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Fan broadband is one of the dominant noise sources on an aircraft engine, particularly at
approach. The dominant noise generation mechanism is due to turbulent- aerofoil interac-
tion noise (TAI). This thesis investigates the effect of changes in 2D aerofoil geometry on
TAI noise. The main focus of this thesis is to attempt to reduce it through the development
of innovative leading edge geometries. The first two chapters of the thesis deals with an
experimental and numerical investigation into the effect of aerofoil geometry on interaction
noise on single aerofoils and on cascades. Consistent with previous work, they show that
variations in aerofoil parameters, such as aerofoil thickness, leading edge nose radius and
camber, produce only a small changes in broadband interaction noise at approach condi-
tions. Subsequent chapters deal with the development of innovative leading edge serration
profiles aimed at reducing interaction noise. Chapter 4 is a detailed study into the limita-
tions of single-wavelength serrations in reducing interaction noise. The optimum profile
is identified. Chapters 5, 6 and 7 all deal with the development of innovative profiles that
can provide up to 10dB of additional noise reductions compared to single-wavelength ser-
rations. For each of the profiles investigated a simple model is developed to aid the under-
standing of their interaction mechanism.
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1.1 Motivation

lightpath 2050 has been drafted by the EUROPEAN COMMISSION to map out Eu-

rope’s Vision for the future of civil aviation. Based on Flightpath 2050, the goal has
been set to reduce the perceived noise emission from aircraft by 65% by 2050. This poses
a challenge in finding new methods for noise reduction on aircraft. Low-noise engines
planned for the future, such as ultra-high-bypass-ratio engines and low-speed fans, will
be effective in reducing jet noise, but will have little impact on fan noise. Moreover, the
short ducts associated with these higher bypass ratio engines means less area for locating
sound absorbing liners. Fan is now the dominant source of noise on a turbofan engine at
approach condition. The Figure 1.1 taken from Astley et al. (2007) shows the relative noise
contribution of the major components of a modern engine, during take-off and approach
condition. Fan noise can be observed as important as jet noise at takeoff and clearly domi-
nant at approach.
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FIGURE 1.1: Relative power levels of noise sources in modern aircraft engines
at take-off and approach. Data taken from Astley et al. (2007).

Fan noise can be decomposed into tonal noise and broadband noise components. At sub-
sonic fan tip speeds the fan tones are produced by the interaction between between the mean
wakes from the rotor and the downstream Outlet Guide Vanes (OGV’s). The fan broadband
noise is predominantly produced by the interaction of the turbulence in the rotor wakes with
the OGV’s. Other broadband noise generation mechanisms arise from turbulent eddies in
the boundary layer passing over the rotor blades and scattering with the rotor trailing edge,
interaction of the rotor blade tip vortex with the boundary layer at the inlet duct. Figure 1.2
is a schematic depicting these broadband noise sources.

Rotor-boundary layer Rotor wake-OGV
interaction noise interaction noise

/
‘! iy

U "“H'\““' eyt

— Ty

\ Tgr" e

| Rotor self noise | ' OGYV self noise

FIGURE 1.2: Noise generation mechanism of the interaction noise between the
rotor wakes and the stator. Taken from Jenkins (2013).

The broadband noise generated through the interaction between the rotor wake and OGV
is thought to be the dominant broadband fan noise mechanism. There is therefore an ur-
gent need to understand and control this noise generation mechanism. At the present time
it is not possible to predict accurately this noise source using analytical or computational
methods, most probably because of the difficulty with accurately predicting rotor wake tur-
bulence. In this thesis we provide evidence that the interaction of turbulence with the OGV’s
can be predicted with reasonable accuracy using flat plate analytic solutions or numerical
solutions to the Euler equations.
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Rotar wake-OGV noise
(Broadband)
[ Characterization ] [ OGV response ] [ Propagation & ]

of wake transmission loss
Prediction Reduction
Analytical
Experimental

Validation

Experimental
« | 2D geometry ‘ Validation
changes -

¥ ]

Isolated Cascades * CFD

+ Amiet + LINSUB *  Stochastic
+ Rapid « Wiener- methods with
distortion Hopf LEE
« DNS/LES/LBM

FIGURE 1.3: Flowchart of the available methods.

1.2 Turbulence-aerofoil interaction noise

The process of predicting rotor wake-OGV broadband interaction noise can be divided into
three parts as indicated in figure 1.3: 1) Characterization of the turbulent wake, including
velocity spectrum and two-point statistics; 2) Modeling the OGV response to a specified
vortical input; 3) Prediction of the transmission loss of sound across the rotor to predict
intake noise and the OGV to predict the noise from the bypass duct. The current thesis is
focused on modeling of OGV response and its reduction by use of serrated leading edge
geometries.

1.2.1 Modeling of OGV response

When an aerofoil is subjected to incoming turbulence, unsteady lift fluctuations are induced
on the aerofoil surface, which radiates as a dipole distribution to the far-field.

Analytical & Experimental studies

Early work on the prediction of broadband interaction noise approximating the aerofoil as
single isolated flat plates (Amiet (1975)), or series of flat plates in a cascades (Whitehead
(1987)). A review of the important analysis and experimental work on isolated aerofoils and
aerofoil cascades is presented below.

Interaction noise due to isolated aerofoils

Sears (1941) was the first to develop a model to predict the unsteady lift, and hence the ra-
diated noise, due to a flat plate interacting with a harmonic vortical gust. His model was
restricted to a 2D gust and incompressible flow. Others have extended this theory to in-
clude the effects of obliqueness and fluid compressibility. The general three-dimensional
compressible problem cannot be solved analytically but Graham (1970) deduced that the
formulation for a three-dimensional gust in a compressible flow can be expressed in terms
of the 2D compressible and the 3D incompressible results through the use of the so-called
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similarity conditions. Incident gusts are found to be either subcritical, with a subsonic phase
speed along the leading edge of the blade, or supercritical, where the phase speed is super-
sonic along the blade leading edge.

Adamczyk (1974) took an approximate approach to the three-dimensional compressible
flow problem and derived a closed-form expression for the aerodynamic response of an
infinite swept flat-plate aerofoil in the form of a sum of two terms, representing the leading
edge interaction and the subsequent trailing edge back-scattering.

One of the most widely used formulations of flat plate interaction noise is by Amiet (1975)
to predict the noise over the flat plate interacting with 3D turbulence convecting in a com-
pressible fluid. Extending the Graham (1970) and Adamczyk (1974) work, Amiet (1974) pro-
posed iterative approach by using Schwarzschild theorem (Schwarzschild (1902)) to solve
the Helmholtz equation. A good comparison with experiments has been shown in the fre-
quency range where the aerofoil can be considered as non-compact. This thesis will pro-
vide careful experimental confirmation of this flat plate prediction. Recently, Santana et al.
(2016a) has extended the Amiet’s theory to the frequency regime where the aerofoil is con-
sidered as a compact noise source. Numerical corrections are developed to extend the va-
lidity of the Amiet theory to the low frequency regime (Billson (2002)).

Semi-analytical models have been developed to predict turbulence-aerofoil interaction noise
for realistic aerofoils, that includes the effects of thickness Gershfeld (2004); Roger (2010);
Glegg and Devenport (2010); Moriarty et al. (2005); Lysak et al. (2013); Billson (2002). This
work will be discussed in section 2.1 and compared against careful measured noise data.
The present thesis aims to better identify the regimes of validity of these analytical models
by comparison with the experimental noise data.

Interaction noise due to aerofoil cascades

In a typical turbofan engine the OGV has vanes that are closely spaced with chords that are
long relative to the gaps separating them. Acoustic interactions between the vanes is there-
fore a significant factor in the acoustic response to incident turbulence. The single aerofoil
approach clearly cannot account for interactions between the vanes of an OGV across the
full range of frequencies of interest.

In 1958 a two-dimensional unwrapped blade row was considered by Lane and Friedman
(1958) in an analysis of the unsteady lift and moment on compressor and turbine blades for
the prediction of flutter rather than noise. Torsional flutter was also the subject of work by
Whitehead (1965) where a chord-wise distribution of bounded vorticity is described on the
blade surfaces. The reaction of the bounded vorticity and their shed vortices are combined
to form a description of the unsteady blade forces.

Kaji and Okazaki (1972) developed a model for the tonal noise generated due to the po-
tential and velocity deficit interactions between a stator row and downstream rotor. Their
formulation replaced the blade row with a distribution of pressure doublets, the strength of
which were determined by the numerical solution of an integral equation.

Smith (1972) used a bounded vorticity approach, similar to that adopted in Whitehead
(1987), in order to obtain an integral equation for the vorticity distribution along the chord
of an infinite rectilinear cascade of unloaded flat plates due to a single frequency, harmonic
vortical gust. This source term was then used to compute the upstream and downstream
acoustic pressures. Solutions to the integral equation were obtained using a collocation tech-
nique. Further details of this theory and a FORTAN code, LINSUB, to compute the cascade
response based on this formulation were presented in Whitehead (1987).
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The analyses of Kaji and Okazaki (1972), Smith (1972), Whitehead (1987) mentioned above
all employ numerical schemes in order to obtain their solutions, introducing significant
computational difficulties at high frequencies. Approximate analytic expressions for the
sound transmission through a two-dimensional cascade were presented by Mani and Hor-
vay (1970). Their approach was based on the Wiener-Hopf technique and neglected inter-
action between the leading and trailing edges by using semi-infinite blades for both the
downstream-propagating waves from the leading edges and upstream-propagating waves
from the trailing edge. These wave interactions were resolved in the vane overlap region,
thus limiting this technique to overlapping configurations.

Peake and Kerschen (1997) have formulated the derivation of a consistent asymptotic ap-
proximation for the upstream acoustic radiation generated by the interaction between con-
vected disturbances and a cascade of loaded flat-plate aerofoils. At the high frequencies
considered by Peake and Kerschen (1997), the noise is generated in small regions around
the blade leading edges, and is then diffracted by the leading edges of all the other blades in
the cascade, reflected by the adjacent blades, and refracted as it propagates through the
non-uniform flow. Hanson and Horan (1998) were the first to develop a theory for the
turbulence-cascade interaction noise, giving the sound power spectrum in terms of the 3
dimensional wavenumber spectrum of the turbulence using the 3D harmonic cascade re-
sponse function developed by Glegg (1998, 1999). They showed the noise variation with the
Mach number were different on the upstream and downstream of the cascade. They also
showed that the noise is proportional to vane count but the dependence on the chord length
is negligible. Noise sensitivity with the integral length scale of turbulence is also discussed.

Evers and Peake (2002) extended the work of Peake and Kerschen (1997) to calculate the
upstream radiated noise due to the interaction between a single vortical gust and a cascade
of flat plates at non-zero angle of attack. They also included the effects of camber and thick-
ness in their analysis. They showed that the blade geometry effects on the radiated power
are significant in case of interaction with a single gust, whereas in the case of turbulence,
which comprises a continuum of oblique gust components, aerofoil geometry effects on a
cascade are within 2 dB compared to a flat plate. This implies the blade geometry can have
a significant effect on the tonal noise components generated by rotorstator interaction (i.e.
by single harmonic gusts), but that the broadband part of the noise spectrum is relatively
unaffected (Evers and Peake (2002)).

In the current thesis, the aerofoil geometry effects on turbulence-cascade interaction noise
has been investigated using CFD.

Numerical studies of aerofoil interaction noise

Numerical methods, such as DNS/LES/LBM, are computationally prohibitively expensive
to solve for complete 3D domains of rotor wake-OGYV interaction. Hybrid approaches are
therefore adopted in which incompressible flow solvers are used to compute the acoustic
source terms and a form of the acoustic analogy then used to propagate the solution.

To predict broadband noise up a specific frequency, it is necessary to predict all appropriate
turbulence length scales from solutions of the Navier-Stokes equations. A different prag-
matic approach is to artificially generate a turbulence velocity field superimposed on a mean
flow solution that matches some assumed turbulence description such as frequency spectra
or two point correlations. The acoustic field due to interaction noise, which is essentially
an inviscid phenomenon, can then be computed from solutions of the Euler equations. Ex-
amples of the synthetic approach include the Random Particle-Mesh method (Ewert (2008),
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Gea-Aguilera et al. (2015)), Random-Vortex-Particle method (Dieste (2011)) and the Fourier
method (Gill et al. (2013)).

Earlier studies aimed at predicting the the noise due to interaction between aerofoils and
vortical disturbances have considered single frequency harmonic sinusoidal gusts. Atassi
et al. (1990) used a Computational Aero-acoustics (CAA) approach to investigate the effects
of thickness on the noise due to a harmonic gust, and observed a reduction in the noise at
high frequency due to the effect of aerofoil thickness compared to a flat plate. the effect was
greatest in the downstream observer direction. Lockard and Morris (1998) also investigated
computationally the effects of aerofoil thickness in both inviscid and viscous simulations,
and arrived at similar conclusions to those of Atassi et al. (1990). Gill et al. (2013) used CAA
to investigate the effects of both aerofoil thickness and leading edge radius on the noise due
to a range of NACA 4-digit aerofoils, and also predicted noise reductions when either, or
both, parameters were increased. However, the noise reductions due to leading edge nose
radius were found to be smaller, than those of thickness, and were found to mostly affect
the noise at high frequencies.

More recently, Polacsek et al. (2015) presented a three-dimensional computational hybrid
method which is a time-domain Euler solver coupled to a synthetic turbulence model with
suited inflow boundary condition. It is aimed at predicting the acoustic modes in a ducted
annular cascade subjected to a homogeneous isotropic turbulent flow. The predicted fluctu-
ating pressures over the aerofoil were used as the input to a Ffowcs Williams and Hawkings
integral solver to calculate the radiated sound field. However, the turbulence description is
restricted to parallel gusts (setting the spanwise wave number equal to zero).

In this thesis, we adopt a slightly different approach for computing broadband interaction
noise due to a 2D aerofoil cascade interacting with 2D isotropic turbulence. The mean flow
is predicted from the RANS solution with the turbulence represented by a summation of
Fourier gusts compatible with the periodicity of the duct. The upstream and downstream
pressure amplitudes generated by the cascade due to each gust is computed from the so-
lutions of the Unsteady RANS (URANS) solver in the frequency domain. The unsteady
calculations are performed for a single blade passage but with the phase delay of 2mm/B,
introduced between the upper and lower boundaries to simulate the full annulus, where m
is the transverse mode number and B is the number of vanes.

1.2.2 Reduction of OGV response

One approach to reducing rotor wake-OGYV interaction noise is by the addition of serrations
on the Leading Edge (LE) of the OGV’s. These LE serrations can be found on owl wings
and whale flippers, either to reduce noise or/and enhance hydro and aero-dynamic perfor-
mance. It has been established from last 10 years that introducing LE serrations on aerofoils
can improve their aerodynamic performance at post-stall conditions Skillen et al. (2014);
Zhang et al. (2013); Hansen et al. (2011); Yoon et al. (2011); Johari et al. (2007). Collins (1981)
has observed that the presence of leading edge serrations on wings can improve the low-
speed lift and stall performance of aircraft during take-off and landing. Bachmann et al.
(2007) showed that the barn owl exhibits "silent” flight due to serrations at the leading edge
of the wing and the fringes at the edges of each feather. They proposed that the topogra-
phies and mechanisms underlying this silent flight might eventually be employed for aero-
dynamic purposes thus resulting in new wing designs in modern aircraft. They showed that
the owl is quieter than the pigeon due to the presence of serrations at its leading edge and
the fringes at the edges of each quill.
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This thesis provides a detailed investigation on the aeroacoustic performance of aerofoils
with leading edge serrations. Visualisation of the flow around the serrated aerofoils was
undertaken using Particle Image Velocimetry (PIV) techniques. This thesis also presents a
detailed parametric study on the noise due to single-wavelength LE serrations applied to
both flat plates and realistic aerofoils. Chapter 4 presents a more complete review of the
previous literature on this subject.

1.3 Scope of the thesis

The aims of this thesis are four-fold:

1. To experimentally assess aerofoil geometry effects, such as aerofoil thickness, nose
radius and camber, on turbulence-aerofoil interaction noise.

2. To develop a numerical method using CFD to predict broadband interaction noise on
a 2D cascade of realistic aerofoils interacting with 2D turbulence.

3. To provide a detailed systematic experimental study into the noise reduction mech-
anism and performance of single-wavelength serrated leading edge aerofoils of the
type investigated previously by other researchers.

4. To develop innovative leading edge designs that provide superior noise reductions
compared to conventional single-wavelength sinusoidal leading-edge serrations.

Figure 1.3 shows the components of work required to predict and reduce rotor wake-OGV
interaction noise. This thesis deals with the components marked in red.

1.4 Original Contribution and Thesis structure

The main contributions of the thesis are listed below. Each one relates directly to a thesis
chapter.

1. Chapter 2: A detailed experimental study has been performed to understand the in-
fluence of aerofoil geometry on turbulence - aerofoil interaction noise on isolated aero-
foils. Systematic noise measurements have been carried out by varying aerofoil thick-
ness and leading edge nose radius separately. The flat plate analytical theory has been
shown to be in very close agreement with measurements of the radiated noise from flat
plate interacting with grid-generated turbulence. It is shown that local leading edge
geometry, such as leading nose radius, is an important parameter in determining noise
radiation from ’thin” aerofoils at high frequencies ft/U > 0.2, particularly when the
gust wavelength is comparable to the nose radius. The thesis makes clear that for thin
aerofoils broadband interaction noise cannot be predicted based on a non-dimensional
frequency based on a single length-scale parameter related to the blade geometry, un-
like for thick aerofoils where good collapse of the noise spectra is obtained for ft/U.
All measured and predicted noise data exhibit a dependence on velocity that varies as
U/ f. No difference in behaviour is observed between the predicted noise at low Mach
numbers (M < 0.3) and high Mach numbers (M > 0.3) suggesting that compressibil-
ity effects are not an issue in interaction noise problems. Noise measurement at low
Mach numbers can therefore be extrapolated to higher speeds. Appendix A presents
a detailed description of the experimental facility and measurement techniques im-
plemented to perform noise and aerodynamic measurements presented in this thesis.
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Appendix B also presents the 3D Amiet’s formulation along with a discussion into the
significance of sub-critical and super-critical gust incidence on radiated noise.

. Chapter 3: A procedure to predict the broadband noise generated due to the inter-
action of 2D isotropic turbulence with a cascade of 2-dimensional realistic aerofoils
is developed. The prediction is based on a Fourier synthesis of the 2D turbulence
and computing the radiation from each component separately. A linearized Unsteady
Navier-Stokes solver is used to predict the aerofoil response due to an incoming har-
monic vortical gust. The influence of flow incidence, the mean flow, aerofoil thickness
and aerofoil nose radius on turbulence-cascade interaction noise are discussed. The
chapter demonstrate that broadband noise is only weakly affected by changes in aero-
foil geometry for realistic mean flows and frequencies. This finding is consistent with
the observation made for isolated aerofoils that ft/U is the dominant factor in deter-
mining noise radiation and is relatively unaffected by other modifications to geometry
such as nose radius and camber at the frequencies and flow speeds of interest at ap-
proach conditions. Appendix C presents the numerical setup for the CFD simulations,
which includes some grid convergence studies.

. Chapter 4: A detailed experimental study is performed into the sensitivity of ser-
rations applied to the aerofoil leading edge. The study has investigated variations
in serration parameters (amplitude and wavelength) and turbulence integral length-
scale. An optimum serration wavelength )\ is identified whereby maximum noise
reductions are obtained. This optimum value corresponds to when the transverse in-
tegral length-scale of the turbulent flow is roughly one-forth the serration wavelength.
One of the most important findings of this chapter is that at the optimum serration
wavelength )\, the ratio of sound power radiation from the serrated aerofoil to the
baseline (straight edge) aerofoil varies inversely proportional to the Strouhal number
Stp, = fh/U, where f, h and U are frequency, serration amplitude and flow speed,
respectively. A simple model is proposed to explain this behavior. These findings are
then applied to realistic aerofoils. It was found that these 3D effects produced only a
small influence on the noise reductions compared to a flat plate.

. Chapter 4: The flow around the leading edge serration aerofoil was visualised using
PIV techniques. This work was undertaken in collaboration with colleagues from the
AFM group at the University of Southampton. The results of this study showed that
the flow remains attached to the aerofoil, even close to the leading edge where rela-
tively rapid changes in profile occur. These preliminary measurements suggests that
lift and drag may be marginally reduced and increased respectively. This is consistent
with the aerodynamic measurements performed on the same wind tunnel.

. Chapter 5: A new leading edge serration profile is proposed comprising of the sum
of two sinusoids. It has been shown that it is capable of providing substantially better
noise reductions than the maximum noise reduction achievable on single-wavelength
serration geometries of the same amplitude. A simple model is proposed to explain
the noise reduction mechanism for these double wavelength serration profiles, which
is shown to be in close agreement with the measured noise reduction.

. Chapter 6: A new leading edge geometry is proposed comprising of slits cut into the
roots of a sawtooth serration, which is designed to overcome the fundamental limi-
tation of double-wavelength serrations whose performance was shown to be limited
by the imperfect coherence between adjacent roots. A model has been developed to
predict and understand the additional noise reductions due to slitted-root serration
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profiles which are shown to be a function of relative source strength between the dom-
inant sources on either side of the slit. It has been demonstrated that even slits by
themselves can provide greater levels of noise reduction than conventional profiles of
the same amplitude.

7. Chapter 7, Appendix D: Two further leading edge profiles were proposed and inves-
tigated aimed at improving still further the noise reduction performance of single-
wavelength leading edge serrations. These include variable slits, chopped-peak ser-
rations, and ‘random’ leading edge profile. Investigation of the noise due to these
geometries also provided an understanding into some fundamental issues relating to
the noise reduction mechanism.
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This chapter provides a detailed experimental study aimed at understanding the influence
of geometry on isolated aerofoils on turbulence - aerofoil broadband interaction noise. The

main contributions of this chapter are as follows:

1. The effects of thickness and leading edge nose radius on the noise are quantified exper-
imentally and plotted. Collapse of the noise spectra for various aerofoils thicknesses
are attempted by plotting against non-dimensional frequency (ft/U), where t is the
maximum thickness of the aerofoil. This results of this chapter makes clear that there
does not exists single length-scale parameter associated with the aerofoil geometry for
"thin” aerofoils that allows interaction noise spectra to be collapsed and that it is a com-
plex function of the complete aerofoil geometry. This is in contrast to thick aerofoils

where good collapse of the noise spectra is obtained by plotted against ft/U.

2. The effect of camber and angle of attack on broadband interaction noise is investigated.

3. Attempts are made to explain the mechanism of noise reduction through measure-
ments of the flow behaviour around the aerofoil, particularly in the vicinity of the

stagnation region.
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4. Measurements of interaction noise for various aerofoil geometries are compared against
the results from a high-order linearized Euler CAA solver, where agreement to within
1dB is obtained over a range of low Mach numbers M < 0.3. However, the compu-
tations were performed at much higher Mach number where no change in behaviour
was predicted due to compressibility effects, suggesting that low Mach number mea-
surements may be extrapolated to higher flow speeds.

2.1 Background

A number of researchers have shown that aerofoil geometry can affect turbulence-aerofoil
interaction noise at high frequencies. Paterson and Amiet (1977) made careful measure-
ments of the broadband interaction noise due to a NACA 0012 aerofoil and compared the
results against the flat plate noise model due to Amiet (1975) at different flow speeds up to
165 m/s. It was observed that a deviation from the flat plate analytical model occurs at high
frequencies corresponding to gust wavelengths U/ f that are smaller than the aerofoil thick-
ness. They not only found that the unsteady surface pressure strongly peaked towards the
leading edge, but also that other chord-wise positions also directly contribute to the far-field
noise. They also showed that the effect of angle of attack on the radiated noise is small.

Olsen and Wagner (1982) investigated experimentally the effect of aerofoil thickness on
broadband interaction noise by varying the maximum thickness-to-chord ratio between 3%,
13% and 37% on a NACA symmetric aerofoils. Two main observations were made: The
radiated sound at a fixed frequency reduces with increasing thickness, and this decrease in
noise due to thickness increases with increasing frequency:.

The problem of aerfoil-turbulence interaction noise has also been studied analytically. Gold-
stein and Atassi (1976) applied rapid gust distortion theory to investigate the effect of thick-
ness on the radiated noise. The theory analyzes the interaction between a periodic two-
dimensional gust with an aerofoil in uniform flow and shows that the oncoming gust is dis-
torted by the steady potential flow field about the aerofoil. They concluded that the mean
flow streamlines around the aerofoil distorts the incoming gusts that mostly affects the ra-
diated noise at high frequencies. This theory was later extended by Atassi (1984) to small
camber aerofoils placed at small angle of attack. Atassi (1984) showed that for a thin aerofoil
with small camber, placed at small angle of attack to a potential mean flow and subject to a
periodic gust, the unsteady lift caused by the gust can be constructed by linear superposi-
tion to the Sears lift of three independent components accounting separately for the effects
of aerofoil thickness, aerofoil camber and non-zero angle of attack of the mean flow. Atassi
(1984) found that capturing the thickness effects was difficult due to the asymptotic nature
of the stagnation region around the nose radius. They found that the noise generation is
concentrated in the local leading-edge region.

Tsai (1992) used similar rapid distortion equations to develop a closed-form asymptotic solu-
tion for noise generated by a convecting single gust interacting with a thin, two-dimensional,
symmetric aerofoil. The influence of aerofoil thickness on the total sound power is found
to be controlled primarily by the Strouhal number fR./U, where R, is the nose radius of
the aerofoil. Goldstein and Atassi (1976) and Atassi (1984) model was later extended to in-
clude the effects of angle of attack and camber (Myers and Kerschen (1995, 1997)) which is
based on linearization of the Euler equations about the steady subsonic flow past the aero-
foil. Parametric calculations presented by Myers and Kerschen (1995, 1997) illustrate both
incidence angle and moderate amounts of aerofoil camber can significantly affect the sound
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field produced by aerofoil gust interactions. All these analytic work is based on single gust
approach.

An alternative to single gust-based methods is to perform the noise calculations in the time
domain, which can more easily incorporate the complex motion of vortices close to the
leading edge, which cannot otherwise be captured in the frequency domain. Grace (2001)
has used a panel method to capture the aerofoil thickness effects on interaction noise. It
was shown that the unsteady blade response decreases with increasing thickness, which is
demonstrated on a NACA 0012 aerofoil. The time domain models were compared with a
gust model using rapid distortion theory on a Joukowski aerofoil, where the gust model
required multiple longitudinal wave number response calculations in order to model the
asymmetry. The results of these time domain approaches was found to depend on the selec-
tion of streamlines around the aerofoil and also on the location of the vortex point. A sensi-
tivity study on the location of the vortex point has been performed by Glegg and Devenport
(2009). To overcome the streamline dependence on the noise prediction, they superimposed
the line of vortices to model a gust with a step discontinuity. It was shown that the unsteady
lift peaks when the vortex passes the leading edge, but if the vortex is close to the leading
edge response is reduced. Increasing aerofoil thickness was found to move the location of
the unsteady lift peak downstream, and reduce its magnitude.

Glegg and Devenport (2010) later extended their work from Joukowski aerofoils to arbitrary
aerofoils using panel methods. Two different approaches were used: One using a conven-
tional vortex panel method in which the Biot-Savart law is used to solve for the flow velocity,
and the other expressing the velocity potential in terms of stagnation enthalpy. Glegg and
Devenport showed that the panel method produces noise predictions up to a reduced fre-
quency (wb/U) of 40. This method captures the high frequency reduction associated with
thicker aerofoils and also shows that the radiated sound is weakly dependent on the angle
of attack. This panel method has been used on various aerofoils and has been compared to
experimental measurements by Devenport et al. (2010). Three different aerofoils of varying
chord, thickness and camber were introduced in a turbulent flow and the radiated noise
compared with panel method solutions. It was shown that the angle of attack has a strong
effect on the noise for a Fourier component of turbulence, but this effect considerably weak-
ens when summed over all gust components in the isotropic turbulence velocity spectrum. It
was concluded that the effect on noise due to angle of attack are significant for non-isotropic
turbulence and are dependent on aerofoil shape. Camber effects were observed to be small
in Devenport et al. (2010)s study. Similar observations by Santana et al. (2012) have been
made, which uses a panel method to predict the turbulence interaction noise.

