially broad pulses were intentionally used in 

order to reduce the effects of diffusion and lateral polariton drift. A detailed treatment of the 

formation dynamics of polariton condensates accounting for the drift and diffusion of 

photoexcited carriers and excitons is presented in the recent paper [70]. The goal of the present 

study is to reveal the specifics of momentum space relaxation in bosonic cascade structures, so 

the spatial dynamics of exciton clouds and polariton condensates in such structures is not taken 

into account.  
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Figure 2.13 shows the delay dependencies of time integrated PL spectra of sample S2 with PQW 

(a) and of sample S3 with multiple rectangular QWs (b) at the pump powers 0.25    + 1.7    , 

where      is the threshold pump power for each the sample.     = 16mW for the sample S2 and  

   = 1.1mW for S3. The spectral diffusion as well as appearance of the additional spectral peaks 

are clearly observed at positive delays for both the samples. However, time scales for these 

processes are different. For sample S2 the second peak is developing from 30 to 50 ps, while for 

sample S3 it takes much longer delays, from 10 to 200 ps. 

Figure 2.13shows the delay dependencies of the PL intensity measured for the samples S2 and S3 

at different excitation powers of both pulses. The delay dependencies of spectrally resolved PL 

intensities are taken at the energies E = 1.5698 eV (left panel) and E = 1.5399 eV (right panel) 

corresponding to the peaks in the PL spectra. The pump powers are chosen close to the threshold 

of lasing. There are several peculiarities in these dependencies. Firstly, there is a strong increase 

of the PL at a relatively small delay. At the same time, the range of these delays is considerably 

smaller for PQW (150 ps) than that for rectangular QWs (several hundred ps). These means that 

the relaxation processes in the PQW is considerably faster than in the rectangular QWs. Secondly, 

additional features in these dependencies are observed. For PQW, a relatively narrow dip at zero 

delay is clearly seen. No such dip is observed for rectangular QWs. This is an indication of 

significant difference in relaxation processes in these two samples. Thirdly, some asymmetry of 

the dependencies for positive and negative delays is observed in both samples. It is caused by the 

difference in pump powers of first and second pulses. If the weak pulse comes first (negative 

delay), the exciton population is relatively s mall, consequently the bosonic stimulation is weak, 

and the relaxation of excitons created by the weak pulse is relatively slow. When the strong pulse 

comes first (positive delay), the stimulated relaxation is accelerated compared to the case of a 

weak pulse coming first. Finally, an additional peak of PL intensity is observed at the positive 

delay, if the power of the strong pulse is beyond the threshold. To understand the second peak at 

the positive delays one should discuss the time dependence of PL intensity.  

In Ref. [71] the PL kinetics has been studied at different exciting powers for both below and above 

the threshold of polariton lasing    . It was found that when the power   <    , the PL intensity 

slowly rises and reaches its maximum at   ≈ 100 ps. At later times the PL intensity slowly 

decreases with characteristic decay time    ≈ 400 ps. When the pump power exceeds the 

threshold, a strong pulse of polariton laser emission appears at time    with the 10-20 ps pulse 

duration. Such temporal behaviour of PL intensity allows assuming the following origin of the 

second peak in the pump dependencies shown in Figure 2.13. When the sample is pumped by two 

pulses and the first pulse power is above the threshold two maxima of the polariton laser 

emission may be seen. The reason is that the number of excitons remaining after the first pulse of 
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polariton lasing peak and of excitons created by the second pump pulse is sufficient for the 

formation of the second peak of polariton laser emission. These effects with polariton lasing 

appearing twice are expected to be present in the sample S2 with PQW in MC as well as in the 

sample S3 with rectangular QW in MC. But the time delay and the width of the second peak 

strongly depends on the relaxation dynamics. Thus in the sample S2 the relaxation is faster than in 

the sample with a rectangular QW in MC. 

2.3.3 Modelling 

Exciton relaxation and dynamics in GaAs MCs has been extensively studied in conventional QWs 

[72, 73], particularly in what concerns the phonon mediated relaxation. In order to analyse the 

experimental data obtained for the PQW, the rate equations introduced by Liew et al. have been 

used by us with minor modifications. Let us consider m distinct excitonic levels in a PQW. The 

dynamics of population of each of the levels can be described by the following system of rate 

equations: 
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Here    denotes to the occupation of the ground level of PQW, Nm is the occupation of the highest 

level, and    is the occupation of k-level with k = 2 . . . m − 1,   terms describe the exciton-

exciton scattering in the system. Terms   
      and   

 
 describe the initial two pulse excitation 

where the second pulse comes with a delay τ. Terms  
  

  
  for k =  2 . . . m describe both radiative 

and non-radiative decay rate of excitons at each level, where non-radiative decay describes losses 

due to phonon scattering  to states with a nonzero in-plane wave vector,     . For the first 

level, only the radiative recombination is taken into account. 

The model (2.26)-(2.28) neglects the absorption of THz photons in the bosonic cascades, which is 

valid in the absence of external THz cavity. These equations are similar to the system (2.1)-(2.3) 

but here one assumes that the population on each level depends on contributions from all levels, 

from which the transition is allowed. As was discussed in the previous section the optical 

transition is allowed only between levels with wave-functions of different parity. Matrix elements 

   describe the transition from any level   to any other level       in the cascade. Transitions 

between adjacent levels may be mediated by the emission of THz radiation as suggested in Ref. 

[40]. Let us generalize this model and consider the transitions between all the levels, which is 

described in the above equations by summation over all levels. This generalisation can be made 

under two assumptions: firstly the actual profile of the potential may not be strictly given by the 

form of Eq.(2.7). Secondly the reservoir may be taken into account, assuming that phonon 

scattering allows for non-radiative transitions, and the final population can be described within 

the same model. In the modelling it was assumed that the pumping is centred at one of the 

middle levels of the cascade, k, meaning that upward scattering is possible from this level. The 

upward scattering due to exciton-exciton interaction populates all the levels up to the highest one 

labelled m. For the structure under study, the exciton-exciton scattering is found to change the 

amplitude of the PL signal, but does not affect the most important features of the exciton 

dynamics. The exciton-exciton scattering plays a minor role in our experiments and the 

corresponding terms in rate equations can be safely omitted. 

In the experiment in the Section (2.3.2), the system is excited by femtosecond pulses which are 

relatively broad in energy and capable of pumping several energy levels of the cascade 

simultaneously. To account for the spectral broadening of the pulse in the model, it is assumed 

that polaritons are excited not only at the level k, but also at the nearest levels k − 1 and k + 1. In 

the numerical simulations, the cascade is considered to have the maximum number of occupied 

exciton levels m = 9 with the level k = 6 receiving the major part of input pulses power, 2P/3, and 

levels k = 5, 7, receiving 1/6 of total input power each. 
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The following parameters are used in the calculations:     = 1500 s-1     =    = 500 s-1,    = 

100s-1,    = 2500 s-1,    = 11 ps,   = 55 ps, and   = 22 ps. where   ,   ,    are the decay  times 

for the ground level, pumped levels, and levels above the pumped one, respectively. Figure 2.12 

shows the time evolution of exciton densities at each energy level in the QW, plotted for two 

different delays between the pulses. As seen from the figure, the population dynamics is quite 

complex. If the system is excited by a single pulse (solid lines in Figure 2.12), pumped levels 5–7 

are populated and other levels are almost empty at the initial time interval (t < 10 ps) after the 

pulse.  Due to the high exciton density at the level 5,      1, the Bose-stimulated relaxation from 

the upper levels 6 and 7 is switched on and the population of this level dramatically increases. 

 

Figure 2.12: Time evolution of exciton densities at each level in the QW. Solid lines are calculated 
for zero delay between pulses and dashed lines show the same for τdelay = −5 ps. Figure taken from 

Ref. [68]. 

The population of level 5 reaches its maximum at t ≈ 5 ps, while levels 6 and 7 become empty. The 

low-lying levels, i = 4 ... 1, are slowly populated while the exciton density is not reached a critical 

value for Bose-stimulated relaxation. This critical value is achieved for the level 4 first because, in 

the framework of the model, the relaxation between adjacent levels is more efficient, so 

         . This explains the threshold-like increase of population of the level 4 at time t ≈ 30 

ps. Similarly, populations of levels 3 and 2 rapidly increase at time   ≈ 60 ps and   ≈ 120 ps, 

respectively (see respective curves in Figure 2.12). However, the population of the lowest exciton 

level 1, is not efficiently boosted via this pathway because of the low population of the adjacent 

level 2. Therefore, the model assumes that there is a direct relaxation of excitons from the 



 

49 

pumped level 5 to the lowest level. As one will see below, this process explains the second 

maximum observed experimentally in pump-pump experiments (see Figure 2.13, left panel).   

As discussed in the previous subsection, radiative transitions between levels, where the wave 

functions have the same parity, are forbidden. However, through the modelling process it was 

found that transitions    and    are essential to fit the second peak appearing at the 50 ps 

delay. So the possible explanation that is consistent with the theory of BCL are that the phonon 

transitions to k=0 state also play a role. So in this model these transitions are taken into account 

separately from the terms  
  

  
  that describes the phonon scattering to states with a nonzero in-

plane wave vector,     . These non-radiative losses also compete with the relaxation 

processes. The integral magnitude of losses depends on the time, spent by excitons at the excited 

levels. This time can be drastically shortened and, respectively, the PL yield can be increased, if 

appropriate experimental conditions initiating the Bose stimulated relaxation are fulfilled, in 

particular, the excitation power, which should be close to the threshold power for polariton lasing 

[74, 75]. Separation of the excitation pulse in two pulses also helps controlling the population of 

different exciton levels (see Figure 2.12) and, hence, the non-radiative losses. Once the excitons 

created by the first pulse have relaxed to the fifth level (it takes about 5 ps), the excitons created 

by the second pulse delayed by τ = 5 ps rapidly relax from the sixth and seventh levels to the fifth 

one via Bose-stimulated process. This stimulation gives rise to the increased population of level 5 

relative to that obtained for zero delay, as one can conclude comparing solid and dashed lines    

in Figure 2.12. The corresponding increase of population is observed also for other levels. In 

particular, a remarkable increase of population is observed for level 1, which is the key point for 

understanding of the dip in the delay dependence of PL intensity observed experimentally (see 

Figure 2.13, left panel). Figure 2.14 shows the integral PL intensity, IPL, as a function of the delay 

between pulses,       , for two excitation powers with total power,  (1) + P(2) <    , where     is the 

threshold power for polariton lasing. Curves Ii represent the contribution of each transition term 

having form Wi−1Ni (N1 + 1) for i =2 ... 6, into the total PL. As one can see from the figure, the 

modelling predicts a dip in the PL intensity at the small delays. It is clear from the discussion 

above that the dip is due to the increase of PL intensity at the delay increases up to several 

picoseconds. 
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Figure 2.13: Experimental measurements discussed in the end of the subsection 2.3.2: PL spectra 
measured as a function of the delay between the pump pulses for sample S2 with PQW (left 

panel) and sample S3 containing multiple rectangular QWs in a MC (right panel). Figure taken 
from Ref. [68]. 
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Figure 2.14: Modelling of pump-pump signal with use of rate equations: delay dependencies of 
total PL intensity IPL from the ground exciton level, and separate contributions of each transition 

  =        (    + 1) for i = 2 . . . 6, plotted for two different values of pump powers:  

(a)     = 0.3 ×     ,     = 0.25 ×      and (b)      = 0.7 ×     ,     =  = 0.25 ×     . Figure taken 

from Ref. [68]. 

The further increase of delay between the pulses gives rise to the depopulation of level 5 when 

the second pulse arrives. As a result the Bose-stimulated relaxation of levels 6 and 7 excited by 

the second pulse becomes less efficient and the non-radiative losses increase. This explains the 

decrease of PL intensity at delays τ = 10 ... 40 ps (see Figure 2.14(b)). However, when the delay τ > 

40 ps, the population of the ground exciton level is so large (    ) that the direct Bose-

stimulated relaxation from level 6 described by term      (  + 1) becomes an efficient pathway 

for the exciton relaxation to the ground level. Respectively, efficient depopulation of level 6 

occurs that results in the decrease of non-radiative losses. These processes explain the 

appearance of a second peak at the delay dependence of PL intensity. The calculated behaviour of 

total PL intensities at weak and strong pumping qualitatively reproduces the experimental results 

(compared to Figure 2.13).  

