
UNIVERSITY OF SOUTHAMPTON

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Iterative Learning Control for Spatial Path Tracking

by

Yiyang Chen

A Thesis submitted in partial fulfillment for the degree of Doctor of Philosophy

October 2017

mailto:yc12u12@soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

Electronics and Computer Science

Doctor of Philosophy

ITERATIVE LEARNING CONTROL FOR SPATIAL PATH TRACKING

by Yiyang Chen

Iterative learning control (ILC) is a high performance method for systems operating

in a repetitive manner, which aims to improve tracking performance by learning from

previous trial information. In recent years research interest has focused on generalizing

the task description in order to achieve greater performance and flexibility. In particular,

researchers have addressed the ease of tracking only at a single, or a collection of time

instants. However, there still remain substantial open problems, such as the choice of the

time instants, the need for system constraint handling, and the ability to release explicit

dependence on time. A number of ILC methods have tackled the latter problem, loosely

termed spatial ILC, but are all application specific and limited in scope.

The aim of this thesis is to unlock this potential, and the specific contributions are as

follows: first a mechanism to optimize the time instants at the critical tracking positions

within point-to-point tracking is developed. This is achieved by embedding an additional

cost function and deriving a ‘Two Stage’ design framework to yield an iterative algo-

rithm which minimizes control effort as well as guaranteeing high performance tracking.

This approach is based on norm optimal ILC and gradient minimization. Then the task

description is further generalized by expanding the formulation to embed via-point con-

straint and linear planar constraints. This embeds the incorporation of various design

objectives including spatial path tracking in a general class of systems, and a mixed

form of system constraints are added into this framework. An algorithmic ILC solution

is derived using the successive projection method to achieve high performance tracking

of the design objectives. Finally, the Two Stage design framework and the generalized

ILC framework are combined together to yield the first spatial ILC algorithm capable

of optimizing an additional cost function whilst completing the spatial path tracking

objective for a general class of systems. All proposed algorithms are verified experimen-

tally on a gantry robot platform, whose experimental results demonstrate their practical

efficacy and ability to substantially widen the scope of the current ILC framework.

mailto:yc12u12@soton.ac.uk

Contents

Acknowledgements xiii

Declaration of Authorship xv

Nomenclature xvii

1 Introduction 1

1.1 Research Motivation . 2

1.2 Contribution and Organization of the Thesis 4

2 Background and Literature Review 7

2.1 General Background to ILC . 7

2.1.1 Definition of ILC . 7

2.1.2 Convergence of ILC . 8

2.1.3 Robustness of ILC . 9

2.1.4 ILC Implementation Structure . 10

2.2 Leading ILC Structures . 10

2.2.1 Simple Structure ILC . 11

2.2.2 Phase-lead ILC . 12

2.2.3 ILC based on 2D Systems Theory 12

2.2.4 High Order ILC . 13

2.3 Optimization Based ILC Approaches . 14

2.3.1 Inverse ILC . 15

2.3.2 Gradient Descent ILC . 16

2.3.3 Norm Optimal ILC . 16

2.3.4 Parameter Optimal ILC . 17

2.3.5 L-Q Optimal ILC . 18

2.3.6 Newton Method Based ILC . 19

2.4 System Constraints of ILC . 20

2.4.1 Input Constraint . 20

2.4.2 Output Constraint . 21

2.4.3 State Constraint . 22

2.5 Generalized ILC Task Description . 22

2.5.1 Terminal ILC . 23

2.5.2 Point-to-Point ILC . 23

2.5.3 Spatial ILC . 26

2.6 Summary . 27

v

vi CONTENTS

3 Point-to-Point ILC with Optimal Tracking Time Allocation 29

3.1 Formulation of the Problem . 29

3.1.1 Point-to-Point ILC Framework . 30

3.1.2 Point-to-Point ILC with Optimal Tracking Time Allocation 31

3.2 A Two Stage Design Framework . 33

3.2.1 Framework Description . 33

3.2.2 Solution of the Proposed Framework 34

3.2.2.1 Solution of Stage One Optimization Problem 34

3.2.2.2 Solution of Stage Two Optimization Problem 37

3.2.3 A Numerical Example . 40

3.3 Implementation of the Design Approach 42

3.3.1 Implementation of Stage One Design 42

3.3.2 Implementation of Stage Two Design 43

3.3.2.1 Central initial tracking time allocation 44

3.3.2.2 Greedy initial tracking time allocation 44

3.3.2.3 Low resolution initial tracking time allocation 45

3.3.3 An Iterative Implementation Algorithm 46

3.4 Constrained Input Condition Handling . 47

3.4.1 Optimal Tracking Time Allocation with System Constraints 47

3.4.2 Modified Two Stage Design Framework with Input Constraints . . 47

3.4.3 Convergence Properties of the Algorithm 50

3.4.4 A Numerical Example . 51

3.5 Experimental Verification on a Gantry Robot 51

3.5.1 Test Platform Specification . 52

3.5.2 Experimental Results . 53

3.6 Summary . 58

4 Point-to-Point ILC with Optimal Tracking Time Allocation 61

4.1 Formulation of the Problem . 61

4.1.1 Discrete Time System Dynamics 61

4.1.2 Point-to-Point ILC Framework . 62

4.1.3 Optimal Tracking Time Allocation Problem 64

4.2 A Two Stage Design Framework . 64

4.2.1 Framework Description . 64

4.2.2 Solution of the Proposed Framework 65

4.3 Implementation of the Design Approach 68

4.3.1 Implementation of Stage One . 68

4.3.2 Implementation of Stage Two . 69

4.3.3 An iterative implementation algorithm 69

4.4 Experimental Verification on a Gantry Robot 70

4.5 Summary . 72

5 Generalized ILC with Application to Spatial Path Tracking 75

5.1 Problem Formulation . 75

5.1.1 Generalized ILC Design Objective 76

5.1.2 Input and Output Constraints . 77

5.1.3 Generalized ILC Design problem 78

CONTENTS vii

5.2 Generalized ILC using Successive Projection 79

5.2.1 Successive Projection Interpretation 79

5.2.2 Generalized ILC with Constraint Handling 80

5.3 Convergence Properties . 82

5.4 Implementation of the Algorithm . 85

5.5 Piecewise Spatial Path Tracking Problem 90

5.6 Experimental Verification . 93

5.6.1 Design Task Specification . 93

5.6.2 Performance of the Proposed Algorithm 94

5.7 Summary . 97

6 ILC for Spatial Path Tracking 99

6.1 General Spatial Path Tracking Formulation 99

6.2 Characterization of Piecewise Linear Spatial Tracking Problem using ILC 101

6.2.1 Specification to Piecewise Linear Paths 101

6.2.2 Piecewise Linear ILC Problem . 102

6.3 A Two Stage Design Framework . 105

6.3.1 Two Stage Design Framework Description 105

6.3.2 Implementation of the Framework 106

6.3.2.1 Solution of Stage One . 106

6.3.2.2 Solution of Stage Two . 109

6.3.3 An Iterative Implementation Algorithm 110

6.4 Constrained Input Condition Handling . 111

6.4.1 Modified Two Stage Design Framework 112

6.4.2 Modified Iterative Implementation Algorithm 113

6.5 Experimental Verification on A Gantry Robot 114

6.5.1 Design Task Specification . 114

6.5.2 Performance of the Proposed Algorithm 115

6.6 Summary . 117

7 Conclusions and Future Work 119

7.1 Conclusions . 119

7.2 Future Work . 121

References 123

List of Figures

1.1 An Example of the ILC Update Procedure (Bristow et al., 2006). 1

1.2 A ‘Pick-and-Place’ Tracking Example on Gantry Robot. 3

2.1 Comparison between Asymptotic and Monotonic Convergence 9

2.2 ILC Implementation Structure. 10

2.3 Point-to-point ILC . 24

3.1 Input Energy f̃(Λ) for a Single Point Case (M = 1). 41

3.2 Input Energy f̃(Λ) at Multiple Point Case (M = 2). 41

3.3 Convergence Performance Comparison between Constrained and Uncon-
strained Minimum Input Energy at Each Loop. 51

3.4 Multi-axis Gantry Robot Test Platform. 52

3.5 Gantry Robot Test Platform Control Loop. 53

3.6 Input Energy Results using an Inaccurate Model without Input Constraints. 54

3.7 Converged Input and Output Trajectory Comparison using an Inaccurate
Model without Input Constraints. 54

3.8 Experimental Converged Input and Output Trajectories for Initial and
Final Loops using an Inaccurate Model without Input Constraints. 55

3.9 Experimental Time-Point Position Results at Each Loop using an Inac-
curate Model without Input Constraints. 56

3.10 Exemplary Input Energy Convergence with Input Constraints. 57

3.11 Exemplary Converged Input Trajectories with Input Constraints. 57

4.1 Experimental Time-Point Position Results at Each Trial. 71

4.2 Experimental Input Energy Results at Each Trial. 71

4.3 Experimental Converged Input and Output Trajectories for Initial and
Final Trials. 72

5.1 Illustration of the Successive Projection Algorithm. 80

5.2 Piecewise Spatial Path in R
2. 91

5.3 Spatial Path and Converged Hybrid Output Trajectories with and without
Output Constraints. 95

5.4 Converged Input Trajectories. 95

5.5 Mean Square Tracking Error and Input Energy over 100 Trials with Out-
put Constraints. 96

6.1 Spatial Paths as Set of Points in R
m. 100

6.2 Spatial Output for Robustness Test. 114

6.3 Optimal Tracking Time Allocation during Robustness Test. 115

ix

x LIST OF FIGURES

6.4 Input Energy during Robustness Test. 116

6.5 Final Converged Results for a) Input and b) Output. 116

List of Tables

3.1 Summary of Experimental Results without Constraints. 57

3.2 Summary of Experimental Results with Constraints. 58

5.1 Input Energy Comparison. 96

6.1 Summary of Experimental Results with Different Qi, Q̂i and R. 117

xi

Acknowledgements

Thanks to my supervisors Dr Bing Chu and Dr Christopher Freeman for their help and

guidance for my work. Then I want to say thanks to my colleagues for their advice on

my research. Many thanks to my parents for their support of my study. This thesis is

supported by the China Scholarship Council.

xiii

Declaration of Authorship

I, Yiyang Chen , declare that the thesis entitled Iterative Learning Control for Spatial

Path Tracking and the work presented in the thesis are both my own, and have been

generated by me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: Chen et al. (2015, 2016, 2017a,b,c)

Signed:...

Date:..

xv

mailto:yc12u12@soton.ac.uk

Nomenclature

N Set of non-negative integers

R
n Set of n dimensional real vectors

R
n×m Set of n×m real matrices

S
n
++ Set of all n× n real positive definite matrices

Lℓ
2[0, T] Space of functions defined on [0, T] whose function value

belongs to R
ℓ and 2 power is Lebesgue integrable

lℓ2[0, N] Space of Rℓ valued Lebesgue square-summable sequences

defined on an interval [0, N]

〈x, y〉 Inner product of x and y in some Hilbert space

X× Y Cartesian product of two spaces X and Y

PΘ(x) Projection x to the set Θ in some Hilbert space

s Laplace transform variable

z z-transform variable

k Trial number

j Loop number

i Tracking point number

u Input signal

y Output signal

e Error signal

t Time

‖·‖ Euclidean norm

‖·‖∞ Infinity norm

xvii

Chapter 1

Introduction

In many industrial applications, the output of a system, y, is required to follow a desired

reference trajectory, r. The system may involve moving through a given path or keeping

the temperature of some chemical process constant. To achieve this requirement, a

control action, u, must be applied, typically achieved via feedback control. However,

feedback control cannot in general achieve perfect tracking performance.

Figure 1.1: An Example of the ILC Update Procedure (Bristow et al., 2006).

To improve tracking accuracy, the field of ILC has been developed and is applicable to

systems that execute the same finite time horizon task multiple times. An illustrative

example of the ILC update procedure is shown in Figure 1.1, where k denotes the trial

number and T is the task duration. This illustrates that ILC attempts to reduce the

tracking error, ek+1, by updating the input signal, uk+1, using information uk and ek

from the previous trial (Bristow et al., 2006). Distinct to traditional feedback control,

ILC can theoretically enable the tracking error to converge to zero after sufficient his-

torical attempts for a broad class of systems. This has led ILC to find rich application

to industrial tasks which require a high level of accuracy, with examples including inkjet

1

2 Chapter 1 Introduction

printing (Bolder et al., 2014), robotic manipulator (Jin, 2016), chemical batch process-

ing (Tao et al., 2017), rehabilitation (Freeman, 2017) and addictive manufacturing (Lim

et al., 2017). See Bristow et al. (2006); Ahn et al. (2007) for a detailed background of

ILC.

A large body of work, e.g. Tayebi and Zaremba (2003); Moore et al. (2005); Oomen et al.

(2009); Hladowski et al. (2010); Paszke et al. (2013); Huang et al. (2014), has studied the

properties of classical ILC, which assumes the reference profile, r, is specified over the

entire finite time horizon, [0, T]. However, the output signal is not critical at every time

instant, t, along the time horizon in many ILC applications, e.g. robotic pick-and-place

tasks. Therefore, the task description of classical ILC has recently been extended to

frameworks that can handle a wider range of tracking problems. These extended ILC

frameworks have been termed terminal ILC, point-to-point ILC and spatial ILC.

Terminal ILC was initially studied in Xu et al. (1999) to address the class of ILC prob-

lems, whose tracking performance is only critical at the end of the finite time horizon,

[0, T]. As a further extension of terminal ILC, the concept of point-to-point ILC was

proposed in Freeman et al. (2011), whose design objective is to track a number of crit-

ical positions at a subset of time instants, ti. Furthermore, spatial ILC was initially

proposed in Moore et al. (2007) to track a path defined in space without any tempo-

rary constraints. Due to this relaxation of the tracking requirement, the aforementioned

extended ILC frameworks have facilitated significant design freedom.

1.1 Research Motivation

As stated, the aforementioned extended ILC frameworks do not assume a unique ref-

erence trajectory, r, defined over the entire time horizon, [0, T]. This eliminates the

unnecessary output tracking requirements, and exploits significant control design flex-

ibility to embed additional performance (Freeman, 2012). In point-to-point ILC, the

tracking accuracy at each special time point along the trial duration is the critical in-

formation, and is typically embedded in a cost function subsequently optimized over

multiple trials. However, these critical tracking time instants are assumed to be known

a priori, and the extra flexibilities in choosing the tracking time instants (which affect

the system performance) have not been explored. This introduces the possibility of se-

lecting the time instants at the critical tracking positions within point-to-point ILC to

optimize an additional cost function whilst completing the tracking task.

To clearly illustrate the need to include temporal optimization in ILC tasks, consider the

pick-and-place task shown in Figure 1.2 on a gantry robot platform. In this problem,

the robotic arm is required to start from the resting position (shown as a green dot)

at the beginning of a trial (t = 0), move to the ‘pick’ position (shown as a yellow dot)

at the specified time t1 and then move to the ‘place’ position (shown as a red dot) at

Chapter 1 Introduction 3

00.01

x-axis(m)

0.020.030.040.2

0.1

y-axis(m)

2

4

8

10

-2

0

6

0

×10-3

z-
ax

is
(m

)

Pick Position

Place Position

Resting Position

Output Trajectories

Figure 1.2: A ‘Pick-and-Place’ Tracking Example on Gantry Robot.

a specified time t2, before finally moving back (resetting) to the resting position at the

end of the trial (t = T). Note that in this problem, the pre-specified tracking time

allocation, i.e. the ‘pick’ and ‘place’ time instants t1 and t2, plays a key role in the

system performance. Intuitively, if the two tracking time instants are chosen closer to

each other, the robotic arm will have to move from the desired ‘pick’ location to the

‘place’ position within a very short time, therefore requiring rapid movement and thus

incurring high control effort (for example, the difference is more than 30 % of the control

effort in the two trajectories shown in the figure).

The spatial ILC problem can be thought of as a generalization of this idea and is diffi-

cult to formulate and solve due to the elimination of temporal constraint. Instead, all

initial attempts to spatial ILC are application specific, with applications that are lim-

ited to a certain class of systems and tracking problems. This fact motivates the work

in this thesis to propose a generalized ILC framework which is applicable to various

design objectives including spatial path tracking for a general class of systems with a

mixed form of system constraints. Furthermore, all initial attempts to spatial ILC focus

on purely achieving high performance path tracking, and have not fully harnessed its

design freedom to optimize an additional cost function while performing the tracking

task, which prevents achieving certain potential practical benefits as well as performing

accurate path tracking. This limitation provides a clear motivation for the spatial ILC

framework to be further expanded to allow flexibility in the selection of the tracking time

instant of each position along the path, with their values also updated by an iterative

algorithm to embed further optimization of the overall spatial ILC tracking objective.

This is the final topic focused upon in this thesis.

4 Chapter 1 Introduction

1.2 Contribution and Organization of the Thesis

This thesis addresses the existing limitations within extended ILC frameworks mentioned

in the previous section. The contribution and organization of this thesis are given as

follows:

Background and Literature Review of ILC (Chapter 2): This chapter describes

background information and the current research landscape of ILC. The traditional

definition of ILC is first provided with six postulates, and an overview of ILC is given

with specific respect to important criteria, e.g. convergence properties and practical

implementation. Then, several leading ILC structures are introduced and specific focus

is given to optimization based ILC approaches, whose techniques are used later in this

thesis. Following this, the constraint handling problem is introduced. Finally, the

extended ILC frameworks are described in detail and current limitations are highlighted.

These underpin the motivation of the research work in this thesis.

Point-to-Point ILC with Optimal Tracking Time Allocation (Chapter 3 and

4): This chapter formulates the first algorithm capable of solving the high performance

point-to-point tracking problem with an additional optimal cost function. A point-to-

point ILC framework is proposed based on an abstract operator form in Hilbert space.

Using this framework, an optimization problem is formulated to optimize a cost function

of interest as well as maintain the ability of precise point-to-point tracking at optimally

allocated time instants, ti. A ‘Two Stage’ design framework is then developed to solve

the non-trivial optimization problem. To exemplify the approach, the control effort is

selected to be the target cost function in this thesis, and an iterative implementational

algorithm is proposed from the design framework to update both the control action,

using norm optimal ILC, and the tracking time allocation, using the gradient projec-

tion method. These enable completion of the task with reduction in the control effort

compared with a priori tracking time allocation. In addition, the input constraint is

also considered and a modified algorithm is proposed to give a practical solution to the

constrained condition. Note that parts of the above work have been published in Chen

et al. (2015, 2017b,c).

Generalized ILC with Application to Spatial Path Tracking (Chapter 5): This

chapter formulates a generalized ILC algorithm, which comprises the first solution to

various design objectives including spatial path tracking for a general class of systems

with mixed forms of system constraints. To solve the spatial path tracking problem,

a generalized ILC framework is first formulated to embed intermediate point tracking

constraint of the form Fiy(ti) = Fir(ti) at time instant ti, as well as linear constraints

between outputs of the form Piy(t) = Pir(t) on defined sub-intervals [ti−1, ti], thereby

enforcing tracking along lines or planes with no a priori timing constraints. This frame-

work also extends the class of ILC task description to incorporate a range of system

Chapter 1 Introduction 5

constraints with significant relevance to industrial manufacture (e.g. preventing over-

shoot). Therefore, this framework can be applied to most types of ILC design problems,

including spatial ILC, by setting appropriate parameter values. A generalized ILC al-

gorithm is then derived using the successive projection method. Furthermore, rigorous

convergence analysis is undertaken on this algorithm to guarantee desirable convergence

properties. Note that parts of the above work have been published in Chen et al. (2017a).

Spatial Path Tracking using ILC (Chapter 6): This chapter formulates the first

spatial ILC algorithm capable of optimizing an additional cost function whilst completing

the spatial path tracking objective for a general class of systems. The general spatial

tracking problem is first formulated based on the definition of a spatial path, and then

specified to the class of piecewise linear path tracking problems. The optimal tracking

time allocation problem within spatial ILC is then formulated using the generalized ILC

framework derived in Chapter 5. After that, the Two Stage design framework developed

in Chapter 3 is applied to the problem to yield a spatial ILC algorithm based on the

generalized ILC update derived in Chapter 5 and the gradient projection method. Note

that parts of the above work have been published in Chen et al. (2016).

Practical Verification (Chapter 3, 5, and 6): Furthermore, all the proposed algo-

rithms are evaluated on a three-axis gantry robot test platform to confirm their practical

effectiveness. As a major problem arising in practice is due to model uncertainty, the

robust performance of these algorithms against model uncertainty is also examined by

assuming an inaccurate system model. The experimental results show that the pro-

posed algorithms have a certain level of robustness against model uncertainty, which

is an attractive feature in practice. In addition, the experimental results suggest the

potential application of the algorithms to the fields outside robotics, which involve a

spatial repetitive mode such as stroke rehabilitation.

Chapter 2

Background and Literature

Review

This chapter first gives a general description of ILC before providing an overview of

‘standard’ ILC algorithms, which track a reference defined over the full trial duration, t ∈

[0, T], T < ∞. After the general overview, several optimization based ILC algorithms

are focused upon in more detail. In addition, recent developments in ILC are described,

which mainly focus on the generalization of the traditional ILC tracking requirement.

2.1 General Background to ILC

2.1.1 Definition of ILC

The concept of ILC was first proposed in Uchiyama (1978) by the Japanese scholar M.

Uchiyama in 1978. However, as this paper is written in Japanese, it did not receive

significant attention outside Japan. The research of ILC is commonly considered to

start in 1984 with the publication Arimoto et al. (1984b). This defines ILC as a novel

control technique applicable to systems operating in a repetitive manner over a finite

time interval, [0, T]. The system dynamics can be written in the general form

yk = Guk (2.1)

where uk and yk are the control input and measured output on trial k respectively. In

the ILC problem, the tracking objective is to sequentially force the system output yk to

track a given reference trajectory, r ∈ Lm
2 [0, T], over the finite time horizon, [0, T]. At

the end of the kth trial, ILC uses the input uk and error ek = r− yk to update the input

uk+1 for the next trial, typically using an algorithm of the form

uk+1 = f(uk, ek) = uk + Lek (2.2)

7

8 Chapter 2 Background and Literature Review

where L is a learning operator. There were six postulates of ILC made in Arimoto et al.

(1984b) as follows:

• Each trial has an identical trial length, T > 0.

• The desired reference trajectory, r, is given a priori over the time interval, [0, T].

• At the end of each trial, the initial state, xk(0), for the next trial is reset to a

constant value, x0.

• Invariance of the system dynamics is guaranteed throughout each repeated trial.

• The tracking error, ek, can be measured and used to update the input, uk+1, for

the next trial based on the current input, uk.

• The system dynamics are invertible, i.e. there exists a causal and stable system

that can invert the given system dynamics.

In recent research, the above postulates have gradually been relaxed to provide an

ILC tracking task description which achieves more flexibility. In order to understand

more about their functions, the general properties of ILC are reviewed in the following

subsections.

2.1.2 Convergence of ILC

The general objective of ILC is to force the tracking error, ek, to converge to zero after

sufficient updating trials, and the input, uk, to converge to a unique input, u∗, at the

same time, i.e.

lim
k→∞

ek = 0, lim
k→∞

uk = u∗. (2.3)

There are two main types of convergence: asymptotic and monotonic convergence.

Asymptotic convergence requires the 2-norm of the error to converge to zero, i.e.

lim
k→∞

‖ek‖ = 0. (2.4)

On the other hand, monotonic convergence requires the 2-norm of the error at each trial

to be no larger than that of the previous one, and the norm of the error to converge to

zero as well, i.e.

‖ek+1‖ 6 ‖ek‖ , lim
k→∞

‖ek‖ = 0 (2.5)

Figure 2.1 demonstrates the difference between the two types of convergence. As mono-

tonic error convergence is generally considered of primary importance, it will be consid-

ered as the main ILC convergence requirement throughout this thesis.

Chapter 2 Background and Literature Review 9

Number of Trials, k
0 10 20 30 40 50 60 70 80 90 100

N
or
m

of
E
rr
or
,
‖e

k
‖

0

2

4

6

8

10

12

Asymptotic Convergence
Monotonic Convergence

Figure 2.1: Comparison between Asymptotic and Monotonic Convergence

2.1.3 Robustness of ILC

Accurate tracking performance with desired convergence performance has been achieved

by many ILC algorithms on nominal systems, and good performance has been achieved

in practical applications. However, as the nominal model is only an imperfect represen-

tation of the real plant, robustness is a serious issue. If the model uncertainty is large

enough, the convergence rate of ILC algorithms becomes slow or the algorithms even

cannot provide the desired solution of the original control problem.

In practice it has been found that long term instabilities degrade the performance and

convergence of the standard algorithms. This performance issue is at least in part due

to model mismatch. Even where this performance issue does not result, convergence to

the desired trajectory is affected by model uncertainty. This performance issue of ILC

has been an open problem for many years, and a variety of methods (e.g. quantization,

filtering, suspension of learning) have been proposed that often lack theoretical basis.

Previous robustness results relate to multiplicative and additive uncertainty descriptions

(Moon et al., 1998; de Roover and Bosgra, 2000; Tayebi and Zaremba, 2003; Harte et al.,

2005; van de Wijdeven and Bosgra, 2007; Donkers et al., 2008; van de Wijdeven et al.,

2009; Paszke et al., 2013; Son et al., 2016; Ge et al., 2017). Parametric uncertainties have

also been considered (Ahn et al., 2006b). Unstructured uncertainties were addressed for

a class of adaptive ILC algorithms (French, 2008). An example of a multiplicative

uncertainty is

Ĝ = (1 + ∆W)G, ‖∆‖∞ < 1 (2.6)

where W is a fixed stable transfer function and ‖·‖∞ denotes the H-infinity norm. Vari-

ous robust ILC algorithms have been developed against the model uncertainty problem.

10 Chapter 2 Background and Literature Review

Another issue is considered as initialization error. According to the third postulate in

Section 2.1.1, the initial state x0 of ILC should be reset to constant values at the end

of each trial. However, due to practical issues, the initial state x0 at the beginning of

each trial may be slightly different, which affects the convergence and performance of

ILC (Sun and Wang, 2003). This has led to development of algorithms which are robust

to the initial state error (Jiang and Unbehauen, 1999), or reduce the sensitivity of ILC

to initial state error (Chen et al., 1999).

2.1.4 ILC Implementation Structure

C G

Q

f(uk, ek)

r e u y

−

ym

+

Figure 2.2: ILC Implementation Structure.

ILC is usually applied in combination with other controllers in practice. This is because

ILC addresses the repeated disturbance at each trial, but there inevitably exists non-

periodic random disturbance in the measured error signal. This motivates employing

another control method together with ILC to improve disturbance rejection or base-line

tracking.

Furthermore, while performing frequency domain analysis of the error signal, it is noted

that ILC instabilities typically manifest at high frequencies, due to model uncertainty

in this range. Different filters has been designed to improve the tracking performance

such as low pass filters, band pass filters, zero pass filters (Ratcliffe, 2005) and Kalman

filters (Ahn et al., 2006a). The block diagram in Figure 2.2 provides an example of

practical ILC implementation structures, where C and Q denote the controller and filter

respectively.

2.2 Leading ILC Structures

In this section, several leading ILC structures are introduced with their own specific

features, and the corresponding ILC update algorithms are also provided. These lead-

ing ILC structures have been selected to comprise ILC designs that are supported by

Chapter 2 Background and Literature Review 11

substantial experimental benchmarking.

2.2.1 Simple Structure ILC

Simple structure ILC does not require any information about the system dynamics, and

the first simple ILC algorithm is often considered as the proportional-type (‘P-type’)

ILC update law given by

uk+1 = uk + γek (2.7)

where the learning gain γ is a constant scalar that influences the rate of convergence.

The authors considered linear time invariant, continuous time state space systems,

S(A,B,C). In order to ensure the ILC tracking objective (2.3), the convergence condi-

tion

‖I − γCB‖ < 1 (2.8)

is given in Arimoto et al. (1985). It should be noted that the convergence condition does

not contain A and is hence independent of the system dynamics. In addition, the value

of CB 6= 0, otherwise the condition 2.8 does not hold and the system loses control at

the beginning.

The next simple ILC algorithm is called derivative-type (‘D-type’) ILC, and its update

law is given by

uk+1 = uk + αėk (2.9)

where ėk denotes the derivative of the error ek. It is similar to the P-type ILC algorithm,

but uses the rate of change of the error to update the input of the next trial instead

of the error itself. In order to ensure the ILC tracking objective (2.3), the convergence

condition

‖I − αCB‖ < 1 (2.10)

is derived in Arimoto et al. (1985) and Arimoto et al. (1984a). It should be noted that

the convergence condition is independent of matrix A even if the system is unstable

because of the finite time interval of each trial (Ahn et al., 2007). Due to the same

reason, it follows that CB 6= 0. However, the D-type ILC algorithm is sensitive to

measurement error and process disturbance, and it is seldom used in practical cases.

In order to increase the convergence rate and applicable system classs, P-type and D-

Type ILC can be combined together. The resulting ‘PD-type’ ILC update law is given

by

uk+1 = uk + γek + αėk (2.11)

The convergence condition is similar to that of the D-type ILC algorithm (Chen and

Moore, 2002). Due to the noise sensitive D-type component, it also has limited practical

use.

12 Chapter 2 Background and Literature Review

Inspired by the analogy with traditional proportional plus integral plus derivative control

‘PID’, the above algorithm has been generalized to include an integral term (Moore,

1993), i.e.

uk+1(t) = uk(t) + γek(t) + αėk(t) + β

∫ t

0
ek(s)ds. (2.12)

Due to the same noise sensitivity problem, PID-type ILC has similar limitations in

practical application.

2.2.2 Phase-lead ILC

Phase-lead ILC has a similar form to P-type ILC, and its update law is given by

uk+1(t) = uk(t) + βek(t+ λ) (2.13)

where λ > 0 is the phase-lead of the error signal. The idea behind the phase-lead ILC

method is to first estimate the phase-lead λ in the control system, and then shift the

error signal in order to compensate for the phase-lead and hence achieve satisfactory

performance. More information concerning phase-lead ILC, such as the convergence

properties, is given in Freeman et al. (2005); Park et al. (1998).

The principle advantage of phase-lead ILC is that it can be considered model free and

does not requires a full model of the plant, since the phase-lead, λ, and the gain, β,

can be regarded as tuning parameters (Freeman et al., 2005; Cai et al., 2008). However

unless the system is a pure delay, phase-lead ILC must always be used in combination

with a low-pass filter. Furthermore, the phase-lead ILC update law is equivalent to the

P-type ILC update law at the particular condition λ = 0.

2.2.3 ILC based on 2D Systems Theory

The previously mentioned ILC structures are motivated by achieving trial-to-trial er-

ror convergence, but do not fully consider stability in the trial direction. ILC can be

considered as a 2D system whose information propagating directions are both along the

trial and from trial-to-trial. Therefore, the ILC problem setup can be transferred into a

2D system framework, and then 2D systems theory can be used to develop ILC update

algorithms which not only satisfy trial-to-trial error convergence, but also achieve sta-

bility in the trial direction. Research in Roesser (1975) formulates a discrete time state

Chapter 2 Background and Literature Review 13

space model

[

xh(i+ 1, j)

xv(i, j + 1)

]

= A

[

xh(i, j)

xv(i, j)

]

+Bu(i, j)

y(i, j) = C

[

xh(i, j)

xv(i, j)

]

(2.14)

for the system dynamics over the positive quadrant of the 2D plane, where xh and xv

are the horizontal and vertical state components, and i, and j are the horizontal and

vertical coordinates. An alternative state space representation to (2.14) is given by

x(i+ 1, j + 1) = A1x(i, j + 1) +A2x(i+ 1, j) +A0x(i, j) +Bu(i, j)

y(i, j) = Cx(i, j) (2.15)

in Fornasini and Marchesini (1978). One advantage of (2.15) over (2.14) is that the state

vector is not split into horizontal and vertical sub-vectors. The information propagation

in both directions has a infinite duration in (2.15) and (2.14), but the ILC information

propagation only takes a finite number of trials and has a fixed trial length. Furthermore,

even if the plant is unstable, a closed feedback loop can be added to the system plant

to make it stable and update (2.14) and (2.15) with new closed loop system dynamics.