Kucukcoskun et al. (2013) has also developed a semi-analytical model, based on Amiet’s
theory, to predict turbulence-interaction noise. This method incorporates an additional ge-
ometric near-field correction. This is followed by an implementation of a strip method to
account for spanwise variations of the incoming flow. Finally, uses a boundary element
method approach to compute the scattered acoustic field of the aerofoil. This method has
also been validated experimentally with reasonable agreement.

A time-domain analytical method based on the vortex lift theory of Howe (2001) has been
developed by Lysak et al. (2013); Lysak (2011), to capture the effects of aerofoil thickness
on the high frequency aerofoil response to an impinging vortical gust. This approach can
account for gust distortion by the mean flow around the aerofoil leading edge. The unsteady
lift can be calculated by evaluating the potential field along the drift lines of the mean flow-
field around the aerofoil. A simple correction factor to account for the effect of thickness
in the turbulent gust model was developed for the NACA 65 series aerofoils. This gust
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response correction factor was compared with other models available in the literature, where
a reasonable match was obtained between them.

The numerical models outlined above are generally based on complex numerical prediction
schemes that provide little insight into the dependence on broadband interaction noise due
to aerofoil geometry effects. There is therefore a need to develop more simplified, physics-
based models that predict the effects of aerofoil geometry on noise. Moreau et al. (2005)
developed a semi-empirical correction factor that can be applied to the flat plate noise pre-
dictions to predict the noise from real aerofoils. To capture aerofoil geometry effects, such
as camber and thickness, an additional correction term was used in the radiation integral of
Amiet’s method Amiet (1975). In addition to these changes, the input turbulence spectra,
based on Hunt’s rapid distortion theory, which can capture the high frequency roll-off, was
implemented. These corrections were validated against measured experimental NACA 0012
noise data. This study was extended to formulate the relation between the noise reduction
due to thickness effects, which is a function of the relative thickness and inversely propor-
tional to the ratio of turbulent length scale and the flow speed Roger (2010). The method
was compared with existing experimental data (Paterson and Amiet (1977)) and a reason-
able collapse was observed when plotted against fcy/U, where ¢y is the aerofoil chord. The
direct influence of the integral length scale was not investigated explicitly.

Another approach to providing empirical factors to include real geometry effects on inter-
action noise has been taken by Gershfeld (2004). Howe’s Green’s function which was orig-
inally developed for trailing edge noise, has been used to accounts for the effects on noise
due to aerofoil thickness. This was used to develop the correction factor e=“*/?V to predict
the difference in noise between an aerofoil with thickness ¢t and a flat plate. This correc-
tion factor was shown to be in close agreement with the experimental data of Paterson and
Amiet (1977) measured on the comparatively thick NACAQ012 aerofoil. However, the de-
tails of this derivation were not provided. In this chapter we show that this correction factor
is reasonably valid for thick aerofoil but breaks down for thin aerofoil. More importantly,
it appears to provide an upper bound estimate for the noise reduction compared to a flat
plate.

Moriarty et al. (2005) who derived a numerically-based correction factor to account for aero-
foil thickness effects on noise based on a boundary element method. The noise reduction
factor due to aerofoil geometry was also developed, based on a combination of the thickness
to chord ratio at positions of 1% and 10% along the chord from the leading edge. This em-
pirical noise expression for the noise reduction compared to a flat plate was developed from
the noise data of 7 different configurations of camber, nose radius and maximum thickness.
The model was validated against 6 new aerofoils, whose geometries were similar aerofoils
used to develop the model.

Oerlemans and Migliore (2004) also measured the noise radiation from aerofoils in turbu-
lent flows. They observed that aerofoils with a blunter leading edge nose profile produce
less interaction noise. They also found that the inflow turbulence noise level scales with
US. Hall et al. (2011) have also undertaken interaction noise measurements in which the
tirst 10% of the aerofoil shape near the leading edge was altered but maintaining the maxi-
mum thickness location and camber. Again, it was observed that aerofoils with larger nose
radii generate lower radiation noise. The maximum noise reduction due to this change was
observed to occur at frequencies where the reduced frequency, based on leading edge thick-
ness, is of the order unity.

Recently, Santana et al. (2016a) discusses a limitation of Amiet’s theory which restricts its
capability of predicting the noise predictions at frequencies where the aerofoil is considered
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a compact noise source where the acoustic wavelength is comparable to the aerofoil chord
(0.5 < wep/a < 1). To overcome this limitation Santana et al. (2016a) revisits Amiet’s ap-
proach and uses Schwarzschild’s technique in an iterative procedure where the second cal-
culation can only be computed in terms of approximate analytical expression. He showed
after two iterations Amiet’s noise predictions are precise at high-frequencies, however gen-
erally overestimated in the frequency range where the aerofoil is considered a compact noise
source (Santana et al. (2016a)). In the current thesis, at these low frequencies, the jet noise
masks the total noise in the measurements. Thus, Amiet’s theory Amiet (1975) has been
used to compared against flat plate measurements.

Santana et al. (2016b) proposes a modification to the von Krmn model for isotropic turbu-
lence, inspired by asymptotic results of Rapid Distortion Theory, and supported by detailed
hot wire anemometry and stereo-PIV measurements performed in a plane upstream of a
NACA-0012 aerofoil subjected to incoming grid turbulence. It was shown at a distance close
to 12 percent of the aerofoil leading-edge curvature radius has important turbulence distor-
tion effects, affecting both the spatial correlation and amplitude of the turbulent velocity
components. Measuring the integral longitudinal correlation length at that fixed location,
far-field radiated noise is predicted by using the modified turbulence spectra and compared
against the measurements. Here the flat plate response function is considered to predict
the far-field radiated noise for NACA-0012 aerofoil. But the universality of this model for
different aerofoil nose shape profiles and thicknesses has to be validated.

More recent analytic (Ayton (2016)), numerical (Hainaut et al. (2016)) and experimental stud-
ies (Chaitanya et al. (2015a)) were conducted to understand the influence of nose radius,
thickness, maximum thickness location, chord etc on radiated noise. The summary of the
results are as follows:

1. Small changes in the profile of the leading edge, nose radius, maximum thickness, etc
have a significant effect on gust distortion in the vicinity of the nose radius, which in
turn effects the radiated noise.

2. Factors such as thickness, nose radius and position of maximum thickness are, by
them-selves, not sufficient to fully account for the distortion of the turbulence for the
prediction of radiated noise.

3. The analytic solution for the leading-edge inner region is a complex function (Ayton
(2016)) of the complete nose profile. Further work is required to simplify these thick-
ness correction terms in analytic solution and develop an elegant correction term that
captures the changes in aerofoil geometry.

The conclusions of the numerical and analytical study are similar to experimental obser-
vations. Essentially, we need to account the complete aerofoil profile until the position of
maximum thickness to capture the gust distortion to predict the radiated noise accurately.

Before presenting the noise radiation spectra due to the various aerofoil geometries under
investigation, flat plate interaction noise measurements were made inorder to validate the
measurement procedure and the flat plate theory due to Amiet (1975).
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2.2 Flat plate validation

The interaction noise generated by isotropic homogeneous turbulent flow of 2.5% turbu-
lence intensity and 7.5 mm integral length scale, impinging on flat plates of thickness 1.5
mm was measured on the open jet wind tunnel facility at the ISVR. The flat plate of 0.45 m
span and 0.15 m chord was located with the side plates of a rectangular nozzle of dimen-
sions 0.45 m x 0.15 m and the noise measured at a polar array of 11 microphones located
1.2m from the aerofoil leading edge. Details of the measurement facility are presented in the
Appendix A.

FIGURE 2.1: A photograph of flat plate test specimen mounted at the nozzle
exit with the support of side plates.

In this preliminary study a flat plate of 1 mm thickness was introduced into the potential
core of the open jet. Both the trailing and leading edges were sharpened in order to avoid
vortex shedding as well as to provide a better approximation to a zero-thickness flat plate.
A photograph of the flat plate model placed in the wind tunnel is shown in figure 2.1. The
PSD of sound pressure radiated at 90° to the jet axis are compared in Figure 2.2 against
Amiet’s flat plate analytic theory for different chord lengths of 75 mm, 100 mm, 150 mm
and 200 mm respectively at 20 m/s to 80 m/s. The description of Amiet’s analytic theory is
described in Appendix B. The radiated noise spectra exhibits the classical oscillations due to
interference between the leading and trailing edges and are in excellent agreement with the
flat plate theory for all cases at frequencies where interaction noise is dominant. Below this
frequency the predictions are underestimated due to contamination of the measured spectra
due to hydrodynamic pressure fluctuations from the turbulent jet shear layers.

The measured pressure directivity at the 11 microphone positions are compared in Figure 2.3
against Amiet’s flat plate analytic theory for different chord lengths of 75 mm, 100 mm,
150 mm and 200 mm at jet velocity of 20 to 80 m/s. These are plotted for different non-
dimensional frequencies fcyp/a=0.5, 1, 1.5 and 2. At low frequencies the flat plate behaves
like a compact dipole source and exhibits classical cardioid directivity. As non-dimensional
frequency increases, Figure 2.3 reveals the presence of multiple side lobes in both measure-
ment and prediction.

In the present sections of this chapter, far-field spectral plots are presented in terms of the
Sound Pressure Level spectrum SPL(f), defined in Eq. (2.1), and the Sound Power Level
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ing jet velocities (U = 20, 40, 60 and 80 m/s)
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(a) 75 mm chord, fco/a = 0.5 (b) 100 mm chord, fep/a =1

(¢) 150 mm chord, fco/a = 1.5 (d) 200 mm chord, fcg/a = 2

FIGURE 2.3: Comparison of directivity trends at different non-dimensional

frequencies between Amiets analytic prediction (red) and experimental

(black) for varying chord (cp=75 mm, 100 mm, 150 mm and 200 mm) and
jet velocities (U =20, 40, 60 and 80 m/s)
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spectrum PW L( f) defined in Eq. (2.2), estimated assuming cylindrical radiation,

SPL(f) = 1010g10(Spp(f)/Pies) 1)
where S,,(f) is the power spectral density and p;s is 20X107° Pa, and

=N

W(f)= if > <Spp(f 1) +25pp(f : 9””) A6 2.2)
=1

PWL(f) =10logyo (W(f)/Wre) (2.3)

where, W ( f) is the spectral density of sound power radiated between the radiation angles
[40° to 140°], Wyep = 10~ 12W and Spp is the acoustic pressure PSD (Power Spectral Density)
measured at measurement angle 6; and N is the number of microphones, L is the span of
the aerofoil [450 mm], R is radius of the microphone array (1.2 m), Af is the angle between
adjacent microphones (5-10 degrees), p is the mass density of the ambient air, and a is the
speed of sound.

In the remaining sections of this chapter, the sound power level reductions APW L( f) rela-
tive to the flat plate radiation plotted above defined as follows.

APWL(f) = PWLo(f) — PWLy(f) (2.4)

where PW Lo and PW L; are the radiated sound power for flat plate and aerofoil respec-
tively are calculated based on Eq. 2.3. The chord and span for all the aerofoils are equal to
the values for the flat plate (150 mm and 450 mm respectively).

Effect of Chord

Sound power level spectra are calculated using Equation 2.3 for flat plates of chord lengths
of 75 mm, 100 mm, 150 mm and 200 mm. These sound power spectra are plotted in figure 2.4
against frequency to observe the effect of chord length on turbulence-aerofoil interaction
noise. This figure shows a strong dependence of noise on chord at lower frequencies (f <
1000H z) but almost no effect at higher frequencies.

To examine this phenomenon further the variation in sound power at three fixed frequen-
cies of f ~ 600, 900 and 1900 Hz and three velocities of U=20, 40 and 60 m/s are plotted in
Figure 2.5 against non-dimensional hydrodynamic frequency (u;, = wco/U/3%). This figure
reveals two regions of behaviour. One is where the radiated sound power varies as ¢} and
the other which is proportional to c). The line that delineates these two regions of behaviour
is non-dimensional acoustic frequency y, = wcp/a/B? = /4. At this frequency the hydro-
dynamic wavelength (u,) is greater than a quarter of the chord and the acoustic wavelength
(t1q). This behaviour was first identified by Blandeau (2011). He showed analytically that a
c(l) scaling occurs when p, < 7/4 < pp, ie., there is a mismatch between the acoustic and
hydrodynamic wavelengths. He also showed that a ¢ scaling occurs when both hydrody-
namic and acoustic wavelength are both short such that p, > 1 > 7/4. These behaviour
are clearly evident in the measured data in Figure 2.5. Finally, he showed that a ¢Z is ob-
served when both wavelengths are long, i.e., 1, < pp < 7/4. This behaviour is obscured in
the measured data by jet noise and is therefore not seen in Figure 2.5.
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2.3 Aerofoil Geometry effects

2.3.1 Aerofoil Configurations

Following the flat plate theory validation against flat plate experimental data in Section 2.2,
the current section focuses on the broadband noise radiation due to realistic aerofoil geome-
tries. In this present study the NACA 4-digit modified series aerofoils were investigated.
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FIGURE 2.6: Aerofoil Configurations.

Seventeen aerofoils were fabricated using 3D printing technology, of which 13 aerofoils are
symmetric. The material used in the fabrication is envisionTEC’s LS600, which are extremely
durable photopolymers for use in producing accurate models with smooth surface finish.
The aerofoils were chosen to have a systematically varying thickness and nose radius, as
shown in Figure 2.6. In the case of the NACA 4-digit aerofoils, the leading edge nose radius
R, is related to maximum thickness by

t (I\]?
R.=0.5 [0.296902 <6>] (2.5)

where I is a non-dimensional parameter that defines the shape of the leading edge as shown
in figure 2.6a (Gill et al. (2013)). I=0, represents a sharp leading edge, depicted as NACA
xxxx-03, whereas =10 represents blunt aerofoils, depicted as NACA xxxx-103 and I=6 rep-
resents standard NACA profile geometries.

The study has been performed on 3 leading edge nose radii (I=0, 6 and 10), each of which has
varying aerofoil thicknesses of 6% to 24% of chord as shown in Figure 2.6. The maximum
thickness is positioned at 0.3¢( from the leading edge. The dimensions of the chord (cp) and
span (L) for all configurations are 150 mm and 450 mm respectively. The effect on interaction
noise due to camber was also studied on four aerofoils of varying camber of 1%, 3%, 5% and
8% of chord (NACA 1406, 3406, 5406 and 8406). The position of maximum camber for all
the aerofoils is 40% from the leading edge.

2.3.2 Influence of Self-Noise

In this section we show that the total noise radiated by the aerofoil located within a turbu-
lent flow is dominated by leading noise at low frequencies and trailing edge noise at high
frequencies. As it is very difficult to measure interaction and self-noise separately, our anal-
ysis was limited to the frequency region where the interaction noise dominates self-noise.
Figure 2.7 shows the influence of self-noise on total noise spectra. Sound power levels are
plotted against a non-dimensional frequency (ft/U) for two different thickness aerofoils.
It is observed that the thicker aerofoil has lower interaction noise and the self-noise starts
dominating the total noise at lower frequency compared to the thinner aerofoil. The non-
dimensional frequency (ft/U) where self-noise starts if the dominant noise source is around
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FIGURE 2.7: The Influence of Self-Noise on Total noise for 6% and 18% thick-
ness to chord at jet velocity of 60 m/s.

1 for this particular turbulence intensity of about 2.5%. For the case of flat plates, levels of
self-noise were observed to be negligible over the frequency range of interest.

As aerofoil thickness was increased, trailing edge noise was found to increase in low fre-
quency range and decrease in the high frequencies range as discussed by Chaitanya et al.
(2015), due to a thickening of the boundary layer thickness. For these symmetric aerofoils
Leung et al. (2016) has used the panel code XFOIL to demonstrate an almost linear variation
of boundary layer thickness with aerofoil thickness. Thicker boundary layers near the trail-
ing edge lead to larger scales of turbulence that contain more energy, and hence the increase
in low frequency noise in the trailing edge noise spectra. The decrease in high frequency
noise with thickness was attributed by Leung et al. (2016) to a decrease in the coefficient
of friction. In this chapter, however, the analysis is restricted to the frequency range where
interaction noise exceeds self noise by at least 5dB and can therefore be neglected.

2.3.3 Effect on interaction noise due to thickness

The effect of aerofoil thickness on leading edge interaction noise is investigated in this sec-
tion. The sound power level has been plotted against non-dimensional frequency (fco/U)
in Figure 2.8 for varying aerofoil thicknesses from 6% to 24% at fixed nose shape parameter
(I = 6), for a jet velocity of 40 m/s. Consistent with earlier studies, Figure 2.8 clearly shows
that the sound power level decreases with increasing aerofoil thickness.

As discussed in section 2.3.4, Gershfeld (2004) derived the simple expression exp(—n ft/U)
to quantify the effect of aerofoil interaction noise relative to a flat plate by applying the
trailing edge green’s function to the leading edge of an aerofoil with thickness ¢. In this
chapter we referred this correction as Howe’s/Gershfeld’s correction. This factor is now
compared against measured interaction noise data.

Figures 2.9a, b and ¢ show the comparison of —10log;o(exp(—nft/U)) to the measured data
for various thicknesses, non-dimensionalized by the maximum aerofoil thickness, ¢, for the
three different nose shape factors, I = 0, 6 and 10. The comparison may be summarized as
follows:
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1. Except for the thinnest aerofoil, sound power reductions in Figure 2.9¢ are observed to
follow the Howe prediction at low non-dimensional frequencies ft/U but then deviate
from it as frequency is increased. Thus, the correction factor appears to correspond to
an upper limit sound power reduction.

2. As the aerofoil thickness is increased for the blunt aerofoils I = 10 (Figure 2.9¢c), the
correction factor is followed over a wider frequency range ft/U before deviation oc-
curs, although this may correspond to a smaller absolute frequency range.

3. For the aerofoils with the sharp leading edge I = 0, Figure 2.9a, the correction factor
appears to deviate over a wider non-dimensional frequency range.

4. The reason for the departure from prediction is partly due to the actual interaction
noise mechanism itself but is also partly due to the contribution from aerofoil self-
noise, which starts to dominate above some non-dimensional frequency ft/U roughly
about 1. Self-noise is particularly important for the thick, blunt aerofoils.

The influence of turbulence integral length scale (A) on interaction noise is now investigated.
Differences in the interaction noise power spectra relative to a flat plate were measured for
the NACA0006 and NACAQ012 aerofoils at the two integral length scales A/cq of 0.05 and
0.09. These differences in sound power spectra are plotted in figure 2.10 against ft/U. It
clearly shows that, even though turbulence length scale affects the sound power radiation,
as shown explicitly by Amiet, integral length scale has a negligible effect on the difference
in sound power radiation relative to a flat plate. It would appear that length scale affects
interaction noise from thick aerofoils in precisely the same way as for flat plates, i.e, the
sound power radiation is proportional to the correlation length which in turn can be related
to the integral length scale.

2.3.4 Comparison of thickness-based empirical models for the prediction on in-
teraction from aerofoils

In this section the various correction factors derived previously to predict the difference in
the sound power radiated by thick aerofoils to a flat plate are now compared to the measured
data. The radiated far field power spectral density given in Equation B.9 for a flat plate
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has been modified by an exponential correction factor to give the radiated far field power
spectral density for an aerofoil of arbitrary thickness ¢. In this section, three correction factors
are investigated, which are reformulated here to allow direct comparison between them. All
three of three of these correction factors may be expressed as an exponential factor with
non-dimensional factor 5(¢), which is solely a function of aerofoil geometry, of the form

feo

= (2.6)

SPP<X7 Y7 Z7w)’t = SPP(X7 Y7 Z,w)\oexp[—ﬁ(t)

Hence the noise reductions on sound power level due to aerofoil thickness with reference to
flat plates are calculated using;:

APWL = PW Ly — PWL; = 1000g10(Spplo/Sppl:) 2.7)

where positive sign in noise reduction shows the reduction of turbulence-aerofoil interaction
noise with the increase of aerofoil thickness. The measured noise reductions can only be
expressed as per Eq. 2.6 for nose shapes I = 6 and I = 10. For the case of I = 0, the
noise reductions doesnt obey Eq. 2.6. Gershfeld’s correction can be rewritten in terms of an
attenuation coefficient as:

B(t) =7 (t/co) (2.8)

Lysak et al. (2013); Lysak (2011) developed an empirical expression for §(t) based on time-
domain calculations, accounting for the gust distortion by the mean flow around the aero-
foil. In the study, Lysak considered NACA 65 aerofoils of different thickness to chord ratio
in the range of 4% to 20%. The leading edge radius in the case of the NACA 65 aerofoil
will be lower than NACA symmetric aerofoils due to profile definition in which case the
predictions are slightly underestimated.

By fitting the numerical predicted noise data Lysak et al. (2013) obtained second order poly-
nomial fit is given by:

B(t) = 0.75(t/co) + 12(t/cp)? (2.9)

Moriarty et al. (2005) developed an empirical relation for the noise reduction using a bound-
ary element method. His correction expressed as a 3 factor is of the form:

Bt) = wzo?;lro(e)(l'uw(t) +5.317D(t)?) (2.10)
where
D(t) = (t/co)1% + (t/co)10% (2.11)

is termed the inflow turbulence noise indicator Moriarty et al. (2005).

The first two correction factors discussed above account for the effects of aerofoil thickness
on interaction noise based only on the maximum thickness ¢. the third expression of Eq. 2.10
is based on two thickness at 1% and 10% chord. All three are compared against the noise
data for the present aerofoil geometries and plotted against the measured attenuation co-
efficients. Figure 2.11 compares the variation in the attenuation coefficient 5 with aerofoil
maximum thickness for the three expressions. The measured data is classified into two cases.
One is for the standard NACA profiles (I = 6). The second is for the blunt NACA profile
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ness plotted against models available in literature

(I = 10). Clear differences in the variation between the two curve fits is apparent due to
the increase in nose radius. A second order polynomial expression in t/cq was fitted to the
measured data for both aerofoils I = 6 and 10, as follow:

B(t) = 1.369(t/co) + 9.429(t/co)%; for I =6 (2.12)

B(t) = 2.448(t/co) + 5.493(t/co)?; for I =10 (2.13)

For the case of a sharp nose radius, the attenuation coefficient is a function of the frequency
and hence it is not plotted in the Figure 2.11.

A unified model has been attempted to account for the two different nose shapes and the
fit is shown in Figure 2.12. In Figure 2.12 the attenuation coefficient is plotted against the
inflow turbulence noise indicator and a reasonable fit has been established for two different
nose shapes, which is given by

B(t) = 1.911D(t) 4 3.856 D(t)%; (2.14)

The comparison between the expressions for /3 is summarized as follows:

1. Considering only the maximum thickness in the attenuation coefficient does not cap-
ture the physics of interaction noise generation completely. The nose shape has been
shown to also have an effect from figure 2.11.

2. Lysak’s model predicts the interaction noise spectrum, even for thinner aerofoils even
though it was derived on the noise data from NACA 65 aerofoils. The Lysak’s model is
based on predictions using rapid distortion theory to properly account for the aerofoil
geometry on interaction noise. Thus for the geometries considered, Lysak’s model
predictions are reasonable for regular nose shape parameter I = 6.
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3. Gershfeld’s model is a simpler model that does not consider the behaviour of mean
flow in the vicinity of the leading edge profile which naturally leads to discrepancies
with experimental noise data.
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FIGURE 2.12: Attenuation coefficient as a function of inflow turbulence noise
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2.3.5 Effect on interaction noise due to leading edge nose radius

The present section investigates the effect of leading edge nose radius on interaction noise.
The sound power level is plotted against non-dimensional frequency (fco/U) in Figure 2.13
for varying nose shape parameters of I=0, 6 and 10 for the 6% thickness aerofoil for a jet
velocity of 40 m/s. The sound power level is observed to decrease with increasing nose
radius above the frequency at which jet noise can be neglected. As in Figure 2.9, the noise
reduction versus frequency increases steadily until a certain frequency at which self-noise
starts to become significant.

Noise reductions plotted against non-dimensional frequency (ft/U) for increasing nose ra-
dius at two different aerofoil thickness of 6% and 12% are plotted in Figure 2.14. The effect
of nose radius is seen to be more pronounced for thinner aerofoils than for thicker aerofoils,
whose sensitivity to nose radius is very weak. This again shows that the thickness correction
factor derived by Gershfeld /Howe represents the upper limiting value.

Figure 2.15 is a plot of the sound power level reduction at different jet velocities plotted
against ft/U. Excellent collapse of the difference in sound power spectra relative to a flat
plate suggesting that the important factor in determining the power radiation is the gust
wavelength U/ f compared to some length-scale L of the aerofoil, which is close to the max-
imum aerofoil thickness for thick aerofoil but is presently unclear for thinner aerofoils.
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FIGURE 2.16: Noise reduction trends with increasing thickness for nose shape
parameter, I=0, 6 and 10

2.3.6 Discussion on thickness and nose radius effects

Aerofoil thickness remains the main geometric parameter controlling turbulence interaction
noise. Local leading edge geometry, such as leading nose radius, nevertheless, is an impor-
tant parameter for thin aerofoils at high frequencies, particularly when the gust wavelength
is comparable to nose radius. Therefore attempts to predict interaction noise based on single
values of thickness-chord ratio are likely to be inaccurate for thin aerofoils.

Many attempts have been made to obtain a unified scaling factor relative to hydrodynamic
gust wavelength U/ f governing sound power reductions. Figure 2.16a is a plot of the dif-
ference in sound power spectra relative to a flat plate for different aerofoil thicknesses at
a constant nose radius of I = 6. Reasonable collapse of the noise reduction spectra are
observed for different aerofoil thicknesses when plotted against the non-dimensional fre-
quency (c,(t/co)?/)) for nose shape parameter, I=6. Thus, the difference in sound power
spectra relative to a flat plate for standard NACA profiles are therefore mostly determined
by the nose radius.

In the case of blunt aerofoils, (I=10) noise reductions collapses on non-dimensional fre-
quency ¢,(t/co)}® /) as shown in Figure 2.16b. This difference in power law from 2 to 1.5 is
mainly due to the difference in behaviors for the thinner aerofoils which exhibit a stronger
influence on nose radius.

The scaling laws of the difference in sound power with (¢/cy) above are not universal across
different nose shapes and thicknesses. This again suggests that the details of aerofoil profile
at positions upstream of the position of maximum thickness plays a key role in governing
the sound power radiation.

2.3.7 Effect of camber on turbulence-aerofoil interaction noise

To study the effect of camber on turbulence-interaction noise, four different aerofoils of
varying camber from 1% to 8% relative to chord are compared. camber is defined as the
asymmetry between the two acting surfaces of an aerofoil. In this study the location of max-
imum camber is kept constant at 40% relative to chord. Figure 2.17 shows the sound power
comparison between different aerofoils of different camber % relative to the chord at a jet
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FIGURE 2.18: The effect on turbulence-interaction noise due to AOA.

velocity U = 68 m/s. The effects of camber are clearly negligible on turbulence-aerofoil in-
teraction noise as previously observed by Devenport et al. (2010). Thus the parametric study
of aerofoil thickness and nose radius on turbulence-aerofoil interaction noise is performed
on symmetric NACA aerofoils as seen is section 2.3.3.

2.3.8 Effect of AOA on turbulence-aerofoil interaction noise

To study the influence of angle of attack on turbulence-aerofoil interaction noise, the noise
measurements are performed at three different geometric angles of attack of 0°, 4° and 8°.
Figure 2.18 shows the total sound power variation for NACAQ012 aerofoil at three different
geometric angles of attack (AOA=0°, 4° and 8°). It is evident from the Figure 2.18 that the
effect of AOA on turbulence-aerofoil interaction noise is negligible. Again, these results are
consistent with the findings of Devenport et al. (2010), where the angle of attack effect is
weak when the incoming flow is isotropic turbulence.
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2.4 Effects on interaction noise due to flow speed

We now investigate the influence of flow speed on turbulence-aerofoil interaction noise.
This analysis is useful to draw important conclusion to extrapolate our analysis to realistic
mean flow and desirable frequency of interest.