The PL intensity for the conventional rectangular QW can be modelled with the same set of 

equations (2.26)-(2.28). However due to the large separation of energy levels the initial pumping 

populates only single energy levels, while neighbouring levels stay empty. This leads to the 
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disappearance of the dip in the PL profile as it is shown in the experiment (Figure 2.13, right 

panel). 

2.4 Conclusions 

Present experiments and modelling shed light on the exciton dynamics in bosonic cascades, the 

pump-pump method being a powerful tool for the study of the fast relaxation dynamics at the 

non-resonant pumping. When the only one pump pulse is used for excitation, the relaxation 

occurs via one pathway. Using the second pulse allows one to switch the relaxation between 

different pathways depending on delay between the pulses which is demonstrated experimentally 

and through modelling. The qualitative agreement was found between the theoretical model of a 

BCL in a PQW system and experimental results. Because the pump-pump method is based on 

strong nonlinearity of PL yield on the pump power, which is close to the threshold, the 

quantitative agreement of the theory and the experiment was not reached. However, the 

modelling showed that there are two different pathways for relaxation in the system. The first 

pathway is the relaxation via cascade transitions, where all levels are being filled, and the second 

pathway is the direct transition from the pumped level to the ground one. By taking these 

pathways into account, the model may be generalized for larger number of levels or for other 

initial conditions. Taking into account the fact that minimum in the PL at zero delay occurs only if 

polaritons are exited on at least two adjacent levels, it is possible to explain the difference in PL 

for PQW and bare QW shown in Figure 2.13 the levels in bare QW stand far from each other and 

polaritons are excited only at one energy level. Due to this there is no minimum at zero delay 

between pump pulses. Nevertheless, the relaxation process in the bare QW still may be described 

by the rate equations, but with different values of parameters.  

The consequential continuation in the development of the BCL model would be implementing the 

phonon interactions into the theory and finding experimental structures, where phonon 

relaxation can be reduced. 

In this work I have reproduced the results of the paper [40], plotted extra results for the fermionic 

case and provided modelling support for the relaxation dynamics in the experiment [68]. 
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Chapter 3: Polariton – mediated superconductivity 

The phenomenon of superconductivity is one of the most fascinating problems of modern physics. 

Since its discovery in metals in 1911 at cryogenic temperatures plenty of experimental 

developments were made, so now there are compounds acquiring superconducting properties at 

temperatures over 160K. However, there is no unified explanation of this phenomenon and the 

theoretical aspects of high-temperature superconductivity still have to be developed. 

In this Chapter I discuss one of possible mechanisms of superconductivity – light induced 

superconductivity. This theory is built upon the conventional model of attractive electron-electron 

interaction, but the phonon mediation is replaced by the mediation by excitations of an exciton-

polariton BEC. The structures that are proposed to be suitable for observation of the effect 

pertain to the class of hybrid Bose-Fermi structures – layered semiconductor crystals 

with embedded QWs, where the QW with BEC is adjacent to the QW with a 2D 

electron gas (2DEG). This structure is schematically shown in Figure 3.1. 

  

Figure 3.1: A schematic illustration of the hybrid Bose-Fermi structure, discussed in this Chapter. 
Figure taken from Ref. [76]. 

The two subsystems (BEC and 2DEG) exhibit different quantum effects as a result of their 

statistics. In Refs. [77, 78] the softening of polariton dispersion and transition of BEC into the 

supersolid phase are demonstrated. At the same time a 2DEG may exhibit superconducting and 

CDW state [79]. The last is an ordered quantum fluid of electrons where the electrons form a 

standing wave pattern. 

This Chapter is devoted to the investigations on superconductivity in a 2DEG layer in the weak 

coupling regime, meaning that the electrons in the 2DEG QW are weakly coupled to the polaritons 

in the adjacent QW, and implying the validity of the Bardeen-Cooper-Schrieffer theory. In 

particular, the dependence of the critical temperature on the magnetic field and the densities of 

2DEG and polariton BEC was investigated. Bearing in mind the recent appearance of new 
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materials based on TMDC monolayers that exhibit unique excitonic properties, this type of 

superconductivity can possibly be observed in TMDC microcavities. 

3.1 Introduction 

One of the most gripping phenomena in the modern physics is the superconductivity. It was 

discovered in 1911 by the Dutch physicist H. Kamerlingh-Onnes, who observed an abrupt 

vanishing of the resistivity of solid mercury at T = 4.15 K. Later the same observations at different 

temperatures were done in lead, tin, thallium, uranium, and other metals.  The investigations on 

the decay time of superconducting currents showed fascinating results: in 1963 J. File and R. Mills 

studied the decrease of the superconducting current in a              solenoid by measuring the 

magnetic field with the nuclear magnetic resonance method. The experiment showed that the 

characteristic decay time of the current is longer than 100000 years [80]. 

Superconductors exhibit unusual properties in the presence of magnetic fields.  In 1933 W. 

Meissner and R. Ochsenfeld demonstrated that if a superconductor is cooled down below the 

critical temperature in the external magnetic field, the field lines are completely ejected from the 

bulk of a sample [81]. Such materials are called type I superconductors. Their superconducting 

properties completely vanish at the critical value of the magnetic field   . Type II 

superconductors exhibit a completely different behaviour: there are two critical values of 

magnetic field    
 and    

. In the region below    
the magnetic field stays at the surface of the 

superconductor, while in the region    
      

 the magnetic field penetrates inside the bulk 

and superconducting vortices are formed. The metal still remains in the superconducting state, 

however, the magnetic field flux through it is not equal to zero. Typically    
    

  which allows 

applications of these materials in engineering. Nowadays all superconducting magnets are based 

on the Type II superconductors. 

Later in 1950s the isotope effect that is the dependence of the superconducting critical 

temperature on the nuclear mass was shown [82, 83, 84], proving the important role of the lattice 

and electron-phonon interactions in superconductivity. The explanation of the isotope effect was 

given by Fröhlich in Ref. [85], where the electron-phonon interaction was first theoretically 

described. 

The theoretical investigations of superconductivity began in 1935, with the introduction of the 

London equations [86]. The main assumption of the London’s model was that electrons in 

superconductors form circular currents that fully screen the applied magnetic field. By relating 

this superconducting current with the magnetic field the Meissner effect was described. This 
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theory is purely phenomenological and has a few drawbacks, where the main one is the 

underestimation of the magnetic field penetration depth.  

Later L. Landau and V. Ginzburg created a model that described the second order phase transition 

from metallic conductivity to superconductivity with a non-linear Schrödinger-like equation.  The 

second order phase transition theory is based on the assumption that there exists an order 

parameter, which describes the loss of symmetrical properties of the system. The order 

parameter is zero at the normal state, and it deviates from zero continuously in the ordered state.  

In the description of superconductivity this order parameter was assumed to be proportional to 

the density of carriers of the superconducting current.  The theory successfully described the 

Meissner effect and the distinction of the two types of superconductors. Later it was shown that 

the Ginzburg-Landau theory is the limiting case of the full microscopic model, valid at 

temperatures close to the phase transition temperature. 

3.2 BCS approximation 

The breakthrough in the investigations of the superconductivity phenomenon came in 1957 

when  John Bardeen, Leon Cooper, and John Robert Schrieffer published the seminal paper on the 

microscopic theory of superconductivity (BCS model) [87]. 

This work is based on two main previously established properties of the Fermi gases in solids. The 

first one is the existence of an effective attraction between two electrons that stems from the 

phonon mediation.  Instead of using the realistic microscopic treatment of the interaction, 

Bardeen et al. used the toy “jellium” model, where the artificial and structureless background 

charge interacts electrostatically with itself and with the electrons. The electron-electron 

potential (Bardeen-Pines potential) in this model reads: 

         
  

        
  

[  
   

    

      
    

]     (3.1) 

where   is the dielectric permittivity,     is the dielectric screening constant,      is the phonon 

dispersion,    is the exchanged (phonon) energy and   is the exchanged (phonon) wave vector. 

The Fourier transform of this potential is time-dependent that reflects the retardation effect. 

The second development was done by L. Cooper.  In 1956 he found that two electrons near the 

Fermi level are unstable towards the formation of a Cooper pair for an arbitrarily small attractive 

interaction and the energy of this bound state is lower than the energy of an unbound electron-

electron pair on the Fermi surface [88]. So one would expect that the many body electronic 

system is unstable towards the formation of a new ground state, formed by Cooper pairs of 

https://en.wikipedia.org/wiki/John_Bardeen
https://en.wikipedia.org/wiki/Leon_Cooper
https://en.wikipedia.org/wiki/John_Robert_Schrieffer
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electrons. This final step accounting for the collective nature of superconducting state completed 

the microscopic description of the superconductivity phenomenon.  

The BCS Hamiltonian can be expressed in the form: 

     ∑   ̂  
  ̂  

   

 ∑      ̂  
  ̂   

 

    

 ̂     ̂        (3.2) 

where                     ,   is the chemical potential,  ̂  
   ̂   are the electron 

creation and annihilation operators.       is the interaction potential between the electrons with 

corresponding absolute values of momenta. This Hamiltonian can be rewritten in the mean field 

approximation, accounting for the term 〈 ̂  
  ̂   

 〉   , which corresponds to the Cooper pair 

wave function in superconducting state. Introducing the fermionic Bogoliubov transformation 

[89], that reads: 

 ̂   
     ̂   

    
  ̂         (3.3) 

 ̂     
  ̂      ̂   

        (3.4) 

and after some math one can introduce the superconducting ground state wave function, which is 

the quasi-vacuum in the new basis of quasi-particles, called bogolons. 

 ̂       〉          (3.5) 

In terms of the initial electron creation and annihilation operators      〉 can be rewritten as: 

     〉  ∏       ̂  
  ̂      〉

 

      (3.6) 

where   〉 is the Fermi sea,    and    are the parameters, satisfying the condition   
    

   . 

The minimization of the expectation value of the Hamiltonian (3.2) in the ground state allows 

determining these parameters and leads to the self-consistent condition: 

   ∑    

   

 √   
     

   

       (3.7) 

where        ∑     〈 ̂     ̂   〉   is the gap function, that can be expressed in terms of   ,     

and    √   
     

  is the quasi-particle excitation energy.  

Assuming that the interaction potential      is constant and attractive in the certain frequency 

range, i.e.  

     {
                

                 
     (3.8) 
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 where    is the phonon Debye frequency, the gap function is independent on the wave vector 

and it is constant in the region of the attractive potential. Then the gap equation (3.7) may be 

simplified to:  

  
 

 
∑

 

  
 

 

       (3.9) 

The summation in the Eq.(3.9) can be replaced by integration over energy, which leads to 

    ∫
  

√     
 

   

 

      (3.10) 

with   being the density of states at the Fermi surface in the normal state. If       that 

means the weak coupling condition being satisfied, then 

        
( 

 
  

)
       (3.11) 

At finite temperatures this equation may be generalized as follows: 

        ∫
                  (

     
    

)

      

 

  

        (3.12) 

where         is an arbitrary potential,    is the Boltzmann constant. The critical temperature 

   of the phase transition is then determined as the temperature, at which the gap function turns 

to zero. Substituting the potential (3.8) into the Eq.(3.12) one can find    as: 

                ( 
 

  
)      (3.13) 

Qualitatively, the BCS mechanism can be understood as follows: a single electron, moving in the 

lattice of ions creates a distortion in the ion positions, producing the local uncompensated 

positive charge. Due to the difference in the electron and ion masses the lattice response is much 

slower, compared to the electron motion.  So at a later time this charge attracts another electron, 

when the first one is away at a long distance, which can be of the order of 100 nm. At such 

distances the Coulomb repulsion does not affect these electrons, so that a bound state can b 

formed. Being composed bosons, the Cooper pairs are subject to the collective phenomena, 

similar to superfluidity. The superfluid current of Cooper pairs is responsible for the 

superconductivity. 
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3.3 Exciton-polariton mediated superconductivity 

The typical transition temperature in superconducting metals is of the order of several Kelvin. In 

order to increase this temperature one may try to increase either the Debye energy or the 

interaction strength in Eq.(3.13).  

