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In this thesis we will investigate a number of topics on the applications of the gauge-
gravity duality to topics in condensed matter physics and quantum entanglement. This
duality is a conjectured equivalence between type IIB string theory on asymptotically
anti-de Sitter backgrounds with certain quantum field theories in one dimension less.
Using this conjecture we can model strongly-coupled quantum systems using classical
gravity duals which provide novel methods for calculating otherwise computationally
inaccessible quantum properties. We will use this for the following applications:

- We study a novel method for introducing broken translational symmetry into a
holographic model whilst retaining homogeneity in the field equations. We demon-
strate that this leads to a finite DC conductivity and shows features of heavy fermion
models in the AC conductivity.

- We explore the nature of real time scalar correlators in holographic models of
critical systems that possess a non-relativistic scaling symmetry. Specifically we
explore systems with dual Schrédinger or Lifshitz scaling symmetries, and discuss
the problems that arise when trying to apply the standard framework of real time
holography to these systems.

- We provide an explicit counterexample to the holographic F'-theorem, and an an-
alytic argument that shows that this violation is not specific to the model in con-

sideration but is rather a more general property of a class of holographic systems.

- Finally we introduce a holographic renormalization scheme for the entanglement
entropy based on the standard framework of holographic renormalization. We
connect this to the field theory via the replica trick and use it to calculate a number
of explicit examples both analytically and numerically.
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CHAPTER

Introduction

1.1 Holography and the gauge-gravity duality

One of the most remarkable ideas to come out of modern theoretical physics in re-
cent years is that of the holographic principle, which states that the number of possible
states of a region of space is the same as that of a system of binary degrees of freedom
distributed on the boundary of that region, and the number of such degrees of freedom
is bounded by the area of the region in Planck units. The first such indications of this
principle arose from the insights of Bekenstein [4] and Hawking [5] that black holes in
general relativity are inherently thermodynamic objects to which one can prescribe an

entropy:
B kc3 A
~ 4hGy

where A is the area of the event horizon, Gy is the Newton constant, ¢ is the speed of

SBH (11D

light,  is the reduced Planck constant, and % is the Boltzmann constant. Note that we
will work exclusively in units where ¢ = A = k = 1 throughout this thesis.

The surprising result here is that the entropy of the black hole is not proportional to
its volume, as would be expected for an extensive property such as the entropy, but
rather to its surface area. This seems to suggest that all the information contained in a
d+1-dimensional gravitational theory can be equivalently described by a d-dimensional
theory though of as “living” on some boundary of the spacetime like the event horizon.
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This idea was further developed by 't Hooft [6] and Susskind [7] into the holographic

principle.

The first direct realisation of the holographic principle came from Maldacena [8] in the
form of a conjectured equivalence between seemingly unrelated theories, string theory
on anti-de Sitter (AdS) backgrounds and a super Yang-Mills (SYM) theory, often called
the AdS/CFT correspondence or the gauge-gravity duality. In its original formulation,
the Maldacena conjecture claimed that A/ = 4 SYM in 4-dimensions with gauge group
SU(N) is completely equivalent, or dual, to 10-dimensional type IIB superstring theory
on an AdSs x S% background where the parameters of the two theories are related in
such a way that only the rank of the gauge group N and the string coupling constant
gs are left unfixed. In this formulation the superstring theory is referred to as the bulk
theory and the SYM theory is referred to as the dual or boundary theory.

In the strongest form of the conjecture, these two theories are equivalent for general
N and coupling constant gs and the duality is at the level of the generating function-
als for the two theories. A precise mapping between the states, operators, and global
symmetries of the two theories has been well established in the so-called holographic

dictionary which we will review later.

There exists two limits that can be taken that weaken the conjecture enough to make
it more analytically tractable while still ensuring that the duality is non-trivial. The first
such limit is the 't Hooft limit where N — oo while keeping A = ¢%-,, N finite. In this form
the bulk theory is classical string theory in a string loop expansion and the boundary
theory is SYM in a large NV expansion.

After taking this limit the only remaining free parameter is the 't Hooft coupling. On the
boundary side the A < 1 limit corresponds to a weakly coupled large N theory where
standard quantum field theory perturbation theory applies. On the bulk side however
it is more natural to take the A > 1 which corresponds to the classical supergravity limit
of string theory and the boundary side is strongly coupled. From this result we learn
that the AdS/CFT correspondence is surprising not only by its very existence, but also
by the fact that in this limit it allows us to learn about properties of a strongly coupled
quantum field theory by working with a classical theory of supergravity.

Moreover, the Maldacena conjecture is not limited to this one compactification of string
theory. A number of different compactifications over compact manifolds can be taken
which result in a range of different holographic QFTs. Note that the compact manifold
cannot be chosen arbitrarily. From this conjecture we can construct classical gravity
theories that provide an analytic framework for understanding the physics of strongly
coupled field theories.
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1.2 Holographic dictionary

A consistent truncation of 10-dimensional supergravity compactified on a sphere gives
holographic models known as top-down models. Much more is known about the dual
theory in such cases, and the bulk gravitational theory is guaranteed to have a UV com-
pletion. Having such a truncation allows us to answer precise questions about the de-
tailed dynamics of the dual theory. Once we have a basic understanding of the precise
relations between bulk and boundary quantities we can then construct simplified mod-
els that we hope captures the universal results of the dynamics in question. Such models
are called bottom-up models and are useful in gaining conceptual insights into strongly
coupled physics. To construct such models we need to know some details of the holo-

graphic dictionary, which we will now review [9, 10].

The most fundamental building block of any bottom-up model of a d-dimensional dual
theory is a d + 1-dimensional gravitational theory on some manifold M with boundary
OM and a negative cosmological constant:

1
167Gy

1
81G N

/ d™*te /=g <R + d(d — D) + / d% vV—hK 1.2.0)
M L? oM

where Gy is the d + 1-dimensional Newton constant which is guaranteed to be small
in the large X limit as Gy ~ N72, g, is the bulk metric, R is the Ricci scalar of g, L is
some length scale usually called the AdS radius, and the boundary term is the Gibbons-
Hawking-York term [11, 12] where K is the trace of the extrinsic curvature. This is always
a consistent truncation of the 10-dimensional supergravity theory and is sufficient for
understanding properties of the boundary stress tensor 7y, which is closed under the
OPE. The bulk geometry is then dual to the boundary quantum state, with the conformal
vacuum being represented by the vacuum anti-de Sitter AdSg1:

2
2 _ L7
22

ds (d2? — dt* + dz?) (1.2.2)

where (t, Z) are the boundary R%¥~! coordinates, and z is the new holographic coordi-

nate with z = 0 representing the conformal boundary! [13].
The AdS geometry (1.2.2) possesses a clear scaling isometry:
z— Az, t— At T — AT (1.2.3)

which encapsulates one of the most important aspects of the duality: the renormal-
ization group (RG) flow of the dual theory is encapsulated in the geometry of the bulk

'This is not entirely correct as the z — 0 limit does not yield the full conformal boundary. However this
technical detail will not have any relevance to our discussion.
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theory. This can be seen in the following way: consider a physical process with proper
energy Ej,. at some value of z in the bulk. This is measured in units of the local proper
time dr = £dt and so when viewed in terms of the boundary time ¢ it corresponds to

an excitation of energy
L

E = ZE,.. 1.2.4)
z
Therefore physical processes in the bulk with identical proper energies but occurring
at different holographic positions correspond to different field theory processes with
energies that scale as 1/z. This implies that z can be identified with as the RG scale of
the boundary theory. The z — 0 limit then corresponds to E — oo which is the high-
energy ultraviolet (UV) limit, and z — oo is the low energy E — 0 infrared (IR) region.

Away from the conformal vacuum we do not expect there to be excitations of arbitrar-
ily small energies, this could be due to some effective IR cutoff such as a temperature,
a conserved charge, or some mass gap. In all of these cases the dual geometry will not
extend all the way to z — oo but will instead have some sort of bulk cutoff either from
an event horizon or from a smooth end to the geometry. Such states will not be dual
to vacuum AdS but some more complicated geometry that preserves the UV proper-
ties of the CFTT-he negative cosmological constant ensures that any such geometry is
asymptotically locally AdS, i.e. it admits a timelike conformal boundary. Such a con-
straint ensures that we can perform a Fefferman-Graham (FG) expansion of the bulk
metric and all other bulk fields, which is a generalised power series expansion in terms
of some holographic coordinate. Formally, the results of Fefferman and Graham [14, 15]
imply that there always exists a coordinate chart near the conformal boundary such that:

ds® = d7p2 + 1g (p,x) datda” (1.2.5)

152 P

(d-1)/2

p 9(d-1)/2) T odd d

(1.2.6)
p?/? (9(ay2) +1ogp hase)) +--- evend

9(p,x) =gy +p* g2y + -+ +

where 7 is some coordinate chart on 9M and p is the holographic coordinate with p — 0
corresponding to the conformal boundary. The bulk field equations will always deter-
mine the coefficients g(2), . .., g((a—2)/2), (4/2) and the trace and covariant derivative of
9g(a/2) analytically in terms of g(. Hence the only free coefficients in the expansion are
9g(0y and either g(4_1)/2) OF g(4/2) depending on whether d is odd or even. These remain-
ing coefficients cannot be determined by a near boundary expansion of the field equa-
tions and must be found by other means. These coefficients are precisely the ones that
are identified with field theory data: namely g(q) is interpreted as the field theory (non-
dynamical) metric and g(4/9) (or equivalently g(4_1)/2)) is directly related to the 1-point

function of the dual stress energy tensor (7),,,).

Next we need to understand how boundary operators are mapped into the bulk. The
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operators of interest in holographic models are the chiral conformal primary operators
since these operators and their descendents are the lightest operators in the large A large
N limit and are thus the easiest to access. For each such conformal primary there is a
massive field in the bulk with the same spin statistics. Consider for example a scalar
operator O, this is dual to a massive scalar field ¢ in the bulk whose action can be written

as
1

S:‘/ A"z =g((06)° +m?¢ + - ) (127)
2 Jm

where the ellipses denote interaction terms. The field equations for this scalar field

admit a FG expansion of the form
d(p, ) = p~ 20y (x) + -+ + p™ 2 () + - - (1.2.8)

where

Ay = g +u, V= %\/ d? + 4m?2L2. (1.2.9)

2
The coefficient of the non-normalizable mode is then the source for the dual operator
O and the normalizable mode is dual to the 1-point function (O) in a way that we will
make precise shortly. Note that reality of v implies that we can have stable scalar fields
in AdSgy1 with m? < 0 provided that the so-called Breitenlohner-Freedman (BF) bound
is satisfied
m?>myp = —— (1.2.10)

The precise interpretation of which is the normalizable and non-normalizable mode
depends on the value of v, which leads to the concept of standard and alternate quanti-
zations. The standard quantization is done by imposing Dirichlet boundary conditions
on ¢ and is possible for all values of v. In this case A} is the conformal dimension of O,
¢(0) is the source for O, and ¢, is related to (O). The alternative quantization is avail-
able when 0 < v < 1 and corresponds to imposing Neumann boundary conditions on
¢, under which A_ is the conformal dimension, ¢, is the source and ¢ is related to
the 1-point function. In this way, the same bulk solution can be dual to two different
theories depending on the boundary conditions. The two theories are related by tak-
ing the Laplace transform of their respective generating functionals with respect to the
operator sources[16, 17, 18].

Finally, in this thesis we will also be interested in the behaviour of boundary theories
which possess a global symmetry under some matrix group such as U(1). Such a global
symmetry of the boundary theory is promoted to a gauge symmetry in the bulk theory,
with the bulk gauge A); field being dual to the conserved current J#. Boundary opera-
tors that are charged under this global symmetry are dual to bulk fields charged under
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the gauge symmetry. The bulk action contains the standard terms for a gauge field:

1

§=-7 / A"/ mg(Fay MY ) (1.2.11)
M

where F' = dAis the gauge field strength tensor and the ellipses denote interactions and
gauge couplings. We can once again perform a FG expansion of the gauge field 4,/, note
that since the FG expansion is effectively a pull back of the bulk fields onto the boundary
there is no A, component:

Ay = A+ +p\ I PAG g+ (1.2.12)

where A, is the source for the conserved current J#, and A;_j), is related to the 1-
point function. At thermal equilibrium one can interpret Ay, as the chemical potential
for the dual theory.

Typically it is not enough to fully solve the bulk matter field equations based solely on
Dirichlet or Neumann conditions on the conformal boundary. These must be supple-
mented with an additional boundary condition, which is usually in the form of a regu-
larity condition in the deep interior of the geometry or on the horizon to ensure that the
theory is well defined in the IR.

Using such boundary conditions the only free parameters in the bulk solutions are the
source terms for the bulk fields and as such the on-shell gravitational action is a func-
tional of these fields. By taking the large IV and large 't Hooft coupling limits, the on-shell

action is dual to the generating functional of connected graphs [19, 13]:

Son—shell [g(())a d)(O)v .- } = _W[g(0)7 ¢(0)7 .- } (1.2.13)
from which we can find the n-point functions using functional differentiation:

<O(CL‘ > _ 5Son—shell

(1.2.14)
5¢(0)(.T) b(0)=0
52Son—shell
O(x1)O0(z2)) = —
(O(z1)O(x2)) 360 (21)0¢ o) (22) b0y =0
5nSon—shell

(O(z1) -+~ O(an)) = ()"

390 (1) - 99(0) (n) b(0)=0 '

1.2.1 Holography in real time

The above discussion was implicitly in Euclidean signature, i.e. where the metric is posi-
tive definite which corresponds to taking the Wick rotation of the boundary theory. This
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is often sufficient for practical applications as one can obtain real time correlators from
their Euclidean counterparts by performing an analytic continuation. However there
are situations where performing this continuation is technically difficult even though it
is possible such as in the case of the thermal correlator or in states with non-trivial time
dependence. On a more fundamental level the analytic continuation obscures the rela-
tion between the bulk and boundary dynamics, and the encoding of boundary causality

by the bulk which manifests itself as the ie insertions into correlators.

In the bulk geometry this change of signature poses a number of technical challenges.
For example the bulk field equations change from elliptic equations to hyperbolic equa-
tions and so we must also consider initial conditions for the fields. Additionally there
is the possibility that horizons can form in the bulk geometry which affects the types
of regularity conditions that are possible. A purely holographic prescription for com-
puting real time physics has been developed [20, 21, 22] which will be of importance to
us in Chapter 3. The application of these results will be self contained to this chapter
and so will not be discussed further here. An overview of real time QFT computations
and the holographic prescription is presented in 3.2, with a more detailed review of the

prescription available in [21].

1.3 Holographic renormalization

There is a a problem with the results of equation (1.2.13) in that both sides are plagued
by divergences: on the gravitational side there are divergences arising from the infinite
volume of the bulk geometry, and on the boundary side there are UV divergences of field
theory. If we wish to make sense of equations (1.2.13) and (1.2.14) we must renormalize.
Note that since the bulk geometry encodes the RG flow of the dual theory, these UV
divergences of the boundary can be identified with the infinite volume divergences of
the bulk.

A precise framework for performing renormalization holographically in terms of purely
gravitational data has been developed [15, 23, 24, 25] called holographic renormalization
which we now review. Holographic renormalization can be broken down into a three
stage process:

1. Obtain general asymptotic solutions
2. Regularisation of on-shell action
3. Construct covariant counterterms

after which we can obtain renormalized n-point functions. We will outline these stages
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and then give a concrete example in the form of a free massive scalar field in vacuum
AdSg41, following closely the review of [25]. Note that more efficient methods of holo-
graphic renormalization exist however the method we will now review is the one that

we will use in numerous places throughout the thesis.

1.3.1 Outline of the method

The first step in the holographic renormalization method is to obtain the most general
solutions to the bulk field equations with given, but arbitrary, Dirichlet boundary con-
ditions. Since the bulk geometry is asymptotically AdS then any such solution can be
written as a FG expansion:
ds® = d—pz + ! (p, z)datdz” 1.3.1)
4P2 pg/u/ Py 9.
9(p,x) = 9(0)(2) +p gy () + - -
Flpyx) = p" froy + - + P (fatn-m)) + 1080 fam-my) + -+

where f is some bulk matter field with spacetime and internal indices being suppressed.
Note that the logarithmic term is only present if n —m € N. As discussed above the bulk
field equations specify the sub-leading terms of the expansion, including the logarith-
mic coefficient in terms of fo) but leave f(3(,,—m)) unspecified, which is to be expected
as we have only specified one Dirichlet boundary condition on these solutions.

Once we have found such general asymptotic solutions for the bulk fields we can pro-
ceed to obtain the regularised on-shell action. We perform this regularisation by cutting
off the holographic coordinate p such that p > € where € is some small cutoff parame-
ter. This in effect transforms the bulk manifold M with conformal boundary oM to a
regulated manifold M, with boundary 0M.. We can then evaluate the bulk action on
this regulated manifold, and any boundary terms on the regulated boundary. Using the
FG expansions the p integral can be performed explicitly:

Sreg [f(o), 6] = / dz —9(0) [e_”a(o) + 61_Va(2) 4+ .- +loge CL(QV)] + O(GO) (1.3.2)
IM.

where v is a positive number that only depends on the scaling dimensions of the dual

operators, and the a(;) are local functions of the sources. The divergences do not depend

on the unknown coefficient f(5(,_r,)). i.e. the terms that are not determined by the near

boundary analysis.

The final step in the holographic renormalization method is to re-express these diver-
gent terms as covariant quantities defined on the regulated boundary 0 M, the induced
metric therey,, = g,.,(x, €) /¢, and the pull back of the bulk matter fields onto the bound-
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ary. The requirement that these terms be covariant quantities is necessary to retain
general co-variance in the renormalized theory. To actually find this re-expression one
must invert the series expansions (1.3.1) to obtain f(y = f(0)(f(,€),€) and consequen-
tially a o) (fi0)(z)) = a@m(f(z,€),€) which can then be inserted back into (1.3.2). The
counterterms action is then defined to be

Sct[f(z,€); €] = —divergent terms of Syey[f(0); €] (1.3.3)

from which we can define the subtracted S,,;, and renormalized S,..,, on-shell actions
as

Ssublf (x, €); €] = Sreglfi0); €] + Setlf (z, €); €] (1.3.4)
Sren[f(o)} = !E}I(l) Ssub[f; 6]' (1.3.5)

With the subtracted and renormalized on-shell actions found, the renormalized 1-point

functions can be found:

(1.3.6)

(O(x)). 0Sren < 1 1 5Ssub>

li —
1 ed/2=m /N5 f(x,€)

1
/90 0 foy(x) 0

where the s denotes the presence of sources, which is finite in the ¢ — 0 limit by con-

struction. Explicit computation of this limit can be performed:

(O(@))s ~ fiam—m)) + C(f0): Fatn—m))> Im)) (1.37)

where C'is atheory and scheme dependent function that depends locally on the sources.
Similarly the coefficient in front of f(5(,_p)) is theory dependent, but not scheme depen-
dent. Once the renormalized 1-point functions have been found, higher point functions
can be found via functional differentiation.

The scheme dependence of this renormalization method is captured by the ability to
add finite counterterms to the counterterms action S [f(z,€);€]. Such a counterterm
is any analytic covariant counterterm defined on dM, that is in and of itself finite and
non-zero in the e — 0 limit. If any such term can be constructed then it is a possible
finite counterterms and must be considered in the scheme dependence of the result.
Note that it is not always possible to construct such terms, in which case the resulting
correlators are scheme independent.
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1.3.2 Massive scalar

To illustrate the method described above we now consider the case of a probe massive

free scalar ¢ in Euclidean AdSg 1. The action for the scalar field is given by

S— % / Ay /5((06)° + m2e?) (13.8)
where the bulk metric is
2
ds? = gyndzMday = d% + 1dac“dzl:” (1.3.9)
4 p
and the Klein-Gordon equation is
1
V2 —m?p = — 0 (VggM N ong) — m2p =0 (1.3.10)
V9
which has an asymptotic solution of the form:
d(p,x) = pl= D2y + p TR 2o o pB 2 (o) + Py logp) + - (1.31D)

2

where m* = A(A —d) and for simplicity we have assumed A = d/2+n for some positive

integer n. The sub-leading coefficients can be found algebraically:
1
P2k) = 2(2A — d — 2k) Uoda(k—1)) (1.3.12)

_ 1 k
Yian) = 2207 (n)T(n + 1)(50) ()

where [y is the flat space D'Alembertian. Note that the sub-leading coefficients are de-

termined analytically in terms of the boundary data as promised.

The regularised on-shell action can be computed:

1
Sreg = —3 /p 3 d%xgPP $d,b (1.3.13)
= / ddx(e_A+ga(0) + €_A+%+1a(2) + = loge CL(QA_d) + O(EO))
p=€
where

1 2

d—A+1

92 = “30a == 2) 70 %0
d

U2D~d) = T (T 1 1) (Do) 9(0)-
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From this the subtracted and renormalized actions can be found and correlation func-

tions can be found:

(0)s = —(2A = d)paa—a) + C(P0)s Y(2n)s I(n)) (1.3.15)

Note that the first term is the part of the asymptotic solution not determined by the near-
boundary analysis, and the second term is a local function of the source ¢ . Moreover
this second term is scheme dependent and can be modified, or indeed removed in some
cases, through the addition of appropriate finite counterterms. For example in the case
of n = 1 a finite counterterms can be constructed:

1
Set.fin = 5 /@ M d%z ¢(0)Dod(o) = /a » d4z \/7A (1.3.16)

where A is the matter conformal anomaly, the anomalous variation of the action under
a Weyl transformation.

1.4 Limitations and universality of holographic modelling

Now that we have reviewed the holographic dictionary and discussed how to obtain
renormalized quantities we are in a position to start constructing holographic models of
strongly coupled systems. Before doing so however we must discuss what kinds of sys-
tems we might be able to model holographically and what kind of questions we should

hope to be able to answer.