The total sound power level is calculated by logarithmically adding the entire frequency
range from 800 Hz to 10,000 Hz. Total power radiated is plotted against velocity for aerofoils
of varying thickness 6% to 24% in Figure 2.19. The total noise follows a velocity scaling law
of 5 to 6, which is similar to a dipole type of source. As interaction noise is a dipole type
behaviour we observe a similar velocity scaling (=~ U°°) with total sound power.

Sound power reductions versus ft/U are shown in Figure 2.20 at varying jet velocities of
20, 40, 60 and 80 m/s for two different aerofoil thicknesses of 6% and 12% and for a fixed
nose shape parameter, I=6. Noise reduction spectra are observe to collapse extremely well
when plotted against ft/U. It clearly shows that, even though jet velocity affects the sound
power radiation, as shown explicitly by Amiet, jet velocity has a negligible effect on the
difference in sound power radiation relative to a flat plate. It would appear that jet velocity
affects interaction noise from thick aerofoils in precisely the same way as for flat plates,
i.e, the sound power radiation is proportional to U°®. Hence noise reductions follow a
Strouhal dependence APW L(fL/U), where L is some appropriate length-scale based on
the thickness and nose shape parameters.

A similar analysis has been extended to high jet velocities using CAA. Details of the CAA
analysis used in the current chapter is described in Chaitanya et al. (2015). Sound power
reductions at velocities of 60 to 200 m/s are shown in Figure 2.21 versus ft/U for a fixed
nose radius of I = 6 and thickness 12% relative to chord. The noise reductions are calculated
using Amiet’s analytical model. The change in power level characteristics at low and high
speeds is almost similar, especially below the non-dimensional frequency 2. The effects
at different Mach numbers were observed from the figure 2.21, and the data gives a good
collapse up to M = 0.587.

All measured and predicted noise data exhibit a dependence on velocity that varies as U/f.
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FIGURE 2.21: The effect on noise reductions due to varying jet velocities using
CAA, t/cy = 12% at a fixed nose shape, I=6.

Identical aerofoils for the same U/ therefore have the similar change in sound power com-
pared to a flat plate. The character of the radiated noise changes for aerofoils relative to
flat plate were predicted to be identical at both low and high velocities, suggesting identical
noise generation mechanism over the entire velocity range. Compressibility effects asso-
ciated with high flow speeds are thus not predicted to introduce additional noise sources.
Interaction noise measurements made in low speed wind tunnel therefore provide a valid
assessment of noise generation that may be extrapolated to higher flow speeds.

As shown in the previous sections, the compressibility effects associated with high speed
flow don’t introduce additional noise sources. Thus, extrapolating the noise reductions fre-
quency limit to realistic mean flow at approach conditions, the influence of nose radius is
seen at 20KHz (Where 3KHz is the 3BPF at approach condition). This suggests small geo-
metric changes such as thickness and nose radius don’t effect the turbulence-aerofoil noise
at realistic Mach numbers (M = 0.5 — 0.7), where broadband noise is dominant (until 3BPF)
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FIGURE 2.22: Sound pressure level comparison between CAA predictions and
experimental data.

The experimental noise measurements are compared in Figure 2.22a, b and ¢ with noise pre-
dictions from CAA simulations. CAA simulations are performed by ANTC group at the
University of Southampton. The comparison is shown for three aerofoil geometries at an
observer angle of 90° in M=0.176 flow. In this comparison, ¢y=0.15m, I = 2.5%, and A\=7.5
mm. Close agreement of better than 2 dB is seen between the CAA predictions and the ex-
perimental measurements of turbulence-aerofoil interaction noise, for non-dimensional fre-
quencies above 0.2, where jet noise can be neglected from the experimental measurements.
It is noted that the error in the experimental velocity might be around 3 — 5%. This error
doesn’t change the noise reductions trends, which are shown in above section.

Also shown in this Figure (red curve), is the aerofoil self-noise, obtained by measuring the
radiated noise in the absence of the turbulence grid. For the NACA 0012-103 aerofoil mea-
surements, the aerofoil self-noise dominates at ft/U > 1, which explains the discrepancy
between prediction and experiment in this region. The computational method does not
include self-noise and therefore predicts a lower noise amplitude. For the thicker aerofoils,
the self-noise starts to dominate the total noise at lower frequencies. However, the threshold
non-dimensional frequency, above which the trailing edge noise will dominate, is approxi-
mately around 1 for all three cases for a fixed turbulence generating grid. Figure 2.22 shows
that the CAA simulations are capable of accurately predicting the turbulence interaction
noise from thick symmetric aerofoils.
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It should be noted that the CAA simulation of the NACA 0024-63 aerofoil used an altered
method that is described in this section. It has been previously found that there is a threshold
limit of aerofoil thickness and frequency, above which it is no longer valid to neglect trans-
verse Fourier components Gill (2015). Therefore, the NACA 0024-63 case required a more
complete 3D turbulence synthesis method, which includes both streamwise and transverse
vortical Fourier components. Additional detail on the turbulence synthesis method, given
in reference Gill (2015), is not included here for brevity.

The sound power level predicted by the CAA method is calculated and compared against
experimental measurements and Amiet’s analytical solution. Figure 2.23 shows the sound
power spectral comparison between the Experiment, the CAA, and Amiet’s analytical flat
plate model, at a jet velocity of 60 m/s. Close agreement is observed between all three ap-
proaches, particularly in the non-dimensional frequency range of 0.2 to 1, where interaction
noise is the dominant source mechanism compared to jet and self-noise in the experimental
data. Amiet’s flat plate theory is used to calculate the change in sound power level from
CAA results at different jet velocities to address the compressibility effects.
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FIGURE 2.23: Sound Power spectral comparison between Experimental, an-
alytical and CAA for aerofoil of thickness 12% of chord (cy) at jet velocity 60
m/s.

Figure 2.24 shows the comparison of the change in the sound power level, between ex-
perimental measurement and CAA predictions, at different jet velocities. We observe very
good agreement of experimental change in sound power across all frequencies, for various
jet velocities. We note that the measurements and predictions were performed completely
independently by the different people independently and then compared. At low Mach
numbers (M < 0.35), the collapse of CAA predictions is reasonable at all frequencies. The
deviation from the experimental noise reduction curves at low frequencies (ft/U <= 1) is
because the flat plate analytic spectra are used in calculating CAA noise reductions. We also
observe the change in sound power levels, due to thickness, starts at lower non-dimensional
frequency in case of experiments than compared to CAA predictions.
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FIGURE 2.24: Sound power reductions for aerofoil of thickness 12% of chord
(co) at jet velocities 40 to 200 m/s (M = 0.118 to 0.587).

2.6 Flow measurement

Preliminary PIV results are presented to visualize the behaviour of the flow in the vicinity of
the aerofoil edge. This was done with the purpose of understanding the leading edge noise
interaction mechanism and the effect of thickness and nose radius. Figures 2.25a and b show
the mean velocity streamlines around the NACA 0006-63 and NACA 0012-63 aerofoils. In
the case of the thinner aerofoil, the stagnation region is smaller than that of the thicker
aerofoil, in which the velocity gradients along the mean flow are much greater than the
case of the smaller stagnation region. A small stagnation region results in high velocity
fluctuations at the nose of the aerofoil, resulting in higher interaction noise.

Figures 2.25c and d show the mean velocity streamlines around the NACA 0012-03 and
NACA 0012-103 aerofoils with different nose radii. The blunt aerofoil has larger stagnation
region than the sharper aerofoil. In case of blunt aerofoil, the mean velocity gradients are
smaller than compared to sharper aerofoil. This causes smaller fluctuation velocities in the
case of blunt aerofoil resulting in lower radiation power.
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FIGURE 2.25: Mean Velocity maps (m/s) and streamlines around the aerofoils
of varying thickness and nose radius measured using PIV.
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FIGURE 2.26: Fluctuating velocity (v,) contours (m/s) and streamlines
around the aerofoils measured using PIV.

It is well known from the Amiet’s theory that the upwash turbulent velocity v,, which is nor-
mal to the aerofoil surface, is the responsible component for generating turbulence-aerofoil
interaction noise. The velocity fluctuations in the direction normal to the surface of aerofoil
are observed close to leading edge of an aerofoil. Figure 2.26 shows the Y-component veloc-
ity fluctuations (v,) for different aerofoil geometries. For comparison, along the tip of the
aerofoil in X direction, fluctuating velocities are plotted along the flow direction for three
different nose shape parameters (I=0, 6 and 10) for 12% thick aerofoil. X=0 indicates the
leading edge tip of the aerofoil. Figure 2.27 shows the comparison between the fluctuating
velocities for aerofoils of nose shape parameters I=0, 6 and 10. In case of sharp aerofoils,
the fluctuating velocities are high at the tip compared to blunt aerofoils. This is one of the
reasons for having lower sound power levels for the case of blunt aerofoils.
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FIGURE 2.27: Comparison of fluctuating velocities (v, ) for different nose radii.

Similar plots have been plotted for aerofoils of varying thickness. It was observed that the
thin aerofoils have larger fluctuating velocities as compared to thicker aerofoils, resulting
in higher turbulence-aerofoil interaction noise. Both the aerofoil nose radii and thickness
change the flow characteristics and greater fluctuating velocities at the tip of the aerofoil
results in higher leading edge noise.
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FIGURE 2.28: Comparison of fluctuating velocities (v, ) for different thickness
for sharp aerofoils (I=0).

2.7 Summary

In this chapter, a detailed experimental study has been performed to understand the in-
fluence of aerofoil geometry on turbulence - aerofoil interaction noise. Systematic noise
measurements have been carried out by varying aerofoil thickness and leading edge nose
radius separately. Flat plate analytical theory has been shown to be in very close agreement
with the measured data. The main findings from this study are: (a) sound power reductions
increase with increasing aerofoil thickness t, (b) sound power reductions are highly sensi-
tive to the aerofoil nose geometry and radius, (c) sound power reductions for a particular
aerofoil geometry are found to follow a Strouhal dependence, (d) sound power reductions
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are most sensitive to nose radius effects for thin aerofoils, and (e) sound power reductions
are independent of camber and angle of attack (f) sound power reductions are independent
of incoming turbulent integral length scale. It has been made clear that one can’t just use a
single lengthscale parameter to correct for geometric effects. As the primary mechanism is
the mean flow, one has to account for the global geometry of the aerofoil.

The character of the noise and the difference compared to a flat plate have been predicted
to be identical at both low and high velocities, suggesting identical noise generation mecha-
nism over the entire velocity range. Compressibility effects associated with high flow speeds
are therefore not predicted to introduce additional noise sources. Thus, interaction noise
measurements made in low speed wind tunnel provide a valid assessment of noise genera-
tion that may be extrapolated to higher flow speeds.

Applying the findings above to a realistic OGV aerofoil of 5% thickness (t=3.35 mm) at
approach Mach numbers (1/=0.5) shows that the non-dimensional frequency ft/U at the
third Blade Passing Frequency (3000Hz) is approximately 0.06. At these very small non-
dimensional frequencies, the influence of aerofoil geometry on turbulence-aerofoil interac-
tion noise has been shown in figure 2.9 to be negligible. These results compels us to in-
vestigate alternative methods for reducing interaction noise on thin aerofoils, which is the
subject of Chapters 4 - 7. However, before this investigation it is important to establish
whether the same principle also applies to aerofoils in high solidity cascades where mutual
blade interaction is important. This is the subject of the next chapter.
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It has been shown in the previous chapter that at realistic mean flow and desirable frequency
of interest (3BPF) for modern turbofan engine, isolated aerofoil geometry effects by them-
selves do not significantly effect broadband noise. In the present chapter we extend our
analysis to cascade. This chapter deals with the broadband noise generated due to the inter-
action of turbulence and a cascade of 2-dimensional realistic aerofoils. The main objectives
of this chapter are as follows:

1. To develop theoretical framework by which turbulence-cascade broadband interaction
noise can be predicted in 2 dimensions using a linearized Navier-stokes solver and a
Fourier turbulence description.

2. To investigate the influence on turbulence-cascade broadband interaction noise due to
aerofoil thickness and nose radius.

3. To investigate the effect on turbulence-cascade interaction noise due to camber and
flow incidence angle.

First the numerical predictions are validated against LINSUB which provides a numerical
solution for the radiated upstream and downstream acoustic pressure due to a 2-dimensional
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cascade of flat plates interacting with 2D turbulent flow where the mean flow is aligned
with the stagger angle. Later, the approach is extended to 2D realistic aerofoils. The physi-
cal aspects of the cascade-gust interaction are studied and discussed. This Fourier approach
provides insight into the aerofoil cascade response across the spectrum of vortical mode in-
dices of incoming turbulence, which leads to better understanding of the noise generating
mechanism. The influence of aerofoil geometry changes, including to aerofoil thickness,
nose radius and camber, and of flow incidence variation on broadband noise are investi-
gated at a highest frequency of interest where broadband noise is dominant in a modern
aircraft engine.

3.1 Background

Whitehead (1987) developed a FORTAN code, LINSUB, to compute the cascade response of
flat plate due to a single frequency, harmonic vortical gust using a collocation technique (see
section 1.2.1 for more details). Cheong et al. (2006) used the LINSUB cascade solution to for-
mulate an expression for the broadband sound power spectral density from 2D cascades due
to 2D isotropic turbulence. The efficiency of the computation was considerably improved
by exploiting the periodicity of the cascade response function in the transverse turbulence
wavenumber which allows re-ordering of the summations over vortical mode indices and
scattering indices. This periodicity property is explored in this thesis for cascades of realistic
2D geometries. In this paper, Cheong et al. (2006) derived a simple analytic expression for
the radiated sound power that is valid in the high frequency limit.

More recently Polacsek et al. (2015) presented a three-dimensional computational hybrid
method aiming at simulating the acoustic modes from a ducted annular cascade subjected
to a prescribed homogeneous isotropic turbulent flow. The predicted fluctuating pressures
over the aerofoil were used as the input to a Ffowcs Williams and Hawkings integral solver
to calculate the radiated sound field. This analysis is limited to plane mode in the azimuthal
direction.

In this thesis, aerofoil geometry effects on turbulence-cascade interaction noise is investi-
gated numerically. The numerical approach was then used to show that the periodicity
property in the blade response for the flat plate cascade was also sufficiently accurate to
be used to allow the modal powers for a realistic aerofoil cascade to be summed infinity
by only computing the blade response for modes between 0 and B, where B is number of
blades. It will be shown that flat plates approximation is good assumption to predict the
radiated power within 1.5 dB from an OGVs at the realistic mach number and frequency of
interest (ft/U < 0.2, where f is the frequency of interest, U is the mean velocity and ¢ is the
maximum thickness of OGV).

3.2 Scope of the chapter

This chapter provides a detailed numerical study into the influence of 2D aerofoil geometry
on the broadband noise due to the interaction between a cascade of 2D aerofoils and a 2D
homogeneous isotropic turbulent flow. The study is restricted to two dimensions to main-
tain the efficiency of computation. All variations studied here are restricted to changes in
2D geometry, such as aerofoil thickness, nose radius, camber etc, and are therefore not af-
fected by velocity fluctuations in the span-wise direction. As shown by the Amiet flat plate
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FIGURE 3.1: Schematic description of various possible phenomena effects the
radiated downstream and upstream power

theory, for 2D geometries, 3D turbulence simply has the effect of introducing a spanwise cor-
relation along the span but the essential blade response response remains unchanged. The
approached described here is based on a decomposition of the turbulent flow into Fourier
components of unsteady velocity. The cascade response of each mode is considered in turn.

The chapter first introduces the basic formulation of the radiated noise from a cascade of 2D
aerofoils, developed by analogy with the flat plate cascade solution. The main difference
now is that the cascade response is predicted from CFD methods. The method is first used
to compute the radiated sound power from a cascade of flat plates and compared against the
LINSUB flat plate cascade solution. The chapter proceeds to investigate the effects of aerofoil
geometry on broadband noise radiation, such as thickness, nose radius on zero-cambered
aerofoils and camber. Flow incidence effects on broadband noise are also studied.

Figure 3.1 shows the schematic description of various possible phenomena which influence
the radiated upstream and downstream power. The main difference between cascade mod-
els and isolated aerofoil models is, in former case the interference effect between neighbor-
ing blades can significantly alter the unsteady response which results in radiated power.
The cascade response function captures the occurrence of acoustic modes in the inter-blade
space as these modes are coupled with propagation and radiate upstream and downstream
of the cascade. The geometry effects such as camber plays a important role in determining
the cut-on condition whether the wave will propagate or decay. Due to a change in inlet and
outlet flow conditions, upstream and downstream propagated wave characteristics vary.
The aerofoil thickness plays a role in radiated power, this can be due to change in unsteady
response due to thickness and also due to changes in it’s coupling with mode propagating
due to reduction in the gap-wise distance between adjacent blades. The nose geometry and
flow incidence effect might effect the flow around the leading edge which might results in
flow separation at the leading edge of the aerofoil. The influence of all these parameters on
radiated power is studied in the present chapter.
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3.3 Fourier description of the radiated sound power from 2D aero-
foil cascades

We start with developing the basic equations for predicting the spectrum of acoustic power
due to a two-dimensional cascade of aerofoils following the Fourier approach of Cheong
et al. (2006).

A two-dimensional cascade of aerofoils with leading and trailing edge angles 0. and 07g
are situated in a two-dimensional uniform mean flow with an incoming flow angle ¢ as
shown in figure 3.2.

Consider a single incoming harmonic vortical gust impinging onto the cascade of aerofoils
with velocity component u; normal to the flow direction of the form, impinging onto the
cascade of aerofoils,

UQ(yh Y2, t) = U26 ikryr—wtthzys) (31)

The acoustic pressure propagating upstream and downstream of the aerofoil cascade due
to the single vortical mode can be expressed as the sum of a number of scattered acoustic
modes. In this chapter we define a non-dimensional pressure amplitude R that is consis-
tent with the amplitude definition for a aerofoil cascade. The upstream and downstream
acoustic pressure can therefore be written in the same form as for a flat plate cascade,

P (w1, w2,1) = pUug Y RfehUIFarmtie) (3:2)

r=—00

where u5 is the unsteady velocity amplitude at the blade leading edge normal to the flow
direction and «, and f3, are the axial and circumferential acoustic wave numbers of the "
acoustic wave The non-dimensional amplitudes R;" are readily calculated for a flat plate
cascade using, for example, the co-location method developed by Smith and Whitehead
or the Wiener-Hopf solution developed by Glegg (1998, 1999). However, for a cascade of
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realistic aerofoils, the blade response is a complex function of blade geometry and angle of
attack and must generally be computed using CFD methods.

Substituting the form of the acoustic pressure of Eq. 3.2 into the Euler equation yields an
expression for the axial acoustic wavenumber «, given by

L Mi(w/a— M) +\/(w/a— MyB,)* — (1 — MP)B?

ar = .y (3.3)
which defines a cuton condition for the I'* acoustic mode give by,
(w/a = Maf)* > (1= MP)5F (34)

where to ensure periodicity of the acoustic solution over the cascade we must have 3; = I/R,
where [ is the index of acoustic mode ’'l’, R is the mean radius of annulus. The lower and
upper limits corresponding to the range of propagating acoustic modes is therefore given
by Lmin and Ly,.,. Note that the range of propagating modes is different upstream and
downstream due to the change in swirling Mach number.

In the case of 2D turbulent flow, at a single frequency, we consider a spectrum of vortical
modes. For simplicity we consider an idealised 2D isotropic homogeneous turbulent flow
that is assumed to be frozen and convecting with a mean velocity of U. The 2D wavenum-
ber spectrum for the unsteady velocity component normal to the flow direction can be ex-
pressed in terms of its mean square value w? and turbulence integral length scale A. In
terms of wavenumber components (k1,k2) oriented in the flow-fixed reference frame, the
wavenumber spectrum is of the form:

By (b, ) = / Doy, K, )l (3.5)
where . ) )
2w2A ki +k
P (K1, ko, k3) = L - 72 3.6
( 1, 2, 3) 7_[_2 (1 + (k% +k% + kg)AS)B’ ( )
where for frozen turbulence, we can write
k‘l = w/U. (37)

In the current CFD method, vortical modes are introduced at the inlet plane in the form of
Unpet(T2k20=w1) Where ko, is the transverse vortical wavenumber, which can be expressed in
terms of a modal index m to ensure periodicity of the form

koy = m/R (3.8)

We now use the streamwise wavenumber k1 = w/U and the transverse vortical wavenum-
ber k9, = m/R to determine the vortical wavenumbers in the flow-normal direction ks
and the duct axial direction k;,, the latter being necessary to deduce the streamwise veloc-
ity component u, that is consistent with the normal component uy, in the divergence-free
sense. Here, R is the mean radius of the cascade.
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For a frozen gust, w = kiU = k.U, where (k) = [k1y, k2,] and (U) = [Uy, Uz]. Resolving k;
into its component k1, and k»,, leads to the following expression for the vortical wavenum-
ber in the duct-axis direction k1,

K1y = (w/a — Makay) /M, (3.9)

The axial velocity amplitude u;, necessary in the CFD computation, may be obtained from
the transverse component us, be requiring that the velocity input into the computational
domain is divergence free, k.u = 0 and hence does not generate pressure by itself. This
condition gives,

Uly = UZUZU (3.10)

The vortical wavenumber k; necessary in Eq. 3.5 for the turbulence wavenumber spec-
tra may be deduced from the transverse vortical wavenumber k3, by noting k> cos(6) +
kq sin(f) = ko, and hence,

ko = kay/ cos(6) — k1 tan(0) (3.11)

Finally, the velocity amplitude us, in the duct transverse direction which forms the ampli-
tude of the m!" vortical mode can be computed from

Up = Uy cos(6) — uiy sin(f) (3.12)

where uy is the rms fluctuating velocity normal to the flow direction which can be deduced
from Eq. 3.5. The vortical wave definitions (u1,,u2,) in (z1,22) direction are imposed on the
inlet boundary to solved for unsteady flow field.

To complete the analysis we note that the acoustic mode of order [ is due to scattering of the
vortical mode of order m and we can therefore write

l=m+ Br (3.13)

where B is number of blades and r is the scattering index.

In the CFD computations presented below, the radiated sound power is computed from the
sum of contributions from an infinite number of incoming vortical modes m whose ampli-
tude is determined from Eq. 3.12, where each mode is then, scattered into an infinite number
of acoustic modes |,

The total radiated sound power due to a cascade of realistic aerofoils can therefore be written
as sum of all cut-on acoustic modes as:

Ilmaz 00

Prw)= Y Prw)= > > Pnw (3.14)

1=lmin M=—00 r=—00

where Pfgw is the radiated upstream and downstream power for an acoustic mode of | =
m + Br. The total radiated upstream and downstream sound power can be deduced by
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computing the axial intensity over the duct cross section. In a duct with mean flow velocity
vector U is given by

Pror(w) = % /S Re { (0,1 (@) + ptiy (). U)" (1 () + Pl (W)U / p?) -ndS} (3.15)

where u is the acoustic particle velocity vector due to the m!" vortical mode of scattering
order r and n is the unit vector normal along the axial direction.

The single vortical mode response due to a cascade of aerofoil is calculated using the lin-
earized Navier-Stokes solver. At a specific frequency w and a fixed vortical mode m and
scattering index r the modal components of the acoustic pressure p and particle velocity u
are extracted for both upstream and downstream acoustic waves at upstream and down-
stream locations by the use of an eigenmode breakdown of the unsteady flow in the duct.

The total acoustic power radiated by the cascade can be computed from Eq. 3.14, where in
practice the summation over m is taken to ensure convergence of the power solution and
the limits on the scattering r are restricted to the values for which the acoustics propagate.
In practice, at low frequencies, only a few vortical modes and scattering indices are required
to capture all propagating acoustic modes. In this two dimensional problem, the number
of propagating acoustics modes is proportional to frequency. In the current formulation the
blade response function must be computed for all combinations of vortical mode order m
and scattering index r, leading to a potentially computationally intensive calculation.

In the case of a flat plate cascade, however, the blade response R;" is only a function of the
inter-blade phase angle 2mm /B and is therefore periodic in m with period B. This peri-
odicity problem was exploited by Cheong et al. (2006) to reverse the orders of summation
in m and r and hence substantially improve the computational effort needed in the noise
calculation to give,

o0

2 wRe{—acr + My(w + Uit + Ua3,)}
| w+ Urai + Usf, |2
(3.16)

Pi(w) = Z (I)ww(thZ) Z ‘ R}(Kl,kg)

r=—00

where k; is the wave-number in y, direction expressed in vortical mode number ‘m’” in
circumferential (gap-wise) direction.

One of the objectives of this chapter is to determine whether the same periodicity assump-
tion can be made for realistic aerofoil geometries at realistic mach number and frequency of
interest.

We start with an attempt to validate the CFD prediction method by computing the upstream
and downstream radiated sound powers for a cascade of flat plate aerofoils. The results are
compared against Eq. 3.15 with the blade response function R,j,EL’T computed using the code
LINSUB developed by Whitehead (1987) and Smith (1972).

3.4 Numerical Procedure

The 3D viscous CFD solver used in the present study is the Rolls-Royce plc code, HYDRA.
HYDRA is a suite of non-linear and linear unsteady solvers which uses efficient second-
order edge-based discretisation on unstructured hybrid grid (Moinier (1999); Campobasso
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and Giles (2003)). A 5 step Runge-Kutta algorithm, with an element collapsing multi-grid
accelerator algorithm is used iteratively to converge to a steady state solution. Domain
decomposition is used to run the solver in parallel on both shared and distributed memory
machines.

3.4.1 Steady flow simulations

The accurate prediction of the mean flow around the aerofoil is highly crucial to capture the
gust distortion due to mean flow gradients around the stagnation region of the aerofoil. In
the present study the Reynolds Averaged Navier-stokes (RANS) solver as part of HYDRA is
used to obtain the mean flow around the aerofoil geometry. The Spalart-Allmaras turbulence
model is used. The limitation of the present scheme is its limited accuracy for separated
flows.

3.4.2 Linear unsteady CFD simulations

The linear unsteady CFD HYDRA module is based on a full linearisation of the Navier-
Stokes equation. The unsteady problem is solved in the frequency domain for the complex
flow amplitudes, ¢(x). A pseudo-time derivative is introduced into the linear equation to
enable the same numerical methods adopted for the non-linear CFD code to be used to
converge the linear unsteady solution.

qz,t) = q(x) + 4(x)e™" (3.17)

Non-reflecting boundary conditions based on an eigen-mode analysis of the unsteady flow
tield are applied at the inflow /outflow boundaries in order to minimize spurious reflections
from the boundary (Moinier and Giles (2005); Moinier et al. (2007)). Further details about
the solver and the process are described in Appendix C.

3.4.3 Post-processing for upstream and downstream noise

The acoustic data obtained from the unsteady CFD solution is extracted using a wave-
spitting technique Giacche et al. (2011). Based on the incoming transverse mode numbers,
the scattered acoustic cut-on modes are calculated and the upstream and downstream power
Pnfﬂq(w) calculated from equation 3.15.

3.5 Validation on Flat Plate annular cascade

3.5.1 Setup

By way of validation the numerical approach outlined above is implemented to predict
the noise due to a single vortical mode of arbitrary order m = 40 impinging upon a non-
staggered flat plate 2D cascade with s/cy = 0.7, M = 0.484 and reduced frequency fcy/U =
1.88. The predictions are compared against the 2D solution obtained using the co-location
method developed by Whitehead (1987) and Smith (1972) and implemented in the LINSUB
code. Figure 3.3 shows the computational domain. The mesh is uniformly spaced except
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FIGURE 3.3: Flat Plate Grid details showing the grid refinement at leading and
trailing edge (Boundary conditions: 1-subsonic inflow; 2-subsonic outflow;
3,4-Inviscid walls; 5,6-Periodic boundary)

at the leading and trailing edges of the flat plate. At the reduced frequency of 1.88 used
in this validation test, 70 points per wavelength a/f and 140 points close to trailing and
leading edges are used. The mesh is sufficiently fine to ensure a converged solution of all
cut-on acoustic modes. The grid convergence study has been demonstrated in Appendix C.
A quantitative mesh refinement study has been carried out to quantify the errors due to
dissipation and dispersion.