The Cooper model predicted that the pair of electrons can be formed at any arbitrary attraction, 

independently on its nature and interaction strength. Hence, phonons are by no means a unique 

agent possibly providing for the electron-electron attraction. In the light of this, in 1964 the idea 

of exciton mediated superconductivity was first proposed by W. Little [90]. Then a further 

development to this proposal was done by V. Ginzburg [91] and D. Allender et al. [92], who 

considered layered metal-semiconductor structures as candidates for exciton-mediated 

superconductivity. The goal set by these authors was to increase the cutoff frequency by replacing 

the phonon mediation by the virtual exciton mediation. However, the experimental attempts to 

realize this idea faced two major obstacles: firstly, the energy cost of creating an excitation in the 

semiconductor layer is very high. Secondly, the retardation effect in such systems is suppressed, 

because the average speed of the exciton, created due to the interactions in metal and 

semiconductor is high in comparison to the speed of sound, which means that the resulting 

Cooper pairs would be small in size and the Coulomb repulsion cannot be neglected. Most likely 

for these two reasons, the exciton-mediated superconductivity was never observed. A significant 

development towards the implementation of the exciton-mediated superconductivity was made 

by Laussy et al. in Ref. [93], where the authors suggested that excitations in a BEC of exciton-

polaritons can play the role of mediators of Cooper pairing. Accounting for the possibility of the 

room-temperature polariton BEC this mechanism potentially can lead to the formation of a 

superconducting state at room temperatures as well.  

The proposed structure for the studies of exciton BEC-mediated superconductivity is shown in 

Figure 3.1. It consists of a pair of DBRs and two adjacent QWs placed at the maximum of the 

optical field confined in a MC. One QW contains a 2DEG which can be created by the doping. The 

neighbouring QW contains a BEC of exciton polaritons that can be pumped optically. It is 

essential, that in this model there is no difference if there is a thermal equilibrium or a driven-

dissipative BEC in the QW. 
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3.3.1 Interaction Hamiltonian  

 

Figure 3.2: Fermi surface average in 3D and 2D case. Vectors    and    are the initial vectors of 
the two electrons lying on the Fermi surface. The vector   is the exchange wave vector between 

the interacting electron pair. Figure taken from the Ref. [94]. 

As in the BCS approach, here it is assumed that only the electrons that stay on the Fermi surface 

can form Cooper pairs. The model microscopic Hamiltonian, describing the interactions in the 

layered system reads [94]: 

  ∑        ̂ 
  ̂ 

 

 ∑       ̂ 
  ̂ 

 

 ∑       ̂    
  ̂    

  ̂  
 ̂  

       

 ∑         ̂  

  ̂     ̂    
  ̂  

       

 ∑  ̂  

  ̂    
  ̂     ̂  

       

      (3.14)   

where         and       are the in-plane polariton and 2DEG dispersions,    and    are the 

electron-electron Coulomb interaction and the electron-exciton interaction respectively,   is the 

polariton-polariton interaction strength.  

The electron-electron Coulomb repulsion in this model is given by the conventional Yukawa 

potential, which accounts for the 2DEG screening: 

      
  

          
       (3.15) 

where   is the screening constant, A is the normalization area. 

The electron-polariton interaction in the Hamiltonian (3.14) is the most important part, because it 

essentially determines the shape of the interaction potential. The electron in a 2DEG QW interacts 

with the excitonic part of the polariton, so the interaction depends on the excitonic Hopfield 

coefficient. Taking into account only the direct interactions and eliminating the exchange 

interactions one can write the matrix element of electron-exciton interaction as: 
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   ∫  
           

                                                 (3.16) 

where the electron wave function is a plane wave and the exciton is assumed to be in the 1s-

state: 

        
 

√ 
            (3.17) 

            √
 

  

            

  
      

 
  
       (3.18) 

   and    are the exciton centre of mass and relative motion coordinates,    is the exciton Bohr 

radius,               are the electron and hole envelop wave functions in the direction normal 

to the QW plane. Taking into account the dipole moment of the exciton in the direction 

perpendicular to the QW plane, the electron-exciton matrix element can be expressed as: 

      
      

   
[

  

[           
 ]   

 
  

[           
 ]   

]

 
      

    
[

 

[           
 ]   

 
 

[           
 ]   

]     (3.19) 

where                  ,      are the effective electron and hole masses, L is the distance 

between the 2DEG and BEC QWs,   is the dipole moment [95]. One can see that the interaction 

can be enhanced by increasing the dipole moment of excitons, which in turn can be controlled by 

applying an external electric field. 

The polariton-polariton interaction stems from the interaction of the excitonic parts of the 

polaritons.  It is common to assume that this interaction does not depend on a wave vector and 

spin. The direct dipole-dipole interactions appear to be negligible in comparison to exchange 

interactions. Under these assumptions the polariton-polariton matrix element takes the form 

[96]: 

  
   

    
 

 
       (3.20) 

Knowing the matrix elements of the interactions one can continue with reducing the Hamiltonian 

(3.14) to the form of the BCS Hamiltonian (3.2), in order to leave only the electron-electron 

interaction for the electron pairs. The main difference between the present and the BCS effective 

interactions is that in the case of polariton mediation the Coulomb repulsion cannot be neglected.  

The Hamiltonian transformation starts from the mean field approach, applied to the polariton 

condensate i.e.  ̂   
  ̂  〈 ̂   

 〉 ̂   ̂   
 〈 ̂ 〉  and 〈 ̂ 〉  √       , where    is the polariton 
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density in the condensate. Then the diagonalisation of the Hamiltonian via the Bogoliubov 

transformation leads to the following form: 

                           (3.21) 

where the Coulomb interaction and the free electron energy stay unchanged and  

             ∑        ̂ 
  ̂ 

 

 ∑     ̂ 
  ̂   ( ̂  

   ̂ ) 

   

  (3.22) 

with      being the dispersion of elementary excitations of the condensate,            

   
            Schematically the exchanged wave vector is shown on Figure 3.2. In the case of 

polariton BEC      takes the form: 

        √( ̃            ) ̃           (3.23) 

with  ̃                        The renormalized electron-bogolon interaction reads: 

     √    
      √

         ̃      

               ̃      
    (3.24) 

Applying the Fröhlich transformation to the Hamiltonian (3.21) one can obtain the BCS-like form: 

     ∑   ̂ 
  ̂ 

 

 ∑      ̂  

  ̂     ̂    
  ̂  

       

     (3.25) 

where      is a sum of the Coulomb repulsion and  the bogolon-mediated attractive part: 

                             (3.26) 

where   

        
             

          
    

      (3.27) 

One can see that this interaction is proportional to the density of particles in the condensate so     

can be controlled by optical pumping. 

By averaging over the Fermi surface one can obtain the energy dependent interaction potential. 

This averaging physically means that the interaction is isotropic: 

      
  

  
∫                  

  

 

      (3.28) 

In order to define the critical temperature of superconducting phase transition, the interaction 

(3.28) is used in the gap-equation (3.12) . 
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3.3.2 Modelling results 

 

Figure 3.3: Schematic illustration of the GaAs MC design, proposed by T. Fink, S. Flt, and A. 
Imamoglu 

In this section the described approach is used to model the effect in the real layered structure 

based on GaAs/AlGaAs QWs. The schematic illustration of the structure is shown in Figure 3.3. In 

order to induce a stationary exciton dipole moment, the polariton condensate is expected to be 

subject to an external gate voltage in the growth direction as shown in Figure 3.3. The 

parameters, used in the calculations are shown in Appendix A. 

Figure 3.4 shows the characteristic values of the conduction and valence bands for different gate 

voltages. In order to calculate the dipole moment of the excitons in the condensate the 

normalized wave functions        and        were obtained for the electron and the hole, using 

the software nextnano, that implements finite difference methods to solve the k.p-Schrodinger-

Poisson equation.  The dipole moment is given by: 

    ∫            
            

          

In the right panel of the Figure 3.4 the exciton dipole moment dependence on the external gate is 

shown. One can see that the dipole moment reaches a maximum value of 13 nm before the 

external gate breaks the exciton. The total exciton density    is also affected by the external bias, 

due to the thermal dissociation of weakly bound excitons. Therefore, the external gate will play 

an important role, since it affects simultaneously the exciton population and the dipole moment. 
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Figure 3.4: Exciton QW. The valence(red) and conduction(blue) band are divided in 3 subregions 
separated by dashed vertical lines. Region I (R.I) corresponds to Al 0 . 18 Ga 0 . 82 As, R.II corresponds 

to GaAs and R.III is Al 0 . 85 Ga 0 . 15 As. The black lines show the electron          
  and 

hole         
 

 probability densities shifted to their respective eigenvalue for a)    = 0 and b)    = 

−75 k V /cm. Right panel: Exciton dipole dz as a function of the external gate voltage    

Figure 3.5 represents the results of interaction potential calculations and the solution of the gap 

equation. As one can see from the Eq.(3.27) the magnitude of the interaction potential increases 

linearly with   . This is illustrated by Figure 3.5(a), where it is clear that the higher    is, the 

higher is the magnitude and the broader is the attraction region. This effect is observed in a wide 

range of polariton density values. The only essential limitation to this mechanism of SC is the Mott 

transition from an exciton (exciton-polariton) condensate to an electron-hole plasma. On the 

contrary, Figure 3.5(b) shows that a high electron density leads to the decreasing magnitude of 

the negative part of the potential that corresponds to the attraction between electrons. The 

obtained result is important for designing microstructures exhibiting HTSC, as it demonstrates the 

advantage of fully semiconductor heterostructures over the metal-semiconductor 

heterostructures. 

Taking into account the complexity of the interaction the gap equation (3.12) with substituted 

interaction (3.27) is solved numerically. Here I solve it using the iteration method. The example of 

solution is shown in Figure 3.5(c) and (d). 

It is assumed that only the electrons on the Fermi surface form Cooper pairs. Here it means that 

only the point      has a physical meaning. If       , then Cooper pair can be formed. The 

critical temperature TC can be defined as the temperature below which      is not equal to zero. 
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Figure 3.5: The magnitude of effective interaction potential as a function of (a)density of 
polaritons    and (b) density of electrons in 2DEG QW.The color shows the magnitude in 

dimensionless units.Blue region corresponds to the effective attraction between electrons, red 
region represents the repulsion.The inset presents the profile of the potential at the particular 

concentration   . Graphs (c) and (d) show the solution of the gap-equation. (c): ∆(0) as a function 
of temperature. The critical temperature    in this case is equal to 33K. (d): solution of the Eq.(5) 

at   =   . The results are presented for the potential with    = 8 × 1011
cm

-2
  and  

   = 6 × 1011 cm
-2

. Figure taken from Ref. [76]. 

Figure 3.6 represents the critical temperature of the superconductivity phase transition as a 

function of the electron density in a 2DEG QW. The green line shows the temperature that 

corresponds to the Fermi-energy, the other lines represent the dependencies of     on the 

electron density for different values of exciton-polariton density. One can see that the increase of 

the electron density    leads to the reduction of the critical temperature. The coloured area 

shows the range of parameters where the theory is applicable. The limitations for the theory are 

the following: firstly, the thermal energy of electrons at the critical temperature must be lower 

than the Fermi energy. Otherwise, one cannot assume that electrons forming the Cooper pairs are 

located at the Fermi surface. Secondly, the absolute value of the gap-energy must be lower than 

the Fermi energy. In  

Figure 3.6 the area of validity of the discussed approach is limited by        line. The density 

         cm-2 is apparently beyond the Mott transition threshold, therefore high    

predicted by this line is unrealistic and is presented only for showing the tendency of    growth. 

On the other hand, the exciton-polariton density           cm-2 is achievable in realistic QW 

structures based on GaAs, so critical temperatures of the order of a few tens of Kelvin must be 
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achievable in semiconductor structures. The superconducting currents may be observed in the 

considered structures until the critical current density is achieved. 

 

    

Figure 3.6: The dependence of TC on the concentration of electrons in 2DEG QW, plotted for 
three different polariton concentrations N0. Dashed parts of the curves show the region where 

the theory is not applicable. Curves 1 and 2 represent the parameters of the condensate that are 
achievable in a realistic GaAs-based semiconductor structures. Figure taken from Ref. [76]. 

It can be conveniently derived from the superconducting gap      as in Ref. [97]: 

   
       

   
        (3.30) 

Figure 3.7(a) shows the critical current   ,  calculated as a function of the electronic density    

and temperature. One can see that the highest current density corresponds to the lowest 

concentrations and the lowest temperatures on the graph, that fully agrees with the qualitative 

analysis.  