It should come as no surprise that systems with a classical gravity description are not
generic strongly coupled theories. Heuristically we can count the degrees of freedom
holographically and compare it to the dual theory [9]. The holographic principle says
that the maximum entropy of a state of a system with an Einstein gravity dual is the area
of the boundary in Planck units. Considering AdS;; at fixed time with a UV cutoff z > ¢

and an IR cutoff x ~ x + L the area of the boundary is

d—1
A= (LLAdS> . (14.0)
€
Comparing this to counting degrees of freedom in the boundary theory [9] we must
identify
Lhgs _ 2
- N 14.2
G (14.2)

from which we must conclude that the dual QFT has N2 > 1 degrees of freedom per
point. This result means that holographic models are not microscopically realistic mod-
els of any known materials or systems. Similarly the gauge-gravity duality in its most rig-
orous formulation is an equivalence between two theories which have a large number
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of supersymmetries, whereas known physical systems do not have any supersymmetry.

With this in mind, our motivations for tackling problems with holography should not
be to make contact with experiments rather they should be the more realistic goal of
making contact with the phenomena of strongly coupled systems. Using holography to
construct toy models we may hope to gain an understanding of the physics behind such

phenomena and the general behaviour of strongly coupled systems.

Holography also promises a certain amount of universality to its results, that is the re-
sulting physics is independent of the specific details of the theory in question. One ex-
ample of this phenomenon is the calculation of the shear viscosity  in N' = 4 SYM in
4-dimensions. One can calculate this holographically by solving perturbations around
the AdSs black brane metric to find

n__- (14.3)

where s is the entropy density [26, 27]. The holographic calculation of this result, which
we will not cover here, is universal in the sense that it only relies on the pure gravity
sector of the 5-dimensional bulk theory and arises from the universal properties of black
hole horizons. The bulk matter content, nor the details of the 10-dimensional SUGRA
completion were needed for this result. Moreover since the result depends only on the
pure gravity sector, any holographic model with the same Einstein-Hilbert gravity sector
and AdS asymptotics will have the same value for 7/s. There is experimental evidence
that the quark-gluon plasma created at RHIC has /s close to this holographic value [28].

1.5 Applications

In this thesis we will explore various different topics that explore holography and its ap-
plications. These can be broadly categorised in three parts: holographic modelling of
strongly coupled phases, holography with non-relativistic symmetries, and entangle-
ment entropy. In this section we will review the background for these topics and the
motivations for the corresponding chapters in the thesis. The subsequent chapters of
this thesis can all be read independently of each other, except Chapter 6 which follows
on directly from Chapter 5.

1.5.1 Holographic modelling of strongly coupled phases

Strongly coupled phases of matter exist across a whole range of temperatures and den-
sities, from the quark-gluon plasma phase of QCD formed at the high temperature and
density collisions inside the heavy ion colliders at the RHIC and the LHC, to ultra-cold
metals at unitarity in condensed matter physics. For example there is a group of mate-
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antiferromagnet

I

Figure 1.5.1: A sketch of the phase diagram of the cuprates.

rials called the cuprates which exhibit a very rich phase structure at low temperatures
and doping, where they exhibit a superconducting phase, a strange metal phase, and a
pseudo-gap phase as sketched in Figure 1.5.1 [29]. All of these phases have unique fea-
tures that have so far escaped a satisfactory description in terms of conventional field
theory, such as the high critical temperature 7¢ of the superconducting phase and the
anomalous transport behaviour of the strange metal phase characterised most predom-
inantly by a simple linear scaling of resistivity with temperature, and are thought to be
the result of strongly coupled phenomena.

The weak coupling description of superconductivity is given by the BCS (Bardeen, Cooper,
Schrieffer) model in which electron pairs with opposite spin interact with phonons to
form charged bosonic Cooper pair quasi-particles which condense, i.e. they sponta-
neously acquire a non-zero expectation value, through a second order phase transition
below the critical temperature. The BCS model does not accurately describe the be-
haviour seen in the cuprates however. There is evidence that electron pairs still form
but the pairing mechanism is not understood [29] and potentially involves strong cou-
pling phenomena.

We may thus hope to apply the gauge-gravity duality to understand the onset and prop-
erties of this new strongly coupled superconducting phase. A class of bottom-up holo-
graphic models have been constructed [30, 31, 32], the simplest of which is simply a
charged massive complex scalar coupled to an Einstein-Maxwell theory with a nega-
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tive cosmological constant. The standard solution to this system is an AdS-Reissner-
Nordstrom black brane with zero scalar field. If the square mass of the scalar is suf-
ficiently negative, but still above the BF bound, then the solution becomes unstable to

spontaneous condensation of scalar hair as the black hole approaches extremality.

This is the simplest holographic model that could be written down to describe a dual
superconductor? and it can be shown that it possesses a number of desirable features:
it predicts that a charged scalar condensate forms below a critical temperature through
a second order phase transition, and in this condensed phase the DC conductivity is infi-
nite, and the optical conductivity develops a gap. The model can be extended to include
non-trivial boundary magnetic fields without destroying the superconducting instabil-
ity. Furthermore the London equation can be reproduced from the bulk dynamics, but
the Meisner effect cannot be seen as the boundary Maxwell fields are non-dynamical.
This system has spherical symmetry and so describes an s-wave superconductor, simi-
larly holographic models of p-wave [33, 34, 35] and d-wave [36] superconductors can be
found.

All of these models have a problem, however, as they all possess an infinite DC conduc-
tivity in their non-superconducting phases. This infinite DC conductivity is not super-
conductivity and is to be expected from the lack of momentum dissipation. Applying
a constant electric field to a system will cause any charge carrying modes to accelerate
uniformly producing an infinite DC conductivity unless these charge carriers can lose
momentum. This is a symptom of the fact that we have neglected an important part
of the physics in question, specifically we have ignored the fact that such phases occur
in materials with explicitly broken translation invariance which can come from lattice
effects and impurities.

On the gravitational side, the diffeomorphism Ward identity for an Einstein-Maxwell-
scalar system is
VUT) — (JYFij + (0)d;¢ = 0, (1.5.1)

from which we can deduce that we can maintain energy conservation but break mo-
mentum conservation by introducing spatially dependent sources for the scalar field.
Generically adding such sources will result in the bulk field equations being PDEs rather

than ODEs which makes finding analytic solutions technically difficult if not impossible.

In Chapter 2 we will discuss the problem of broken translational invariance in greater
detail and investigate a set of models with tuned matter field profiles such that the result-
ing system is homogeneous but anisotropic which allows one to retain ODEs whilst still

having explicit symmetry breaking. We will then calculate the DC conductivity for the

*The dual phase is actually a superfluid as the boundary U(1) is a global not gauge symmetry. For the
systems of interest this U(1) can be gauged without destroying the physics of interest
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resulting models analytically, and the AC conductivity numerically confirming that the
DC conductivity is indeed finite. We also see features similar to those of heavy fermion
models in the AC conductivity.

1.5.2 Non-relativistic asymptotics

The formulation of the gauge-gravity duality given above describes a relationship be-
tween a relativistic boundary field theory and a gravitational theory in one higher spa-
tial dimension. The requirement that the bulk geometry be asymptotically AdS means
that the dual theory is relativistic in the sense that time and space scale in the same way
under dilatations:

t— At, T — M. (1.5.2)

The relationship between the bulk and boundary physics in such cases has been well
studied in the past, the holographic dictionary for such systems is well established, and
the results are applicable to a wide range of problems as we have discussed above.

There are a variety of condensed matter phases that are believed to be described by
strongly interacting non-relativistic physics, such as fermions at unitarity and poten-
tially an underlying quantum critical point in high 7> superconductors. Non-relativistic
systems at criticality are characterised by their different treatment of time and space

under dilatations, for example:
t — N, T — \T (1.5.3)

where z is called the dynamical exponent of the symmetry. It is natural to consider
whether such systems can be studied holographically, not only to gain an understanding
of the dual condensed matter phases, but also to gain insights into the general principles
of holography. The bulk geometries which arise in the study of these non-relativistic
symmetries still have a timelike conformal boundary like in standard asymptotically AdS
systems, but this boundary is now singular as there is not a single conformal factor that
compactifies both the timelike and spacelike metric components simultaneously. The
geometries themselves have constant scalar curvature throughout but have infinite tidal
forces in the deep interior. Understanding the differences that arise because of the na-
ture of this boundary may perhaps lead to progress in open questions regarding holog-
raphy for asymptotically flat and asymptotically de Sitter spacetimes

There are two non-relativistic symmetry groups of particular interest to us, namely the
Lifshitz group Lifp(z) and the Schrédinger group Schp(z) which we now review. To de-
scribe the Lifshitz group consider a theory with D spatial dimensions with coordinates
7' and a time coordinate ¢. The Lifshitz group is the symmetry group of the following



16 Chapter 1. Introduction

symmetries:
H: t—=t+a (1.5.4)
P =zt +ad
Ly . zt — Lijxj
D,: t—=Nt, '\

where L'; € SO(D), i.e. the group generated by temporal translation invariance, spa-
tial translation invariance, rotations, and the Lifshitz scaling symmetry D,. The Lifshitz
group is neither a subgroup nor a contraction of the conformal group and they do not
admit Galilean boosts.

The Schrodinger group is most readily realised in a D + 2-dimensional theory with D
spatial dimensions z’ and two light-cone coordinates x* with the group being generated
by the spatial translations P? and rotations L% described above as well as the following

additional symmetries:

H: 2t —=a2t+a (1.5.5)
M : T =z +a

ct: ot =t =iz, 2T - — ol

D, : L N A A el

i.e. by light-cone translations H and M, Galilean boosts C?, and dilatations D,. The
Schrédinger group is a subgroup of the conformal group SO(D + 2,2) for any z. In the
special case z = 2 the Schrodinger group can be extended to include one of the special

conformal symmetries:

xl

n xT _ a?*—i-%ka:-x
%7 .
1+ kat’

K : i _ —
v 14 kzt’ v 1+ kxt

(1.5.6)
where z - z = 22z~ + 2%z’ In the more conventional realisation of the Schrédinger
group in D + 1 dimensions it corresponds to a centrally extended Galilean group gen-
erated by the symmetries (H, P?, L'/, C*, M) where M is represented as the central ex-
tension: [C*, P/] = M§%. When trying to understand the behaviour of the Schrédinger
group in the D + 2 dimensional representation we should therefore consider 2 as a

time coordinate and view the light-cone momentum M of 2~ as some mass parameter.

To apply holography to such systems we need a detailed understanding of the holo-
graphic dictionary, the generalisation of which to non-relativistic systems is very subtle
and is still not completely understood. See [37, 38] for an in depth discussion of this

topic for Lifshitz systems.
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The most fundamental part of any holographic description of theories with such sym-
metries is the construction of spacetimes which realise the respective non-relativistic
symmetry groups asymptotically. Such geometries exist for both the Schroédinger group

and the Lifshitz group:
pdzt? 1 ,
Schp(z) : ds? = _Tsz + ﬁ(dr2 + dz'da; + 2dztdz ) (1.5.7)
e

Lifp(z) : ds* = + ﬁ(dr2 + da'dz;),

r2z
where the conformal boundary is located at » — 0 which is now degenerate due to the
non-relativistic scaling. Although these geometries may look regular as » — oo they are
actually singular due to divergent tidal forces which are present whenever z # 1. These
geometries are manifestly invariant under their respective symmetry groups asymptot-

ically and are also invariant globally under an extension of the dilatation symmetry:

Schp(z) : r— Ar z' — ' rT — N T = AT (1.5.8)

Lifp(z) : r— Ar z'— ' t— Nt.

Note that when b = 0 the Schrodinger geometry becomes that of AdSp43. This is un-
surprising as Schp(z) is a subgroup of SO(D + 2,2) and so the dual geometry can be
obtained via a deformation of AdSp.3, where b controls the strength of this deforma-
tion.

The simplest objects that we might wish to study holographically in such geometries are
correlation functions. As in standard quantum field theory, almost all work on holo-
graphic correlation functions is done in Euclidean signature using Wick rotations with
real time correlators being obtained through analytic continuation. In the geometries
presented above the applicability of the Wick rotation is less clear due to the non-
relativistic scaling symmetry, indeed a naive Wick rotation of the Schroédinger geometry
will result in a complex geometry due to (1, 27 ) mixing term.

In Chapter 3 we will review the basics of QFT in real-time and directly calculate propa-
gators for a free scalar with a z = 2 Lifshitz symmetry before reviewing the framework
of [20] for performing holography in real-time. We will then attempt to extend this
framework to calculating propagators in the Schrédinger and Lifshitz geometries intro-
duced above and discuss the various subtleties that arise.

1.5.3 Entanglement entropy

One of the most basic phenomena in quantum physics is that of quantum entanglement,

where subsystems of a quantum entangled state cannot be described independently of



18 Chapter 1. Introduction

t = const.

0A

B QFT4

Figure 1.5.2: Entanglement entropy setup in a local field theory.

the other parts even when there is a large separation between such components. We
can quantify the amount of entanglement between a subsystem A of a quantum state
and the rest of the system A via the entanglement entropy. To do this we must first
partition the Hilbert space H of the full system into two parts:

H=HaQ@H; (1.5.9)

where 7 4 is the Hilbert space of the subsystem A. Given such a partitioning of the
Hilbert space we can construct the reduced density matrix p4 for any given state p by

tracing out the degrees of freedom in H 3:
pA =trip (1.5.10)

from which we define the entanglement entropy Srg to be the von Neumann entropy
of this operator:

Sepp = —tra(palogpa). (1.5.11)

In a local field theory one can partition the system into two sub-regions by considering
a co-dimension 1 spatial region A with boundary dA, as shown in Figure 1.5.2. In this
case the boundary is often called the entangling surface, and Sgg is sometimes called
the geometric entropy.

In non-trivial systems such as in a quantum field theory it is often technically difficult to
calculate the entanglement entropy using equation (1.5.11). It is easier to calculate powers
of the reduced density matrix tr4p4™ and calculate the entanglement entropy using the
replica trick. Such powers can be calculated using the path integral formalism:

Z

where Z(n) is the partition function on a singular space obtained by gluing n copies of
the original space together along 0A. Assuming that these can be calculated and they

are analytic in n we can calculate Sgg as

Sprp = — lim1 n Opllog Z(n) —nlog Z(1)]. (1.5.13)
n—s
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Figure 1.5.3: Holographic entanglement entropy setup.

A more detailed introduction to the replica trick can be found in [39].

The entanglement entropy gives us a direct way to study the entanglement structure of
a quantum system and indeed it has some nice properties. Firstly, since it is defined as
an entropy one would expect that it is related to the degrees of freedom in the system
which can be realised precisely in 2-dimensions where the entanglement entropy is
proportional to the central charge. It is also non-zero at zero temperature which means
we can use it to probe properties of the ground state. We can also use it as an order
parameter for topological phase transitions as it is a non-local quantity.

In a continuum theory, the entanglement entropy is always UV divergent since the en-
tanglement between A and B occurs most strongly at the boundary 0A from the ex-
change of short wavelength modes. Indeed, if we introduce a UV cutoff ¢ < 1 then the
leading divergence for ground states in a local CFT takes the form

Area(9A
Spp = ryreeg(l) +... (15.14)

where D is the number of spatial dimensions of the theory, and  is a theory dependent
constant. This result is called the area law for entanglement and is a universal result
in continuum theories where D > 1 [40]. The subleading terms are not universal and
depend on the different length scales present, such as geometric scales arising from the
entangling region 0 A and its singularities, and mass scales present arising from operator
sources.

As with any well defined QFT quantity we should be able to extend the holographic dic-
tionary so that we can calculate the entanglement entropy holographically. The original
proposal for a holographic formula came in the form of the Ryu-Takayanagi (RT) pre-
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scription [41, 42]:

Area(X)
SEE = —=5¢ (1.5.15)
4G§\[D+2)

where ¥ is the D dimensional bulk minimal surface with boundary 0¥ = 9A as illus-
trated in Figure 1.5.3, and G§‘j+2> is the bulk Newton constant. The minimal surface ¥
must also satisfy a technical constraint [43] of being homologous to A but this constraint
will not affect our work and so we will not discuss it further. Although originally pre-
sented as a conjecture inspired by the formula for black hole entropy, this proposal has
since been made concrete due to the work of Lewkowycz and Maldacena who gave a
holographic proof of the RT proposal based on the replica trick [44] which we will review

In Section 5.5.

The RT prescription for a smooth and compact 9A predicts that the divergence structure
of the entanglement entropy for a CFT in vacuum is given by

l D—1 I D-3 _ l + 4+ .. D even
SEE:'71<> +73<> 4o D 1(6)2 D v (1.5.16)
: 6 wn-a(t)? + elog (1) 4+ Dodd

where [ is some characteristic length scale of 9A, € is a UV cutoff, the ~; are theory de-

pendent constants, and ¢ is related to the central charges for odd D.

The presence of the central charges in the logarithmic terms of the entanglement en-
tropy in even D has led to proposals that the ¢ coefficient is a suitable quantity to use in
the c- and a-theorems [45] which state that there exists a positive real function in any
QFT that is finite at UV and IR fixed points and decreases monotonically along any RG
flow from the UV to the IR. Such quantities are useful as they allow us to define a measure
of the degrees of freedom present at points along an RG flow and at fixed points. There
is no analogue of the c- or a-theorem for D odd however there have been promising re-
sults in the literature that the free energy of a theory defined on the 3-sphere is a suitable
quantity, and moreover it is equal to the finite part of the entanglement entropy vp of a
disk region. This conjectured result is called the F'-theorem but has escaped a general
proof. In Chapter 4 we discuss past works that provide evidence for the F'-theorem, and
then we construct an explicit holographic counterexample that invalidates the strongest
form of the conjecture.

Itis clear from equation (1.5.16) that we need a rigorously defined renormalization method
to make the entanglement entropy a well defined quantity. In Chapter 5 we discuss pre-
vious attempts in the literature to define a renormalized entanglement entropy and their
problems, and then extend the framework of holographic renormalization to define a
renormalized holographic entanglement entropy and interpret its field theoretic dual
using the replica trick. We demonstrate this method in Chapter 6 where we calculate the
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renormalized holographic entanglement entropy for slab entangling regions for non-
conformal brane backgrounds, and explicit realisations of RG flows via the Coulomb
branch of N' = 4 SYM and the GPPZ flow.
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CHAPTER 2

Inhomogeneity simplified

2.1 Introduction

Holographic modelling of strongly coupled condensed matter systems has generated
a great deal of interest over recent years; for reviews see [46, 10]. It is remarkable that
many features of strongly coupled matter can be captured by static, isotropic solutions
of Einstein-Maxwell-dilaton models. Nonetheless as one tries to develop more realistic
models it is clear that such holographic geometries cannot adequately capture many
important features of strongly interacting systems.

The focus of this chapter will be on modelling systems with broken spatial translational
symmetry. Realistic condensed matter systems never have perfect translational sym-
metry: the symmetry is explicitly broken both by lattice effects and by the presence of
inhomogeneities. This breaking of translational invariance is necessary for particles to
dissipate momentum, without which there would be a delta function in the conductivity
at zero frequency.

Diffeomorphism invariance of a field theory implies conservation of the stress energy
tensor T;; via the diffeomorphism Ward identity which arises from insisting that the
variation of the generating functional under the infinitesimal generators of bulk diffeo-
morphisms vanishes identically. If one considers a field theory which has a conserved
current J; and a scalar operator O then diffeomorphism invariance is violated when-

23
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ever there is a position dependent source A; for the current J; or a similar source ¢ for
the scalar operator, and the corresponding operators acquire expectation values. In this
case the diffeomorphism Ward identity takes the form

VUTy) — (JYFij + (0)d;¢ = 0, (2.1.1)

with Fj; = 0;A; — 0;A;. The temporal component of this identity gives rise to the en-
ergy conservation constraint, whereas the spatial compontents gives the momentum

conservation constraints.

From this Ward identity it is evident that one can generically violate momentum con-
servation, while preserving energy density conservation, by introducing background
sources in the field theory which depend on the spatial coordinates. Note that spon-
taneous breaking of the translational symmetry on its own is not enough to dissipate
momentum as both (O) and 9;¢ need to be non-zero to contribute to the Ward iden-
tity. The introduction of such sources is rather natural: a source for A; with periodicity
in the spatial directions represents an ionic lattice while other lattice effects can be cap-

tured by a periodic scalar field.

Holographically, spatially dependent sources for the conserved current can be modelled
by a dual gauge field which is spatially modulated. The backreaction of this field onto
the metric and other fields gives rise to fields which are stationary but inhomogeneous.
In (d+ 1) bulk dimensions one therefore has to solve partial differential equations in the
radial coordinate and the spatial coordinates which are only tractable numerically. Nu-
merical analysis has shown that such explicit breaking of translational invariance indeed
removes the delta function in the conductivity at zero frequency [47, 48].

The optical conductivity is a transport property that can be defined for any QFT current

Ji and is given by
(i)

oi(z) = (21.2)
where A, is the homogeneous source A4,y ~ e_waz(o) for the current, and < J; > is
the expectation value of the current in the presence of this source. There is considerable
interest in the behaviour of the optical conductivity o(w) in holographic models at higher
frequencies, in the range ' < w < p, where p is the chemical potential. Over such
a range of frequencies certain high temperature superconductors in the normal phase

exhibit scaling law behaviour of the form
o(w) = KuwY 261327 (2.1.3)

with v =~ 1.35 ~ 4/3 and K a constant. This complex phase to the optical conductivity

indicates that the current is out of phase with the source. These systems are considered
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to be strongly coupled with the scaling law potentially a signal of underlying quantum
criticality. Rather surprisingly, the introduction of a lattice into holographic models not
only results in finite DC conductivity but also apparently induces scaling behaviour in

the optical conductivity for a range of frequencies [47, 48] (see also [49, 50]):
o] = ¢+ Kw'™? (2.14)

with (¢, K) constants, v ~ 1.35 and the phase of the conductivity approximately con-
stant. Note that o here refers to the homogeneous part of the conductivity. These results
have proven controversial and no further evidence has been found to support them, see

for example [51].

Clearly it would be interesting to understand the origin of this scaling behaviour better
but the scaling emerges from the numerical analysis and does not make evident which
ingredients are crucial to obtain a scaling regime. For example, it is known that one
can obtain scaling behaviour for the AC conductivity without explicitly breaking transla-
tional invariance; scaling with the correct exponent arises in Einstein-Maxwell-Dilaton
models, although solutions with the required value of « appear to be thermodynami-
cally unstable [52]. While one expects that the scaling is associated with an underly-
ing quantum critical state, the scaling itself emerges at finite temperature and, from the
holographic viewpoint, is therefore not associated not only with the spacetime region
immediately adjacent to the horizon but also with regions further from the horizon.
From this perspective it is not obvious to what extent the scaling should be sensitive to

the details of the far IR or the mechanism of translational symmetry breaking.