The simulations assume a mean flow speed of (M = 0.48) which is initiated uniformly across
the passage. The cascade is simulated by introducing flat plates either size of the passage as
shown in figure 3.3 and imposing a periodic boundary condition on surfaces 5 & 6. Other
boundary definitions are shown in figure 3.3. The vortical wave mode is imposed at the inlet
boundary of the domain with unit velocity amplitude. As LINSUB is an inviscid theory, all
surfaces in the domain are described by an inviscid wall boundary condition.

By way of further validation, a second flat plate case was studied with stagger angle in
which similar grid definitions are used. The grid is skewed relative to the direction of prop-
agation and due to skewness a small amount of dissipation is introduced as it depends on
the alignment of the grid and the wave propagation.

3.5.2 Results
Single incoming mode validation

Figure 3.4a and b shows the results of the instantaneous axial velocity and unsteady pressure
respectively. The presence of modes within the cascade are clearly seen. From Eq. 3.13, for
a incoming mode m = 40, the inter blade phase angle is 27 x 40/44. The angular frequency
of the simulation was set at w = 30000 rad/s, which is below the frequency of 40000 rad/s
at which the first cascade mode cuts on. Figure 3.4a shows that in this example of zero
stagger angle the vortical mode passes through the cascade with apparently little effect on
particle velocity. The pressure variation in Figure 3.4b however shows evidence of modal
behaviour within the cascade, which does not appear to be effectively transmitted into the
‘duct’. According to the scattering rule of Eq. 3.13 the combination of m and B gives rise
to acoustic mode, | = —4 propagating upstream and downstream in the duct. This mode is
clearly seen in figure 3.4b which is of lower order that varies slowly over the a single cascade
passage.

Further validation of the prediction method is provided in figure 3.5a and b which shows
a comparison between the CFD and LINSUB predictions of the upstream and downstream
acoustic pressure amplitudes versus frequency fcy/U between 0.25 to 2 for a fixed incoming
transverse mode number m = 40, of unit upwash ug, = 1 and a mean flow Mach number
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FIGURE 3.4: Unsteady Contours on zero-staggered Flat plate for incoming
transverse mode m=40 at M = 0.48
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FIGURE 3.5: Flat plate numerical results validated against LINSUB

of 0.484. Results are shown for zero-stagger angle and a 40° stagger case, where agreement
within a few percent is obtained over the frequency range. Grid alignment studies for the
stagger case are discussed in Appendix C.

Comparisons are now made between the CFD and LINSUB predicted pressure-difference
amplitudes across the flat plates for a transverse mode number m = 40 at angular frequency
w = 30000rad/s, M = 0.484 and stagger angle of 0. The variation in pressure difference
across the chord is plotted in figure 3.6a and a plot of the same data zoomed in around the
leading edge shown figure 3.6b. Again, agreement is better than a few percent across the
entire chord, particularly near the leading edge where the response is greatest.

Multiple incoming modes at fixed frequency

The comparison between the CFD sound power predictions obtained from Eq. 3.15 and
the LINSUB sound power predictions obtained from Eq. 3.16 are now extended to a 2D
homogeneous turbulent flow with upwash velocity wavenumber spectra derived from Egs.
5-11 for a turbulence intensity of 2.5% and an integral length scale of A = 0.007 for a zero-
stagger flat plate cascade. The predictions are obtained at a fixed angular frequency of w =
30000 rad/s and incoming transverse mode numbers m between 0 and 44. For mode orders
greater than 44 the cascade response for a flat plate is predicted to be periodic, as verified
in a later section. Figure 3.7 shows the comparison of sound power due to each incoming
mode m obtained by summing the sound powers P;: . over all scattered acoustic modes r.
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FIGURE 3.6: Comparison of unsteady pressure jump against LINSUB for in-
coming transverse mode m = 40 at M = 0.48 and reduced frequency fc,/U =
2.4

The HYDRA and LINSUB predictions are seen to be within 0.5dB. The largest discrepancy
between the two predictions is observed at m=11 and 33 whose scattered acoustic modes
have a cuton frequency very close to the excitation frequency of w = 30000 rad/s. Note that
there is no radiated power upstream and downstream for m=0 and 44 in this zero stagger
angle case. This is because for these mode orders the phase difference between the blades
are integral multiples of 27 and hence adjacent blades are excited in phase but the upper and
lower surface radiated out of phase leading to zero far field radiation. The reason for the
small discrepancy of up to 0.5dB between the LINSUB and HYDRA predictions in figure 3.7
is currently unknown but may be related to the effectiveness of the non-reflective boundary
condition and numerical issues relating to convergence of the solution at the frequencies for
which there are acoustical modes close to cut-on.

Validation of periodicity

Previous work presented by Cheong et al. (2006) has shown how the broadband noise cal-
culation for a flat plate cascade may be made more efficient than Eq. 3.16 by exploiting the
periodicity in the blade response function R;" since it is only a function of inter-blade phase
angle in addition to s/cy, stagger angle, Mach number and reduced frequency wcy/U. We
now confirm this periodicity property in the CFD solution.

Figure 3.8 shows the radiated power P,% versus m — rB, for the two values of the r = 0 and
1. As expected, the two spectra for r = 0 and 1 overlap extremely well thereby validating
this useful periodicity property predicted by flat plate theory. The validity of this property
for a typical OGV aerofoil will be investigated in section 3.6.3.

Broadband Validation

Finally, we conclude this validation phase by comparing broadband sound power spec-
tra obtained from CFD and summing over sufficient numbers of vortical modes to ensure
convergence (=132 in this case) with the efficient solution developed by Cheong with pe-
riodicity assumed (Eq. 25 in Cheong et al. (2006)). The CFD spectra plotted in Figure 3.9
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FIGURE 3.9: Overall radiated power across various frequencies at incoming
turbulence intensity, 7'/ = 2.5%, and integral length scale A = 7Tmm

are limited to ten discrete frequencies over the frequency range w range of 5000 to 40000
and compared to the LINSUB solution with a much finer frequency resolution is around
1dB. This difference is due to numerical issues relating to convergence of solution at the
frequencies for which there are acoustical modes close to cut-on.

The numerical CFD approach described above and validated for a flat plate cascade is now
used to investigate the effect on broadband noise due to changes in aerofoil geometry such
as blade thickness, nose radius, camber and attack angle.

3.6 Realistic aerofoils

3.6.1 Mesh topology

We now consider a cascade of 2D zero-stagger symmetric aerofoils of 5% thickness relative
to the chord. The location of maximum thickness is at the aerofoil mid-chord.

The mesh generation is performed using the Rolls-Royce in-house software PADRAM (Shah-
par and Lapwroth (2003)). An H-O-H mesh topology is used to grid a single OGV passage
with the cascade effect simulated by imposing a periodic boundary condition at the upper
and lower walls (4 and 5), as shown in Figure 3.10. Also shown are the inlet and outlet
boundaries (1 and 2) and the viscous wall boundary (3) on the aerofoil surface. The mesh
uses a structured multi-block arrangement with a O-mesh of quadrilaterals cells around the
OGYV surface and H-meshes above and below the O-mesh and in the inlet and outlet flow
region. The mesh density is taken to be sufficiently fine such that the HYDLIN code cap-
tures all the propagating cut-on acoustic modes. A total of 31472 nodes are considered for
this grid and this is reasonable good for lower transverse mode numbers as the number of
nodes in transverse direction are 80. The boundary condition on respective surfaces are also
described in the same figure. Similar mesh topology is used for staggered configuration.
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FIGURE 3.10: OGV Grid details showing the grid refinement at leading and

trailing edge (Boundary conditions: 1-subsonic inflow; 2-subsonic outflow;
3-Viscous wall; 4,5-Periodic boundary)
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FIGURE 3.11: RANS on cambered OGV configuration

3.6.2 Typical Mean Flow

Subsonic inlet and outlet conditions are imposed on the inlet and outlet boundary surfaces of
the domain. The mean flow Mach number is set at 0.484 and the Spalart-Allmaras turbulence
model is used.

Figure 3.11 shows the steady mean flow velocity in stream-wise direction for cambered OGV
configuration. One can see the presence of stagnation region close to leading edge in fig-
ure 3.11b.

3.6.3 Zero-cambered aerofoil

In this non flat plate case the mean flow was computed using the RANS solver within
HYDRA. HYDLIN is then used to perform the linear unsteady aerofoil response calcula-
tions by superposing an incoming vortical wave on the mean flow solution. The transverse
wavenumber deduced from m and the amplitude u;, and ug, is specified on the inlet bound-
ary for each vortical mode. There is no swirl component in the zero-stagger case under
consideration here.
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Comparison with Flat plate LINSUB solution

In an attempt to quantify the effects of blade geometry and now viscous mean flow on
broadband noise, HYDRA was used to compute the sound power spectrum versus m for a
zero-cambered aerofoil and a flat plate cascade. The results are compared against the flat
plate analytical solution, LINSUB. The calculations were performed at a fixed frequency
w = 300007rad/s for a range of incoming transverse mode numbers between 0 and 44. The
comparison between upstream and downstream mode power spectra PZ: is plotted in Fig-
ure 3.12.

The total radiated upstream and downstream sound power predicted for the aerofoil cas-
cade with viscous mean flow (CFD-based) are compared against LINSUB solution in Fig-
ure 3.12 and the differences of up to 2dB are observed. These differences arise from the
combined effects of viscosity, which affects flow separation and boundary layer effects in
the vicinity of the leading edge, and the effects of blade geometry. We investigate these two
effects separately to attempt to quantify their relative importance to broadband noise.

Influence of viscous mean flow on aerofoil noise generation

In this section the influence of viscous mean flow on noise generation are studied for the
case of the aerofoil cascade. Figure 3.13a shows the comparison of the radiated upstream
and downstream sound power with incoming transverse mode numbers between 0 and 44
for the aerofoil cascade predictions with viscosity included and when the flow is assumed to
be inviscid. The effects of viscous mean flow on the predicted sound power mode spectrum
for the aerofoil, are significantly less than for the flat plate. Differences between the two
solutions are within 0.5dB. However, larger differences are observed for upstream propa-
gating modes generated by m = 11, that scatter acoustic modes with cut-on frequency close
to the excitation frequency and for the higher order modes modes m > 33.
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FIGURE 3.14: Axial mean velocity around the leading edge of the aerofoil

One explanation for this finding is shown in figure 3.13b which depicts the variation in
surface pressure amplitude across the aerofoil with and without viscosity. The increase in
sound power associated with the viscous solution is consistent with the small increase in
the magnitude in the unsteady pressure amplitude over the surface, plotted in figure 3.13b,
in which the suction side response is plotted for positive z/c, and the pressure side for
negative =/c,. In this figure, the effects of viscosity can be seen to have the dual effects
of reducing the response exactly at the leading edge and also to broaden the response to
further downstream due to mild flow separation, as shown in the mean flow axial velocity
contours in figure 3.14. The combined effect from these two changes is a small increase in
the integrated unsteady lift, leading to a small increase in radiated sound power.

However, we introduce a note of caution since at the present time it is unclear whether the
differences of 0.5dB are within the accuracy of the numerical approach. In the case of the
aerofoil there remains some uncertainties surrounding the convergence of the inviscid mean
flow solution.
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Modal convergence

In the Fourier approach outlined in section 3.3 the total radiated sound power is obtained
by summing the contribution from all vortical modes. In this section we investigate whether
the periodicity property observed for a flat plate cascade in which the response function R;"
is periodic in m with period B is also valid for realistic aerofoils. This property will allow
the contribution from all modes to be summed to infinity from only the response function
computed for mode orders m between 0 and B (Cheong et al. (2006)).

To test this periodicity property the sound power due to each vortical mode m was com-
puted for a range of vortical mode numbers between 0 to 132, corresponding to an upper
limit of m = 3B, for the aerofoil cascade at zero-stagger angle (i.e., no swirl). For higher
mode numbers, the mesh size in the transverse direction is further decreased to reduce er-
rors due to dissipation and dispersion. Figure 3.15a is a plot of the sound power mode spec-
trum for the 2D isotropic turbulence velocity spectrum of Eq. 3.5 for a turbulence intensity
of 2.5% and an integral length scale of 7 mm.

The data plotted in figure 3.15a is plotted again in figure 3.15b but now normalised to the
velocity spectrum so that now only the blade response is being shown. The three periods
m=1:B,m=DB+1:2Band m = 2B 4+ 1 : 3B and overlayed to test in detail the
periodicity property.

The modal power spectrum in figure 3.15b is observed to be periodic to within the accuracy
of the CFD solution except for the modes m = 11 whose acoustic modes are close to cut-
on and for the higher order modes and m > 33 when the transverse wavelength becomes
comparable with the aerofoil thickness. For m > 120, the phase difference across the aerofoil
thickness mt/R > 1, where R and t are the duct radius and aerofoil thickness, which results
in deviation from periodicity.

Figure 3.15b shows that the influence of aerofoil geometry on the mode spectrum is only
significant for the for higher order transverse modes. However, their velocity contribution to
the overall turbulence velocity is relatively small, as specified by the wavenumber spectrum
of Eq. 3.5. Their contribution to the total sound power is therefore negligible in this case.

The cumulative total radiated upstream and downstream sound power obtained by sum-
ming all modes from m = 0 to m = Mynee, With m = My, varying from 0 to 220 with peri-
odicity assumed is plotted in figure 3.16. Also shown in this figure as 's" at m = myp,q; = 132
is the sound power prediction obtained by summing the power due to all modes from 0 to
132 without the assumption of periodicity. The predictions are almost identical thereby val-
idating the periodicity approximation for the case of thin aerofoils. This test has also been
undertaken for staggered, cambered and thicker aerofoils and shown to be equally valid.
From hereon, therefore, all predictions will be made based on the assumption of a periodic
cascade response function.

Having verified the periodicity assumption we are now able to compare in Table 3.1 pre-
dictions at a single frequency w = 30000 rad/s the total sound power radiation between a
flat plate and an aerofoil with and without viscosity effects included. As seen previously
viscous effects are seen to be significant for the aerofoil cascade due to change in mean flow
around the leading edge of the aerofoil. In view of the significance of viscosity effects for
aerofoils, all predictions presented from here on will include viscosity.
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aerofoil Upstream Power | Downstream Power

(t/co, %) (dB) (dB)
aerofoil (Viscous) 91.7 99.94
aerofoil (Inviscid) 91.8 99.61

TABLE 3.1: Influence of viscous effects
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FIGURE 3.17: Influence of aerofoil thickness at a fixed frequency w =
30000 rad/s, TI = 2.5%, A = Tmm

Influence of aerofoil thickness on interaction noise

Effect of aerofoil thickness on zero-staggered aerofoil

In this section an investigation into the influence of aerofoil thickness on broadband noise
radiation at a fixed frequency w = 30000 rad/s (3rd BFP at Approach conditions). This fre-
quency is chosen to correspond to the upper frequency limit of interest at which changes
in noise due to geometry (Thickness and nose radius) are greatest in the desired frequency
range. Six sound power spectra are presented in figure 3.17a illustrating the effects on noise
due to variations in aerofoil thickness between 1% to 10%. Variations in modal power are
observed of up to 3dB are observed for some modes, particularly for those generating acous-
tic modes close to cut-on. However, when summed over all modes (assuming periodicity),
as shown in figure 3.17b showing the cumulative sum, the overall sound power variation
due to thickness is negligible at this relatively high frequency. The cumulative sum of the
downstream and upstream powers for different thickness aerofoils are as summarised in
Table 3.2. The variation of the total power is observed to be less than 1dB. Thus, single vor-
tical modes are significantly affected by blade thickness effects but when summed across
all modes representative of turbulence excitation, the blade response is negligible. Precisely
this finding was obtained by Evers and Peake (2002) in an analytic study of blade geometry
effects on noise.
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aerofoil thickness | Upstream Power | Downstream Power
(t/co, %) (dB) (dB)
LINSUB 91.05 99.82
1% 91.20 99.88
2% 91.46 99.91
3% 91.50 99.90
5% 91.78 99.94
7% 91.67 99.75
10% 91.45 99.72

TABLE 3.2: Radiated sound power levels for different thickness aerofoils at a
fixed frequency w = 30000 rad/s, TI = 2.5%, A = Tmm

This observation is consistent with the experimental finding on isolated aerofoils as ob-
served in Chapter 2 of the thesis. The aerofoils geometry effects on turbulence-aerofoil inter-
action noise are only significant (noticeable) in the high frequency range corresponding to
ft/U > 0.3. For the aerofoil thicknesses to chord ratio 10%, Mach number M = 0.484, and
frequency w = 30000 rad/s presented in the present study on cascades, the non-dimensional
frequency ft/U is ~ 0.18, which is appreciable lower than the threshold value of 0.3 for
which thickness effects become significant. Thus, in the frequency of interest < 3BPF at
approach speeds, influence of aerofoil geometry effects on turbulence-cascade interaction
noise is negligible. Even though overall broadband noise is unaffected by changes in aero-
foil thickness, the effects are significant on the each individual modes. Clearly, this has
significance for tonal noise where, in general, far fewer modes are excited by the periodic
mean wake profile. We now demonstrate the effect of aerofoil thickness at each individual
mode is due to the combined effects of a variation in blade surface pressure response and
differences in propagation of sound in between adjacent blades which might be attributed
to reduction in effective pitch with the increase of aerofoil thickness.

We now investigate the effect of thickness on the surface pressure response. Figure 3.18
shows the surface pressure variation for three aerofoil thicknesses. Note that the nose radius
is kept constant in this study. The effect of increasing thickness can be seen to have the
combined effect of reducing the peak response close to the leading edge and to broaden the
response to further downstream. This effect on surface pressure can be attributable to flow
acceleration associated with flow separation which is clearly seen in the axial flow contours
plotted in figure 3.19 for the 2% thickness aerofoil. By contrast the mean flow around the
leading edge of the 10% thickness aerofoil is well behaved and fully attached. The change
in flow around the leading edge is due to the change in the leading edge wedge angle.
Clearly, therefore, the flow and noise is sensitive to the local leading edge geometry which
is influenced by both leading edge radius and position of maximum thickness. The second
effect of varying aerofoil thickness is to reduce the effective pitch between adjacent blades
and hence affect the propagation of cascade waves.
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FIGURE 3.19: Axial mean velocity around the leading edge of the aerofoil

Effect of aerofoil thickness on staggered aerofoil
Finally, we investigate the effects of thickness on noise on a staggered aerofoil of stagger

angle 34.19° with zero camber. Figure 3.20 shows the modal sound power spectrum for
aerofoils of varying thickness between 2, 5 and 10%. In this non-zero stagger angle case
power spectrum is no longer symmetric about m = B/2. It is also weakly affected by vari-
ations in blade thickness with differences of less than 0.5dB. A notable exception is the up-
stream higher order modes m > 25 where deviations of up to 5dB are observed to thickness
variations. The reasons for this need to be explored.

However, as in most other cases discussed above, differences in overall upstream and down-
stream sound power radiation are negligible, as summarized in Table 3.3. Also tabulated is
the power prediction obtained using LINSUB and for the case of zero thickness obtained
using HYDRA. Variations in all cases is within 1dB.
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aerofoil thickness | Upstream Power | Downstream Power
(t/co, %) (dB) (dB)
LINSUB 94.09 101.60
Flat plate 94.48 102.18
2% 94.27 102.03
5% 95.08 102.34
10% 95.43 101.95

TABLE 3.3: Radiated sound power levels for different thickness aerofoils with
staggered angle 34.19° at a fixed frequency w = 30000 rad/s, TI = 2.5%, A =
mm

Effect of aerofoil nose radius

We now examine the effect of nose radius on broadband noise radiation. In this study aero-
foil thickness is held constant at 5% whilst doubling the nose radius. The mode sound power
spectra for the baseline aerofoil and the aerofoil with twice the original nose radius is shown
in figure 3.21a. In these two cases the mean flow contours are nearly identical with evidence
of mild separation close to the leading edge. The difference in power across all modes is
negligible with the greatest effect occurring for the highest order modes which contribute
least overall turbulence velocity. The overall change in sound power is therefore negligible.

Similarly, for the case of 2% aerofoil, we observed an slight increase in mode sound power
for the case of sharp nose than compared to baseline nose radius as shown in figure 3.21b.
Here the extreme cases of nose radius are consider to show the influence of nose radius on
radiated noise. The total radiated power due to these changes is less than 0.1 dB which is
almost negligible at the highest frequency of interest (w = 30000) as tabulated in table 3.4.
Axial mean flow contours around 2% sharp aerofoil are plotted in figure 3.22b. Due to
reduction in nose radius, the flow is lesser prone to separation than compared to blunt 2%
aerofoil as observed in figure 3.22a. The purpose of this study is to conclude about the
geometric effects such as thickness and nose radius on turbulence-cascade interaction noise
is minimum for lower ft/U (where turbulence-cascade noise is dominant).
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aerofoil thickness Nose profile Upstream Power | Downstream Power
(t/co, %) (dB) (dB)
2% Baseline 91.46 99.91
2% Sharp 91.36 99.90
5% Baseline 91.78 99.94
5% Twice nose radius 91.84 99.91

TABLE 3.4: Influence of aerofoil nose radius on radiated noise

W
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FIGURE 3.23: Schematic of cambered aerofoil geometries (a) No camber (b)
Half camber (c) Full camber

3.6.4 Cambered aerofoils

The setup of the cambered aerofoil in HYDRA is similar to zero-cambered aerofoil as dis-
cussed in section 3.6.1.

Influence of aerofoil camber on interaction noise

A parametric study has been undertaken aimed at investigating the influence of camber
on turbulence-aerofoil interaction noise in a cascade. One motivation for this study is to
assess the accuracy of flat plate cascade solutions, such as LINSUB, which of course do not
include camber effects. Three different camber profiles having the same leading edge angle
are investigated in the current section to preserve the attack angle. In all three cases, the
inlet Mach number and flow angle is held constant. The different camber profiles under
investigation are shown in figure 3.23. Figure 3.24 shows the upstream and downstream
mode power spectra for the three different cambered aerofoils.

Unlike the effects of thickness, camber is observed to have a relatively large effect on the
mode power spectrum. One particular difference is observed for mode m = 24 since it
excites an acoustic mode I = 24 that is now cutoff when there is no camber and the swirl
velocity is identical to that at the inlet. However, by removing some components of the swirl
by the use of partial or full camber, this modes is now cut-on and cutoff modes now occur
for modes m =28 and 31.

This effect is quantified in Table 3.5, which lists the flow speeds and flow angles and cutoff
modes for each scattering index » = 0 and » = —1 for the three cases under consideration.



3.6. Realistic aerofoils 63

85 - ; ; ; 80
30 75
8 g7
Z 75 Z
+ E =
A~ A~ 65
o 70 o
3 — Full Camber Z — Full Camber
~ —— Half camber & 605 | Half camber
65 —— No camber —— No camber
0> 55
60 50
0 10 20 30 40 0 10 20 30 40
Transverse mode number, m Transverse mode number, m
(a) Downstream (b) Upstream
FIGURE 3.24: Radiated power versus incoming mode m for varying camber
angle at fixed flow angle of 34.19°, w = 30000 rad/s, TI = 2.5%, A = Tmm
90 90
80 80
70 _ 70
=) 2
= 60 Z 60 —— Full Camber
iDO L 50 —— Half camber
+ 8 + £ —— No camber
40 P40
o o
£ 30 —Full Camber Z 30
[ —— Half camber (==
20 ——No camber 20
10 10
0 0
0 10 20 30 40 0 10 20 30 40 50
Transverse mode number, m Transverse mode number, m
(a) scattering index, r=0 (b) scattering index, r=-1

FIGURE 3.25: Radiated downstream power versus incoming mode m for
varying camber angle at fixed flow angle of 34.19°, w = 30000rad/s, T1 =
2.5%, A = Tmm

This cutoff phenomenon associated with the effects of camber are also made clear in the

downstream mode power spectral plots in figures 3.25a and b for » = 0 and » = —1 respec-
tively.

The sound power mode spectral plots shown in figures 3.25a and b for the downstream
sound powers for r = 0 and r = —1 is plotted in figures 3.26a and b for upstream sound
power. In figures 3.26a only modes m < 24 excite propagating acoustic modes. There
appears a large sensitivity to camber for these range of modes but negligible effect for the
cutoff modes m > 24. In figures 3.26b, however, all modes are cut-on and therefore exhibit a
large sensitivity to the effects of camber. The reasons underlying this behaviour are not yet
perfectly understood.

The total radiated upstream and downstream power for a fixed frequency of w = 30000 rad/s
obtained by summing over all modes is tabulated in Table 3.6. Even though the mode spec-
tra are highly affected by camber the total power varies by less than 1dB for the three aerofoil
cases. The flat plate solution given by LINSUB, however, cannot incorporate camber effects



64

Chapter 3. Turbulence-Airfoil interaction noise in cascades

aerofoil Exit Mach | Exit Flow | Axial Mach | Transverse Mach | Cut-off ‘'m’ | Cut-off 'm’
number (M) | angle (°) | number M; number Mo (r=0) (r=-1)
No camber 0.496 35.56 0.403 0.288 24 0
Half camber 0.404 17.82 0.385 0.124 28 9
Full camber 0.381 0.39 0.381 0 31 14

(dB)

m,r=0

Power, P_
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TABLE 3.5: Cut-off modes based on downstream Mach numbers at a fixed
frequency w = 30000 rad/s, T1 = 2.5%, A = Tmm
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camber angle at fixed flow angle of 34.19°, w = 30000 rad/s, TI = 2.5%, A =
Tmm

but nevertheless still remains within 1dB of the CFD solutions.

aerofoil Upstream Power | Downstream Power
(dB) (dB)
LINSUB 94.09 101.60
No camber 95.08 102.34
Half camber 93.65 101.02
Full camber 95.23 100.94

TABLE 3.6: Radiated sound power levels for different camber aerofoils at a
fixed flow angle of 34.19° by summing up first 44 modes at a fixed frequency
w =30000rad/s, TI = 2.5%, A = Tmm

50

Influence of aerofoil thickness on cambered aerofoil

In previous sections we observed that the effect of aerofoil thickness and nose radius on cas-
cade interaction noise is negligible for zero-cambered and zero stagger angle aerofoils. We
conclude this investigation into the effects of thickness by considering the effects of thick-

ness on realistic OGV-type cascades that include stagger angle and realistic camber.

Three different aerofoils of varying thickness of 2%, 5% and 10% are now considered for
an aerofoil cascade with leading edge angle of 34.19°, zero angle of attack and full camber
such that the exists a flow angle of zero, and a mean flow speed of M = 0.484. A schematic

representation of the different thicknesses on cambered aerofoils is shown in figure 3.27.
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FIGURE 3.28: Radiated power versus incoming mode m for varying thickness
for cambered aerofoils at fixed flow angle of 34.19°, w = 30000 rad/s, TI =
2.5%, A = Tmm

The mode sound power spectrum is plotted in figure 3.28 and the total radiated sound
power tabulated in Table 3.7. The sound power across all modes and when summed is
highest for the thinnest aerofoil of 2% by about 2dB. This difference cannot be explained by
thickness effects alone, as shown in figure 3.20. The reason for this increase here is due to
combined effects of aerofoil stagger and camber. It has been shown in table 3.3 the influence
of thickness on stagger aerofoil is within 1dB. However, the reason for this observation is
currently unknown.

aerofoil Upstream Power | Downstream Power
(t/co, %) (dB) (dB)
2% 96.18 101.34
5%(Roundnose) 95.05 100.95
10% 94.06 100.6

TABLE 3.7: Radiated power versus incoming mode m for varying thickness
for cambered aerofoils at fixed flow angle of 34.19°, w = 30000rad/s, TI =
2.5%, A = Tmm
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Broadband comparison for cambered aerofoil

The overall sound power spectrum versus frequency at 12 discrete frequencies in the fre-
quency range w = 5000 to 35,000 (roughly 0.5BPF and 3BPF) for the case investigated above
for the 5% and 10% thickness cases is plotted in Figure 3.29. Differences across all fre-
quencies are approximately less than 1dB for these relatively thick aerofoils but appears
to slightly increase as frequency increases. It therefore appears that the effects of thickness
found on isolated aerofoils also applies to realistic aerofoils in a cascade with ft/U being
the main controlling parameter. Figure 3.29 also shows the LINSUB comparison with the
staggered and cambered aerofoil and the difference of 1.5dB is observed. The reason for the
difference is attributed to camber effects as the LINSUB solution doesn’t account the aerofoil
geometry effects.