Let us now discuss the behaviour of exciton-mediated superconductors in the presence of 

external magnetic fields. It is known that in bulk superconductors the Meissner effect exists until 

the critical magnetic field is achieved. This field is linked to the critical current. Namely, the critical 

field induces a surface current equal to   . Once the surface currents, providing a full screening of 

the magnetic field inside the superconductor, exceed the critical current, the superconductivity is 

suppressed. In Ref. [76] in 2D system the magnetic field direction perpendicular to the QW plane 

was considered. The superconducting layer is much thinner than the typical penetration length of 

the magnetic field into the superconductor, so the Meissner effect cannot be observed. The 

superconductivity is still suppressed by the magnetic field in this case, but the gap vanishes at the 

critical field    . In order to find     and the critical temperature the magnetic field in the gap 

equation is accounted for, using the condition             . The field reduces the density of 
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electronic states in the 2DEG layer which leads to the increase of the radius of the Fermi circle. A 

minor effect is the modification of the electron-exciton interaction potential due to the shrinkage 

of the exciton Bohr radius. 

 

Figure 3.7: (a) The dependence of the critical current    on the temperature and electron 
concentration. (b)Fermi wave vector (red curve) and critical temperature(blue curve) as a function 

of magnetic field B.    = 8 × 1011 cm 
-2.The Dingle broadening of Landau Levels Γ is taken to be 

0.3 meV, that corresponds to the cyclotron energy     at  =0.2T. Figure taken from Ref. [76]. 

To account for the magnetic field effect on   , the authors used the expression for the radii of the 

circles in the reciprocal space, that correspond to Landau levels in the quasi-classical 

approximation [98]: 

  
  (  

 

 
)
   

  
                (3.31) 

Electrons may occupy quantum states in the   vicinity of these circles, where   is the Dingle 

broadening of Landau levels dependent on the structural disorder and scattering processes. The 

area occupied by electrons in the reciprocal space at each circle at zero temperature may be 

found as: 

               
   

    
      (3.32) 

The Fermi wave-vector is expressed as      , where the index M can be found from the 

condition: 
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     (3.33) 

Figure 3.7(b) shows    and    as functions of magnetic field B for the fixed electron and polariton 

densities. All parameters are the same that were used for potential calculation for GaAs-structure. 

In this case           cm-2,           cm-2, the Dingle broadening of Landau levels is 

taken to be to 0.3 meV. At low magnetic fields given by the condition       it is assumed that 
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          , neglecting the weak oscillations of    due to the oscillating electron density of 

states [99]. 

3.4 Conclusions and perspectives 

The modelling of the results reported in the previous section showed that fully semiconductor 

structures, combining doped and undoped QWs provide higher critical temperatures than metal-

semiconductor structures. This can be explained by the fact that exciton mediated attraction 

weakens with the increase of the Fermi energy faster than the Coulomb repulsion does. In the 

absence of magnetic field this model yields the critical temperatures of the order of 50 K in 

realistic GaAs-based microcavities. Also, it is shown that magnetic fields may strongly affect the 

Fermi wave-vector   , which is why the critical temperature decrease and eventually vanishes at 

     4T. The increase of    accounts for the reduction of the effective area occupied by each 

electron in the real space due to the cyclotron motion. The used quasi-classical approximation is 

limited at strong quantizing magnetic fields. As long as the quantum Hall regime is not established 

and the number of filled Landau levels    , the quasi-classical approach is applicable. In our 

case, the number of occupied Landau levels is over 10 even at    4 T, which allows one to 

consider the quasi-classical result as a trustworthy approximation. Other effects which may 

influence     include the electron Zeeman splitting and edge current effects. GaAs/AlGaAs QWs 

are characterized by low Lande factors    0.01 depending on the actual heterostructure 

parameters. The electron Zeeman splitting in the considered range of magnetic fields   4T is of 

the order of a few  eV and it is negligible with respect to other characteristic energy scales. 

My contribution to this work includes reproduction of the results, obtained by Fabrice Laussy in 

Ref. [94] and calculating the critical temperature as a function of the electron and polariton 

densities. I also analysed the behaviour of the critical temperature as a function of magnetic field 

described in Subsection 3.3.2 and calculated the critical currents shown in Figure 3.7(a).  The 

results of this work are published in a peer reviewed journal (see Ref. [76]). 

 All these calculations are done in the framework of the BCS approximation, which actually means 

that the interaction between electrons in 2DEG layer and the condensate is weak enough, 

    . In particular, this implies that a small dipole moment   is induced. In addition, neither 

properties of the condensate, nor changes induced to the condensate wave function by the 2DEG 

are taken into account in the model.  If the condition of weak coupling is not satisfied, the Migdal-

Eliashberg theory should be preferential over our model in order to find the critical temperature.  

In Refs. [77, 78] the effect of the 2DEG on the condensate, which leads to the formation of the 

supersolid phase is discussed. The interplay between the condensate in the supersolid state and 
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the 2DEG can break superconductivity and lead to the formation of charge density wave state in 

the 2DEG layer. The latter effect in hybrid Bose-Fermi structures is still not fully theoretically 

described and might be quite promising for investigations. The problem of the exciton-mediated 

superconductivity in the limit of the strong coupling regime becomes particularly interesting 

considering the appearance of a new material platform based on TMDC monolayers, that exhibit 

unique excitonic properties in comparison to the conventional semiconductors (see Chapter 4 for 

the discussion).  

Finally, even within the BCS model there are still interesting problems left to be explored. In 

particular, in Ref. [92] the interplay between the exciton and phonon mediated superconductivity 

was discussed. It is shown that if the exciton mediation is considered simultaneously with the 

phonon one, the critical temperature is increased. In Ref. [100] it is shown that the presence of 

one mediation mechanism enhances the other, resulting in the resonant increase of the critical  

temperature. It would be interesting to find realistic parameters for the structure, where the BCS 

approach is applicable and construct the full picture of the critical temperature behaviour at 

different limits by finding the electron density in 2DEG layer, at which the phonon mediation 

becomes negligible in comparison to the exciton mediation.  

Currently there are some reports, showing that a light-induced superconducting state can be 

found in some cuprates and fullerenes [101, 102]. However, there is no evidence of light-induced 

superconductivity in hybrid Bose-Fermi structures. The observation of this phenomenon in such 

systems at any temperature would be a significant breakthrough and will open new frontiers in 

polaritonics. 
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Chapter 4: TMDC monolayers as novel materials for 

Polaritonics 

Inspired by the discovery of graphene, the field of two dimensional (2D) materials has rapidly 

extended to a larger variety of atomically thin materials. Within this field, the group of transition 

metal dichalcogenides (TMDCs) has attracted a great attention due to its unique physical 

properties. In this Chapter the recent experiments investigating the excitonic properties of TMDC 

monolayers are discussed and their theoretical description is presented. 

4.1 Introduction 

TMDC materials were well known since the early 60-s of the previous century [103]. These 

materials are characterized by strong covalent interatomic bonds in the plain of a single layer and 

weak Van der Waals forces between the neighboring atomic layers. This is the reason why they 

are used as dry lubricants in mechanical systems. The major interest in these materials arose in 

the last decade, after the discovery of graphene [104]. The subsequent research showed that the 

transition from 3D-crystals to 2D films dramatically changes the physical properties of the TMDC. 

Since 2010 2D films of TMDCs are subject to an intensive research. In this chapter we shall 

consider atomically thin TMDC. This means in particular, that the layer thickness is orders of 

magnitude thinner than the characteristic wavelength of light corresponding to the excitonic 

transitions involved. For TMDC monolayers the layer thickness is about several angstroms.  

Different TMDC monolayers demonstrate either metallic or semiconducting properties depending 

on the metallic element constituting the compound.  As discussed in review [105] compounds 

MoX2 and WX2 are semiconducting, while, for example, NbX2 and TaX2 are metallic. The main 

interest to semiconducting TMDC films arose when it was discovered that the band gap transition 

in the Γ-point, which is indirect for the bulk materials, changes to the direct one in a TMDC 

monolayer. The typical value for the energy gap lies in the optical range. For example, in MoS2 

   2 eV, that corresponds to the orange light. 

A TMDC monolayer is a material characterized with a chemical formula MX2, where M is a 

transition metal element and X is a chalcogen atom, typically these are S, Se and Te. In TMDC 

structures the layer of metallic atoms is gripped between two layers of chalcogens. Each metallic 

atom is connected to two chalcogens, so the elementary cell consists of three atoms. From the 

top the monolayer exhibits a graphene-like hexagonal structure, but with two different atoms in 

vertices. The example of such a structure is shown in Figure 4.1(a). 



 

70 

 

Figure 4.1: (a)Elementary cell and hexagonal structure of MoSe2, picture taken from Ref. [106]. (b) 
False-color optical microscopy image of the WSe2 flake, used in experiment discussed in Section 

4.4  (monolayer in red shaded area). Figure taken from Ref. [107]. 

All ways to synthesize these materials can be divided into 2 groups: top-down methods and 

bottom-up methods. In top down methods the 2D film is isolated from the bulk material by 

application of an external force; in bottom-up processes atoms are deposited onto a substrate by 

chemical or thermal reaction in order to form the 2D film.  

Among top-down methods the most widely used way to obtain the monolayers is the mechanical 

exfoliation, where the atomically thin films are peeled from the bulk crystal by micromechanical 

cleavage, using an adhesive tape. The advantage of this method is that it is a low-cost process that 

allows synthesizing high purity samples that can be used for fundamental research and for 

fabrication of devices. An exfoliated flake can be easily recognized by putting it on a substantially 

thick substrate that yields clear optical contrast between the wafer and the sample flake. The 

number of layers in the flake can be clearly recognized by the optical contrast. In 2012 the 

technique allowing for the laser reduction of the thickness of a TMDC sample down to a 

monolayer [108] has been established.  However, this method does not allow for controlling the 

flake size and it is thus not suitable for large-scale applications. Figure 4.1 b shows the monolayer 

of WSe2, obtained by exfoliation, that was used for the experiment in the Section 4.4.  

Other top-down methods to produce 2D TMDC, that are widely used, are liquid phase 

preparations [109], ultrasonic and chemical exfoliation. These methods can be used for obtaining 

large quantities of exfoliated films.   

Bottom-up techniques mainly include various chemical vapor deposition methods (CVD), that at 

first became widely used for graphene film synthesis and this method allowed for a large scale 

device fabrication and hydrothermal synthesis. Recently some CVD methods of the growth of 

TMDC monolayers have been reported ( [110], [111], [112]). 
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4.1.1 Electronic properties: 

For digital logic transistors, that are one of the most important applications of semiconductor 

materials, the most important properties are high conductivity, high charge carrier mobility, 

needed for fast operation, high ratio of on-state and off-state conductance and low off state 

conductance. The mobility of the carriers mostly depends on the Coulomb scattering that occurs 

at charged impurities in the monolayer, scattering on acoustic and optical phonons and on surface 

or interface phonons. All these mechanisms play a role at different temperatures. The room 

temperature mobility in semiconducting TMDC monolayers is limited to  410 cm2 V-1 s-1. 

Presently, the on/off current ratio reaches up to 108 in MoS2 monolayers. In Ref. [113] an example 

of the field effect transistor based on TMDC monolayer was demonstrated.  

The future directions of TMDC electronics lie in the development of high performance flexible 

logical components. Another potential application is based on the TMDC monolayer analogue of 

high-electron-mobility transistors, that are conventionally fabricated from planar junctions of 

semiconductors of different band gaps [105]. In these devices the semiconductor that is 

characterized by a smaller band gap is highly doped, while the other one is left undoped. If the 

two layers are brought into contact the electrons from the doped layer move into the undoped 

layer and are free to move with minimum scattering from dopants. TMDCs can be adapted to this 

device architecture because the different TMDCs have a range of band gaps and similar lattice 

constants. 