A number of works have studied the 2D system approach of ILC. The work in Hlad-

owski et al. (2010) considered the stability theory for linear repetitive process, and used

used the tools of linear matrix inequalities to design a robust ILC algorithm, which pro-

vided desired performance at trial-to-trial as well as along the trial. Subsequent work in

Hladowski et al. (2011) used a 2D system setting and applied ILC to the deterministic

discrete linear systems with uniform rank greater than unity. Recent work in Paszkea

et al. (2016) used the generalized KYP lemma to transform frequency domain inequities

to linear matrix inequalities, and designed a stabilized feedback controller to ensure

the performance along the trial for system with relative degree larger than unity. In

Bolder and Oomen (2016), study was made into the class of systems whose performance

variables are distinguished from measured variables. In this setting, previous ILC ap-

proaches cannot be directly implemented, and hence an ILC approach was derived in

this paper to handle this problem, whose stability is analyzed in a 2D framework.

2.2.4 High Order ILC

In some complex practical applications, it has been suggested that information from

more than one previous trial should be employed in the update to improve the system

14 Chapter 2 Background and Literature Review

performance. The resultant update law has the general form

uk+1 =
M∑

i=1

αk+1(i)uk+1−i +
M∑

i=1

βk+1(i)ek+1−i (2.16)

where αk+1 = [α1
k+1, α

2
k+1, . . . , α

M
k+1], βk+1 = [β1

k+1, β
2
k+1, . . . , β

M
k+1], and M is the num-

ber of previous trials. The parameters may be calculated by minimizing the cost function

Jk+1 = ‖ek+1‖
2 + α⊤

k+1W1αk+1 + β⊤
k+1W2βk+1 (2.17)

where W1,W2 ∈ R
M×M . The proof of the convergence properties is shown in Owens and

Feng (2003); Owens and Hatonen (2005). As high order ILC uses information from M

past trials, it is considered to provide a better output tracking performance than those

approaches which only learn from the last trial (Bien and Huh, 1989).

2.3 Optimization Based ILC Approaches

In this section, ILC algorithms that use system model information to update their input

are considered. The control system model that is generally considered is an ℓ-input,

m-output linear time-invariant system, which leads to the continuous time description

given in state space form by S(A,B,C), i.e.

ẋk(t) = Axk(t) +Buk(t),

yk(t) = Cxk(t) (2.18)

where t ∈ [0, T] is the time, xk(t) ∈ R
n, uk(t) ∈ R

ℓ and yk(t) ∈ R
m are the state, input

and output respectively; A, B and C are system matrices of compatible dimensions;

the subscript k ∈ N again denotes the trial number. The system can be represented in

equivalent operator form

yk = Guk + d (2.19)

The convolution operator G and signal d take the form

(Gu)(t) =

∫ t

0
CeA(t−s)Bu(s)ds, d(t) = CeAtx0 (2.20)

where, without loss of generality, d(t) may be absorbed into the reference to give x0 = 0,

d(t) = 0. The general ILC update law is defined by

uk+1 = uk + Lek (2.21)

Chapter 2 Background and Literature Review 15

where L : Lm
2 [0, T] → Lℓ

2[0, T] is the learning operator. Thus, from (2.19) and (2.21)

the error evolution is

ek+1 = (I −GL)ek (2.22)

where (I − GL) is the error transition operator mapping ek to ek+1. A number of

convergence conditions have been proposed, and the most general one among them is

the spectral radius condition

ρ(I −GL) < 1 (2.23)

where the spectral radius ρ(·) denotes the largest absolute value of the eigenvalues of a

square matrix or a bounded linear operator. The condition (2.23) can be implied by a

simpler contraction mapping condition

‖I −GL‖ < 1. (2.24)

which leads to

‖ek+1‖ = ‖(I −GL)ek‖ 6 ‖(I −GL)‖ ‖ek‖ < ‖ek‖ . (2.25)

Specific forms of L are now reviewed.

2.3.1 Inverse ILC

Inspection of the condition (2.24) clearly motivates choosing L as the inverse of G, so

that ek+1 = 0, ∀u > 0. The continuous time version of inverse ILC update law is

modified from Harte (2007) as

uk+1 = uk + βG−1ek (2.26)

where the scalar β is a learning gain which influences the convergence properties. The

error update equation directly follows as

ek+1 = (I − βI)ek (2.27)

by substituting L = βG−1 into (2.22). Applying the general convergence condition of

(2.24) yields

|1− β| < 1. (2.28)

It is clear that 0 < β < 2 ensures the convergence of the error. Note that the error will

converge to zero in one trial when β = 1 since

e1 = r − y1 = r −Geu1 = r −G(u0 −G−1e0) = 0. (2.29)

16 Chapter 2 Background and Literature Review

Inverse ILC can be considered as a theoretically ideal ILC algorithm. However, if the

control system is non-minimum phase, its inverse operator is unstable and cannot be

applied within this algorithm (Owens and Chu, 2014). Moreover, the exact inverse

system model always has a degree of model uncertainty in practice. See Harte et al.

(2005) for the related robustness analysis. In practice, a Q-filter can be included in the

design to remove the high frequency disturbance, and the value of β should be chosen

small enough to make inverse ILC become robust to model uncertainty and random

disturbance.

2.3.2 Gradient Descent ILC

An alternative method of guaranteeing (2.24) is to use the system adjoint operator G∗.

This leads to L = βG∗
e, which yields the update law

uk+1 = uk + βG∗ek (2.30)

where the scalar β > 0 is a learning gain. Note that the update (2.30) is also the solution

of the problem

min ‖ek+1‖
2 (2.31)

using the gradient minimization method. Substituting L = βG∗ into the general con-

vergence conditions (2.24) yields

‖I − βGG∗‖ < 1. (2.32)

Following the idea of the discrete time version in Owens et al. (2008), since GG∗ is

positive definite, the convergence condition becomes

0 < β <
2

‖GG∗‖
=

2

‖G‖2
(2.33)

Algorithms of the form (2.30) have been considered in Freeman et al. (2007).

2.3.3 Norm Optimal ILC

Norm optimal ILC can be regarded as a generalization of inverse ILC and gradient ILC.

The idea of norm optimal ILC is to calculate input signal uk+1 to minimize the cost

function

Jk+1 = ‖r −Gu‖2S + ‖u− uk‖
2
R (2.34)

at the end of each trial where S and R are weighting matrices (Amann et al., 1996a).

The minimum solution, uk+1, can be derived by applying partial differentiation to Jk+1

with respect to u. This involves the stationary point, ∂Jk+1/∂u being set to zero, leading

Chapter 2 Background and Literature Review 17

to the norm optimal ILC update law

uk+1 = uk +G∗ek+1 (2.35)

where G∗ is the adjoint operator of the system G. The corresponding error update

equation is

ek+1 = (I +GG∗)−1ek (2.36)

It can be shown that the convergence condition (2.24) is satisfied as

‖ek+1‖ 6
1

1 + σ2(GG∗)
‖ek‖ 6 ‖ek‖ (2.37)

where σ2(GG∗) is the smallest spectral radius value of symmetric, positive definite op-

erator GG∗. As (2.35) is non-causal, it can be manipulated to produce the causal

feedforward update law given by:

uk+1 = uk +G∗(I +GG∗)−1ek (2.38)

Alternatively, a feedback and feedforward implementation can be used. The causal

implementation

uk+1(t) = uk(t) +R−1B⊤[−K(t)(xk+1(t)− xk(t)) + ξk+1(t)] (2.39)

was introduced in Amann et al. (1996a); Amann (1996). Here K(t) denotes the Riccati

feedback matrix computed via

0 = K̇(t) + (A⊤ −K(t)BR−1B⊤)K(t) +K(t)A+ C⊤SC, K(T) = 0, (2.40)

and ξk+1(t) denotes the predictive feedforward term at the (k + 1)th trial, given by

0 = ξ̇k+1(t) + (A⊤ −K(t)BR−1B⊤)ξk+1(t) + C⊤Sek(t), ξk+1(T) = 0. (2.41)

In practice, the state x can be obtained either from a model run in parallel of the system

or the estimation of an observer using the real time measured data.

2.3.4 Parameter Optimal ILC

To address the fact that norm optimal ILC requires full knowledge of the system model

S(A,B,C) during the feedback and feedforward update computation procedure, a pa-

rameter optimal ILC algorithm was developed to achieve monotonic convergence by

employing a simple form to result in a simplified control law. The corresponding ILC

update law is

uk+1 = uk + γk+1ek (2.42)

18 Chapter 2 Background and Literature Review

where the scalar γk+1 is selected to optimize the cost function

Jk+1 = ‖ek+1‖
2 + ωγ2k+1 (2.43)

in which the scalar ω > 0. To yield the stationary condition, the partial derivatives of

the cost function with respect to γk, i.e. ∂Jk+1/∂γk+1, is set to zero, which corresponds

to

γk+1 =
〈ek, Gek〉

ω + ‖Gek‖
2 . (2.44)

The above solution results in the tracking error update equation

ek+1 = (I − γk+1G)ek (2.45)

where 〈·, ·〉 is the inner product and ‖·‖ is the induced norm. The associated convergence

properties are derived in Owens and Feng (2003). If (G + G⊤) is positive definite, the

error converges to zero as k tends to infinity. Otherwise, the final error converges to

some non-zero value. This framework can be applied to inverse, gradient descent and

norm optimal ILC to improve their convergence performance.

2.3.5 L-Q Optimal ILC

An alternative generalization of form (2.21) has also been considered. L-Q optimal ILC

has an update law form

uk+1 = Qopt(uk + Loptek) (2.46)

where Qopt is a filter and Lopt is a learning operator. This algorithm minimizes the cost

function

Jk = ‖r −Gu‖2S + ‖u‖2RLQ
+ ‖u− uk‖

2
R (2.47)

at each trial where RLQ ∈ S
ℓ
++, R and S are weighting matrices (Norrlof, 2000). Simi-

larly, the optimal solution uk+1 is computed by setting the partial differentiation of Jk

with respect to uk+1 to zero. The solutions Qopt and Lopt are modified from Bristow

et al. (2006) as

Qopt = (G∗G+RLQR
−1 + I)−1(G∗G+ I), Lopt = (G∗G+ I)−1G∗. (2.48)

It should be noted that the values of S and R affect both the convergence rate and the

final error norm. When k tends to infinity, the final error is

e∞ = [I −G(G∗G+ I)−1G∗]r. (2.49)

It is clear that if RLQ = 0 the error will converge to zero, and the update (2.46) collapses

to norm optimal ILC update in Section 2.3.3. If RLQ 6= 0 this algorithm can be used to

prevent actuator saturation, and it can also be applied to decrease the ILC sensitivity at

Chapter 2 Background and Literature Review 19

high frequencies in order to reduce possible equipment damage (Gunnarsson and Norrlof,

2001). Note the (2.47) is a generalization of (2.34), however the implementation (2.46)

is feedforward rather than the combined feedforward and feedback structure of (2.39).

2.3.6 Newton Method Based ILC

This approach addresses a general class of non-linear systems, and was motivated by

well-established non-linear optimization methods. The Newton approach can be written

as

xk+1 = xk −
f(xk)

f ′(xk)
(2.50)

where f
′

(xk) is the derivative of the function f(xk) with respect to vector xk. The

Newton method aims at solving f(xk) = 0. It should be noted that this method is only

valid if f
′

(xk)
−1 exists. See Ortega and Rheinboldt (2000) for more details concerning

the Newton method.

The Newton method is based upon performing a local linearization of the dynamics,

followed by a linear ILC update over the tracking error. A discrete non-linear state

space model is given in Lin et al. (2006), in the form

x(t+ 1) = f(x(t), u(t))

y(t) = h(x(t)) (2.51)

with initial state x(0) = x0. From (2.51) the algebraic relationship between input and

output over the kth trial over the finite horizon t ∈ [0, T] can be expressed as

yk(0) = h(xk(0), uk(0)) = g0(xk(0), uk(0))

yk(1) = h(xk(1), uk(1)) = h(f(xk(0), uk(0)), uk(1))

= g1(xk(0), uk(0), uk(1))

...

yk(T) = h(xk(T), uk(T))

= h(f(xk(T − 1), uk(T − 1)), uk(T))

= gN (xk(0), uk(0), uk(1), . . . , uk(T)).

(2.52)

Thus, the non-linear system (2.51) can be expressed by the algebraic function g(·) :

lℓ2[0, T] 7→ lm2 [0, T] given by

yk = g(uk), g(·) = [g0(·), g1(·), . . . , gT (·)]
⊤. (2.53)

20 Chapter 2 Background and Literature Review

The error at the kth trial is hence ek = r − g(uk). Newton method based ILC can then

be applied to solve the ILC problem by setting f(xk) to r− g(uk), which corresponds to

r − g(u) = 0. Application in (2.50) leads to the Newton method based ILC update law

uk+1 = uk − g
′

(uk)
−1ek. (2.54)

See Lin et al. (2006) for a description of the convergence properties. While Newton

based method based ILC enables application to non-linear control systems, it should be

noted that Newton based method ILC provides the same update law as the inverse ILC

algorithm when applied to a linear system.

The term g
′

(uk) is simply a linearization of the system about input uk. Hence the form

(2.54) can be replaced by the general form uk+1 = uk +Kek with K any learning-gain

operator which ensures convergence of the linearized plant model g
′

(uk). An example

is gradient ILC, where K = β(g
′

(uk))
⊤. Robust convergence properties then follow by

applying the analysis in Ortega and Rheinboldt (2000).

2.4 System Constraints of ILC

In practice, system constraints have significant relevance to industrial manufacture due

to physical limitations or performance requirements. Various constrained ILC algorithms

have been derived in the literature to solve the constrained tracking problem with a high

level of accuracy. In this section, constrained ILC algorithms with three typical system

constraints are reviewed.

2.4.1 Input Constraint

In practice the input constraint typically represents saturation of the system’s control

action. Therefore, the input u provided by the corresponding ILC update must belong to

the input constraint set Ω. Due to different practical requirement, the input constraint

set Ω may have different forms and typically assumes one of the following forms using

the notation of a signal space:

• Input saturation constraint:

Ω = {u ∈ Lℓ
2[0, T] : |u(t)| � M(t), t ∈ [0, T]}, (2.55)

• Input amplitude constraint:

Ω = {u ∈ Lℓ
2[0, T] : λ(t) � u(t) � µ(t), t ∈ [0, T]}, (2.56)

Chapter 2 Background and Literature Review 21

• Input sign constraint:

Ω = {u ∈ Lℓ
2[0, T] : 0 � u(t), t ∈ [0, T]}, (2.57)

• Input energy constraint:

Ω = {u ∈ Lℓ
2[0, T] :

∫ T

0
u⊤(t)u(t)dt 6 M} (2.58)

where the sign � means ‘precedes or equals’. The input constraint handling problem

within ILC has been studied in a large body of work, and Various constrained ILC algo-

rithms have been formulated to solve this problem using different techniques. An ILC

approach was established in Xu et al. (2005) and proved to have the ability to com-

pensate for input deadzone through control repetitions. The work in Chu and Owens

(2010); Chu et al. (2015) used the successive projection method to handle input con-

strained problems within classical ILC and point-to-point ILC respectively. In Mishra

et al. (2011), convex quadratic programing was applied to develop optimization-based

ILC schemes for input constrained linear systems. The barrier method was used in

Freeman and Tan (2013) to solve input constrained problems within point-to-point ILC.

Norm optimal optimization techniques were used in Janssens et al. (2013b) to solve in-

put constrained problems for linear time invariant systems, and further generalized in

Volckaert et al. (2013) to solve input constrained problems for nonlinear systems.

2.4.2 Output Constraint

Similarly to the previous case, the output constraint typically represents the boundary

of the acceptable moving space needed to prevent the potential overshoot problem (e.g.

causing damage to the device and reducing the product quality). In the same way, the

measured output y from the system must belong to the output constraint set, Φ. Due

to different practical conditions, the output constraint set, Φ, may also have different

forms and typically assumes one of the following forms using the notation of a signal

space:

• Output saturation constraint

Φ = {y ∈ Lm
2 [0, T] : |y(t)| � N(t), t ∈ [0, T]}, (2.59)

• Output polyhedral constraint

Φ = {y ∈ Lm
2 [0, T] : a⊤i y(t) 6 bi, ai ∈ R

m, bi ∈ R, i = 1, . . . ,M, t ∈ [0, T]}.

(2.60)

22 Chapter 2 Background and Literature Review

Unlike the input constraint handling problem, currently little research has been carried

out in the field of the output constraint handling problem within ILC. One typical ex-

ample of the research in this field is given in Jin and Xu (2013), which uses a Barrier

Lyapunov function to handle the constraints with non-parametric uncertainties satisfy-

ing the Lipchitz condition or norm boundedness.

2.4.3 State Constraint

Another significant case to be considered is the state constraint representing the limited

range of the environment change within the ILC tracking task, such as the working

temperature of the system. Similar to the previous two system constraints, the state

variable x of the system must belong to the state constraint set Υ. Due to the different

practical environmental requirements, the state constraint set, Υ may also have different

forms and typically assumes one of the following types

• State saturation constraint

Υ = {x ∈ Ln
2 [0, T] : |x(t)| � L(t), t ∈ [0, T]}, (2.61)

• State amplitude constraint

Υ = {x ∈ Ln
2 [0, T] : λ(t) � u(t) � µ(t), t ∈ [0, T]]}. (2.62)

There is scant existing research focusing on the state constrained ILC problem. One

example is given in Xu and Jin (2013), which uses a Barrier Lyapunov function to for-

mulate an ILC scheme for a state constrained non-linear MIMO system with parametric

and non-parametric uncertainties satisfying the Lipchitz condition or norm bounded-

ness. Further note that all previous research into constrained ILC only focuses on a

specific class of ILC problem with a single type of constraint, e.g. either input, output

or state constraints, and there does not exist any attempts to handle a mixed form of

constraints for a general class of systems.

2.5 Generalized ILC Task Description

In the previous sections, a wide class of ILC algorithms obeying all six postulates in

Section 2.1.1 have been reviewed. However, recent ILC work removes some of these

postulates to generalize the ILC tracking task description. For example, a varying trial

length T was studied in Li et al. (2014); Shen et al. (2016) and a random initial condition

was studied in Chi et al. (2008), which remove the first and the third postulates respec-

tively. Further note that the second postulate significantly influences the range of tasks

Chapter 2 Background and Literature Review 23

to which ILC can be applied and hence is of high practical importance. Therefore, the

second postulate is next considered and extensions concerning a non-specified reference

trajectory, r, are reviewed.

2.5.1 Terminal ILC

In traditional ILC, the control system is required to track every point in the reference

trajectory. However, tracking performance is only required at the end of the finite time

horizon, [0, T] in some particular practical applications, such as the station stop control

of a train (Y.Wang and Hou, 2011) and the temperature control of a thermoforming

oven (Gauthier and Boulet, 2008). In these applications, only the final conditions are of

interest, e.g. the stop position and final temperature, and how the output attains the

final condition is not considered.

Terminal ILC, which only specifies the reference trajectory tracking at the final time

instant T , has been formulated as an extension of classical ILC to solve this kind of ILC

problem. It was studied in Gauthier and Boulet (2008); Y.Wang and Hou (2011); Xu

et al. (1999); Xu and Huang (2008a). Compared to the classical ILC framework, terminal

ILC has more design freedom as it removes the unnecessary tracking requirements at

these not-critical time instants. However, previous research into terminal ILC has not

fully exploited the resulting design freedom to tackle an additional cost function of

practical interest whilst performing the terminal point tracking. Furthermore, papers

on terminal ILC consider only a single point-to-point movement, rather than a sequence

of actions needed to build up complex movements required in robotic automation and

production line assembly.

2.5.2 Point-to-Point ILC

In a large class of practical systems, such as industrial machines (Freeman et al., 2011),

robotic pick and place tasks (Freeman, 2012), UAV surveillance (Barton and Kingston,

2013) and stroke rehabilitation (Freeman et al., 2009), it is required that the output

achieves perfect tracking at more than one defined time instants t = ti respectively.

Therefore, point-to-point ILC was developed in Freeman et al. (2011) as an extension

of terminal ILC to solve problems which only require tracking of a number of critical

positions at a subset of time instants, i.e.

Λ = [t1, t2, . . . , tM]⊤, 0 < t1 < t2 < . . . < tM 6 T (2.63)

along the time duration without the performance of the output signal being specified

between these time instants. An illustrative example is shown in Figure 2.3, in which

the point-to-point output trajectory only tracks the critical positions along the reference

24 Chapter 2 Background and Literature Review

0 20 40 60 80 100 120 140 160 180 200

Time, t (s)

0

2

4

6

8

10

12

O
ut

pu
t T

ra
je

ct
or

y,
 y

 (
m

)

10-3

Critial Positions
Point-to-Point Output Trajectory
Reference Trajectory

Figure 2.3: Point-to-point ILC

trajectory. For a similar reason to terminal ILC, point-to-point ILC leverages significant

control design flexibility by eliminating the unnecessary output constraints. The con-

trol design freedom was exploited in Freeman (2012); Son et al. (2013) to address the

optimization of an additional cost function as well as tracking accuracy. Practical perfor-

mance of point-to-point ILC has been illustrated in a large number of applications, e.g.

high-acceleration positioning tables (Ding and Wu, 2007), robotic manipulators (Park

et al., 2006), two-mass systems (van de Wijdeven and Bosgra, 2008), electro-mechanical

systems (Freeman and Dinh, 2015) and human motor systems (Zhou et al., 2017).

The point-to-point system can be represented in equivalent operator from

ypk = Gp
Λuk (2.64)

where ypk denotes the point-to-point output, i.e.

ypk = [yk(t1), yk(t2), . . . , yk(tM)]⊤ (2.65)

and Gp
Λ denotes the point-to-point system operator. The general point-to-point ILC

update law is given by

uk+1 = uk + Lpe
p
k (2.66)

where Lp is the point-to-point learning operator, and epk is the point-to-point error at

the corresponding time instants ti, i.e.

epk = [ek(t1), ek(t2), . . . , ek(tM)]⊤, ek(ti) = r(ti)− yk(ti), i = 1, . . . ,M. (2.67)

Note that in principle several of the approaches in Section 2.3 can be adapted to solve the

point-to-point ILC problem. The corresponding point-to-point error transition operator

Chapter 2 Background and Literature Review 25

is (I −Gp
ΛLp). Similar to classical ILC, the gradient descent point-to-point ILC update

law is given in Freeman and Tan (2013), and this paper also embedded input constraints

used barrier method, however, this required substantial trials to converge. In addition,

the norm optimal point-to-point ILC update law was given in Owens et al. (2013) with

corresponding convergence conditions.

General point-to-point ILC design by employing a ‘complete’ reference that passes

through all the desired intermediate points was studied in Ding and Wu (2007); Park

et al. (2006); van de Wijdeven and Bosgra (2008). These methods, however, do not

fully exploit the extra freedom provided by the point-to-point tracking requirements.

As such, the overall system performance could be limited. This drawback was addressed

recently in Owens et al. (2013); Janssens et al. (2013b); Shen and Wang (2014); Son

et al. (2013) where the intermediate point tracking requirements are directly handled

by optimizing a quadratic performance index characterizing the tracking performance at

these intermediate points. Results containing convergence properties of these algorithms

are also available. More recently, system constraints in point-to-point ILC have been

considered Freeman (2012); Freeman and Tan (2013); Chu et al. (2015).

A reference trajectory update-based point-to-point ILC algorithm was proposed in Son

et al. (2013) to solve the point-to-point problem for discrete time systems, which not

only updates the input signal, but also updates the reference signal at each trial. It fixes

the reference at those required tracking time points, but the remaining points can be

varied. This method is able to provide faster convergence behavior than traditional ILC

methods. Application of this approach ensures the reference signal stays constant at the

point-to-point time points, and the convergence condition for this method is derived in

this paper. A direct tracking control-based point-to-point ILC algorithm was proposed in

Son et al. (2011) based on the L-Q approach, but is able to track the required reference

points from trial to trial directly without a full reference signal. This method can

also provide a faster convergence rate than traditional ILC methods. The convergence

properties of this method are also provided in this paper. In Lim and Barton (2014), a

pareto optimization based method was considered to solve the point-to-point problem,

which includes no less than two conflicting objectives within a single framework. In this

paper, a multi-objective cost function is considered. By minimizing this cost function,

an ILC updating algorithm is derived with desirable convergence conditions.

Within all these point-to-point ILC frameworks, the information of the tracking time

allocation, Λ, of these critical positions is naturally embedded within some cost function

whose optimization is implemented. Hence these cost functions are highly dependent on

the tracking time allocation, Λ. If the optimization of Λ within these cost functions can

be addressed then significant practical benefit can be realized, such as reducing the en-

ergy used, reducing the damage to machine components and increasing the efficiency of

production (i.e. throughput). However, all the aforementioned point-to-point ILC prob-

lem formulations have assumed that the critical tracking time instants, ti, are known

26 Chapter 2 Background and Literature Review

a priori, and no one has tried to expand the existing point-to-point ILC frameworks

to enable the optimal selection of the tracking time allocation, Λ. Note that existing

research has been made in Janssens et al. (2014) to address the optimal tracking time

allocation within a series of independent point-to-point robotic motions, but these inde-

pendent motions are not coupled together and the approach does not take advantage of

ILC to enable precise tracking.

2.5.3 Spatial ILC

While generalizing the ILC tracking tasks, the aforementioned ILC frameworks then

all specify temporal tracking. However, a class of tracking problems has emerged in

which the task comprises following a path defined in space with no a priori temporal

constraints. By removing the unnecessary temporal tracking constraints, the design

freedom of this ‘spatial’ tracking problem setup can yield significantly better tracking

performance in practice. This problem has been studied in Xu and Huang (2008b);

Verscheure et al. (2009); Lippa and Boyd (2014), but these approaches did not employ

any form of ILC. ILC has been applied to spatial tracking problems by defining a pa-

rameter set in space which is then used to update the input signal through some form

of spatio-temporal mapping.

A 2D corner tracking problem was considered in Moore et al. (2007). Here the minimum

distance to the corner is measured, and used to switch on or off the corresponding motor

(operating in a constant velocity mode) in a spatial ILC framework, i.e.

uk+1(Pr) = uk(Pr) + f(ǫ(Prf)) (2.68)

where Pr denotes the ‘progress’, Prf denotes the ‘future progress’ and ǫ denotes the

spatial error. This is the first paper to propose a spatial ILC approach and confirmed

its advantage in terms of accurate tracking and simple implementation. However, it is

limited by its system class, task and lack of global optimality (due to use of a single

spatial parameter).

Subsequent research in Sahoo et al. (2007) applied a similar scheme to the torque ripple

minimization problem in a switch reluctance motor. A P-type spatial ILC algorithm

was proposed, i.e.

uk+1(θ) = uk(θ) + γT err
k (θ) (2.69)

where θ denotes the rotor position, γ denotes the learning gain and T err
k denotes the

spatial error. This algorithm used the torque error at each rotor position to update the

input voltage, which reduced the periodic varying torque ripple at the rotor positions.

Although this algorithm provides an elegant and simple implementation, it is restricted

to 1D tracking tasks without achieving any additional global objective.

Chapter 2 Background and Literature Review 27

Recently, work in Hoelzle and Barton (2016) used spatial ILC to increase the tracking

performance of a specific system class, i.e. additive manufacturing, with spatial steady

state output variable coupling. Due to the specific tracking requirement, i.e. steady state

tracking variables, they eliminated the unnecessary temporal information by redefining

the system parameters in spatial coordinates via 2D convolution reconstruction, and

reformulated the following spatial ILC update law:

uk+1 = Lu(x−m, y − n)uk(x, y) + Le(x−m, y − n)ek(x, y) (2.70)

where Lu and Le are the impulse responses of the two learning filters, uk(x, y), ek(x, y)

are spatial input, error signals, and x, y are spatial coordinates. Furthermore, they

formulated different forms of spatial ILC algorithms, e.g. P-type, model inversion, Q-

filter and norm-optimal, in both lifted and frequency domain representations. In a large

class of spatial tracking tasks, the temporal information is assumed as a variable rather

than specified as a priori, and this information indeed plays an significant role in the

task specification. However, this ILC framework inherently differs from previous spatial

research due to the elimination of temporal information, and its application is restricted

to specific tracking tasks without the specification of temporal variables.

From the above literature review, it is clear that all previous implementation of spatial

ILC are application specific, and none has attempted to propose a generalized version of

spatial ILC which is applicable to a wide range of system classes. In addition, all focus

on purely achieving the path tracking, and have not fully harnessed the design freedom

of spatial ILC to optimize an additional cost function while following the defined path.

Research in Janssens et al. (2013a) attempted to minimize the total time of repeated

path tracking task within a 2D plane, but it updated the system model at each trial

which caused a change in controller parameters. Furthermore, it could not be generalized

to an arbitrary form of cost function and incurred a high computation load.

2.6 Summary

In this chapter, the concept of ILC has been first summarized together with the six pos-

tulates made in Arimoto et al. (1984b). Its advantages over traditional control methods

and potential problems on both theoretical and practical sides have been reviewed. Then

some leading ILC design frameworks were introduced, and particularly optimization

based ILC algorithms have been examined and a study of their operation and conver-

gence conditions has been made. In addition, the recent research on the generalization

of ILC task description with a non-specified reference trajectory over the finite horizon

[0, T] has been reviewed. Note that many classical ILC algorithms can be modified

to apply to terminal ILC and point-to-point ILC. The advantages of these extended

28 Chapter 2 Background and Literature Review

ILC frameworks over the classical ILC framework has been highlighted in terms of the

flexibility within their control design.

From the above literature, it is clear that limitations exist related to the fixed tracking

time allocation of the critical positions within point-to-point ILC. These drawbacks

motivate the further expansion of the current point-to-point ILC framework to allow

extra flexibility of the tracking time allocation, which guarantees an optimal cost function

as well as perfect tracking. Also, limitations exist in the field of constrained ILC in terms

of generality. These drawbacks motivate work to formulate a generalized ILC framework

applicable to various ILC design problems and a general class of systems with a mixed

form of system constraints. Limitations have also been found associated with the design

freedom exploitation as well as application range of existing spatial ILC frameworks.

These drawbacks hence provide strong motivation for the spatial ILC framework to

be expanded and generalized to allow extra flexibility in the selection of tracking time

allocation of each position along the path within a general class of systems.

Chapter 3

Point-to-Point ILC with Optimal

Tracking Time Allocation

In point-to-point ILC, only a subset of critical tracking positions, {ri}, are of interest,

and the tracking time allocation of the critical positions is generally embedded within a

cost function whose optimization is implemented in the ILC framework. Hence this cost

function is highly dependent on the tracking time allocation within the point-to-point

ILC tracking problem. However, all existing point-to-point ILC problem formulations,

including those introduced in Section 2.5.2, have assumed the tracking time allocation is

known a priori. This hence motivates the expansion of the point-to-point ILC framework

to allow flexibility in the tracking time allocation, with its input also updated to achieve

the overall point-to-point control objective.

This chapter develops a comprehensive optimal tracking time allocation framework

(‘Two Stage’ design framework) within point-to-point ILC to allow automatic selection

of the tracking time instants to optimize some performance objective of interest and,

at the same time, achieve high performance tracking at the chosen critical positions.

In doing so, significant practical benefit is realized, such as reducing the energy used,

reducing the damage to machine components and increasing the efficiency of production

(i.e. throughput).

3.1 Formulation of the Problem

In this section, the design problem is formulated rigorously into an optimization problem

using an abstract operator form representation of system dynamics in some Hilbert space.