Influence of Flow incidence on interaction noise

Previous sections have suggested that the flow behaviour in the passage is a relatively im-
portant factor in determining broadband noise radiation. Especially, the effect of stagger
and camber plays a significant role in determining the radiated power. With the change
of flow incidence, the similar changes in the flow behaviour in the passage is observed.
We therefore conclude this chapter with a study into the effects of flow incidence angle on
turbulence-cascade interaction noise. The noise at a total of 6 different flow incidence angles
was computed on the same cambered aerofoil as above with 5% thickness. The upstream
and downstream sound power is plotted in figure 3.30. A shift in the mode power spectra is
observed which is fully consistent with the difference in the ratio of axial to swirl velocities
associated with the different incidence angles. The effects of incidence angles is therefore
two-fold. One is to alter the degree of flow separation close to the leading edge; the other
is to alter the modal cutoff frequencies in the duct, both upstream and downstream of the
cascade.

Finally, the total radiated power at w = 300007ad/s, frequency is plotted in figure 3.30b
against flow incidence angles for incoming turbulence with T/ = 2.5% and A = 7mm.
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Downstream sound power remains largely unaffected by the incidence angle while the up-
stream sound power appears to reduce with increasing incidence angles. This effect is linked
to the behaviour of the flow region around the leading edge and in the passage. More work
is needed to understanding this phenomenon more clearly. The idea of presenting these re-
sults is to show the capabilities of the present approach to predict the upstream and down-
stream radiated power for slightly separated flows.

3.7 Conclusions

This chapter presents a numerical approach to the prediction of the broadband noise due to
the interaction between 2D cascades with 2D turbulent flow. It is based on a Fourier syn-
thesis of the turbulence. The aerofoil response due to each mode is considered in turn. The
approach has been validated against the well-known flat plate solution, LINSUB. The nu-
merical approach was then used to show that the periodicity property in the blade response
for the flat plate cascade was also sufficiently accurate to be used to allow the modal powers
for a realistic aerofoil cascade to be summed infinity by only computing the blade response
for modes between 0 and B.

The effects of viscosity on the mean flow behaviour was found to be important in control-
ling flow separation and boundary layers close to the leading edge, which in turn has been
shown to affect broadband noise radiation (= 0.3 dB on aerofoil).

The general approach was used to study the effects of aerofoil thickness, stagger angle,
camber and flow incidence. The general conclusion is that these factors have a potentially
large effect on individual modes. However, when summed to compute overall broadband
noise, the differences were generally negligible.

It is shown that flat plates approximation is good assumption to predict the radiated power
within 1.5 dB. The major drawback of the flat plate model LINSUB is that it doesn’t account
the aerofoil camber effects which are slightly significant.

This chapter has shown geometry effects by themselves for realistic mean flow velocities
and frequencies do not significantly effect broadband noise, which is consistent with the
observation made for isolated aerofoils that ft/U is the dominant controlling factor. For



68 Chapter 3. Turbulence-Airfoil interaction noise in cascades

full-scale OGV’s at about 3BPFE, ft/U < 0.1 and therefore geometry effects are predicted
to be insignificant. However, some combination of blade geometry and incidence angles
have been shown to provide levels of flow separation that can have a detrimental effects on
broadband noise. More work is needed to examine these effects further and extend the ap-
proach to three dimensions. It was shown in literature, blade swipe effects on the broadband
interaction noise is minimum.

Hence, the way forward is usage of innovative leading edge geometries to reduce turbulence-
cascade interaction noise. A preliminary experimental test campaign has been performed
on realistic OGV geometries to demonstrate the broadband noise reductions with leading
edge serrations (See Appendix D.1).
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This chapter presents the results of a detailed experimental investigation into the effective-
ness of sinusoidal leading edge serrations on aerofoils for the reduction of noise generated
by the interaction with turbulent flow. A detailed parametric study is performed to investi-
gate the sensitivity of the noise reductions to the serration parameters, in particular the ser-
ration amplitude and wavelength. The study is primarily performed on flat plates in an ide-
alized turbulent flow, which we demonstrate captures the same behaviour as when identical
serrations are introduced onto 3D aerofoils. The influence on the noise reduction of the tur-
bulence integral length-scale is also studied. An optimum serration wavelength is identified
whereby maximum noise reductions are obtained, corresponding to when the transverse
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integral length-scale is roughly one-forth the serration wavelength. One of the most impor-
tant findings of this chapter is that, at the optimum serration wavelength, the sound power
radiation from the serrated aerofoil varies inversely proportional to the Strouhal number
Sty = fh/U, where f, h and U are frequency, serration amplitude and flow speed, respec-
tively. A simple model is proposed to explain this behaviour. Noise reductions are observed
to generally increase with increasing frequency until the frequency at which aerofoil self-
noise dominates the interaction noise. Leading edge serrations are also shown to reduce
trailing edge self-noise. The mechanism for this phenomenon is explored through PIV mea-
surements. Finally, the lift and drag of the serrated aerofoil were obtained through direct
measurement and compared against the straight edge baseline aerofoil. It is shown that
aerodynamic performance is not substantially degraded by the introduction of the leading
edge serrations on the aerofoil.

4.1 Introduction

Modern turbofan engines have increasingly high bypass ratios. Fan broadband noise has
therefore become a dominant noise source, particularly at approach conditions. One of the
major noise sources arises from the interaction between rotor wake turbulence and the lead-
ing edge of the downstream Outlet Guide Vanes (OGV’s). Recent flightpath 2050 targets
have been set aimed at reducing noise emissions by 65% by 2050. Wind turbines are an-
other important environmental noise source where the interaction of turbulence with the
aerofoil leading edge is believed to the dominant noise source at low frequencies in which
large-scale atmospheric turbulence interacts with the rotating blades.

The effects of aerofoil geometry on turbulence-aerofoil interaction noise has been studied
extensively (Gershfeld, 2004; Roger, 2010; Moriarty et al., 2005; Lysak et al., 2013; Gill et al.,
2013; Devenport et al., 2010; Evers and Peake, 2002; Chaitanya et al., 2015a). It has been
demonstrated by (Narayanan et al., 2014; Haeri et al., 2014; Narayanan et al., 2015; Chai-
tanya et al., 2015b; Kim et al., 2016) and others that introducing leading edge serrations can
be an effective method of reducing far field noise. This previous work has demonstrated
the sensitivity of noise reductions to the serration geometry. However, this early work has
focused mainly on flat plates where the entire interaction process is confined to the plane
of the plate. Three dimensional flow effects were therefore absent from these studies. The
present chapter aims to identify the optimum serration geometry and apply it to aerofoils.
A comprehensive study into the effectiveness of sinusoidal leading edge serrations is pre-
sented for reducing aerofoil interaction noise that includes an investigation into their effect
on aerodynamic performance. Acoustic measurements are made alongside aerodynamic
measurements to provide a detailed assessment of their potential effectiveness in reducing
the noise from an aerofoil of 10% thickness and 1.2 camber, which is expressed as designed
lift coefficient. This chapter also presents a preliminary investigation into the use of Leading
Edge (LE) serrations for the reduction of trailing edge self-noise. Detailed noise measure-
ments are made on both flat plates and 3D aerofoils. Similar noise reduction characteristics
are observed in both cases suggesting that the flat plate experiments capture the essential
physical noise reduction mechanisms (Narayanan et al., 2014; Haeri et al., 2014).

The objectives of this chapter are as follows:

1. To examine the sensitivity of noise reductions to variations in serration parameters
(amplitude and wavelength) and turbulence integral length-scale on flat plates.
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2. To apply the above findings to inform the design of effective leading edge serrations
on 3D aerofoils.

3. To investigate the effect of leading edge serrations on trailing-edge self noise.

4. To quantify the relative contributions of interaction noise and self-noise to the overall
radiated noise spectrum with and without leading edge serrations.

5. To provide a simple model to predict the observed frequency dependence of the noise
reduction spectra.

6. To visualize the flow around the peak and root regions of the leading edge serration
to assess their effect on the steady aerodynamic behavior.

7. To quantify the aerodynamic performance of serrated aerofoils at low angles of attack.

4.2 Background

Leading edge serrations can be found on owl wings and whale flippers to reduce noise and
enhance hydro and aerodynamic performance. It has long been established that introducing
LE serrations on aerofoils can improve their aerodynamic performance at post-stall condi-
tions (Skillen et al., 2014; Zhang et al., 2013; Hansen et al., 2011; Yoon et al., 2011; Johari et al.,
2007). Collins (1981) has observed that the presence of leading edge serrations on wings can
improve the low-speed lift and stall performance of aircraft during take-off and landing.
Bachmann et al. (2007) showed that the barn owl exhibits “silent” flight due to serrations at
the leading edge of the wing and the fringes at the edges of each feather. They proposed
that the topographies and mechanisms underlying this silent flight might eventually be em-
ployed for aerodynamic purposes thus resulting in new wing designs in modern aircraft.
They showed that the owl is quieter than the pigeon due to the presence of serrations at its
leading edge and the fringes at the edges of each quill.

Soderman (1972) was one of the first to investigate the aerodynamic effects of LE serrations
on an aerofoil in a closed wind tunnel. He observed that, at a flow speed Mach number
of 0.13, by placing small serrations on the aerofoil leading edge, vortices were generated
which could enhance the maximum lift at high angles of attack. It was also observed that
the presence of small amplitude serrations on the aerofoil does not increase the drag at
smaller angles of attack and reduces it at larger angles. Visualization of the flow showed that
the serrated edges introduce vortices which energizes the boundary layer thereby delaying
leading edge flow separation at higher angles of attack.

Hersh et al. (1974) have demonstrated the effectiveness of LE serrations in reducing the
narrow band vortex shedding noise radiated from stationary and rotating aerofoils. Noise
reductions of between 4 and 8 dB were observed at the peak shedding frequency, which they
attributed to the formation of vortices breaking up the periodic structure of the wake.

A significant amount of work has been undertaken experimentally and numerically aimed
at assessing the effectiveness of leading edge serrations on delaying stall. Miklosovic et al.
(2004) conducted the first windtunnel tests using idealized models of humpback whale flip-
pers at mean chord Reynolds numbers in the range of 5.05 x 10° — 5.20 x 10° and attack
angles in the range of —2 — 20 deg. They demonstrated experimentally that the angle of
attack at which stall occurred was significantly delayed when leading edge serrations were
introduced onto a model whale flipper geometry. Miklosovic et al. (2007) performed the
aerodynamic evaluation on a full-scale humpback whale flipper geometry to simulate the
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effects of LE tubercles. They demonstrated experimentally that serrations on the aerofoil
leading edge produced vortices from the serration peaks which significantly altered the
performance of the serrated aerofoil. The significance of these vortices in affecting aero-
dynamic behaviour was also observed by Stanway (2008) in PIV measurements of the flow
in the vicinity of a serrated leading edge. A number of researchers (Fish and Lauder, 2006;
Fish et al., 2011; Zhang et al., 2013; Van Nierop et al., 2008) have investigated the mecha-
nism by which stall can be delayed by the introduction of serrations at the aerofoil leading
edge. They observed that the LE serrations generate streamwise vortices, which were at-
tributed to greatly enhanced momentum transfer. This results in a significant reduction of
flow separation and therefore improvement in the aerofoil aerodynamics within the wide
range of post-stall angles of attack. More recently, Skillen et al. (2014) have also explored the
mechanism involved in the reduction of the separation region at high angles of attack by the
use of serrated aerofoils. They showed that the serrated leading edge introduces a strong
span-wise pressure gradient which results in the formation of secondary flows (additional
stream-wise flow along the serration edge). This secondary flow transports the near-wall
fluid which is replaced by the high-momentum fluid available in the flow. The boundary
layer is then re-energized which might be a reason for the delay in flow separation for ser-
rated aerofoils.

Recently, Rostamzadeh et al. (2013) proposed a design of leading edge comprising out-of-
plane sinusoidal modulations with the objective of improving aerodynamic performance.
They compared the aerodynamic characteristics of aerofoils with tubercles (modulation in
the chord plane) with predictions obtained from Prandtls nonlinear lifting-line theory. They
demonstrated that both in-plane and out of plane leading edge modulations have similar
aerodynamic lift and drag characteristics. The wavy serrated aerofoil with the highest peak-
to-root amplitude and smallest wavelength was found to have the most favorable post-stall
behavior. They also showed, using CFD, that the root of the serrated aerofoils were subjected
to adverse pressure gradients resulting in flow separation.

Favier et al. (2012) performed a DNS study on serrated geometries for low Reynolds number
flow. They observed a 35% reduction in drag and a significant reduction in lift compared
with the baseline (straight leading edge) aerofoil. Hansen et al. (2011) measured the lift
and drag of several serrated geometries. They observed that, for the aerofoil of maximum
thickness at 50% chord, the effect on lift in the pre-stall regime was negligible but beneficial
in the post-stall regime. For the NACAOQ021 aerofoil, where the maximum thickness is at
30% chord, the lift performance in the post-stall regime increased but was degraded in the
pre-stall regime. It was also observed that optimizing the serration amplitude and wave-
length can increase the lift performance in both pre-stall and post-stall regimes. Skillen et al.
(2014) has noted discrepancies between the measured and predicted lift on serrated aero-
foils, which he attributed to uncertainties in reproducing wind-tunnel experimental condi-
tions.

Chong et al. (2015) has measured the lift and drag of a serrated aerofoil and found that in-
creasing the serration wavelength tended to improve performance at angles of attack close
to stall. However, the lift coefficient in the pre-stall region was observed to be lower com-
pared to the baseline (straight edge) aerofoil. The explanation for the increased stall angle
compared to the straight edge aerofoil was investigated using oil-visualization. In the case
of a straight leading edge, boundary layer separation is apparent whereas LE serrations
produce counter-rotating vortices causing the boundary layer separation to be suppressed.

Whilst the use of leading edge serrations have been investigated extensively for improv-
ing aerodynamic performance, comparatively little work has been undertaken aimed at its
aeroacoustics performance.
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Roger et al. (2013) has formulated an analytic model for the sound generation due to a tur-
bulent flow interacting with a flat plate serrated leading edge of infinite chord. His model
treats the serrations as a continuously varying leading-edge sweep whose unsteady aerody-
namic response is predicted by splitting the airfoil into strips of small spanwise extent and
assimilating the local curved edge to its tangent to make each strip a slice of a swept airfoil,
whose response functions are known. The model makes explicit the relative significance of
super-critical and sub-critical gust components to the overall far field noise radiation. Lau
et al. (2013) has investigated numerically the effects of serrated leading edges on the noise
due to a single harmonic vortical gust. This work has demonstrated that one of the key
factors in determining the level of noise reduction is the ratio between the leading edge am-
plitude to the hydrodynamic wavelength. This finding is supported by the experimental
work presented in the present chapter for a turbulent in-flow but only at the optimum ser-
ration angle which is related to the turbulence integral length scale. Lau et al. (2013) found
from numerical simulations that significant noise reductions were achieved when the ra-
tio between the leading edge amplitude to the gust wavelength exceeds about 0.3. In their
paper they attribute the reductions in noise to a more rapid phase variation of pressure fluc-
tuations along the serrated LE compared to the straight leading edge. This explanation of
the noise reduction mechanism is consistent with the strip model proposed by Roger et al.
(2013).

Clair et al. (2013) has presented a numerical and experimental investigation into the effect of
sinusoidal leading edge serrations for the reduction of turbulence-aerofoil interaction noise.
Reductions in sound power level over a wide frequency range of between 3 and 4 dB were
both measured and predicted for a NACAG65 aerofoil with 0.15 m chord over a range of flow
speeds between 20 to 80 m/s. The reason for these modest noise reductions compared to
the much larger noise reductions presented in (Narayanan et al., 2015) is due to the rela-
tively short serration amplitudes investigated. In Clair et al. (2013) noise reductions at high
frequencies (between about 3 and 4 kHz) were predicted to be greater than that measured,
which were attributed to the span-wise gusts contribution being neglected in the computa-
tions.

Through numerical simulations based on the compressible three-dimensional Euler equa-
tions and a synthetic eddy method for the turbulence generation, Kim et al. (2016) investi-
gated the noise reduction mechanisms of sinusoidal leading edge serrated aerofoils. Kim
et al. (2016) found that the surface pressure fluctuations along the leading edge exhibit a
source cut-off effect due to oblique edge which results in reduced radiated sound power
levels. He also demonstrated destructive interference effect between the peak and hill re-
gion is one of the reason for noise reductions.

Lyu et al. (2016) has developed a mathematical model to predict the sound radiated by
serrated leading edge geometries. The model is based on an iterative form of the Amiet
approach solved using the Schwartzschild technique. The solution most likely converges
to the exact solution for a single component of gust turbulence. However, in practice only
a few terms were needed to obtained good convergence of the solution. The response to a
turbulent flow is synthesised by the summing the response incoherently due to each oblique
gust component. The predictions are in close agreement with the experimental data. In this
paper, Lyu et al. (2016) attribute the noise reduction mechanism to destructive interference
of the scattered surface pressure induced by the presence of serrations.

(Narayanan et al., 2015) have recently undertaken a preliminary parametric study to quan-
tify experimentally the sensitivity of the reductions in radiated noise to variations in the
serration amplitude and wavelength. This chapter has identified the minimum frequency
f3ap, above which significant noise reductions are achieved (> 3dB). For all the serration
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geometries investigated, f34p was observed to closely follow the relationship f3qp = alU/2h,
where h is the serration amplitude, U is the flow velocity, and « is a constant varying be-
tween 0.4 and 0.6. This relation is consistent with the simulations of Clair et al. (2013), who
found that the frequency range where noise reductions are observed to increase as the mean
flow speed U is reduced. Most of this work in Narayanan et al. (2015) was performed on flat
plates with only a limited comparison being presented with serrations on 3D aerofoils.

Chaitanya et al. (2015b) showed the possible existence of an optimum serration inclination
angle 6, at which maximum noise reductions occur. This angle was found to be dependent
on the integral length scale of the incoming turbulence. The evidence of an optimal serration
angle 6, may help to explain the conflicting findings of Narayanan et al. (2015) and Hansen
et al. (2011), regarding the influence of LE wavelength on noise reductions. It is likely that
in the cases investigated by Narayanan et al. (2015) the leading edge profiles represent ser-
ration angles greater than the optimum angle, resulting in sub-optimal noise reductions. In
the case of Hansen et al. (2011) the opposite is true and the inclination angles investigated
were smaller than the optimum angle identified in Chaitanya et al. (2015b).

The present study explores this finding in greater detail. Here we show that the optimum
serration wavelength, rather than angle, provides a more fundamental interpretation of the
experimental noise data. More recent work by Kim et al. (2016) has investigated numeri-
cally the possible noise reduction mechanism due to leading edge serrations. These noise
reduction mechanism identified are inline with our current experimental results. In the
present chapter the preliminary findings outlined above are investigated in greater detail.
The sound power reduction spectra are observed to collapse when plotted against Strouhal
number, St;, where St;, = fh/U and f, h and U are frequency, serration amplitude and flow
speed, respectively. This finding strongly suggests that, at the optimum serration wave-
length, noise reductions are determined solely by the ratio of the serration amplitude h to
hydrodynamic wavelength U/ f. Moreover, at the optimum wavelength, sound power re-
ductions are observed to follow an inverse Strouhal dependence x 1/St;. A very simple
model is developed in this chapter aimed at interpreting this Strouhal dependence.

4.3 Aerofoil models

4.3.1 Flat plate aerofoils

A parametric experimental study was undertaken to investigate the effect on radiated noise
due to variations in serration amplitude and wavelength on flat plates based on the assump-
tion that the flat plate serrations capture the same noise reduction mechanisms as that on 3D
aerofoils. The optimal serration geometry identified from this flat plate study was used to
investigate a limited number of 3D aerofoils.

The serrated flat plate is constructed from two metallic plates of 1 mm thickness riveted to-
gether. The flat plate serrations made from acrylic plate of 2 mm thickness are inserted in
between the two Imm plates. The two steps caused by serration inserts are ‘ground down’
to smooth the step. The trailing edge of the plate is sharpened to prevent vortex shedding
noise, although the leading edge was left blunt i.e. was not sharpened like trailing edge
for consistency across all serrations investigated. The dimensions of the flat plate are 15 cm
mean chord and 45 cm span. A schematic of the serrated sinusoidal geometry is shown in
tigure 4.1(a) located downstream of a single turbulent eddy whose size is one forth the serra-
tion wavelength, which we will later show corresponds to the optimum serration angle for
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FIGURE 4.1: Leading edge geometry where Serrated wavelength, ); Serrated
amplitude, 2h ; Flow speed, U; Transverse integral length scale of incoming
turbulence, A;; mean chord length, ¢y

maximum noise reduction. In the present study a total of 50 flat plate serrations were investi-
gated. A systematic variation of serration wavelength \/A; from 0.8 to 100 was investigated
comprising five different serrations amplitudes (h/co) of 0.033, 0.67, 0.1, 0.133 & 0.167.

4.3.2 3D Aerofoil models

The results from the flat plate study presented in section 4.4.3 below were used to define
five 3D serrated leading edge aerofoil geometries on the NACA-65(12)10 aerofoil. Serration
wavelength ranged between 2.67-8, chosen to be close to the optimum wavelength ), of ~4
(discussed below in Section 4.4.3). These were fabricated using a 3D printer from durable
photo-polymer that has high quality surface finish. Three serration amplitudes (h/c) of
0.067, 0.1, 0.167, with constant serration wavelength (\/A¢) of 2.67 were investigated. Two of
the aerofoils were chosen to have constant amplitudes (h/cg) of 0.167 with differing serration
wavelengths (A\/A;) of 5.33, 8.

A photograph of a typical serrated aerofoil is shown in figure 4.1(b), with the serration pa-
rameters, wavelength )\, total peak-root distance 2k, mean chord c, defined. The serrated
leading edge profiles are such that if y(X) = f(X) defines the variation of height above the
origin for the NACA-65(12)10 aerofoil profile, where X = 0 represents the trailing edge and
X =1 the leading edge, the profile y(X, r) at any span-wise position r along the aerofoil is
given by,

flx/cy), O0<z/co<2/3
y(X,r) = (4.1)

flz/c(r)), 2/3<x/c(r) <1
where the chord is a function of span r, i.e., ¢(r) = ¢o + hsin(27r/)) and x varies between 0
at the trailing edge and = = ¢(r) at the leading edge.

Note that in this chapter the serration amplitude () is normalized on the mean chord ¢, for
convenience although there is no evidence to suggest that this is a meaningful parameter
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in determining noise reductions. The mean chord and span of the aerofoils are 15 cm and
45 cm, respectively. Details of the measurement facility and procedure are presented in the
Appendix A.

4.4 Acoustic Performance

4.4.1 Opverall acoustic performance on flat-plates

We start with an initial survey of the effectiveness and behaviour of leading edge serrations
on the noise reductions applied to flat plates. Figure 4.2 is a plot of the overall sound power
reduction integrated over the non-dimensional frequency range (fco/U) between 1 to 10 for
three different serration wavelengths A\/A; of 1.33, 4 and 14.67. An important observation is
that largest noise reductions are obtained for the serration wavelength A /A; = 4. We demon-
strate in section 4.4.3 below that this serration wavelength is close to the optimum serration
wavelength at which maximum noise reductions occur. At the optimum wavelength a simi-
larity condition is established whereby the noise reduction spectra are only a function of the
non-dimensional frequency fh/U suggesting that noise reductions are solely governed by
the ratio of serration amplitude to the hydrodynamic wavelength U/ f.

4.4.2 Sound power reductions versus non-dimensional frequency fh/U

In this section we present an overview of the sound power reduction spectra for varying ser-
ration amplitudes h and serration wavelengths A\/A; for a turbulent in-flow with an trans-
verse integral length scale of 3.75 mm and turbulence intensity of 2.5%. Figures 4.3a-c show
the sound power reduction spectra plotted against non-dimensional frequency fh/U for 5
different serration wavelengths ranging from 0.8 to 80 at a jet velocity 60m/s at the three
serration amplitudes (h/cp) of 0.033, 0.1 & 0.167 respectively.
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Reductions in sound power are generally observed to increase with decreasing normalised
serration wavelength A\/A; up to about 4. Below this normalised wavelength the noise re-
duction spectra reduce at low frequencies suggesting the existence of an optimal serration
wavelength, which we discuss further in Section 4.4.3. Sound power reductions are gen-
erally observed to increase with increasing non-dimensional frequency fh/U up to some
frequency at which self-noise starts to dominate. This finding was previously reported by
Narayanan et al. (2015) on flat plates.

4.4.3 Optimal serration wavelength

We first present in figure 4.4a the measured variation in overall sound power reductions
integrated over the non-dimensional frequency (fco/U) band between 1 to 10, versus ser-
ration wavelength normalised on turbulence length scale, A/A; for five different serration
amplitudes h. Here, U = 60 m/s and the turbulent in-flow has an transverse integral length
scale A; of 3.75 mm and a turbulence intensity of 2.5%. This figure suggests the existence of
an optimum non-dimensional serration wavelength \,/A; ~ 4 at which maximum noise re-
ductions occur. It is particularly well defined for the larger amplitude serrations where noise
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FIGURE 4.4: Overall Sound power reduction level (OAAPW L) trends

reductions are much greater. The reason for this value as an optimum ratio is explained in
detail in the next section.

In figure 4.4b, overall noise reductions integrated over non-dimensional frequency (fh/U)
0.1 to 0.5 are plotted against serration wavelength normalised on turbulence length scale
A/A; at each of the four flow speeds: 20, 40, 60 and 80 m/s for a fixed serration amplitude
h/cy of 0.1. This figure reveals two important principles. The first arises from the collapse
of the noise reduction spectra which is better than 0.5dB suggesting that noise reductions
are a function of non-dimensional frequency fI/U where [ is some linear dimension related
to the serration geometry that remains to be determined. The second is that the optimum
serration wavelength \,/A; ~ 4 is almost independent of flow speed thereby confirming the
generality of this optimum value.

We now confirm the generality of \,/A; ~ 4 as the optimum condition for maximum noise
reductions. The measured variation in noise level in a frequency bandwidth fh/U of 0.1
to 0.5, versus \/A; plotted logarithmically at the two different length-scales A;/co of 0.045
and 0.025 is plotted in figures 4.5a. The optimum wavelength at these length scales remains
around 4. Furthermore, the optimum value appears to be well defined on this logarithmic
scale in the sense that overall noise reductions diminish quite sharply for serration wave-
lengths lower and higher than the optimum value.

In figure 4.5b we provide further for the existence of a similarity condition at the optimum
wavelength \,/A; ~ 4 in which the sound power reduction spectra are plotted versus
Strouhal number St for the same value of \,/A; = 4 for the two length scales. Thus, in
this comparison the ratio of turbulence length scale to serration wavelength \,/A; and the
ratio of serration amplitude to hydrodynamic wavelength, fh/U, are identical. The sound
power reduction spectra are remarkably similar at frequencies up to which self-noise starts
to dominate thereby providing compelling evidence for the existence of self-similarity in
this interaction process.

Finally, we present the sensitivity of the sound power reduction spectra to serration ampli-
tude and serration wavelength at a single turbulence integral length-scale. Sound power
reductions are plotted in figures 4.6a and c versus St;, for the two sub-optimal serration
wavelengths of A\/A; = 1.33 and 10, and at the optimum wavelength of 4 in figure 4.6b. Each
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figure is plotted at different serration amplitudes. It is clear that at the optimum wavelength
A/A¢ = 4 the noise reduction spectra plotted in figure 4.6b collapse to within 1dB suggesting
that noise reductions are solely a function of Strouhal number St;, in the frequency range
where leading edge noise is dominant and self-noise can be neglected. No such collapse is
observed for the wide serration A\/A; = 10 and perceptibly worse collapse for the narrower
serration A\/A; = 1.33. At the optimum serration wavelength, therefore, the noise reduction
spectra plotted in figure 4.6b follow a similarity principle since they are determined solely
by the ratio of hydrodynamic wavelength U/ f to the serration amplitude h. Moreover, for
this optimum geometry, the variation in sound power reduction level is observed to closely
follow 101log;((Sty) + 10 (dB) and therefore represents an upper limit on the sound power
reductions obtainable using single-wavelength leading edge serrations. In terms of the ratio
of sound power due to the serrated aerofoil W and the baseline aerofoil W}, this depen-
dence corresponds to an inverse Strouhal number scaling of W, /Wy o 1/St;,. A model
aimed at explaining this behaviour is presented in section 4.4.4.