4.1.2 Excitonic properties:   

 

Figure 4.2: The band structures calculated from first-principles density functional theory (DFT) for 
bulk and monolayer WS2. The horizontal dashed lines indicate the Fermi level. The arrows indicate 

the fundamental bandgap (direct or indirect). The top of the valence band (blue) and bottom of 
the conduction band (green) are highlighted. Figure taken from the Ref. [114]. 
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The direct gap in semiconducting TMDC monolayers occurs due to the quantum confinement and 

the resulting change in the hybridization between   orbitals on chalcogenide atoms and d orbitals 

at the metal atoms [115]. Because of this transition from indirect to direct gap, the TMDC 

monolayers demonstrate a set of interesting optical properties. TMDC monolayers have band 

gaps in the optical range of frequencies (see Table 4-1). The simple Wannier–Mott model 

describing an exciton as a hydrogen-like atom yields the following value of the exciton binding 

energy     and the exciton Bohr radius      respectively:  

   
    

    
             

   

    
        (4.1) 

Such a high binding energy is achieved due to the heavy electron and hole masses that govern the 

reduced mass  .  Monolayer parameters taken for this calculation are tunable by a mechanical 

strain or an electric field, examples of the measured dielectric constants at a particular energy for 

different TMDC monolayers are given in the Table 4-1. Nevertheless, this does not change the fact 

that the exciton binding energy in these materials is orders of magnitude higher than in 

conventional semiconductors: for comparison, in GaAs the binding energy         eV, while 

the band gap     .5 eV.   

 WS2 WSe2 MoS2 MoSe2 

Eg  (eV) 2.05  Ref. [116] 1.66 Ref. [117] 1.88 Ref. [117] 1.58 Ref. [116] 

ε 16 18 21 26 

Table 4-1: Band gaps and real parts of the complex in-plane dielectric functions of monolayer 
MoS2, MoSe2, WS2, and WSe2, over photon energies of 1.5 eV. Imaginary part for this frequency is 

equal to zero. Proper measurements of dielectric functions are shown in Ref. [118] 

In semiconducting TMDC monolayers the conduction and valence band edges are situated in two 

unequal K-points of the hexagonal Brillouin zone. The two valleys K and K’ are separated in the 

momentum space.  Due to the heavy atomic masses there is a strong spin-orbit coupling. 

However, unlike graphene, TMDC monolayer crystals do not possess inversion symmetry.  As 

discussed in [119], this leads to a giant spin splitting of both valence and conduction bands. The 

splitting has opposite signs in the two valleys, which allows selective optical pumping of these 

valleys by controlling the polarization of light [120]. As a consequence, it is possible to create 

polarized LEDs in TMDC p-n junctions, where the electric field populates the carriers in the 

selected valley and the reversion of the field direction changes the polarization of the emitted 

light.   

Finally, the strong Coulomb interaction allows for observation of trions in doped semiconducting 

TMDC monolayers. In comparison to conventional semiconductors these charged quasi-particles, 
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combined either of two electrons and a hole or of two holes and an electron have high binding 

energies. They exhibit have valley selective optical properties and can be manipulated by electric 

fields. 

4.1.3 Applications of semiconducting TMDC monolayers 

Recently quite a few applications of 2D semiconducting TMDC materials were reported [121, 122, 

123]. In Ref. [124] the authors report an observation of sharp emission lines at the edges of WSe2, 

that reveal the effect of photon antibunching which is an attribute of single photon emitters

By integration of WS2 into a photonic microdisk cavity researchers from the Berkeley University 

demonstrated a monolayer excitonic laser [125]. The authors note that selective pumping in one 

set of two distinct valleys may lead to lasing in a confined valley that paves the way to the 

development of valley optoelectronics. 

The demonstration of Schottky-diode-like solar cell is shown in Ref. [126]. In this experiment the 

monolayer of photoactive WS2 was sandwiched between two graphene monolayers that played 

the role of electrodes. It was shown that the photocurrent strongly depends on illumination of the 

sample. Also, there are reports on the demonstration of ultrafast optical photodetectors [127]. 

The integration of 2D materials with external photonic structures allows enhancing light-matter 

interactions in monolayers. In particular, the use of optical cavities enables significant 

manipulation of optical density of states, which leads to the modification of emission and 

absorption properties. In Ref. [128] the authors integrate a graphene monolayer into a Fabry-

Perot MC. This results in the 26-fold enhancement of light absorption. The use of intrinsic 

polaritonic resonances is another approach for enhancing the light-matter interaction. Plasmon-

polaritons and phonon polaritons were demonstrated in graphene monolayer and in 2D 

hexagonal boron nitride. Exciton-polaritons were demonstrated in semiconducting TMDC 

monolayers. Recently, the physics of strong light–matter coupling between a single flake of 

MoS2 and a cavity resonance in a Fabry–Perot resonator structure was discussed [129]. However, 

the comparably broad PL emission of the monolayer used for these findings (60 meV [129]), which 

was grown by chemical vapour deposition, render the unambiguous identification of the full 

characteristic polariton dispersion relation, in particular, in non-resonant PL experiments, 

challenging. The polariton formation with a single monolayer of MoSe2 was subsequently 

demonstrated at cryogenic temperatures [130], enabled by its narrow linewidth (11 meV at 4 K 

and 35 meV at 300 K). Exfoliated WSe2 monolayers exhibit comparable linewidths and have a 

strongly enhanced luminescence yield under ambient conditions [131], suggesting their suitability 

for room-temperature polaritonics. As discussed in Ref. [132], TMDC materials are good 
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candidates to observe the room temperature Bose-Einstein condensate of exciton-polaritons, 

which is essential for technological applications. In the following sections a few experiments 

demonstrating exciton and polariton properties are reviewed. 

4.2 Excitons in MoSe2 monolayer 

In this section the excitonic properties of MoSe2 monolayers are considered in relation to three 

different photonic structures. Temperature dependent reflectivity measurements on a MoSe2 

monolayer are discussed in order to quantify the relevant temperature dependent parameters of 

the exciton resonance. In particular, the area of absorption resonance and the linewidth are 

studied in order to determine relative oscillator strength. In addition, these two parameters 

measured in the experiment are used to determine the strength of the exciton coupling with an 

optical mode in different optical structures, namely, open-cavities, Tamm-plasmon based devices 

and monolithic Bragg structures. All calculations are based on the coupled oscillator model and 

numerical transfer-matrix simulations. Finally, the polariton condensation phase diagram is 

calculated for MoSe2 assuming the thermal equilibrium Bose-Einstein condensation in a finite size 

system, to elucidate the possibility of observing the polariton condensation at ambient 

conditions. 

4.2.1 Experimental methods: 

MoSe2 monolayers were deposited onto 285 nm thermal oxide on Si wafers via conventional 

exfoliation from bulk MoSe2 crystals. The SiO2 thickness was chosen to be 285 nm to improve the 

monolayer contrast. Exfoliated MLs were characterized using Raman and P spectroscopy, and 

their thickness was determined via atomic force microscopy measurements. Micro-reflectivity 

spectra were taken under white-light illumination of a tungsten halogen lamp. The light source 

and setup cover a reliable spectral range from 1.5 to 2.2 eV. Following the convention of Refs. 

[133, 134] , the reflectance contrast ΔR/R was obtained according to ΔR/R = (RSample – 

RSubstrate)/RSubstrate whereas RSample is the reflectivity of the monolayer on the substrate and RSubstrate 

is the reflectivity of the uncovered substrate. The excitonic absorption manifests as Gaussian 

shaped signals in the reflectance contrast spectra. In order to deduce the energy, linewidth and 

amplitude of the absorption resonances, a background subtraction and fitting process was done. 

To ensure an appropriate background subtraction, transfer matrix calculations for the reflectivity 

background without excitonic absorption were carried out. Even though the acquired amplitude 

does not provide an absolute absorption value, the product of linewidth and amplitude is a 

quantity proportional to the exciton oscillator strength [120]. 



 

75 

4.2.2 Theory 

In order to calculate the Rabi splitting evolution with temperature   (T), two approaches were 

used. Firstly, the following equation, obtained with the coupled oscillator approach was used to 

account for the temperature-induced quenching of the Rabi-splitting via broadening of the 

excitonic resonance [135]:  

       √      (
          

 
)

 

     (4.2) 

Here,      is the coupling strength,        is the exciton linewidth and     is the cavity 

linewidth.      is a function of the oscillator strength       the effective cavity length Leff and the 

effective number of individual monolayers in the cavity neff: 

       √
         

    
       (4.3) 

The initial values to carry on the simulation T = 4K for V= 36 meV  and     =1.6 meV were taken 

from reference [130]. Then,       was calculated for higher temperatures using the measured 

relative values for      and         In addition, the visibility parameter   was calculated 

according to: 

      
    

             
       (4.4) 

The value of      above 0.25 indicates that the strong coupling regime can be distinctively 

observed in transmission, reflectivity or PL spectra [136]. 

Secondly, the transfer matrix calculations were conducted for the reflectivity of a MoSe2 

monolayer, hypothetically integrated into the open cavity design described in Ref. [130]. The 

dielectric function      of the MoSe2 monolayer was modelled as a Lorentz oscillator: 

          
    

  
                 

     (4.5) 

Here    is the background dielectric function and     is the exciton energy.    = 26 was taken 

from Ref. [137] and the initial value for      was adjusted to 0.4 to match the splitting calculated 

according to Eq.(4.2). The linewidth and the oscillator strength entering the expression for      

were adjusted for each temperature value according to the reflectivity results. The complex 

refractive index  ̃         was derived from  ̃    √     and used for the transfer matrix 

calculations. Finally, the reflectivity spectrum for each temperature is simulated with the 
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respective refractive indices assuming a monolayer thickness of 0.65 nm. The splitting is deduced 

from the spectra and correlated with temperature. 

 

Figure 4.3: Schematic illustration of the open cavity design, a fully monolithic cavity and a Tamm 
plasmon structure. The cavity length can be adjusted in the open cavity approach by changing the 

vertical position of the top mirror indicated by the black arrows. Figure taken from Ref. [138]. 

In order to compare the open cavity design with other photonic architectures, the same dielectric 

functions were taken for additional transfer matrix calculations. All three considered photonic 

architectures are illustrated in Figure 4.3. The monolithic cavity mirrors consist each of eight 

TiO2/SiO2 layer pairs with  
 

  
  thickness. The MoSe2 monolayer is embedded between two 

 

  
  SiO2 

layers, with thicknesses  adjusted to tune the cavity mode in resonance with the exciton energy. 

The structure design that supports Tamm-plasmon modes consists of the identical bottom 

dielectric mirror, followed by a SiO2/MoSe2 ML/SiO2 core and a 50 nm layer of gold on the top. 

Here again, the SiO2 layer thicknesses were adjusted to ensure spectral resonance conditions. The 

resulting splitting was used to calculate the coupling strength V at 4K according to Eq.(4.2). Taking 

     into consideration, the visibility parameter evolutions      for the alternative cavity designs 

were calculated as well. 

In order to check if the strong coupling regime could also lead to the polariton Bose-Einstein 

condensation, the approach discussed in Ref. [4] and in Section 1.2.1 was used to calculate a 

polariton phase diagram. The phase diagram provides an estimate of the critical polariton density 

   required for the polariton condensation at a given temperature   .  

4.2.3 Experimental Results and discussion: 

The micro-reflectivity spectra and their temperature evolution are the experimental basis for the 

following parameter deduction and calculations. Figure 4.4a presents a typical reflectance 

contrast spectrum of a MoSe2 monolayer compared with its derivative for better feature 

identification. The peaks labelled A and B corresponding to excitons from the two spin-orbit split 

transitions at the K point of exciton are discussed. 
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The dependence of the A exciton feature on temperature is shown in Figure 4.4b. With increasing 

temperature, the distinct absorption at 1.653 eV shifts to lower energies, quenches in intensity 

and broadens. The evolution of energy, linewidth and amplitude with temperature are presented 

in Figure 4.5. The exciton energy decreases due to the thermal band gap narrowing, which is in 

good agreement with the PL temperature dependence [106], and it can be well fitted by the 

Varshni formula                  , where    is the energy offset for T = 0 K and   and   

are fitting parameters [139]. The fitting yields          eV,              eV/K and   = 

137.7 K, which is in a good agreement with previous results [140].  

 

Figure 4.4: Reflectivity spectra of a MoSe2 monolayer: (a) reflection contrast spectrum (blue) and 
its derivative (yellow). (b) reflection contrast spectra around the A exciton at various temperature 

between 5K and 300K. Figure taken from Ref. [138]. 