As explored in [53, 54, 55], simplified models of translational symmetry breaking can
be obtained by imposing symmetries on the bulk solutions: one can tune matter field
profiles such that the metrics for the equilibrium configurations are homogeneous but
anisotropic. The resulting equations of motion therefore simplify, reducing to ordinary
differential equations in the radial coordinates, although these equations nonetheless
still need to be solved numerically. In such models one does not find scaling behaviour
of the AC conductivity, which indicates that this behaviour is non-generic. An interest-
ing feature of these models is that one finds transitions between metallic and insulator
behaviour as parameters are adjusted; see also [56, 57, 58] for related discussions on

metal-insulator transitions.

In this chapter we will explore the simplest possible models of translational symmetry
breaking, namely those for which the inhomogeneous matter field profiles are chosen
such that the metrics for the equilibrium configurations remain both homogeneous and
isotropic. The equations of motion for the equilibrium black brane solutions can there-
fore be solved explicitly analytically. The presence of inhomogeneous matter field pro-
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files nonetheless guarantees that momentum can be dissipated by fluctuations propa-
gating around these equilibrium solutions, and therefore one obtains finite DC conduc-

tivities.

Massive gravity models [59, 60, 61, 62] have been proposed as translational symmetry
breaking models of this type. However, massive gravity is a bottom up phenomeno-
logical theory and it is not clear that it is well-defined at the quantum level. The holo-
graphic dictionary between the background metric used in massive gravity and the dual
field theory is obscure. It is therefore preferable to work with models whose top down

origin can be made more manifest.

As discussed above, switching on any operator source with spatial dependence triggers
momentum dissipation. Moreover, any scalar field action with shift symmetry admits
solutions for which the scalar field is linear in the spatial coordinates and thus the scalar
contributions to the stress energy tensor are homogeneous. As shown in [63], by choos-
ing an action with a number of massless scalar fields equal to the number of spatial di-
rections one can engineer scalar field profiles such that the bulk stress energy tensor
and hence the resulting black brane geometry are both homogeneous and isotropic.
See also the earlier work in [64] in which homogeneous and isotropic black branes sup-
ported by fluxes were classified; it would be interesting to find AdS/CFT applications for
these solutions.

In this chapter we will explore general actions with shift symmetry which admit ho-
mogeneous and isotropic black brane solutions and realise momentum relaxation. In

particular, we will be led to consider square root terms:

L=—aypp Y \/(0¢r) (2.1.5)
I

where the summation is over spatial directions, labelled by 7, and reality of the action
requires that d¢; is not timelike. Such Lagrangians clearly have shift symmetry and,
as we explain in Section 2.2, can be used to engineer the required homogeneous and

isotropic geometries.

Square root actions are unconventional but have arisen in several related contexts. For
example, time dependent profiles of scalar fields associated with the cuscuton square
root action have been proposed in the context of dark energy [65, 66]. The same action
arose in the context of holography for Ricci flat backgrounds: the holographic fluid on a
timelike hypersurface outside a Rindler horizon has properties consistent with a hydro-

dynamic expansion around a ¢ = t background solution of the cuscuton model [67, 68].

We will show in Section 2.2 that the action (2.1.5) is directly related to one of the mass
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terms in massive gravity. Four-dimensional massive gravity consists of the usual Ein-

stein-Hilbert term together with mass terms for the graviton g,,,, of the following form:

L=m? (am/g“”hw + a(g" hyy — /Wy ) + - ) (2.1.6)

where h,,, is a reference metric and h*” = g"?¢"?h,,. The terms in ellipses are higher
order in the reference metric and vanish in four dimensions when the reference metric
only has two non-vanishing eigenvalues. The coupling constants «; and as are inde-

pendent.

It was shown in [63] that the ay term of massive gravity is related to massless scalar
fields: the background brane solutions are completely equivalent and certain transport
properties (shear modes) agree. Note that not all transport properties agree, since the
linearised equations are only equivalent for a subset of fluctuations, those with con-
strained momenta in the spatial directions. In Section 2.2 we will show that the «; term
of massive gravity is related to the square root terms (2.1.5). Again, the background brane
solutions are completely equivalent and DC conductivities also agree but as in [63] the
models are not completely equivalent; even at the linearised level the equations of mo-
tion for fluctuations with generic spatial momenta do not agree. The inequivalence be-
tween the models is made manifest when one uses a Stuckelburg formalism for massive

gravity.

There has been considerable debate about stability and ghosts in massive gravity, as well
as the scale at which non-linear effects occur and effective field theory breaks down,
see for example [69, 70, 71, 72, 73, 74, 75, 76]. Clearly all such issues are absent in models
based on massless scalar fields but related issues occur in the square root models (2.1.5):
perturbation theory around the trivial background ¢; = 0 is ill-defined. From the holo-
graphic perspective, it is not a priori obvious that the bulk fields ¢ are dual to local op-
erators in the conformal field theory whose dimensions are real and above the unitary
bound and whose norms are positive.

In Section 2.3 we show that the fields ¢ are dual to marginal operators in the conformal
field theory. The bulk field equations admit a systematic asymptotic expansion near the
conformal boundary for any choice of non-normalizable and normalizable modes of
these scalar fields, in which all terms in the asymptotic expansion are determined in
terms of this data. The bulk action can be holographically renormalized in the standard

way. This analysis provides evidence that the action (2.1.5) is physically reasonable.

We also show in Section 2.3 that correlations functions of the operators dual to the
square root scalar fields ¢ of (2.1.5) can be computed in any holographic background

in which there are non-vanishing profiles for these fields. These operators indeed be-
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have as marginal operators and the norms of their two point functions are positive for
aysp > 0. However, the expressions we obtain for the two point functions are not ana-
lytic as the background profiles for the scalar fields are switched off.

The action (2.1.5) is reminiscent of the volume term in a brane action. In Section 2.3 we
show that such actions can indeed arise as tensionless limits of brane actions: the fields

¢1 then correspond to transverse positions of branes.

In Section 2.4 and Section 2.5 we consider phenomenological models based on massless

scalar fields and square root terms:

d—1
S = / Al =g (R +d(d—1)— %FQ = (ayy20/ (9¢1)* + a1(8X1)2)> (21.7)

I=1

Such actions admit charged homogeneous isotropic brane solutions characterised by
their temperature, chemical potential and two additional parameters (&, 3) associated

with the two types of scalar fields (¢, x1) respectively.

We show that such models have a finite DC conductivity, as expected, and analyse the
temperature dependence of the DC conductivity. The parameter &, which is non-zero
whenever there are background profiles for the square root fields, leads to a linear in-
crease in the resistivity with temperature at low temperature in a field theory in three
spacetime dimensions. In dimensions greater than three the DC conductivity increases
with temperature for all values of the parameters (&, 3).

We explore the low frequency behaviour of the optical conductivity at low temperature,
finding that for all values of our parameters there is a peak at zero frequency, indicating
metallic behaviour. However, we show that our models do not fit Drude behaviour even
at very low temperature: the effective relaxation constant is complex, indicating that

momentum not only dissipates but oscillates.

Perhaps unsurprisingly, we see no signs of scaling behaviour of the optical conductivity
at intermediate frequencies but our numerical analysis indicates minima can arise in
the conductivity at intermediate frequencies and low temperatures (in three spacetime
dimensions). The behaviour of the optical conductivity in our models is similar to that of
heavy fermion compounds: these also have a DC conductivity which increases linearly
with temperature at low temperature and they exhibit a transition to a decoherent phase
at low temperature in which the conductivity has a minimum at finite frequency. In
heavy fermions the origin of this minimum is a hybridisation gap, caused by f-electrons
hybridising with conduction electrons, while the dip in the conductivity in our model is
a strongly coupling phenomenon, associated with the mixing between scalar and gauge
field perturbations.
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The plan of this chapter is as follows. In Section 2.2 we explore models for translational
symmetry breaking based on shift invariant scalar field actions and we show how such
models are related to massive gravity and to scaling limits of branes. In Section 2.3 we
analyse square root models, demonstrating that a well-defined holographic dictionary
can be constructed. In Section 2.4 we build phenomenological models and compute
DC and AC conductivity in these models, showing that features reminiscent of heavy
fermions are obtained. In Section 2.5 we analyse generalisations of our models. We

conclude in Section 2.6.

2.2 The simplest models of explicit translational symmetry

breaking

In this section we consider an Einstein-Maxwell model with cosmological constant,

coupled to matter, i.e. an action

1

S:/dd+1x\/fg(R—|—d(d—1) 1

F? 4 L M)> : (2.2.1)

The gravity and gauge field equations of motion can be written as

1 1 2
Ry = —dguw + §(FupFup - Q(T—I)F Guw) + T 222)

Vu(F*) =0,
where T, is the trace adjusted stress energy tensor for the matter.

Note that in this section we will exclusively use Greek indices p,v,... to refer to bulk
manifold coordinates, and Latin indices a, b, . .. to refer to boundary spatial directions.
Expressions involving both pairs of indices should be interpreted as having an implicit
projection matrix to ensure that Latin index terms only contribute to the boundary spa-

tial parts of bulk tensors.

When the matter vanishes, the equations of motion admit the standard electric AdS-RN
black brane solution:

ds? _L —f(z)dt2+d—Z2+dx-d:r (2.2.3)
22 f(2) -
A=p(1—22)dt
2
F=1—mpz?+ 7222(d—1), (2.2.4)
~

where my is the mass parameter and f is the chemical potential. It is often convenient
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to choose mg such that

2 2
mo =1+ % F2) = (1— 2% + 1L pda=2 ) (2.2.5)

and the horizon is located at z = 1. The constant v is given by

V= 2((dd__2?. (2.2.6)

We will consider matter actions which are scalar functionals of the following form:
Sy = /dd'Hx\/—gL(X) (2.2.7)

where X = (9¢)? i.e. the Lagrangian has shift invariance by construction. The equation

of motion for the scalar in the charged black brane background is then
oL
p et
v (V“(b(sx) 0, (2.2.8)
which, due to the shift symmetry of X, always admits the solution
b =c = cuz?, X =z%c-c, (2.2.9)

for any choice of functional of X and any choice of spacelike vector c¢!. The stress energy
tensor associated with the scalar matter is given by

1 s
T =5 (-2(6@)(6@)55( + g,wﬁ> (2.2.10)

Evaluated on the solution above, this stress energy tensor is by construction homoge-
neous but not spatially isotropic.

Now consider a matter action which is a multi-scalar functional of the following form:
d—1
S = / day/=g) " L(X)) (2.2.11)
I=1

where X; = (8¢7)*. The equations of motion in the charged black brane background
are

5L
H _— g
Y (v,@[ 6X1> 0, (2.2.12)

'One could also choose ¢ to be linear in time, but such backgrounds would violate energy conservation
and will not be considered here.
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which admit the solutions
¢r=cr, Xr=zc cy, (2.2.13)

for any choice of functional and any choices of the spatial vectors c; = ¢j,z%. The stress

energy tensor is given by

SL(X7)

(~20.00@00 55 " + g1 ) 2214

A special case in which spatial isotropy is restored is the following: choose all (d — 1)
scalar Lagrangians to take the same functional form. Then by choosing c; = cz? ie.
¢1o = ¢ wWe obtain a stress energy tensor which restores rotational symmetry in the spa-

tial directions:

d—1
% <_ Z 2026@1’ 6652?() + (d - 1)g,uwc(X)> . (2.2.15)
a=1

Here we use the fact that X; evaluated on the solution is (¢z)? for all values of I. There-
fore for each I, both £(X;) and its derivative take the same values, which we denote

without the subscripts.

Another possibility to restore rotational symmetry in the spatial directions is the follow-

ing:
d—1
S = / d™ay=gL(> " X1) (2.2.16)
I=1

where X; = (8¢;)?. The equations of motion in the charged black brane background

remain

5L
K _— =
v (Vu(b[ 5 X1> 0, (2.2.17)

which always admit the solutions
or=cr,  Xi=z% ey (2.2.18)

for any choice of functional and any choices of the spatial vectors c; = ¢j,2%. The stress

energy tensor is given by

(22 ue1)(0v9r1) (X)+g;w£(X)>, (2.2.19)

where we have defined
X = ZXI (2.2.20)
I

The special case in which spatial isotropy is restored is the following: choose ¢; = cz?,
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ie. cry = cand X = (d — 1)(cz)?. The stress energy tensor is

d—1

1 SL(X

Tow = 5 <_§ PET 5(X ) +gwﬁ(x)> 7 (2.2.21)
a=1

which is very similar to the previous form (2.2.15).

In summary, given any Lagrangian functional built out of (d — 1) scalar fields with shift
symmetry, one can construct solutions for which the stress energy tensor preserves
spatial isotropy and homogeneity. The backreaction on the black brane metric therefore
preserves the usual black brane form for the metric, with a different blackening factor.
The breaking of translational invariance by the scalar fields ensures that the momenta
of fluctuations can be dissipated. In the remainder of this section we will consider the

physical interpretations of various types of functionals.

2.21 Polynomial Lagrangians

Consider first the case of (2.2.11). If the Lagrangian is of polynomial form, i.e. £(X) = X™,
then the stress tensor takes the particularly simple form evaluated on the scalar field

profiles:
1
T = 5X™ (=2mgap + (d = 1)gp) (2.2.22)

where g,, denotes the metric in the spatial directions. The trace adjusted stress energy

tensor T}, is defined as

— 1
Tw=Tw——=Tg. 2.2.23
ju ju d—1) Iu ( )
and is given by
T = (¢2)*™ (=mgap + (M — 1)gp) - (2.2.24)
If the Lagrangian can be expressed as a sum of such terms, namely £(X) = —= > a, X™,

the corresponding trace adjusted stress energy tensor is

T;u/ = Z am(cmz)Qm (mgab — (m — 1)gW) . (2225)

Note that this class includes the special case of m = 1, i.e. massless scalar fields.

Scalar field profiles for which the stress energy tensor preserves rotational symmetry

in the spatial directions by construction give rise to backreacted solutions which much
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satisfy a homogeneous black brane metric ansatz

dz2

F(z)

1
==

A =p(1 — 24 2)dt.

ds? (F(z)dt2 + +dzx - dxd_1> (2.2.26)

In the limit that the matter fields vanish F'(z) coincides with the f(z) given in the previ-
ous section, (2.2.3). Using the Ricci tensor for the metric (2.2.26),

1 1

Ry = (—dF + §(d +1)zF — 2Z2F”> Jit; (2.2.27)
1 / 1 2

R,,=|—dF + §(d—i— 1)zF" — 37 F" | g..;

Roy = (_dF + ZF/) Yab,

we note that such an ansatz is required given the form of the matter stress energy tensor.

The solution for the blackening function F' can be written as

F(z)=f(2)+) 273"1 d(cmz)zm, (2.2.28)

m

with f(z) given previously in (2.2.26). This expression assumes that d # 2m; in the latter

case the solution for F' involves logarithms, i.e. we obtain a term
am(cmz)tlog(z), (2.2.29)
which gives rise to non-analytic behaviour.

Solutions to (2.2.16) in the case that £ is polynomial, i.e. £ = —b,,(>, X\)™, are very
similar. Evaluated on the scalar field profiles one obtains

b

m 2m
Tw=—"X"|—-—"+——0 v 2.2.30

with X = (d — 1)c2,22. Therefore the trace adjusted stress energy tensor is

Tuv = —bm((d — 1)c?n,22)m

(d _ 1) (_mgab + (m - l)g,lw) (2231)

This coincides with the expression above in the case of m = 1 (massless scalar fields) as

the Lagrangians are the same. The corresponding solutions for the blackening functions

are
bm,

2 — d(d — )" Hem2)™™, (2.2.32)

F(z) = f(z)+

with f(z) given previously in (2.2.26). Again the case d = 2m will involve logarithmic
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terms.

2.2.2 Relation to massive gravity

In this section we will discuss the relation between massive gravity and our scalar field
models. Let us consider the following Lagrangian

L=—aipp Y \/(0¢1)* —ar > (9x1)*. (2.2.33)
1 I

The trace adjusted stress energy tensor is

THV = al/Q Z \/ 6(}5] gw, + a1/2 Z \/7 Mgb[a,,gf)[ (2.2.34)

I

+ar Y Ouxrdux
i
The scalar field profiles
o1 = 01/233]; xr = ciz’ (2.2.35)
give rise to a trace adjusted stress energy tensor which is

o
Ty = 5a1/2(c1/22) (9ab + g) + 01(¢12)"Gab- (2.2.36)

The backreacted blackening function is

F(2) = 1) = gpymaa o = gy (@)’ 2237

which in d = 3 has precisely the same form as the massive gravity solution found in [59].

One can also consider a slightly different Lagrangian

£a1/2< > (961) ) (Z (&x1) ) (2.2.38)
I

I

for which the trace adjusted stress energy tensor is

T = a1/2‘ / (061)° g + a1/2 \/7 Za,u¢lau¢l (2.2.39)
> (0¢r)

+ a1 Z a;tXIal/XI-
I
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Evaluated on the scalar field profiles
¢r = c1/2$I; xr = ciz’ (2.2.40)

the trace adjusted stress energy tensor becomes

_ 1 9
Ty = ———aq/9(c1/22) (Gap + Gur) + a1(c12)" Gup- (2.2.41)
)22 2\/Cm 1/2( 1/2 )(g b gM ) 1( 1 ) g b

The corresponding backreacted blackening function is

1 1 )
F(z) = f(z) — ———=aq/9¢1 /92 — ————a1(c12)", (2.2.42)
(2) = f(2) (d—l)% 124127 = g 1(c12)
which in d = 3 again has precisely the same form as the massive gravity solution found
in [59] and further analysed in [60] and [61].

To understand the relation with massive gravity in four bulk dimensions, let us first re-
call that the action for massive gravity consists of the Einstein-Hilbert terms plus the
following mass terms:
L=m*> ailli(g,h), (2.2.43)
i

where in terms of the matrix Kt = / gHP by

U =[K]; (2.2.44)
Us =[K]* — [K?];

Us =[K]> - 3[K] [K?] + 2 [K?];

Us =IK]" — 6 [K] [K)* + 8 [K] [K] - 3[K?]° — 6 [K]

The notation [Y] denotes the matrix trace. Here h,,,, is a fiducial metric, which can be ex-
pressed via a coordinate transformation in terms of scalar (Sttickelburg) fields 7#* when-
ever it is flat, i.e.

Py = N0, m° (2.2.45)

Unitary gauge is then defined as 7* = z#§j;. The restriction to a degenerate fiducial
metric in which only the spatial components are non-vanishing was obtained in [59]
using only two non-vanishing scalar fields, 7! and 72, which take an analogous form to
those given above, namely

ot =zl I (2.2.46)

From the first two terms in (2.2.44) one obtains a trace adjusted stress energy tensor

_ 1 1
T'u,u - *m2Oz1(IC,W + = [IC] guy) - m20é2(/C2

2 2 772 [’C] ICMV)' (2.2.47)
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The final two terms in (2.2.44) give rise to a vanishing stress energy tensor in four dimen-
sions, as expected, as the spatial gauge only involves two non-vanishing eigenvalues for
the matrix. Higher order terms in [K] would contribute in dimensions greater than four
but massive gravity in dimensions higher than four has not been explored in detail in
earlier literature.

Evaluated on the particular background given by the two scalar fields

— 1
T;w = §m2alz(gab + g/w) + m2042229ab7 (2.2.48)

2 remains consistent, which is

where we assume that the metric ansatz g11 = go9 = 2~
then justified a posteriori. The expressions (2.2.48) and (2.2.36) clearly match under the
identifications

mlay = a1 /21 /2; miag = a2, (2.2.49)

and (2.2.48) and (2.2.36) similarly can be matched.

While the black brane solutions in our models match those of massive gravity, it is clear
that fluctuations and hence transport properties of these solutions will differ between
massive gravity and the scalar field models. For the terms quadratic in I, corresponding
to the massless scalar fields in our models, this issue was discussed in [63]. Focussing

on the terms linear in I, note that

K] =/ (0r1)? + (9m2)%, (2.2.50)

and therefore the second term in (2.2.47) seems to resemble the first term in (2.2.39).
However, the scalar fields in the massive gravity model are assumed to depend only
on the spatial components as given in (2.2.46) whereas the scalar fields in (2.2.39) are

completely unrestricted. The first term in (2.2.47) can be written explicitly in terms of

Kuv = gup\) > _(0°m)(0y), (2.2.51)

which is not of the same form as the second term in (2.2.39) unless we restrict the scalar
fields to the form (2.2.46). In the background brane solutions the scalar fields indeed
necessarily take the form (2.2.46) but this property cannot generically hold for fluctua-
tions around the equilibrium solution. We will show in Section 2.4 why the conductiv-

ities nonetheless match those of massive gravity.

Another conceptual difference between our model and massive gravity is the following.
In our models the scalar fields ¢; and x are treated as independent fields but in massive
gravity they are identified as the same field. As we discuss in Section 2.5, it is however

straightforward to restrict to the case in which these fields are identified.
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2.2.3 Relation to branes

From the perspective of top-down models, the appearance of square root terms is un-
conventional. In this section we will show that similar terms can arise from tensionless

limits of branes. Consider the following action:

d—1
S = _b1/2/dd+1x — det (g +Zau¢lay¢l) = —bl/z/d‘”lx\/— det M. (2.2.52)

I=1

This action can be interpreted in terms of a brane with a (d + 1) dimensional world
volume, which is probing (d — 1) flat transverse directions. To show this, recall that the

DBI term in the action for a p-brane is

SDBI = —T/dp+1$\/— det(gMNauXM{‘),,XN + F/“,), (2253)

where T is the brane tension, F},,, is the worldvolume gauge field strength; X are the
brane positions and gasn is the metric of the spacetime in which the brane propagates.
Fixing static gauge for the brane corresponds to choosing X* = z# and the gauge fixed

action is

Sppr = —T/dp+llli\/— det(gw, + gm(“&,)Xm + gmnauXm&,X" + Fuy), (2.2.54)

where the transverse coordinates are denoted as X™. Whenever the background metric
is diagonal ¢,,,, = 0. If there are no Wess-Zumino terms sourcing the gauge field, then
the gauge field strength may also always be set to zero. This results in a brane probing
the transverse directions:

Sppr— T / 4"y~ det(gu + grndu X0, X7, (2.2.55)

and clearly when ¢,,, = dmy the action reduces to (2.2.52), with b, /2 being identified as
the brane tension.