Figure 4.6 provides further confirmation of the existence of an optimum serration wave-
length \,/A; ~ 4 at which maximum noise reductions occur.

The sound power noise reduction spectra 10 log, (W3 /W) presented above at the optimum
serration wavelength )\, and non-optimum wavelengths follow different frequency scaling,
which may be summarized in 4.2 as follows:

Wo(w) A Il=h for A=A,
W;(:) = (5 AT>’ 42)
I =const. for A# X,

4.4.4 Interpretation

In the next section, we exploit the similarity behaviour observed at the optimum serration
wavelength to develop a simple model aimed at explaining the inverse Strouhal dependence
observed in figure 4.6.

Derivation of optimum wavelength )\y = 4A;

Previously we have shown that optimum noise reductions are obtained when the serration
wavelength )\, ~ 4A;. Previously Kim et al. (2016) have demonstrated that compact sources
at the valleys are the dominant noise source on a serrated leading edge. In this section, we
use this finding to provide the explanation for this relationship. An aerofoil with serration
wavelength X provides N, = L/\ equally distributed compact sources over the aerofoil span
located at the valley positions separated one wavelength A apart. For simplicity, if the path
length differences between each compact source and a far field observer is neglected (since
adjacent sources are generally much closer together than the acoustic wavelength), retarded
time differences can be ignored and the total radiated pressure at time ¢ is proportional to
the sum of source strengths ¢(r,,,t) (with time delay also ignored) where r,, is the position
along the span on the n'" valley source, i.e.,

p(t) o< > qlrn,t) (4.3)
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where r,, = n\

The radiated sound power Wj is related to the mean square far-field pressure integrated
over some suitable closed surface. The overall mean square pressure will depend on the de-
gree of correlation between adjacent sources on the serrated leading edge, which of course
is related to the serration wavelength compared to the turbulence integral length scale. Fol-
lowing equation 4.3, the far-field mean square pressure, and hence radiated sound power,
can therefore be written as,

Ny Ny

W o ]? X Z Z Q(TTMt)Q(Tn’?t) (44-)

n=1n/=1

where W, and p? represents the integration over all spectral component, [°°_ W(w)dw and

[ p*(w)dw. Assuming that the source strength at each valley is identical and that the
spatial correlation coefficient p between the compact source strengths at the valleys is only a
function of the separation distance between them i.e. p(ry,r,/) = p(|n — n’|\), (which is the
case when excited by homogeneous turbulence), the source strength spatial correlations in
equation 4.4 can be written as,

q(rn, )a(rw, 1) = ¢2p(In — n'|\) (4.5)

where ¢2 = ¢2(ry,t). In this analysis we adopt a highly simplified model for the spatial
correlation coefficient function defined in terms of the turbulence integral length scale A;,
p(jn —n/|\) = e~ I"="IMA¢  The radiated sound power can now be written in the form,

Ny Ny

W o q722 Z e~ In=n/IA/ A (4.6)

n=1n/=1

Finally, expanding the terms in equation 4.6 and replacing ¢2 by W, the sound power pro-
duced by a single valley source radiating in isolation, leads to equation 4.7 for the total
sound power radiated by the serrated leading edge excited by turbulence with length scale
A4, divided by the sound power radiated by [V, valley sources radiating incoherently,

W, Ny—1
*_— 1 1— A/ A :
T 142 nzl( n/N,)e 4.7)

One interpretation of this power ratio is that it represent the ratio of coherent valley sources
to incoherent valley sources (i.e., when the serration wavelength is much larger than the
turbulence integral length scale). Equation 4.7 is plotted below in Figure 4.7 as a function of
A/A; for the three cases, N, = 10, 20 and 30.

This figure clearly reveals the significance of turbulence length scale to the effectiveness
of the noise reductions obtained using leading edge serrations. The figure clearly defines
a minimum serration wavelength, \,/A; ~ 4, below which adjacent sources are excited
coherently, leading to constructive interference in the far-field, and hence provide relatively
poor noise reductions. In the small wavelength limit (compared to length scale), the sound
power ratio tends to NNV, i.e., the sound power from the serrated aerofoil radiates as N2,
since all N, sources radiate in-phase. Above this value, \,/A; ~ 4, the sound power ratio
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FIGURE 4.7: Variation in total sound power versus \/A;

tends to 1, indicating that all source are excited incoherently. Note that this limit appears
to be independent of N,. Precisely this value of 4 is identified in figure 4.4 as the optimum
serrated wavelength. The optimum condition for maximum noise reductions, therefore,
occurs when adjacent sources are only just excited incoherently. Note that the coherence
length I(w) < A, therefore the condition \,/A; ~ 4 assumes uncorrelated sources at all
frequencies.

Also note that a good approximation to equation 4.7 in the vicinity of \,/A; ~ 4 can be
obtained by including only contributions from adjacent valley sources since pairs of sources
further than the nearest neighbour have negligible correlation coefficient. At the optimum
serration wavelength, therefore, coherent interaction between valley sources only occurs
between adjacent sources.

Geometric similarity interpretation of Strouhal number scaling

The previous section has shown both experimentally and theoretically that maximum noise
reductions are obtained when \,/A; ~ 4. One of the main findings of this chapter is that
at the optimum wavelength ),, the sound power reduction spectra collapse on the non-
dimensional frequency St;, which may be interpreted as the ratio of serration height h to
hydrodynamic wavelength A\, = U/f. This finding suggests the existence of a geometric
similarity condition in which the sound power reduction is only as a function of these two
length scales. In this section, we demonstrate that this finding is consistent with the hypoth-
esis that the length [(w, h, A;) of the sources along the sinusoidal leading scale linearly with
the hydrodynamic wavelength.

In this analysis the length [ of the source along the sinusoidal leading edge is expressed as,

Hw,h,Ay) = n(h, Ap) Ap(w), (4.8)
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where 7 is a non-dimensional constant of proportionality that is dependent on the transverse
turbulence length scale and serration height. Another important finding of the numerical
simulations of Kim et al. (2016) is that the source strength w(w) (surface pressure per unit
edge length) at the valley at all frequencies is similar to that of the straight leading edge. As
shown in section 4.4.4, at the optimum serration wavelength the total sound power radiation
W equals the sound power per valley W, multiplied by the number of valleys N,, i.e.,
Ws(w) = Np(A)W,(w). The radiated sound power for each valley is assumed here to be
equal to the "length’ [ of the source along the sinusoidal leading edge and the sound power
per unit length w, i.e.,

Wi (w) = w(w)l(w, b, Ar) 4.9)
where, [ is the length of the source given by equation 4.8 which is assumed to be proportional

to A\, and N, (\) =L/, where L is the aerofoil span. Following an identical argument the
noise power from the straight baseline leading edge is simply,

Wy(w) = w(w)L (4.10)
The ratio of the sound power of the serrated aerofoil to the straight leading edge is therefore,

Ws(w) _ U(h’/\t))\h(w)
Wi (w) Ao

4.11)

Finally, expressing A, in terms of serration height and angle 6, = tan~1(4h/),), the power
ratio may be written as

Ws(w)  n(h, Ay) tan(6,) 1

Wbl (w) 4Sth x Sith

4.12)

where St, is the Strouhal number based on serration height St;, = fh/U, as observed in the
experimental data at the optimum wavelength.

Phase model for the prediction noise reduction spectra at the optimum wavelength

The simple scaling-law analysis above has provided a framework for understanding the
inverse Strouhal number behaviour observed conclusively in figures 4.5 and 4.6. In this
section we present a very simple, idealised model to provide a partial explanation for the
constant of proportionality in equation 4.12, which is approximately 0.1. It is emphasize that
this is not a complete model for predicting the noise reductions from the serrated leading
edge, which may be found in the recent paper by Lyu et al. (2016), but provide a simple
physical basis for understanding the noise reduction spectra, which was found to be of the
form 10log,(Sts) + 10 at the optimum serration wavelength. A schematic of the parallel
gust impinging on the serration leading edge is shown in figure 4.8. In the analysis we make
the following assumptions:

1. The edge is excited coherently, i.e., the serration wavelength is equal to its optimum
value.

2. The surface pressure response is concentrated along the leading edge.
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Phase difference = wy/U

FIGURE 4.8: Parallel gust incident on a sinusoidal leading edge

3. Phase compatibility is assumed in which the phase of the surface pressure response
along the leading edge is identical to that of the impinging gusts along the leading
edge.

4. The length of the sources in the streamwise (flow) direction is identical to that of the
flat plate.

5. The unsteady aerofoil surface response is dominated by the gust component convect-
ing parallel to the flow direction.

We write the far field sound Power Spectra W;(w) in terms of the transverse vortical gust
component convecting parallel to the flow direction of the form, i.e.,

Wi(w) = v2(w)S(w)R(w) (4.13)

where v2(w) is the mean square transverse turbulence velocity of the normally incident
gust at frequency w, S(w) is the sound power per unit mean square velocity v2(w) at the
leading edge of the baseline aerofoil, and R(w) is the sound power reduction coefficient
(0 < |R| £ 1) due to the serrated aerofoil. For simplicity, given the basic assumptions listed
above, the sound power reduction coefficient is predicted by integrating the phase variation
wh cos(#) /U along one cycle of the sinusoidal leading edge, i.e.,

1 2 ) 2
R(w) = )7 / e~iwheos(8)/U g (4.14)
2 0
This integral expression evaluates to

R(w) = J&(wh/U) (4.15)

where Jj is the Bessel function of the first kind of order 0. This simple expression for the
sound power of the leading edge serration is now compared to that for the baseline leading
edge h = 0, which in equation 4.14 becomes 1.
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FIGURE 4.9: Comparison of simple analytical model against experiments at
optimum serration angle.

The sound power level reduction predicted by the very simple, single-gust model is there-
fore given by

APW L(w) = 1010g,(Ws(w)/ W(w)) = —201ogyq(Jo(wh/U) (4.16)

Figure 4.9 provides a comparison of the measured noise reduction spectra with the simple
analytical expression of equation 4.16. Also plotted is the line 101og;,(St) + 10 obtained by
observation of the measured spectra. Excellent agreement is obtained from all three curves
at the stationary values of Jy(wh/U). At all other frequencies, agreement is poor, particu-
larly at the zeros of Jy(wh/U), where complete cancellation of the leading edge response is
predicted. Clearly, the major deficiency with this simple single-gust model is the assump-
tion of uniform source strengths along the leading edge. As shown by (Clair et al., 2013;
Kim et al., 2016) for example the source strengths along the hill region is generally weaker
due to the combined effect of gust components becoming cut-off and a smaller mean flow
component in the direction normal to the edge (Kim et al. (2016)). However, this simple
single-gust model is nevertheless useful for speculating on the reasons underlying the trend
in the noise reduction spectra. The model, therefore, predicts the maximum noise reductions
for a sinusoidal serration. In practice, however, noise reductions are considerably less than
this value due to the presence of multiple oblique gusts, imperfect phase cancellation along
the leading edge and partial correlation of the blade response along the leading edge due to
the finite eddy size. A similar model has been developed in chapter 7 with coherence and
the results are comparatively close to 10log;((Sts) + 10.

Balance between source strength per valley and number of valleys

Figures 4.5 and 4.6 provide strong experimental evidence for the existence of an optimum
serration wavelength at which maximum noise reductions occur. In section 4.4.3, this has
been directly linked to the turbulence integral length-scale. In this section, we provide an
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alternative, but consistent, interpretation of the optimum serration wavelength as the wave-
length that provides the optimum combination of source strength per valley and the num-
ber of valleys. For serration wavelengths greater than the optimum wavelength, the valley
sources radiate incoherently and hence the sound power due to the serrated aerofoil can be
written as the product of the sound power per valley W, and the number of valleys, which
is simply N, = L/), ie,

W= W05 417)

Note that W, could be sound power at a single frequency or integrated over a frequency
bandwidth. The optimum serration wavelength A = A, occurs when

AW,
X

= 4.1
N (4.18)

The solution to equation 4.18 gives the condition for the optimum wavelength of the form,

1w,
W, dA

(4.19)

1
A=de A=y,

which says that the optimum serration wavelength A\, occurs when the rate of change of
sound power per valley with ) exactly equals the variation in the number of valleys with .
This optimum condition for A, is shown explicitly in Figure 4.10, which is a plot of the sound
power level per valley measured at U = 60m/s, h/cy = 0.1 versus A. Also, shown is the line
—101log;o(Ny) + 67.75 showing the number of valleys per unit span in dB. Note that the
constant 67.75dB has been added to allow comparison of the two curves. At the optimum
wavelength, the gradients of the two curves match, in agreement with equation 4.19.

For serration wavelengths less than the optimum value the sound power per valley increases
at a slower rate with increasing A than the number of valleys increases. This is a result of
the coherence effect discussed in detail in section 4.4.4, whereby coherent excitation of the
valley sources causes the sound power radiation to vary at a faster rate than the number
of valleys N,. For serration wavelengths greater than the optimum, the valleys continue to
radiate incoherently but clearly, the source strength must be increasing at a faster rate than
N,.. The optimum serration wavelength, therefore, occurs when the rate of change of sound
power with ) increases at precisely the same rate as N, itself.

4.4.5 Noise reduction contours

In this section, noise reductions contours due to LE serrations are discussed. Figure 4.11
shows the noise reductions contours for varying serration wavelength \/A; at three different
serration amplitudes of h/cy of 0.033, 0.1 & 0.167 and a fixed jet velocity, U = 60 m/s.
Clearly around optimum serration wavelength as identified in section 4.4.3, the serrations
are effective, i.e., significant noise reductions (3dB) are observed. As described previously, at
a non-dimensional frequency of fh/U of 0.2, we get significant noise reductions. The range
of serration wavelengths \/A; where 3dB of noise reductions are achieved for fh/U = 0.2 is
observed to increase with increase of serration amplitude i/cy.
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4.4.6 Influence of self-noise on aerofoils on 3D aerofoils

Work described in previous sections and in Narayanan et al. (2014, 2015); Chaitanya et al.
(2015b) has characterized the behaviour and effectiveness of sinusoidal leading edge ser-
rations on flat plates. The current section aims to verify whether the same behavior, in
particular the similarity relationships observed for flat plates, also applies to leading edge
serrations introduced into 3D aerofoil geometries.

The important difference between the aerodynamic noise due to a flat plate in a turbulent
stream and a 3D aerofoil is a much greater contribution of trailing edge self-noise due to a
more energetic boundary layer forming over the surface of the 3D aerofoil driven by the ad-
verse pressure gradient. Another important difference between the serration on an aerofoil
and a flat plate is the effects of aerofoil leading edge geometry which the effect of distorting
the incoming turbulence due to mean flow gradients. This section aims to investigate the
balance between the self noise and leading edge noise, furthermore, to assess the effect of
leading edge serrations on the trailing edge self-noise.

Figure 4.12 shows the total radiated sound power level spectra for the baseline aerofoil plot-
ted against non-dimensionless frequencies at the jet velocities of 20 and 60 m/s. Also shown
is the spectra of radiated noise due to TE self-noise alone obtained by removing the grid.
Comparison between the two spectra confirms that interaction noise, even with serrations,
is the dominant noise source at low frequencies whilst self-noise dominates at high fre-
quencies. As also shown in Narayanan et al. (2015) this figure makes clear that self-noise
is the factor that limits noise reductions by the serrations at high frequencies. The frequen-
cies at which maximum noise reductions occur appears to correspond to the frequency at
which self-noise starts to become significant compared to interaction noise. This frequency
of maximum noise reduction, as indicated by the vertical dashed line, appears to occur at
approximately the same non-dimensional frequency fco/U for both jet velocities of around
feo/U =10 for this aerofoil geometry. Figure 4.12 also shows a reduction in self-noise for
serrated leading edge (dashed blue) than compared to baseline self-noise (dashed black).
This is further discussed below.

4.4.7 Influence of leading edge serrations on trailing edge self-noise

The effect of leading edge serrations on interaction noise and trailing edge self-noise can be
determined from separate measurements of the overall noise radiation (i.e., the sum of LE,
TE and background noise), the sum of self noise and background noise (by removing the
turbulent grid), and background noise spectra alone (without aerofoil).

Figures 4.13a show the variation of the reduction in total sound power versus non-dimensionless
frequency (fco/U) at a fixed serration wavelength (\/A;) of 2.67 for various serration am-
plitudes (h/co) at a jet velocity of 60 m/s and angle of attack of 0°. Note that the serra-
tion wavelength for these cases are close to the optimum serrated wavelength identified in
section 4.4.3. The noise reduction spectra follows very closely the behaviour observed for
flat plates. A detailed comparison between flat plate and aerofoil measured noise reduc-
tions with numerical predictions are presented in Chaitanya et al. (2015b). As observed in
tigure 4.13, the noise reduction spectra increases with increasing frequency until some opti-
mum frequency of approximately fco/U = 8, above which it then falls due to the dominance
of self-noise at high frequencies. The introduction of trailing edge serration has been shown
to reduce trailing edge noise, for example (Gruber, 2012; Gruber et al., 2013), which if ap-
plied to the current aerofoil will therefore extend the frequency range over which leading
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FIGURE 4.12: Power level spectra comparison between baseline NACA65
aerofoils with serrated aerofoil of amplitude (h/co) 0.167 and wavelength
(A/co) 0.067 along with its self-noise

edge serrations are effective. An important observation is that, in this high frequency range,
the noise is sensitive to the amplitude of the leading edge serration thus clearly suggesting
that leading edge serrations can reduce trailing edge noise.
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FIGURE 4.13: Sound power reduction level (APW L) for various serrated am-
plitude (h) at jet velocity 60 m/s and AoA = 0° for a serrated wavelength
(A/co) of 0.067

Figure 4.13b demonstrates this effect explicitly by showing self-noise reduction spectra due
to the introduction of leading edge serrations. Reductions in self noise of up to 3dB are
observed, which are comparable to those obtained with trailing edge serrations (Gruber,
2012; Gruber et al., 2013). This effect is undoubtedly due to modification to the boundary
layer caused by the leading edge serration. This is investigated using PIV measurements in

section 4.6.
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(h/co) of 0.1 and serrated wavelength (A/A;) of 2.67 at various velocities at
AoA =0°

We now investigate the sensitivity of noise reductions to flow speed. Figure 4.14 shows the
reduction in total noise versus dimensionless frequency (fh/U) at speeds of 20, 40 and 60
m/s for a serration amplitude and wavelength of (h/co) of 0.1 and (A/A;) of 2.67. As also
observed in the flat plate study in section 4.4.3, the noise reduction spectra follows a non-
dimensional frequency dependence (fh/U) in the low frequency range where interaction
noise is dominant. However, at higher frequency (fh/U > 0.5) collapse of the spectra with
non-dimensional frequency based on amplitude is relatively poorer. This finding is consis-
tent with the dominance of self noise in this frequency range, where a more appropriate non-
dimensional frequency would be defined with respect to boundary layer thickness (Gruber,
2012; Gruber et al., 2013).

4.4.8 Validity of optimal serration angles for 3D aerofoils

In the flat plate study in Section 4.4.3, an optimum serration wavelength for maximum noise
reductions was identified. At this optimum angle, the noise reduction spectra were shown to
collapse on fh/U and follow the linear frequency dependence APW L = 101log;(Sts) + 10.
Figure 4.15 shows the noise reduction spectra for the NACA65 aerofoil at three serration
angles close to the optimum angle, which can be seen to closely follow this relationship
confirming that the essential noise reductions mechanisms on flat plates also apply to the
aerofoil even though the flow behaviour in the vicinity of the valleys is much more complex.

The noise reduction spectra in figure 4.15 for the optimum serrations may be used to identify
a frequency f3qp above which noise reductions become significant (> 3dB). From this figure
f3ap nearly corresponds to a Strouhal number of ( f3qph/U) = 0.25. This value is consistent
with the frequency identified by Narayanan et al. (2015). However, it is only valid for serra-
tions at the optimum serration wavelengths. For sub-optimal serration wavelengths the rate
of increase in noise reduction with frequency, for example, as shown in figure 4.6, is slower
than for the optimum case and hence the frequency ( f345) will be higher.
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FIGURE 4.15: Sound power reduction level (APW L) on NACAG65 aerofoil for
various inclination angle A\/A; at jet velocity U = 60m/s and AoA = 0° for
serrated amplitude (h/co) of 0.167

449 Comparison with serrated flat plate

In this section we investigate the variation of the noise reduction spectra with continually
varying flow speed. This data is obtained by measuring the acoustic pressure as the fan
speed is steadily reduced (or increased). Spectra are computed over short time intervals
over which the change in flow speed is assumed to be negligible. In the present study,
‘blow-down’ measurements are conducted over a range of mean jet velocities between 55 to
25 m/s for aerofoils with and without LE-serrations.

Figure 4.16 shows the ‘blow down’ plots for the serrated flat plate and aerofoil at identical
serration amplitude and wavelength. Comparison of their respective results (Figure 4.16a
and b) show that the lower frequency limit is the same for flat plate as well as aerofoils
suggesting that the flat plate captures the essential physics of the noise reduction mecha-
nism achievable by the use of leading serrations. It clearly reveals the existence of a lower
frequency limit f34p, shown as the lower dotted line, below which the serrations produce
negligible noise reductions. This lower frequency limit, which was also observed in the flat
plate study in Narayanan et al. (2014), is seen to be a linear function of jet velocity. Previous
study of this lower frequency limit suggests it occurs when the gust wavelength U/ f is a
certain fraction « of the serration amplitude h. This coefficient « is determined from the
gradient of the lower dotted line in figure 4.16 which is consistent with our previous finding
of 0.2. The value of 0.2 is only around optimum wavelength.

In figure 4.16 the approximate frequency at which maximum noise reduction is obtained
versus flow speed is shown as the middle dashed line, which also appears to follow a con-
stant Strouhal number dependence of fL,/U, where Ly is an arbitrary constant. Also shown
in figure 4.16 as the upper dotted line is the frequency above which noise reductions are neg-
ligible. The noise reduction bandwidth for the flat plate is higher than for the aerofoils due
to a lower level of self-noise for the flat plate compared to interaction noise. The difference
in noise reductions at lower frequencies where interaction noise is dominant because for the
flat plate all the aeroacoustic sources lie in the plane whereas they are distributed in 3D for
the 3D aerofoils. Detailed analysis of the flat plate results has been already presented by
Narayanan et al. (2014).



92 Chapter 4. Sinusoidal serration

30 35 40 45 50 55 30 35 40 45 50 55
u u

(a) Flat Plate (b) Aerofoil

FIGURE 4.16: Blow down map of A PWL for serration amplitudes (h/co) of
0.167 and serration wavelengths (A/A;) of 5.33

For completeness, figure 4.17 provides a comparison between the predicted (taken from
Chaitanya et al. (2015b)) and measured noise reduction spectra for the flat plate and ser-
rated aerofoils with serration angles close to the optimum. Flat plate and 3D aerofoil noise
reductions are compared for a fixed serration amplitude h/cy = 0.167 and wavelength
A/A¢ = 5.33. The measured and predicted spectra seem to be in close agreement and closely
follow the empirical curve APW L = 10log((fh/U) + 10. This relation therefore appears to
be widely valid and is supported by numerical predictions that do not reproduce trailing-
edge noise. This again confirms that the flat plate aerofoils are representative of 3D aerofoils
in order to capture the physics of noise reductions.
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FIGURE 4.17: Comparison of sound power reductions for aerofoil and flat
plate of serration amplitude i /cy = 0.167 and wavelength A\/A; = 3.33 (taken
from Chaitanya et al. (2015b))

4410 Effect of angle of attack

Figures 4.18 show the effect of angle of attack on the interaction noise of the baseline and
serrated NACAG65 aerofoils, which in both cases is negligible. This insensitivity to angle of
attack for conventional sharp edge aerofoils is well documented in the literature. Showing
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the same insensitivity for leading serrations demonstrates that the mechanism of noise gen-
eration at the leading is similar in both cases and that noise reductions are due to interference
across the leading edge.
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FIGURE 4.18: Power level spectra comparison at various AOA for baseline
and serrated aerofoil of amplitude (h/co) 0.167 and wavelength (A/A;) 2.67 at
Jet velocity 60 m/s

4.5 Aerodynamic Measurement

Previous sections have highlighted the potential effectiveness of leading edge serrations
on 3D aerofoils. However, it is imperative that aerodynamic performance is not substan-
tially degraded by their introduction. In this section, the effect of leading edge serrations
on the steady aerodynamic performance of aerofoils is investigated experimentally. The lift
and drag forces were measured on the NACA®65 aerofoil with varying serration amplitudes
(h/co). The geometric angle of attack varies from —2.5° to 10° but due to jet deflection in the
open jet wind tunnel the corresponding effective angle of attack is in the smaller range, —1°
to 2.8°. Aerodynamics measurements were performed in the same open jet wind-tunnel as
the PIV and acoustic measurements to ensure consistency.

Figure 5.14a shows the lift coefficient for the baseline and serrated aerofoil of wavelength
(A/Ay) 2.67 for three different serration amplitudes h/cy of 0.066, 0.1 and 0.167. Whilst the
gradient of lift coefficient versus angle of attack remains unchanged by the introduction of
serrations (Gradient ~ 6.2 /radian), levels are consistently smaller by between 0.01 and 0.05
compared to the baseline case. Thus, whilst increasing the serration amplitude increases
noise effectiveness, the corresponding lift performance degrades. The corresponding vari-
ation in drag coefficient is shown in figure 5.14b which is observed to increase by between
0.001 and 0.005 compared to the baseline case as serration amplitude is increased. Further
examination of the aerodynamic performance of the serrated aerofoil is explored in sec-
tion 4.6 using PIV measurements. It is worth noting that the absolute values of lift and drag
coefficient are lower than actual values available in literature (Liu et al. (2015)). This ambi-
guity can be due to end effects of the setup in open jet wind tunnel. However, the purpose
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FIGURE 4.19: Aerodynamic evaluation of serrated aerofoils (A/co = 0.067) at
the jet velocity U = 60m/s

of this section is to demonstrate the aerodynamic penalty due to leading edge serrations at
very low effective angles of attack.

4.6 Flow measurement

4.6.1 Mean flow

This section examines in greater detail the effect of leading edge serrations on the flow be-
havior around the aerofoil by the use of PIV measurements. Mean velocity contour with
streamlines superimposed are presented in figure 4.20a-d for a free-stream velocity of 20 m/s.
The inflow turbulence intensity is 2.5% and the transverse length scale of incoming turbu-
lence is 3.75 mm. The results reveal the flow across two transverse planes aligned with the
serration peak and valley at the two geometric angles of attack of 0° and 10° (Effective an-
gles of attacks are 0° and 2.8° respectively). Also shown in figure 4.20e-f are the flow velocity
contours for the baseline NACAG65 aerofoil. Note that the white region corresponds to the
locations where the LASER was unable to illuminate. In both valley and peak planes the
mean flow is attached at both angles of attacks even though there are large mean velocity
gradients.

Figures 4.20e,f show the variation of axial flow velocity around the leading edge of the base-
line aerofoil. They show the presence of a significant stagnation region at the leading edge
for both angles of attack. The stagnation region around the peak of the serrated aerofoil is
considerably weaker (figures 4.20a-d) which is most likely because the flow streamlines can
be diverted radially from the peak to the trough. In the plane of the serration valley, how-
ever, the streamlines clearly continue in the gap between the serrations. However, since the
valley cannot be illuminated and therefore the extent of the stagnation region around the
valley is not accessible.

The mean flow component normal to the measurement axis exhibits similar behaviour to the
axial flow, as in figure 4.21 which shows a zoomed-in view in the vicinity of the leading edge
for the angle of attack of 2.8°. Flow deviation around the peak can be seen to be substan-
tially weaker than in the baseline case. However, streamlines emerging from the valley are
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FIGURE 4.20: Mean velocity maps for serrated and baseline aerofoil for effec-

tive angle of attack of 0° and 2.8°. The aerofoil cross-sections are illustrated

to scale and regions where the experimental geometry obscured the measure-
ments are left blank.

observed to undergo stronger deviation than for the baseline case, suggesting strong mean
velocity gradients. These large velocity gradients could be a source of turbulence generation
and hence a source of additional noise. However, more work is needed through the use, for
example, LES or PIV measurement in between the valley to quantify the importance of this
phenomenon.