The linewidth exhibits a steady increase as a function of temperature, typical for the phonon-

induced broadening mechanism. The initial linewidth at 4 K (19 meV) is broader than the one 

previously observed in PL (12 meV), whereas the linewidth at room temperature (33 meV) is in a 

good agreement with literature PL measurements (34 meV) [130]. However, as the linewidth 

depends on the substrate and charging condition of the monolayer, different observations are not 

necessarily in contradiction. Furthermore, the absorption linewidths were compared with PL 

linewidths that were taken from a smaller illumination area. Averaging over the larger 

illumination area of about 10 µm, potentially containing more defects or flake edges, can lead to 

absorption linewidth broadening. The linewidth broadening was fitted by 

                             

 

 
   
     

    (4.6) 

A 

B 
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Figure 4.5: Temperature evolution of the deduced parameters energy (a), linewidth (b) and 
amplitude (c) and the normalized product of linewidth and amplitude (d), which were used in 

subsequent calculations. Figure taken from Ref. [138]. 

Here       is the exciton linewidth at 0 K,        is the linear broadening constant attributed to 

the acoustic phonon dephasing [141],        is the optical phonon broadening constant and     

is the phonon energy of the longitudinal optical phonon.      was fixed at 30 meV44, which 

resulted in fitting parameters of               ,                  

 
 and        

       .  

The amplitude drops almost linearly by 60% from 4K to 300K. This decrease is a natural 

consequence of the linewidth broadening. However, the product of amplitude and linewidth, a 

measure for the integrated absorption area, drops also steadily by 30% in the same temperature 

range, which suggests a temperature-induced decrease of the exciton oscillator strength. A 

comparable decrease in the oscillator strength with temperature has been observed in MoS2 

[120]. 

The oscillator strength of the exciton is determined by both the optical matrix element and the 

available bright exciton states. While the optical matrix element is not affected by the 

temperature, the available exciton states inside the light cone are functions of temperature.  

Therefore, the overall reduction of oscillator strength with temperature naturally follows from the 

reduced fraction of bright excitons at higher temperatures [142]. The remaining fraction occupies 
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optically dark states. Excitons absorbed inside the light cone may thermalize and redistribute in 

the reciprocal space before being reemitted and thus contributing to the optical reflectivity. The 

temperature dependence of this effect stems from the temperature-induced decrease of the 

phonon scattering times in MoSe2 monolayers [143]. The radiative decay rate   , which is 

proportional to the oscillator strength, enters the expression for the integrated absorbtion 

  
     

    
 [135] and must be averaged over the exciton ensemble. Assuming the Boltzmann 

distribution of excitons, the radiative decay rate is estimated as               [  

           ] , where    is the characteristic temperature dependent on the exciton frequency 

and effective mass [144]. The integrated absorption of light by excitons is linear in the averaged 

radiative decay rate provided that the radiative broadening is small compared to the non-

radiative broadening. The last assumption is valid at temperatures above 100K [143]. Thus, the 

relative oscillator strength in Figure 4.5(d) can be fitted by the function                 , 

with        . This is because the quantity plotted in Figure 4.5(d) is proportional to the 

radiative decay rate. Note that this temperature is significantly higher in MoSe2 than those typical 

for large radii Wannier-Mott excitons in conventional semiconductor QWs [142]. 

The experimentally measured temperature evolution of the exciton linewidth and oscillator 

strength was used as an input for the Rabi splitting and the visibility calculations described in the 

theory section. The results of both these calculations, coupled oscillator approach (Eq.(4.2)) and 

the numerical transfer matrix simulation, are presented in Figure 4.6. The first approach results in 

low-temperature Rabi splitting value of 17.5 meV. This is in a good agreement with the 

experimentally acquired Rabi splitting of 20 meV from Ref. [130], which is not surprising as the 

input coupling strength was deduced from the experiment. The remaining difference is attributed 

to the broader exciton linewidth measured in our experiment and the negligence of the lateral 

mode confinement used in the reference cavity [130]. In the transfer matrix simulation, the 

oscillator strength (Eq. (4.3)) was adjusted in a way that the simulation result matches 17.5 meV. 

This procedure provides a realistic estimate for the exciton oscillator strength in monolayer 

MoSe2, a requirement for the transfer matrix simulations. The Rabi splitting is consistent for both 

approaches up to 200 K.  However, at higher temperatures the results obtained with the two 

methods deviate and the transfer matrix simulation yields the oscillator strength, which decreases 

more rapidly. This slight deviation stems from the simplifications in the coupled oscillator 

approach. The transfer matrix approach is more reliable, thus it is only used in the following 

calculations. 
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Figure 4.6: The temperature evolution of the visibility (a) and the Rabi splitting (b) for the open 
cavitiy design, the monolithic cavity and the Tamm plasmon design.  a) The visibility evolution of a 

low Q monolithic cavity simulation is added (dark blue diamonds). The visibility limit of 0.25 is 
indicated by the green, dashed line. b)In addition, the analytic calculation for the open cavity 

design is presented (red squares). Figure taken from Ref. [138]. 

Yet, it should be noted that the calculated reflectivity spectrum for 250K does not exhibit two 

clearly distinguishable peaks anymore and the splitting can only be determined by fitting two 

Gaussian peaks to a broad reflectivity feature. For 300K no splitting can be determined from the 

simulated spectrum. Both observations are confirmed by the visibility parameter, which drops 

below 0.25. for temperatures above 250K. At lower temperatures the visibility remains well above 

0.25, indicating that the system remains in the strong coupling regime.  

The Rabi splitting for the monolithic cavity and for the Tamm plasmon sample is significantly 

higher (29.3 meV and 33.5 meV at 4K, respectively) and follows a similar decrease as for the open 

cavity (down to 19.9 meV and 25.0 meV at 300 K, respectively). The significant difference in 

monolithic and Tam cavities compared to the open cavity design is explained by a stronger mode 

confinement equivalent to a shorter effective cavity length (Eq. (4.3)). Although the monolithic 

cavity exhibits a lower Rabi splitting than the Tamm plasmon sample, the visibilities behave 

reversely (0.76 and 0.60 at 4 K, respectively) due to the narrower monolithic cavity linewidth of 

0.2 meV compared to 8.4 meV for the Tamm plasmon structure. Nevertheless, the visibility 

evolutions of the Tamm structure and the monolithic cavity converge towards higher 

temperatures (0.34 and 0.37 at 300 K, respectively). In the Tamm plasmon design, the decrease in 

the oscillator strength does not affect the visibility to the same degree since it is strongly 

dependent on the cavity linewidth. Its broad linewidth can be also understood as the result of the 

comparatively low quality factor   of the Tamm structure (    = 
   

   
     being the photonic 

mode energy), which is about 200 for the calculated structure. In contrast, the Q factors for open 

and monolithic cavity are 3600 (2050 [130]) and 8250, respectively. Despite of the large difference 

in Q-factor between the Tamm structure and the monolithic cavity, the visibility remains at a 

comparable level, because the cavity linewidth contribution is small for both structures compared 

a b 
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to the higher excitonic linewidth contribution. In particular, at high temperatures, the latter 

contributes even more strongly, which reduces the difference between the   factors even 

further. In order to illustrate the influence of the   factor more clearly, the visibility of the 

monolithic cavity with a lower   factor of 1300 is additionally simulated. This decrease stems 

from the reduction of the number of mirror pairs from ten to six. The resulting visibility evolution, 

plotted in Figure 4.6(a), shows a clear but small reduction in visibility. Overall, the calculated 

visibilities of the Tamm structure and the monolithic cavities reach comparable levels at room 

temperature, indicating that the mode volume is the more relevant parameter in this regime. This 

visibility level should be high enough to observe the strong coupling at room temperature. 

Nevertheless, the fabrication of both designs ensuring spectral resonance is more challenging 

than for the open cavity. The challenge lies in the overgrowth of the monolayer since 

conventional deposition methods such as sputtering can damage the monolayer. Nevertheless, 

this task appears achievable since TMDC monolayers have been successfully overgrown by 

dielectrics [145]. An additional step towards room temperature strong coupling could be the use 

of multiple, but distinctly separated monolayers as suggested by Dufferwiel et al., which increases 

the splitting by a factor of √    . 

 

Figure 4.7: The phase diagram for a various numbers of MoSe2 monolayers: Each solid line 
separates the Bose-gas regime from polariton condensation regime according to Eq.(1.53). The 

upper density limit for polariton condensation is given by the Mott density (dashed lines for one 
(black) and ten monolayers (blue), respectively). The upper temperature limit depends on the 

strong coupling requirements (      ), indicated by the shaded area above 400 K (estimated 
temperature limit for one monolayer). Figure taken from Ref. [138]. 

The calculated phase diagram is presented in Figure 4.7. It shows the critical polariton density for 

different numbers of MoSe2 monolayers in the system. At T= 1K the density is as low as 3.5 103 

cm-2, independent of the ML number. However, at room temperature, it is possible to decrease 
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the critical density from 1.4 1012 cm-2 to 1.8 1011 cm-2 by varying from one to ten monolayers 

due to the increased Rabi splitting, which results in a reduction of the effective polariton mass. 

Simultaneously, the upper limit (Mott density) rises significantly from 8 1012 cm-2 for one ML and 

up to 8 1013 cm-2 for ten MLs. The comparably high Mott density is due to the small Bohr radius 

of 2 nm in our system. These calculations assume the following parameters:             

        ,                 . Rabi splitting for 1 monolayer is taken to be 20 meV. Even 

more importantly, the upper temperature limit is not defined by the exciton binding energy as for 

excitons in GaAs (on the order of 100 K), but only by the strong coupling conditions (the 

temperature for thermal exciton breaking can be expected to be above the decomposition 

temperature of the monolayer). It is shown that the strong coupling threshold depends on the 

thermal broadening of the exciton linewidth, the thermal decrease of the oscillator strength and 

the cavity design. Here a visibility value of 0.25 was used as an indicator for the strong coupling 

threshold, which yields 250 K for the open cavity design and 400 K (linear extrapolation of the 

visibility evolution) for both the monolithic cavity and the Tamm plasmon design. For multiple 

monolayers integrated into any of the structures this limit will further increase as indicated by the 

shaded area in Figure 4.7. As a result, the phase field for polariton condensation enlarges 

significantly. Most importantly, the critical polariton condensation density for one monolayer is 

only 9 1011 cm-2 at 300 K, which is well below the Mott density. For multiple monolayers the 

range between critical condensation density and Mott density increases even further. From these 

considerations, it seems feasible that polariton condensation may be observed at room 

temperature. It is essential to point out that additional parameters such as exciton lifetime, 

exciton quantum efficiency, exciton-phonon scattering rate will play a crucial role in achieving a 

critical polariton density. 

4.3 The interplay between excitons and trions in a monolayer of 

MoSe2 

4.3.1 Experimental observations 

Trions are charged quasi-particles, combined of two electrons and a hole (X-) or two holes and an 

electron (X+). At first these complexes were discussed theoretically in [146, 147] and observed 

experimentally in CdTe QWs. In conventional semiconductors trion binding energy that is defined 

as the energy, required to split the trion into a neutral exciton and an unbound electron or hole, 

reaches the value of several meV, while the exciton binding energy is several tens of meV. Recent 

experiments in TMDC monolayers showed that not only exciton binding energy increases 

significantly, but trion binding energy rises up to 30 meV. 
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In this section the influence of free carriers in the monolayer on exciton and trion binding 

energies is discussed. In the experiment monolayers of MoSe2 were deposited onto 285 nm 

thermal oxide on Si wafers via conventional exfoliation from bulk crystals. PL spectra were 

recorded at 5 K, via non-resonant monolayer excitation. The excitation laser is utilized to create 

excitons and trions in the monolayer as well as to activate additional carriers in the 

heterostructure. The amount of photodoping was increased at cryogenic temperatures, using 

higher excitation powers and longer optical illumination times, which is a realistic configuration 

for polariton experiments in the non-linear regime. The changes in the trion dissociation energy of 

the order of several meV were observed, which reflects that both the exciton and the trion 

binding energies in MoSe2 sensibly depend on the excess carrier density in the monolayer. 

 

Figure 4.8: (a) Power series of PL spectra normalized to the excitonic resonance. (b) Ratio of 
integrated peak intensities as a function of time and excitation power. 

 Figure taken from [148]. 