The trace adjusted stress energy tensor following from (2.2.52) is

Tyz_bl/Q— V—det M V_#MPU oG (2.2.56)
N N

Again the specific solution ¢; = cx! preserves spatial homogeneity and isotropy with
the trace adjusted stress energy tensor being

d—1

_ 1 d—1 2
T = —§b1/2(1 + CQZQ) 2 <(1_d)guv - CQZQQW + CQ(S@) (2.2.57)
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and the blackening factor taking the form

F(z) = f(2) + by o2 / (d_cﬁzdﬂ(l + 0222)%. (2.2.58)

Expanding the second term for small z near the AdS boundary gives

1 252
_b1/2<d(d—1)+2(d_2)+"'>a (2.2.59)

i.e. there is an effective shift of the AdS radius as well as subleading terms in the expan-
sion. When d is odd the integral gives an analytic expression; for example, for d = 3 one
obtains

F(2) = f(2) = by (é + 26222> (2.2.60)

but d even generates logarithmic terms and therefore F'(z) is not analytic, e.g. for d = 4

L 322 344 L 6.6
= f(2) - S S22 - St — =828, 2.
F(z) = f(2) = bi)s (8 + 27 T ¢ og(2) il (2.2.61)
Working perturbatively around AdS, this brane type Lagrangian leads to a shift in the
cosmological constant along with a spectrum of (d—1) massless scalar fields, dual to (d—
1) marginal couplings in the field theory. It therefore reproduces analogous behaviour

to the massless scalar fields discussed in the previous sections.

Another brane model can be obtained as follows. Consider (d — 1) branes of equal ten-

sion, each probing one transverse flat direction only:

d—1
S=—bys Z / dde\/ — det (g + 0ubr10, 1) (2.2.62)
=1

Using Sylvester’s determinant theorem this action can be rewritten as

d—1
S =—bis Z/dd+1:c\/— det g\/1 + #1061 (2.2.63)
I=1

The trace adjusted stress tensor is

Ty = by 2V deth My — ;M’"’MI oG (2.2.64)
M 9 /jg 2 (d — 1) I podu
where now
MI;,LV = Guv + au¢lay¢l~ (2265)

The solution with ¢; = cz! is homogeneous and isotropic with the blackening factor
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being

dz

_ d 2 2\% 1w
F(z) = f(2) + byj2z /zd+1 (1+c%2%)2 (1 + 5% d ~ 2)) , (2.2.66)
which coincides with (2.2.58) in d = 2.

The action (2.2.63) admits a scaling limit in which the brane tension is taken to zero

bij2 — 0 with ¥y = b ¢, remaining finite. This limit results in

d—1
S~ — Z/dd+1ijg\/(8¢1)2, (2.2.67)
I=1

which is of the square root form.

2.3 Square root models

While one can obtain solutions for any polynomial functional, one would usually re-
strict to the case of m = 1, i.e. massless scalar fields. In AdS/CFT the operators dual to
these scalar fields are marginal scalar operators and the bulk scalar profiles are there-
fore immediately interpretable in the dual theory as linear profiles for the associated

couplings.

For integer m > 1 the action is higher derivative and for non-integer m the action would
be considered non-local. In this section we will argue that both cases may in some limits
nonetheless be relevant in bottom up models.

Consider first the case of integer m > 1. In the previous section, we assumed that the
scalar fields appearing in polynomials of different order were independent. However, in
the solutions of interest, the scalar field profiles are the same for each order polynomial.
Therefore there is no reason why we should not identify the scalar fields, e.g. we could
consider

L=-aY @061 —ar > ((961)%)" (2.31)
I I

or

L=y (067 - ax(Y (961)%) (232)
I

I
The fourth order terms can be viewed as higher derivative corrections to the leading
order action; az should therefore be considered as parametrically small compared to a;
(which can always be rescaled to the canonical value by rescaling the fields). However,
it makes sense to consider how a small a; would affect transport and thermodynamic

properties of charged black branes, although we will not pursue this further here.
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Now let us turn to non-integer m, focussing on the case of m = 1/2, i.e. a Lagrangian of
the form
L=—/(0¢)* (2.3.3)

Note that reality of the Lagrangian requires that (0¢) is not timelike. This is certainly
an unconventional Lagrangian in holography, although similar actions have arisen in
several contexts. For example, time dependent profiles of scalar fields associated with

L=1/—(06)* (2.3.4)

have been proposed in the context of dark energy [65, 66]. The same action arose in

the cuscuton action

the context of holography for Ricci flat backgrounds: the holographic fluid on a timelike
hypersurface outside a Rindler horizon has properties consistent with a hydrodynamic

expansion around a ¢ = ¢ background solution of the cuscuton model [67, 68].

In the remainder of this section we will explore the behaviour of the (2.3.3) model. It is
subtle to work at linear order around an AdS background as the corresponding scalar
field equations remain non-linear in this limit: we obtain a field equation of the form

_ 1 _
V| ——V,u0 | =0, (2.3.5)

(09)?

where V, is the AdS connection and here ¢ is implicitly treated perturbatively, i.e. the

amplitude of the scalar field is small.

When one works perturbatively around the AdS background, we need to take into ac-
count the fact that the scalar field perturbation is of the same order as the backreaction
of the metric. (Note that in the exact, non-linear, black brane solutions the backreaction
on the metric is indeed of the same order as the scalar field itself.) It is convenient to

express the coupled metric and scalar field equations using

Vot = 0; (2.3.6)

1
T = —iﬁ(guy + 2v,v,,),

where X = 1/(9¢)? while the velocity field v, is conserved and satisfies v#v,, = 1. In
terms of the scalar field one can express the velocity field as the gradient flow

_ Vuo
’UM = ﬁ

Working perturbatively around the AdS background requires that ¢ ~ § with § < 1. The

(2.3.7)

metric perturbation is then of the same order as the scalar field and the non-linearity is
manifest in the fact that the velocity field is of order one.
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We can now proceed to solve these equations as follows. Working perturbatively in the

amplitude 0 let
V= 00+ O(0%) g = G + b + O(6%), (2.3.8)

where g, is the AdS metric and vy is any conserved globally spacelike vector in this
metric, which can then be normalised such that vjvg, = 1. Solving the conservation
equation up to order ¢ gives

1
Vip = —5110#]11 (2.3.9)
with hy = g""hy,,. Substituting into the trace adjusted stress energy tensor we obtain at
order § .
T = =3hauw — 5 VX (G + 2v0000), (2.3.10)

with v/ X a function of the spacetime coordinates. Therefore the metric perturbation
hi is determined by the Einstein equation in terms of v X and the conserved vector

field vg,,. Using the linearised Ricci tensor in de Donder gauge (V#hy,,, = 0) gives

o 1
V. Vohi + hig = 5\&(@” + 200,00, (2.3.11)

DO |

1-
§|:|h1,uy +
Tracing this equation with g"” results in
Ohy 4 (d+ Dhy = (d+ 3)VX. (2.3.12)

Therefore, the leading order defining data is a scalar field satisfying (2.3.5), which is a
non-linear equation; we will discuss its solution in Section 2.3.3. Note that an asymptotic
expansion of the field equations near the conformal boundary exists as we will discuss

in the next Section 2.3.1.

As in the cuscuton and holographic fluid models, one can find simple solutions of the
equations of motion with non-vanishing scalar field profiles, and the equations of mo-

tion are linear when expanded around such backgrounds. To understand this, let us

L=—ai )y 1/ (0¢1) (2.3.13)
I

for which the coupled gravity/scalar field system admits the homogeneous and isotropic

consider the action

solution

2

1 ai/2€1/2 | .9 dz
ds? = = | —(1 - e —F
5 22 ( ( (d—1) 2"+ (1-— 21/2%2 z)

+dzx - dmd1> (2.3.14)
(d-1)

with ¢ = ¢;/901,2% This is the u — 0, mg — 0 limit of the solution given in the previous
section. As discussed above, the backreaction on the metric is linear in the scalar field
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amplitude and therefore cannot be neglected even for small ¢, /.

Note that when a, /, > 0 the geometry has a horizon, with the entropy and temperature
being

1 a1/2C1/2 -1 a1/2€1/2
=V, : T= 1" 3.1
S 4Gd+1vd 1<(d—1)> ’ Ar(d—1) 23.19

where G441 is the Newton constant. Analogous behaviour was noted in the massless

scalar field model of [63]. If a1/, < O there is a curvature singularity as z — oo; this can
most easily be seen from the expression for the Ricci scalar

R=(=d(d+1)F — 22°F" + 2dzF") = (—d(d + 1) 4 day j3¢1 92) - (2.3.16)

The singularity is at infinite proper distance and would presumably therefore not affect
the computation of correlation functions. It is a good singularity, in the sense of [77],
since it is shielded in the black brane solutions of the previous section for which mq > 0.
We will discuss the linearised equations of motion in such backgrounds in section (2.3.3).

2.3.1 Holographic renormalization for square root models

In this section we explore asymptotically locally AdS solutions of the action

d—1
_ 1 [an, o L .
5= TorGan / A av=g <R+ d(d—1) = ay ; (0¢1) ) . (2.317)

Despite the subtleties discussed in the previous section, one can solve the field equa-
tions iteratively near the conformal boundary and systematically set up holographic

renormalization in the standard way [15, 23, 78].

The on-shell action, including Gibbons-Hawking boundary term, is

d—1
1 1
e = —————— dd+1 — *2d 2 - /dd - K
Share 167er+1/ T/ g< +ay EI \/ (0¢r1) S7Can /=y

(2.3.18)
One can rewrite the bulk scalar field term as
d—1 2
1 0
W /dd+1x —g a1/2 Z & (2319)
d+1 T (8¢I)2
d—1
1 / ¢10* o1
= [ Sy | ——= .
167TGd+1 (8¢I)2

using the scalar field equation.
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In the neighbourhood of the conformal boundary the metric can be expanded as

dp?

2 _
ds 42

+ ;gw dzida? (2.3.20)
where

gij = 9(oyij(r) + ,01/29(1)@'(15) + pg(2)ij(T) + -+ + P% (9(ayij(x) 4+ log(p)hayi;) + - -+ (2.3.21)
We will show that there exist scalar field solutions such that

(d+1)

é1 = doyr(x) + poeyr(x) + -+ p 2 (D) or(@) +108(p)d(at1yj2r(x) + -+ (2.3.22)

and the metric expansion takes the above form.

In the Fefferman-Graham coordinate system the Ricci tensor can be expressed as

1 d
-1 -1 .
R, _4Tr( /) _ iTr(g g — 47%)2, (2.3.23)
1, 1 _
Rpj =5 Vel — 5 Vi(Tr(g™');

_ 9i
Rij =Rij + (d — 2)gi; + Tr(g 9" )gi; — p(29" — 29’99 + Tr(g~'g")g);; — d ;f
where R is the curvature of g;;, for which the associated connection is V;.

The scalar field equations can be expressed in this coordinate system as

p 2

where implicitly 8'¢; = ¢¥/9,¢; and

Yr= \/9jk5j¢13k¢1 + 4p(d,6r)? (2.3.25)

The trace adjusted stress energy tensor can be written as

—_ d ay /9 1 i P

Tpp =— 12 2p3//2 <P3p¢13p¢1 + d= )(9 10;010;61) + (d_1)(8p¢])2> ;

— ay /9

Ty :2p1//2 71 (3z‘¢13p¢1) ; (2.3.26)
i

- dgij , @1/2 1 1 ki 2

Tij = — ) Toarly, 0ip10;01 + =1 (97 010101 + 4p(0p01)7)ij | -
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Tracing the (ij) Einstein equations with g% gives
R +2(d — 1)Tr( 1) = 2pTr(gg") + 2pTr(g~'d)’ — p(Tr(g 7 g))’ (2.3.27)

906 d
2 1/2 1/QZ< _1)YI>‘

The latter equation is not independent but is useful in the analysis below.

The leading order term in the scalar field equation is at order p'/? and enforces

kl .
90,0k P0)1019(0)1 o'
vl Vo) P , (2.3.28)

by =
2(d—1) \/gfé)ak¢(0)lal¢(0)l

where all indices are raised using ¢(®/ and Vgy;; is the connection of g(g;;. This ex-
pression may be written more compactly using the shorthand notation of Y{g); for the

Y, ¢
)1 ()1
— Y , (2.3.29)
P 2(d—1) " © ( Yio)r )

square root term as

Using the radial terms in (2.3.24) one can see that the normalizable mode of the scalar
field occurs at order (d+1)/2 in the expansion. The coefficient of this term, ¢(441) /27 ().
is undetermined by the asymptotic analysis. In general one also needs a logarithmic
term at the same order to satisfy the field equation; this term ﬁg(d+1) s21(x) is determined

in terms of ¢(y;(z), as we will see below.

From the leading p~3/2 component of the (pp) Einstein equation one obtains
_ 1
Tr(g(oig(l)) =ay/2 Z my(o)] (2.3.30)
I

1/2

From the leading p~"/¢ component of the (ij) Einstein equations one finds

= ai/2 Z z¢(0)[aj¢ (2.3.31)

which is manifestly consistent with the trace. This equation is also consistent with the

exact solution (2.3.14) expressed as a Fefferman-Graham expansion.
The expansion up to this order is sufficient to determine the counterterms

__; d 1 2
Ser = 16de+l/dxF<( )+a1/2(d 0 ZI: (061)* + ) (2.3.32)

where the first term is the standard volume term derived in [15, 79]. Note that the second
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counterterm can also be written as

1
167TGd+1

/dx\ﬁaw ngv _9or , (2.3.33)
(061)?

using partial integration.

Let us now restrict to d = 2 and calculate the conformal anomaly and the renormalized
mass. We need only consider the following additional terms in the metric

9ij = 9(0yij T P1/29(1)z‘j + p(9(2)ij + log(p)h(z)ij) + - - (2.3.34)
The (pp) Einstein equation at order 1/p fixes Tr(g(_()%h(z)) = 0. From (2.3.27) we obtain
_ 12 1 _ 2
R+2(d— 1)Tf(9(0;92) —(d— 1)TT(9(0§91) - Z(Tr(g(oﬁgl)) (2.3.35)

(2d—1) i
= —ay1/2 ZI: mg€1)8j¢(0)lak¢(0)l

where the indices of 9(1) have been raised with 9(0) This equation can be solved to give

_ R a1/2 a1/2 (2d = 3) 0)Jij
1 - —
Tr90)90) = —5 =7 + E Yoy s(d ;J Y(o (2.3.36)
with
X(O VIij — z¢ 18j¢(0)1 (2.3.37)

The term involving the Ricci scalar agrees with [78]2. In d = 2 there is only one species
of scalar field and the expression simplifies to give

. R 1.,
Tr(9(0§9(2)) =5 T Za%/za b(0)0i%(0)- (2.3.38)

The divergence of g(,) is determined using the order one terms in the (pi) Einstein equa-

tions
3@1/2

2,0 )3 i) b@3) + (2.3.39)

Vzo)g@)

In d = 2 the rest of g(3);; is not fixed, being related to the expectation value of the energy
momentum tensor. The logarithmic term h(,);; vanishes; one can show this using the
(1j) equations at order one. Solving the scalar field equation at order p gives (15(3) =0,ie.

the logarithmic term in the scalar field expansion vanishes.

Using these expressions one can show that there is a logarithmic contribution to the

2Note that their curvature conventions differ from ours.
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on-shell actionind = 2

1
Siiv = {g-cn / d®z\/=g(0) log e (R(g())) (2.3.40)

which can be removed by the logarithmic counterterm

1
167

Set =~ T / Az log e (R(7)). (2.341)

Note that the metric variation of this term is zero, in agreement with the fact that i(5);; =
0.

The total action in d = 2 is therefore the sum of (2.3.18), (2.3.32) and (2.3.41)
Sren - Sbare + Sct + Sfinite7 (2342)

where the last term denotes finite counterterms, i.e. scheme dependent terms. The most
relevant such term, which we will discuss further below is

Js / d22/=5(99)>, (2.3.43)

Stinite =
finite 167TG3
where ~; is an arbitrary c-number.

Varying the renormalized on-shell action with respect to g(g);; gives the renormalized

stress energy tensor, defined as

2 6SEren

<TZJ> = i
det(g(0)) 99(0)

. 1
~ lim (WHTJ m) . (2.3.44)

Here we have analytically continued to Euclidean signature, under which iS — —Sg
with Sg the Euclidean action. From the terms in the action involving only the metric
and extrinsic curvature we obtain
(Tij) = : <9(2)i’ — Tr(gtoe)gys + STr0e o) g0y — 2Tr(gtom)e >
871G J (0)7(2))9(0)ij T 5 (0)7(1)) J(O)3ij — 5 0)J(1))91)ij | >
(2.3.45)
in agreement with [78] when g(1);; = 0, and the terms involving the scalar field give

2
@y /9
Tij) =
< ]> 87TG3

1 1
<48k¢(0)ak¢(0)g(0)ij - 48i¢(0)aj¢(0)> . (2.3.46)

Combining these gives

1

R 3 1
(Tij) = 871G (9(2)1']' + 5 9(0)ij + a%/g (431‘@5(0)33‘(25(0) + 2(3¢(0))29(0)zj)> . (2347
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Note that the additional finite counterterm (2.3.43) contributes an additional traceless

scheme dependent term

S 78 ]' 2
(T35) = 872G <—3z‘<15(0)8j¢(0) + 5((9@5(0)) g(O)ij) (2.3.48)

The trace gives
R

TN = "~
(Ti) 167G3’

i.e. the scalar field drops out of the conformal anomaly, as does the scheme dependent

(2.3.49)

term.

The operators dual to the scalar fields similarly have expectation values defined as

(2.3.50)

oL S g ( 1 6Sren)
! w/detg(o) 5¢(0)I e—0 6\/’7 dor )
Again this is defined in Euclidean signature. Computing this quantity in d = 2 gives

3aie b3
(0) = ——2- 22
167TG3 Yio)

+ (00, (2.3.51)

As anticipated, we note that that the expectation value is the normalizable mode, divided
by Y(). The total scaling weight is therefore two: the dual operator is marginal, despite
the fact that the normalizable modes occur at order three in the Fefferman-Graham
expansion. The term (O®) denotes scheme dependent contributions; for the specific

counterterm (2.3.43) we obtain

S\ __ PyS
(0% = G Oé (o), (2.3.52)
where O is the d’Alambertian in the metric gg).

Using (2.3.39) one can obtain the diffeomorphism Ward identity

Vi (Tij) = 0i¢(0)(O). (2.3.53)

Switching on a source for ¢ o) which depends on the spatial coordinates, but not the time
coordinate, allows momentum to be dissipated while preserving energy conservation.

For d > 2 we would need to work out the series expansion to higher order and compute
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additional counterterms. However, the general structure will be analogous

d

i) =g S+ @259
d+1 a

Oy = — 4L i

C 167Ga1 Yoy

with the ellipses denoting terms local in g(g);; and ¢(gy;. The leading term in the stress
tensor involving the normalizable term in the metric expansion is as in [78].

2.3.2 Thermodynamics of brane solutions

The analysis above allows us to evaluate the on-shell action on black brane solutions (2.3.14)
in d = 2. In three bulk dimensions the metric (2.3.14) can be rewritten in Fefferman-

Graham coordinates as

4
do?2 1 1/2 1/2
ds?2 =L 4 2 (14 22 —a? [1- —2 | +da? . (2.3.55)
4p2 P 4 (1 apl/? )
1
where we introduce the shorthand notation a@ = ay/5¢;/5. The general solution with

parameter mg # 0 is

dz2

(1 —az —mpz?

ds® = 1

=2 (—(1 — az —mpz?)dt? + ) + d:z2> (2.3.56)

and it can be rewritten in Fefferman-Graham coordinates using the transformation

2 - (2.357)
2 = . N
P 1—%0424-\/1—042—771022
The horizons of the general solution are located at
o 1
2e = ——— + ——/a? + 4my. (2.3.58)
2mg  2my

We noted previously that when my = 0 a horizon exists only for & > 0. When we allow
for mg # 0, horizons exist provided that

mo > _Z; a> 0. (2.3.59)
When mgy = —%2 the black brane is extremal. The entropy and temperature of the black
brane are given by
Vi _ mo(zy —2-)

S = T = ppm (2.3.60)
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We can compute the free energy from the renormalized on-shell action. We need to
distinguish between the case in which the metric has a horizon and the case in which it

has a singularity as z — oc.

No horizon: In the latter case there are no contributions to the on-shell action from the

z — oo limit of the volume integral and the renormalized Euclidean on-shell action is

3 ‘71 . 2
Son—shell 7,1 - + 2 2361
E 167TG3 o 1 ) ( )

where we have included the finite counterterm (2.3.43). Here j3r is the (arbitrary) period

of the imaginary time direction.

Computed on (2.3.14) the expectation value of the scalar operator is zero, which implies

that the stress energy tensor is conserved. Using (2.3.55) we can read off

Lo, 1 3 5 1
9@t = g + 503 9@za = 3O + 570 (2.3.62)

and therefore the conserved mass is

Wi
167TG3

M = /dl‘<Ttt> = <_3a2 — ’YSC%/Q + m0> . (2363)

4

The thermodynamic relation
— goshell — 3. — B M, (2.3.64)

where F is the free energy, is satisfied provided that the coefficient of the scheme de-
pendent term is

Vs = —%a%/z_ (2.3.65)
Therefore the scheme dependence is fixed by imposing the thermodynamic relation.
Note that these solutions are not however physical as the free energy is unbounded
from below; they are analogous to negative mass Schwarzschild and indeed when we
consider the limit @ = 0, mg < 0 we recover negative mass BTZ.