29

30 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

A linear time-invariant continuous time state space model

ẋk(t) = Axk(t) +Buk(t),

yk(t) = Cxk(t) (3.1)

is considered, where t ∈ [0, T] is the time, xk(t) ∈ R
n, uk(t) ∈ R

ℓ and yk(t) ∈ R
m are

the state, input and output respectively; A, B and C are system matrices of compatible

dimensions; the subscript k ∈ N denotes the trial number. The system can be represented

in equivalent operator form

yk = Guk + d (3.2)

where G : Lℓ
2[0, T] → Lm

2 [0, T], yk, d ∈ Lm
2 [0, T], uk ∈ Lℓ

2[0, T] and the input

and output Hilbert spaces Lℓ
2[0, T] and Lm

2 [0, T] are defined with inner products and

associated induced norms

〈u, v〉R =

∫ T

0
u⊤(t)Rv(t)dt, ‖u‖R =

√

〈u, u〉R, (3.3)

〈x, y〉S =

∫ T

0
x⊤(t)Sy(t)dt, ‖y‖S =

√

〈y, y〉S (3.4)

in which R ∈ S
ℓ
++ and Q ∈ S

m
++ are symmetric positive definite matrices. The convolu-

tion operator G and signal d take the form

(Gu)(t) =

∫ t

0
CeA(t−s)Bu(s)ds, d(t) = CeAtx0 (3.5)

where, without loss of generality, d(t) may be absorbed into the reference to give x0 = 0,

d(t) = 0.

3.1.1 Point-to-Point ILC Framework

In point-to-point ILC, it is assumed that there are M critical points to be tracked during

the whole time interval, [0, T]. The tracking time allocation of these points is given by

Λ = [t1, t2, . . . , tM]⊤ (3.6)

where 0 < t1 < t2 < . . . < tM 6 T . Consider a signal ζ ∈ Lm
2 [0, T] and define the linear

mapping ζ ∈ Lm
2 [0, T] 7→ ζp ∈ H defined as

ζp =









ζ(t1)

ζ(t2)
...

ζ(tM)









(3.7)

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 31

where H is a Hilbert space denoted by

H = R
m × · · · × R

m

︸ ︷︷ ︸

M times

(3.8)

with inner product and associated induced norm

〈ω, µ〉[Q] =

M∑

i=1

ω⊤
i Qiµi, ‖ω‖[Q] =

√

〈ω, ω〉[Q] (3.9)

where

ω = [ω1, . . . , ωM]⊤ ∈ H, µ = [µ1, . . . , µM]⊤ ∈ H;

and [Q] denotes the data set {Q1, Q2, . . . , QM} where for i = 1, . . . ,M each Qi ∈ S
m
++

is a positive definite matrix. Using this notation, the plant output corresponding to

tracking time allocation Λ is given by

yp = (Gu)p. (3.10)

Since G is linear, this can be further written as

yp = Gp
Λu = (Gu)p =









G1u

G2u
...

GMu









(3.11)

where Gp
Λ : Lℓ

2[0, T] → H is a linear operator with each component Gi : L
ℓ
2[0, T] → R

m

defined by

Giu =

∫ ti

0
CeA(ti−t)Bu(t)dt. (3.12)

In point-to-point ILC theory, only tracking of the output signal at each critical time

instant, ti, is required. As the number of trials tends to infinity, the point-to-point

output, ypk, is required to converge to the point-to-point reference, rp, (the point-to-

point error epk = rp − ypk converges to 0) and the input, uk, converges to a unique value,

u∗, i.e.

lim
k→∞

ypk = rp, lim
k→∞

uk = u∗. (3.13)

3.1.2 Point-to-Point ILC with Optimal Tracking Time Allocation

The problem of point-to-point ILC with optimal tracking time allocation can be formu-

lated by firstly considering the tracking time allocation as a variable, i.e. Λ ∈ Θ, where

Θ is the admissible set of tracking time allocation

Θ = {Λ ∈ R
M : 0 < t−1 6 t1 6 t+1 6 t−2 6 t2 6 t+2 6 . . . 6 t+M = T} (3.14)

32 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

in which [t−i , t
+
i] defines the (allowed) allocation interval for ti representing the require-

ments on enforcing process timing and synchronization constraints necessary to complete

the task, i.e. t−i and t+i are the lower and upper bounds of the time instant ti. Note

that the choice of set Θ restricted the tracking time allocation to a subspace of the space

R
M , which reduces the complexity of the problem.

The Point-to-Point ILC with Optimal Tracking Time Allocation Problem can

then be defined as iteratively finding a tracking time allocation, Λk, and an input, uk,

with the asymptotic property that the output values at these time instants, i.e. ypk,

accurately pass through a set of desired points, rp, with

lim
k→∞

ypk = rp,

at the same time minimizing a target cost function f(u, y) as a function of the system

input u and output y, i.e.

lim
k→∞

(uk, yk, Λk) = (u∗k, y∗k, Λ∗
k)

where u∗k, y
∗
k and Λ∗

k are optimal solutions of the problem

minimize
u,y,Λ

f(u, y)

subject to rp = Gp
Λu,

y = Gu,

Λ ∈ Θ.

(3.15)

Note that this problem formulation comprises a significant expansion of the current

point-to-point ILC framework by exploiting the flexibilities in choosing the tracking

time allocation, Λ, to optimize some performance of interest in addition to the tracking

requirement. This however, as will be seen later, introduces substantial difficulties in

algorithm design, which will be addressed in the following sections.

Remark 3.1. The index f(u, y) represents the designer’s requirements on the perfor-

mance and should be chosen according to the specific application. As an example, if it

is required to minimize the peak input, f(u, y) can be chosen as

f(u, y) = ‖u‖∞;

if it requires the system to minimize a function of the output, e.g. acceleration of a

robotic movement, f(u, y) can be chosen as

f(u, y) = ‖g(y)‖S

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 33

where the function g(y) computes the output acceleration. In this chapter, for simplicity,

the performance index f(u, y) is chosen as a convex function of u and y. Note that this

encompasses many real life applications.

Remark 3.2. It is worth pointing out that the general problem formulation in Hilbert

space makes it possible for the techniques used in this chapter to be further extended

to other systems, e.g. linear discrete time systems, switched linear systems and linear

differential systems, the details of which however will differ and are not described in this

chapter.

3.2 A Two Stage Design Framework

In this section, a two stage design framework is developed to solve the above point-

to-point ILC design with optimal tracking time allocation problem. Note that while

the tracking time allocation, Λ, does not explicitly appear in the performance index

f(u, y), they are connected by the tracking requirement Gp
Λu = rp in a nonlinear manner.

Furthermore, the input, u, lies in an infinite dimensional space, Lℓ
2[0, T], and the tracking

time allocation, Λ, lies in the finite dimensional space, Θ. The above aspects make the

problem (3.15) non-trivial.

3.2.1 Framework Description

Optimization problem (3.15) can be written equivalently as

min
Λ∈Θ

{

min
u

f(u, y), subject to Gp
Λu = rp, y = Gu

}

(3.16)

by optimizing over u first and then optimizing over Λ. Define the function f̃ of Λ by

f̃(Λ) = min
u

{
f(u, y), subject to Gp

Λu = rp, y = Gu
}
,

and denote a global minimizer for u of the inner optimization problem (3.16) as u∞(Λ) :

Θ → Lℓ
2[0, T], the optimization problem (3.16) is then equivalent to

min
Λ∈Θ

{f̃(Λ) := f(u∞(Λ), Gu∞(Λ))}. (3.17)

It follows that the point-to-point ILC with optimal tracking time allocation problem can

be solved using the following two stage design framework:

34 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

• Stage One: Fix the tracking time allocation, Λ, and solve the inner optimal prob-

lem (3.16), i.e.

minimize
u,y

f(u, y)

subject to rp = Gp
Λu,

y = Gu.

(3.18)

• Stage Two: Substitute the solution u∞(Λ) of the problem (3.18) into the original

optimization problem (3.16) and then solve the resulting optimization problem

(3.17) to compute the optimal tracking time allocation, i.e.

min
Λ∈Θ

{f̃(Λ) := f(u∞(Λ), Gu∞(Λ))}. (3.19)

To exemplify the approach, the control effort is selected to be the target performance

index in this chapter, so that f(u, y) = ‖u‖2R. This guarantees the existence of a unique

global minimizer for the inner optimization problem within (3.16), and the resulting

optimization problems in Stage One and Two become

minimize
u

‖u‖2R

subject to rp = Gp
Λu,

(3.20)

and

min
Λ∈Θ

{f̃(Λ) := ‖u∞(Λ)‖2R} (3.21)

respectively. Note that as the output, y, does not appear in the performance index,

therefore the second constraint in problem (3.18), i.e. y = Gu, is not needed in opti-

mization problem (3.20). It is worth pointing out that other performance indices rather

than the input energy can also be used with no change in the form of the two stage

design framework - the implementation of the resulting algorithms however will differ

from those described in subsequent sections of this chapter.

As dictated by the ILC framework, the two stages must involve the use of experimental

data in order to embed robustness against model uncertainties. Before this is discussed

in detail in the next section, the solution of this two stage design framework is given

below.

3.2.2 Solution of the Proposed Framework

3.2.2.1 Solution of Stage One Optimization Problem

For a given tracking time allocation Λ, the Stage One optimization problem is in fact a

point-to-point ILC design problem with a minimum control energy requirement. This

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 35

can be solved efficiently using the point-to-point norm optimal ILC algorithm with a

special initial input choice, as shown next.

Theorem 3.3. If the system S(A,B,C) is controllable and C has full row rank, the

Stage One optimization problem (3.20) for a given tracking time allocation Λ can be

solved by the norm-optimal point-to-point ILC algorithm

uk+1 = argmin
u

{‖ep‖2[Q] + ‖u− uk‖
2
R} (3.22)

proposed in Owens et al. (2013) with initial input u0 = 0, such that

u∞ = lim
k→∞

uk.

The iterative solution is given by

uk+1 = uk +Gp∗
Λ (I +Gp

ΛG
p∗
Λ)−1epk (3.23)

where Gp∗
Λ : (ω1, ..., ωM) ∈ H → u ∈ Lℓ

2[0, T] is the Hilbert adjoint operator of Gp
Λ defined

by

u(t) = R−1B⊤p(t), ṗ(t) = −A⊤p(t),

p(T) = 0, p(ti−) = p(ti+) + C⊤Qiωi, i = 1, . . . ,M (3.24)

with p denoting the costate vector and R, Qi denoting the weighting matrices of tracking

requirement, and the Mm×Mm matrix Gp
ΛG

p∗
Λ has a block structure with (i, j)th block

GiG
∗
j =

∫ min(ti,tj)

0
CeA(ti−t)BR−1B⊤eA

⊤(ti−t)C⊤Qjdt. (3.25)

Furthermore, an analytic solution can be obtained for u∞(Λ) as follows

u∞(Λ) = Gp∗
Λ (Gp

ΛG
p∗
Λ)−1rp. (3.26)

Proof. The proof uses components of Owens et al. (2013) and is described in detail

below. On the (k+1)th trial, the norm-optimal point-to-point ILC algorithm solves the

optimization problem

min
u

{‖ep‖2[Q] + ‖u− uk‖
2
R : ep = rp − yp, yp = Gp

Λu} (3.27)

to obtain the control input, uk+1. The problem (3.27) has an identical structure to the

norm-optimal ILC problem described in Amann et al. (1996b), with the only difference

36 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

being the definitions of the operators, signals and underlying Hilbert spaces. Therefore,

the iterative solution can be expressed as

uk+1 = uk +Gp∗
Λ epk+1 ⇒ epk+1 = (I +Gp

ΛG
p∗
Λ)−1epk (3.28)

which gives rise to (3.23).

It is proved in Owens et al. (2013) that if a system is controllable and C has full row

rank, the reference, rp, can be tracked exactly and the sequence, {uk}, exists a limit, i.e.

lim
k→∞

epk = 0, lim
k→∞

uk = u∞.

The algorithm converges to the minimum control energy that achieves the perfect track-

ing requirement if u0 = 0. Hence the Stage One optimization problem (3.20) can be

solved by the norm-optimal point-to-point ILC algorithm.

The relevant adjoint operator Gp∗
Λ is obtained in Owens et al. (2013) from

〈
(ω1, ..., ωM), Gp

Λu
〉

[Q]
=

〈
Gp∗

Λ (ω1, ..., ωM), u
〉

R
(3.29)

which gives rise to

(G∗
iωi)(t) =

{

R−1B⊤eA
⊤(ti−t)C⊤Qiωi, 0 6 t 6 ti,

0, t > ti.
(3.30)

The equation (3.30) can be further written as

(G∗
i ωi)(t) = R−1B⊤pi(t) (3.31)

where pi(t) = 0 on (ti, T], and on [0, ti)

ṗi(t) = −A⊤pi(t), pi(ti−) = C⊤Qiωi. (3.32)

Adjoint operator Gp∗
Λ is the map (ω1, ..., ωM) 7→ u defined by

u(t) =
M∑

i=1

(G∗
iωi)(t) = R−1B⊤p(t) (3.33)

where p(t) =
∑M

i=1 pi(t). Due to the linearity, these equations yield the costate equation

modified by ‘jump conditions’ at time ti, which generates the definition (3.24) of the

adjoint operator Gp∗
Λ . Therefore, the (i, j)th block of the matrix Gp

ΛG
p∗
Λ can be computed

as the equation (3.25).

To solve the optimization problem (3.20) analytically, the associated Lagrangian expres-

sion is given by

L(u) = ‖u‖2R + 2
〈
λ, Gp

Λu− rp
〉

[Q]
. (3.34)

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 37

Following the method introduced in Amann (1996), let u∞ be the global optimal u that

minimize L and there exists

L(u∞) 6 L(u∞ + τ), ∀ τ ∈ Lℓ
2[0, T] (3.35)

which can be equivalently written as

L(u∞ + τ)− L(u∞) = ‖τ‖2R + 2 〈u∞, τ〉R + 2
〈
λ,Gp

Λτ
〉

[Q]

= ‖τ‖2R + 2
〈
u∞ +Gp∗

Λ λ, τ
〉

R
> 0,∀ τ ∈ Lℓ

2[0, T]. (3.36)

Substitute τ = −(u∞ +Gp∗
Λ λ) into (3.36) to obtain

−
∥
∥u∞ +Gp∗

Λ λ
∥
∥2

R
> 0. (3.37)

It follows that the inequality condition in (3.37) only holds when u∞ = −Gp∗
Λ λ which

satisfies the condition (3.35) for all τ ∈ Lℓ
2[0, T]. Then recall the tracking requirement

to construct

{

Gp
Λu∞ = rp

u∞ = −Gp∗
Λ λ

(3.38)

which yields Gp
ΛG

p∗
Λ λ = −rp. As the matrix Gp

ΛG
p∗
Λ is invertible (as it does not have

zero eigenvalue), it follows that λ = −(Gp
ΛG

p∗
Λ)−1rp, which together with u∞ = −Gp∗

Λ λ

give rise to the analytic solution (3.26).

Note that the system controllability condition can be satisfied without difficulty as a

controllable state space model can always be constructed for a given system and the

requirement C has full row rank is not restrictive either as this simply implies no output

component can be constructed from others, i.e. there is no redundant output, and is

therefore assumed to hold for the rest of the thesis.

3.2.2.2 Solution of Stage Two Optimization Problem

With the analytic solution of Stage One optimization problem, the Stage Two optimiza-

tion problem (3.21) can be further simplified as shown in the following lemma.

Lemma 3.4. Based on the analytic solution (3.26) of Stage One optimization problem,

the Stage Two optimization problem (3.21) can be expressed as

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈
rp, (Gp

ΛG
p∗
Λ)−1rp

〉

[Q]
. (3.39)

38 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

Proof. Substituting the analytic solution (3.26) into the problem (3.21) and using the

property of adjoint operator gives

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈(u∞(Λ), u∞(Λ)〉R

= min
Λ∈Θ

〈
(Gp∗

Λ (Gp
ΛG

p∗
Λ)−1rp, Gp∗

Λ (Gp
ΛG

p∗
Λ)−1rp

〉

R

= min
Λ∈Θ

〈
Gp

ΛG
p∗
Λ (Gp

ΛG
p∗
Λ)−1rp, (Gp

ΛG
p∗
Λ)−1rp

〉

[Q]

= min
Λ∈Θ

〈
rp, (Gp

ΛG
p∗
Λ)−1rp

〉

[Q]

which completes the proof.

Solving the above Stage Two optimization problem, however, is non-trivial except for

the special case of M = 1, i.e. there is only one tracking point,in which case the solution

can be obtained analytically, as shown in the following theorem.

Theorem 3.5. When there is only one tracking point, i.e. M = 1, the solution of the

Stage Two optimization problem (3.39) is

Λ∗ = T.

The corresponding minimum energy is

min
Λ∈Θ

‖u∞(Λ)‖2R =
〈
rp, Ψ−1

T rp
〉

[Q]

where

Ψt =

∫ t

0
CeA(t−s)BR−1(CeA(t−s)B)⊤ds.

Proof. For M = 1, there is only one time-point and thus Λ = t1 ∈ R. Denote Ψt1 =

Gp
t1
Gp∗

t1
which can be explicitly written as

Ψt1 =

∫ t1

0
CeA(t1−t)BR−1(CeA(t1−t)B)⊤dt. (3.40)

The Stage Two optimization problem becomes

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈
rp, Ψ−1

t1
rp
〉

[Q]
. (3.41)

For any x, it can be shown

〈x, (ΨT −Ψt1)x〉[Q] = 〈x,

∫ T

t1

CeA(t1−t)BR−1(CeA(t1−t)B)⊤dtx〉[Q] > 0,

so it follows that

Ψt1 6 ΨT , ∀ t−1 6 t1 6 t+1 = T.

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 39

The above properties of positive operators yield Ψ−1
t1

> Ψ−1
T , and therefore

〈
rp, Ψ−1

t1
rp
〉

[Q]
>

〈
rp, Ψ−1

T rp
〉

[Q]
. (3.42)

It follows that t1 = t+1 = T is an optimum of the Stage Two optimization problem,

which completes the proof.

Theorem 3.5 shows that when M = 1, Λ∗ = T is always an optimal choice in terms of

minimizing the control input energy - this is not surprising as this allows the system

output to change gradually to the desired position and thus less control energy can

be expected. However, when M > 1, the performance index is generally non-linear

and non-convex with respect to the tracking time allocation, Λ, leading to significant

difficulties in solving Stage Two optimization problem (3.39). This is addressed in the

following theorem using a gradient based algorithm.

Theorem 3.6. For M > 2, Stage Two optimization problem (3.39) can be solved using

the gradient based iterative method

Λj+1 = PΘ(Λj − γj∇f̃(Λj)) (3.43)

where j ∈ N denotes the updating iteration (loop) number, ∇f̃(Λj) ∈ R
M is the gradient

of the function f̃ , PΘ(·) denotes the projection operator, i.e.

PΘ(x) = argmin
z∈Θ

‖x− z‖2 ,

and γj > 0 is a step size chosen by the generalized Armijo rule in Armijo (1966), i.e.

γj = βmkγ (3.44)

where mk is the smallest non-negative integer such that

f̃(Λj+1)− f̃(Λj) 6 σ(∇f̃(Λj))
⊤(Λj+1 − Λj) (3.45)

and σ, β, γ are constant scalars with 0 < σ < 1, 0 < β < 1, γ > 0. The resulting

sequence {f̃(Λj)} decays to a limit f̃∗, i.e.

f̃(Λj+1) 6 f̃(Λj), and lim
j→∞

{f̃(Λj)} = f̃∗ (3.46)

and the sequence {Λj} satisfies

lim
j→∞

‖Λj − Λj+1‖ = 0 (3.47)

with every limit point z of the sequence {Λk} a stationary point for problem (3.39), i.e.

z = PΘ(z −∇f̃(z)). (3.48)

40 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

Proof. To prove Theorem 3.6, the following lemma is needed.

Lemma 3.7. Bertsekas (1976) Let {Λk} be a sequence generated by Λj+1 = PΘ(Λj −

γj∇f(Λj)) where

Θ = {Λ ∈ R
M : λi 6 ti 6 µi, i = 1, . . . ,M}, (3.49)

and let γj be chosen according to the generalized Armijo step size (3.44). Then every

limit point of the sequence {Λk} is a stationary point for problem (3.39).

In this chapter, the admissible set Θ satisfies the constraint set requirement (3.49), and

the gradient projection method (3.43) with generalized Armijo step size (3.44) is used in

Theorem 3.6. Using this theorem, all the assumptions in Lemma 3.7 are satisfied, and

hence the sequence {Λk} converges to a stationary point of the problem (3.39).

It is noted that being a stationary point satisfying (3.48) is a necessary condition of a

(possibly locally) minimum point. Note that the function f̃(Λ) is bounded below and Θ

is a compact set. Therefore, the (global) minimum of the optimization problem exists

and is a stationary point. When the problem only has one such point, it must be the

minimum. In this case, the above algorithm converges to the global minimum solution

following results in Goldstein (2012), i.e. the best result that can be achieved.

Remark 3.8. It is worth pointing out that other step size choices are also possible, e.g.

constant step size (Goldstein, 2012)

0 < µ 6 γ 6
2(1− µ)

L
, (3.50)

where L > 0 is the Lipschitz constant of f̃(Λ) on Θ and µ ∈ (0, 2/(2 + L)] is a positive

scalar, and the projected Barzilai-Borwein step size (Birgin et al., 2000)

γj =
〈∆xj, ∆gj〉

〈∆gj , ∆gj〉
, or γj =

〈∆xj, ∆xj〉

〈∆xj, ∆gj〉
(3.51)

where ∆xj = Λj − Λj−1, ∆gk = ∇f̃(Λj)−∇f̃(Λj−1). Using these step size choices, the

convergence properties will be different from those stated in the above theorem and are

omitted here for brevity.

3.2.3 A Numerical Example

In this subsection, a numerical example is presented to verify the results in Theorem 3.5

for one tracking point, and to illustrate the design difficulties when there are more than

one tracking point. Consider the following system model

Gz(s) =
15.8869(s + 850.3)

s(s2 + 707.6s + 3.377 × 105)
(3.52)

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

First Point, t
1
 (s)

0

2

4

6

8

10

12

In
pu

t E
ne

rg
y

Input Energy
Minimum Energy

Figure 3.1: Input Energy f̃(Λ) for a Single Point Case (M = 1).

which is used in Hladowski et al. (2011) with a proportional feedback gain of 100 to

model the gantry robot system employed in Section 3.5.1. Firstly, it is supposed that

M = 1, i.e. there is only one tracking point, the trial length is T = 2s, and the tracking

reference is rp = 0.01. The admissible set of tracking time allocation Θ in (3.14) is

defined by the parameters t+1 = 2s and t−1 = 0.01s. The input energy at a particular

time allocation t1 can be computed analytically using equations (3.40) and (3.41), and

the result is plotted in Figure 3.1. It is clear from this figure that the minimum input

energy is achieved at t1 = T , verifying the theoretical prediction in Theorem 3.5.

Second Point, t
2
 (s)

1

1.2

1.4

1.6

1.8

21
0.8

First Point, t
1
 (s)

0.6
0.4

0.2
0

103

102

In
pu

t E
ne

rg
y 11.2

t
2
 (s)

1.41.61.8

120

125

130

135

140

115

In
pu

t e
ne

rg
y

t
1
-

t
1
+ t

2
+

t
2
-

Figure 3.2: Input Energy f̃(Λ) at Multiple Point Case (M = 2).

Now suppose M = 2, the trial length stays the same as T = 2s, and the tracking

reference is given by rp = [0.01, 0.008]⊤. Furthermore, the admissible set of tracking

time allocation Θ in (3.14) is defined by parameters t+1 = 1s, t+2 = 2s, t−1 = 0.01s, and

t−2 = 1.01s. The required input energy to achieve the design tracking task as a function

42 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

of tracking time instants t1 and t2 is plotted in Figure 3.2. It is clear from this figure

(the zoomed-in cross section area) that f̃(Λ) is non-linear and non-convex with respect

to Λ, indicating the difficulties in solving Stage Two problem (3.39). In this case the

algorithm in Theorem 3.6 can be applied to solve this problem, the results of which will

be verified experimentally later in Section 3.5.

3.3 Implementation of the Design Approach

In the previous section, a two stage design framework was proposed. Its implementation

is now discussed in detail.

3.3.1 Implementation of Stage One Design

The general update (3.23) of Stage One design can be either computed directly using

the analytic solution (3.26), or implemented experimentally using the following feedback

plus feedforward algorithm.

Proposition 3.9. The Stage One update (3.23) can be implemented using the feedfor-

ward plus feedback implementation

uk+1(t) = uk(t) +R−1B⊤pk(t) (3.53)

with

pk(t) = −K(t)(xk+1(t)− xk(t)) + ξk+1(t) (3.54)

where pk denotes the costate, K(t) denotes the Riccati feedback matrix

0 = K̇(t) + (A⊤ −K(t)BR−1B⊤)K(t) +K(t)A,

K(T) = 0,

K(ti−) = K(ti+) + C⊤QiC, i = 1, . . . ,M, (3.55)

and ξk+1(t) denotes the predictive feedforward term given at the (k + 1)th trial by

0 = ξ̇k+1(t) + (A⊤ −K(t)BR−1B⊤)ξk+1(t),

ξk+1(T) = 0,

ξk+1(ti−) = ξk+1(ti+) + C⊤Qiek(ti), i = 1, . . . ,M. (3.56)

Proof. The ILC update (3.23) is equivalent to

uk+1(t) = uk(t) + (Gp∗
Λ epk+1)(t), (3.57)

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 43

and (Gp∗
Λ epk+1)(t) can be written as

(Gp∗
Λ epk+1)(t) = R−1B⊤pk(t),

ṗk(t) = −A⊤pk(t),

pk(T) = 0,

pk(ti−) = pk(ti+) + C⊤Qiek+1(ti), (3.58)

according to the costate equation (3.24). Hence (3.57) becomes

uk+1(t) = uk(t) +R−1B⊤pk(t). (3.59)

Then substitute the equation

pk(t) = −K(t)(xk+1(t)− xk(t)) + ξk+1(t) (3.60)

into the jump condition at ti of costate equation (3.58) to give

−(K(ti+)−K(ti−))(xk+1(ti)−xk(ti))+(ξk+1(ti+)−ξk+1(ti−)) = C⊤Qiek+1(ti) (3.61)

and the error ek+1(ti) can be further equivalently written as

ek+1(ti) = ri − yk+1(ti) = ek(ti)− C(xk+1(ti)− xk(ti)). (3.62)

Hence (3.61) and (3.62) give rise to the jump conditions at ti in (3.55) and (3.56). Then

use the method proposed in Amann (1996) to differentiate (3.54) at any point t not in

Λ and substitute for ẋk and ẋk+1. These provide the Riccati and predictive differential

equations given in (3.55) and (3.56).

It it worth pointing out that although both implementation methods can solve the Stage

One optimization problem, the feedback plus feedforward implementation has potential

robust performance (due to the introduction of state feedback) when applied to the true

plant (more details can be found in Owens et al. (2013)), and therefore is preferable in

practice.

3.3.2 Implementation of Stage Two Design

The Stage Two gradient based design method (3.43) involves two steps: a gradient

update step and a projection step. The gradient update step is

Λ̃j+1 = Λj − γj∇f̃(Λj)

where the selection of γj is dictated by (3.44) and Λ̃j+1 denotes the intermediate solution

obtained for the gradient update step at the jth loop. The gradient can either be

44 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

computed analytically using (3.39), or using a computationally efficient estimation

∂f̃

∂ti

∣
∣
∣
∣
Λj

=
f̃(Λi+

j)− f̃(Λi−
j)

2∆T
(3.63)

where Λi+
j = [tj1, t

j
2, . . . , t

j
i+∆T, . . . , tjM]⊤ and Λi−

j = [tj1, t
j
2, . . . , t

j
i−∆T, . . . , tjM]⊤, and

∆T ∈ R is a sufficiently small number. It should be noted that both analytic calculation

and experimental testing can be used to compute the fixed tracking time allocation’s

optimal energy f̃(Λi+
j) and f̃(Λi−

j) in (3.63). The projection step is performed to obtain

the tracking time allocation Λj+1 for the next loop based on Λ̃j+1, i.e.

Λj+1 = PΘ(Λ̃j+1) = argmin
Λ∈Θ

‖Λ− Λ̃j+1‖.

Note that this can be formulated into the following quadratic programming (QP) prob-

lem
minimize

Λ
‖Λ− Λ̃j+1‖

2

subject to ÂΛ− b � 0

where Â = [I,−I]⊤, b = [t+1 , ..., t
+
M ,−t−1 , ...,−t−M]⊤ and the symbol � denotes the

component-wise inequality. This QP problem can be solved efficiently using standard

QP solvers, e.g. using Matlab function quadprob.

As an iterative algorithm, the choice of initial tracking time allocation Λ0 may affect the

algorithm’s convergence performance, as in most non-linear and non-convex optimization

problems. Therefore, three methods are now proposed to provide an appropriate initial

tracking time allocation for the algorithm to get better system performance.

3.3.2.1 Central initial tracking time allocation

In this method, all the initial tracking points are specified in the center of their time

intervals, and the initial tracking time allocation is hence

Λc
0 = [tc1, tc2, . . . , tcM]⊤ (3.64)

where tci = (t−i + t+i)/2.

3.3.2.2 Greedy initial tracking time allocation

This method is defined by Algorithm 3.10 which takes M ‘greedy’ steps to obtain the

greedy initial tracking time allocation

Λg
0 = [tg1, tg2, . . . , tgM]⊤ (3.65)

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 45

based on the central initial tracking time allocation, Λc
0. Each ‘greedy’ step only com-

putes a single optimal time-point, t∗i , and the other time-points are treated as constants,

i.e. t∗1, . . . , t
∗
i−1 and tci+1, . . . , t

c
M . Algorithm 3.10 requires some additional computations

but tries to provide a better initial tracking time allocation, Λg
0, compared to Λc

0.

Algorithm 3.10. Given system state space model, S(A,B,C), desired tracking refer-

ence, rp, central initial tracking time allocation, Λc
0 and admissible set of tracking time

allocation, Θ, the following steps provide the solution to the greedy initial tracking time

allocation, Λg
0, i.e.

1: for i = 1 to M do

2: Let Λi = [t∗1, t∗2, . . . , ti, . . . , tcM]⊤.

3: Solve the following problem using Theorem 3.6

t∗i = argmin
ti

f̃(Λi). (3.66)

4: end for

5: return Λg
0 = [t∗1, t∗2, . . . , t∗M]⊤

3.3.2.3 Low resolution initial tracking time allocation

Low resolution initial tracking time allocation can be implemented by using Algorithm

3.11, which involves performing a grid search in order to approximate the optimal track-

ing time allocation based on the nominal plant model. The solution is denoted as

Λl
0 = [tl1, tl2, . . . , tlM]⊤ (3.67)

which minimizes the performance index. The term ‘low resolution’ implies that the

sampling time, Ts, is suitably large, and hence the total number of time-point combi-

nations, i.e. number of elements in Θ̃, should not be excessive. Therefore this method

can balance computation time and accuracy in approximating the global solution. How-

ever, this method may require a significant amount of time to carry out the grid search

procedure when the number of time-points is large.

Algorithm 3.11. Given system state space model, S(A,B,C), desired tracking refer-

ence, rp, admissible set of tracking time allocation, Θ, and sample time, Ts, the follow-

ing steps provide the solution to the low resolution initial tracking time allocation, Λl
0,

i.e.

46 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

1: Discretize the infinite set Θ at a sample rate of Ts to obtain

Θ̃ = {Λ ∈ R
M : 0 < t−1 6 t1 6 t+1 6 t−2 6 t2 6 t+2

6 . . . 6 t+M = T, ti = niTs, ni ∈ N, i = 1, . . . ,M}

which is a finite subset of Θ.