Figure 4.8(a) shows the power dependent PL emission of the exciton and trion complexes. Each 

spectrum is normalised to the excitonic signal. One can see that the trion dominance increases 

with the excitation power and the non-resonant pump laser induces additional electrons in the 

sample, which favours the formation of trionic complexes.  Another way to generate free carriers 

in the monolayer, which is more controllable, is the adjusting of illumination time of the 

monolayer. This method is rather effective, because the photoexcitation process of additional 

free carriers takes place on a very slow timescale. Figure 4.8(b) shows the ratio of integrated peak 

intensities as a function of time and excitation power. At the smallest excitation powers the 

exciton PL signal is still dominating the spectrum. However, even with constant pump power, the 

X-/X fraction is already monotonously increasing with time, exhibiting a saturation behaviour. This 

indicates a self-limiting activation process, typical for the successive activation of a finite number 

of defect states. An increase in the pump power then leads to a further increase of this ratio, 

which serves as a proportional measure for the number of electrons per exciton in the system. 
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The evolution of the energies of both the exciton and the trion as a function of the exposure time 

are subject to a step-wise increase of the pump power shown in Figure 4.10(a). One can see that 

as the excitation power is increased, both the X and the X- signal experience a similar red-shift, 

resulting from the power-induced renormalization of the band gap of the monolayer. The  

contribution of the microscopic processes of this renormalization are not fully determined 

(dielectric screening vs. sample heating), however are of a minor importance in this study, since  

the energy scale is approximately two orders of magnitude smaller than the correlation energies 

of the excitonic complexes. Another effect, which can be directly observed in Figure 4.10(a) is the 

shift of both the X and X- signal as the pump laser intensity is kept at the same level. Here, the 

behaviour of both resonances is fundamentally different: as the pump intensity is kept constant 

and charges successively accumulate in the monolayer, the X feature is subject to a continuous 

blueshift in energy, whereas the X- feature is redshifted by a similar magnitude (hundreds of µeV 

up to one meV). The blueshift of the exciton in the presence of an accumulating electron gas is a 

signature of a renormalization of the exciton binding energy. In the presence of additional 

screening, the Coulomb coupling between electrons and holes is reduced and the excitonic 

emission energy eventually approaches the free carrier band gap. 

Due to the pump powers, yielding exciton densities well below the Mott density in MoSe2 

monolayers (around 1013-1014
 carriers /cm2, as was defined in Section 4.2) the shift of the exciton 

in the experiment is significantly smaller than the exciton binding energy 

The redshift of the energy of the trion, on the other hand, is a strong indication that the trion 

binding energy is enhanced by the electron reservoir, which over-compensates the screening 

induced blueshift of the exciton. In order to directly correlate the trion dissociation energy with 

the approximate number of excess carriers per exciton, the energy (      ) is plotted as a 

function of the X-/X ratio in Figure 4.10(b). One can see that trion dissociation energy appears to 

be linear function of the intensity ratio between X- and X, and thus of the number of electrons in 

the monolayer. 

4.3.2 Theory 

A qualitative explanation of the increase of the trion binding energy in QWs was given in Ref. 

[149] in relation to the experiments on the absorption of light in a CdTe QW, containing a 2DEG. 

The separation between trion and exciton peaks turned out to be linear in   :          
   

    with    . Here   
   is the trion binding energy, and    is the electron Fermi energy 

calculated from the bottom of the conduction band. An exciton is considered as an ionized trion. 

The energy that is needed to remove one electron from the trion is equal to   
   in the limit 
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   0 and   
      at finite electron densities, due to the fact that one electron should be 

moved up in energy to the Fermi level while all lower conduction band states are occupied. Thus, 

this effect stems from the combined effect of the Pauli exclusion principle and many-body 

interactions. Investigations done in Refs. [120, 150] confirm this linear dependence of the trion 

binding energy in TMDC monolayers with small differences in estimations of coefficient  . In this 

discussion, as in the experiment described above, it is assumed that the trion is negatively 

charged due to the residual n-type doping commonly observed in TMDC monolayers. The model 

[149] fails to describe the behaviour of the exciton-trion energy splitting in the limit of high 

concentrations of free electrons, where it predicts unphysical negative values. In order to 

reproduce the experimental data taken in a wide range of free electron densities one needs to go 

beyond the oversimplified model [149] and calculate separately the exciton and trion binding 

energies, see e.g. [120]. Here the variational approach is used for the calculation of exciton and 

trion states that has an advantage of simplicity and still captures the behaviour of the system both 

at low and high electronic densities. 

4.3.2.1 The variational method 

The variational approach is based on the minimization of a solution of Schrödinger equation with 

a trial wave-function that depends on a parameter.  

The Schrödinger equation for the wave function      of the electron-hole relative motion in the 

plane of the layer in cylindrical coordinates reads: 

[
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]          (4.7) 

where   
    

     
 is the reduced mass of electron-hole relative motion,        is the zeroth order 

Bessel function,    is the screened Coulomb potential. 

Here the free carriers are described as a degenerate Fermi gas at zero temperature. The exclusion 

effect associated with the phase space filling is taken into account. All electronic states below the 

Fermi level are assumed to be occupied, which is why they cannot contribute to the exciton 

state. Taking into account this exclusion effect the trial function of the exciton can be written in 

the form [151]: 
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where        is the Heaviside function,    √     ,     is the density of free carriers, 

  is a variational parameter, inversely proportional to squared exciton Bohr radius.  Formula (4.8) 

is the Hankel transform analogous to the Fourier transform in Cartesian coordinates.   can be 

found from the normalization condition: 

  ∫            
 

 

      (4.10) 

In the limiting case of       the introduced wave function reduces to the hydrogen-like wave 

function: 
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)       (4.11) 

where   is the exciton Bohr radius. Varying the parameter A the exciton binding energy can be 

found as the minimum value of    , where: 
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          (4.12) 

4.3.2.2 Trion wave function 

For the trion case the problem can be simplified: one can assume that the two electrons (We 

consider a negatively charged trion X-  to be specific, while the X+ case can be considered without 

loss of generality) are in the singlet state so that they are characterized by orthogonal spin 

functions and identical spatial wave functions. The trion binding energy may be found as the 

solution of the Coulomb problem with a hole of charge      and mass    and an electron pair of 

charge     and mass    . In this case the trion wave function can be expressed as a sum of two 

parts, corresponding to the electrons composed by the states that lie below and above the Fermi 

level respectively: 

     ∫                
 

 

     (4.13) 

       
 

      
 
 

         
 

      
 
 

           (4.14) 

where A and D are variational parameters and B, C can be found from normalization conditions. 

Here the exclusion principle is taken into account for both electrons: the photoexcited electron 

can only be formed by free states, while the resident electron can only be taken from the states 
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below the Fermi level. The good estimate for the trion binding energy is found in a similar 

manner as in Ref. [152] by minimization over both variational parameters A and D.  

4.3.2.3 Screened Coulomb Interaction in thin films: 

The standard screened interaction potential in 2D case reads:  

      
 

       
        (4.15) 

 here e is the electric charge,   is the dielectric constant of the medium,    is the screening 

constant, that is defined as    
      

 

    , with    being the valley degeneracy factor and    

being the electron mass.   

However, two effects are not taken into account: firstly this expression yields an unphysical result 

that the screening is independent on the density of free carriers, which means that the electrons 

at low densities screen as effectively as at high density.  Another effect that is not taken into 

account is the screening dependence on the thickness of the layer. 

The screening dependence on the thickness of the layer was discussed in Ref. [153, 154]. It was 

shown that with the decrease of the thickness of a film, placed in between two media with 

dielectric constants, that are much lower that the dielectric constant of the film, the Coulomb 

interaction between holes and electrons significantly increases. In the case where the distance 

between two charges   is longer than the thickness of the layer, the interaction potential takes 

the form: 
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)]     (4.16) 

where ε is the dielectric constant of the monolayer,   1 and  2 are the dielectric constants of 

surrounding media, e.g. substrate and vacuum,   is the thickness of the layer. This potential takes 

into account the strong contrast in dielectric constants and is valid in the case where   is much 

shorter than the exciton Bohr radius and the dielectric constants of the surrounding media are 

much lower than the dielectric constant of the monolayer. 

In the more general case, the interaction potential can be found by solving the Poisson equation 

in the reciprocal space, where the interaction potential takes the form: 

      
 

     
        (4.17) 
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where                is the dielectric function that is dependent on the wave vector in the 

2D case,     - is polarizability of 2D layer. The Hankel transform of this potential results in the 

following interaction in the direct space: 

       
  

    
[  (
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)]      (4.18) 

where the parameter    =       has the dimensionality of length and depends on the 

polarizability of the system,  0 and  0 are Struve and Neumann functions, respectively.  

The asymptotic properties of Struve and Bessel functions allow representation of the interaction 

(4.18) in the form:   
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where     0.577 is the Euler constant.  The interaction that takes into account both asymptotic 

forms reads: 
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  ]     (4.21) 

 

In the limit      the effective potential acts as an unscreened 3D Coulomb potential, while in 

the opposite limit      it weakens logarithmically. 

Also, one can see that the logarithmic divergence in the expression (4.21) weakens with the 

increase of polarizability, which means that the screening is more effective for highly polarisable 

systems.  

In order to take into account the presence of free carriers in the system, one should modify the 

dielectric function     . For simplicity it is instructive to discuss its modification in the reciprocal 

space. In general, in the system, where the layer with electrons is sandwiched between an 

insulator and a semiconductor, the polarizability     becomes intrinsically dependent on the 

wave vector [155] and the dielectric function becomes nonlocal and takes the form of a dielectric 

tensor [156, 157].  This modification affects the parameter    in the formula (4.18) and the total 

expression for the interaction becomes relatively cumbersome.  However, in the case where the 

doped semiconductor is placed into homogeneous media with homogeneous dielectric constant, 

the expression for the dielectric tensor can be simplified. To be explicit the dielectric function can 

be taken in the form [155]: 
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It can be seen, that for small wave vectors the screening remains the same, while at   >2   the 

screening effect falls off much more intensively. As    tends to zero with the density of free 

carriers, the screening affects smaller range of wave vectors  . The modified screened Coulomb 

interaction    in the reciprocal space, that takes this modification into account, reads: 
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))            √         

  
    (4.23) 

Here    is the mean dielectric constant that takes into account the substrate. In this expression 

the direct layer thickness dependence is disregarded.  

 

Figure 4.9: The comparison of interaction energies given in the form (4.16) (blue curve )and 
Hankel transform of formula (4.23) (red curve). The free carrier density, used in the calculation is 

n2D=10 cm. The inset demonstrates the exciton energy   (4.12)  calculated by variational 
approach, where the minimum represents exciton binding energy. The corresponding coordinate 

is exciton Bohr radius. 

Figure 4.9 shows  the screened Coulomb interaction in the form of the potential (4.18), that takes 

into account only the thickness of a monolayer (red curve), the Hankel transformation of 

interaction (4.23) (blue curve), and corresponding exciton energies, calculated by the variational 

approach. As discussed above, to define the interaction, that accounts for both effects 

simultaneously, one should separately calculate the polarizability and use the formula (4.18), or, 

alternatively, use    as a fitting parameter. One can see from the inset of Figure 4.9, that in the 

absence of free carriers the variational approach yields the value of exciton binding energy    = 
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350 meV, that is slightly below the generally accepted value of   400 meV. This discrepancy may 

stem from the drawbacks of the computational technique. 

 

Figure 4.10: (a) Evolution of excition and trion energy with illumination time and excitation power. 
(b) Trion dissociation energy as a function of X-/X ratio. (c) Calculated binding energy of X and X- 

modelled with the variational approach. EB(X) is he exciton binding energy, EB(X-) is the trion peak 
energy calculated from the bottom of conduction band. The difference  E is the trion binding 

energy. Figure taken from [148]. 
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4.3.3 Experimental results and discussion 

The described method was used to estimate the exciton and trion binding energies in a MoSe2 

monolayer. The following parameters were used in the calculations:     0.7  , 

   0.5  ,   11, that averages monolayer dielectric constant and the substrate dielectric 

constant. In the experiment it is essential to take the presence of free carriers into account, so the 

interaction (4.23) is used in calculations. The results for exciton and trion binding energies at 

different electron densities calculated with the described model are shown in Figure 4.10(c). Trion 

binding energy changes linearly with the density. It can be seen that the binding energies in the 

presence of free carriers calculated with this approach are somewhat lower than the 

experimental values for MoSe2. However, the model qualitatively agrees with experiment.  