Black brane: In the black brane case the analysis is similar, but there are contributions to
the on-shell action from the horizon limit of the volume integral, resting in an on-shell
action

_ Wi o? o 2
gon shell _ BT - 2 - _ = 2.3.606
E 167G mo + 1 + VsC1/2 + PN Z_%. ) ( )

Here V; is the regulated length of the spatial direction and /3 is the inverse temperature,

which is no longer arbitrary. The conserved mass is as given in (2.3.63). The thermody-
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namic relation

F=M-TS (2.3.67)
is again satisfied provided that
1
Vs = =501 (2.3.68)

These solutions have a mass which is bounded from below

M>_ 2

_ 2.3.69
= T 39rGs ( )

with the bound being saturated by extremal black branes. This is most easily shown by

rewriting the mass as

Vi 1, 22
=—| —= 4T 2.3.70
M 167TG3< g AT ) (2.3.70)

with the first term being a Casimir term and the second term showing the expected tem-
perature dependence for a dual 2d conformal field theory. To derive the first law, note
that one should vary the entropy and mass with respect to the temperature 7', keeping

the parameter « fixed. Then

’7TV1
dM = —=TdT. 2.3.71
M= G ( )

In varying the entropy, it is useful to note that

dzy), = —2m23dT (2.3.72)

and therefore - p -
ds = - (2% = Ty 2.3.73
4G5 < z_%_ 2G5 ( )

which implies that the first law dM = T'dS is indeed satisfied.

The black brane solution in d > 2 with parameter mg # 0 is

ds? = 1 —(1— S mozt)dt? + dz” + dz? (2.3.74)
2 (d—1) 1-Gp7— moz®) ' o

Let us denote the location of the outer horizon as zg; it is the smallest value of z at which
the blackening function has a zero. The black brane has an extremal horizon when the
blackening function has a double zero at zy; this occurs when

d 1 d

= o= (23.75)

and (at fixed ) smaller values of my give naked singularities. The entropy and temper-

_ 1
s=- Vi p_ L (d _ a) . (2.3.76)
4Ggi12§ 4dm \ 2o

ature are given by
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Using (2.3.54) the mass is given by

Va1

= oG ((d ~1)mo + )\ad) , (2.3.77)

where A is a constant which can only be determined by computing the local terms
in (2.3.54). The first law is proved as follows: to vary M at fixed o we use

dmg = — 220 <d _ a) = 470 (2.3.78)
2y \?0 0

Therefore
Vi1 (d—1)Tdz

M = —
4G a1 e

=TdS. (2.3.79)

2.3.3 Two point functions

Solving (2.3.5) and (2.3.1) one can compute the two point function of the scalar operator

in the conformal vacuum. The linearised equation

_ 1 _
VH | ——=V,6r | =0, (2.3.80)

(0¢1)°

admits solutions whose asymptotic expansion around the conformal boundary is given
by (2.3.22). The two independent coefficients, ¢(gy;(z) and ¢(441)7(z), are related when
one solves the equation throughout the bulk, imposing regularity everywhere. Regular-
ity is however made more subtle by the fact that the backreaction on the metric occurs

at the same order. The two point function for the dual scalar operator is then given by

(2.3.81)

(d+1)ayss 6 (dary(@) /Yoy (x)) 4. )

(O1(x)O1(y)) = lim ( 16mGgi1 S yr(y)

$0yr—0
where the ellipses denote contact terms. We also need to take into account the fact that
the backreaction on the metric is at linear order in the amplitude of the scalar field and
therefore

) d 59(d)z’j($) )
O = — 1 2.3.82
(Tij(z)Or(y)) ¢(0§?L0<16de+1 500 () ( )

does not automatically vanish. (Again the ellipses denote contact terms.)

Equation (2.3.80) is hard to solve. Since it is a non-linear equation, one cannot Fourier

transform along the 2’ directions. One can solve for a single Fourier mode, i.e. letting

o1(z,7) = ¢z, ki) e i (2.3.83)
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the equation becomes

1 L&
o, | - O:¢1 =0, (2.3.84)

: \/(@&I)Q + kiki g3

where we work with the usual Poincaré coordinates for AdS;1, namely
2 1 2 i
ds® = ] (dz + dx dCL‘i) . (2.3.85)

The equation can then immediately be integrated once to give

where k% = k;k' and ) is a dimensionless constant. This equation can be integrated to

give

B _ oy kd+1,dg
b1z, k) = (k) e* Tiexp ()\/ il 75 |- (2.3.87)
(1= N2(k2)*)
One can fix the constant A by imposing regularity and thereby relate the non-normaliz-
able and normalizable modes in the asymptotic expansions. However, since one cannot
linearly superpose such Fourier modes, one cannot use these solutions to compute the

two point function.

Let us now consider perturbations about a background solution with non-vanishing
scalar fields. The linearised problem is perfectly well-defined when the square root
terms are expanded around any non-vanishing background. However, the metric and
scalar field fluctuations are coupled and the equations of motion need to be diago-
nalised. If the scalar field fluctuations were decoupled from those of the metric, a;
would need to be positive for the fluctuations to have the correct sign kinetic term (and
hence, correspondingly, positive norm correlation functions in the holographically dual
theory). Since the metric and scale fluctuations are coupled one cannot immediately

conclude that the sign of the coefficient a; /5 in (2.3.13) must be positive.

We can compute the linearised equations of motion around (2.3.74) as follows. We per-
turb the metric as g, — g, + hu and the scalar fields as ¢; — ¢; + d¢;. Then the
linearised scalar field equation is

Vi

veogr | 1
2

(0¢1)° (0¢r1)

(V1) o (8(061)°
5 K (8¢I)2

) =V | (0~ Shg™) V.01
(9¢r)*
(2.3.88)
where we define h = g""h,,,.
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The linearised Einstein equations are
0Ruy = —dhy, + 0T/ (2.3.89)

where . . . )
5Ruy — —iljhuy - §Vuv1/h + §vauhpl, + ivpvth (2390)

and

d—1
0T/ = alf >~ ; [ 0,010,001 + 0,610, 01 + i( 5(0¢1)° guw + (961)*hyu)
(09r)

16(8¢7)*

2 (0¢1)?

< M¢18V¢1+ ((9(;5[) g,w>] (2.3.91)

where (5(6¢1)2 = 29" 0,010,001 — 0,610, ¢1. These equations are complicated, since
the scalar field profiles break relativistic invariance in the d directions (¢, /). One can
however show that it is consistent to switch on only h;(¢, z), h.1(t, z) and 0¢ (¢, z) for
a given value of I; such perturbations suffice to compute the autocorrelation function.
The three non-trivial equations are then the (¢I) Einstein equation, the (zI) Einstein
equation and the scalar field equation. Furthermore, one can choose a gauge h.; = 0,
and show explicitly that the two Einstein equations are compatible with each other. The
resulting two equations are then simply

F/
F

1/2

d 1
opy + < z) S¢7 — ﬁafégm — Oy Hr; (2.3.92)

1/2

1
SOy = 5236 =0,

where we have defined H;; = hy;22. One can eliminate Hy; by taking the z derivative of
the first equation and using the second equation. Defining

(1= 2"TFs¢; (2.3.93)
the resulting equation is

(ARG~ 508 = et (2.3.99)

Note that the term on the right hand side should not be interpreted as a mass term in the
usual sense, as it does not control the powers in the asymptotic expansion of the field
¢r as z — 0. Indeed ¢; admits two independent solutions

_ 1
(= Cra—agy®)z" "4+ {oyr(t) + g01/2a1/2C(0)1(t)Z +--- (2.3.95)
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which in turn correspond to an expansion
51 = 0poyr(t) + -+ + 0(agnyr(t) 2+, (2.3.96)

in agreement with the full non-linear expression given in (2.3.22). We can give insight
into the powers arising in this expansion as follows. For a massive scalar field the on-

shell action can be expressed as
- / A ay/=g (VFOV,uh + m?¢?) = — / AXHeV ¢ ~ — / d%%qbang (2.3.97)

where we use the fact that the metric is asymptotically anti-de Sitter. Scale invariance

d=4 and acts as the source for

requires that the non-normalizable mode of ¢ scales as z
an operator of dimension A, and the field equation determines that A(A — d) = m?; the
normalizable mode of ¢ is related to the expectation value of this operator and scales as

2819, 13].

Now let us turn to the square root model. Although the scalar field fluctuation is cou-
pled to the metric fluctuation, the latter only affects subleading terms in the scalar field
expansion near the conformal boundary: the leading asymptotics are controlled by the
first two terms of the first equation in (2.3.92). Therefore we can consider only the scalar
field part of the action, i.e.

—ayjs / A e/ =gr\/ (8¢r + 05¢r)* (2.3.98)

Since this action is expanded around a solution of the equations of motion, the linear
term in d¢; automatically vanishes on-shell. The on-shell action can be expressed as a

boundary term

—ay / asy [ 2010x001 (2.3.99)
2/ (0¢1)*
which gives
1
—ay / diz 20610.0¢;. (2.3.100)
CI/QZ

Suppose the non-normalizable mode of d¢; scales as 2" and the normalizable mode
scales as 2. The boundary term gives a contribution of order 2’ when A = d + 1, in

agreement with (2.3.96).

The two point autocorrelation function can now be computed by solving (2.3.94) for an

arbitrary boundary source (;(;_g)(t) subject to regularity; this will determine the sub-
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leading coefficients in (2.3.96) and then

O100s(t)) = AT Va2 Sy

_ . (2.3.101)
167T01/2Gd+1 5¢(O)I(t,)

It is straightforward to solve (2.3.92) in the limit mo = 0 with ¢;, — 0, as the fields
decouple and therefore one can immediately solve for the scalar field. In the frequency

domain we obtain
361(w) = 0¢0)1(w) (w2) T2 K 411y o (w2), (2.3.102)

where the Bessel function is normalised so that the asymptotic expansion takes the
form (2.3.96) and implicitly we are now working in Euclidean signature. Working in d =
2, where the complete expression for the one point function was calculated in (2.3.51),
we obtain

ai/2 w3

_ _ w 0
(O1(:001(-,0)) = 22+ O ) (2.3.103)

where we work in mixed representation, i.e. frequency space and position space for the
spatial coordinate. This expression is not analyticas c; 5 — 0, i.e. as the background pro-
file for the scalar field is switched off. Recall that the general expression for the Fourier

transform of a polynomial in d dimensions is

2 o _ I'(d/2 — _
/ e R (g2 = pd/290-2 L2 =) (o r—aj2 (2.3.104)
L'(A)
which is valid when A # (d/2 + n), where n is zero or a positive integer. Transforming

back to the (Euclidean) time domain gives

3a1)2 1

o o
(Or()01(t)) = 6472G3 ¢y o t|* i

O(e))- (2.3.105)

This condition is consistent with a positive norm provided that a;/5¢;/2 > 0. The off-

diagonal correlation function (2.3.82) is of order ¢, /, or smaller.

2.4 Phenomenological models

In this section we will explore the properties of the following model:

d—1
S = 167r1Gd+1 /dd+1x\/jg <R~|—d(d_ 1) — %FQ B Z(a1/2\/m+a1(3><1)2)>

I=1
(241
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where for clarity we now label the two families of scalar fields as ¢y and x;. The equa-

tions of motion for the matter fields are

1
s (QVMW) = 0; V. Vixr = 0; V. F* =0 (24.2)
(0vr)
and the Einstein equation is
R,uu = _dg;w + T;w (243)
where T),, is given by
1 1 d—1
T = = | FupFf — =————F?q, y 4.4
e 9 ( pp 2(d—1) 9u ) + Izzjlala,uX]a X1 (2.4.4)

d—1 1
Z e ( Outbrdbr + ——— (9n) g,w) .
=1

24/ (0v1)?

The homogeneous and isotropic black brane solutions are given by

_l’_

2 1 2 dz? 2
with
2
1 d, B L2(d-1) _ 1 _ L 2
F(z)=1—mpz"+ 7220@ 57 T 0/2012% o 2a1(clz) (2.4.6)

where 42 = 2(d — 1)/(d — 2) and my is fixed by demanding that F(z9) = 0. The Maxwell

potential is
Zd
A=p = dt (2.4.7)
0

xi = 1zl = 01/233]. (2.4.8)

and the scalar fields are given by

The temperature is given by

Fl(zo) 1 (d (d—2)u%z )
= = W 2d—1) @@y ). (2.4.9)
The entropy is
Vi (2.4.10)

- d—1
4Gd+1Z0
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and the potential ¢ and charge @) are respectively

— )V,
sy Q=12 (2.411)

The charge density ¢ is given by = ¢V;_1. The mass is given by

(d-1)

— 67 (mo 4 ) (2.412)

where the ellipses denote terms involving the non-normalizable modes, i.e a = a;5¢1 /2
and 8 = ajc}. This form for the mass is consistent with the mass for the standard
Einstein-Maxwell system; one can show that the first law dM = TdS + ®dQ is satis-
fied using analogous steps to those in Section 2.3.2.

Systematic holographic renormalization would be required to determine the terms in
ellipses in the (2.4.12) and the free energy. The scalar field profiles are non-normalizable
modes, associated with deformations of the dual field theory, and therefore the thermo-
dynamically preferred state is that with lowest free energy at fixed (c; /2, c1). It is possi-
ble that the homogeneous black branes (2.4.5) are not the thermodynamically preferred
state, particularly at low temperatures, but we will not investigate phase transitions here.
Note that the near horizon geometry remains AdS; x R?~1, as in Reissner-Nordstrém,

and the entropy does not vanish at zero temperature.

2.4.1 Linearised perturbations

We now consider linearised perturbations of the fields around the black brane back-
grounds, such that:

G = 99 + b Ay o Ay +0A Y =00 g — xr+oxs. (24.13)

In the following, all indices will be raised and lowered using the background metric gl(f,),)

and its inverse unless otherwise stated, and all covariant derivatives V,, will be taken
with respect to the background metric gfg). Note that gff,],) in this section refers to the
background black brane metric, and should not be confused with the leading term in

the asymptotic Fefferman-Graham metric expansion, gg);;-

We consider homogeneous fluctuations of the following form

1

hyw = e_"Wt;HW(z); §A, = e “a,(2); (2.4.14)

otpr = e Wt (2); Sxr = e A (2).

It is straightforward to show that the perturbations (h.r, hir, Ar, 0x1,0%1) decouple.



58 Chapter 2. Inhomogeneity simplified

One can choose a gauge in which h,; = 0, resulting in the following equations of motion.
The scalar field equations are

F' d-1 2
X+ [F - Z} X+ ;ﬂz Xr — “;fl Hy=0 (2.4.15)
F' d w? iwey o
" / J—
\I’I + |:F Z:| \III + ﬁ‘l’[ - F2 Ht[ 0 (2416)

The I component of the Maxwell equations and the (z/) Einstein equations are

F' d-3] , w? p(d —2)z473
- H/,=0 2417
[‘1‘ |:F > :|GI+F2 Zg_QF tI ( )
iw ay /o iwp(d — 2)z471
S - / T el 0. (2.4.18)

For each value of I, i.e. each spatial direction, we have four equations of motion. A ho-
mogeneous Maxwell field in the Ith direction is coupled to both the metric perturbation
hir and perturbations of the scalar fields associated with this direction.

It is convenient to eliminate H,; by taking the z-derivative of Equations (2.4.15-2.4.16),
and using Equation (2.4.18) to eliminate H;; from the resulting equations. In the process
of doing so it is also useful to introduce the following:

G=wlz@Vpx, G =wl TR, (2.4.19)

we can rewrite the remaining three field equations as:

L w2 ,2(d-2) » L2(d~2)
23 (I Fag) + 7Y =(d - 2)2M2mal —i(d = 2)payjp—i—- a2 Cr
2 2
,2(d—2)
—2i(d — 2),ua101 re &r (2.4.20)
_ w? 1i(d — 2)pey jo 1 92
W) + ?CI :*T/QI + —ay 91901 + —arcicy € (24.21)
z 0 z z
_ _ w? i(d—2)uc
VTR + =<Zd_§‘”a1+a1/2c1<1+2a1c%& (24.22)
0

To analyse these equations further it is convenient to rewrite the perturbation field
equations in a dimensionless form by making the coordinate change r» = pz, and rescal-
ing the sets of perturbations a; = u*2ay, ; = {1/c1/2. & = pér/c1. After making these
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changes the field equations are simply:

F d-3 g 1 o T\ p2d=2)
ay + F — CL[ + = F2 f (d - 2) <7"0> arj — Z(d— Q)FOZQ-[
F2(d=2) _
—i(d—2) - = B (2.4.23)
7o
= F s @t 1 |id=2)_ . s
Gt |zt C == e ar + acr + BEr
- F d—1|; &, 1]id=2) - =
&+ F 5 Ff =7 2 ar +aCr + BEr

where @ = w/p and ro = p29. We have also introduced the shorthand & = a;/5¢1/2/p
and 3 = 2a;¢}/ .

It is immediately clear that these equations imply
AP - riTIRE) + % (5] - &) = (2.4.24)
and hence there exists a quantity
Kk =rtF (51 - ig}) (2.4.25)

that is radially conserved in the & — 0 limit. One can easily show that, in the near bound-
ary limit, ; = O(r?*1) and hence vanishes on the conformal boundary for all @. We
know that &; is also radially conserved in the @ — 0 limit and hence it must vanish

everywhere in this limit. Consequentially we find that

- 1 -

=& (2.4.26)
in the @ — 0 limit.

The equations can be diagonalised to show the existence of two massless modes and

hence two conserved quantities in the zero frequency limit. The eigenvectors are

_ G| dard?/. 1. i(d —2)r2d=2) _
)\1] —E ar — d 02 C]—;f[ _’]”(C)l—_251 ;
_ A _ 1_ i(d — 2)p2(d=2) _
Aog —% ;CLI + 257"_ 2 (CI - Tﬁl) + Z(Tg,)_TQCI] (2.4.27)
_ 1 [(d—=22%  id=2) /.. =
A3 =—=— — +
M TapB | g T (056,
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where the quantity B is defined as

B & - 0\ 2(0-2)
B(r)=—+B+(d- 2)? () . (2.4.28)

Bri=3In; + ?Xlz = 25;5 fg; = (2.4.29)
ard=L jor + w;f_gm = —%r% (2.4.30)
where the two momenta are given by
My =r @9F a + W ’,] (2.4.31)
0
Mo = 73 F |ar + W@I (2.4.32)
0

and are radially conserved in the @ — 0 limit. It is clear that 1:[1/21 — 10, = "fff;? k7 and

hence not only are they conserved in the @ — 0 limit but they are also equal tl%roughout
the bulk in this limit.

To progress further we need to work out the asymptotic expansions near the conformal
boundary for the various fluctuations fields under consideration. The three sets of fields
ar,Cr, & have both homogeneous and inhomogeneous contributions. Since the field
equations (2.4.20)-(2.4.22) are second order linear ODEs we expect each field to have
two homogeneous contributions: one corresponding to a normalizable mode, and one
non-normalizable. Since we are primarily interested in computing the conductivity we
will turn off the non-normalizable modes for the scalar fields, which correspond to per-
turbing the sources for the dual operators in the field theory. (Note that the background

solution still has sources for these operators.)

We make the following ansatz for the asymptotic expansions of the solutions to the full

inhomogeneous equations:

o

ar = szal(k) +d[(d_2)2d_2 logz+"' (2.4.33)
k=0

1= Z Zk([(k) + 5I(d_1)zd_1 logz+--- &= Z Zkﬁ[(k:) + é[(d_2)zd—2 T
k=0 k—0

where the logarithmic terms are included at the orders at which normalizable modes

appear. The ellipses denote further logarithmic terms which we will not need here.
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Analysis of the field equations results in the following. From the Maxwell field equation
we find that as usual a;(;) = -+ = ay4—3 = 0 and hence the leading order terms in a;
are

ar = ay) + a/[(d_Q)Zd_Q + 02071 (2.4.34)

where we can identify the coefficients aj(g) as the dual first order perturbation to the

gauge potential and a;(4—9) is related to the expectation value of the dual current.

For the scalar fields the leading order terms in the expansions are

1 )

¢r=Cro) + 76172 (i(d — 2)par) + a1 /281 0) + 2a1¢1€1(0)) 2 + - - - (2.4.35)
1 )

§&r=2%10) t 24 (i(d — 2)par) + a1 2Cr0) + 2a1¢1&50)) 2° + - - -

The dimensionless fields therefore have the following asymptotic behaviours:

ar = ar) + d[(d,g)rd72 + O(Tdil) Q:] = 7[(0) +O(r) (2.4.36)
- - 9 1 T Br2 3

&1 = &) +O(17) Eza—ﬁ‘FO(T)
5\1[26711[(0)4-"' ﬁ[:(d—Q)ZL[(d,Q)—FO(T).

Note that the near horizon expansions of the fields are

ar = (z — 20)“/ T L O((z — 2))] (2.4.37)
= (2 — 20)T N 1 O((2 — 2))]
&1 = (2 — 20)™/ Tl 1 O((2 — )],

with (all, ¢H ¢ constants, or in terms of the dimensionless fields

ar = (r — o)/ F00) [l + O((r — r0))] (2.4.38)
QTI —(r— To)iw/F(ro) [EIH +0((r — 7‘0))]

& = (r —ro)™/T0 [ L O((r —ro))] .

where we have imposed in-falling boundary conditions on the horizon. In the zero
frequency limit, 5 is zero, as it must vanish at the conformal boundary and is conserved.

This in turn implies that (¥ = ¢/ /r( in the zero frequency limit.

Putting this information together, one can show that a combination of the two massless

modes is asymptotic to the source for the gauge field, i.e.

/_\] = /_\1[ + 5\2] = ag(o) + O(ZQ) (2.4.39)
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The equation of motion for this mode is given by

—d-3) [ 7 Q= 2B _
r |:,8H1[ + TH1/21:| + T)\] - 0 (2440)

It is also clear that IT;; and IT; /21 have equivalent near-boundary behaviour:
1:[1[ = (d— 2)@](,1_2) +0(z) = 1:[1/2[ (2.4.41)

which is not surprising as they only differ by a multiple of 7 which vanishes in the z — 0

limit.

It is clear from equation (2.4.40) that II;;/A\; ~ O(@?) and ﬁ1/21/5\1 ~ O(w?). Similarly
we know that IT;7/A; ~ O(@) and I1; /o, /A1 ~ O(): these conditions are satisfied at the
horizon due to ingoing boundary conditions and are conserved throughout the bulk by
the field equations. We will use these properties in deriving the DC conductivity below.