2: Solve the optimization problem below using a blind search

Λ∗ = argmin
Λ∈Θ̃

f̃(Λ). (3.68)

3: return Λl
0 = Λ∗

3.3.3 An Iterative Implementation Algorithm

Combining the implementation of Stage One and Stage Two designs leads to an iterative

implementation of the two stage design framework - Algorithm 3.12. Note that Λ0 is a

suitably chosen initial tracking time allocation, and ǫ > 0, δ > 0 are small scalars which

depend on the tracking precision requirement and performance requirement, respectively.

Algorithm 3.12. Given initial tracking time allocation, Λ0, system state space model,

S(A,B,C), desired tracking reference, rp, an admissible set of tracking time allocation,

Θ, weighting matrices, R and Qi, the following steps provide the solution to the optimal

tracking time allocation, Λopt, and input, uopt, i.e.

1: initialization: Loop number j = 0

2: Repeatedly implement Stage One update (3.23) with Λ = Λ0 experimentally using

feedback plus feedforward update (3.53) until convergence, i.e. ‖epk‖ < ǫ‖rp‖; record

converged input, uex∞(Λ0), and input energy, f̃(Λ0).

3: repeat

4: Compute the gradient using (3.39) or (3.63) with rp = Gp
Λj
uex∞(Λj); implement

Stage Two update (3.43).

5: Set j → j + 1.

6: Repeatedly implement Stage One update (3.23) with Λ = Λj experimentally using

feedback plus feedforward update (3.53) until convergence, i.e. ‖epk‖ < ǫ‖rp‖;

record converged input, uex∞(Λj), and input energy, f̃(Λj).

7: until
∣
∣
∣f̃(Λj)− f̃(Λj−1)

∣
∣
∣ < δ

∣
∣
∣f̃(Λj−1)

∣
∣
∣

8: return Λopt = Λj and uopt = uex∞(Λj)

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 47

It is essential to note that in Algorithm 3.12, Step 2 and 6 (i.e. the norm-optimal

point-to-point ILC algorithm) are required to be implemented experimentally on the

test platform and Step 4 involves the usage of experimental data, uex∞(Λj). These re-

quirements are not necessary when an accurate system model is known. However when

there exists model mismatch/uncertainty, the proposed algorithm embeds appealing

robustness properties as the algorithm ‘learns’ information concerning the real plant

dynamics through exploitation of experimental data. This will be further demonstrated

in subsequent experimental results.

3.4 Constrained Input Condition Handling

The previous sections propose a two stage design approach for point-to-point ILC with

optimal tracking time allocation. This section further extends the proposed method to

incorporate system constraints into the design.

3.4.1 Optimal Tracking Time Allocation with System Constraints

In practice, constraints exist widely in control systems due to physical limitations or

performance requirements. For example, input constraints typically assume one of the

forms introduced in Section 2.4.1. With the addition of input constraints, the optimiza-

tion problem (3.15) becomes

minimize
u,y,Λ

f(u, y)

subject to rp = Gp
Λu,

y = Gu,

Λ ∈ Θ, u ∈ Ω.

(3.69)

As will be seen later, the constraints add significant difficulties into the algorithm design.

In this section, only input constraints are considered. Note that in principle, the design

developed in the following section can handle output constraints as well, but the details

will be different and are omitted here for brevity.

3.4.2 Modified Two Stage Design Framework with Input Constraints

Following a similar procedure to that in Section 3.2, the constrained optimization prob-

lem (3.69) becomes

min
Λ∈Θ

{

min
u

f(u, y), s.t. Gp
Λu = rp, y = Gu, u ∈ Ω

}

(3.70)

suggesting a possible two stage design framework:

48 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

• Stage One:

minimize
u∈Ω

‖u‖2R

subject to rp = Gp
Λu

(3.71)

whose solution is denoted as û∞(Λ).

• Stage Two:

min
Λ∈Θ

{f̃(Λ) := ‖û∞(Λ)‖2R}. (3.72)

With the presence of input constraints, the problem becomes significantly more difficult,

as the Stage One inner optimization problem needs to solve a constrained optimization

problem, which unfortunately is inherently challenging and does not admit an analytic

solution that is essential to the Stage Two optimization problem. To address this diffi-

culty, a modified two stage design is proposed as follows.

Note that now Stage One does not have a direct analytic solution, but the norm-optimal

ILC algorithm with successive projection proposed in Chu et al. (2015) can be applied

to solve the modified Stage One optimization problem (3.71). The update (3.23) is

accordingly replaced by two alternative update methods.

• Method 1: Solve the constrained input norm-optimal point-to-point ILC optimiza-

tion problem

uk+1 = argmin
u∈Ω

{‖ep‖2[Q] + ‖u− uk‖
2
R}. (3.73)

This algorithm converges to the minimum error norm. The constrained QP prob-

lem (3.73) becomes computationally demanding which might introduce problems

in some applications, especially when the trial length is large. A number of meth-

ods have been proposed to address this problem, see Chu et al. (2015); Chu and

Owens (2009) for more information.

• Method 2: Solve the unconstrained input norm-optimal point-to-point ILC opti-

mization problem

ũk+1 = argmin
u

{‖ep‖2[Q] + ‖u− uk‖
2
R} (3.74)

and then perform a simple input projection

uk+1 = argmin
u∈Ω

‖u− ũk+1‖ . (3.75)

It is clear that the first step has an analytic solution and the solution of the second

step is straightforward as the input constraint, Ω, is usually of a pointwise form

in practice. This method is computationally simpler than Method 1 and can be

carried out for large scale applications. Its convergence performance property,

however, is different from that of Method 1.

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 49

The solution of Stage Two optimization problem (3.72), i.e. Step 6 in Algorithm 3.12,

is modified as

Λj+1 = argmin
Λ∈Θ

f̃j(Λ) (3.76)

where

f̃j(Λ) = ‖u∞(Λ)‖2R + ρ ‖u∞(Λ)− û∞(Λj)‖
2
R , ρ > 0, (3.77)

and û∞(Λj) is the converged input of the Stage One design for tracking time allocation,

Λj . Note that in this modified Stage Two design, the input constraint is decoupled from

the optimization problem and thus can be solved analytically (using the algorithm in

Theorem 3.6).

These new solution forms combine to generate Algorithm 3.14 for the optimal tracking

time allocation problem in point to point ILC with system constraints.

Remark 3.13. It is also possible to estimate the gradient, ∇f̃(Λ), in (3.72) experi-

mentally following similar procedures to those discussed in Section 3.3.2. This is an

alternative to computing it analytically using the above modified Stage Two design, the

details of which are omitted here for brevity.

Algorithm 3.14. Given initial tracking time allocation, Λ0, system state space model,

S(A,B,C), desired tracking reference, rp, an admissible set of tracking time allocation,

Θ, an input constraint set, Ω, weighting matrices, R and Qi, the followings steps provide

the solution to the optimal tracking time allocation, Λopt, and input, uopt, i.e.

1: initialization: Loop number j = 0

2: Repeatedly implement Stage One update (3.73) or (3.74)-(3.75) with Λ = Λ0 ex-

perimentally using the update (3.53) until convergence, i.e. ‖epk‖ < ǫ‖rp‖; record

converged input, ûex∞(Λ0), input energy, f̃(Λ0).

3: repeat

4: Compute the gradient using (3.26) or (3.63) with rp = Gp
Λj
ûex∞(Λj); implement

Stage Two update (3.76).

5: Set j → j + 1.

6: Repeatedly implement Stage One update (3.73) or (3.74)-(3.75) with Λ = Λj

experimentally using the update (3.53) until convergence, i.e. ‖epk‖ < ǫ‖rp‖; record

converged input, ûex∞(Λj), input energy, f̃(Λj).

7: until
∣
∣
∣f̃j(Λj)− f̃(Λj−1)

∣
∣
∣ < δ

∣
∣
∣f̃(Λj−1)

∣
∣
∣

8: return Λopt = Λj and uopt = ûex∞(Λj)

50 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

3.4.3 Convergence Properties of the Algorithm

Algorithm 3.14 has the following convergence properties:

Theorem 3.15. Suppose perfect tracking is achievable and κ 6 1, then the analytic

input energy resulting from (3.76) satisfies

‖u∞(Λj+1)‖
2
R 6 ‖û∞(Λj)‖

2
R . (3.78)

Proof. As Λj+1 is the solution of the gradient projection, it is clear from Theorem 3.6

that the inequality f̃j(Λj+1) 6 f̃j(Λj) holds and hence it follows that

‖u∞(Λj+1)‖
2
R
6 κ ‖u∞(Λj+1)− û∞(Λj)‖

2
R
+ ‖u∞(Λj+1)‖

2
R

6 ‖u∞(Λj)‖
2
R
+ κ ‖u∞(Λj)− û∞(Λj)‖

2
R

= κ ‖û∞(Λj)‖
2
R
+ (1 + κ) ‖u∞(Λj)‖

2
R
− 2κ 〈û∞(Λj), u∞(Λj)〉R . (3.79)

Then, recall the analytic solution (3.26) for u∞(Λ) and the perfect tracking assumption

Gp
Λû∞(Λ) = rp to give

〈û∞(Λ), u∞(Λ)〉R =
〈
û∞(Λ), Gp∗

Λ (Gp
ΛG

p∗
Λ)−1rp

〉

R

=
〈
Gp

Λû∞(Λ), (Gp
ΛG

p∗
Λ)−1rp

〉

[Q]

=
〈
rp, (Gp

ΛG
p∗
Λ)−1rp

〉

[Q]

=
〈
Gp∗

Λ (Gp
ΛG

p∗
Λ)−1rp, Gp∗

Λ (Gp
ΛG

p∗
Λ)−1rp

〉

R

= 〈u∞(Λ), u∞(Λ)〉R . (3.80)

Substitute (3.80) into (3.79) to give

‖u∞(Λj+1)‖
2
R 6 (1− κ) ‖u∞(Λj)‖

2
R + κ ‖û∞(Λj)‖

2
R . (3.81)

It is clear that the unconstrained converged input energy is no larger than the constrained

converged input energy i.e.

‖u∞(Λj)‖
2
R
6 ‖û∞(Λj)‖

2
R
,

and it follows that

(1− κ) ‖u∞(Λj)‖
2
R 6 (1− κ) ‖û∞(Λj)‖

2
R (3.82)

as (1 − κ) is non-negative. Hence combine (3.82) and (3.81) together to generate the

inequality (3.78).

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 51

Although Theorem 3.15 only states that the next loop’s unconstrained minimum energy

is no larger than the constrained minimum energy of the current loop, it still provides

useful information about the convergence properties of Algorithm 3.14. A series of sim-

ulations using different models and input constraints have been undertaken to examine

the convergence properties of Stage Two update (3.76). The results demonstrate that

although not proved, the proposed algorithm achieves monotonic convergence of the con-

strained minimum input energy, which is very appealing in practice. One representative

simulation result is shown in the next subsection.

3.4.4 A Numerical Example

Number of Loops, j
0 5 10 15 20 25 30

In
pu

t E
ne

rg
y

80

90

100

110

120

130

140

Constrained Input Energy
Unconstrained Input Energy

Figure 3.3: Convergence Performance Comparison between Constrained and
Unconstrained Minimum Input Energy at Each Loop.

The same design objectives as the multiple case (M = 2) in Section 3.2.3 are considered

as well as the input saturation constraint (2.55) with M(t) = 1.5. Perform Algorithm

3.14 for a total of 30 loops with the Stage Two update (3.76) in simulation assuming σ =

0.1, β = 0.8 and γ = 0.08. The corresponding constrained and unconstrained minimum

input energy ‖û∞(Λj)‖
2
R

and ‖u∞(Λj)‖
2
R

are plotted for each loop in Figure 3.3. The

results in Figure 3.3 not only verify the property in (3.78), but also demonstrate that the

proposed algorithm achieves monotonic convergence of the constrained minimum input

energy, which is very appealing in practice.

3.5 Experimental Verification on a Gantry Robot

The proposed design framework is now validated experimentally on a three-axis gantry

robot test facility to demonstrate its effectiveness on a widely used industrial platform.

52 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

3.5.1 Test Platform Specification

Figure 3.4: Multi-axis Gantry Robot Test Platform.

The multi-axis gantry robot shown in Figure 3.4 is employed as a test platform, which

comprises three perpendicular axes. The x-axis and the y-axis move in the horizontal

plane and are driven by linear brush-less dc motors. The vertical z-axis is placed on the

top of the other two axes, and has a linear ball-screw stage driven by a rotary brush-less

dc motor. The optical incremental encoders are used to measure axis displacement data.

The combined motion of the three axes enable the gantry robot’s end-effector to move

within the 3D space. The three axes have been modelled based on frequency response

tests in Ratcliffe (2005) with resulting transfer functions

Gx(s) =
1.67 × 10−5(s + 500.2)(s + 4.9× 105)(s2 + 10.58s + 1.145 × 104) . . .

s(s2 + 24s + 6401)(s2 + 21.38s + 2.017 × 104) . . .

. . . (s2 + 21.98s + 2.9 × 104)

. . . (s2 + 139.5s + 2.162 × 105)
, Gy(s) =

0.59s4 − 19.86s3 + 1.05s2 + 15.92s − 8.58

s5 − 4.19s4 + 7.24s3 − 6.45s2 + 2.96s − 0.56

× 10−6, and Gz(s) =
15.8869(s + 850.3)

s(s2 + 707.6s + 3.377 × 105)
. (3.83)

The powerful dSPACE device is chosen to build up the interface between the software,

i.e. host computer, and the hardware, i.e. gantry robot. For each axis, a BNC channel

is used to send the input voltage to the motor amplifier, and an incremental encoder

channel is used to receive the position feedback of the motor. The overall gantry robot

control loop is shown in Figure 3.5.

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 53

Figure 3.5: Gantry Robot Test Platform Control Loop.

3.5.2 Experimental Results

The control design objective is to perform a pick-and-place task with two special tracking

points (M = 2), which correspond to the ‘pick’ position and the ‘place’ position as shown

in Figure 1.2 from an exemplary tracking trajectory. For simplicity, only the z-axis is

considered in this chapter with system model, Gz(s), and take the time index to two

decimal place accuracy. The total trial length is T = 1.99s and the reference for z-

axis, rp, is [0.01, 0.008]⊤ . The parameter choice t+1 = 0.99s, t+2 = 1.99s, t−1 = 0.01s,

and t−2 = 1.01s ensures that the robot moves to the pick position first and then to the

place position. To provide baseline tracking, disturbance rejection and smooth tracking

at turning edge, a proportional controller with gain K, is applied around the system,

yielding

G(s) =
Gz(s)

1 +KGz(s)
. (3.84)

The transfer function system model, G(s), can be equivalently written in minimal state

space form S(A,B,C). Note that for this problem, previous studies used a predefined

(a priori) tracking time allocation Λr = [0.5, 1.35]⊤ , with a corresponding control input

energy obtained by implementing the Stage One update only. The central initial tracking

time allocation Λ0 = [0.5, 1.5]⊤ is used in both Algorithm 3.12 and 3.14, the weighting

matrices are taken as Qi = qI for i = 1, . . . ,M , R = rI where q and r are positive

scalars, and the gradient is obtained using the estimation (3.63) via analytic calculation.

Furthermore, appropriate weighting matrices are chosen according to the theoretical

predictions in Owens et al. (2013) to balance convergence speed and robust performance,

i.e. q/r = 500, 000. Note that the choice of Qi and R is not restricted to the values used

in this section and have a wide range of other options.

54 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

First assume that only an approximate system model of the z-axis is available as follows:

Ĝz(s) =
0.03

s
(3.85)

with a feedback gain K = 30. A 60 loop updating procedure of Algorithm 3.12 is

performed using the gantry robot. In Step 4, the generalized Armijo step size (3.44) is

applied with σ = 0.1, β = 0.8 and γ = 0.03, 0.04, 0.05 respectively.

Number of Loops, j
0 10 20 30 40 50 60

In
pu

t E
ne

rg
y

85

90

95

100

105

110

115

120

125

130

135

γ = 0.03
γ = 0.04
γ = 0.05
Energy at Λ

r

Energy at Λ*

Figure 3.6: Input Energy Results using an Inaccurate Model without Input
Constraints.

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

In
pu

t S
ig

na
l,

u
(V

)

-0.5

0

0.5

1

1.5

2

Λ
r

Λ
*

Λ
59

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2O

ut
pu

t S
ig

na
l,

y
(m

)

0

0.005

0.01

0.015

Λ
r

Λ
*

Λ
59

rp at Λ
r

rp at Λ*

rp at Λ
59

Figure 3.7: Converged Input and Output Trajectory Comparison using an In-
accurate Model without Input Constraints.

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 55

The experimental optimal input energy f̃(Λk) at each loop is plotted in Figure 3.6 for

a step size chosen under different values of γ. The optimal energy f̃(Λr) = 129.06

required for the gantry robot to track at the a priori tracking time allocation is also

plotted for comparison. It should be noted that the proposed algorithm provides an

experimental final converged energy norm of 88.76, which is a 31% reduction in input

energy compared to the operating energy, f̃(Λr). This is further compared with normal

practice by computing the optimal tracking time allocation in simulation using the nom-

inal model, and then using Stage One update alone to track them experimentally. This

yields Λ∗ = [0.99, 1.26]⊤ , and f̃(Λ∗) = 98.62. It is clear that the experimental final con-

verged energy is approximately 10% less. This means that experimental implementation

of Algorithm 3.14 is far superior to optimization using the nominal model in simulation.

This confirms that the algorithm displays satisfactory robustness against model uncer-

tainty. Furthermore, the converged input and output trajectories at the original (a

priori), theoretical optimal and experimental optimal allocations are plotted in Figure

3.7 and illustrate how the experimentally obtained optimal allocation outperforms the

other two allocations.

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2In

pu
t S

ig
na

l,
u

(V
)

-1

0

1

2
Λ

0

Λ
59

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2O

ut
pu

t S
ig

na
l,

y
(m

)

0

0.005

0.01

0.015

Λ
0

Λ
59

rp at Λ
0

rp at Λ
59

Figure 3.8: Experimental Converged Input and Output Trajectories for Initial
and Final Loops using an Inaccurate Model without Input Constraints.

The experimental final converged input and output trajectories for the initial and final

loops of the algorithm are compared in Figure 3.8, and it is clear that the input signal

immediately becomes zero after finishing tracking the last point in both figures as there

is no tracking requirement along the remaining finite time interval. The reference at

the special tracking times is marked with red and green circles. It is clear that the final

converged output accurately tracks the special tracking points, so the algorithm not

only optimizes the input energy but also maintains high tracking performance even with

significant model uncertainty. For example, while using the experimental estimation

56 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

with a step size chosen to be under γ = 0.03, the final mean square error is 0.00032mm2

at Step 6 of the 60th loop.

Number of Loops, j
0 10 20 30 40 50 60

F
irs

t T
im

e
P

oi
nt

, t
1
 (

s)

0.5

0.6

0.7

0.8

0.9

1

γ = 0.03
γ = 0.04
γ = 0.05

Number of Loops, j
0 10 20 30 40 50 60S

ec
on

d
T

im
e

P
oi

nt
, t

2
 (

s)

1

1.1

1.2

1.3

1.4

1.5

γ = 0.03
γ = 0.04
γ = 0.05

Figure 3.9: Experimental Time-Point Position Results at Each Loop using an
Inaccurate Model without Input Constraints.

To further illustrate the performance of Algorithm 3.12, the convergence of the tracking

time allocation is shown in Figure 3.9. For each value of γ, the tracking time allocation at

each loop is plotted in this figure, and all converge to an identical tracking time allocation

of [0.91, 1.01]⊤ . The automatic tracking time allocation adjustment has meant that the

speed of the gantry is slower and the distance the gantry moves is shorter (as can be

seen from Figure 3.6), and thus leads to a lower input energy consumption. Experiments

using the other initial tracking time allocations, e.g. the low resolution initial tracking

time allocation, yield similar levels of performance.

The proposed algorithm with input saturation constraint (2.55) withM(t) = 1.8 has also

been tested using different system models and parameter choices. A representative result

for the input energy convergence is shown in Figure 3.10. From this figure, the optimal

energy of 89.53 obtained by the algorithm is 28% less than the energy f̃(Λr) = 129.12

at the a priori allocation and 10% less than the energy f̃(Λ∗) = 98.51 at the theoreti-

cally obtained optimal allocation using the inaccurate model. This again confirms the

superiority of the proposed design method. Furthermore, inspection of the converged

input shows that input constraint satisfaction is guaranteed by the proposed algorithm,

a typical result of which is show in Figure 3.11 that clearly demonstrates this.

The above tests have also been repeated using the relatively accurate system model

shown in (3.83) with a feedback gain of K = 100. The results are summarized in

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 57

Number of Loops, j
0 5 10 15 20 25 30

In
pu

t E
ne

rg
y

85

90

95

100

105

110

115

120

125

130

135

γ = 0.06
γ = 0.07
γ = 0.08
Energy at Λ

r

Energy at Λ*

Figure 3.10: Exemplary Input Energy Convergence with Input Constraints.

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

In
pu

t S
ig

na
l,

u
(V

)

-0.5

0

0.5

1

1.5

2

Λ
r

Λ
*

Λ
24

Figure 3.11: Exemplary Converged Input Trajectories with Input Constraints.

Table 3.1: Summary of Experimental Results without Constraints.

γ = 0.03 γ = 0.04 γ = 0.05

Λ49 [0.99, 1.09]⊤ [0.99, 1.09]⊤ [0.99, 1.09]⊤

f̃(Λ49) 78.69 78.67 78.66

Reduction from f̃(Λr) 37.10% 37.11% 37.12%

Difference from f̃(Λ∗) 0.63% 0.66% 0.67%

‖ep‖2 /2 at Λ49 0.00051mm2 0.00006mm2 0.00026mm2

58 Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation

Table 3.2: Summary of Experimental Results with Constraints.

γ = 0.05 γ = 0.06 γ = 0.07

Λ24 [0.99, 1.08]⊤ [0.99, 1.08]⊤ [0.99, 1.08]⊤

f̃(Λ24) 78.78 79.10 78.17

Reduction from f̃(Λr) 37.03% 36.77% 37.51%

Difference from f̃(Λ∗) 0.52% 0.11% 1.29%

‖ep‖2 /2 at Λ24 0.00013mm2 0.00002mm2 0.00003mm2

Table 3.1 and Table 3.2 for the unconstrained and constrained cases. From the tables,

the tracking time allocations obtained by the proposed algorithms all converge, and are

close to the corresponding theoretical obtained one, Λ∗, as the system model is relatively

accurate. It is clear that the obtained input energy results at each case are approximately

37% less than the a priori one, f̃(Λr), and are almost the same as the theoretical one,

f̃(Λ∗). Also, the tracking errors are within the practical tolerance, confirming that the

algorithm not only optimizes the input energy, but also maintains satisfactory tracking

performance. The detailed results are omitted here for brevity.

3.6 Summary

Tracking time allocation plays an important role in point-to-point ILC and can sig-

nificantly affect the system performance. This chapter has developed an optimization

framework to fully exploit the flexibility in choosing tracking time allocation to optimize

some cost function of interest, in addition to high accuracy reference tracking. The

problem has been formulated into an optimization problem in an abstract Hilbert space

and a two stage design framework has been developed. A solution to the Stage One

design problem has been derived using a well-known norm optimal point-to-point ILC

algorithm. For the Stage Two design problem there are no direct analytic solutions of the

optimization problem, and an iterative update based on the gradient projection method

has therefore been proposed. The solutions of the two stages are combined to yield the

first algorithm to solve the high performance point-to-point tracking problem with an

additional optimal cost function. The implementation procedures are discussed in detail

and the proposed design framework is further extended to embed system constraints

into the design.

The proposed algorithm is verified experimentally on a gantry robot test platform. When

the system model is inaccurate, significant reduction of the input energy can be achieved.

When an accurate system model is available, the input energy converges to the theo-

retical optimal solution. In both scenarios, the proposed algorithm guarantees high

performance tracking. In addition, the proposed Two Stage design framework can also

Chapter 3 Point-to-Point ILC with Optimal Tracking Time Allocation 59

be extended to handle the same problem discussed in this chapter within the class of

discrete time systems with some modification - see Chapter 4 for details.

Chapter 4

Point-to-Point ILC with Optimal

Tracking Time Allocation

-A Coordinate Descent Approach

Note that the results presented in Chapter 3 employ the gradient method to address the

optimal tracking time allocation problem within continuous time systems. However, a

number of practical systems incorporate digital processors receiving and sending signals

at unit sample rate, and it is impossible to apply the previous algorithms to these

systems as the gradient cannot be obtained in discrete time systems. This section uses a

coordinate descent approach to address the full optimal tracking time allocation problem

for discrete time systems in which dynamic interaction occurs between the critical points.

4.1 Formulation of the Problem

This section first introduces the discrete time system dynamics and defines the corre-

sponding point-to-point ILC framework. Then the design problem of point-to-point ILC

with optimal tracking time allocation is formulated into an optimization problem.

4.1.1 Discrete Time System Dynamics

Consider an ℓ-input, m-output discrete linear time-invariant system given in state space

form by S(A,B,C) with unit sample time

xk(t+ 1) = Axk(t) +Buk(t),

yk(t) = Cxk(t) (4.1)

61

62 Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation

where t ∈ [0, N] is the time index (e.g. sample number), xk(t) ∈ R
n, uk(t) ∈ R

ℓ and

yk(t) ∈ R
m are the state, input and output respectively; A, B and C are system matrices

of compatible dimension; 0 < N < ∞ is the trial length, the subscript k ∈ N denotes

the ILC trial number. At the end of each trial, the state is reset to initial value x0. The

system can be represented in an equivalent operator form

yk = Gduk + d (4.2)

where Gd : lℓ2[0, N] → lm2 [0, N], yk, d ∈ lm2 [0, N] and uk ∈ lℓ2[0, N], and the input

and output Hilbert spaces lℓ2[0, T] and lm2 [0, T] are defined with inner products and

associated induced norms

〈u, v〉R =

N∑

i=0

u⊤(i)Rv(i), ‖u‖R =
√

〈u, u〉R (4.3)

〈x, y〉S =
N∑

i=0

x⊤(i)Sy(i), ‖y‖S =
√

〈y, y〉S (4.4)

in which R ∈ S
ℓ
++ and S ∈ S

m
++. The convolution operator Gd and signal d (representing

the effect of initial condition) take the form

(Gdu)(t) =

t−1∑

i=0

CAt−i−1Bu(i), d(t) = CAtx0 (4.5)

where, without loss of generality, the constant d(t) can be absorbed into the reference

to give x0 = 0, d(t) = 0.

4.1.2 Point-to-Point ILC Framework

The point-to-point ILC design objective is to update the input signal, uk, such that the

input signal, uk, converges to a unique value and the associated output, yk, ultimately

tracks the given reference positions, ri, i = 1, . . . ,M , at a sub set of time instants, ti,

i = 1, . . . ,M , i.e.

lim
k→∞

yk(ti) = ri, i = 1, . . . ,M, lim
k→∞

uk = u∗. (4.6)

From the design objective (4.6), only the particular output at the tracking time allocation

Λ = [t1, t2, . . . , tM]⊤ ∈ Θ (4.7)

is of interest where

Θ = {Λ ∈ R
M : 0 < t1 < t2 < . . . < tM 6 N} (4.8)

Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation 63

is the admissible set of allocated tracking time instants representing the requirements

on enforcing process timing constraints necessary to complete the task. Hence a linear

mapping ζ ∈ lm2 [0, N] 7→ ζp ∈ H defined by

ζp =







ζ(t1)
...

ζ(tM)







(4.9)

is introduced to extract the output values at the tracking time allocation. Note that H

is the Hilbert space denoted by

H = R
m × · · · × R

m

︸ ︷︷ ︸

M times

(4.10)

with inner product and associated induced norm

〈ω, µ〉[Q] =
M∑

i=1

ω⊤
i Qiµi, ‖ω‖[Q] =

√

〈ω, ω〉[Q] (4.11)

where

ω = [ω1, . . . , ωM]⊤ ∈ H, µ = [µ1, . . . , µM]⊤ ∈ H;

[Q] denotes the set {Q1, . . . , QM}, and Qi ∈ S
m
++.

From definition (4.9), it follows that the ‘point-to-point output’, yp, comprises a subset

of plant outputs defined over the tracking time allocation Λ. The dynamics of the

point-to-point system can therefore be modelled by

yp = Gp
Λu = (Gu)p =







(Gu)(t1)
...

(Gu)(tM)







(4.12)

where Gp
Λ : lℓ2[0, N] → H is a linear operator.

Therefore, the point-to-point ILC design objective design objective (4.6) can be equiv-

alently described as iteratively finding a sequence of input {uk} such that

lim
k→∞

ypk = rp, lim
k→∞

uk = u∗ (4.13)

where

rp = [r1, r2, . . . , rM]⊤ ∈ H (4.14)

To solve the problem, the point-to-point tracking error, epk = rp−ypk, is employed within

the following updating law:

uk+1 = F(uk, e
p
k) (4.15)

64 Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation

where F is an updating function involving the previous input and point-to-point tracking

error.

4.1.3 Optimal Tracking Time Allocation Problem

The Point-to-Point ILC with Optimal Tracking Time Allocation Problem in

discrete time case can be addressed by proposing a design framework which automat-

ically provides a tracking time allocation to optimize some desired cost functions, and

meanwhile ensures high performance tracking at the tracking time allocation.

The problem design objective is to iteratively find a tracking time allocation, Λk, and

an input, uk, with the asymptotic property that the output values, ypk, at the tracking

time allocation accurately pass through a set of points, rp, i.e.

lim
k→∞

ypk = rp,

at the same time optimizing a target cost function f(u, y) with respect to the system

input, u, and output, y, i.e.

lim
k→∞

(uk, yk, Λk) = (u∗k, y∗k, Λ∗
k)

where u∗k, y
∗
k and Λ∗

k are optimal solutions of the problem

minimize
u,y,Λ

f(u, y)

subject to rp = Gp
Λu, y = Gu, Λ ∈ Θ.

(4.16)

4.2 A Two Stage Design Framework

While the tracking time allocation Λ does not appear in the performance function f(u, y),

they are connected by the constraint, Gp
Λu = rp, making the problem (4.16) non-trivial.

In this section, the Two Stage design framework proposed in Chapter 3 is used to solve

this optimization problem.

4.2.1 Framework Description

Optimization problem (4.16) can be equivalently written as

min
Λ∈Θ

{min
u

f(u, y), subject to rp = Gp
Λu, y = Gu} (4.17)

Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation 65

which optimizes over u first and then optimizes over Λ. Define the function f̃(Λ) : RM →

R by

f̃(Λ) = {min
u

f(u, y), subject to rp = Gp
Λu, y = Gu} (4.18)

and denote a global minimizer for u of the inner optimization problem as u∞(Λ) : RM →

lℓ2[0, N] . Hence the problem (4.17) can be equivalently written as

min
Λ∈Θ

{f̃(Λ) := f(u∞(Λ))}. (4.19)

The above suggests that the optimization problem (4.16) can be solved by applying a

two stage design framework as:

• Stage One: Keep the tracking time allocation, Λ, fixed and solve the optimization

problem

min
u

f(u, y), subject to rp = Gp
Λu, y = Gu. (4.20)

• Stage Two: Substitute the solution, u∞(Λ), into the original problem and then

find the optimal solution

min
Λ∈Θ

{f̃(Λ) := f(u∞(Λ))}. (4.21)

In this appendix, the control effort is selected to be the target cost function to exemplify

the approach, i.e. f(u, y) = ‖u‖2R. This guarantees the existence of a unique global

minimizer for u within (4.20).

4.2.2 Solution of the Proposed Framework

1). Solution of Stage One: For a given Λ, Stage One is a point-to-point ILC design

problem with minimum control effort requirement. This can be solved using a norm

optimal point-to-point ILC algorithm as shown in the next theorem.