4.3.4 Perspectives 

The described model of variational approach that is used to calculate the trion binding energy has 

its advantages, because it takes into account the phase space filling. However, in general the 

discussed model is oversimplified, because it is built on the assumption that for a singlet spin 

configuration two electrons in a trion can share the same coordinate-dependent wave-function 

like in He atoms, or double charged quantum dots. The major drawback of the model is that the 

effective exciton approach does not take into account correlations between two electrons in the 

trion, as well as Coulomb repulsion.   

Commonly, the full trion Hamiltonian in real space reads: 
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                                         (4.24) 

where       
    ,       

    ,   
  is a single hole effective mass [158]. In Refs. [159, 160, 

161] the authors calculate the excitonic spectrum and trion binding energy within this model with 

the interaction potential (4.18). However, the screening is introduced only as a free parameter  

        , where     is the polarizability of the system. In general, the screening in TMDC 

monolayers is dynamical and there is no simple way to take it into account.  

So finally there is a room for further development of the theory, for example it will be instructive 

to provide the comparison between two models and to develop the approach, which allows for 

correct estimation of screening effects. 

The possible experimental applications would be the development of lasers based on trion or 

trion-polariton modes. For example, under applied magnetic field it is possible to create the 
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equidistant ladder of energy levels for trion-polaritons, which, in principle, can be used for the 

creation of the THz cascade laser.   

4.4 Polaritons in WSe2 monolayer 

In this section the experiment on observation of plasmon-polaritons in a Tamm-plasmon structure 

is discussed. In order to demonstrate the strong coupling regime at ambient conditions the WSe2 

monolayer was embedded in a compact Tamm-plasmon photonic microstructure, composed of a 

dielectric distributed Bragg reflector (DBR), a polymer layer and a thin gold cap. In this experiment 

the characteristic energy–momentum dispersion relations of the upper and the lower polariton 

branch at ambient conditions are mapped out by angle-resolved PL and reflection measurements. 

This is the first observation of the strong coupling regime in WSe2 monolayer. 

 

Figure 4.11:  Tamm-monolayer device. (a) Schematic illustration of the Tamm-plasmon device with 
the embedded WSe2 monolayer. The monolayer is capped with a polymer, whose thickness 

primarily determines the frequency of the device’s optical resonance. (b) PL spectrum of the WSe2 
monolayer before capping, recorded under ambient conditions. The dominant emission is 

identified to stem from the A-valley exciton. Inset: false-colour optical microscopy image of the 
used WSe2 flake (monolayer in red shaded area; scale bar, 20 mm). (c) Calculation of the 

electromagnetic field intensity in the heterostructure and the optical resonance (inset). The 
Tamm-plasmon features a strongly enhanced field maximum close to the surface of the structure, 

which coincides with the vertical position of the monolayer in the device. 
Figure taken from Ref. [107].  

Figure 4.11 shows a sketch of the device, employed in the experiment – (a), the characteristic 

profile from the A-valley exciton with a linewidth of 37.5 meV – (b),  and the vertical optical mode 

profile obtained by a transfer matrix calculation, the corresponding refractive indices of the layer 

sequence and the resulting reflectivity spectrum without embedded monolayer – (c). The sample 

was held at 300 K and angle-resolved PL spectra was studied. The embedded monolayer was 

excited via a non-resonant continuous wave laser at a wavelength of 532 nm at an excitation 

power of 3 mW. 

In Figure 4.12(a) the PL spectra extracted from the device at various in-plane momenta are 

presented. At an in-plane momentum of 1.84 µm-1 (corresponding to an emission angle of 12.67°), 
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a minimum peak distance between the two prominent features was observed which was 

identified as the lower and upper polariton branch. These two branches feature the characteristic 

anti-crossing behaviour with a Rabi splitting of 23.5 meV, the key signature of the strong coupling 

regime. This strong coupling regime is primarily a result of the tight mode confinement provided 

by the Tamm-structure. Figure 4.12(b) depicts the fully mapped out energy-momentum 

dispersion relation of the two polariton resonances by plotting the corresponding peak energies 

as a function of the in-plane momentum. As expected for coupled oscillators with different 

effective masses, the characteristic potential minimum was observed in the lower polariton 

branch with a modest negative detuning of          = -11.7 meV. This negative detuning 

condition leads to an effective polariton mass of 1.45   10-5 me  at the bottom of the lower 

polariton, where me is the free electron mass. Furthermore, the characteristic transition from a 

light particle close to k|| = 0 to a heavy, exciton-like particle at large k|| values can be observed. 

The corresponding Hopfield coefficients, which characterize the excitonic and photonic fraction of 

the lower polariton (|X|2 vs. |C|2, respectively) are plotted as a function of the in-plane 

momentum in Figure 4.12(c). The potential minimum, which is formed in the lower polariton 

branch, is another key signature of an exciton-polariton in the presence of vertically confined 

field. It furthermore provides a well-defined final energy state with a distinct effective mass, 

which is crucial for advanced parametric and stimulated scattering experiments [162]. A key 

advantage of exciton polaritons, as compared to other composite bosons (such as excitons), is the 

possibility to conveniently tune the depth of this attractive potential, and simultaneously the 

particles’ effective masses as well as light-versus-matter composition by changing the detuning 

between the light and the matter oscillators. In addition, reflectivity measurements were carried 

out in the experiment to provide further evidence that the device worked in the strong coupling 

regime. The results are presented in Figure 4.12(d) and were analyzed and fitted the same way as 

for the PL data. Similarly compared to the PL experiment, there is a clear appearance of two 

normal modes that can be well described by the coupled oscillator model. 

For the sake of clarity, the reflectivity spectra is inverted, thus the reflection dips appear as 

positive signals in the graph. In Figure 4.12(e) the graph shows the extracted values of the 

reflection resonances as a function of the in-plane momentum, which allows reconstructing the 

polariton dispersion relation. The dispersion features the characteristic avoided crossing 

behaviour with a Rabi splitting of 14.7 meV. 

In order to interpret the experimental data, the dispersions were fitted with the coupled oscillator 

model:   

[
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 ]     (4.25) 
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where     and     are the photon and exciton energies, respectively, Δ is the detuning between 

the two modes,      and     are the photon and the exciton mode broadening. 

The eigenvectors represent the weighting coefficients of exciton and photon fraction and 

   represents the Rabi splitting in the system. Solving the dispersion equation: 
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 ]       (4.26) 

one can obtain two polariton branches. The result of this modelling is shown in Figure 4.12(b) and 

Figure 4.12(c) (solid lines) along with the experimental data (symbols). The fitting was carried out 

via solving the optimization problem with detuning, Rabi splitting and photon mass used as 

parameters. As the exciton mass is several orders of magnitude larger than the photon mass, it 

does not affect the result of the simulation and its value is taken to be 0.8   , as defined in Ref. 

[163] The dashed lines show photon and exciton energies as a function of the in plane wave 

vector    . 

Another part of the experiment addresses the occupation of the polariton states in the device, 

operated under ambient conditions. The overall, momentum-resolved PL spectrum of the 

structure is plotted in Figure 4.13(a). In stark contrast to previous reports discussing polariton 

emission with TMDC materials at room temperature [129], a pronounced occupation of the low 

energy states in the lower polartion branch and a reduced occupation of the excited polariton 

states are observed. The following model was used to analyze the luminescence experiment: In a 

first approximation, due to the comparably low particle numbers and high temperatures, a 

Boltzmann distribution law for the particles is assumed:                 , where     and    

denote  -state population and energy, and    is the Boltzmann constant. The modeled PL is thus 

generated by a polariton gas at room temperature (T = 300 K). Another important assumption is 

that the emission stems from the photonic mode only and is broadened in energy according to 

the Lorentz distribution. This allows relating the PL intensity to the photonic Hopfield coefficients 

via: 

       ∑
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      (4.27) 

where     is the broadening of the photonic mode and the i-index spans over the two polariton 

branches. The value of        meV is extracted from the experimental data. 
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Figure 4.12:  Exciton-polariton formation with Tamm-plasmons. (a) PL spectra recorded from the 
coupled device at room temperature at various in-plane momenta (depicted in a waterfall 

representation). Two pronounced resonances evolve in the system, which feature the 
characteristic anti-crossing behaviour of exciton-polaritons. (b) Energy–momentum dispersion 

relation of the lower and upper polariton branch at room temperature: the polariton energies are 
extracted by fitting spectra at various in-plane momenta (solid symbols). The coupled oscillator 
approach is employed to fit the data and to demonstrate agreement between experiment and 

theory (lines). (c) Plot of the exciton and photon fraction of the lower polariton branch as a 
function of the in-plane momentum extracted from coupled oscillator fit. (d) Inverted reflectivity 

spectra at different in-plane momenta. (e) Energy– momentum dispersion relation extracted from 
the reflectivity spectra. Figure taken from Ref. [107]. 
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Figure 4.13: Experimental and theoretical polariton dispersion relations in the studied Tamm 
structure. (a) Room-temperature false colour intensity profile of the full polariton dispersion 
relation extracted from the PL measurements. (b) Model of the full dispersion by assuming a 

Boltzmann distribution of the quasi-particles with an effective temperature of 300 K c),d),e),f) the 
dispersion, modelled at higher temperatures; Figure taken from Ref. [107]. 
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The experimental results and the theoretically calculated dispersion relation are plotted in Figure 

4.13(a) and (b), respectively.  Figure 4.13 (c),(d),(e), and (f) present additional theoretical 

simulations showing the momentum-resolved PL intensity as a function of temperature ranging 

from 300 K to 1500 K. The exciton-polariton gas in microcavities is usually out of thermal 

equilibrium with the crystal lattice because of the pumping and dissipation processes. The 

comparison with the experimental data in Figure 4.13(a) shows that the polariton gas is not 

cooled down to the lattice temperature in the experiments, and it may be characterized by an 

effective temperature of 300-500 K. Also, it should be noted that the emission from the upper 

polariton branch is amplified due to the high value of the photonic Hopfield coefficient at this 

branch at high momenta.  

Here a good agreement between the theory and the experiment is achieved. While the used 

model is phenomenological and cannot account for any dynamic and microscopic effects in the 

system, it already serves as the first indicator that, despite the pronounced dissipation, polariton 

relaxation is indeed significant. 

4.5 Conclusions 

In conclusion, a clear evidence for the formation of exciton-polaritons was observed in a hybrid 

dielectric and polymer Tamm-plasmon-polariton device featuring an integrated single atomic 

layer of the transition metal dichalcogenide WSe2. The distinct polariton dispersion relation was 

shown in angle-resolved PL and reflectivity measurements, both polariton branches were resolved 

including the characteristic parabolic energy minimum and the flattening towards the exciton 

band. The experimental data is supported by a coupled harmonic oscillator model, and a very 

good agreement is achieved both for the energy evolution of the polariton resonances as well as 

for the population of polariton eigenstates.  This work represents a significant step towards the 

implementation of polariton condensates and non-linear experiments in the strong coupling 

regime based on single layers or stacks of several layers of TMDCs. 

For future work it will be of particular interest for TMDC polaritonic experiments to harness the 

unique spinor and valley physics inherited by the atomic monolayers. Combining plasmonics and 

2D active media in the strong light-matter coupling regime certainly carries great potential for 

building new architectures of highly integrated, non-linear optical circuits and logic devices which 

are operated at ultra-low powers and close to terahertz frequencies. The observation of room 

temperature polaritons paves the way towards the realization of hybrid Bose-Fermi system with 

integrated monolayers for the observation of exciton-polariton mediated superconductivity. 
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Appendix A  

 

 

Parameter Meaning Value 

  Permittivity 13.1 

   Electron reduced mass 0.063    

   Hole reduced mass 0.45    

  Distance between wells 10 nm 

  Coulomb screening length 10 nm 

   Exciton Bohr radius 90Å 

   Exciton Rydberg 4.1 meV 

  Dipole moment 10 nm 

   Rabi splitting 10 meV 

  Hopfield coefficient 1/√  

   Polariton mass        

   Polariton Interaction 0.24 µeV µm2 

d Dipole moment 10 nm 

Table  A-1 the parameters, used in the calculations of the electron-electron interaction potential 
for  GaAs-based structure in Chapter 3:
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