Finally we note that the \3; field equation is given by

0= Bss + 152 [((d — 2)%(3d — 5)rir®d 4+ r2%43(6(d — 2) + Br(d — 1)) F

- 23 _ L
+ngT5FB:| )\3[ + %)\3[ — BQ)\;J,[
S (—ar® 4 2(d — 2)r2ry 2T (rF 4 (d — 2)F)Nsy
—2d 77F d N _ B
O (a4 (d - 2P (24 — 8)°a + (24 — 4)°Br) s
R My, —1I d — 22204 ((2d — 3)all
+W ro'r @By — 10y jor) — (d — 2)"r"%ry((2d — 3)ally jor

+(2d — 4)5rﬁ11)) (2.4.42)

and, in terms of the eigenmodes, I1;; and I, 5/ are given by

_ = - ~ _ (d — 2)2 r 2(d72) .
;=7 93F [ X;+ Aos + aB(2d — 4)r24 5N + ——L <> A1r (24.43)

B o

_ = - ~ _ (d — 2)2 r 2(d72) .
I jor = 7 F | Xy + dor + @B(2d — 3)r* P gy + —— <) raar| . (2.4.44)
(6%

To

We will use the structure of these equations to derive the DC conductivity below.
The equations of motion of the massive modes A3 are schematically given by
LgAsr + ps(r)Asr + @qs(r)Asr ~ Tl (2.4.45)

where L3 is a linear differential operator, and p3(r), g3(r) are functions of the radial coor-
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dinate r with no frequency dependence. The massless modes only couple to A3; via I
and the \3; equations of motion hence yield that A3; ~ II;. The conjugate momentum
takes the form

T, = P(r)A; + Q(r)Ass (2.4.46)

where again P(r) and Q(r) are functions with no frequency dependence. From this we
deduce that IT;; ~ A; and hence, recalling that I1;;/A; ~ O(@), we know that A\;/A\; ~
O(w) as w — 0. We will use this property below in deriving the DC conductivity.

2.4.2 DC conductivity

In this section we will compute the DC limit of the optical conductivity. Since the equa-
tions in different spatial directions decouple, and are identical, we now restrict to per-
turbations in one of the boundary spatial directions which we will label by z. The optical
conductivity in this direction is defined as

{Jz)

ox(w) = A, (2.4.47)

where A, is the source for the » component of the boundary current and (J,) is its

expectation value. The DC conductivity is defined by
opc = lim o (w), (2.4.48)
w—0

and due to the symmetry of the background and of the equations of motion takes the

same value along all spatial directions. Note that the source is given by
A0y = azpe " (2.4.49)
and the expectation value of the current is given by
(Ja) = (d = 2)ay(g-gye ™" + -+ (2.4.50)
where for notational simplicity we set 167G 441 = 1 for the remainder of this section.

The holographic optical conductivity can be expressed in terms of the dimensionless
fields as

oz (@)
(143

Qg (d—2)
Z'(Ddx(o)

=(d—2) (2.4.51)

with the DC conductivity being the i — 0 limit of this expression. Using our knowledge

of the asymptotic behaviour of the massless modes and conserved quantities we now
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define the auxiliary quantity

(2.4.52)

From (2.4.39) and (2.4.41) it is clear that this quantity coincides with the DC conductivity
at the conformal boundary. However, we will now show that this function is conserved

to leading order in w and it can thus be evaluated at any value of the radius.

Our equations of motion have a similar structure to those in [63, 61] and therefore the
proof that (2.4.52) is a conserved quantity closely follows their proofs. Radial conserva-
tion of (2.4.52) at leading order in the frequency requires that

d ﬁlx ﬁlm ﬁlx 5\:1: _92
— | = = | = — = . 2.4.53
i () ( N A Ax> g (2459

This result follows if the following three results hold: II1, /A, ~ O(@2); 1, /Ay ~ O(®)
and \;/\; ~ O(@) as @ — 0. However, we already showed that all three conditions hold

in the previous section.

Since (2.4.52) is radially conserved we can calculate its value on the horizon giving

2
IDE — @9 (1 + 5612)_1) . (2.4.54)
+ arg

Reinstating all parameters explicitly we obtain

_9)2,,2
ope = z5 @ (1 b A= ) (2.4.55)

—1
2alc% + 25 "ayeci)2

and consistency with [63] can be easily verified. Consistency between this resultind = 3
and the massive gravity results of [61] can also be seen simply by identifyinge = L =
rp = 1, k* = 1/2,and 8 = —aicf, @ = —ay 3¢5, Note that the DC conductivity is
not temperature independent in three dimensions, whenever the square root terms are

non-vanishing; we will analyse the temperature dependence below.

The background brane solutions coincide between our model and massive gravity. The
DC conductivities agree since the fluctuation equations also coincide for homogeneous
fluctuations carrying no spatial momenta. We show in Appednix 2.B that the fluctua-
tion equations in our model and in massive gravity are completely equivalent at zero

frequency.
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2.4.3 Parameter space restrictions

At this point in our analysis we need to place restrictions on the parameter space to
obtain a physical model. Any phase of our system can be fully described by three di-
mensionless parameters: 7 = T'/p, B = 2a1¢2/p?, and & = ai/2¢1/2/ 1 where we have
used the chemical potential 4 to fix the scaling symmetry. Given these values we may
use (2.4.9) to fix the horizon location puzg:

AT 4Gt/ (ArT+6) 2 +2d P2 P2 £
20 = P 7 (2.4.56)
d P2 =0

AT+

where P2 = 3 + (2—_21)2.

Positivity of the norms of the two point functions of the scalar operator dual to the mass-
less scalar field (or, equivalently, absence of ghosts) requires that a; > 0. Since ¢; and
p are real, 3 > 0 and hence P2 > 0. The sign of & is more subtle, as it depends on a; 5,
c1/2 and . The non-linearity of the square root terms however prevents us from placing
restrictions on the sign of a; /5. Previously we showed that a;5c; /2 should be positive
when p = 0 = a;. This suggests & should be positive, for positive i, and negative for
negative p.

The 3 > 0 constraint is the only one that we can apply without direct knowledge of the
sign of 1. We now consider the cases of positive and negative n separately, imposing the
following constraints:

- T > 0: The system has a non-negative temperature.

- zp > 0: The black brane horizon location is at a real and positive position in the

holographic bulk direction.
- opc > 0: The system has a non-negative conductivity.

- f(z) > 0 for z € (0,29): The point z = 2y is indeed the true horizon location, no
other horizons exist between this and the boundary.

We do not consider the ;1 = 0 case here.

For positive chemical potential, the temperature constraint 7" > 0 translates simply into
T > 0. Imposing zy > 0 requires the root uzg to be the horizon location. Positive DC
conductivity requires

(d—2)*

) 1 2457
B+ a(uzo) ™t~ ( )
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pw>0 pw<0

ay >0 a; >0
ar/aCij2 >0 ar/acij2 >0

B8>0 B8>0

&> 0 & <0

pao = pzg >0 pzo = pzg <0

Table 2.4.1: A summary of the restrictions on the parameter space.

since we know that zyp > 0 for all ;2 by construction. The constraint is automatically
satisfied for & > 0, i.e. a;/5¢1/2 > 0. The constraint can be satisfied for negative &, but
only for a finite range of temperatures. Since we wish to consider only systems which

exist for arbitrary temperatures we must therefore restrict to & > 0.

Recall that our blackening function F(z) is given by

mo, 4 - a(uz)  Bpz)?
F(z)=1——(u2)" + — — (2.4.58)
) it 149 2(d —1)(pz)*™?  d=1 2(d-2)
where the mass parameter my is given by
mo 1 azo 9 B d—2
0 1— 4 (w2 — + . (2.4.59)
e W%W[ d—1 (“°)< 2(d— 2) ﬂd—U)]

We must place the constraint that F'(z) > 0 for all 0 < z < 2 to ensure that zy is in fact
the true horizon of interest. This condition is equivalent to the statement that F'(z) has

no real roots in the open interval z € (0, z9) which we prove in the appendix.

For negative chemical potential, 7 < 0 and the correct choice of the horizon location
is pz, . Positive DC conductivity requires that & < 0, 50 a1/5¢/2 > 0. In Table 2.4.1 we
summarise the restrictions necessary for a realistic model. Note that the restrictions dis-
cussed in this section do not ensure complete thermodynamic stability as other possible

phases have not been investigated here.

2.4.4 DC conductivity temperature dependence

The DC conductivity of our model in terms of the dimensionless parameters is given by

opc/ut3 = (uzg) "4 1+ilii@if (2.4.60)
B+ (nz)'a

The model presented in [63] found that o pc was independent of temperature in d = 3
at fixed (. This can indeed be seen from the above. Due to the presence of this addi-
tional & term and the accompanying factor of (;129) " our model is not independent of
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temperature evenind = 3.

Using (2.4.9) one can show that

d(pzo) _ 8m(pz0)*(d—1) (2.4.61)
dr P2(uz)? + 2d h

and thus pzg decreases monotonically with 7. In the bulk this corresponds to the loca-

tion of the horizon moving towards the boundary as we go to higher temperatures.

One can also show that

o Z o —2)%(uz) 4 Vg
% < Dc> :d%o) [( d*3)%wo)t (d — 2)*(uz0)

= (2.4.62)
(B + (pz0) @)’

’ud73

and hence we can see that, in d = 3, op¢ will increase (decrease) with 7 if & is negative
(positive). For d > 3, the DC conductivity always increases with temperature.

Figure 2.4.2 shows a plot of o p¢r/ %3 as a function of 7 for various choices of & and 3 in
d = 3. The DC conductivity decreases linearly with temperature for 7'/u < 0.5 and the

slope decreases at higher temperatures.

Recall that for the ;1 < 0 plots decreasing 7 corresponds to increasing 7. The symmetry
between the ;1 > 0 and the 1 < 0 branches is easily understood because &(uzo) " is

invariant under p — —u, & - —a, T — —7.

Shown in Figure 2.4.3 is a plot of op¢/u?~3 against 7 for the same choices of @ and f3
in d = 4. Note that the reflection symmetry between the 1 > 0 and ¢ < 0 branches is
broken due to opc/u?~3 gaining a minus sign due to the odd power of i in the u < 0
branch. We note that for d > 3 opc always increases with 7', even in the @ = 0 case,

whereas in d = 3 it is constant or decreases with 7.

2.4.5 Finite frequency behaviour at low temperature

The low frequency behaviour of the AC conductivity at low temperature can be ob-
tained by rewriting the fluctuation equations as Schroédinger equations and matching
asymptotics between IR and UV regions. This technique has been applied to a number
of AdS/CMT models, see for example [80, 81, 82, 83, 52, 57].

Following this framework we work in the near extremal limit and apply a matching ar-

gument to relate the IR Green's functions to the UV current-current Green's function
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Figure 2.4.2: Plots of o pc/u® 2 against T/ in d = 3 for the given values of & and 3. Solid
lines denote results for the > 0 branch, dashed lines denote results for the p < 0
branch. Note that opc decreases with T for & non-zero.
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Figure 2.4.3: Plots of o pc /3 against T/ in d = 4 for the given values of & and 3. Note
that opc is strictly increasing in 7.
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via
Im[G%. 7o (w Z dMIm[GE o (w,T)] (2.4.63)

where M runs over all the IR irrelevant operators Oy coupling to the current 7%, and d™
are certain numerical constants whose values are unimportant for our discussion. The
operators involved are the current itself and the two scalar operators dual to the scalar

fields associated with the z direction, corresponding to the perturbations a,, X, ¥.

The strategy is as follows. The fluctuation equations, after decoupling, can be brought
into Schrodinger form:

H+WH-V(p)H=0, V()= 4., (2.4.64)

where dots denote derivatives with respect to a suitably defined radial coordinate p. Ex-
pressed in this form one can immediately extract the scaling behaviour for the imaginary
part of the Green’s function of the field H; with dual operator Op [83, 571

m[GgHOH (w< pu, T =0)] ~wVicatl (2.4.65)
The scaling behaviour of the real part of the optical conductivity is then given by
1
Re[o(w < p, T =0)] = ;Im[Gf;sz (w< pu,T=0), (2.4.66)

where we have used the Kramers-Kronig relation, and is therefore controlled at low
frequency by the lowest (IR) dimension operator. From the analysis in the previous sec-
tions we know that our system has two massless modes, i.e. two marginal operators, and

we will now show that the third mode corresponds to an irrelevant operator in the IR.

All three field equations for the linearised fluctuations involve terms of the form

2
(:SFH') + %Hz_‘s . (2.4.67)

For generic § and H (z) we can bring (2.4.67) into a form more easily related to the Schro-
dinger form by making the change of coordinate z — p and change of variables H(z) =
2%/2H (p) where we define the radial coordinate as

dp _ FL (2.4.68)
dz

Carrying out these substitutions yields:

,—6/2

o

(2.4.69)

2 . B
(:FH'Y + %z"SH - [H +wH — Vs(p)
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where the potential term Vj(p) is given by:

Vs(p) = 4#;((5 +2)F? — 22F). (2.4.70)

The blackening function in near-horizon (IR) limit, in the extremal case, is given by
1
F(z) = 5(z - 20)F"(z0) + O((z — 20)%) (2.4.71)
Since the extremal limit of the black-brane solution occurs when F(zy) = F'(zp) = 0

the parameters are related as follows:

2

—d I ai/2C1/2 aics

mo =zy + —5 — — — — (2.4.72)
’yQZg 2 (d— 1)z6l 1 (d— 2)23 2
d— 2)u?z2
(rygﬂo = d — ayjp¢1 /9% — a16175- (2.4.73)

The near horizon geometry remains AdS; x R?~! in the presence of the scalar field

profiles.

Recalling the definition (2.4.68) of p, the Schrodinger coordinate, it must have the fol-

lowing relation to z in the extremal IR limit:

2

= z—2)2 4.
P= F”(Zo)(z - ZO) +O(( 0) ) (2474)

so the z — zp limit corresponds to the p — oo limit. In this limit,

2 . 4
(p) F”(Zo)p2 + O(p )7 (p) F”(Zo)p?’ + O(P ) (2 4 75)
and thus
Valp) = —2% L 0@ (24.76)
alp) = F”(Zo)p320 p o
where 2d(d—1 2d -3
F”(Zo) = ( 2_ ) — Z_ a1/201/2 — 2(d — 2)&10% (2477)
ZO 0

where we have used the conditions F(z) = 0 and F’(z) = 0 to eliminate mg and p? /2

respectively in terms of the other parameters. Clearly V,, ~ p~3 in the IR limit.

After performing the change of coordinate z — p as discussed above, and introducing
the new variables a; = az(=3)/2 ¢} = ¢2=42, ¢; = £27(@1)/2 the three field equations
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read, in the IR limit:

2 r _
. 2 2 92 . 1/2 . -3
i+ wa= Tl _(d —2)"pta —i(d — 2)pay 2y ¢ — 2i(d — 2),ua101§} +0(p™°)
" 2 r _
2. _ , 1/2 1 _3
(+wC= (a0 _z(d —2)ucijezg ' Ta+ ayacijpzg ¢+ 2a10101/25} +O0(p™)
(2.4.78)
£ +wit = 2 -i(d —2)ucia + aq 201271/2C + 2alc%§] +0(p?).
F 0 | 2612
This system can be decoupled with the following linear combinations of fields:
J d—2
M =a— #c ti (( Ve VE > 13 (2.4.79)
MZO/ (d — 2) C1 /.LZ(](d - 2)
. d—2)u 2a1c? 2ia1c1
A :a+121/2<( + L 4_75
? 0 c1/2 perya(d — 2) pu(d —2)
1a 2ia1c
pzy' " (d —2) H
which have field equations:
A+ WA =0(p7?); (2.4.80)
Ao +w?ho = O(p?);
. 2
2 _ 2 2 2 -1 -3
A3+ w A3 = T ((d— 2)°p + 2a1¢1 + ayja¢1 /2% ) Az +O(p2).
From these we can read off the various coefficients of interest to be:
ey =0, =0, c\= //2711, v=(d- 2)2M2 + al/ch/gzal +2a1¢7 (2.4.81)
F"(20)
and so the IR Green'’s functions have the following scaling behaviour:
Im[GY \, (w < 1, T =0)] ~w, Im[GY,, (w<pT=0)]~uw, (2.4.82)
Im[GE (W < 1, T = 0)] ~ wV&F () 1
Hence the dominant behaviour of the optical conductivity is
VBUF(20) " H1=1 _ pour <8
w Z v <0
Re[o(w < 1, T = 0)] ~ (20) < (2.4.83)
1 v>0

In the previous section we derived restrictions on our parameter space and with these

restrictions v > 0 and thus the third operator (dual to A3) is irrelevant. Hence the domi-
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nant behaviour of the optical conductivity is controlled by the marginal operators,
Re[o(w < p, T =0)] ~ 1 (2.4.84)

which is consistent with metallic behaviour. In the next sections we will however show
that our models do not behave as ordinary metals with sharp Drude peaks but instead

display features more reminiscent of heavy fermion systems.

2.4.6 Relation to Drude behaviour

As discussed in [60], in Drude metals momentum is dissipated since
Ty = (J)VFY — (e + p)r il (2.4.85)

Here I denotes a spatial direction; i denotes all d space-time directional .J? is the current;

F'l is the gauge field strength; 7, is the relaxation constant; u! the spatial velocity; ¢ the

energy density and p the pressure. This equation reflects a loss of momentum density

at a rate proportional to the velocity. Noting that in equilibrium the momentum density

Plis T% = (e + p)u!, the quantity 7, can be interpreted as the momentum relaxation

timescale; the equation above is the the covariant generalisation of
art ;P!

qF

— = 2.4.86
dt Tr ( )

with ¢ the charge density and E? the electric field. In such a model the optical conduc-

tivity takes the Drude form, namely

_ opc
o(w) = 7(1 o) (2.4.87)

where 7, is the relaxation time given above and the DC conductivity is opc.

In the models analysed here, momentum relaxation is governed by the Ward identity

IS

-1
ViTy) = (J)Fig + Y (05%0)1(Oy;) + 0x0)r{Oxi)) - (24.88)
1

~
Il

In the equilibrium black brane configurations the gauge field strength of the source Fj;
is zero and the expectation values of the scalar operators vanish. Working to linearised

order in the perturbations

d—1
0'(0Ty;) = @dFj + Y 61 (€1/2(60y,) + 1(80y,)) (2.4.89)
=1
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where ¢ is the background charge density, defined below (2.4.11). The time component
of this identity reduces to
;(6T™) =0, (2.4.90)

so energy is conserved, but momentum is dissipated since

O'(0T;1) = qSEr + (c1/2(00y,) + c1{00y,)) . (2.4.91)

The operator expectation values can be expressed in terms of terms in the asymptotic

expansions near the conformal boundary as follows:

(0T31) = d(6g(ayr) = de™" " Higyr; (2.4.92)
ok = @514((»[ = —iwe_i“’ta(o)l;
d+1 d+1)
(50¢1> = 01/2( )(W)(d—f—l)l = 01/2( )e t‘I’(d+1)1;

C1/2 C1/2

<6OXI> = 2a1d5x(d)1 = 2a1d€_thX(d)[.

The expressions for the stress energy tensor and the operators dual to the square root
fields follow from linearising the expressions given in (2.3.54) (with 167G411 = 1). The
metric and scalar field perturbations are expressed in frequency modes in (2.4.14); H ;1
refers to the coefficient of the 2™ term in the asymptotic expansion as z — 0. The ex-
pressions for the expectation values of the operators dual to the massless scalar fields

follow from those given in [25], taking into account the non-canonical normalisations
of the fields.

The Ward identity (2.4.91) can therefore be expressed in terms of the following algebraic
relation between terms in the asymptotic expansions of the fields:

idWH(d)tI = iwqa(O)I + (d+ l)al/g\l’(d+1)1 + 2da101X(d)I. (2.4.93)

This identity is the leading order component of the equation (2.4.18) as z — 0; recall
that the diffeomorphism Ward identity follows from the (zI) Einstein equation, which is
equivalent to the (¢I) Einstein equation (2.4.18). This equation is only of the form (2.4.86)
if the last two terms are proportional to the momentum density, i.e. H 4,7, with a real
coefficient of proportionality. In the linearised limit, all normalizable modes are pro-
portional to a(g); but the constants of proportionality depend on the frequency and are
complex. There is no guarantee that in the w — 0 limit the expression above can be writ-
ten in the form (2.4.86) with a real relaxation constant. As we discuss in the next section,
fitting the conductivity in our model to the Drude form requires a complex relaxation

constant, i.e. momentum oscillations as well as dissipation.
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Figure 2.4.4: AC conductivity ind = 3 fora =0, 5 = 2.

2.4.7 AC conductivity numerics

In this section we explore the behaviour of the AC conductivity by numerically solv-
ing the linearised perturbations equations. To find the values of ¢ (w) /1?3 numerically
we use a Mathematica code to solve the shooting problem of solving these ODEs with
the desired near-boundary asymptotics and in-going boundary conditions at the hori-
zon. The code calculates the r series expansions of the dimensionless perturbations
near the horizon and the boundary with some randomly chosen initial data. This initial
data is then used in Mathematica's NDSolve function to integrate the ODEs to some pre-
determined point in the bulk. At that point the difference between the perturbations
and their first derivatives coming from the two ends is computed. The process is then
repeated for some initial data that is close to the randomly chosen data to construct an
approximation to the Jacobian. We then proceed via the multivariate secant method of
root finding to find initial data that is a better approximation to the true data that causes
the difference function to vanish. We analysed the case of d = 3 but qualitatively similar

behaviour is likely to occur in other dimensions.

Included in Figures 2.4.4, 2.4.5, and 2.4.6 are plots of our numerical results for the tem-
peratures 7 = 0.1, 0.2, 0.3, 0.4, and 7 = 0.5 with various model parameters, in all cases in
d = 3. The numerical values of ¢(0) show good agreement with our analytic expression
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Figure 2.4.5: AC conductivity ind = 3 for & =1, B=2.
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Figure 2.4.6: AC conductivity ind = 3 for a =1, B =0.



76 Chapter 2. Inhomogeneity simplified

for opc, with no difference above the scale of accuracy set by our integration.

Using the numerical results one can also investigate the fit to a Drude peak at low fre-
quency. The numerics show that one can only fit to a Drude formula using a relaxation
time 7, which is complex; therefore our system does not behave as a Drude metal even

at very low temperature.

Unlike [47, 48], we see no clear signs of scaling behaviour of the optical conductivity
at intermediate frequencies, T < w < pu. The AC conductivity displays several fea-
tures similar to that of heavy fermion compounds. Heavy fermion materials also have
a DC resistivity which increases with temperature, with a transition from normal metal
behaviour to hybridised behaviour occurring below the decoherence temperature. In
the hybridised phase f-electrons hybridise with conduction electrons, leading to an en-

hanced effective mass and a hybridisation gap.