Theorem 4.1. If the system S(A,B,C) is controllable and C has full row rank, the

solution of Stage One problem (4.20) is given by u∞, which can be found using the

norm-optimal point-to-point ILC algorithm

uk+1 = uk +Gp∗
Λ (I +Gp

ΛG
p∗
Λ)−1epk (4.22)

proposed in Owens et al. (2013) with initial input u0 = 0 such that

u∞(Λ) = lim
k→∞

uk. (4.23)

66 Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation

Furthermore, an analytic solution can be obtained for u∞(Λ) as follows:

u∞(Λ) = Gp∗
Λ (Gp

ΛG
p∗
Λ)−1rp. (4.24)

Note that Gp∗
Λ : ω ∈ H → u ∈ lℓ2[0, N] is the Hilbert adjoint operator of Gp

Λ given by

u(t) = R−1B⊤p(t),

p(t) = A⊤p(t+ 1),

p(N) = 0,

p(ti − 1) = p(ti) + C⊤Qiωi, i = 1, . . . ,M. (4.25)

Proof. The proof follows from the proof of Theorem 3.3.

Remark 4.2. Note that the system’s state controllable condition is not restrictive as a

state controllable model can always be constructed for a given system.

2). Solution of Stage Two: Similar to Lemma 3.4, the Stage Two optimization problem

(4.21) can be expressed as

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈
rp, (Gp

ΛG
p∗
Λ)−1rp

〉

[Q]
. (4.26)

This optimization problem, however, is non-trivial except for the special case of M = 1,

i.e. there is only one tracking point, where the solution can be obtained analytically, as

shown in the following theorem.

Theorem 4.3. When there is only one tracking point, optimization problem (4.26) has

analytical solution

Λ∗ = N.

The corresponding minimum energy is

min
Λ∈Θ

‖u∞(Λ)‖2R =
〈
rp, Ψ−1

N rp
〉

[Q]

where

Ψt =
t∑

i=1

CAt−iBR−1(CAt−iB)⊤.

Proof. The proof follows from the proof of Theorem 3.5.

Theorem 4.3 shows that when M = 1, Λ∗ = N is always the optimal choice in terms

of minimizing the control input energy - this is not surprising as this allows the system

output to change gradually to the desired position. However, when M > 1, i.e. there is

more than one tracking point, the cost function is generally non-linear and non-convex

Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation 67

with respect to the time point set, Λ. These aspects lead to the difficulties in obtaining

an analytical solution of the problem (4.26) at general cases.

In the case of discrete time systems, however, the gradient of the cost function in 4.26

cannot obtained. The gradient projection method cannot be used to solve the Stage Two

problem. It is noticed that the set, Θ, has a finite number of elements and this permits

the use of a blind search over the whole set. However, this carries a high computational

load especially when the number of tracking points M becomes large. Therefore, an

efficient alternative method is proposed in the next theorem to give an approximate

solution of the Stage Two problem (4.26).

Theorem 4.4. Consider the coordinate descent method with initial estimate Λ0

Λj+1 = C(Λj) (4.27)

with Λj = [tj1, t
j
2, . . . , tjM]⊤, j ∈ N denotes the coordinate descent trial number and each

time point is updated by the function C as

ti,j+1 =

{

tj∗i , i = (j + 1) mod M

tji , else
(4.28)

where tj∗i is the optimizer of the optimization problem

minimize
t

〈
rp, (Gp

ΛG
p∗
Λ)−1rp

〉

[Q]

subject to Λ = [tj1, . . . , tji−1, t, tji+1, . . . , tjM]⊤,

t ∈ (tji−1, tji+1).

(4.29)

The sequence, {f̃(Λj)}, based on the coordinate descent update (4.27) converges down-

ward to a limit f̃∗.

Proof. The coordinate descent method divides the optimization problem (4.26) into a

number of intermediate trials. At each trial, it performs a local optimization (4.29) to

update a single time point ti,j with other points keeping the same values. Therefore, it

follows that the sequence {f̃(Λj)} monotonically decreases as

f̃(Λj+1) 6 f̃(Λj). (4.30)

In addition, as the function f̃(Λ) is bounded below, the sequence, {f̃(Λj)}, converges to

a non-negative value f̃∗.

Remark 4.5. Although blind search is still used in each coordinate descent trial to

update a single time point, tji , the coordinate descent method requires much less com-

putation time than the pure blind search method over the whole set, Θ, to provide an

optimal solution to the same optimization problem. This is because of the desirable

68 Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation

property of the coordinate descent method which splits the original problem into several

sub-problems.

Remark 4.6. In most optimization problems the coordinate descent method does not

guarantee a global optimal solution, but yields a suitable local optimal solution which

approximates the global optimal solution Cormen et al. (2009).

Remark 4.7. Gradient method can be applied to problem (4.26) in the case of con-

tinuous time systems as shown in Chapter 3. However, the gradient is unavailable in

discrete time systems, so this approach is infeasible.

Remark 4.8. The coordinate descent method described in (4.27) updates a single time

instant at each trial, however, multiply number of time instants can be also considered

for updating.

Remark 4.9. As the solution of the coordinate descent method is a local solution, it is

necessary to choose a suitable initial tracking time allocation, Λ0, to give a solution which

approximates the global one, especially when the system is complex. If no information is

available, Λ0 can be chosen arbitrarily, and alternatively it can be selected using different

methods such as performing grid search with a large sample time.

4.3 Implementation of the Design Approach

This section develops an algorithm to efficiently implement the two stage framework.

4.3.1 Implementation of Stage One

The general solution of Stage One using (4.22) can be either computed directly using

the analytical solution (4.24) or implemented experimentally using a combined feedback

and feedforward solution illustrated in the next proposition.

Proposition 4.10. The ILC update (4.22) can be implemented using the feedforward

plus feedback implementation

uk+1(t) = uk(t) +R−1B⊤pk(t), t = 0, . . . , N (4.31)

with

pk(t) = −K(t)(I +BR−1B⊤K(t))−1A(xk+1(t)− xk(t)) + ξk+1(t) (4.32)

where K(t) denotes the Riccati feedback matrix

K(t) = A⊤K(t+ 1)(I +BR−1B⊤K(t+ 1))−1A,

K(N) = 0, K(t̃−i) = K(t̃+i) + C⊤QiC (4.33)

Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation 69

and ξk+1(t) denotes the predictive feedforward term at the (k + 1)th ILC trial

ξk+1(t) = (I +K(t)BR−1B⊤)−1A⊤ξk+1(t+ 1),

ξk+1(N) = 0, ξk+1(t̃
−
i) = ξk+1(t̃

+
i) + C⊤Qiek(ti). (4.34)

Proof. The proof follows from the proof of Proposition 3.9.

The experimental implementation of norm-optimal ILC using feedback and feedforward

solution provides an optimal solution to Stage One problem (4.20) based on real plant

dynamics. Due to the real time state feedback at the current ILC trial, this implemen-

tation method has a certain degree of robustness against model uncertainties.

4.3.2 Implementation of Stage Two

The coordinate descent method introduced in Theorem 4.4 re-arranges the tracking time

allocation to minimize the control effort. It starts from an initial tracking time allocation

Λ0 = [t01, t
0
2, . . . , t0M]T ∈ Θ. (4.35)

At each coordinate descent trial, it only updates a single time point, tji , by solving

the optimization problem (4.29). This is equivalent to finding the optimal element

along the finite interval (tji−1, tji+1) with respect to a cost function. Therefore, blind

search methods can be applied to this problem with a total computation number ηi =

(tji+1 − tji−1 − 1).

Remark 4.11. As the solution of the coordinate descent method is a local solution, it is

necessary to choose a suitable initial tracking time allocation, Λ0, to give a solution which

approximates the global one, especially when the system is complex. If no information is

available, Λ0 can be chosen arbitrarily, and alternatively it can be selected using different

methods such as performing grid search with a large sample time.

4.3.3 An iterative implementation algorithm

Combining the implementation of Stage One and Stage Two designs leads to an iterative

implementation of the two stage design framework - Algorithm 4.12. Note that Λ0 is a

suitably chosen initial tracking time allocation, and ǫ > 0, δ > 0 are small scalars which

depend on the tracking precision requirement and performance requirement, respectively.

Algorithm 4.12. Given initial allocation, Λ0, system state space model, S(A,B,C),

desired tracking reference, rp, admissible set of tracking time allocation, Θ, weighting

70 Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation

matrices, R and Qi, the followings steps provide the solution to the optimal tracking time

allocation, Λopt, and input, uopt, i.e.

1: initialization: Coordinate descent trial number j = 0

2: Implement Stage One update (4.22) with Λ = Λ0 experimentally until convergence,

i.e. ‖epk‖ < ǫ‖rp‖; record converged input, uex∞(Λ0), and input energy, f̃(Λ0).

3: repeat

4: Implement Stage Two update (4.27) with rp = Gp
Λj
uex∞(Λj).

5: Set j → j + 1.

6: Implement Stage One update (4.22) with Λ = Λj experimentally until conver-

gence, i.e. ‖epk‖ < ǫ‖rp‖; record converged input, uex∞(Λj), and input energy,

f̃(Λj).

7: until
∣
∣
∣f̃(Λj)− f̃(Λj−1)

∣
∣
∣ < δ

∣
∣
∣f̃(Λj−1)

∣
∣
∣

8: return Λopt = Λj and uopt = uex∞(Λj)

In Algorithm 4.12, Step 2 and 6 (i.e. norm-optimal ILC algorithm) are required to be

implemented experimentally and Step 4 uses real data, u∞(Λj), obtained from experi-

ments. These requirements are not necessary when an accurate system model is known.

However when there exists model mismatches/uncertainties, the proposed algorithm

will have attractive robustness properties as the algorithm ‘learns’ information about

the real plant dynamics through use of experimental data. This will be demonstrated

using experimental results in the next section.

4.4 Experimental Verification on a Gantry Robot

In this section, the proposed algorithm is validated experimentally on a three-axis gantry

robot test platform to demonstrate its effectiveness. Consider the multi-axis gantry robot

shown in Chapter 3.5.1 as the test platform. The control design objective is to use the

z-axis (m = 1) to perform a point-to-point ILC tracking task during the given tracking

time T = 2s with only five special tracking points (M = 5) given as

rp = [0.0048, 0.0029, − 0.0029, − 0.0048, 0]⊤ (4.36)

which are shown in Figure 4.3. The a priori tracking time allocation is given as Λr =

[20, 60, 100, 140, 180]⊤ . Again, it is assumed that only an approximate model (3.85) is

available for the z-axis as follows with a 150 proportional feedback controller which is

sampled with a zero-order hold at 0.01s.

A 30 coordinate descent trial updating procedure of Algorithm 4.12 is performed on the

gantry robot platform with initial tracking time allocation Λ0 = Λr. For implementa-

tional simplicity, the weighting matrices in Step 2 and 6 are taken as Qi = qI and R = rI

Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation 71

Number of Trials, j
0 5 10 15 20 25 30

T
im

e,
 t

20

40

60

80

100

120

140

160

180

200
t1
t2
t3
t4
t5
Λ∗

Figure 4.1: Experimental Time-Point Position Results at Each Trial.

Number of Trials, j
0 5 10 15 20 25 30

In
pu

t E
ne

rg
y

(V
2
 m

s)

1000

1100

1200

1300

1400

1500

f̃(Λj)

f̃(Λ∗)

Figure 4.2: Experimental Input Energy Results at Each Trial.

where q and r are positive scalars which satisfy q/r = 1, 000, 000. The tracking time allo-

cation at each coordinate descent trial is plotted in Figure 4.1, and it is clear from the fig-

ure that an experimental optimal tracking time allocation Λ30 = [54, 59, 128, 137, 200]⊤

is obtained.

The input energy f̃(Λj) at each trial is plotted in Figure 4.2, which shows that the input

energy converges to a limit energy f̃(Λ30) = 1053.4 along the trial. From the figure, the

limit input energy f̃(Λ30) is 27.4% less than the input energy f̃(Λr) at Λr, which confirms

72 Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

In
pu

t V
ol

ta
ge

, u
z(V

)

-5

0

5
u0

u30

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

z-
ax

is
, y

z(m
) ×10-3

-5

0

5

y0
y30
rp

rp

Figure 4.3: Experimental Converged Input and Output Trajectories for Initial
and Final Trials.

the robustness of the algorithm against model uncertainties. The theoretical optimal

tracking time allocation Λ∗ = [48, 58, 130, 140, 200]⊤ is computed in simulation using the

system model, and plotted as the dashed black lines in Figure 4.1 for comparison. The

corresponding operation energy f̃(Λ∗) = 1102.1 at Λ∗ is also plotted in Figure 4.2 as

the dashed magenta line. Note that the experimental optimal tracking time allocation

Λ30 is slightly different from the theoretically obtained Λ∗, and the experimental energy

solution f̃(Λ30) is 4.4% less than the theoretical one f̃(Λ∗), which demonstrates the

advantage of implementing the algorithm experimentally rather than using the nominal

model in simulation.

The experimental final converged results for the initial and final trials are compared

in Figure 4.3 with the reference, rp, marked as red and green dots. It is obvious that

the final converged output perform perfect point-to-point tracking at the critical time

points, e.g. the mean square error is 0.00053 at the final trial. So the algorithm not

only optimizes the input energy but also maintains high tracking performance.

Experiments with other initial tracking time allocations and other Ri, Q values provide

similar convergence performance to the results in Figure 4.2. For brevity, these results

are omitted.

4.5 Summary

This appendix exploits the flexibility of choosing the tracking time allocation in the

point-to-point ILC framework within the discrete time case, which affects system per-

formance. An optimization problem is formulated, and the Two Stage design framework

Chapter 4 Point-to-Point ILC with Optimal Tracking Time Allocation 73

proposed in Chapter 3 is used to solve this problem with minimum control effort. Dis-

tinct to the work in Chapter 3, this problem setup is suitable for discrete time systems.

Stage One solution is obtained via a norm optimal point-to-point ILC algorithm, and

Stage Two solution is computed using a coordinate descent method. The solutions yield

an iterative algorithm, which is verified on a gantry robot test platform, whose results

reveals practical efficacy.

In the problem setup of Chapter 3, only a finite number of critical positions have been

considered, however the ideas in this chapter can be further extended to optimize the

tracking time allocation of all the positions along a given path. This extension naturally

meets the task description of spatial ILC, whose design objective is to follow a given path

defined in space with no a priori temporal constraints. The details of this extension will

be developed in the next two chapters.

Chapter 5

Generalized ILC with Application

to Spatial Path Tracking

In order to extend the idea of optimizing the tracking time allocation proposed in the

previous chapter to address the class of spatial ILC tasks, the ILC framework must be

generalized to wide classes of tracking tasks. In addition, the framework must be further

expanded by introducing a range of system constraints that have significant relevance to

industrial manufacture, e.g. input constraints represent the limit of the system’s input

load and output constraints represent the boundary of the acceptable moving space

preventing potential overshoot.

To do this, this chapter first formulates a generalized ILC problem embedding both

intermediate point tracking at time instants, ti, and linear constraints between outputs

on defined sub-intervals, [ti−1, ti], enforcing tracking along lines or planes with no a

priori timing constraints. It then incorporate a mixed form of system constraints to

the proposed framework. The successive projection method is used to design a control

algorithm which can be efficiently implemented in practice and automatically provides

the solution of the generalized ILC problem. In particular, this algorithm can be applied

to spatial path tracking problem by setting the coefficients appropriately.

5.1 Problem Formulation

This section introduces the system dynamics and defines the general tracking require-

ment. Then input and output constraints are incorporated to yield a generalized ILC

problem formulation.

75

76 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

5.1.1 Generalized ILC Design Objective

A generalized control design objective is described next. In traditional ILC the system

is required to repeatedly track a desired reference defined over the whole horizon; in

point to point ILC the system is required to track a given reference defined on a finite

set of intermediate points. The general control design objective subsumes both the

intermediate point tracking requirement at time instants, ti, i = 1, . . . ,M , where

0 < t1 < · · · < tM = T, (5.1)

and the linear tracking requirement at each sub-interval, [ti−1, ti], i = 1, . . . ,M , where

t0 = 0 is used for ease of notation. To extract the intermediate point and sub-interval

tracking requirements, a linear mapping is defined as

ζ ∈ Lm
2 [0, T] 7→ ζe ∈ H̆ : ζe =

[

Fζ

Pζ

]

. (5.2)

where H̆ is the Hilbert space defined as

H̆ = R
f1 × · · · × R

fM × Lp1
2 [t0, t1]× · · · × LpM

2 [tM−1, tM]

with inner product and associated induced norm

〈(ω, ν), (µ, λ)〉Q̃ =

M∑

i=1

{ω⊤
i Qiµi +

ti∑

j=ti−1

ν⊤i (j)Q̂iλi(j)},

‖(ω, ν)‖Q̃ =
√

〈(ω, ν), (ω, ν)〉Q̃, (5.3)

in which (ω, ν), (µ, λ) ∈ H̆ have the following forms

ω = (ω1, ω2, . . . , ωM), µ = (µ1, µ2, . . . , µM),

ν = (ν1, ν2, . . . , νM), λ = (λ1, λ2, . . . , λM), (5.4)

where ωi, µi ∈ R
fi , νi, λi ∈ Lpi

2 [ti−1, ti], i = 1, . . . ,M and Q̃ denotes the data set

{Q1, . . . , QM , Q̂1, . . . , Q̂M} in which Qi ∈ S
fi
++, Q̂i ∈ S

pi
++, for i = 1, . . . ,M .

In the mapping defined above, the operator F selects the important elements or linear

combination of elements of ζ at the intermediate time instants, ti, i = 1, . . . ,M , and is

defined as

Fζ =







F1ζ(t1)
...

FMζ(tM)






, (5.5)

where

Fiζ(ti) ∈ R
fi

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 77

with Fi ∈ R
fi×m a full row rank matrix for i = 1, . . . ,M . The operator P extracts

a linear combination of elements of ζ at each sub-interval, [ti−1, ti], i = 1, . . . ,M , as

follows

Pζ =







(Pζ)1
...

(Pζ)M






, (5.6)

where

(Pζ)i ∈ Lpi
2 [ti−1, ti],

is defined as

(Pζ)i(t) = Piζ(t), t ∈ [ti−1, ti],

in which Pi ∈ R
pi×m is a full row rank matrix for i = 1, . . . ,M .

From definitions (5.5) and (5.6), it follows that the ‘extended output’ ye comprises a

subset of outputs at distinct intermediate points, together with a subset of plant outputs

defined over sub-intervals of the task duration. The dynamic relationship between the

system input u and the extended output ye can therefore be modelled by

ye = Ge
Λu = (Gu)e =

[

FGu

PGu

]

(5.7)

where Ge
Λ : Lℓ

2[0, T] → H is a linear operator with its subscript denoting dependence

on the tracking time allocation, Λ, of transition positions defined as

Λ = [t1, . . . , tM]⊤. (5.8)

For the generalized control design, the system is required to meet the tracking require-

ment that the system extended output, ye, (repeatedly) follows a desired reference,

re ∈ H, i.e. ye = re.

Remark 5.1. It is worth mentioning that as a general and powerful ILC design frame-

work, the generalized ILC framework collapses to most types of ILC framework previ-

ously considered by setting appropriate values of parameters Q, Q̂, F and P , e.g. Qi = 0,

Pi = I, classical ILC; Q̂i = 0, Fi = I, point-to-point ILC.

5.1.2 Input and Output Constraints

In practice, input and output constraints exist widely in control systems due to physical

limitations or performance requirements. For example, the input constraint set, Ω,

typically assumes one of the following forms:

78 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

• Input saturation constraint

Ω = {u ∈ Lℓ
2[0, T] : |u(t)| � M(t), 0 6 t 6 T}, (5.9)

where M(t) � 0, 0 6 t 6 N are the (possible time varying) saturation limits,

• Input energy constraint

Ω = {u ∈ Lℓ
2[0, T] :

N∑

0

u⊤(t)u(t) 6 M}, (5.10)

where M > 0 is the total energy limit. Similarly the output constraint set, Φ, usually

has the forms:

• Output saturation constraint

Φ = {y ∈ Lm
2 [0, T] : |y(t)| � N(t), 0 6 t 6 T}, (5.11)

where N(t) > 0 represent the output saturation limit,

• Output polyhedral constraint

Φ = {y ∈ Lm
2 [0, T] : a⊤i y(t) 6 bi, ai ∈ R

m, bi ∈ R, i = 1, . . . ,M, 0 6 t 6 T}.

(5.12)

In particular, the latter constraint restricts the system output to a specified convex

region, and can be used to solve the potential overshoot problem.

5.1.3 Generalized ILC Design problem

Using the extended output (5.7) combined with the above constraints, the generalized

ILC design problem can be stated clearly.

The generalized ILC design problem is to find an input updating law based on a

function of the previous trial’s input and tracking error in the following form

uk+1 = F(uk, e
e
k) (5.13)

where eek = re− yek is the extended tracking error such that the tracking error converges

to zero as k → ∞, i.e.

lim
k→∞

eek = 0

and that the converged input and output satisfy the constraints, i.e.

lim
k→∞

uk = u∗ ∈ Ω, lim
k→∞

yk = y∗ ∈ Φ. (5.14)

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 79

5.2 Generalized ILC using Successive Projection

In this section, the above generalized ILC design problem is formulated using the suc-

cessive projection framework which was used previously to derive classical and point-to-

point ILC algorithms (Chu and Owens, 2010; Chu et al., 2015). Based on this formula-

tion, a novel ILC algorithm is proposed to solve the generalized ILC design problem.

5.2.1 Successive Projection Interpretation

The design objective of the ‘generalized’ ILC problem is to iteratively find an input,

u∗, such that: i) the extended output, ye∗ = Geu∗, tracks the desired reference, re, i.e.

ye∗ = re, ii) the output, y∗ = Gu∗, satisfies the constraint, i.e. y∗ ∈ Φ and iii) the

input u∗ meets the constraint requirement, i.e. u∗ ∈ Ω. This is equivalent to iteratively

finding a point (ye∗, y∗, u∗) in the intersection of the two following convex sets:

S1 = {(ye, y, u) ∈ Ĥ : ye = Geu, y = Gu} (5.15)

S2 = {(ye, y, u) ∈ Ĥ : ye = re, y ∈ Φ, u ∈ Ω} (5.16)

where the set S1 represent the plant dynamics and S2 represents the tracking require-

ments and system constraints; Ĥ is the Hilbert space defined by

Ĥ = R
f1 × · · · ×R

fM ×Lp1
2 [t0, t1]× · · · ×LpM

2 [tM−1, tM]×Lm
2 [0, T]×Lℓ

2[0, T] (5.17)

whose inner product and associated induced norm are derived naturally from (3.3), (3.4)

and (5.3).

The problem of finding a point in the intersection of two sets can be solved by the

method of successive projection. The basic successive projection scheme from Owens

and Jones (1978) is shown in Figure 5.1 with guaranteed convergence performance as

shown in the following theorem.

Theorem 5.2. Owens and Jones (1978); Gubin et al. (1967). Let S1 and S2 be two

closed convex sets in a Hilbert space X. Define projection operators PS1
(·) and PS2

(·)

as

PS1
(x) = arg min

x̂∈S1

‖x̂− x‖2X , (5.18)

PS2
(x) = arg min

x̂∈S2

‖x̂− x‖2X , (5.19)

where ‖ · ‖ is the induced norm in X. Then given the initial estimate x0 ∈ X, the

sequences {x̃k}k>0 and {xk}k>0 generated by

x̃k+1 = PS1
(xk), xk+1 = PS2

(x̃k+1), k > 0 (5.20)

80 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

S1

S2

x0

x̃1

x1

x̃2

S1 ∩ S2

Figure 5.1: Illustration of the Successive Projection Algorithm.

are uniquely defined for each x0 ∈ X and satisfy the following monotonic convergence

conditions

‖x̃k+2 − xk+1‖
2
X 6 ‖x̃k+1 − xk‖

2
X . (5.21)

For each ǫ > 0, there exists an integer N such that for k > N

‖x̃k+1 − xk‖
2
X < ǫ. (5.22)

and the minimum distance between two sets is guaranteed, i.e.

lim
k→∞

‖x̃k − xk‖
2
X = inf

x̃∈S1,x∈S2

‖x̃− x‖2X . (5.23)

Furthermore, if S1 ∩ S2 6= ∅, the following convergence condition is satisfied

‖xk+1 − x‖2X 6 ‖xk − x‖2X , ∀x ∈ S1 ∩ S2, k > 0. (5.24)

Proof. See Owens and Jones (1978); Gubin et al. (1967) for the detailed proof.

5.2.2 Generalized ILC with Constraint Handling

Direct application of Theorem 5.2 to the generalized ILC design problem (5.14) with

X = Ĥ and S1, S2 defined in (5.15) and (5.16) yields the next algorithm.

Algorithm 5.3. Given system dynamics, S(A,B,C), input constraint set, Ω, output

constraint set, Φ, extended reference, re, any initial input signal, u0 ∈ Ω, initial value,

r̃0 ∈ Φ, the input sequence, {uk}k>0, defined by the updating law

ũk+1 = uk +Gs∗(I +GsGs∗)−1esk (5.25)

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 81

followed by the projections

uk+1 = PΩ(ũk+1) = argmin
z∈Φ

‖z − y‖2S (5.26)

r̃k+1 = PΦ(ỹk+1) = argmin
z∈Ω

‖z − u‖2R (5.27)

iteratively solves the generalized ILC problem (5.14), where Gs is a linear operator

defined by

Gsu =

[

Ge
Λu

Gu

]

: Lℓ
2[0, T] → H̃ (5.28)

whose Hilbert adjoint operator is Gs∗, the error, esk, is defined as

esk =

[

eek
ẽk

]

, eek = re − yek, ẽk = r̃k − yk, (5.29)

and H̃ is the Hilbert space denoted by

H̃ = R
f1 × · · · × R

fM × Lp1
2 [t0, t1]× · · · × LpM

2 [tM−1, tM]× Lm
2 [0, T] (5.30)

and the inner product and associated induced norm of which are naturally derived from

(3.4) and (5.3).

Proof. To apply Theorem 5.2 to generalized ILC problem (5.14), the necessary pro-

jections are first computed. From the definition of Hilbert space Ĥ in (5.17), denote

x = (ye, y, u) to be an element belonging to Ĥ. The projection operator PS1
in Theorem

5.2 is hence

PS1
(x) = arg inf

x̂∈S1

‖x̂− x‖2X

= arg inf
(ŷe,ŷ,û)∈Ĥ

∥
∥
∥

(

ŷe, ŷ, û
)

−
(

ye, y, u
)∥
∥
∥

2

{Q̃, S, R}
, s.t. ŷe = Ge

Λû, ŷ = Gû

= arg inf
(ŷe,ŷ,û)∈Ĥ

‖ŷe − ye‖2
Q̃
+ ‖ŷ − y‖2S + ‖û− u‖2R , s.t. ŷe = Ge

Λû, ŷ = Gû.

= inf
û

‖Ge
Λû− ye‖2

Q̃
+ ‖Gû− y‖2S + ‖û− u‖2R . (5.31)

Theoptimization problem (5.31) yields solution û = u∗ with

u∗ = u+Gs∗(I +GsGs∗)−1

[

ye −Ge
Λu

y −Gu

]

. (5.32)

It follows from the definition (5.15) that

PS1
(x) =

(

Geu∗, Gu∗, u∗
)

(5.33)

82 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

where u∗ is given by (5.32). Performing a similar procedure for projection operator PS2

yields

PS2
(x) = arg inf

x̂∈S2

‖x̂− x‖2X

= arg inf
(ŷe,ŷ,û)∈Ĥ

∥
∥
∥

(

ŷe, ŷ, û
)

−
(

ye, y, u
)∥
∥
∥

2

{Q̃, S, R}
, s.t. ŷe = re, û ∈ Ω, ŷ ∈ Φ

= arg inf
(ŷe,ŷ,û)∈Ĥ

‖ŷe − ye‖2
Q̃
+ ‖ŷ − y‖2S + ‖û− u‖2R , s.t. ŷe = re, û ∈ Ω, ŷ ∈ Φ.

(5.34)

In optimization problem (5.34), the elements ŷe, ŷ and û are independent of one another,

which means this solution can be obtained separately. Using (5.26) and (5.27), it follows

that

PS2
(x) =

(

re, PΦ(y), PΩ(u)
)

. (5.35)

Consider update (5.20) in Theorem 5.2, and let xk = (re, r̃k, uk) and x̃k = (ỹek, ỹk, ũk).

At the kth trial, the elements x̃k+1 and xk+1 are updated using projection operators PS1

and PS2
. For x̃k+1 = PS1

(xk), it follows from the solution (5.33) that

ũk+1 = uk +Gs∗(I +GsGs∗)−1

[

re − yek
r̃k − yk

]

, (5.36)

ỹek+1 = Ge
Λũk+1, ỹk+1 = Gũk+1, k > 0 (5.37)

and for xk+1 = PS2
(x̃k+1), it follows from (5.35) that

r̃k+1 = PΦ(ỹk+1), uk+1 = PΩ(ũk+1), k > 0 (5.38)

which directly illustrates how the input uk+1 and the reference r̃k+1 are updated by PS2
.

Therefore, Theorem 5.2 can be applied to problem (5.14) with the solutions (5.36) and

(5.38) to yield Algorithm 5.3, which updates the input sequence, {uk}, along the trial

under the initial condition, x0 = (re, r̃0, u0) ∈ S2, i.e. r̃0 ∈ Φ, u0 ∈ Ω.

5.3 Convergence Properties

When S1∩S2 6= ∅, perfect tracking of the reference is possible. Algorithm 5.3 iteratively

solves the generalized ILC design problem (5.14) with desirable convergence properties

as shown in the next theorem.

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 83

Theorem 5.4. If S1 ∩ S2 6= ∅, perfect tracking of the reference is possible. In this case

Algorithm 5.3 achieves perfect tracking of the extended reference, i.e.

lim
k→∞

yek = re. (5.39)

In addition, the input, uk, and output, yk, (if they exist) converge as

lim
k→∞

uk = u∗, lim
k→∞

yk = y∗ (5.40)

and satisfy the system constraints that u∗ ∈ Ω, y∗ ∈ Φ. Furthermore, the input uk

converges monotonically with respect to the cost function

J̃k = ‖r̃k − y∗‖2S + ‖uk − u∗‖2R (5.41)

and the error, esk, converges monotonically with respect to the cost function

Jk = ‖Mesk‖
2
[Q] + ‖N esk‖

2
R (5.42)

where M = (I +Gs∗Gs)−1,N = Gs∗(I +Gs∗Gs)−1 and [Q] = {Q̃, S}.

Proof. If S1 ∩ S2 6= ∅, there exists intersection between the two sets and perfect track-

ing under system constraints is possible and the minimum distance between the two

sets is 0. It follows from equation (5.23) that the two sequences {(ỹek, ỹk, ũk)}k>0 and

{(re, r̃k, uk)}k>0 attain the minimum distance between the two sets, i.e.

lim
k→∞

‖ỹek − re‖2
Q̃
+ ‖ỹk − r̃k‖

2
S + ‖ũk − uk‖

2
R = 0. (5.43)

According to the above equation, it is clear that ‖ũk − uk‖
2
R = 0 and the sequence {ỹek}

converges to re. So the limit ye∗ = re of the sequence {yek} exists for perfect tracking

exists as

yek = Ge
Λuk = Ge

Λũk = ỹek. (5.44)

In addition, the input, uk, and reference, r̃k, are obtained from the projection operators

PΩ and PΦ respectively, i.e.

uk ∈ Ω, r̃k ∈ Φ. (5.45)

Therefore, if the limits of the sequences {uk} and {yk} exist, it follows that u∗ ∈ Ω, y∗ ∈

Φ. Then, substitute x̃k = (ỹek, ỹk, ũk) and xk = (re, r̃k, uk) with the update solution

(5.25) into the monotonic convergence condition (5.21) to give Jk+1 6 Jk, and substitute

x∗ = (re, y∗, u∗) ∈ S1∩S2 and xk = (re, r̃k, uk) into the monotonic convergence condition

(5.24) to give J̃k+1 6 J̃k, which completes the proof.