4.6.2 Effect on leading edge serrations on boundary layer development

In section 4.4.6 it was observed that the introduction of leading edge serrations caused a sig-
nificant reduction in trailing edge noise suggesting that boundary layer development was
affected. This hypothesis is confirmed in figure 4.22 which compares the PIV measurements
of stream-wise boundary layer development over the suction surface in the two planes of

(a) Plane of serration peak (b) Plane of serration root (c) Basdline aerofoil
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FIGURE 4.21: Maps of the vertical component of the mean velocity at the lead-
ing edge of the serrated and baseline aerofoils at an angle of attack of 2.8°.
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the serrated aerofoil with the baseline case at 2.8° angle of attack. In the plane of the val-
ley the boundary layer is seen to be significantly thicker than in both the peak plane and
baseline cases. This is due to delayed vertical deflection of the flow at the valley of the ser-
rations causing a large input of momentum into the boundary layer, which initially causes
a substantial thickening of the boundary layer in this plane. Close to the leading edge (fig-
ures 4.22a,b) the profiles at the peak plane and baseline cases are similar. As the boundary
layer develops towards the trailing edge their profiles in both planes become similar due
to turbulent mixing resulting in a significantly thicker boundary layer at the trailing edge
compared to the baseline case.

Figure 4.23 shows profiles of the rms velocity fluctuations along the upper surface of the
aerofoil. Just downstream of the serration valley the velocity fluctuations are much higher
in the plane of the valleys compared to the baseline case, while they are reduced in the
plane of the peak. This is consistent with our earlier observation that velocity fluctuations
are reduced at the leading edge peak and localized in the valleys of the serrations as a result
of the stagnation region being spread across a wider region compared to the baseline aero-
foil. These higher fluctuations in the plane of the valley are also consistent with the thicker
boundary layer that develops in this plane. In all the boundary layer profiles shown in this
section, at position y=0 (location on the aerofoil surface), the velocity is assumed to be zero,
as practically y=0 can not be measured.

The mean velocity profiles at the trailing edge plotted in figure 4.22e and the rms velocity
profile plotted in figure 4.23e are consistent with reduced self-noise radiation plotted in fig-
ure 4.13b. The work of Blake (1970) and more recently by Stalnov et al. (2015),has shown
that the surface pressure spectrum close to the trailing edge, and hence the far field radi-
ation, is partly determined by the product of mean shear profile (dU/dy)? and the mean
square velocity profile integrated through the boundary layer. Whilst the rms velocity pro-
file is only slightly increased at the trailing edge compared to the baseline case, the mean
shear gradients are significantly reduced, particularly close to the wall, which is responsible
for self-noise generation at high frequencies (since high frequencies are generated by small
eddies convecting close to the wall).

——— serrated aerofoil: peak plane ——— serrated aerofoil: valley baseline aerofoil |
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FIGURE 4.22: Development of the boundary layer over the suction side of the
aerofoil at locations of distance of (a) -0.8 ¢y, (b) -0.6 ¢g, () -0.4 ¢g, (d) -0.2 ¢y,
and (e) 0 from the trailing edge of the aerofoil.
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FIGURE 4.24: Stream-wise velocity profiles of the wake measured 70 mm
downstream of the trailing edge for effective angles of attack of (a) 0° and
(b) 2.8° where the geometric angles of attacks are 0° and 10° respectively.
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FIGURE 4.23: Profiles of the root-mean-square stream-wise velocity fluctua-
tions along the suction side of the aerofoil at locations of distance of (a) -0.8 co,
(b) -0.6 ¢y, (c) -0.4 ¢, (d) -0.2 ¢y, and (e) O from the trailing edge of the aerofoil.

4.6.3 Wake characteristics

In Section 4.6.2 it was observed that the serrated aerofoil has a thicker boundary layer com-
pared with the baseline aerofoil. This implies that the velocity gradient near the wall is
lower. The skin friction drag along the upper surface could therefore be decreased. How-
ever, a thicker boundary layer could also lead to a broader wake, thereby increasing the
pressure drag. Figure 4.24 shows the stream-wise velocity profile measured downstream
of the trailing edge through the wake. Wider wake profiles are observed in the case of the
serrated aerofoils compared to the baseline aerofoil suggesting an increase in drag. These
findings are consistent with the drag measurements obtained directly and presented in sec-
tion 4.5.

The lift force produced by the aerofoils may also be analyzed by considering the downward
displacement of the wake with respect to y = 0 as an indicator of flow turning. Figure 4.24
indicates that the wake of the serrated aerofoil is displaced by roughly 20% less than the
baseline case indicating lower lift at both angles of attack. This is consistent with the re-
ported decrease in lift observed by Hansen et al. (2011); Johari et al. (2007) and lift measure-
ments presented in figure 5.14.
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4.7 Summary

Consistent with the results from previous work, single-wavelength leading edge serrations
have been found to provide substantial noise reductions over a range of frequencies and
flow speeds. Based on careful measurements of the sound power reduction for a range of
serration amplitudes, wavelengths and two different turbulence length-scales, this chapter
has derived simple scaling laws with which to understand and predict the noise reduction
for arbitrary serration amplitude and wavelength. The most useful finding of this thesis
is the existence of an optimum serration wavelength )\, at which maximum sound power
reductions occur. The findings above allow the optimum single-wavelength serration to
be designed for any arbitrary frequency range and integral length scale. This optimum
wavelength has been shown to roughly equal four times the integral length scale A;. At the
optimum wavelength:

1. The compact sources at adjacent valleys are excited incoherently

2. A geometric similarity condition is observed in which noise reductions are a function
of the ratio of serration amplitude & to gust wavelength U/ f at frequencies up until
the frequency at which self-noise starts to dominate. This ratio corresponds to the
Strouhal number St;, = fh/U.

3. The ratio of the sound power produced by the serrated leading edge to the sharp
edge (baseline) case is found to be inversely proportional to St for St;, > 0.2. This
inverse Strouhal dependence observed at the optimum serration wavelength provides
insight into the characteristics of the noise generation mechanism. Following the work
of Kim et al. (2016), who show that the noise sources on a serrated leading edge are
acoustically compact, concentrated at the valleys, and are roughly the same level as on
a straight edge. The inverse St;, dependence suggests that the 'length” of these sources
along the leading edge must scale linearly with the hydrodynamic wavelength U/ f.

4. The rate of change of sound power per valley is precisely equal to the number of
valleys N, itself.

A very simple, idealised model is proposed to explain the precise variation in sound power
reduction with St;,. By assuming that noise reductions are due to variations in the phase of
the serrated leading edge, and that these match the phase variation due to the gust along
the leading edge, a simple function is derived whose minima match very well the measured
variation in sound power reduction versus St,. It is emphasise that the proposed model
doesn’t provide a complete description of the noise reduction mechanism but merely to
provide a simple theoretical framework in which to explain the general behaviour.

Introducing serrations onto the aerofoil leading edge has also been shown to produce a
significant reduction in trailing edge noise of up to 3dB. The serration valleys have been
shown through PIV measurements to produce a local thickening of the boundary layer at
the leading edge, resulting in an overall thicker boundary layer at the trailing edge which
is reasonably uniform across the span. At this trailing edge region, mean shear gradients
were found to diminish, particularly near the wall, and the rms velocity fluctuation remains
similar to the levels for the sharp baseline case. The classical work of Blake (1970) predicts
that a reduction in mean shear gradients will result in a reduction in surface pressure spectra
and hence far field noise.

The effect on aerodynamic performance of leading edge serrations has been investigated
through direct measurement of the lift and drag and qualitatively through PIV measure-
ments on the same wind tunnel used to perform the noise measurements. The introduction
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of leading edge serrations has been demonstrated to cause a reduction in lift coefficient by
between 0.01 and 0.05 approximately and an increase in drag coefficient of 0.001 and 0.005.

In additional to its structural importance, the purpose of OGV’s in turbofan engines are
to provide maximum aerodynamic performance by making the flow completely axial with
minimum pressure loss coefficient across the them. Leading edge serrations has demon-
strated high levels of noise reductions with little penalty on aerodynamics performance. At
realistic mean flow velocities in turbofan engines (especially approach conditions), the hy-
drodynamic gust wavelengths U/ f are very large and hence we need to have significantly
longer serration amplitudes in order to achieve atleast 3dB of noise reductions. This re-
sults in deterioration in it's aerodynamic performance. The next chapters in the thesis will
be focusing on the maximizing the acoustic performance for a fixed peak-to-root serration
amplitude so that aerodynamic performance is not compromised.
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Noise reductions through
double-wavelength leading edge
serrations; a new control concept
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The aeroacoustic and aerodynamic performance of single-wavelength sinusoidal serrations
has been studied extensively in the Chapter 4, where simple scaling laws were identified
under some conditions. Nearly all of the previous work available in the literature has fo-
cused on sinusoidal leading serration geometries. It was observed previously in Chapter 4
that as serration amplitude is increased, aerodynamic performance degrades. The goal of
the present chapter is to maximize the acoustic performance for a fixed serration amplitude,
thereby achieving a better balance between acoustic performance and aerodynamic penalty.
This chapter presents alternative leading-edge serration design based on a new noise control
principle for the reduction of aerofoil leading edge noise that provide substantially greater
noise reductions than single-wavelength serrations. The new leading edge serration pro-
tiles simply comprise the superposition of two single-wavelength components of different
wavelength, amplitude and phase with the objective of forming two roots that are suffi-
ciently close together and separated in the streamwise direction. Compact sources located at
these root locations then interfere leading to less efficient radiation than single-wavelength
geometries.
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5.1 Introduction

The single-wavelength profiles have been shown to involve two dominant noise reduction
mechanisms. One is due to a source cut-off effect arising from the obliqueness of the inclined
leading edge (Clair et al., 2013; Kim et al., 2016). The second is due to interference between
the sources along the serration leading edge. However, one of the main findings of Kim
et al. (2016) is that the source at the root is dominant compared to the sources at the tip and
the sources along the oblique edge and is similar in strength to the straight leading edge.
The reason for this behavior has been investigated by Turner et al. (2016). They showed
that the root is the dominant noise source due to the presence of a secondary horseshoe-like
vortex system generated by the serrated leading edge, which alters the upstream velocity
field, thereby enhancing the source strength at the serration root.

Chapter 4 on single-wavelength serrations has demonstrated the existence of an optimum
wavelength Ay which is a roughly four times the transverse integral length scale A; of the
incoming turbulent flow. At this optimum wavelength, it was shown the reduction in sound
power level is given by APWL(f) = 10log,o(fh/U)+10, where h is the serration amplitude,
U is the velocity. This expression represents the upper limit on the possible reductions in
sound power that can be achieved through the use of single-wavelength serrations at any
particular frequency f and is determined only by the non-dimensional frequency fh/U.

Chapter 4 of the thesis has outlined the reason for the existence of an optimum wavelength
Ao for single-wavelength serrations, which is related to the turbulence integral length scale
A; by 4. It wass argued that this value corresponds to the maximum spanwise separation
distance between adjacent roots at which the root sources just become incoherent. At smaller
separation distances, therefore, adjacent roots interfere constructively, leading to a deterio-
ration in the noise reduction performance. In the serration profile proposed here, therefore,
the distance between roots is required to be less than this value in order to exploit the effects
of interference between adjacent roots.

In this chapter we propose an alternative leading edge geometry that is able to provide
significantly enhanced sound power reduction compared to the maximum sound power re-
duction that can be obtained from single-wavelength serrations. A new control principle is
proposed in which different source components at the leading edge are arranged to inter-
fere destructively. The new leading edge profile simply comprises the superposition of two
single-wavelength components of roughly the same amplitude but with one wavelength
being twice the second and shifted in phase. The resulting profile then comprises adjacent
(nearly-identical) roots which are separated in the streamwise direction. Upon interaction
with a turbulent flow, therefore, near-identical radiation is generated at each root but with a
phase difference corresponding to the time taken for the turbulent flow to convect between
the two roots. Maximum noise reductions are obtained at the frequency at which the two
roots radiate 180° out of phase. Preliminary experimental results confirming this new con-
trol concept was originally proposed by Chaitanya et al. (2016) and validated numerically
by the numerical simulations of Turner et al. (2016).

This chapter presents a detailed experimental investigation into the effectiveness of this
double-wavelength concept on flat plates in a turbulent stream. The sensitivity of noise
reductions to the stream-wise and span-wise separation distance between adjacent roots is
investigated in sections 5.5.1 and 5.5.2. A simple model is proposed in section 5.6 to pre-
dict the reduction in sound power versus frequency and provide physical insight into the
influence of separation distance between the roots, which is discussed in section 5.8. Finally
the optimum design is implemented on a 10% thick three-dimensional (3-D) aerofoils. The
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noise reduction spectra, which are presented in section 5.9, is shown to be almost identical
to that obtained on the flat plate.

5.2 Double-wavelength leading edge serrations

The double-wavelength profile under investigation here is defined as the sum of two single-
wavelength components of amplitudes h; and hy, and wavelength \; and A\ with phase
difference ¢. The chord length ¢(r) at any radial position r is therefore given by,

c(r) = co + hy sin(2mr /A1) + he sin(27r /Ay + &) (5.1)

where ¢y is the mean chord.

Adding two sinusoidal profiles has the desired property of forming two adjacent roots sepa-
rated in the streamwise direction by &, and separated in the spanwise direction by A, giving
a total peak-to-root amplitude of 2h, as shown in the sketch in figure 5.1. The red dots in
this figures represent the compact sources regions at the root locations, which will form
the basis of a simple model for predicting the noise reductions in section 5.6. This sketch
also shows an upstream turbulent eddy impinging on the leading edge at a flow speed U
with transverse integral length-scale A;. Note that no simple relationship exists between
the single-wavelength parameters hi 2, A1 2, the phase difference ¢ and the distances h, and
Ar , which we shall show below are central to the performance of the double wavelength
serration. These distances must therefore be obtained by a trial and error process to provide
the necessary values identified below for best control performance.

The profile sketched in figure 5.1 is designed to produce near-identical sources at the roots
but which differ in phase by ¢(w) = wh,/U by virtue of being separated in the stream-
wise direction by a distance h,. This profile therefore leads to dipole-like radiation at the
frequency wy, i.e., ¢(wp) = m, which we shall now refer to as the tuned frequency, for which
the sources are exactly 180° out of phase, given by

wo = U /h,. (5.2)

Note also that based on the principle of destructive interference, additional peaks in the
noise reduction spectra are also predicted, occurring at the odd harmonics of wy correspond-
ing to wo,, = (2n — 1)7U/h,, provided that the sources are sufficiently coherent at these
higher frequencies.

Overall sound power reductions provided by these double-wavelength profiles therefore
comprises the sum of two contributions. The first arises from the reduction in source strength
along the leading edge, as shown by Kim et al. (2016) for single-wavelength profiles, which
we shall denote as APWLg. The second arises from interference between adjacent root
sources, which we shall denote as APWL;. The overall sound power reduction may there-
fore be written as,

APWL(w) = APWLg(w) + APWL;(w). (5.3)
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FIGURE 5.1: A typical double-wavelength serration profile formed from the

summation of two single-wavelength profiles to form adjacent roots that are

separated in the spanwise direction by A, and by h, in the streamwise direc-
tion.

Chaitanya et al. (2017) has identified the maximum possible sound power reduction that can
be obtained from single-wavelength serrations arising solely from a reduction in the source
strength, given by,

APWLs(fh/U) = 10log,o(fh/U) + 10, (5.4)

and is only a function of the non-dimensional frequency fh/U, where h is half the peak-
to-root amplitude identified in figure 5.1. The additional noise reduction due to double-
wavelength serrations arising from interference between adjacent roots is therefore quanti-
fied by the interference term APWL;(w), which we shall be investigating in detail in Sec-
tion 5.6. We now present the experimental data confirming the proposed noise reduction
mechanism of double-wavelength serrations.

5.3 Flat plates leading edge serrations

For economy and ease of manufacture, a parametric study into the effect of 7, and A, on
noise reductions was performed on flat plates situated within a turbulent flow. A double
wavelength design arising from this study was then applied to a 3-D aerofoil of 10% thick-
ness, which we show in section 5.9 has an almost identical noise reduction spectra to the flat
plate case.

The flat plate with a mean chord (cp) of 150 mm and span of 450 mm were constructed by
joining together two 1 mm thick metallic sheets to allow serrated flat plate inserts 2 mm thick
to be inserted between them. All corners were rounded and the trailing edge sharpened to
eliminate vortex shedding noise. Further details of this flat plate construction can be found
in Narayanan et al. (2015).

A total of 11 different flat plate serrations of varying amplitude, phase and wavelength were
investigated to explore the sensitivity on noise reductions to these parameter variations.
Note that in this chapter values of A\, and h, are presented as quantities normalized on the
mean chord ¢y although there is no evidence to suggest that this is a meaningful parameter
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FIGURE 5.2: A typical flat plate double-wavelength serration inserts.

in determining noise reductions. Figure 5.2 shows photographs of six typical profiles, cut
from 2mm acrylic sheet, investigated in this chapter.

5.4 Comparison of noise reductions due to double-wavelength and
single-wavelength serrations

Figure 5.3 is a typical sound power reduction spectra plotted against non-dimensional fre-
quency w/wy obtained for a double-wavelength profile comprising the sum of two single-
wavelength serrations with wavelengths of A\;/cop = 0.033 and Ay = 2); with identical ser-
ration amplitudes hi/cy = ha/co = 0.0568 with zero phase difference ¢ = 0. The flow
speed in this case is U = 60 m/s. This double wavelength profile has a total peak-to-root
distance of 2h/cyp = 0.2 and spanwise distance between adjacent roots A, /A; of 1.17, which
we shall show below is a critical parameter in determining the level of noise reductions. A
sketch of the profiles are also shown in figure 5.3. Noise reduction spectra due to the double-
wavelength serration profile and single-wavelength profiles whose amplitudes were chosen
to equal that of the double wavelength profile, 2h/cy = 0.2, are also shown in this figure.
The dashed line in this figure represents the optimum sound power reduction for a single-
wavelength serration given by equation 5.4. Note also that at high frequencies, the self-noise
radiated from the trailing edge starts to become the dominant noise source causing the noise
reduction spectra to deviate from the straight line of equation 5.4, which one would expect
based solely on a reduction in source strength.

Simply adding the two single-wavelength components but maintaining overall amplitude
can be seen to provide an additional noise reduction compared to single-wavelength ser-
rations of up to 4 dB in the non-dimensional frequency range of roughly w/wy = 0.7 to
1.4. The frequency of maximum noise reductions occurs close to the tuned frequency of
w/wy =~ 1, where two adjacent roots are 180° out of phase. This increase in noise reduction
performance therefore provides validation of the control principle of destructive interfer-
ence between adjacent roots. An important finding in figure 5.3 is that noise reductions are
confined to a well-defined frequency bandwidth with no additional noise reductions outside
of this bandwidth. A detailed explanation of this behaviour will be provided in section 5.8.
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FIGURE 5.3: Acoustic performance of double-wavelength serrations for

A1/co = 0.033 Aa/co = 0.067,h/co = 0.1,¢ = 0 and flow velocity U=60m/s.

(black line: Single-wavelength A;; blue line: Single-wavelength \,; red line:
Double-wavelength serration).

5.5 Sensitivity on noise reductions due to i, and )\,

In this section the sensitivity of the noise reduction due to double-wavelength serration
profiles are compared to the optimum single-wavelength profiles of the same peak-to-root
distance due to variations in A, and \,.

5.5.1 Influence on noise reductions due to /,

The noise control principle outlined above suggests that to achieve significant noise reduc-
tions at low frequencies requires the streamwise distance between the adjacent roots A, to
be as large as possible. The distance between adjacent roots may be altered, either by alter-
ing the amplitude of the single-wavelength components h; and hs or by altering the phase
between them.

The results of a parametric study are now presented aimed at revealing the sensitivity of
noise reductions to overall peak-to-root distance 25, i.e., simply scaling hi, ho, but keeping
hi = hg, to vary 2h. Figure 5.4 shows the variation in sound power reductions in 2h/c( be-
tween 0.1 and 0.167, whilst keeping A\; and )3 the same as in Figure 5.2a. It is observed that
the peak noise reduction frequency fh,/U varies between 0.5 to 0.6, even though the root
sources are predicted to be 180° out of phase for fh,/U=0.5. This variation in value is be-
cause the sources in the vicinity of the root are not located precisely at the root. Clearly, nar-
rower serrations exhibit a much greater variation in stream-wise source location compared
to broader serrations. A detailed numerical investigation of this phenomenon is presented
by Turner et al. (2016), who demonstrated that destructive interference occurs between up-
stream root and a point near to the downstream root. This effect is more pronounced for
longer serrations as shown in Figure 5.4.
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FIGURE 5.4: Acoustic performance of double-wavelength serrations, A; /co =
0.033 & A2 /co = 0.067, h/co = 0.1,0.133,0.167.

We now investigate the effect on noise reductions due to varying h, by changing the phase
difference ¢. Three values of h, were investigated by fixing h; = ho and choosing the
phase difference to be ¢ =0, 7/4 and 7/2. This combination of parameters has the effect of
varying h, whilst keeping the peak-to-root amplitude 2k and the spanwise distance between
roots A, constant. Note that in this example the spanwise distance \,/A; = 1.17 which is
considerably less than the value 4.5, which ensures that adjacent root sources radiate with
a high degree of coherence and therefore strongly interfere, as shown in Section 5.5.2. The
three noise reduction spectra are plotted in Figure 5.5 against w/wy.

Noise reductions at the peak frequency w/wp ~ 1 diminish as h, increases. A second peak
is also observed in the noise reduction spectra at w/wy ~ 3, again confirming the role of
interference between adjacent roots as an important noise reduction mechanism. Increasing
hr can be seen to have two effects on the noise reduction spectra. One is that the noise
reduction reduces at the peak frequency wy but increases at the second peak frequency of
~ 3wpg. The second effect of increasing h, is that the frequency of the first peak steadily
increases above w/wp = 1 while the second peak moves towards w/wy = 3 from above.

One explanation of the shifting peak frequencies is that the sources are not precisely located
at the roots, as identified in the numerical simulations of Turner et al. (2016). Another ex-
planation for the diminishing peak noise reductions and shifting frequencies is proposed in
Section 5.8.2 and is related to the frequency of maximum coherence length.

5.5.2 Influence on noise reductions due to )\,

In this section we investigate the effect on noise reductions due to variations in the spanwise
root-to-root separation distance \,. An important requirement for the double-wavelength
serration concept to be effective is that the sources between adjacent roots must have a high
degree of coherence to be able to interfere destructively. The distance A, is therefore required
to be much less than the optimum spanwise distance identified in Chaitanya et al. (2017) for
single-wavelength serrations, necessary to ensure that adjacent roots are incoherent over
the entire frequency range. We now investigate this dependence explicitly. A parametric
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FIGURE 5.5: Acoustic performance of double-wavelength serrations for
A/co = 0.033 & Aa/cog = 0.067,h/co = 0.167, U=60m/s at varying phase ¢
ratios of 0, 7/4, w/2. (black line: ¢ = 0; blue line: ¢ = 7/4; red line: ¢ = 7/2).

study is now performed in which only the spanwise distance ), between adjacent roots is
varied whilst maintaining constant root-to-root distance h,. This was achieved by varying
A1 but maintaining the ratio between the two wavelengths A; /A2 at 0.5. Figure 5.6 shows the
sound power reductions versus w/wy for 6 different spanwise distances A, /A; of between 1
to 7 at a fixed peak-to-root amplitude 2h/cyp = 0.33 and a flow speed of U=60m/s. This
range of values was chosen to vary either side of the optimum wavelength, A\, /A; of ~ 4
for which maximum noise reductions occur for single-wavelength serrations. Also shown
in this figure is the line 10log,(fh/U) + 10 corresponding to the maximum sound power
reduction versus frequency that can be obtained by a single-wavelength serration, which
occurs at the optimum wavelength A, = A,.

Figure 5.6 can be summarized as follows:

1. Peaks in the sound power reduction spectra at non-dimensional frequencies of ap-
proximately 1 are only observed for the three cases in which \,/A; < 4.5. In these
cases, therefore, adjacent roots strongly interfere and the sound power reductions sig-
nificantly exceed the fundamental limit 10log,(fh/U) + 10 achievable using single-
wavelength serrations (Chaitanya et al. (2017)). By contrast, no peaks in the noise
reduction spectra can be observed for the three cases in which A, /A; > 4.5 for which
adjacent root sources are incoherent.

2. Sound power reductions are only achieved over a band of frequencies, which is highly
dependent on \,. The reason for this behaviour will be explored in section 5.6 below.

3. Sound power reductions generally improve as \,/A; is reduced below the threshold
value of 4.5 suggesting that the level of coherence between the adjacent root sources
increases as \A,/A; is reduced and hence the degree of destructive interference is im-
proved.

4. The peak frequency of maximum noise reduction for the cases \,/A; < 4.5 increases
steadily from the lowest value of 1 to 1.3 at the shortest separation distance A, /A;.17.
This behaviour is explored in section 5.8.
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To more fully illustrate the behaviour of double-wavelength serrations their noise reduction
spectra are now compared to their single wavelength components of the same peak-to-root
amplitude. Three cases are considered. One in Figure 5.7a corresponds to A\, /A; = 2.35 and
hence adjacent roots are well within the correlation length of 4 identified in Chapter 4. The
second in Figure 5.7b is for A\, /A; = 4.6 and corresponds to the case when adjacent roots are
on the verge of becoming uncorrelated and Figure 5.7c for A\, /A; = 7 where adjacent roots
are completely uncorrelated. Figure 5.7a clearly shows the additional noise reductions re-
sulting from destructive interference between adjacent roots, leading to better overall noise
reductions. However, when adjacent roots are just uncorrelated, noise reductions are equal
to the single wavelength serration with the largest wavelength but poorer than than the
serration with the smallest wavelength. Finally, when adjacent roots are completed uncor-
related, Figure 5.7¢c, the noise reduction spectra of the double serration profile tends almost
exactly to the single wavelength serration of the largest profile but is significant worse than
the smallest wavelength profile.

Thus, the requirement for an effective double wavelength serration profile are contrary to
that for single wavelength profiles, whereby the wavelength ), is required to be significantly
less than the optimum value of 4 identified for single wavelength profiles.

5.6 Simple analytical model for additional noise reductions

In this section a simple analytical model is derived to understand the behaviour of the noise
reductions with serration geometry observed experimentally above. In the model we focus
on the additional noise reduction APWL; due to interference between adjacent root sources.

In this simple model we assume that the root sources have identical source strength but
radiate to a far-field observer with a phase difference wh, /U arising from the streamwise
distance h, between adjacent roots. Consider two compact sources located at spanwise po-
sitions r; and 7o = r; + )., and streamwise locations z; and zo = x1 + h, with source
strengths ¢(r1, z1,w) and ¢(r2, z2,w) along the span of the aerofoil, as shown in figure 5.1.
The path length differences between adjacent roots to a far-field observer can be neglected
since they are generally much closer together compared to an acoustic wavelength. The to-
tal radiated pressure at any given frequency w is therefore proportional to the sum of the
source strengths with relative phase difference included,

p(w) X Q(Tlv €, UJ) + Q(T2a €2, w)e—iWhr/U (55)

The level of additional noise reduction due to interference between adjacent roots is there-
fore determined by the degree of coherence between them as turbulent flow convects over
the aerofoil. In this chapter, an assumption was made that the turbulence is frozen, i.e.,
v(x,t) = v(x — Ut), where v is the velocity component normal to the aerofoil and x = (r, x)
is any position in the flow. Further making the assumption that the turbulence is homoge-
neous, the space-time correlation function R = Efv(ri, z1,t1)v(r1 + A, 21 + hy, t2)] for the
velocity v between the two positions (r1,z1) and (rg, x2) is of the form

R(rl,xl,rl + A,y + h,tl,tQ) = R(h — (tl — tQ)U, )\7«). (56)
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Under these assumptions, equation 6.2 makes explicit that the correlation function evaluated
at the time taken for the flow to convect between the upstream root and downstream roots,
t1 —te = h, /U, ie., R = R(0, \), is only a function of the spanwise separation distance A,.