Figure 2.4.6 shows that the peak in the conductivity sharpens at low temperatures, and
a minimum in the conductivity develops for 7 < 0.2 at intermediate frequencies w/u ~
0.5. The minimum is enhanced by increasing & and decreasing 3 (i.e. increasing the am-
plitudes of the square root scalar fields and decreasing the amplitudes of the massless
scalar fields). In our models the minima in the conductivity are strong coupling phe-
nomena, with the reduced conductivity being associated with increased amplitudes of

the scalar field fluctuations at these frequencies.

There is little work in the literature about the high frequency behaviour of the optical
conductivity as these systems are rarely considered at high energies. It would be in-
teresting to see whether this increase at high w/u for low T/ is realised in physical
materials or in other models.

2.5 Generalised phenomenological models

In this section we consider other phenomenological models based on actions with com-

binations of massless scalar fields and square root terms.

2.5.1 Scalar fields identified

As we noted earlier, our results for the DC conductivity replicate the massive gravity
results and indeed extend them to d > 3. To compare further with massive gravity we

should identify our two sets of scalar fields: ¢y = x;. At the level of the action this is just
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a simple substitution:

d—1
S = /M ditly/ =g (R +d(d—1)— izﬂ = (ayy20/ (0¢r)* + a1(8w1)2)> (2.5.1)

I=1

and similarly for the Einstein equations:

1
Rﬂl/ = _dguv + 5 (FM/\FV)\ - FQgHV> (2’5’2)

2(d—1)

-1
+) {alﬂz (@W{&ﬂﬁ[ + dil(W)quv) + alaﬂwfal'wf}
=1 | 24/ (¢r)

with the Maxwell equations being unchanged. The field equations for the scalar fields

(2a1 + 7(11/2 ) V“"Lﬂ]
\ (0¢1)°

which clearly reduce to the field equations for the independent fields case when either

become:

v, =0 (2.5.3)

one of a; /5 or a; vanishes. We shall make the same ansatz for the black brane as earlier,
with the blackening function being

- 2\ 2D Gz 3(uz)>
F(z) =1—mpz + Q(Zl _21)) (Mzo)2<zo> — d(/_L 1) — 26@(;_)2) (2.5.4)

where now § = 2a1¢?/p? and & = a; j5¢/p, and 9y = cz!. This F(z) was to be expected
as at the level of the background spacetime imposing ¢; = x; is equivalent to imposing

C1 :C]_/Q = C.

Now consider homogeneous finite frequency perturbations around this background as
before. The perturbation analysis for the metric and Maxwell fields is effectively un-
changed whereas the scalar field perturbations 1; = cz! + e~ ¥ (z) now yield:

a F' d-1 w? iwe
0= <;—f +2a1) [ T+ (F - Z> 1+ 52V — Sz Hu (2.5.5)
F/ d—l ay /9
—C{H,;I + <F - Z) HZI}:| - é(\l}} - CHZ[) (256)

which reduces to either of the previous two perturbed scalar field equations in the ap-
propriate limits. We shall once again work in the gauge H.; = 0. The other two pertur-
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bation equations are simply:

w a i(d — 2)pwzd=1
e (s s
0
F' d-3 w? (d —2)puzd=3
- ————H;; =0.
1+[F ]QI+F21 Fzgﬁ I

We can again eliminate H;; from the scalar perturbation equations by defining a new
variable
& = w1z ( Y2 4oy ) F, (2.5.8)
cz

which yields the following pair of field equations:

w d—2 i(d —2)pc -
IR + ar = %ZW Jor+ (zg—Q)MZQ(d‘%; (2.59)
<0

2a1cz + a cz? N\ W2 2alcz—|—a ild = 2 uc _
< . ”2)( F&) = v2 | M= 2e g |

cz 2a1cz + ay )9 cz z5

which reduce to the equations found earlier and in previous works [63, 57] in the ap-

propriate limits.

The mass matrix has vanishing determinant and as such one massless mode can be

found. Consider the following combination of fields:

d—2 2d—-3
Air = ( )iz r|s (2.5.10)
B(Z) (2(1162 + (11/2)
1 d 2222“ i(d—2)puz2=3
A?I = B ( ) ar + d—(2 )M €I )
(2) (2a1c2z + ay/2¢) 2o (2a1c2 + ay o)
where the coefficient function B(z) is given by
(d 2)2 2,2d—3
B(2) =1+ 57 . (2.5.11)
2y (2a1¢%2 + aq 2¢)
The field equations for A1y read
!/
i(d—2)puz 23*dw2 i(d —2)pz?d=3
2 Fay - ( Juz F&; ar — d_(2 Ju & =0
(2a1cz + ay9) 28 F 20 “(2a1¢z 4 ay)5)
(2.5.12)

or, equivalently,
w?B
2430 + —AH =0 (2.5.13)
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where 117 is given by

i(d — 2)pz? -
—F¢& (2.5.14)

II; = z*(d*?’)Fa’I — —
(2a1cz + a1 /2) 2y

and is radially conserved in the limit w — 0.

For convenience we can rewrite II; in terms of the modes A\ and A9; using the following

relations:
ar = A1 + Aar; (2.5.15)
g = i(d—2)p, izd 7% (2a1c2 + a1/2) \
1= N g
With these relations one can show that II is given by:
2
I =2 @ FBA + (24— 3)2~ @Dy, + — 1 —(d-2),,. (2.5.16)

2a1cz + ay o

Notice that, in the case a; , = 0, thisreduces to the previously known conserved quantity
of [63].

The asymptotic and near-horizon analysis performed earlier is largely unchanged. We

already know the asymptotic behaviour of the Maxwell perturbation a;:

iwt
ar =\ + %z“ F... (2.5.17)

from our earlier analysis. It is also clear that, as long as a; /5 # 0, &7 has one normaliz-

able mode 2°, and one non-normalizable mode z~(4¢—1)

—(d—2

. In the case a;/, = 0 this non-
normalizable mode becomes z ) and the analysis reduces to that in the previous
work of [63]. Again we wish to turn off boundary sources for these perturbations, so we

turn off non-normalizable modes. The asymptotic behaviour is thus given by
&=8"+0() (2.5.18)

The coefficient 1/B(z) has asymptotic behaviour given by

1 (d— 2)2M2 2d—3
B =1- —a9)? + ... (2.5.19)
ca1/220

and hence the massless mode A7, and conserved quantity I1; have the following asymp-
totic forms
Mr=al+ . T = (et 4 (2.5.20)
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The near-horizon behaviour of the Maxwell field is unchanged:

ar = (2 — 20) /T [ 4+ O((z — 20))] (2.5.21)
Making a similar ansatz as earlier one can deduce that, to leading order, we have

& = (2 = 20)"/ "N +0((5 — 20))] (25.22)

Recalling that the optical conductivity is defined by (2.4.47) and that the DC conductivity
is the w — 0 limit of this we define the following auxiliary quantity:

(2.5.23)

(2) = Ii 11,
opc(z) = lim :
bc w—0 TWALT
Following the same steps as earlier we can show that this quantity is radially conserved
and thus we may evaluate it on the horizon to find its value. Clearly o pc = lim,_,o opc(2)

from the above analysis. Hence the DC conductivity for this model is given by

4 d— d—2)* 2
opc = opelz0) = 25 TV B(zg) = 20 @Y [ 14 ( )f (2.5.24)
2a1¢% + 25 " ay joc

This is consistent with our earlier result where the two sets of scalars were treated as

independent fields and it is also consistent with [63, 61].

To understand the behaviour of the optical conductivity we first consider the low tem-
perature, low frequency behaviour. In the extremal limit one can express the fluctuation

equations near the horizon as

. 2 2 2 9 , d—27 3
. ) 2(2a1 + UL2) )

2¢ €20 7 2—d, 2 -3
§r+wiéy = ()0 [z(d 2)pczi “ar —c 51} +0(p™)

These equations are diagonalised by the combinations

A1 =a;— (Q(GCiC_fo:l)&; Aor = ay + /Zg:;fh (2.5.26)
resulting in
A4 Wi =0(p?) (2.5.27)
Nos + whoy = F”(i())pQ ((d - 2)2112 + 2a16% + a1/20261> Aor + O(p_?’).

Therefore one obtains one massless mode and one (IR) irrelevant mode, whose dimen-

sion is as before, with the identification ¢; = ¢/ = ¢. The massless mode controls the
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conductivity, which therefore has a peak at zero frequency. Since the fluctuation equa-
tions are similar to those in the previous section, we would expect qualitatively similar
behaviour in this model.

2.5.2 Other square root models

The final model we will consider is

U

-1 d—1
S = /M dd+1$\/jg (R + d(d - 1) - %Fz — al (6X1)2 — Q12 Z (6¢1)2> . (2.5.28)

1 I=1

~
Il

In general the scalar fields can no longer be considered independently of each other,
unlike the previous case. The blackening function in this model is
(d 2)2 2 2(d 1) QlC%Z2 al/ch/QZ

F(2) =1—mpz? + — - (2.5.29)
2d—1) 262 d-2  (g-1)*?

which is consistent with that of massive gravity in d = 3. Now let us consider perturbing

the background solutions:
Yr — Y1 + 0y, (2.5.30)

with corresponding perturbations of the gauge field and metric. At the level of pertur-
bation analysis, and of the background metric, the change ", \/ (Y1) — \/ >0y )

is equivalent to the rescaling a; /o — a;/5/(d — 1)1/ 2. We can show this as follows. The

two Lagrangians are

d—1 d—1
Lo=ayp» \(00r)?  Lo=d | (0¢1)° (2.5.31)
I=1 I=1

When one evaluates these Lagrangians on-shell with the values 1; = cx! + 6y (t, 2) to

leading quadratic order in the perturbations d1; one finds:

d—1
L1=ay; (( —1)ez + QLZ (867) ) (2.5.32)
I=1
c __ (d—l)cz+1d§(85w)2 (2.5.33)
2 — (d_ 1)1/2 QCZ e I 0.

which are clearly equivalent under the identification a,/, = a} /2 /(d —1)Y2. Any result
we found earlier for the model of Section 2.5 can therefore be applied to this model with

arescaling of ay 5.
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2.6 Conclusions

In this chapter we have focussed on simple models of explicit translational symme-
try breaking. The main advantage of these models is that the brane backgrounds are
isotropic and homogenous, and can therefore be constructed analytically. The holo-
graphic duals to the bulk symmetry breaking can also be explicitly identified, unlike in
massive gravity models, and correspond to switching on spatial profiles for marginal
couplings in the field theory.

Couplings growing linearly with spatial directions represent a qualitatively different
mechanism for momentum dissipation than lattice and phonon effects in an ordinary
metal. Itis therefore perhaps unsurprising that our models do not exhibit ordinary metal
behaviour. Nonetheless these models do show a peak in the optical conductivity at zero
frequency; the DC resistivity increases linearly in temperature at low temperature in
three boundary dimensions and by tuning the parameters one obtain minima in the
optical conductivity at finite frequency. These features are reminiscent of strange metals
and heavy fermion systems and suggest that it may be interesting to explore such models
further.

The novel phenomenology is associated with the square root actions (2.1.5): when this
term is switched off one does not find linear growth of the DC resistivity with temper-
ature, for example. Despite the apparent non-locality of this action, we showed in Sec-
tion 2.3 that the holographic dictionary is well-defined and one can work perturbatively
about any background solution for this action. Moreover, we can view (2.1.5) as a scaling
limit of a brane action (2.2.62). Brane actions exhibit no non-analytic behaviours when
the background field profiles vanish and should give qualitatively similar phenomeno-
logical behaviour to (2.1.5). It would therefore be interesting to develop top-down phe-

nomenological models based on branes, which capture the desirable features of (2.1.5).

One issue with our black brane backgrounds is that they have finite entropy at zero tem-
perature, indicating that they may not be the preferred phase at very low temperatures.
Generic Einstein-Maxwell-dilaton models admit Lifshitz and hyperscaling violating so-
lutions whose entropy scales to zero at zero temperature, see [84, 85, 81, 82, 86, 87, 88, 89,
90, 53, 91, 92], and it would be straightforward to extend our discussion of translational

symmetry breaking using massless and square root scalar fields to such models.

2.A Blackening function roots

Theorem. Let F(z) be the smooth polynomial obeying the Einstein equation and the
constraints F(0) = 1, F(zy) = 0, F'(z) = —4xT < 0, with 3 > 0 and &/ (uz) > 0. If z, is
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a root of F(z) in the open interval (0, zo) then F'(z.) < 0.

Proof. Using the Einstein equation one can prove that at any root z. of F(z):

(2.A)

Ze ) 2D apz, Bpze)?

/ _ (d_ 2)
2l (20) = —d + )(Mz0)2<zo d—1 2(d-2)

2(d— 1
and hence one can show that

ZCF/(ZC> - ZOF/(ZO) :2((dd__21))
4

(n20)?
Bluz)?
(d—2)

Ze 2(d—1) apzo | ze
= -1] + = -1 (2.A2)
20 d—1 20
2\ 2
G
20
Consider aroot F(z.) = 0 where 2. € (0, 29). Clearly (2./2z9)" < 1 for any positive integer

n > 1. We know by assumption that 5 > 0, (u20)% @uzo > 0, hence z.F'(z.) < z0F"(z) =
—47T < 0. Therefore F'(z.) < 0. O

Lemma. IfT > 0 orF"(zy) > 0,7 = 0 then F(z) has no roots in the open interval (0, z).
(Note that F"(zy) is automatically positive at'T = 0 given the constraints of the previous

theorem.)

Proof of lemma. We know that, since F'(zp) < 0 and F"(zy) > 0, F(z) must be positive
before the root. Since we also know that F'(0) = 1 is positive, there must be an even
number of odd multiplicity roots and there can be any number of even multiplicity roots
in the open interval (0, zp) to ensure that we can continue from a positive value at 0 to a

positive value just before z.

We know that if z. is a root, then F’(z.) < 0. Thus there can be no even multiplicity roots
or odd multiplicity roots of multiplicity larger than 1. This is because of the fact that if
p(z) = 0is a polynomial with a root at 2 = x. of multiplicity n, then p/(z) has a root at

x = z. of multiplicity n — 1.

We also know that if z. is a simple root of F(z) then it must have F'(z.) < 0. There is
no way to reconcile having a non-zero number of such roots with the requirement that

F(z) must be positive just before the root z = z. O

2.B DC conductivity and massive gravity

One can also obtain the DC conductivity by switching on zero frequency perturbations,

i.e. working strictly in the w = 0 limit. In this case the Maxwell equation and the (¢1)
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components of the Einstein equation immediately decouple. The Maxwell equation is

H{; =0 (2.B.1)

F' d-3 p(d —2)z473

which can be rewritten as

(Fz374ay — pu(d — 2)Hyp)' = 0. (2.B.2)
The Einstein equation is
1 F F' dF 1

d—2 4, 1
oM Ht1> + §a1/201/2ZHt1~
In the Einstein equation, the term in the second line is the contribution from the scalar
field parts of the action.

Now let us compare these equations to those arising in massive gravity. The Maxwell
equation is identical and the first line in the Einstein (¢/) equation is the same. The
contribution in the second line is replaced by the contribution from (2.2.47). Linearizing

the latter around the background solution gives
_ 1,
5Tt] = §m OélZHt], (2.B.4)

which using (2.2.49) implies that these perturbation equations match between massive
gravity and the scalar model and therefore the DC conductivities must match.



CHAPTER 3

Real-time physics for non-relativistic holography

3.1 Introduction

The gauge/gravity duality provides a powerful framework for studying strongly coupled
systems such as those present in condensed matter systems. The holographic dictio-
nary for theories with relativistic scaling symmetries has been well established in the
literature for both Euclidean and Lorentzian signature bulk geometries, or equivalently
for Wick rotated and non-Wick rotated boundary theories. There are a variety of phys-
ical systems that are thought to be described by strongly coupled field theories with a
non-relativistic scaling symmetry:

t =t =\t N L Y (3.1.1)

in contrast to the relativistic scaling symmetry (z = 1) that is often present in systems
with holographic duals. There are two common symmetry groups which possess such
a non-relativistic scaling symmetry, namely the Schrédinger group Schp(z) and the Lif-
shitz group Lifp(z). The corresponding holographic dictionary for theories with a dual
Lifshitz symmetry has been established [93] and the recent progress on the holographic
modelling of such theories was reviewed in [37].

Holographic descriptions of field theories which possess either of these non-relativistic

symmetry groups requires a geometry that realises these symmetries asymptotically.

85
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Such geometries have been proposed both for the Schrodinger [94] and Lifshitz [84]

groups:
pdzt? 1 :
Schp(z) : ds? = _74723; + ﬁ(dfr2 + da'dz; +2dzTda”) (3.1.2)
ez 1 :
Lifp(z) : ds* = — + ﬁ(dr2 + dz'dx;) (3.1.3)

where the boundary is located at = — 0 and b # 0 is a free parameter that can be re-
moved through rescalings of the null coordinates in the Schrédinger geometry. These
geometries are manifestly invariant under the respective symmetry groups asymptoti-
cally, and are also invariant under the scaling symmetry

Schp(z) : zt = Nzt T = N zt — Azt r— Ar (3.1.4)

Lifp(z) : t— Nt = A T — AT

Note that when b = 0 the Schroédinger geometry becomes AdSp+ 3 in double null coordi-
nates. This is unsurprising as the Schrédinger group is a subgroup of the D+2 conformal
group, and so the dual geometry can be obtained via a deformation of AdSp3. This fact
will reappear later in the discussion of scalar correlation functions in the Schrédinger

spacetime in Section 3.4.2.

As with their relativistic counterparts, these systems have almost exclusively been stud-
ied in their Wick-rotated Euclidean analogue where it is technically easier to obtain cor-
relation functions, with Lorentzian signature correlators being obtained through ana-
lytic continuation. This is often the most direct way of obtaining a result, however there
are many cases where performing the analytic continuation back is technically difficult
even though it is in theory possible. Such cases include the study of time dependent
phenomena, systems that involve gauge theories in non-trivial pure or mixed states,
systems with non-stationary bulk geometries, or more complicated correlators such as

a thermal correlator.

The framework for performing holography in real-time has been previously developed
for relativistic systems in [21]. In this chapter we aim to extend this prescription to holo-
graphic models of systems with dual Lifshitz or Schrédinger symmetries. In Section 3.2
we will review the formalism for performing real time QFT calculations and the corre-
sponding holographic prescription of [21] with some relativistic examples. In Section 3.3
we apply the standard real time QFT framework to a toy model of a free scalar with a
z = 2 Lifshitz symmetry. We then progress to the holographic modelling of systems with
Schrédinger symmetry in Section 3.4 and attempt to apply the real time holography pre-
scription to a free scalar operator. We then perform a similar analysis for holographic
models with Lifshitz symmetry in Section 3.5. We conclude in Section 3.6.
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Figure 3.2.1: The contour used for calculating vacuum to vacuum amplitudes.
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Figure 3.2.2: The contour used for calculating in-in amplitudes.
3.2 Real time QFT and holography

Consider a d-dimensional quantum field theory defined on a Lorentzian space-time
with coordinates (¢, x), and a set of fundamental fields collectively labelled ¢(¢,x) and
Lagrangian density £[¢]. Real-time correlation functions are then computable by spec-
ifying a contour in the complex ¢ plane for the path integral. The pure imaginary seg-
ments of the contours prepare the initial and final states, and operator insertions lie
along the real segments to form n-point contour time ordered correlators.

Commonly used contours include the vacuum-to-vacuum, in-in, and real-time ther-
mal contours. Contour 3.2.1 is used to calculate vacuum to vacuum amplitudes such
as (0,T)O---|0,—T), where the operators are inserted along the Lorentzian part of the
contour. Similarly Figure 3.2.2 calculates the in-in contour (V|O|¥) where the state |¥)
is prepared by the initial and final imaginary contour segments via operator insertions

and finite integration range.

One can define a generating functional of correlation functions of gauge-invariant op-
erators in non-trivial states which can be constructed from a contour C via the following
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path integral:

Zawrlhy:Cl = /c Dé] exp ( /C dt [ atx <£[¢]—¢{0)01[¢1>). (321

The desired correlation functions can then be found by specifying the desired contour
to prepare the states and the type of correlation function, and then functionally differ-
entiating the sources qb(IO) and setting them to zero in the result to choose the operator

insertions.

When computing such a generating functional in a relativistic field theory one has to
compute the propagator for the corresponding differential operator. In Lorentzian sig-
nature there are three distinct propagators that one can compute: the Feynman, the
retarded, and the advanced propagators. Each propagator is defined uniquely by an ie

insertion in the propagator integrand.

3.2.1 Review of scalar field correlation functions in AdS

We now review the holographic approach to real-time correlation functions developed
in [21]. This prescription relies on the complex time contour dependence of the correla-
tion functions: one constructs bulk manifolds for each section of the contour, with Eu-
clidean signature manifolds being used for the vertical (imaginary time) segments, and
Lorentzian signature manifolds used for the horizontal (real-time) segments. The man-
ifolds are then glued together on hypersurfaces dictated by the contour, with match-
ing conditions are imposed on the fields for consistency. Specifically the two matching
conditions are:

1. Continuity of all bulk fields on the matching surfaces.

2. Continuity of all canonical momenta conjugate to bulk fields where these mo-

menta are defined with respect to the complex contour time coordinate.

i.e. fields should be at least C* continuous. One can continue to perform holographic
renormalization in the Lorentzian manifolds as in the Euclidean ones as the procedure of
holographic renormalization is independent of the signature of the spacetime in ques-
tion. For further details about the holographic renormalization of fields in real-time
holography readers should consult [21].

To demonstrate the procedure we will briefly review the example of scalar two point
functions analysed in [21]. In this example we are interested in computing the vacuum-
to-vacuum time-ordered two point scalar function for a CFT. The relevant bulk manifold

is illustrated in Figure 3.2.3.
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- T
Figure 3.2.3: The bulk manifold used for calculating in-in amplitudes.