The above theorem shows that the proposed algorithm solves the generalized ILC design

problem, i.e. perfect tracking is achieved and the converged input and output satisfy the

84 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

system constraints. Moreover, this convergence has a certain form of monotonicity with

respect to the performance defined above, e.g. weighted error norm as in (5.42), which

is appealing in practice. Furthermore, as a by product, when there is no constraints,

the algorithm can be simplified and has the property that it will converge to a minimum

norm solution with zero initial input, i.e. the control input with minimum energy is

achieved, as shown in the following corollary.

Corollary 5.5. If S1 ∩S2 6= ∅, in the absence of system constraints, Algorithm 5.3 has

the monotonic convergence property with respect to the performance index

Ĵk = 〈uk − u∗, H(uk − u∗)〉X (5.46)

for all k > 0, u0 and u∗, where H = Ge∗G + I, and Ge∗ is the Hilbert adjoint operator

of Ge. Moreover, the input energy converges to the minimum control effort with initial

condition u0 = 0, i.e.

lim
k→∞

‖uk‖
2
R = min

u
{‖u‖2R , s.t. re = Geu}. (5.47)

Proof. In the absence of system constraints, the sets S1 and S2 can be simplified as

follows.

S1 = {(ye, u) ∈ H × Lℓ
2[0, T] : ye = Geu} (5.48)

S2 = {(ye, u) ∈ H × Lℓ
2[0, T] : ye = re}. (5.49)

Substitute x∗ = (re, u∗) and xk = (re, uk) into monotonic convergence condition (5.24),

which hence gives rise to Ĵk+1 6 Ĵk, ∀k > 0. The proof of input energy follows from

Theorem 1 in Owens et al. (2015) by considering the Lagrangian associated with the

minimum input energy

L(u, λ) = ‖u‖2R + 2 〈λ, re −Geu〉Q̃ (5.50)

where λ is the Lagrange multiplier. The problem has a unique stationary point u∞ =

Ge∗λ and re = Geu∞ which hence leads to re = GeGe∗λ. The stationary point solution

solves the minimum energy problem. In the absence of system constraints, the input uk

is

uk = Ge∗
k∑

i=1

Xiee0 = Ge∗
k−1∑

i=0

Xi(I −X)λ0

= Ge∗(I −Xk)λ0. (5.51)

where X = (I+GeGe∗)−1 and ee0 = re = GeGe∗λ0 as u0 = 0. It follows that uk converges

in norm to an input û∞ = Ge∗λ0 and re = GeGe∗λ0, which is the unique stationary point

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 85

of the Lagrangian. It is clear that û∞ = u∞ and λ0 = λ, and hence the input energy

converges to the minimum control effort. This completes the proof.

When S1∩S2 = ∅, perfect tracking of the reference is not possible. There does not exist

any input satisfying the tracking requirement without violating the system constraints.

In this case, this algorithm still attempts to solve the constrained generalized ILC design,

as shown in the next theorem.

Theorem 5.6. If S1 ∩ S2 = ∅, perfect tracking of the reference under the system con-

straints is not possible. In this case, the distance between the two sequences {(ỹek, ỹk, ũk)}

and {(re, r̃k, uk)} given by Algorithm 5.3 converges to the minimum distance between S1

and S2, i.e.

inf
u
‖re −Ge

Λũ‖
2
Q̃
+ ‖r̃ −Gũ‖2S + ‖u− ũ‖2R , r̃ ∈ Φ, u ∈ Ω. (5.52)

In addition, the input, uk, at each trial satisfies the constraint that uk ∈ Ω. Furthermore,

the error, esk, converges monotonically with respect to the cost function, Jk, defined in

(5.42).

Proof. If S1 ∩ S2 = ∅, perfect tracking is not possible under system constraints. It

also follows Theorem 5.2 that the two sequences {(ỹek, ỹk, ũk)}k>0 and {(re, r̃k, uk)}k>0

still attain the minimum distance between the two sets as shown in (5.52). Also, the

input, uk, at each trial belongs to the input constraint set, Ω, as it is obtained from the

projection operator, PΩ. The proof of the monotonic convergence with respect to Jk

follows from the similar proof in Theorem 5.4. The proof is now complete.

Remark 5.7. It is worth pointing out that the scenario in the above theorem is not

well-posed. In practice an appropriate tracking requirement, re, should be specified to

avoid this impossible tracking task, i.e. S1 ∩ S2 = ∅.

5.4 Implementation of the Algorithm

Implementation of Algorithm 5.3 consists of two steps: the ILC update (5.25) and projec-

tion steps (5.26), (5.27). The update (5.25) can be directly implemented as a feedforward

solution using uk and esk to construct ũk+1. Alternatively, it can be implemented using

a causal feedback plus feedforward structure by employing the state feedback to further

embed potential robust performance in practice. This exploits the special properties of

the linear operator Ge and its adjoint operator Ge∗. To formulate the causal feedback

plus feedforward solution, the following lemma is needed.

86 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

Lemma 5.8. The Hilbert adjoint operator Gs∗ : (ω, ν, y) ∈ H̃ → u ∈ Lℓ
2[0, T] has the

following analytic form

u(t) = R−1B⊤p(t), (5.53)

where p(t) is computed in reverse time as follows

ṗ(t) = A⊤p(t) +C⊤(P⊤
i Q̂iνi(t) + Sy(t)), t ∈ [ti−1, ti], i = 1, . . . ,M.

with boundary conditions

p(t−i) = p(t+i) + C⊤F⊤
i Qiωi, i = 1, . . . ,M,

p(T) = 0 (5.54)

Proof. The relevant adjoint operator Gs∗ is obtained based on inner product form

〈(ω, ν, y), Gsu〉[Q] = 〈Gs∗(ω, ν, y), u〉R (5.55)

where [Q] = {Q̃, S}. Note that Gs consists of FG, PG and G, whose adjoints are

computed separately as follows:

1). Adjoint Operator of FG: The operator FG has the following structure

FGu =







G1u
...

GMu







(5.56)

where

Giu = Fi

∫ ti

0
CeA(ti−t)Bu(t), i = 1, . . . ,M. (5.57)

Then consider the operator Gi : L
ℓ
2[0, T] → R

fi via equation

ω⊤
i QiGiu = ω⊤

i QiFi

∫ ti

0
CAti−tBu(t)

=

∫ ti

0
(R−1B(A⊤)ti−tC⊤F⊤

i Qiωi)
⊤Ru(t), (5.58)

and the condition

ω⊤
i QiGiu =

∫ T

0
((G∗

iωi)(t))
⊤Ru(t), (5.59)

held by the definition of the adjoint operator, i.e.

〈ωi, Giu〉Qi
= 〈G∗

iωi, u〉R . (5.60)

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 87

Hence, the above two equations give rise to the adjoint of Gi as

(G∗
i ωi)(t) =







R−1BeA
⊤(ti−t)C⊤F⊤

i Qiωi, t 6 ti,

0, t > ti

which can be further written as

(G∗
i ωi)(t) = R−1B⊤pi(t) (5.61)

where pi(t) = 0 on [ti, T], and on [0, ti)

ṗi(t) = A⊤pi(t), pi(ti) = C⊤Qiωi. (5.62)

2). Adjoint Operator of G: The adjoint of G is computed from the inner product form

〈y, Gu〉S = 〈G∗y, u〉R (5.63)

as the map u = G∗y as follows:

(G∗y)(t) = R−1B⊤pM+1(t), pM+1(N) = 0,

ṗM+1(t) = A⊤pM+1(t) + C⊤Sy(t). (5.64)

3). Adjoint Operator of PG: Note that PG is simply the composite map G and the

map P such that

y(t) → Piy(t), t ∈ [ti−1, ti], i = 1, . . . ,M. (5.65)

It follows that the adjoint operator P ∗
i is computed as

y(t) = S−1P⊤
i Q̂iνi(t), t ∈ [ti−1, ti], i = 1, . . . ,M. (5.66)

from the inner product form

〈νi, Piy〉Q̂i
= 〈P ∗

i y, y〉S (5.67)

Hence, the adjoint of PG defined by the relation u = (PG)∗(ν1, . . . , νM) can be written

as (PG)∗ = G∗P ∗, and computed as

((PG)∗ν)(t) = R−1B⊤pM+2(t), pM+2(N) = 0

ṗM+2(t) = A⊤pM+2(t) + C⊤P⊤
i Q̂iνi(t), t ∈ [ti−1, ti], i = 1, . . . ,M. (5.68)

by substituting (5.66) into (5.64).

4). Adjoint Operator of Gs∗: The adjoint operator Gs∗ is the map defined as (ω, ν, y) 7→

u. Due to linearity, the adjoint operator Gs∗ can be expressed as the sum of the adjoints

88 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

of FG, PG and G, i.e.

Gs∗(ω, ν, y) =
M∑

i=1

(G∗
iωi)(t) + (G∗y)(t) + ((PG)∗ν)(t)

= R−1B⊤p(t) (5.69)

as shown in (5.53), where p(t) =
∑M+2

i=1 pi(t). Based on the above representations of

G∗
i , G

∗ and (PG)∗, the costate p(t) in (5.53) is obtained together with its boundary

conditions (5.54). These together generate the definition of the adjoint operator Gs∗ in

Lemma 5.8.

Using Lemma 5.8, the feedback plus feedforward implementation is given in the next

proposition.

Proposition 5.9. The ILC update (5.25) in Algorithm 5.3 can be implemented in a

feedforward plus feedback solution

uk+1(t) = uk(t) +R−1B⊤pk(t) (5.70)

with

pk(t) = −K(t)(xk+1(t)− xk(t)) + ξk+1(t) (5.71)

where K(t) is the solution of the Riccati equation

0 = K̇(t) + (A⊤ −K(t)BR−1B⊤)K(t) +K(t)A+ C⊤Q̂i(t)C + C⊤SC (5.72)

with boundary conditions

K(ti−) = K(ti+) + C⊤QiC, 1 6 i 6 M

K(T) = 0, (5.73)

and ξk+1(t) denotes the feedforward term at the (k+1)th trial generated by the difference

equation

0 = ξ̇k+1(t) + (A⊤ −K(t)BR−1B⊤)ξk+1(t)− C⊤Q̂(t)ek+1(t) +C⊤Sêk(t) (5.74)

with boundary conditions

ξk+1(ti−) = ξk+1(ti+) + C⊤Qek(ti), 1 6 i 6 M

ξk+1(T) = 0 (5.75)

in which Q̂(t) = P⊤
i Q̂iPi for t ∈ [ti−1, ti], i = 1, . . . ,M .

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 89

Proof. The ILC update (5.25) is equivalent to

uk+1(t) = uk(t) +Gs∗ẽsk+1(t) (5.76)

where ẽsk+1 = [eek+1, êk+1]
⊤ and êk+1 = r̃k − yk+1. From Lemma 5.8, Gs∗ẽsk+1(t) can be

computed using the analytical form

Gs∗ẽsk+1(t) = R−1B⊤pk(t) (5.77)

where the costate, pk(t), is computed in reverse time as

ṗ(t) = −A⊤p(t)− C⊤(P⊤
i Q̂iPiek+1(t) + Sêk+1(t)), t ∈ [ti−1, ti], i = 1, . . . ,M,

with boundary conditions

p(ti−) = p(ti+) + C⊤F⊤
i QiFiek+1(ti), i = 1, . . . ,M

pk(T) = 0 (5.78)

Substituting (5.77) into (5.76) yields the solution (5.70).

Assuming that full state knowledge are known, the costate equation (5.77) yields a causal

implementation

pk(t) = −K(t)(xk+1(t)− xk(t)) + ξk+1(t). (5.79)

Then use the method developed in Amann (1996) such that it follows from (3.1), (5.70)

and (5.79) that

ẋk+1(t)− ẋk(t) = A(xk+1(t)− xk(t)) +B(uk+1(t)− uk(t))

= A(xk+1(t)− xk(t)) +BR−1B⊤pk+1(t)

= (I −BR−1B⊤K(t))A(xk+1(t)− xk(t)) +BR−1B⊤ξk+1(t) (5.80)

Then substitute (5.79) and (5.80) into the costate equation (5.77) to yield an equation

of the form

H(A,B,C, S, Q̂i, Pi, R
−1,K(t),K(t+ 1))[xk+1(t+ 1)− xk(t+ 1)]

= G(A,B,C, Q̂i, Pi, R
−1,K(t), ξk+1(t), ξk+1(t+ 1), ek(t+ 1), ẽk(t+ 1)) (5.81)

where H(·) and G(·) are functions of their arguments and independent of the states. If

both functions are set to zero, the equation (5.81) holds independently of the current

difference in state. Doing this yields the Riccati equation K(t) and the optimal predictor

ξk+1(t) in (5.72) and (5.74).

90 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

Comparing to the boundary conditions in equation (5.78), there is one more term added

at the end, i.e. C⊤F⊤
i QiFiek+1(ti). Note that

ek+1(ti) = ri − Cxk+1(ti)

= ek(ti)− C(xk+1(ti)− xk(ti)), (5.82)

which yields

C⊤F⊤
i QiFiek+1(ti) = C⊤F⊤

i QiFiC(xk+1(ti)− xk(ti)) + C⊤FiQiFiek(ti) (5.83)

and gives rise to the boundary conditions in (5.73) and (5.75).

The ILC update (5.25) is then followed by the projection steps in (5.26) and (5.27)

to project the unconstrained input, ũk+1, and output, ỹk+1, into the input and output

constraint sets, Φ and Ω, respectively, which are usually straightforward. For example,

the input constraint set, Ω, is usually a pointwise constraint in practice, so the solution

of the projection operator, PΩ, in (5.26) is straightforward. As another example, when

the input constraint set, Ω, has the saturation form (5.9), the solution of u = PΩ(ũ) is

given by

u(t) =







M(t), ũ(t) ≻ M(t),

ũ(t), −M(t) � ũ(t) � M(t),

−M(t), ũ(t) ≺ −M(t)

(5.84)

for 0 6 t 6 T . Also the solution of the projection operator, PΦ, in (5.27) is guaranteed

to be unique. Consider the polyhedral output constraint set (2.59) for example, the

solution of r̃ = PΩ(ỹ) is given by

r̃(t) =







N(t), ỹ(t) ≻ N(t),

ỹ(t), −N(t) � ỹ(t) � N(t),

−N(t), ỹ(t) ≺ −N(t)

(5.85)

for 0 6 t 6 T .

5.5 Piecewise Spatial Path Tracking Problem

As described in the introduction, the spatial tracking problem requires the output tra-

jectory to follow a continuous path defined in space with no temporal constraints. The

framework developed in this chapter can be applied to produce the first spatial ILC

algorithm capable of converging to an optimal solution to the problem. The common

class of piecewise spatial tracking tasks is considered, which is defined as follows:

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 91

Definition 5.10. The piecewise linear spatial tracking problem is to design an input

such that the output travels between each pair of vertices, ri−1 and ri, in ascending

order, i.e. having reached ri−1 at ti−1, remain in interval between ri−1 and ri until ri is

reached at ti, and then repeat the process for the next pair, ri and ri+1.

Note that the vertices ri, i = 0, . . . ,M are defined in Cartesian space R
m as ri =

[r1i , r2i , . . . , r
m
i]⊤, and a special example of the piecewise spatial path, i.e. m = 2, is

shown in Figure 5.2.

Figure 5.2: Piecewise Spatial Path in R
2.

The next theorem illustrates how Algorithm 5.3 solves the spatial problem of Definition

5.10 as a special case.

Theorem 5.11. The piecewise linear spatial path tracking problem is solved by Algo-

rithm 5.3 with

re =

[

Fr

Pr

]

(5.86)

where r ∈ Lm
2 [0, T] is given by

r(t) = ri, t ∈ (ti−1, ti], i = 1, . . . ,M, (5.87)

the operator F is defined by Fi = I, i = 1, . . . ,M and the operator P by Pi ∈ R(m−1)×m

a full rank matrix satisfying

KerPi = Imai, (5.88)

where ai = ri − ri−1, for i = 1, ...,M, and the output constraint set is

Φ = {y ∈ Lm
2 [0, T] : a⊤i ri−1 6 a⊤i y(t) 6 a⊤i ri, t ∈ (ti−1, ti], i = 1, . . . ,M}. (5.89)

92 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

Using Algorithm 5.3, if S1 ∩ S2 6= ∅, the extended output, yek, has the following conver-

gence properties

lim
k→∞

yek = re. (5.90)

That is, perfect tracking of the spatial path is achieved.

Proof. According to Definition 5.10, the piecewise spatial tracking requirement is to

track the transition vertices ri at time instants ti and the linear path between ri−1

and ri during the sub-interval, [ti−1, ti]. Therefore, the piecewise spatial path tracking

problem is

(Gu)(ti) = ri, i = 1, . . . ,M

Gu(t) ∈ Ri, t ∈ [ti−1, ti], i = 1, . . . ,M. (5.91)

where Ri is the set of all points along each linear sub-path, i.e.

Ri = {y ∈ R
m : y = ri − γ(ri − ri−1), γ ∈ [0, 1]}. (5.92)

Note the all the elements in Ri satisfy the linear relationship

Piy = Piri, ∀y ∈ Ri (5.93)

where Pi ∈ R(m−1)×m is a full row rank matrix. It follows that

Pi(ri − γ(ri − ri−1)) = Piri (5.94)

which yields

Piai = 0 (5.95)

and further gives rise to the condition (5.88). In addition, the hard output constraint

set defined in (5.89) is used to prevent overshoot. Therefore, a piecewise spatial ILC

problem is formulated as

lim
k→∞

yk = y∗ ∈ Φ, lim
k→∞

yk(ti) = ri, i = 0, . . . ,M,

lim
k→∞

Piyk(t) = Piri, t ∈ (ti−1, ti], i = 1, . . . ,M. (5.96)

Therefore, it is clear that the generalized ILC problem (5.14) is reduced to exactly the

problem (5.96) when the parameters are set to the values described in this theorem.

Therefore, Algorithm 5.3 solves the problem (5.91) as a special case. As the piecewise

spatial path tracking problem is a special case of generalized ILC problems, the proofs

of the convergence properties in (5.90) follow exactly from the proofs of Theorem 5.4

and 5.6.

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 93

From the above theorem, the proposed Algorithm 5.3 solves the high performance piece-

wise linear spatial tracking problem. The next corollary shows that Algorithm 5.3 also

fully exploits the spatial tracking tasks design freedom in the temporal domain to allow

minimization of control effort for a general class of systems, under some mild conditions.

Lemma 5.12. If S1∩S2 6= ∅, in the absence of system constraints (e.g. if overshoot can

be tolerated or does not occur), Algorithm 5.3 solves the spatial problem in Definition

5.10 with minimum control effort with initial input choice u0 = 0.

Proof. The proof of the minimum control effort follows from the proof of Corollary

5.5.

Remark 5.13. The implementation of the aforementioned spatial path tracking design

is exactly the same as that discussed in the previous sections, in partiualr the unique

solution r̃ = PΦ(ỹ) is given as

r̃(t) =







ỹ(t) + ∆i,i(t), a⊤i ỹ(t) > a⊤i ri,

ỹ(t), a⊤i ri−1 6 a⊤i ỹ(t) 6 a⊤i ri

ỹ(t) + ∆i,i−1(t), a⊤i ỹ(t) < a⊤i ri−1

(5.97)

for t ∈ (ti−1, ti], i = 1, . . . ,M where

∆i,j(t) = (a⊤i ai)
−1a⊤i (rj − ỹ(t))ai.

5.6 Experimental Verification

In this section, the proposed algorithm is validated experimentally on a three-axis gantry

robot test platform to demonstrate its effectiveness.

5.6.1 Design Task Specification

Consider the multi-axis gantry robot shown in Chapter 3.5.1 with the system model

(3.83) as the test platform. The control design objective is to use both the x-axis and

z-axis (m = 2) to track a piecewise linear spatial path composed of five line segments

(M = 5) with

r0 =

[

0

0

]

, r1 =

[

0.00345

0.00476

]

, r2 =

[

0.00905

0.00294

]

,

r3 =

[

0.00905

−0.00294

]

, r4 =

[

0.00345

−0.00476

]

, r5 =

[

0

0

]

94 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

as shown in subsequent Figure 5.3 (the yellow line), during the given tracking time

T = 2s. The tracking time instants of the intermediate points are given as

t1 = 0.4, t2 = 0.8, t3 = 1.2, t4 = 1.6, t5 = 2.0. (5.98)

and a proportional feedback gain 300 is added on the z-axis again for smooth tracking

at turning edge. The input voltage has the saturation constraint in the form (5.9) with

M(t) = [0.6, 2]⊤. The parameters Fi, Pi and r(t) are chosen according to the values

in (5.86). For simplicity, the weighting matrices Qi, Q̂i, S and R (standing for the

weights of intermediate point, sub-interval, output and input respectively) are chosen to

be diagonal.

5.6.2 Performance of the Proposed Algorithm

Firstly, the system constraints are artificially removed (i.e. setting Ω = Lℓ
2[0, T] and

Φ = Lm
2 [0, T]) and the proposed algorithm is applied to this task on the gantry robot

for 100 trials to see the performance at unconstrained case. The final converged hybrid

output and inputs of the two axes are plotted in Figure 5.3 and Figure 5.4 respectively.

Although the converged hybrid output performs near perfect tracking along the piecewise

linear reference path, it is clear that overshoot problem takes place. In the gantry robot

test platform, the overshoot problem may lead to collision between the end-effector and

the frame, which causes damage to the machine. In addition, the corresponding inputs

of the two axes exceeds the input constraint set Ω defined in (5.89) at certain time

intervals, which is not allowed in practice. Therefore, it is necessary to apply the system

constraints in practice to meet the actual system requirement of the design task.

To avoid the above problems, Algorithm 5.3 is applied to the same task with the input

saturation constraint defined in (5.9) and the hard output constraint defined in (5.89).

In the experiment, Q̂i = 100, 000I, Qi = 500, 000I, S = 10, 000I and R = I are chosen,

and a total of 100 update trials are performed. The final converged hybrid output of

the two axes is plotted as the dashed magenta trajectory in Figure 5.3. Compared to

the previous overshoot result in the same figure, it is clear that Algorithm 5.3 not only

achieves the generalized tracking requirement, but keeps the hybrid output trajectory

within the output constraint set, Φ, defined in (5.89), i.e. this algorithm solves the

overshoot problem. Furthermore, the final converged input voltages of the two axes are

plotted as the dashed magenta trajectories in Figure 5.4, and it is clear that both stay

within the input constraint set, Ω, defined in (5.9) with M(t) = [0.6, 2]⊤. Therefore, it

is clear from Figure 5.3 and Figure 5.4 that Algorithm 5.3 can not only guarantee high

performance spatial tracking but also handle the system constraints well.

The proposed algorithm is further applied with different parameters to compare conver-

gence properties. The coefficients Q̂i = 100, 000I, S = 10, 000I and R = I are kept as

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 95

x-axis, y
x
(m) ×10-3

-2 0 2 4 6 8 10 12

z-
ax

is
, y

z(m
)

×10-3

-5

-4

-3

-2

-1

0

1

2

3

4

5
Spatial Path
Unconstrained y100
Constrained y100

Figure 5.3: Spatial Path and Converged Hybrid Output Trajectories with and
without Output Constraints.

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2In

pu
t V

ol
ta

ge
, u

x(V
)

-1

0

1 Unconstrained u100

Constrained u100

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2In

pu
t V

ol
ta

ge
, u

z(V
)

-4

-2

0

2

4

Unconstrained u100

Constrained u100

Figure 5.4: Converged Input Trajectories.

96 Chapter 5 Generalized ILC with Application to Spatial Path Tracking

Number of Trials, k
0 10 20 30 40 50 60 70 80 90 100

M
ea

n
S

qu
ar

e
E

rr
or

 (
m

m
2
)

10-4

10-3

10-2

10-1

100

101

102

Q = 200, 000
Q = 300, 000
Q = 500, 000
Q = 800, 000
Q = 1, 200, 000

Figure 5.5: Mean Square Tracking Error and Input Energy over 100 Trials with
Output Constraints.

Table 5.1: Input Energy Comparison.

Input Energy (V 2ms)

Qi = 200, 000 1,819.9

Qi = 300, 000 1,820.3

Qi = 500, 000 1,812.8

Qi = 800, 000 1,810.9

Qi = 1, 200, 000 1,807.8

Traditional ILC 2,146.9

constants, and Qi is selected to take the values 200, 000I, 300, 000I, 500, 000I, 800, 000I,

and 1, 200, 000I. A total of 100 update trials are performed for each value of Qi, and the

corresponding mean square error, esk, at each trial is plotted in Figure 5.5. From this

figure, it is obvious that the convergence rate increases as the increase of the weighting

value Qi. It is noted that all plots converge to below 0.01 mean square error, which ver-

ifies accurate tracking in practice despite of model uncertainty and random disturbance.

It is noted that there are no particular concerns about the fluctuation in the figure as

the mean square errors all converge and satisfy the practical tracking requirement.

In addition, the converged input energy for different values of Qi are shown in Table

5.1. As in many practical applications, e.g. laser cutting and welding, the end-effector

moves at a constant speed along its path, the input energy needed for the constant speed

tracking obtained by traditional ILC is also shown in this table for comparison. The table

shows that the proposed algorithm fully exploits the design freedom in temporary domain

in terms of an approximate 16% energy reduction from that provided by traditional ILC.

Chapter 5 Generalized ILC with Application to Spatial Path Tracking 97

Experiments with other combinations of the weighting matrices Qi, Q̂i, S and R yield

similar convergence performance to the results in Figure 5.5. For brevity, these results

are omitted.

5.7 Summary

This chapter develops a novel unified ILC design framework capable of solving tracking

requirements defined on both intermediate point and sub-intervals, as well as handling

a mixed form of system constraints. To solve this problem, this chapter proposed a

new ILC algorithm using successive projection method with well defined convergence

properties. A particularly powerful feature of the proposed algorithm is that it can

solve a class of spatial tracking problems with high tracking accuracy as well as fully

exploit the design freedom in the temporal domain to achieve optimal cost functions,

e.g. minimum control effort, which has substantial novelty over the previous research in

spatial ILC. The algorithm’s convergence properties have been analyzed rigorously, and

then verified on a gantry robot platform by tracking a spatial path with stipulated input

and output constraints, which demonstrates its practical efficacy. Although the derived

algorithm can achieve some optimal cost function within a certain class of systems, the

tracking time allocation, Λ, in this framework is considered as given a priori. In the

next chapter, the generalized ILC framework will be expanded to treat the tracking time

allocation, Λ, as a variable to optimize a cost function as well as ensure perfect spatial

tracking.

Chapter 6

ILC for Spatial Path Tracking

The previous chapters have formulated a generalized ILC framework, which can be

applied to spatial path tracking. However, this framework has not fully harnessed this

design freedom as it considers the tracking time allocation, Λ, as given a priori. Rather

than purely achieving the path tracking, this chapter allows a flexible choice of Λ to

fully exploit the design freedom of spatial ILC to optimize an additional cost function

while following the defined path. The optimization of such cost functions can bring

significant practical benefits, such as reducing control effort, avoiding machine damage

and increasing manufacturing efficiency.

This chapter first formulates the spatial tracking problem and characterizes it into the

class of piecewise linear path tracking problem. Then a novel spatial ILC framework is

proposed that can automatically perform high performance spatial path tracking for a

general class of systems as well as optimize a specific cost function, e.g. control effort.

After that, an iterative algorithm is derived from the spatial ILC framework based on the

Two Stage design framework proposed in Chapter 3 and the generalized ILC algorithm

proposed in Chapter 5.

6.1 General Spatial Path Tracking Formulation

This section considers the linear time-invariant system (3.1) required to perform repeti-

tive tracking tasks with the spatial paths, and then defines the general spatial ILC path

tracking problem.

Any continuous, non-intersecting path can be defined in the output space by introducing

a continuous bijective function, r, mapping each point of the interval I = [0, 1] to a

point in the output space R
m, r : I → Lm

2 [0, T]. An example of such a path is shown

in Figure 6.1 (black line). In the traditional tracking problem, the requirement that the

99

100 Chapter 6 ILC for Spatial Path Tracking

Figure 6.1: Spatial Paths as Set of Points in R
m.

plant output follows the defined path, r, is that

(Gu)(t) = r(t/T), ∀ t ∈ [0, T]. (6.1)

However, the key feature of the spatial tracking problem is that the temporal component

of the movement along this path from initial point r(0) to final point r(1) is arbitrary.

It hence follows that an equivalent path is generated if r(t) is replaced by any

r̃(t) = r(g(t)) (6.2)

where g : [0, T] → I is any continuous function with g(0) = 0 and g(T) = 1. Therefore,

given a stipulated path map r, the set of all possible maps describing equivalent paths

is denoted as

Rr = {r̃ : I → R
m, r̃(t) = r(g(t)), 0 6 t 6 T}. (6.3)

To see that this set contains all admissible paths, note that the spatial problem is

satisfied if and only if there exists a continuous surjective map, s, from I onto the set

of points {r(t), t ∈ I} making up the path (where the path may repeatedly map to the

same point). Since r−1(·) is continuous and bijective, r−1(s) is a continuous map which

satisfies r(r−1(s)) = s, and it follows that s ∈ Rr. Then the requirement that the plant

output achieve the spatial tracking requirement is

(Gu)(t) = r̃(t), ∀ t ∈ [0, T] for some r̃ ∈ Rr. (6.4)

Given the infinite number of solutions to the problem, suppose it is stipulated that input

u must also minimize a cost function, f(u). The general spatial ILC tracking problem

Chapter 6 ILC for Spatial Path Tracking 101

is then defined as iteratively finding an input, uk, i.e.

lim
k→∞

uk = u∗, (6.5)

such that the output, yk, accurately pass through the path defined by r̃ ∈ Rr and u∗

solves problem

min
r̃∈Rr,u

f(u) subject to (Gu)(t) = r̃(t) ∀ t ∈ [0, T]. (6.6)

6.2 Characterization of Piecewise Linear Spatial Tracking

Problem using ILC

In this section, the class of piecewise linear paths is considered to specify the general

form (6.6) so that it may be solved using the tools of ILC. Figure 6.1 (magenta line)

shows an example of a piecewise linear path comprising M segments.

6.2.1 Specification to Piecewise Linear Paths

In the simplest case of constant velocity movement along the path, a piecewise linear

path may be defined using the bijective function

r(t) = ri−1 +

(
t− si−1

si − si−1

)

(ri − ri−1), t ∈ [si−1, si] (6.7)

for i = 1, . . . ,M where 0 = s0 < s1 < . . . < sM = 1 and ri = [r1i , r2i , . . . , rmi]⊤

are the transition vertices of the piecewise path, defined in Cartesian space. The set

of all possible path profiles is then given by Rr and does not depend on si, only on

transition vertices ri. Using the notation (6.2), the spatial tracking of this path is hence

equivalently defined by any r̃ ∈ Rr. If it is further required that the ith segment be

completed before the (i+ 1)th segment is started, then the constraint

g(ti−1) 6 g(t) 6 g(ti), t ∈ [ti−1, ti], g(ti) = r−1(ri) (6.8)

for i = 1, . . . ,M , must be further applied on the function g within (6.3). With the

preceding piecewise spatial tracking task specifications, the spatial ILC tracking problem

is defined as follows.

Definition 6.1. Spatial Piecewise Linear ILC Tracking Problem: Iteratively find an

input uk, i.e.

lim
k→∞

uk = u∗, (6.9)

102 Chapter 6 ILC for Spatial Path Tracking

such that output yk accurately passes through the path defined by r̃ ∈ Rr, and u∗ solves

problem (6.6), where Rr is generated by vertices set {ri} and ordering constraints (6.8).