We further make the assumptions that the coherence of the sources has the same frequency
to that of the turbulence velocity and that the source strength at the root position (r2,22) is
identical to that at root position (r1,21) and shown in Chaitanya et al. (2017) to be only a
function of non-dimensional frequency wh/U. Further noting from the above argument that
the space-time correlation function, and hence the coherence function, is only a function of
the spanwise separation distance between roots for frozen, homogeneous turbulent flow,
ie., 72 = v2(\, Ay, w), the cross spectrum between adjacent root sources may therefore be
written as,

E[q* (r1, 21, wh/U)q(r1 + A, 21 + hy,wh/U)] = @2(wh/U)y2 (A, w), (5.7)

where ¢2(wh/U) is the mean square source strength at the root location.

The radiated sound power W is related to the (integrated) mean square far-field pressure,
ie.,

W(w) x p?(w) x E[p*(w)p(w)]. (5.8)
Substituting equation 6.1 and 5.7 into equation 5.8, the radiated sound power becomes,
W (w) o 2¢2(wh/U) |1+ 2 (A, Ag, w) cos(wh,./U) | (5.9)

Equation 5.9 for the sound power radiated by the double wavelength serration will now be
compared to the sound power W,(w) radiated by the optimum single-wavelength serration
with the same amplitude. This can be calculated within the present theoretical framework
by assuming zero phase difference and zero coherence between adjacent roots, i.e., substi-
tuting h, = 0 and Y2 (Ary Ay, w) = 0in equation 5.9, to give,

We(w) o 2¢2(wh/U). (5.10)

The additional sound power reduction relative to the optimum single-wavelength serration
may be written as APWL;(w) = 10log;((¢), where ¢ = W(w)/W (w) (defined to be positive),

APWL;(w) = —101logyg [1 42, Ay, w) cos(why /U)] (5.11)

For simplicity, a simple exponential form for the source strength spanwise coherence func-
tion was assumed and defined by equation 5.7 of the form,

V(Ary Apyw) = e /1), (5.12)
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where [(w) is the frequency-dependent coherence length defined by I(w) = [;° 7*(Ar, Ar, w)dA,.
Assuming the von Karman turbulence spectra for the incoming turbulent flow, the coher-
ence length is given by (Amiet, 1976)

l(w) 97 (2wA;/U)?

A 1 (Qwh U2 L+ 32w JU2

Note that, in order to provide best fit to the experimental noise reduction spectra, the coher-
ence length of equation 5.13 includes an additional factor of 3 compared to Amiet’s original
expression. The justification for this choice of arbitrary constant is that the coherence of the
pressure response at the aerofoil leading edge is likely to be greater than that of the turbu-
lence velocity causing it since the aerofoil will not respond equally to all gust components.

(5.13)

The behaviour of equation 5.13 is central to understanding the noise reduction characteris-
tics of double-wavelength serrations. The expression for [ above tends to zero as (2wA;/U)?
aswh;/U — 0and as (2wA;/U)" ! aswA;/U — oo. Crucially, it takes a maximum value at
2wA;/U = 1, from which the frequency wy of maximum coherence is given by,

wy = U/2A:. (5.14)

Equation 5.14 therefore identifies the frequency wy at which adjacent root sources have max-
imum coherence, which in equation 5.13 gives the maximum value of the coherence length
l(wn) as,

[(wa) 97
= — ~4.38. 5.15
N 1ve (5.15)

Substituting equation 5.14 and 5.13 in 5.11 and re-writing the form of the coherence in terms
of wy gives

APWL;(w) = —101og;, [1 + v (A /g, w/wp) COS(?T(U/W())}. (5.16)
where
2 2
Y2\ /Ag,w/wp) = exp ( — j;z Lt (w/cggzzu/(i:;j(w/w/\) )> : (5.17)

Additional noise reductions afforded by the double-wavelength serration given by equa-
tion 5.16 are therefore determined by the ratio of spanwise root separation distance relative
to the turbulence length scale A, /A; and the two non-dimensional frequencies of w/wy and
w/wy. We now use this simple model to understand the experimental noise reduction spec-
tra plotted above.

Figure 5.8 shows a comparison between the measured additional noise reduction spectra for
the case of A\, /A; = 2.34 and a/co = 0.13 with that predicted from Eqs 5.16 and 5.17, plotted
against non-dimensional frequency w/wy. The measured spectra was obtained by subtract-
ing 10logo(fh/U) + 10 from the measured noise reduction spectra plotted in figure 5.8.
A reasonably good comparison is observed between the measured and predicted noise re-
duction spectra, providing confirmation of the validity of the additional noise reduction
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FIGURE 5.8: Additional noise reductions (APWL;) comparison between mea-
sured and predicted for flat plates.

mechanism described by the model. Discrepancies between the measured and predicted
noise reduction spectra arises mainly from the size and precise location of the root sources,
which as pointed by Turner et al. (2016), are not exactly located at the root. Nevertheless, this
level of agreement proves unequivocally that the additional benefit of double wavelength
serrations is a result of interference between two compact sources located at adjacent roots.

5.7 Self-similarity of double-wavelength serrations

The expressions above for the two components of noise reduction APWLg and APWL; can
all be expressed in terms of the non-dimensional frequency fL/U where L takes the three
characteristic lengths of h, h, and A;. Overall noise reductions are therefore determined by
the ratio of hydrodynamic wavelength U/ f to these three dimensions. Double-wavelength
serrations for which these four dimensions are in constant ratio are therefore predicted to
produce identical noise reductions. The noise reduction mechanism may therefore be re-
garded as self-similar in these four length-scales.

An important consequence of this observation is that noise reductions obtained for a fixed
geometry and integral length scale should be identical at all flow speeds when plotted
against non-dimensional frequency fL/U, where L can be any of the length scales h, h,
and A;.

To confirm this prediction, the noise reduction spectra are shown in figure 5.9 plotted against
w/wo, i.e. for L = h,, at the four different velocities of U equal to 20, 40, 60 and 80 m/s for
the typical double-serration wavelength example of A, /A; = 2.34 and h, /¢y = 0.13.

As predicted the noise reduction spectra are almost identical to within 1dB with greatest
deviation being observed at the highest frequencies where self noise starts to dominate.
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FIGURE 5.9: Influence of flow velocity on noise reduction due to double-
wavelength serration profiles.

5.8 Predicted dependence of APWL; on h, and ), on noise reduc-
tions

In this section we interrogate the model developed above to understand more fully the vari-
ation in the additional noise reductions observed in the measured noise spectra plotted in
tigure 5.8 to variations in the double wavelength parameters of A, and A,.

Setting equation 5.16 to be greater than 10log;((¢), gives the following condition necessary
to achieve an additional sound power level reduction of 10log;(¢) dB greater than the max-
imum noise reduction that can be achieved using a single-wavelength serration,

1—c¢

V(A /A, w/wn) cos(mw /wp) < (5.18)

To identify the combinations of A, and h, that provides the noise reduction of 10log;(e),
APWL; from equation 5.16 is plotted in figure 5.10 against w/wy for the same six different
spanwise distances A, /A; plotted previously in figure 5.6 of between 1.17 to 7. Just as in the
measured noise reduction spectra in figure 5.6, the peak-to-root amplitude is held constant
at 2h/co = 0.33. Also plotted in this figure by way of a reference value, as a dashed line, is
the noise reduction of 3 dB.

This figure confirms the general dependence in the noise reduction spectra with A, observed
experimentally in figure 5.6. Maximum noise reductions at the peak frequency wy are pre-
dicted to diminish sharply as A, increases, confirming the need for high levels of coherence
between adjacent root sources for effective interference to occur. Another significant feature
in figure 5.10 is that noise reductions are fundamentally limited to a number of finite fre-
quency bandwidths, which are determined from a combination of the effect of interference
between adjacent roots, as determined by the factor cos(nmw/wp), and the coherence between
adjacent roots sources, as determined from the factor Y2(Ar/A¢,w/wy). The relationship be-
tween the noise reduction frequency-bandwidth wy — w; and the geometrical parameters of
the double wavelength serration are discussed in detail in Section 5.8.3.
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FIGURE 5.10: Predicted behaviour of APWL; on h, and J,.

In both the measured noise reduction spectra in figures 5.6 and their predictions in fig-
ure 5.10 it is fundamentally important to recognize that the main reason that the serration
geometries under investigation are effective in reducing noise is that the peak frequency wy
was chosen to equal the frequency wy at which the coherence length is a maximum. The
geometries investigated experimentally in figure 5.6 therefore represent the optimum con-
dition, which we shall discuss in detail in the section 5.8.2 below.

We first discuss the factors that affect the noise reduction at the tuned frequency wy at which
adjacent roots sources are 180° out of the phase. We then proceed to discuss the factors that
determine the frequency bandwidth wy — w; of noise reductions.

5.8.1 Noise reductions at the tuned frequency wy

Additional noise reductions APWL; due to double-wavelength serrations are determined
by just two geometric parameters; the spanwise and streamwise separation distances be-
tween adjacent roots, A\, and h, respectively. We now summarise the relationship between
these parameters and the noise reduction performance at the tuned frequency wy, which
represents the maximum possible noise reduction.

Equation 5.16 enables the additional sound power reduction to be compared directly to the
noise reduction due to the optimum single-wavelength serration at the peak frequency wy,

APWL;(w) < APWL;(wp) = —101logyg (1 — 22(\r /Ay, wo /wA)) (5.19)

which of course is determined solely by the degree of coherence between adjacent root
sources.

At frequency wy, the essential requirement for good levels of additional noise reduction is
that adjacent root sources must be sufficiently coherent. At this frequency cos(rw/wg) = —1
and therefore equation 5.18 imposes a lower limit on the coherence function of v2(\,, Ay, wp) =
(e — 1)/e necessary to achieve an additional noise reduction of at least 10log;,(¢). For
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example, to provide a noise reduction of 3 dB (¢ = 2) this condition may be written as
e M/Hwo) > 0.5 and hence )\, must not exceed —(log0.5)l(wp). Noting the expression for
l(w) in equation 5.13, the maximum value of A, necessary to ensure a noise reduction at the
tuned frequency of at least 3 dB must therefore satisfy

Ar < 0.7(wp) (APWL(wp) > 3 dB) (5.20)

5.8.2 Optimum condition (wy = wy)

As stated explicitly in equation 5.19, maximum noise reductions are obtained at the tuned
frequency wy. However, if wy is chosen (by the choice of h,) to deviate too far from the fre-
quency wy of maximum coherence length, the condition A\, < 0.7/(wp) can only be satisfied
by excessively small ), since I tends to zero at frequencies away from w,. Optimum noise
reductions are therefore obtained at the tuned frequency, at which adjacent root sources are,
180° out of phase, when it is chosen to coincide with the frequency of maximum coherence,
ie.,

W = WA (5.21)

Equating equations 6.11 and 5.14 therefore provides the optimum value of h in terms of the
turbulence length-scale at which wy = wy,

ho = 27TAt (wo = wA) (522)

The effect on noise reductions at a tuned frequency wy less than, or greater than, wy is illus-
trated in figure 5.11, which shows plots of — cos(mw/wp) and 72 versus w/wy for the three
cases of wp/wp < 1,=1and > 1. At sub-optimum conditions, wy/wy # 1, the frequencies of
the peaks due to the two terms differ, while at the optimum condition wy/wy = 1, the two
peak frequencies coincide resulting in maximum noise reduction. Note that it is also possi-
ble to obtain the optimum condition at the second harmonic frequency, i.e., 3wy = w. This
is the situation in Figure 5.5 for which greatest noise reductions are observed at the second
harmonic frequency for the case of ¢ = /2.

Finally, combining equation 5.15 and 5.20 gives a simple expression for the upper limit of
Ar at which additional noise reductions of at least 3 dB may be obtained in terms of the
turbulence integral length scale,

Ar < 0.70(wn) ~ 3.3A, (5.23)

This prediction is close to the observed value in figure 5.6 of roughly 2.5 dB for the slightly
wider serration of A, /A; = 3.5.

5.8.3 Noise reduction frequency bandwidth

Double-wavelength serrations are able to provide noise reductions over and above the max-
imum noise reduction achievable with a single-wavelength serration. However, as both
measurements and predictions have shown, these additional noise reductions are funda-
mentally limited to finite frequency bandwidths. This finding is a consequence of the fact
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FIGURE 5.11: Condition for optimum noise reductions.

that the frequency range at which adjacent root sources are sufficiently out of phase and also
have sufficiently high coherence are themselves band-limited.

The measured noise reductions in Figure 5.6 and the predicted reductions from figure 5.10
both indicate that the frequency bandwidth increases as A, is reduced. More formally, the
upper and lower frequency limits, w; and ws, either side of wy, at which an additional noise
reduction of 101log;(¢) is obtained may be deduced from the two solutions to equation 5.18
either side of wy, which we express here in terms of the tuned frequency wy as

wie 1 4 ((1—¢ 1
21 24
n ( e Y70 [ afon) 629

The frequency bandwidth Awsgp = wi — w2 of 3 dB additional noise reductions was cal-
culated from solutions to Equation 5.24 for the three examples, wo/wy < 1,= 1 and > 1
and plotted against A, /A; in figure 5.12. As expected, the highest frequency bandwidth is
achieved at the optimum condition wy = wy. The fundamental upper limit on the frequency
bandwidth of 3 dB additional noise reductions is achieved as ), tends to zero and the co-
herence between adjacent root sources approaches unity. In this limit, the upper and lower
frequencies are wy /wy = 2/3,w2/wy = 4/3 and therefore the upper limit on the frequency
bandwidth Awssp = (w2 — wi) at additional noise reduction APWL; =3 dB is given by

AWSdB 2
—_— = 5.25
= 3 (5.25)

The upper limiting frequency bandwidth is therefore proportional to the tuned frequency
wp. Tuning to a low frequency, therefore only produces noise reductions over a small fre-
quency bandwidth in absolute terms.
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5.9 Sound Power Spectra comparison for 3-D aerofoils

Finally, we validate the noise reduction principle established on flat plates in Section 5.4 by
applying it to the leading edge of a NACAG65 aerofoil with 10% thickness, 150 mm mean
chord and 450 mm span. Noise measurements were made on the aerofoil with a double-
wavelength serration comprising of two single-wavelengths of (A1 /co = 0.067 and A2 /co =
0.13) with zero phase difference. Summing these two single-wavelength components gives a
total peak to root distance of 2h/co = 0.33, a root-to-root spanwise and streamwise distance
Ar/co = 0.059 and h,/cog = 0.13 respectively. In terms of the important non-dimensional
ratios identified above, these distances correspond to A, /A; = 2.34, wg/wa =~ 1, where the
tuned frequency wy corresponds to 1530 Hz at the flow speed of the measurement U=60m/s.
Also measured for comparison were the noise reductions for the two single-wavelength
serrations of the same peak-to-root amplitude 2h together with the baseline (un-serrated)
aerofoil. All aerofoils were fabricated using a 3-D printer, which provides smooth surface
finish.

The serrated aerofoils are defined such that if y(X) = f(X) defines the NACA65 aerofoil
profile, where X = 0 represents the trailing edge and X = 1 the leading edge. The profile
y(x,r) at any spanwise position r along the aerofoil is given by,

f(z/co), 0<x/co<2/3
y(x,r) = (5.26)

fz/e(r)), 2/3<x/e(r) <1

where the chord is a function of span r, i.e., ¢(r) = co + hepfsin(2mr /A1) + hegpsin(2mr/Xo)
and x varies between 0 at the trailing edge and the leading edge = = ¢(r). The total peak-to-
root distance of 2/ is maintained by adjusting Ay ;.

Figure 5.13 shows the comparison of the sound power reduction spectra between the two
single-wavelength serrations and the double-wavelength serration when introduced onto
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FIGURE 5.13: Total sound power reductions level (APWL) for single, double-
wavelength serrations on 3-D aerofoils of A\;/co = 0.067 & Az/cop = 0.13,
Ar/Ay = 2.65, 2h/cy = 0.33, U=60 m/s. (black line: Single-wavelength,
A1 (Aerofoil); blue line: Single-wavelength, Ay (Aerofoil); red line: Double-
wavelength (Aerofoil); green line: Double-wavelength (Flat plate))

the aerofoil and also on a flat plate. Differences between the respective spectra for the aero-
foil and a flat plat are typically about 1dB confirming that the flat plate encapsulates the
same physical principles as the 3-D aerofoil. Furthermore, it confirms the validity of the
new noise reduction principle on relatively thick aerofoil geometries.

510 Aerodynamic performance

Previous sections have highlighted the potential effectiveness of leading edge serrations
on 3D aerofoils. However, it is imperative that aerodynamic performance is not substan-
tially degraded by their introduction. In this section the effect of leading edge serrations
on the steady aerodynamic performance of aerofoils is investigated experimentally. The lift
and drag forces were measured on the NACAG65 aerofoil with varying serration wavelength
(Ar/co). The geometric angle of attack varies from —2.5° to 10° but due to jet deflection in
the open jet wind tunnel the corresponding effective angle of attack is in the smaller range
—19 to 2.8°. Aerodynamics measurements were performed on same open jet wind-tunnel as
acoustic measurements to ensure consistency.

Figure 5.14a shows the coefficient of lift for the baseline and serrated aerofoil of amplitudes
(h/co) 0.167 for two different serration wavelengths A1 /co and A2 /¢y of 0.067, 0.13 compared
against double-wavelength serrations. Whilst the gradient of lift coefficient versus angle of
attack remains unchanged by the introduction of serrations (Gradient ~ 6.1/radian), lev-
els are consistently smaller by between 0.01 and 0.05 compared to the baseline case. Thus,
whilst increasing the serration wavelength, the corresponding lift performances improves
and tend towards the performance of the baseline aerofoil. The lift performance of the
double-wavelength serrations falls in between that of the two single frequency serrations.
The corresponding variation in drag coefficient is shown in Figure 5.14b which is observed
to increase by between 0.001 and 0.005 compared to the baseline case. The variation is very
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FIGURE 5.14: Aerodynamic evaluation of serrated aerofoils (\,./co = 0.067) at
the jet velocity U = 60m/s.

small, hence no conclusions can be drawn but, very roughly, the double-wavelength gener-
ate slightly greater drag compared to the single-wavelength serrations. As mentioned ear-
lier in section 4.5, the ambiguity in the absolute values of lift and drag coefficients are due to
end effects in the open jet wind tunnel facility. However, the purpose of this measurement is
to demonstrate the relative difference between single-wavelength and double-wavelength
serration.

5.11 Conclusion

A new noise control principle has been developed and validated for the reduction of broad-
band interaction noise on aerofoils. The new control method is capable of providing sub-
stantially better noise reduction that the maximum noise reduction achievable on single-
wavelength serration geometries. A simple analytic model is proposed to explain the ad-
ditional noise reduction over and above that due to single-wavelength profiles. This addi-
tional noise reduction has been shown to depend on just the three non-dimensional factors
of w/wy, w/wa, Ar/A;. In summary, therefore, the total noise reduction from the double
wavelength serration can be written as the sum of a reduction due to the source strength at
the root and additional noise reductions due to interference between adjacent root sources,

APWL(w) = 10log;o(fh/U) — 10log;q (1 e A1) cos(ﬂw/wo)) +10 (5.27)

The optimum condition at which maximum noise reductions are obtained at the tuned fre-
quency wp has been identified. It is shown to occur at the frequency wy at which adjacent
root sources are simultaneously 180° out of phase and have maximum coherence length at
wa. An upper frequency bandwidth at which additional noise reductions of at least 3 dB are
obtained has been identified as 2wy /3. Finally, the double wavelength geometry has been
applied to a relatively thick aerofoil and shown to provide almost identical noise reductions
to that when the same geometry is applied to a flat plate.

In conclusion a new noise control principle for the reduction of aerofoil leading edge noise
has been proposed. It has been validated experimentally and shown to provide consider-
ably better noise reductions that single-wavelength profile alone. Further work is needed to
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establish the aerodynamic performance of such leading edge geometries although there is
no reason to believe that these profiles will perform any worse than single-wavelength ser-
rations. These profiles also pose a challenge to structural engineers to ensure that there is no
reduction in structural integrity due to stress concentrations at the roots. This work opens
up the possibility of research into the development of a new family of leading edge profiles
based on the same noise reduction principle of destructive interference between dominant
compact sources distributed over the leading edge.
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In the previous chapter a new noise control principle was presented and validated against
experimental data for the reduction of broadband interaction noise on aerofoils. It relied on
a new control concept on aerofoils related to the interference between adjacent root sources.
The new profile was found to provide considerably better noise reductions than single-
wavelength profiles alone. However, the limiting factor in determining the maximum noise
reductions was found to be due to the imperfect coherence between adjacent root sources.

In this chapter, new leading edge geometries are developed which will be shown to provide
greater noise reductions than even the double-wavelength profiles, with one being designed
to incur a smaller aerodynamic penalty. This leading edge geometry is based on the same
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noise reduction principle of destructive interference (demonstrated in chapter 5) between
dominant compact sources distributed over the leading edge.

6.1 Background

In Chapter 5, it was shown that the double-wavelength serration provides considerably
better noise reductions compared to single wavelength profiles at the optimum wavelength.
However, these profiles fundamentally limited by the coherence between adjacent roots,
thereby requiring the separation distance between adjacent roots to be excessively small.
This new leading edge profiles presented in this chapter are designed to overcome some
of these issues. However, this design will be shown to provide superior noise reductions
compared to the double wavelength of the same peak-to-root distance.

In this chapter, we propose a leading edge geometry for reducing leading edge interaction
noise that significantly exceeds the noise reduction performance (by up to 11 dB) of both
single and double-wavelength serrations. In the most general form it comprises a sawtooth
profile in which narrow slits with typical widths of just a few millimetres are introduced
at the root positions. The introduction of these slits, upon interaction with turbulent flow,
produces two compact acoustic source regions at either ends of the slit. However, since these
sources are aligned in the streamwise direction they are highly coherent and their level of
destructive interference considerably greater than that of the double wavelength serration.
As in the case of the double wavelength serrations, these sources will radiate out of the
phase by virtue of the time taken for eddies to convect along the length of the narrow slit.
A frequency therefore exists at which these two coherent source regions radiate 180° out of
phase. Providing the source strengths at this frequency are arranged to be equal through
appropriate choice of slit width, therefore, perfect cancellation of the sound field can in
principle be achieved at this frequency. We will show below that noise reductions of almost
18dB in radiated sound power can be achieved using this control principle at a flow speed
of 40m/s, with a small reduction in performance being observed at higher flow speeds.

By contrast to Chapters 4 and 5, which are based on single wavelength profiles, this new
profile is based around sawtooth profiles. It will be shown below that the single wavelength
and sawtooth profiles provide almost identical noise reduction at w/wy < 1.

In the current chapter, similar to previous chapters, the results of a systematic parametric
study are presented on flat plates and later applied to a 3-D aerofoil and shown to have
almost the same noise reduction effectiveness as when applied to flat plates. As previously
described in Chapter 4 and 5, a 2 mm thick metallic flat plate with dimensions (150 x 450
mm) with a slot is used to insert the serration profiles made from acrylic sheet of 2 mm
thickness are used. This chapter provides an preliminary assessment of the new profiles
which represent a completely new approach to the design of leading edge geometries for
reduction of turbulence-aerofoil interaction noise.

6.2 Acoustic performance of sawtooth serrations

The noise reductions due to sawtooth serrations are first compared with sinusoidal serra-
tions of the same amplitude and wavelength. Due to ease of design sawtooth serrations
were considered as the baseline for the rest of the designs investigated in this chapter.
Figure 6.1 compares the noise reductions versus non-dimensional frequency f(2h)/U due
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FIGURE 6.1: Comparison of noise reductions between sinusoidal and saw-
tooth aerofoil.

to a sawtooth and sinusoidal serrations of the same wavelength \/cy = 0.1 and ampli-
tude h/cy = 0.167. The wavelengths are chosen to be 4 times the integral length-scale A
of the incoming turbulence, identified by Chaitanya et al. (2017). This wavelength was
shown to be the optimal wavelength for providing maximum noise reductions given by
10logo(fh/U) + 10 for single-wavelength profiles, shown in this figure as the dashed line.

Nearly identical noise reductions are obtained at frequencies less than f(2h)/U = 1. Be-
low this frequency, sawtooth serrations provide consistently poorer noise reductions (<1dB)
compared to the corresponding sinusoidal case. The poorer noise reductions for the saw-
tooth serration is most likely because the source strength at the peak is lower than that of the
root and hence destructive interference is less effective in reducing noise compared with the
single wavelength serration for which peak and root are more similar, in this low frequency
range. This behaviour will be exploited in section 7.3 in the chopped-peak serration design.
Above this frequency f(2h)/U = 1, sawtooth serrations provide consistently better noise
reductions compared to the corresponding sinusoidal case. The additional noise reduction
is most likely due to lower source strength near the sawtooth root compared to the sinu-
soidal case owing to the singular behavior of the geometry exactly at the root. However, the
source distribution on sawtooth serrations remains to be investigated numerically similar to
the investigation presented by Kim et al. (2016) for sinusoidal serrations.

6.3 Slitted-root profiles

6.3.1 Geometry

The Slitted-root leading edge design investigated in this chapter involves introducing narrow
slits at the serration roots, as sketched in figure 6.2. In this chapter we demonstrate that,
for very narrow slits, the noise reduction is almost identical at low frequencies, and better
at high frequencies, than that of single-wavelength or sawtooth serration profiles of the
same peak-to-root amplitude. However, introducing narrow slits clearly requires much less
modification to the aerofoil leading edge as shown in Figure 6.3 showing a comparison
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of the two leading edge geometries drawn to scale. However, the main innovation of the
new leading edge design is that a new noise reduction mechanism is introduced once the
slit width is increased. In this case, the source strengths at either ends of the slit become
comparable and interfere destructively, leading to much greater levels of noise reduction
compared to conventional profiles of the same overall amplitude.

FIGURE 6.2: A sketch of the slitted-root leading edge serration.

The principal dimensions of the slitted root profile are sketched in figure 6.3. For sufficiently
large slit widths w, the noise reduction spectra shown in Section 6.3.4 exhibit a frequency
of maximum noise reduction. This suggests that the location of the dominant sources (indi-
cated as red and green dots) are located at either ends of the slit separated in the streamwise
direction by close to the slit height h,. The overall distance between the peak and the end of
the slit is 2k, with the pattern repeating with periodicity (wavelength) A.
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FIGURE 6.3: A comparison of slitted-root and sawtooth serration.

A photograph of typical slitted-root serration inserts investigated in this chapter are shown
in Figure 6.4.

Before presenting the measured noise reduction spectra we first present a simple theoret-
ical framework for describing the mechanism underlying the additional noise reductions
compared to conventional sawtooth leading edge serrations. In the next section the com-
pact source model developed in chapter 5 is extended to help explain the additional noise
reductions due to slitted-root serration profiles.
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FIGURE 6.4: A typical flat plate slitted-root serration inserts, h/cy = 0.1,
hs/co = 0.066, w/A=0.033,0.067,0.13.

6.3.2 A simple analytical model to predict noise reductions

Turbulent flow interacting with the profile sketched in figure 6.2 will induce variations in
the pressure-difference (between pressure and suction sides) over the aerofoil. The largest
pressure-differences principally occur along the leading edge whose strength and phase
variation mostly determine the level of noise reduction in the far field. Previous work on
single-wavelength profiles indicate that the dominant sources are located at the root region
Kim et al. (2016); Chaitanya et al. (2017); Gea-Aguilera et al. (2017). The reason for this
behaviour has been investigated by Turner and Kim (2017). They showed that the root of
the serrated leading edge is the dominant noise source due to the presence of a secondary
horseshoe-like vortex system generated by the serrated leading edge, which alters the up-
stream velocity field, thereby enhancing the source strength at the serration root. The noise
reduction spectra shown below in section 6.3.4 suggests that dominant compact sources are
also present in the slitted root profile but with localized sources located at either ends of the
slit, as indicated by the green and red dots in figure 6.2.

Consider two compact sources located at the streamwise locations x; and z; + h, with
source strengths ¢,(z1,w) and g,(z2,w), as shown in figure 6.2. However, these source
strengths have been shown on single wavelength serration to be solely a function of t