6.2.2 Piecewise Linear ILC Problem

Definition 6.1 gives rise to the following result:

Proposition 6.2. For the piecewise linear spatial tracking problem in Definition 6.1, it

follows that

r̃ ∈ Rr ⇔ r̃ ∈







r̃ : I → Lm
2 [0, T],

r̃(ti) = ri, i = 1, . . . ,M,

Pir̃(t) = Piri, t ∈ [ti−1, ti],

a⊤i ri−1 6 a⊤i r̃(t) 6 a⊤i ri, t ∈ [ti−1, ti],

0 = t0 < t1 < . . . < tM = T







(6.10)

where ai = ri− ri−1 for i = 1, ...,M,, and Pi ∈ R(m−1)×m is a full rank matrix satisfying

KerPi = Imai. (6.11)

Proof. If r̃ ∈ Rr, there exists a continuous function g : I → I such that r̃(t) = r(g(t))

with r() given by (6.7). By assumption, there exists a collection of time points

0 = t0 < t1 < . . . < tM = T (6.12)

such that the constraint on g(·) given by (6.8) holds. Substitute g(ti) = ti into (6.7) and

obtain

r̃(ti) = r(g(ti)) = r(si) = ri, i = 1, . . . ,M. (6.13)

Since (6.8) holds, it follows that all the points r̃(t), t ∈ [ti−1, ti] belong to the line

segment set

Ri = {y ∈ R
m : y = ri − γ(ri − ri−1), γ ∈ [0, 1]}. (6.14)

Note that all the elements in Ri have the linear relationship

Piy = Piri, ∀y ∈ Ri (6.15)

where Pi ∈ R(m−1)×m is a full row rank matrix. It follows that

Pi(ri − γ(ri − ri−1)) = Piri (6.16)

Chapter 6 ILC for Spatial Path Tracking 103

which yields

Piai = 0 (6.17)

and further gives rise to the condition (6.11). In addition, as Ri is a line segment set, a

hard output constraint should also be applied, i.e.

a⊤i ri−1 6 a⊤i y 6 a⊤i ri, ∀y ∈ Ri, (6.18)

to prevent overshoot. The above conditions together give the following results

P̂ir̃(t) = P̂iri, t ∈ [ti−1, ti]

a⊤i ri−1 6 a⊤i r̃(t) 6 a⊤i ri, t ∈ [ti−1, ti] (6.19)

Hence, the equations (6.12), (6.13) and (6.19) imply r̃ ∈ Rr ⇒ right half side of (6.10).

If the conditions in the right half side of (6.10) are satisfied, the increasing order of the

time points is satisfied as

0 = t0 < t1 < . . . < tM = T (6.20)

and it follows that

r̃(ti) = r(si), i = 1, . . . ,M. (6.21)

Since the conditions in (6.19) hold, the steps can be reversed from (6.19) backward to

(6.14) to obtain

r̃(t) ∈ Ri, t ∈ [ti−1, ti], i = 1, . . . ,M (6.22)

which is equivalent to

r̃(t) = r(s), si−1 6 s 6 si, t ∈ [ti−1, ti], i = 1, . . . ,M. (6.23)

From (6.21) and (6.23), the function r̃(t) is further written as

r̃(t) = r(g(t)), 0 6 t 6 T (6.24)

where g : I → I is any continuous function satisfying the condition (6.8). This implies:

right half side of (6.10) ⇒ r̃ ∈ Rr.

The right side of (6.10) in Proposition 6.2 states necessary and sufficient requirements

on any signal r̃ such that it belongs to the set Rr of all possible paths satisfying the

spatial objective. Proposition 6.2 can hence be used to replace the tracking requirement

Gu(t) = r̃(t), r̃ ∈ Rr in (6.6) with an equivalent problem definition for the piecewise

linear spatial tracking problem. Recall the extended system (5.7) defined in Chapter 5

with Fi = I and Pi = P̂i, the equivalent problem formulation for the piecewise linear

spatial tracking task is given in the next theorem.

104 Chapter 6 ILC for Spatial Path Tracking

Theorem 6.3. The piecewise linear spatial ILC tracking problem in Definition 6.1 is

equivalently stated as iteratively finding a tracking time allocation, Λk, and an input, uk,

with the asymptotic property such that

lim
k→∞

(uk,Λk) = (u∗,Λ∗) (6.25)

where u∗ and Λ∗ are solutions of the problem

minimize
Λ∈Θ,u

f(u), subject to Ge
Λu = reΛ, Gu ∈ ΦΛ, (6.26)

where the admissible set, Θ, for tracking time allocation, Λ, is defined as

Θ = {Λ ∈ R
M−1 : 0 < t1 < . . . < tM = T}, (6.27)

the convex set, ΦΛ, is defined as

ΦΛ = {y ∈ Lm
2 [0, T] : a⊤i ri−1 6 a⊤i y(t) 6 a⊤i ri, t ∈ [ti−1, ti], i = 1, . . . ,M} (6.28)

and the spatial tracking reference, reΛ, is defined as

reΛ = [r1, . . . , rM , P rΛ]
⊤ (6.29)

with rΛ ∈ Lm
2 [0, T] being a signal such that rΛ(t) = ri, t ∈ (ti−1, ti], for i = 1, . . . ,M .

Proof. From Proposition 6.2, it is known that the set Rr in Definition 6.1 is equivalently

to (6.10). Using the equivalent definition (6.10) of Rr, the problem in Definition 6.1 can

be state as iteratively solving the problem

minimize
u

f(u)

subject to







0 = t0 < t1 < . . . < tM = T

(Gu)(ti) = ri, i = 1, . . .M

(PiGu)(t) = Piri, t ∈ [ti−1, ti]

a⊤i ri−1 6 (a⊤i Gu)(t) 6 a⊤i ri, t ∈ [ti−1, ti].

(6.30)

Using the linear mapping (5.2), the optimization problem (6.30) for piecewise linear path

is equivalent to

minimize
Λ∈Θ,u

f(u), subject to (Gu)e = reΛ, Gu ∈ ΦΛ. (6.31)

Consider the extended system dynamics (5.7), the problem (6.31) can be further ex-

pressed as the problem (6.26), which can be iteratively solved in practice using a suit-

able ILC update. Therefore, an equivalent statement of the problem in Definition 6.1 is

generated in this theorem.

Chapter 6 ILC for Spatial Path Tracking 105

6.3 A Two Stage Design Framework

Optimization problem (6.26) requires simultaneous selection of the finite time-point

set Λ and plant input signal u, subject to the tracking constraints, Ge
Λu = reΛ and

Gu ∈ ΦΛ. Although, the cost function, f(u), is independent on Λ, they are connected

by these constraints, which makes the problem non-trivial. In order to solve (6.26),

this requires several extensions to existing ILC frameworks reported in the literature,

i.e. temporal optimization, hard constraints and projections to couple outputs while

maximizing tracking freedom. Therefore, the two stage design framework proposed in

Chapter 3 and the generalized ILC framework proposed in Chapter 5 are combined

together to solve problem (6.26).

6.3.1 Two Stage Design Framework Description

Optimization problem (6.26) can be written equivalently as

min
Λ∈Θ

{

min
u

f(u), subject to Ge
Λu = re, Gu ∈ ΦΛ

}

(6.32)

by optimizing over u and then over Λ. Define the function f̃ of Λ by

f̃(Λ) = min
u

{f(u), subject to Ge
Λu = reΛ, Gu ∈ ΦΛ} ,

and denote a global minimizer for u of the inner optimization problem as u∞(Λ) : Θ →

Lℓ
2[0, T]. Then optimization problem (6.32) is equivalent to

min
Λ∈Θ

f(u∞(Λ)). (6.33)

Hence the optimization problem (6.26) can be solved using the following two stage design

framework:

• Stage One: Fix the tracking time allocation, Λ, and solve the inner optimal prob-

lem (6.32), i.e.

minimize
u

f(u), subject to Ge
Λu = reΛ, Gu ∈ ΦΛ. (6.34)

• Stage Two: Substitute the solution, u∞(Λ), of the problem (6.34) into the original

optimization problem (6.32) and then solve the resulting optimization problem

(6.33) to compute the optimal tracking time allocation, i.e.

min
Λ∈Θ

{f̃(Λ) := f(u∞(Λ))}. (6.35)

106 Chapter 6 ILC for Spatial Path Tracking

In this chapter, the control effort, ‖u‖2R, is considered as the target cost function to

be optimized. This guarantees the existence of a unique global minimizer for u within

(6.34), and solves optimization problem (6.35), i.e. minΛ∈Θ ‖u∞(Λ)‖2R.

6.3.2 Implementation of the Framework

6.3.2.1 Solution of Stage One

Stage One problem (6.34) involves intermediate point, sub-interval tracking and hard

output constraints, plus a minimum control effort requirement. The problem (6.34)

does not have a direct analytical solution, but the generalized ILC algorithm proposed

in Chapter 5 can be applied to address this problem, which is illustrated in the next

theorem.

Theorem 6.4. If system S(A,B,C) is controllable with C full row rank, the ILC update

law in Algorithm 5.3, i.e.

uk+1 = uk +Gs∗
Λ (I +Gs

ΛG
s∗
Λ)−1esk (6.36)

followed by the projection

r̃k+1 = PΦΛ
(yk+1), (6.37)

produces a solution

u∞ = lim
k→∞

uk

to address the optimization problem (6.34) with initial input, u0 = 0, initial value,

r̃0 ∈ Lm
2 [0, T] and Fi = I, KerPi = Imai. Note that Gs

Λ is a linear operator defined by

Gs
Λu =

[

Ge
Λu

Gu

]

: Lℓ
2[0, T] → H̄ (6.38)

whose Hilbert adjoint operator is Gs∗
Λ , the error, esk is defined as

esk =

[

eek
ẽk

]

, eek = reΛ − yek, ẽk = r̃k − yk, (6.39)

and H̃ is the Hilbert space denoted by

H̄ = R
m × · · · × R

m × Lm−1
2 [t0, t1]× · · · × Lm−1

2 [tM−1, tM]× Lm
2 [0, T] (6.40)

the inner product and associated induced norm of which are naturally derived from (3.4)

and (5.3).

Proof. With the assumptions made in the theorem, the problem (6.34) is a special case

of the generalized ILC problem discussed in Chapter 5. Therefore, the generalized

Chapter 6 ILC for Spatial Path Tracking 107

ILC algorithm (Algorithm 5.3) addresses the problem (6.34) with desirable convergence

properties by setting the appropriate parameters, i.e. Fi = I and Pi = P̂i.

As a controllable model can always be constructed for a given system and there is no

redundant output, the assumption that system S(A,B,C) is controllable with C full row

rank is not restrictive. Instead of using (6.36), the solution of (3.20) can be alternatively

implemented using the causal feedback plus feedforward solution, which is similar to

that shown in Proposition 5.9, to further embed robust performance in practice.

Note that the hard constraint Gu ∈ ΦΛ in problem (6.34) prevents the potential over-

shoot problem, i.e. the end effector moves beyond the acceptable region. In the next

theorem, an alternative ‘simpler’ ILC update is proposed to solve problem (6.34) in the

absence of the hard constraint.

Theorem 6.5. In the absence of the constraint, Gu ∈ ΦΛ, the ILC update (6.36) fol-

lowed by the projection (6.37) collapses to

uk+1 = uk +Ge∗
Λ (I +Ge

ΛG
e∗
Λ)−1eek (6.41)

which provides a global solution to the problem (6.34) with an analytical expression

u∞(Λ) = Ge∗
Λ (Ge

ΛG
e∗
Λ)−1reΛ. (6.42)

Proof. In the absence of the hard constraint Gu ∈ ΦΛ, the ILC update (6.36) followed

by the projection (6.37) naturally collapses to the ILC update (6.41). According to

Owens et al. (2015), the ILC update (6.41) ultimately converges to provide the optimal

solution (6.42) to the problem (3.20) without the hard constraint, i.e.

argmin
u

‖u‖2R , subject to Ge
Λu = re. (6.43)

Furthermore, the solution (6.42) of the alternative simpler ILC update (6.41) guarantees

that the overshoot problem will not occur in some certain class of practical systems as

shown in the next lemma.

Lemma 6.6. If the system can be represented by a chain of integrators (A = 0), the

solution u∞(Λ) satisfies Gu∞(Λ) ∈ ΦΛ.

Proof. The proof by contradiction is used to prove that the overshoot does not happen

when A = 0, so it is assumed that output, Gu∞(Λ), has overshoot at the ith line segment.

108 Chapter 6 ILC for Spatial Path Tracking

So it is necessary (but not sufficient) that there must exist a time, t∗i ∈ (ti−1, ti), such

that

(Gu∗)(t∗i) = (Gu∗)(ti) = ri. (6.44)

Based on the assumption of overshoot, an input

u∗(t) =

{

0, t ∈ [t∗i , ti],

(u∞(Λ))(t), else
(6.45)

on the interval, [0, T], can always be constructed, which provides lower input energy than

u∞(Λ), i.e. ‖u∗‖2R < ‖u∞(Λ)‖2R. From the definition (6.45), it is clear that (Gu∗)(t) =

(Gu∞(Λ))(t) for t ∈ [0, t∗i]. As A = 0, the following equation is satisfied

(Gu∗)(t) =

∫ t∗i

0
CBu∗(s)ds+

∫ t

t∗i

CBu∗(s)ds

=

∫ t∗i

0
CB(u∞(Λ))(s)ds

= (Gu∞(Λ))(t∗i) = ri,∀t ∈ [t∗i , ti] (6.46)

which hence leads to

(Gu∗)(t) =

∫ ti

0
CBu∗(s)ds+

∫ t

ti

CBu∗(s)ds

= (Gu∞(Λ))(ti) +

∫ t

ti

CB(u∞(Λ))(s)ds

= (Gu∞(Λ))(t), ∀t ∈ [ti, T] (6.47)

Then, it follows that for j = 1, . . . , i− 1, i+ 1, . . . ,M

(Gu∗)(tj) = (Gu∞(Λ))(tj) = rj ,

(PjGu∗)(t) = (Gu∞(Λ))(t) = Pjrj , t ∈ [tj−1, tj], (6.48)

and for j = i

(Gu∗)(ti) = (Gu∞(Λ))(ti) = ri,

(PiGu∗)(t) = (Gu∞(Λ))(t) = Piri, t ∈ [ti−1, t∗i],

(PiGu∗)(t) = Piri, t ∈ [t∗i , ti]. (6.49)

Hence the input, u∗, not only provides a lower input energy than the optimal input,

u∞(Λ), but also satisfies the tracking requirement, Ge
Λu = re, in (6.43). This obviously

contradicts the assumption that the optimal input, u∞(Λ), generate overshoot in this

output trajectory. Therefore, the ILC update (6.36) provides a solution satisfying the

hard constraint, Gu ∈ ΦΛ.

Chapter 6 ILC for Spatial Path Tracking 109

6.3.2.2 Solution of Stage Two

Note that the problem (6.35) is generally non-linear and non-convex with respect to the

tracking time allocation, Λ, leading to significant difficulties in solving problem (6.35).

Similar to the Stage Two solution in Chapter 3, the next theorem provides an iterative

approach to solve the problem (6.35) experimentally.

Theorem 6.7. The Stage Two optimization problem (3.21) is solved by the gradient

projection update equation

Λj+1 = PΘ

(
Λj − γj∇f̃(Λj)

)
(6.50)

where j ∈ N denotes the gradient projection loop number, the gradient, ∇f̃(Λj), is

obtained using experimental measured data, PΘ denotes the gradient projection optimal

solution

PΘ(x) = argmin
z

{‖z − x‖ : z ∈ Θ}, (6.51)

and γj > 0 is chosen according to the generalized Armijo step size, i.e.

γj = βmkγ (6.52)

where mk is the smallest non-negative integer such that

f̃(Λj+1)− f̃(Λj) 6 σ(∇f̃(Λj))
⊤(Λj+1 − Λj) (6.53)

and σ, β, γ are constant scalars with 0 < σ < 1, 0 < β < 1, γ > 0. Then the sequence

{f̃(Λj)} converges downward to a limit f̃∗ and every limit point of the sequence, {Λj},

is a stationary point for the problem (3.21), i.e.

z = PΘ(z −∇f̃(z)). (6.54)

Proof. Recall Lemma 3.7, and note that all assumptions in Lemma 3.7 are satisfied, so

that the gradient projection update (6.50) can be applied to the system considered in

this chapter. According to Lemma 3.7, the generalized Armijo step size guarantees the

convergence of the gradient projection method to a stationary point.

It is noted that being a stationary point satisfying (6.54) is a necessary condition of a

(possibly locally) minimum point. Note that the function, f̃(Λ), is bounded below and

Θ is a compact set. Therefore, the (global) minimum of the optimization problem exists

and is a stationary point. When the problem only has one such point, it must be the

minimum. In this case, the above algorithm converges to the global minimum solution

following results in Goldstein (2012), i.e. the best result that can be achieved.

110 Chapter 6 ILC for Spatial Path Tracking

In general, the gradient within (6.50) does not have an analytical expression, and can

be computed using a computationally efficient estimation

∂f̃

∂ti

∣
∣
∣
∣
Λj

=
f̃(Λi+

j)− f̃(Λi−
j)

2∆T
(6.55)

where Λi+
j = [tj1, t

j
2, ..., t

j
i + ∆T, ..., tjM]⊤ and Λi−

j = [tj1, t
j
2, ..., t

j
i − ∆T, ..., tjM]⊤, and

∆T ∈ R is sufficiently small. Either experimental implementation or simulation of

Stage One solution (6.36) can be used to obtain f̃(Λi+
j) and f̃(Λi−

j).

In the absence of the hard constraint, problem (3.21) can be expressed analytically as

shown in the following lemma.

Lemma 6.8. In the absence of the hard constraint Gu ∈ ΦΛ, the Stage Two optimization

problem (3.21) can be expressed as

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈
reΛ, (Ge

ΛG
e∗
Λ)−1reΛ

〉

Q̃
. (6.56)

Proof. Substituting the analytical solution (6.42) into the problem (3.21) and using the

property of adjoint operator gives

min
Λ∈Θ

‖u∞(Λ)‖2R = min
Λ∈Θ

〈(u∞(Λ), u∞(Λ)〉R

= min
Λ∈Θ

〈
(Ge∗

Λ (Ge
ΛG

e∗
Λ)−1reΛ, G

e∗
Λ (Ge

ΛG
e∗
Λ)−1reΛ

〉

R

= min
Λ∈Θ

〈
Ge

ΛG
e∗
Λ (Ge

ΛG
e∗
Λ)−1reΛ, (G

e
ΛG

e∗
Λ)−1reΛ

〉

Q̃

= min
Λ∈Θ

〈
reΛ, (Ge

ΛG
e∗
Λ)−1reΛ

〉

Q̃

which completes the proof.

According to Lemma 6.8, in the absence of the hard constraint, the gradient within

(6.50) can be computed analytically by performing discretization of the cost function in

(6.56) and calculating its partial derivatives.

Remark 6.9. The choice of initial allocation Λ0 affects the convergence performance

of update (6.50). It can be chosen arbitrarily from Θ if no information is available.

Alternatively, Λ0 can be selected using the methods introduced in Chapter 3.3.2.

6.3.3 An Iterative Implementation Algorithm

The experimental implementations of Stage One and Stage Two of the two stage design

framework can be integrated to yield a practical iterative algorithm. In Algorithm 6.10,

Chapter 6 ILC for Spatial Path Tracking 111

Λ0 is a suitable initial tracking time allocation, and ǫ and δ are sufficiently small positive

scalars specifying the tracking precision and performance requirements.

Algorithm 6.10. Given initial tracking time allocation, Λ0, system state space model,

S(A,B,C), desired extended tracking reference, re, admissible set of tracking time al-

location, Θ, weighting matrices, R, Qi and Q̂i, the following steps provides the solution

to the optimal tracking time allocation, Λopt, and input, uopt

1: Initialization: Loop number j = 0

2: Repeatedly implement Stage One update (6.36) followed by the projection (6.37)

with Λ = Λ0 using feedback plus feedforward update (3.53) until convergence, i.e.

‖eek‖ < ǫ; record converged input, uex∞(Λ0), and input energy, f̃(Λ0).

3: repeat

4: Implement Stage Two update (6.50) with the gradient estimation equation (6.55)

using ri = Giu
ex
∞(Λj).

5: Set j → j + 1.

6: Repeatedly implement Stage One update (6.36) followed by the projection (6.37)

with Λ = Λj using feedback plus feedforward update (3.53) until convergence, i.e.

‖eek‖ < ǫ; record converged input, uex∞(Λj), and input energy, f̃(Λj).

7: until
∣
∣
∣f̃(Λj)− f̃(Λj−1)

∣
∣
∣ < δ

∣
∣
∣f̃(Λj−1)

∣
∣
∣.

8: return Λopt = Λj and uopt = uex∞(Λj).

To implement Algorithm 6.10, Step 2 and 6 (i.e. norm-optimal algorithm) must be

implemented experimentally and Step 4 must use experimental data, uex∞(Λj). These

requirements are not necessary if an accurate system model is available, but model

mismatch and uncertainty exists widely in practice. Therefore, the proposed algorithm

embeds significant robustness properties as it exploits experimental plant data.

6.4 Constrained Input Condition Handling

The previous section uses the Two Stage design framework to solve the spatial ILC

problem with an additional cost function. This section further extends the proposed

algorithm to incorporate system constraints into the design.

112 Chapter 6 ILC for Spatial Path Tracking

6.4.1 Modified Two Stage Design Framework

With input constraints, the optimal problem (6.26) becomes

minimize
u,Λ

f(u)

subject to re = Ge
Λu,

Gu ∈ ΦΛ,

Λ ∈ Θ, u ∈ Ω.

(6.57)

Then, following a similar procedure to that in Section 6.3, the constrained optimization

problem (6.57) can be equivalently written as

min
Λ∈Θ

{

min
u

f(u), s.t. Ge
Λu = reΛ, Gu ∈ ΦΛ, u ∈ Ω

}

(6.58)

suggesting a possible two stage design framework:

• Stage One:

minimize
u∈Ω

‖u‖2R

subject to reΛ = Ge
Λu Gu ∈ ΦΛ

(6.59)

whose the solution is denoted as û∞(Λ).

• Stage Two:

min
Λ∈Θ

{f̃(Λ) := ‖û∞(Λ)‖2R}. (6.60)

Although the presence of the input constraints adds some difficulties in solving Stage

One problem (6.59), this problem can be also solved using the exact form of Algorithm

5.3, i.e.

ũk+1 = uk +Gs∗
Λ (I +Gs

ΛG
s∗
Λ)−1esk (6.61)

followed by the projection

r̃k+1 = PΦΛ
(yk+1), uk+1 = PΩ(ũk+1). (6.62)

The Stage Two optimization problem (6.60) can be solved using the following iterative

approach:

Λj+1 = argmin
Λ∈Θ

f̃j(Λ) (6.63)

where

f̃j(Λ) = ‖u∞(Λ)‖2R + ρ ‖u∞(Λ)− û∞(Λj)‖
2
R , ρ > 0, (6.64)

with u∞(Λ) and û∞(Λ) denoting the analytical solution (6.42) and the converged input of

Stage One problem (6.59) respectively for Λj . Note that in problem (3.76), both input

Chapter 6 ILC for Spatial Path Tracking 113

and output constraints are decoupled from the optimization problem as the previous

obtained Stage One solution, û∞(Λj), can be considered as a known constant value in

this problem. Therefore, the problem (3.76) can be solved analytically using the update

(6.50) in Theorem 6.7.

6.4.2 Modified Iterative Implementation Algorithm

Combining the solutions of Stage One and Stage Two yields a modified algorithm (Al-

gorithm 6.11) to solve the spatial tracking problem (6.58) with input constraints.

Algorithm 6.11. Given initial tracking time allocation, Λ0, system state space model,

S(A,B,C), desired extended tracking reference, re, admissible set of tracking time al-

location, Θ, weighting matrices, R, Qi and Q̂i, the following steps provides the solution

to the optimal tracking time allocation, Λopt, and input, uopt

1: Initialization: Loop number j = 0

2: Repeatedly implement Stage One update (6.61) followed by the projection (6.62)

with Λ = Λ0 using feedback plus feedforward update (3.53) until convergence, i.e.

‖eek‖ < ǫ; record converged input, uex∞(Λ0), and input energy, f̃(Λ0).

3: repeat

4: Compute the gradient using (6.42) or (6.55) with re = Ge
Λj
ûex∞(Λj); implement

Stage Two update (6.63).

5: Set j → j + 1.

6: Repeatedly implement Stage One update (6.61) followed by the projection (6.62)

with Λ = Λj using feedback plus feedforward update (3.53) until convergence, i.e.

‖eek‖ < ǫ; record converged input, uex∞(Λj), and input energy, f̃(Λj).

7: until
∣
∣
∣f̃(Λj)− f̃(Λj−1)

∣
∣
∣ < δ

∣
∣
∣f̃(Λj−1)

∣
∣
∣.

8: return Λopt = Λj and uopt = uex∞(Λj).

Algorithm 6.11 has the following convergence properties:

Theorem 6.12. Suppose perfect tracking is achievable and ρ 6 1, the analytical input

energy resulting from (6.63) satisfies

‖u∞(Λj+1)‖
2
R
6 ‖û∞(Λj)‖

2
R
. (6.65)

Proof. The proof of this theorem follows from the proof of Theorem 3.15.

114 Chapter 6 ILC for Spatial Path Tracking

6.5 Experimental Verification on A Gantry Robot

In this section, the proposed algorithm is validated experimentally on a three-axis gantry

robot test platform to demonstrate its effectiveness.

6.5.1 Design Task Specification

The multi-axis gantry robot shown in Chapter 3.5.1 with the system model (3.83) is

employed as a test platform assuming two decimal place accuracy on the tracking time

allocation in this section. The gantry robot’s input is the voltage, and output is the

displacement of the three axes. The control design objective is to use all three axes

(m = 3) to perform a piecewise linear spatial tracking task with five line segments

(M = 5). The total tracking time is T = 2s, and the transition vertices are shown in

Figure 6.2.

×10-3

5

x-axis(m)

0

-50

0.005

z-axis(m)

0.006

0.008

0.01

0.002

0.012

0

0.004

0.01

3D Space Reference
Final Converged 3D Space Output
Transition Points

Figure 6.2: Spatial Output for Robustness Test.

For implementational simplicity, the weighting matrices are chosen to be Qi = qiI,

Q̂i = q̂iI and R = r̂I where qi, q̂i and r̂ are positive scalars. Furthermore, appropriate

weighting matrices are chosen according to the theoretical predictions in Owens et al.

(2013) to balance convergence speed and robust performance, i.e. qi/r̂ = 30, 000 and

q̂i/r̂ = 3, 000, 000, together with σ = 0.1, β = 0.5, γ = 0.07 in Step 4 of Algorithm 6.10.

Chapter 6 ILC for Spatial Path Tracking 115

6.5.2 Performance of the Proposed Algorithm

In practice, it is difficult to identify an accurate system model. Hence it is necessary

to test the robust performance of Algorithm 6.10 with significant model uncertainty.

Assume that only three inaccurate models (for x-axis, y-axis and z-axis respectively) are

available for design as follows:

Ĝx(s) =
0.04

s
, Ĝy(s) =

0.04

s
and Ĝz(s) =

0.04

s
. (6.66)

Algorithm 6.10 is applied with an (a priori) allocation Λ0 = [0.4, 0.8, 1.2, 1.6]⊤ over

25 loops with γ = 0.07, 0.08, 0.09 respectively. This is compared with the simulation

result using models in (6.66), which provides the theoretical optimal allocation Λ∗ =

[0.51, 0.84, 1.16, 1.49]⊤ and corresponding experimental minimum energy, f̃(Λ∗) = 598.7.

The results are shown in Figure 6.3 and 6.4 respectively.

Number of Loops, j
0 5 10 15 20 25

T
im

e,
 t

(s
)

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
γ = 0.07
γ = 0.08
γ = 0.09
Λ∗

Figure 6.3: Optimal Tracking Time Allocation during Robustness Test.

In Figure 6.3, the blue, red, and magenta curves denote the tracking time allocation

Λj at each loop for γ = 0.07, 0.08, 0.09 respectively with the final converged value

Λopt = [0.65, 0.90, 1.09, 1.36]⊤ , and the green dashed lines denote the theoretical optimal

allocation, Λ∗. In Figure 6.4, the blue, red, and magenta curves denote the minimum

input energy, f̃(Λk), at each loop for γ = 0.07, 0.08, 0.09 respectively with the corre-

sponding minimum energy value 545.1 and the green line is the minimum energy, f̃(Λ∗),

116 Chapter 6 ILC for Spatial Path Tracking

Number of Loops, j
0 5 10 15 20 25

In
pu

t E
ne

rg
y

(V
2
m

s)

540

560

580

600

620

640

660

680

γ = 0.07
γ = 0.08
γ = 0.09
Energy at Λ∗

Figure 6.4: Input Energy during Robustness Test.

needed at Λ∗. Note that this is 8.95% less than the value at Λ∗ calculated using the

(inaccurate) system model, which clearly demonstrates the advantage of the proposed

algorithm.

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2In

pu
t V

ol
ta

ge
, u

x(V
)

-1

-0.5

0

0.5

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2In

pu
t V

ol
ta

ge
, u

y(V
)

-0.5

0

0.5

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2In

pu
t V

ol
ta

ge
, u

z(V
)

-0.5

0

0.5

(a) Input Trajectories

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x-
ax

is
, y

x(m
) ×10-3

-5

0

5

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

y-
ax

is
, y

y(m
)

0

0.005

0.01

Time, t (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

z-
ax

is
, y

z(m
)

0

0.005

0.01

(b) Output Trajectories

Figure 6.5: Final Converged Results for a) Input and b) Output.

The experimental converged spatial output trajectory for Λopt is also shown in Figure

6.2 with the red dots denoting the transition vertices. It can be clear that the spatial

output accurately tracks the vertices and satisfies the linear projection constraints be-

tween them. For more information, the final converged input and output trajectories

Chapter 6 ILC for Spatial Path Tracking 117

Table 6.1: Summary of Experimental Results with Different Qi, Q̂i and R.

Λopt f̃(Λopt) Difference from f̃(Λ∗)

qi/r̂ = 30, 000, q̂i/r̂ =
3, 000, 000

[0.65, 0.90, 1.09, 1.36]⊤ 545.1 8.95 %

qi/r̂ = 30, 000, q̂i/r̂ =
5, 000, 000

[0.65, 0.90, 1.09, 1.36]⊤ 546.8 8.67 %

qi/r̂ = 30, 000, q̂i/r̂ =
8, 000, 000

[0.65, 0.90, 1.09, 1.35]⊤ 547.3 8.59 %

qi/r̂ = 30, 000, q̂i/r̂ =
10, 000, 000

[0.66, 0.90, 1.09, 1.35]⊤ 546.5 8.72 %

qi/r̂ = 50, 000, q̂i/r̂ =
3, 000, 000

[0.65, 0.90, 1.09, 1.35]⊤ 545.9 8.82 %

qi/r̂ = 80, 000, q̂i/r̂ =
3, 000, 000

[0.65, 0.90, 1.09, 1.36]⊤ 544.7 9.02 %

qi/r̂ = 100, 000, q̂i/r̂ =
3, 000, 000

[0.66, 0.90, 1.09, 1.36]⊤ 546.6 8.70 %

for each axis are shown in Figure 6.5. It is concluded that the proposed algorithm can

minimize the input energy and maintain sufficient tracking performance in the presence

of significant model uncertainty.

Furthermore, experiments with different values of Qi, Q̂i and R have been carried out

with respect to γ = 0.07. The corresponding results are summarized in Table 6.1, and

it is clear from the table that the optimal tracking time allocations obtained by the

proposed algorithm all converge, and are different from the corresponding theoretical

obtained one, Λ∗, as the system model (6.66) is not accurate enough. It is clear that the

obtained input energy results at each case are approximately 9 % less than the value at

Λ∗, so it can be concluded that the proposed algorithm can minimize the input energy

and has a certain degree of robustness against model uncertainty. Experiments using

other initial allocations, e.g. low resolution initial allocation, will also be performed as

a future work.

6.6 Summary

This chapter considers ILC design for spatial path tracking problem to allow an addi-

tional cost function as well as high performance path tracking. This design problem

is formulated into an equivalent optimization problem. To solve this non-trivial design

problem, the two stage framework proposed in Chapter 3 is considered, which consists

118 Chapter 6 ILC for Spatial Path Tracking

of the generalized ILC update proposed in Chapter 5 and a gradient projection up-

date. Then, the two stage framework yields the first spatial ILC algorithm capable of

an additional cost function whilst completing the spatial path tracking objective for a

general class of systems. This algorithm has been verified experimentally on a gantry

robot, demonstrating significant benefits in terms of reducing the control energy needed

to travel along the given path.

Chapter 7

Conclusions and Future Work

7.1 Conclusions

Extended ILC frameworks have emerged in recent years to tackle the rigidity in the

traditional ILC trajectory tracking formation. This thesis addresses the unmet poten-

tial existing within the class of extended ILC frameworks including point-to-point ILC

and spatial ILC, which have attracted significant research interest. In previous point-

to-point ILC formulations, the tracking time allocation of the critical tracking positions

was considered as given a priori, meaning that the design freedom of point-to-point ILC

was not fully exploited. More generally, prior attempts at spatial ILC were application

specific, and each could only be applied to a particular, limited class of systems. Also

these attempts did not fully harness the temporary design freedom in choosing an opti-

mal solution to achieve an additional optimal cost function as well as perfect tracking.

Furthermore, all previous research on constrained ILC focused on specific classes of ILC

problems with a single constraint, and no attempt was made to solve the ILC problem

with mixed forms of system constraints for a general class of systems.

The work in Chapter 3 significantly expanded the point-to-point ILC framework to allow

the tracking time allocation to optimize some target cost function as well as maintaining

precise tracking. The subsequent ILC problem was first formulated into optimization

problem (3.15), and a Two Stage design framework was then proposed to make the non-

trivial problem tractable. By assuming the control effort as the target cost function,

an iterative algorithm (Algorithm 3.12) with desired convergence properties has been

proposed based on the solutions of the two stages. Furthermore the input constraint was

also incorporated to yield a constrained algorithm (Algorithm 3.14), which adapts to

practical working environment of the system. In doing so, this chapter provided the first

solution to the point-to-point ILC problem. This is significant in the field of ILC and

robotics since it combines the accuracy of ILC with the practically related flexibility of

119

120 Chapter 7 Conclusions and Future Work

path planning techniques typically used in robotics. It also shows how the six postulates

in ILC can be relaxed without sacrificing mathematical rigor.

Chapter 3 only considered the tracking of a finite number of critical positions, and an

ILC framework capable of handling a broader class of spatial ILC problems was therefore

needed. Therefore, a generalized ILC framework was formulated in Chapter 5 which

was applicable to various tracking problems including spatial path tracking for a general

class of systems with a mixed form of system constraints. By choosing appropriate

coefficients, this single framework can solve a set of well-known ILC problems, e.g.

classical ILC, point-to-point ILC and spatial ILC, as special cases. A generalized ILC

algorithm (Algorithm 5.3) with guaranteed convergence properties was derived, which

can be efficiently implemented in practice to perform various spatial path tracking tasks,

e.g. welding, laser cutting, robotic manufacturing and even rehabilitation. This chapter

illustrated how successive projection techniques can be integrated with ILC to expand

the problem scope. It also further relaxes the standard ILC postulates to capture even

wider practical applications.

Although the generalized ILC framework can optimize a cost function for a wide class of

systems, the tracking time allocation in this framework is considered as a priori. This

potential limitation motivated the work in Chapter 6 to further employ the tracking time

allocation as an optimized variable enabling it to handle spatial path tracking tasks with

an additional cost function. This can be considered as the parallel extension to the task

description of the work in Chapter 3. The general spatial path tracking problem was

first described and it was then specialized to a piecewise linear path tracking problem as

a special case. The characterized problem was reformulated into an equivalent problem

definition, which could be addressed using the Two Stage design framework proposed

in Chapter 3. An algorithm (Algorithm 6.10) was derived based on the generalized ILC

algorithm to solve the problem with minimum control effort, and a constrained algorithm

(Algorithm 6.11) was also derived to handle the practical case with input constraints.

This chapter shows that the relaxation of the standard ILC postulates fully exploits the

temporary design freedom in spatial tracking tasks, enabling practical benefits to be

gained, such as reducing the energy used, reducing the damage to machine components

and increasing the efficiency of production (i.e. throughput), while reserving the spatial

tracking requirements.

All algorithms proposed in this thesis have solid theoretical derivations, but their ex-

perimental verification is also needed to verify the practical performance. A multi-axis

gantry robot system was used as a test platform in this thesis, and all the proposed

algorithms were verified on this platform. The experimental results shows that all al-

gorithms have significant practical efficacy and can provide high accuracy tracking in

practice. The results also show that the proposed algorithms exhibit a degree of ro-

bustness against modelling mismatch/error due to the use of the measured real data,

which is clearly desirable in practical applications. The experimental verification on

Chapter 7 Conclusions and Future Work 121

the gantry robot has significant practical relevance, as this platform can fully replicate

industrial working environments including pick-and-place task specification, interface

between software and hardware, model uncertainty and random disturbance.

7.2 Future Work

This thesis contributes significantly to generalizing the ILC task description in order to

achieve more performance and flexibilities. However, the current work presented in this

thesis can be further developed as described below.

Spatial ILC with General Path: The research in Chapter 6 considers the piecewise

linear path as a special case of the general spatial path. In the future research, the

proposed spatial ILC framework will be expanded to handle the general spatial path

tracking problem, which significantly broadens the application range of the spatial ILC

framework. Note that any general path can be divided into several joint convex curves,

so a general spatial path can be regarded as a piecewise convex path. Some initial results

have been formulated on how to solve the piecewise convex path tracking problem. For

example, considering the piecewise arc path in a 2D plane as a special case, there exists

a bijective map called a Mobius transformation, which maps all the points along an arc

path to a linear path. Using this map, the piecewise arc path tracking problem can

be converted into the piecewise linear path tracking problem without any difficulties,

and the proposed spatial ILC framework in Chapter 6 can be then applied to solve the

piecewise arc path tracking problem.

Alternative Cost Functions: Note that control effort is considered as the target cost

function to be optimized in this thesis. However, in principle, the setup of the proposed

Two Stage design framework allows the optimization of various cost functions beside

the control effort. In future work, other alternative cost functions, such as the minimum

tracking time, will be considered, and corresponding algorithms will be derived.

Furthermore, most practical manufacturing process usually require optimization of mul-

tiple cost functions, and some cost functions conflict with one another. In future work,

the design framework will also be further generalized to handle the optimization of mul-

tiple cost functions. The technique of pareto optimization will be applied to reach a

trade-off in the total cost function if there exits more than one conflicting cost function

at the same time.

Robustness Analysis and Robust Design: All algorithms proposed in this thesis

need a nominal system model to provide solutions, however, it is nearly impossible for

the nominal system model to be exactly the same as the plant in practice. As a result,

the algorithms cannot perform well if the nominal system model is not significantly

accurate. Although the experimental results demonstrate that the algorithms have a

122 Chapter 7 Conclusions and Future Work

certain degree of robustness against model uncertainties, a rigorous robustness analysis

will be carried out in the future to verify the range of model uncertainty such that these

algorithms have the guaranteed performance properties and stability. On the other

side, robust algorithm design will also be conducted such that the resulting algorithms

maintain robust performance properties within given sets of model uncertainty. For

example, multiplicative modelling error can be used in the algorithm design following

the method introduced in Owens et al. (2014).

References

H.-S. Ahn, Y. Chen, and K. L. Moore. Iterative learning control: brief survey and cate-

gorization. IEEE Transaction on Systems, Man and Cybernetics, Part C: Applications

and Reviews, 37(6):1099–1121, 2007.

H.-S. Ahn, K. L. Moore, and Y. Chen. Kalman filter-augmented iterative learning control

on the iteration domain. In American Control Conference, pages 250–255, 2006a.

H.-S. Ahn, K. L. Moore, and Y. Chen. Monotonic convergent iterative learning controller

design based on interval model conversion. IEEE Transactions on Automatic Control,

51(2):366371, 2006b.

N. Amann. Optimal algorithms for iterative learning control. PhD thesis, University of

Exeter, Exeter, 1996.

N. Amann, D. H. Owens, and E. Rogers. Iterative learning control for discrete-time

systems with exponential rate of convergence. IEE Proceedings of the Control Theory

and Applications, 143(2):217–244, 1996a.

N. Amann, D. H. Owens, and E. Rogers. Iterative learning control using optimal feedback

and feedforward actions. International Journal of Control, 65(2):277–293, 1996b.

S. Arimoto, S. Kawamura, and F. Miyazaki. Bettering operation of dynamic system

by learning: A new control theory for servomechanism or mechatronics systems. In

Proceedings of 23rd Conference on Decision and Control, Las Vegas, pages 1064–1069,

1984a.

S. Arimoto, S. Kawamura, and F. Miyazaki. Bettering operations of robots by learning.

Journal of Robotic Systems, 1(2):123–140, 1984b.

S. Arimoto, S. Kawamura, F. Miyazaki, and S. Tamaki. Learning control theory for

dynamical systems. In Proceedings of 24rd Conference on Decision and Control, pages

1375–1380, 1985.

L. Armijo. Minimization of functions having Lipschitz continuous first partial deriva-

tives. Pacific Journal of Mathematics, 16(1):1–3, 1966.

123

124 REFERENCES

K. Barton and D. Kingston. Systematic surveillance for uavs: A feedforward iterative

learning control approach. In American Control Conference, pages 5917–5922, 2013.

D. P. Bertsekas. On the Goldstein - Levitin - Polyak gradient projection method. IEEE

Transactions on Automatic Control, 21(2):174–184, 1976.

Z. Bien and K. M. Huh. Higher-order iterative learning control algorithm. IEE Proceed-

ings of the Control Theory and Applications, 136(3):105–112, 1989.

E. G. Birgin, J. M. Martinez, and M. Raydan. Nonmonotone spectral projected gradient

methods on convex sets. SIAM Journal on Optimization, 10(4):1196–1211, 2000.

J. Bolder and T. Oomen. Inferential iterative learning control: A 2D-system approach.

Automatica, 71:247–253, 2016.

J. Bolder, T. Oomen, S. Koekebakker, and M. Steinbuch. Using iterative learning con-

trol with basis functions to compensate medium deformation in a wide-format inkjet

printer. Mechatronics, 24(8):944–953, 2014.

D. A. Bristow, M. Tharayil, and A. G. Alleyne. A survey of iterative learning control.

IEEE Control Systems Magzine, 26(3):96–114, 2006.

Z. Cai, C. T. Freeman, P. L. Lewin, and E. Rogers. Iterative learning control for a

non-minimum phase plant based on a reference shift algorithm. Control Engineering

Practice, 16(6):633–643, 2008.

Y. Chen, B. Chu, and C. T. Freeman. Point-to-point iterative learning control with

optimal tracking time allocation. In 54th IEEE Conference on Decision and Control,

pages 6089–6094, Osaka, Japan, 2015.

Y. Chen, B. Chu, and C. T. Freeman. Spatial path tracking using iterative learning

control. In 55th IEEE Conference on Decision and Control, pages 7189–7194, Las

Vegas, US, 2016.

Y. Chen, B. Chu, and C. T. Freeman. Generalized norm optimal iterative learning con-

trol: Constraint handling. In The 20th World Congress of the International Federation

of Automatic Control, Toulouse, France, 2017a.

Y. Chen, B. Chu, and C. T. Freeman. Point-to-point iterative learning control with

optimal tracking time allocation. IEEE Transactions on Control Systems Technology,

2017b.

Y. Chen, B. Chu, and C. T. Freeman. Point-to-point iterative learning control with

optimal tracking time allocation: A coordinate descent approach. In 36th Chinese

Control Conference, Dalian, China, 2017c.

REFERENCES 125

Y. Chen and K. L. Moore. An optimal design of PD-type iterative learning control with

monotonic convergence. In Proceedings of the 2002 IEEE International Symposium

on Intelligent Control, pages 55–60, 2002.

Y. Chen, C. Wen, Z. Gong, and M. Sun. An iterative learning controller with initial

state learning. IEEE Transactions on Automatic Control, 44(2):371–376, 1999.

R. Chi, Z. Hou, and J.-X. Xu. Adaptive ILC for a class of discrete-time systems with

iteration-varying trajectory and random initial condition. Automatica, 44(8):2207–

2213, 2008.

B. Chu, C. T. Freeman, and D. H. Owens. A novel design framework for point-to-point

ILC using successive projection. IEEE Transactions on Control Systems Technology,

23(3):1156–1163, 2015.

B. Chu and D. H. Owens. Accelerated norm-optimal iterative learning control algorithms

using successive projection. International Journal of Control, 82(8):1469–1484, 2009.

B. Chu and D. H. Owens. Iterative learning control for constrained linear systems.

International Journal of Control, 83(7):1397–1413, 2010.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Steinn. Introduction to Algorithms.

The MIT Press, Massachusetts Institute of Technology, third edition, 2009.

D. de Roover and O. H. Bosgra. Synthesis of robust multivariable iterative learning

controllers with application to a wafer stage motion system. International Journal of

Control, 73(10):914–929, 2000.

H. Ding and J. Wu. Point-to-point control for a high-acceleration positioning table

via cascaded learning schemes. IEEE Transactions on Industrial Electronics, 54(5):

2735–2744, 2007.

T. Donkers, J. van de Wijdeven, and O. Bosgra. Robustness against model uncertainties

of norm optimal iterative learning control. In Americal Control Conference, pages

4561–4566, 2008.

E. Fornasini and G. Marchesini. Doubly-indexed dynamical systems: State-space models

and structural properties. Mathematical Systems Theory, 12:59–72, 1978.

C. T. Freeman. Constrained point-to-point iterative learning control with experimental

verification. Control Engineering Practice, 20(5):489–498, 2012.

C. T. Freeman. Robust ILC design with application to stroke rehabilitation. Automatica,

81:270–278, 2017.

C. T. Freeman, Z. Cai, E. Rogers, and P. L. Lewin. Iterative learning control for

multiple point-to-point tracking application. IEEE Transactions on Control Systems

Technology, 19(3):590–600, 2011.

126 REFERENCES

C. T. Freeman and T. V. Dinh. Experimentally verified point-to-point iterative learning

control for highly coupled systems. International Journal of Adaptive Control and

Signal Processing, 29:302–324, 2015.

C. T. Freeman, A.-M. Hughes, J. H. Burridge, P. H. Chappell, P. L. Lewin, and E.Rogers.

Iterative learning control of FES applied to the upper extremity for rehabilitation.

Control Engineering Practice, 17(3):368–381, 2009.

C. T. Freeman, P. L. Lewin, and E. Rogers. Experimental evaluation of iterative learning

control algorithms for non-minimum phase plants. International Journal of Control,

78(11):826–846, 2005.

C. T. Freeman, P. L. Lewin, and E. Rogers. Further results on the experimental eval-

uation of iterative learning control algorithms for non-minimum phase plants. Inter-

national Journal of Control, 80(4):569–582, 2007.

C. T. Freeman and Y. Tan. Iterative learning control with mixed constraints for point-

to-point tracking. IEEE Transactions on Control Systems Technology, 21(3):604–616,

2013.

M. French. Robust stability of iterative learning control schemes. international journal of

robust and nonlinear control. International Journal of Robust and Nonlinear Control,

18(10):1018–1033, 2008.

G. Gauthier and B. Boulet. Robust design of terminal ILC with mixed sensitivity

approach for a thermoforming oven. Journal of Control Science and Engineering,

2008. Article ID 289391.

X. Ge, J. L. Stein, and T. Ersal. Frequency-domain analysis of robust monotonic con-

vergence of norm-optimal iterative learning control. IEEE Transactions on Control

Systems Technology, PP(99):1–15, 2017.

A. A. Goldstein. Constructive Real Analysis. Dover Publications, 2012.

L.G. Gubin, B.T. Polyak, and E.V. Raik. The method of projections for finding the

common point of convex sets. USSR Computational Mathematics and Mathematical

Physics, 7(6):1–24, 1967.

S. Gunnarsson and M. Norrlof. On the design of ILC algorithms using optimization.

Automatica, 37(12):2011–2016, 2001.

T. J. Harte. Discrete-time model-based iterative learning control: Stability, monotonicity

and robustness. PhD thesis, University of Sheffield, Sheffield, 2007.

T. J. Harte, J. Hatonen, and D. H. Owens. Discrete-time inverse model-based iterative

learning control: Stability, monotonicity and robustness. International Journal of

Control, 78(8):577–586, 2005.

REFERENCES 127

L. Hladowski, K. Galkowski, Z. Cai, E. Rogers, C. T. Freeman, and P. L. Lewin. Exper-

imentally supported 2D systems based iterative learning control law design for error

convergence and performance. Control Engineering Practice, 18:339–348, 2010.

L. Hladowski, K. Galkowski, Z. Cai, E. Rogers, C. T. Freeman, and P. L. Lewin. A 2D

systems approach to iterative learning control for discrete linear processes with zero

markov parameters. International Journal of Control, 84(7):1246–1262, 2011.

D. J. Hoelzle and K. L. Barton. On spatial iterative learning control via 2-D convolu-

tion: Stability analysis and computational efficiency. IEEE Transactions on Control

Systems Technology, 24(4):1504–1512, 2016.

D. Huang, J.-X. Xu, V. Venkataramanan, and T. C. T. Huynh. High-performance

tracking of piezoelectric positioning stage using current-cycle iterative learning control

with gain scheduling. IEEE Transactions on Industrial Electronics, 61(2):1085–1098,

2014.

P. Janssens, W. V. Loock, G. Pipeleers, F. Debrouwere, and J. Swevers. Iterative

learning control for optimal path following problems. In 52nd IEEE Conference on

Decision and Control, pages 6670 – 6675, Florence, Italy, 2013a.

P. Janssens, G. Pipeleers, M. Diehl, and J. Swevers. Energy optimal time allocation of a

series of point-to-point motions. IEEE Transactions on Control Systems Technology,

22(6):2432–2435, 2014.

P. Janssens, G. Pipeleers, and J. Swevers. A data-driven constrained norm-optimal

iterative learning control framework for LTI systems. IEEE Transactions on Control

Systems Technology, 21(2):546–551, 2013b.

P. Jiang and R. Unbehauen. An iterative learning control scheme with deadzone. In

Proceedings of the 38th IEEE Conference on Decision and Control, pages 3816–3817,

1999.

X. Jin. Iterative learning control for non-repetitive trajectory tracking of robot manip-

ulators with joint position constraints and actuator faults. International Journal of

Adaptive Control and Signal Processing, 31, 2016.

X. Jin and J.-X. Xu. Iterative learning control for output-constrained systems with both

parametric and nonparametric uncertainties. Automatica, 49(8):2508–2516, 2013.

X. Li, J.-X. Xu, and D. Huang. An iterative learning control approach for linear systems

with randomly varying trial lengths. IEEE Transactions on Automatic Control, 59

(7):1954–1960, 2014.

I. Lim and K. L. Barton. Pareto iterative learning control: Optimized control for multiple

performance objectives. Control Engineering Practice, 26:125–135, 2014.

128 REFERENCES

I. Lim, D. J. Hoelzle, and K. L. Barton. A multi-objective iterative learning control

approach for additive manufacturing applications. Control Engineering Practice, 64:

74–87, 2017.

T. Lin, D. H. Owen, and J. Hatonen. Newton method based iterative learning control

for discrete non-linear systems. International Journal of Control, 79(10):1263–1276,

2006.

T. Lippa and S. Boyd. Minimum-time speed optimisation over a fixed path. International

Journal of Control, 87(6):1297–1311, 2014.

S. Mishra, U. Topcu, and M. Tomizuka. Optimization-based constrained iterative learn-

ing control. IEEE Transactions on Control Systems Technology, 19(6):1613–1621,

2011.

J. H. Moon, T. Y. Doh, and M. J. Chung. A robust approach to iterative learning

control design for uncertain systems. Automatica, 34(8):1001–1004, 1998.

K. L. Moore. Iterative Learning Control for Deterministic Systems. London: Springer-

Verlag, 1993.

K. L. Moore, Y. Q. Chen, and V. Bahl. Monotonically convergent iterative learning

control for linear discrete-time systems. Automatica, 41(9):1529–1537, 2005.

K. L. Moore, M. Ghosh, and Y. Q. Chen. Spatial-based iterative learning control for

motion control applications. Meccanica, 42:167–175, 2007.

M. Norrlof. Iterative learning control, analysis, design and experiments. PhD thesis,

Linkoping University, Linkoping, 2000.

T. Oomen, J. de Wijdeven, and O. Bosgra. Suppressing intersample behavior in iterative

learning control. Automatica, 45(4):981–988, 2009.

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several

Variables. Society for Industrial and Applied Mathematics, 2000.

D. H. Owens and B. Chu. Combined inverse and gradient iterative learning control:

Performance, monotonicity, robustness and non-minimum-phase zeros. International

Journal of Robust and Nonlinear Control, 24(3):406–431, 2014.

D. H. Owens and K. Feng. Parameter optimization in iterative learning control. Inter-

national Journal of Control, 76(11):1059–1069, 2003.

D. H. Owens, C. T. Freeman, and B. Chu. An inverse-model approach to multivariable

norm optimal iterative learning control with auxiliary optimisation. International

Journal of Control, 87(8):1646–1671, 2014.

REFERENCES 129

D. H. Owens, C. T. Freeman, and B. Chu. Generalized norm optimal iterative learning

control with intermediate point and sub-interval tracking. International Journal of

Automation and Computing, 12(3):243–253, 2015.

D. H. Owens, C. T. Freeman, and T. V. Dinh. Norm-optimal iterative learning control

with intermediate point weighting: Theory, algorithms, and experimental evaluation.

IEEE Transactions on Control Systems Technology, 21(3):999–1007, 2013.

D. H. Owens and J. Hatonen. Iterative learning control - An optimization paradigm.

Annual Reviews in Control, 29(1):57–70, 2005.

D. H. Owens, J. Hatonen, and S. Daley. Robust monotone gradient-based discrete-time

iterative learning control. International Journal of Robust and Nonlinear Control, 19

(6):634–661, 2008.

D. H. Owens and R. P. Jones. Iterative solution of constrained differential/algebraic

systems. International Journal of Control, 27(6):957–964, 1978.

J. Park, P. H. Chang, H. S. Park, and E. Lee. Design of learning input shaping technique

for residual vibration suppression in an industrial robot. IEEE/ASME Transactions

on Mechatronics, 11(1):55–65, 2006.

K.-H. Park, Z. Bien, and D.-H. Hwang. Design of an iterative learning controller for a

class of linear dynamic systems with time delay. IEE Proceedings of Control Theory

and Applications, 145(6):507–512, 1998.

W. Paszke, E. Rogers, K. Galkowski, and Z. Cai. Robust finite frequency range iterative

learning control design and experimental verification. Control Engineering Practice,

21(10):1310–1320, 2013.

W. Paszkea, E. Rogers, and K. Galkowski. Experimentally verified generalized KYP

lemma based iterative learning control design. Control Engineering Practice, 53:57–

67, 2016.

J. D. Ratcliffe. Iterative learning control implemented on a multi-axis system. PhD

thesis, University of Southampton, Sothampton, 2005.

R. Roesser. A discrete state-space model for linear image processing. IEEE Transactions

on Automatic Control, 20:1–10, 1975.

S. K. Sahoo, S. K. Panda, and J.-X. Xu. Application of spatial iterative learning con-

trol for direct torque control of switched reluctance motor drive. In IEEE Power

Engineering Society General Meeting, pages 1–7, Tampa, US, 2007.

D. Shen and Y. Wang. Survey on stochastic iterative learning control. Journal of Process

Control, 24(12):64–77, 2014.

130 REFERENCES

D. Shen, W. Zhang, and J.-X. Xu. Iterative learning control for discrete nonlinear

systems with randomly iteration varying lengths. Systems and Control Letters, 96:

81–87, 2016.

T. D. Son, H.-S. Ahn, and K. L. Moore. Iterative learning control in optimal tracking

problems with specified data points. Automatica, 49(5):1465–1472, 2013.

T. D. Son, D. H. Nguyen, and H.-S. Ahn. Iterative learning control for optimal multiple-

point tracking. In 50th IEEE Conference on Decision and Control and European

Control Conference, pages 6025–6030, Orlando, US, 2011.

T. D. Son, G. Pipeleers, and J. Swevers. Robust monotonic convergent iterative learning

control. IEEE Transactions on Automatic Control, 61(4):1063–1068, 2016.

M. Sun and D. Wang. Initial shift issues on discrete-time iterative learning control with

system relative degree. IEEE Transactions on Automatic Control, 48(1):144–148,

2003.

H. Tao, W. Paszke, E. Rogers, H. Yang, and K. Galkowski. Iterative learning fault-

tolerant control for differential time-delay batch processes in finite frequency domains.

Journal of Process Control, 56:112–128, 2017.

A. Tayebi and M. B. Zaremba. Robust iterative learning control design is straightfor-

ward for uncertain LTI systems satisfying the robust performance condition. IEEE

Transactions on Automatic Control, 48(1):101–106, 2003.

M. Uchiyama. Formation of high speed motion pattern of mechanical arm by trial.

Transactions of the Society of Instrumentation and Control Engineers, 19(5):706–712,

1978.

J. van de Wijdeven and O. Bosgra. Non-causal finitetime iterative learning control. In

46th IEEE Conference on Decision and Control, 2007.

J. van de Wijdeven and O. Bosgra. Residual vibration suppression using Hankel iterative

learning control. International Journal of Robust Nonlinear Control, 18(10):1034–

1051, 2008.

J. van de Wijdeven, T. Donkers, and O. Bosgra. Iterative learning control for uncertain

systems: Robust monotonic convergence analysis. Automatica, 45:2383–2391, 2009.

D. Verscheure, B. Demeulenaere, J. Swevers, J. de Schutter, and M. Diehl. Time-optimal

path tracking for robots: A convex optimization approach. IEEE Transactions on

Automatic Control, 54(10):2318–2327, 2009.

M. Volckaert, M. Diehl, and J. Swevers. Generalization of norm optimal ILC for non-

linear systems with constraints. Mechanical Systems and Signal Processing, pages

280–296, 2013.

REFERENCES 131

J.-X. Xu, Y. Chen, T. Lee, and S. Yamamoto. Terminal iterative learning control with

an application to RTPCVD thickness control. Automatica, 35(9):1535–1542, 1999.

J.-X. Xu and D. Huang. Initial state iterative learning for final state control in motion

systems. Automatica, 44(12):3162–3169, 2008a.

J.-X. Xu and D. Huang. Spatial periodic adaptive control for rotary machine systems.

IEEE Transactions on Automatic Control, 53(10):2402–2408, 2008b.

J.-X. Xu and X. Jin. State-constrained iterative learning control for a class of mimo

systems. IEEE Transactions on Automatic Control, 58(5):1322–1327, 2013.

J.-X. Xu, J. Xu, and T. H. Lee. Iterative learning control for systems with input

deadzone. IEEE Transactions on Automatic Control, 50(9):1455–1459, 2005.

Y.Wang and Z. Hou. Terminal iterative learning control based station stop control of a

train. International Journal of Control, 84(7):1263–1277, 2011.

S.-H. Zhou, Y. Tan, D. Oetomo, C. T. Freeman, E. Burdet, and I. Mareels. Modeling

of endpoint feedback learning implemented through point-to-point learning control.

IEEE Transactions on Control Systems Technology, 25(5):1576–1585, 2017.

	Acknowledgements
	Declaration of Authorship
	Nomenclature
	1 Introduction
	1.1 Research Motivation
	1.2 Contribution and Organization of the Thesis

	2 Background and Literature Review
	2.1 General Background to ILC
	2.1.1 Definition of ILC
	2.1.2 Convergence of ILC
	2.1.3 Robustness of ILC
	2.1.4 ILC Implementation Structure

	2.2 Leading ILC Structures
	2.2.1 Simple Structure ILC
	2.2.2 Phase-lead ILC
	2.2.3 ILC based on 2D Systems Theory
	2.2.4 High Order ILC

	2.3 Optimization Based ILC Approaches
	2.3.1 Inverse ILC
	2.3.2 Gradient Descent ILC
	2.3.3 Norm Optimal ILC
	2.3.4 Parameter Optimal ILC
	2.3.5 L-Q Optimal ILC
	2.3.6 Newton Method Based ILC

	2.4 System Constraints of ILC
	2.4.1 Input Constraint
	2.4.2 Output Constraint
	2.4.3 State Constraint

	2.5 Generalized ILC Task Description
	2.5.1 Terminal ILC
	2.5.2 Point-to-Point ILC
	2.5.3 Spatial ILC

	2.6 Summary

	3 Point-to-Point ILC with Optimal Tracking Time Allocation
	3.1 Formulation of the Problem
	3.1.1 Point-to-Point ILC Framework
	3.1.2 Point-to-Point ILC with Optimal Tracking Time Allocation

	3.2 A Two Stage Design Framework
	3.2.1 Framework Description
	3.2.2 Solution of the Proposed Framework
	3.2.2.1 Solution of Stage One Optimization Problem
	3.2.2.2 Solution of Stage Two Optimization Problem

	3.2.3 A Numerical Example

	3.3 Implementation of the Design Approach
	3.3.1 Implementation of Stage One Design
	3.3.2 Implementation of Stage Two Design
	3.3.2.1 Central initial tracking time allocation
	3.3.2.2 Greedy initial tracking time allocation
	3.3.2.3 Low resolution initial tracking time allocation

	3.3.3 An Iterative Implementation Algorithm

	3.4 Constrained Input Condition Handling
	3.4.1 Optimal Tracking Time Allocation with System Constraints
	3.4.2 Modified Two Stage Design Framework with Input Constraints
	3.4.3 Convergence Properties of the Algorithm
	3.4.4 A Numerical Example

	3.5 Experimental Verification on a Gantry Robot
	3.5.1 Test Platform Specification
	3.5.2 Experimental Results

	3.6 Summary

	4 Point-to-Point ILC with Optimal Tracking Time Allocation
	4.1 Formulation of the Problem
	4.1.1 Discrete Time System Dynamics
	4.1.2 Point-to-Point ILC Framework
	4.1.3 Optimal Tracking Time Allocation Problem

	4.2 A Two Stage Design Framework
	4.2.1 Framework Description
	4.2.2 Solution of the Proposed Framework

	4.3 Implementation of the Design Approach
	4.3.1 Implementation of Stage One
	4.3.2 Implementation of Stage Two
	4.3.3 An iterative implementation algorithm

	4.4 Experimental Verification on a Gantry Robot
	4.5 Summary

	5 Generalized ILC with Application to Spatial Path Tracking
	5.1 Problem Formulation
	5.1.1 Generalized ILC Design Objective
	5.1.2 Input and Output Constraints
	5.1.3 Generalized ILC Design problem

	5.2 Generalized ILC using Successive Projection
	5.2.1 Successive Projection Interpretation
	5.2.2 Generalized ILC with Constraint Handling

	5.3 Convergence Properties
	5.4 Implementation of the Algorithm
	5.5 Piecewise Spatial Path Tracking Problem
	5.6 Experimental Verification
	5.6.1 Design Task Specification
	5.6.2 Performance of the Proposed Algorithm

	5.7 Summary

	6 ILC for Spatial Path Tracking
	6.1 General Spatial Path Tracking Formulation
	6.2 Characterization of Piecewise Linear Spatial Tracking Problem using ILC
	6.2.1 Specification to Piecewise Linear Paths
	6.2.2 Piecewise Linear ILC Problem

	6.3 A Two Stage Design Framework
	6.3.1 Two Stage Design Framework Description
	6.3.2 Implementation of the Framework
	6.3.2.1 Solution of Stage One
	6.3.2.2 Solution of Stage Two

	6.3.3 An Iterative Implementation Algorithm

	6.4 Constrained Input Condition Handling
	6.4.1 Modified Two Stage Design Framework
	6.4.2 Modified Iterative Implementation Algorithm

	6.5 Experimental Verification on A Gantry Robot
	6.5.1 Design Task Specification
	6.5.2 Performance of the Proposed Algorithm

	6.6 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References