Consider a minimally coupled massive scalar field ® with action:

S = —% / A/ =g(g" 8,90, + m>d?). (3.2.2)
To calculate correlation functions we need to find the on-shell action, for solutions that
are regular throughout the bulk manifold and which have generic boundary sources in
the Lorentzian sections. To this end we need to find the most general solution to the
Klein-Gordon equation in the Lorentzian background with non-normalizable asymp-
totics near the boundary and finiteness in the interior. We do this by constructing the
bulk-boundary propagator that reconstructs the full bulk solution given given boundary
data.

The solutions on the Euclidean caps can be obtained via the substitution ¢ — —ir. There
are no sources on these caps so we need only normalizable modes. Furthermore finite-
nessas T — +oo in general requires that we restrict to negative frequencies on the lower

cap and positive ones on the upper cap.

3.2.11 Global AdSs

The Lorentzian metric for global AdSs is

dp?
(p* +1)

ds? = —(p? + 1)dt> + + pPde?, (3.23)
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and the Euclidean metric can be obtained by the substitution ¢ = —i7. In the Lorentzian

mode solutions to the scalar field equation behave as
RO £ |k, p) (3.2.4)
where f(w, k,r) is expressed in terms of hypergeometric functions as
flw,k,p) = Copr*F((w+Ek+14+1)/2, (w+k+1—1);k+1;—p% (3.2.5)

with the scalar operator dimension being A = [ + 1 where [ is an integer. Here C,;
is a normalisation factor chosen such that the coefficient approaches one as p — .
The mode solutions are chosen to be regular as p — 0. By construction therefore these
modes can be used to construct a bulk boundary propagator with a delta function source

on the boundary:

D(t, b, p) =1z Z/ dw/dtdgbe‘“’t D +ik(o— %( ) (£, 0) fw, |k, p) (3.2.6)

+ 37 e g (o k], p)
+.,kn

Here ¢g)(t, ¢) is the boundary source, while the second line gives the normalizable
modes. When the frequency equals

w=w =+@2n+ k| +1+1) (3.2.7)

with n an integer, terms in the radial expansion of f(w, |k|, p) being singular. One there-
fore needs to define a colour around these poles. The difference between any choices
of contours is a sum over the residues

Honssp) = § deof @ p). (3.28)

These normalizable modes can be added at will to any solution, and therefore they ap-
pear in (3.2.6) with arbitrary coefficients cfk. The choice of contour C, together with
initial and final data, then fixes the ¢ .

On the Euclidean segments the mode solutions are obtained by replacingt = —ir. Since
there are no sources on the Euclidean boundaries, the solutions consist of only normal-

izable modes, i.e.

(1,0,0) = Y dye” kRS g (o (], p) (3.2.9)
+.k,n

with coefficients d;, which are determined by matching conditions. Finiteness as 7 —

oo implies that d, = 0, while finiteness as 7 — oo implies df, = 0.
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We choose Euclidean time coordinates as —oo < 7 < 0 ontheinitial cap, withT' < 7 < 0o
on the final cap. On the Lorentzian segment we let ¢ range from 0 to 7. The matching
conditions are then given by

O(t=0,¢,p) =Pr(r=0,9¢,p) i0:®(t =, ¢,p) + 0-Pr(T=0,0,p) (3.2.10)

=0
O(t="T,0,p) =Pp(t=T,0,p) i0;@(t="T,¢,p)—0;Pp(r="T,6,p) =0

Let us then choose the Feynman contour. The matching conditions determine thatc,, =

¢ = 0, with d5, expressible in terms of the source on the Lorentzian boundary.

The one point function for the operator is expressed in terms of the normalizable mode
in the asymptotic expansion as

(0) = —2l<1>(21) + .- (3.2.1)

where ® (o)) is the term of order p~'! in the asymptotic expansion of the solution. Now

using ¢, = 0 we find that the time ordered two point function is

l __—
TO(t,$)0(0,0)) = — dwe ™R A(w, K, 1 3.2.12
( WHJ>W;LW (k1) G212
where
A ) =~ + 0l — o — ) SIS EZD 21y
Wkl = wiktltl (3.2.14)

2

and 9 (z) is the digamma function. The contour C has been completely fixed by the
matching conditions and integrating over it C' is equivalent to integrating over the real
axis with the frequency shifted by w — w(1 + i¢). The Fourier transform can then be

inverted to give the position space correlator:
12

O )00, 0 = st — i2)) — con(@)

(3.2.15)

3.2.1.2 Poincaré AdS

Here the Lorentzian manifold is the Poincaré patch of AdS;;; with the time coordinate
t restricted to —T" < t < T whereas the Euclidean caps are Euclidean AdS,; obtained
by the replacement t = —ir. In the lower cap 7 is restricted to 7 < 0 and in the upper
cap it is restricted to 7 > 0. The Lorentzian metric is given by

—dt? + dz? + dx?

dsias,,, = = (3.2.16)
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and the metrics on the Euclidean caps is obtained via t = —ir.

The scalar equation in this background is given by
219, (271 9,®) 4+ 2200® — m2d = 0 (3.2.17)

where [y is the D’Alembertian operator on the boundary coordinates (t,x). Fourier

transforming gives two types of modes labelled by (w, k):
67Mt+ik'xzd/2Kl(qz), efithrik-xzd/QIl(qz) (3.2.18)

where ¢2 = —w?+ k% A =1+d/2, m? = A(A—d), and I,,(z) and K,(z) are the modified
Bessel functions. Note that we will need to choose a branch cut for ¢ = /¢? for timelike
momenta, we will denote our choice by ¢. = v—w? + k? — ic.

Analysis of the asymptotics of the various modes show that 2%2K;(q) ~ 2%?~! and
2421 (qz) ~ 2%t as z — 0 (i.e. as one approaches the boundary), therefore the K;(qz)
modes are non-normalizable and the [;(¢z) modes are normalizable. Similarly an anal-
ysis shows that, for space-like momenta ¢? > 0, the only mode that is regular in the bulk
is the K;(qz) mode, whereas for time-like momenta ¢? < 0 no linear combination of the
two modes is regular. Therefore any solution which remains regular in the bulk should

be obtained from an infinite sum over modes.

Now that we have identified the normalizable and non-normalizable modes we can pro-

pose that the bulk-boundary propagator X (¢, x, z) on the Lorentzian segment is given

by:

2'gl
(1)

X1(t,x,2) = /dw A1k g~ iwttikx 22K (q.2). (3.2.19)

1
(2m)"
Note that the choice of branch cut earlier is equivalent to a Feynman contour (Fig-
ure 3.3.1) in the complex w plane. This propagator is not unique as we can add any
normalizable solution without changing the asymptotics so we are free to add on a nor-

malizable propagator:

Yi(t,x,2) = /dw d 1k e*MJ“ik'xH(—qQ)c[l] (w,k)z¥2.71(|q|2) (3.2.20)

(2m)
with constraints on the otherwise arbitrary function cpj(w, k) to ensure that it leads to a

regular solution in the bulk. Different choices of ¢[;) correspond to different i insertions.

The bulk-boundary propagator X is not obviously convergent in the deep interior how-
ever we can perform in the inverse Fourier transforms and find the position space ex-



3.3. Lifshitz invariant free field theories 93

pression:
d SA+g
Xi(t,x,2) =TT (1+= ) a9/ . (3.2.21)
2 (=2 + x2 + 22 4 ie)' T2

which is clearly finite in the interior. The bulk-boundary non-normalizable propagators

on the two Euclidean caps can be found to be

d zH-g

Xo(7,x,2) =il ()T <l + 2) 4?2 T (3.2.22)

(—(=T —iT)? +x2 4 22+ i) 2

I+4
Xi(r,x,2) = iC(1)T (l + g) 742 z 2 . (3.2.23)
(—(T —ir) +x2+ 22 +ie) 2

It is a simple exercise to show that the matching conditions are given by
Ot =T,x,2) =P(r =0,x,2) 10,9t =T,%x,2)+0-(tr =0,%x,2) =0  (3.2.24)
O(t=-T,x,2)=0(r=0,%x,2) i0P(t=-T,%x,2)—0;(1=0,%x,2)=0 (3.2.25)

and that these are satisfied for the X;s. Similarly one can show that the only possible
solution for the arbitrary functions appearing in the normalizable contributions that is
consistent with the matching conditions is zero.

What we learn from this example is that when we calculate the bulk-boundary propa-
gators in Lorentzian signature we should not expect regularity to be apparent at the level
of the Fourier modes, and also that we may have the freedom to specify arbitrary ad-
ditional normalizable contributions to the propagators. This ambiguity can be resolved
by applying the matching conditions and is equivalent to various different ic insertions
or contour deformations. In turn, these matching conditions are specified by the ini-
tial and final conditions of the system, or equivalently the real time QFT contour for the
correlation function we are interested in calculating.

3.3 Lifshitz invariant free field theories

Consider the following free scalar field theory in D + 1 dimensions given by the classical
action: )
5= / At aPx [(916)? — K2(V20)’] (331)

where ¢ = ¢(t,x) is a massless scalar field and V? is the spatial Laplacian, with x being
a real constant. This system explicitly breaks Lorentz symmetry and instead has a z = 2

Lifshitz scaling symmetry:

t—= A%t x—=Ax: ¢ — o (3.3.2)
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In this section we will review the correlation functions for this model, using appendix A
of [95].

Following from the above discussion we wish to evaluate the following path integral:
Z[J;C) = / [D¢) exp <—; / dt / dPx((8,0)% — K2(V29)%) (3.3.3)
c

+Z'/Cdt/deJ(t,X)¢(th)>,

or more specifically we wish to investigate what the possible propagators are that arise
in this generating functional. We will choose the normalisation of the path integral such
that Z[0;C] = 1 for simplicity.

Note that the classical field equation for this theory is given by
2o+ k*Vip =0 (3.3.4)

where V4 = V2V2. Motivated by this, define the linear differential operator A = 97 +
x2V* which reduces the field equation to simply A¢ = 0. Using integration by parts we

may re-write the action using A and simplify Z[.J;C]:

Z[J;C] = / [D¢) exp (2 /C dt / d?x <—;¢A¢>+ J¢>> . (3.3.5)

Next we make the change of integration variables to ¢’ = ¢ — A~1J. Under this change

the path integral simplifies:

Z[J;C) = /[D¢’] exp (iS[(ﬁ’;C] + ;/Cdt/deJAlj) ) (3.3.6)

Notice that the second term in the exponential is independent of ¢’ and so can be pulled
out of the integral, and that the remaining integral is just Z]0; C] which we normalised to

unity. Therefore the generating functional is simply:

Z[J;C] = exp (; / dt / deJA—U) (3.3.7)
C

where the inverse operator A~! can be found by solving the equation for the propagator:

— Ay Gt —t,x —X) = 6(t — ") 0P (x — X). (3.3.8)

The problem of finding G simplifies when transforming to (w, k) Fourier space. The
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Im(w)

Figure 3.3.1: The Feynman propagator contour; the positive frequency pole contributes
for t > 0 while the negative frequency pole contributes for ¢ < 0.

Fourier transform G of G is given simply by

1

G= T2 — k2K4

(3.3.9)

Carrying out the inverse transform yields:

dwdDX efithrik-x
Glt,x) = — / P T (3.3.10)

The integrand has simple poles at w+ = 4+xk?, with the dispersion relation reflecting the

non-relativistic nature of our system.

There are several possible contour deformations associated with different propagators.
The Feynman propagator G is given by the insertion w{ = 4(xk? — i¢); the retarded
propagator G has the insertion w¥ = +xk? — ic and the advanced propagator G4 has
wi = +xkk? +ic. In all of the above ¢ is a small positive constant. The three contours
that these insertions correspond to are illustrated in Figures 3.3.1, 3.3.2 and 3.3.3 with
the corresponding integral representations with ie insertions being:

dwde e—iwt+ik-x

Gr(t,x) = — / P (3.3.10)
dwde 6—iwt+ik-x

Gr(t,x) = — / P G (3.3.12)
dwde e—iwt+ik-x

Galt,x) = — / T G (33.13)

For the Feynman contour we may equivalently represent the contour by the shift

w — w(l+i€) (3.3.14)
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Im(w)

Figure 3.3.2: The retarded propagator contour; the propagator is analytic in the upper
half plane.

Im(w)

Figure 3.3.3: The advanced propagator contour; the propagator is analytic in the lower
half plane.

where ¢ is positive. Notice that Ggr(t —t/,x —x') = 0if t < ¢/, and similarly G4(t — ¢/, x —
x') = 0ift > ¢’. These two results make explicit the notion that one event occurs before
(after) another if the difference in one occurs at an earlier (later) time than the other. This

is precisely the notion of past/future that occurs in non-relativistic systems.

Now that we have found the propagators we have in theory solved the problem and
can now proceed to work out any correlator we want, provided we can perform the
remaining integrals. Nothing so far has dictated which of the three possible propagators

we should use but this problem is solved by specifying initial conditions for the fields.

Before understanding the Lorentzian physics from a holographic perspective, let us re-
turn to the Euclidean correlation functions. In three dimensions (D = 2), the integrals

above are logarithmically divergent; this divergence is analogous to the divergence of a



3.3. Lifshitz invariant free field theories 97

relativistic massless boson in two dimensions. In [95] a regularised Euclidean Green's

1 2 2
Gt = o () o (0. 22Y]. 0am

where 7 is the Euclidean time and a is a cutoff, with I'(0, z) being the incomplete Gamma

function was used:

function.

The charge operators in the free theory are given by O,, = e~ where n is an integer

and these operators have correlation functions given by
(On(7,%)0,(0,0)) = () (3.3.16)

From the regularised Green function one can then show that for the equal time corre-
lation function

n

(0,,(0,%)01(0,0)) = <;‘> - (3.317)
while for 7 > |x|
i (@
(On(1,%)0},(0,0)) ~ <4KM> (3.3.18)

where 7 is the Euler constant. This implies that the charge operator has scaling dimen-
sion A = n?/8mk.

In dimensions four and higher (D > 3) the scalar field has a non-zero scaling dimension

and the integrals have no logarithmic divergences. The Euclidean Green'’s function is

dwde e—inT+ik-x
Grlrx) = | T (3.319)

given by

Evaluating this expression in D = 3 results in

1 x> é(I71) py €
G =y — — d“k . 3.3.20
B(T%) =\ [ {gr38]7] P ( 4nm> T oDFID] 12 (3320

For 7 # 0 this formula describes diffusion in imaginary time, with the effective diffusion

constant being k. This is not surprising, as the equation of motion for the scalar field ¢ is
the square of the Schrodinger equation, which is well-known to be a diffusion equation
in imaginary time. In general for D > 3

2
Go(r,%) ~ —— exp (— x| > (3.3.21)

7|2

for 7 # 0 which is consistent with the scaling dimension of the scalar field. In the limit
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|7| > |x| this reproduces the power law fall-off of correlation functions in D = 2.

For 7 = 0, this gives precisely the expression for a massless relativistic boson in D spatial

dimensions and hence )

—_— 3.3.22
|X‘D_2, ( )

GE(07 X) ~

which again is in accordance with the scaling dimension of the scalar field. Note that the
precise expressions in general require renormalization, to ensure that the correlators

are well-defined in a distributional sense.

3.4 Schrédinger invariant theories
3.4.1 Schroédinger invariant field theories

In this section we will review the implications of Schrédinger invariance for correlation
functions. Let us begin by considering the action of the Schrédinger group on a theory
in D spatial dimensions # and a Euclidean time coordinate 7 (such that t = —i7). The
Schrodinger group is the maximal group which transforms solutions of the (Euclidean)
Schrédinger equation,

<_§T n 2/1\/1v2> T =0, (34.1)

into other solutions. The generators of this group are time translations H = 9;, spatial
translations P; = 0;, the dilatation generator D = 70, + %x’&z the Galilean boosts S; =
70; + Mxz" and the special Schrédinger symmetry

A 1 A
K =720, + 72'0; — iMx’xi. (34.2)

Here M is a central term, i.e.
[P;, S;] = Méyj. (3.4.3)

The Schrodinger symmetry then fixes uniquely the two-point function of quasi-primary

operators O(r, 2*) of scaling dimension A to be

: 1 M |z|?
O(r,2)0(0,0)) x — il il N 344
(0(,500,0) x g exp (-5 49
where the operators must have the same scaling dimension to have a non-vanishing
two point function. Note that this is exactly the same form as in the free Lifshitz theory,

but in this case is fixed by symmetry for any Schroédinger invariant theory.

The correlation function is clearly not well-defined as 7 — 0 and 2* — 0; one needs
to renormalize appropriately. Note also that, unlike the general Lifshitz case, the corre-
lation function does not have a good limit as 7 — 0 at finite z*: the special conformal
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symmetry equation can only be solved in this limit if M = 0, in which case the correlator
becomes

1

(0(0,21)0(0,0)) sty (3.4.5)

which follows from the scaling symmetry.

Now let us consider real time physics. Analytically continuing 7 = it, the retarded cor-

relation function is given by

M |z|?

(O(t, z9)0(0,0)) = H(IS)t—A exp <Z2t> , (3.4.6)

where C' is the overall normalisation. As a particular case, one can consider a non-
relativistic spinless particle of mass M (3.4.1) for which the propagator is

D
N MhA\ 2 M |z|?

i.e. the central term is precisely the mass in units of # and the scaling dimension is D /2.

The latter can be expressed in momentum space as

1
B L
2M

G(w, k') = (3.4.8)

where we have again set h = 1. Hence the propagator has a pole at w = |k|?/2M. This
is the non-relativistic dispersion relation; note that unlike the free Lifshitz model, the
propagator is not symmetric under w — —w as the original system does not have time-

reversal symmetry.

More generally, we can Fourier transform the retarded correlation function along the x*
directions to obtain

D
2

(O, F)O(0, — ) = G(t)g (L) exp <z’2/1\/l|k]2t) , (34.9)

where " is a rescaled normalisation constant. Recall that the general expression for the

Fourier transform of a power in d dimensions is

T I'(d/2— A
I'(A)
where implicitly we assume that A is not zero or a negative integer and that d/2 — X\ is
not a negative integer. (In such cases we will need to use an appropriate method such
as differential regularisation to define the integrals.) From this expression we can infer
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Im(w)

k2

Figure 3.4.1: The complex frequency plane for Schrodinger, with the retarded/Feynman
correlation function integration contour shown in blue.

that

(A-2-1)
(O(w, K)O(—w, —k)) ~ (w — g‘;\i) (3.4.11)

i.e. for generic dimension operators the correlation function has a branch point at w =
|k|?/2M. This analytic structure is illustrated in Figure 3.4.1. Note that in this case the
Feynman and retarded integration contours are indistinguishable, as the correlation
function is analytic in the left half of the complex frequency plane.

3.4.2 Holographic Schrédinger theories

The following (D + 3)-dimensional metric exhibits Schrédinger symmetry with scaling
exponent z:
b2

1
ds? = _r@dt2 +3 (2dtdv + dz* + dr?) . (3.4.12)

The parameter b could be removed by rescaling the (¢, v) coordinates, but we include it

here to make manifest the AdS limit as b — 0. This metric exhibits a scaling symmetry
t— Nt v — A T—= AN r—\r (3.4.13)

for any value of z. The geometry only admits the additional special Schrédinger sym-
metry for z = 2 and we will concentrate on this case in what follows. Note that the
hypersurfaces of constant ¢ are null, while hypersurfaces of constant v are timelike for
b # 0 and null for b = 0.
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The geometry can be supported by massive vectors and arises as a solution of higher
derivative gravity theories. As in earlier sections, we will concentrate on minimally cou-
pled scalar fields, which are not affected by the choice of matter supporting the geom-
2

etry. The equation of motion for such a minimally coupled scalar field of mass m? is

thus
B 4722920 4 2r20,0,1 + 1202 + 120 — (D 4 1)r0,9) = m*y. (3.4.14)

Now consider modes of particular frequency

Y = e Wy (t, 2t 7). (3.4.15)
For z = 2 such modes satisfy
r? (—211@ + 02 + 07 — D;Llar> U = (m? 4+ V212 = miy,. (3.4.16)

This is exactly the same differential equation as in AdSp3, but with the mass shifted by
a term depending on b and I. Thus the scaling dimension of the dual operator is

AY(D+2—A) =m?, (3.4.17)

i.e. the modes 1); of different |I| correspond to operators O;(t, 2*) of distinct scaling di-
mension A;. Given this fact, we work entirely in momentum space [ rather than in co-

ordinate space v.
Using the asymptotic expansion of the scalar field
= PR (G )+ (i o) 3419
we can calculate the one-point function to be
(Oi(t,2")) = (D +2 = 28y ap (t2') + -+ (3.4.19)
and hence

Syay (t, ")
81 (0)(0,0)

where the ellipses denote contact terms which we will not compute explicitly. Note that

(O(t, ) 0_1(0,0)) = —(D 4+ 2 — 24)) (3.4.20)

the symmetry of (3.4.16) under [ — —l and t — —t implies that
(O1(t, 2)0_1(0,0)) = (O_i(—t,2)0;(0,0)) (3.4.21)

and hence one can straightforwardly construct the time ordered two point function
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which is defined as
(TO(t, 2)0_1(0,0)) = O(t)(O;(t, ) O_1(0,0)) + O(—t)(O;(0,0)0_(t,z%)).  (3.4.22)

Now let us consider solutions of (3.4.16). Fourier transforming the ¢ and z* coordinates

results in Dol
7 <21w — k402 — ia > Uy = miy. (3.4.23)

The general solutions are then of the same form as for Poincaré AdS:

1= Ar K (qr) + Brie L(gr) =k —2w>0 (3.4.24)

zﬂl = C?’#KV(QET) + DT¥JV(‘(]’T’) ge = V k% — 2lw + ie ¢ <0,

where in the latter we have chosen a branch cut, with € being positive,

V= \/ml —(D+ 2) (3.4.25)
and we define ¢, = —ilq]|.

When ¢? > 0, regularity as 7 — oo sets B = 0. For ¢> < 0, the modes involving
K, (g.r) correspond to sources while the other modes J,(|g|r) correspond to normal-
izable modes. Neither mode solution is finite as » — oo. By constriction the solution
K, (ger) is applicable for both ¢? > 0 and ¢ < 0 and, for fixed positive [, there is a branch
cut from w = k?/21 to infinity. The ie insertion fixes this branch cut to be just above the

real axis.

Guided by the Euclidean AdS propagator, let us consider for > 0

G(l;t,z",r) /dw/dke’“t a2 gl r 7 Ky (ger) (3.4.26)
D+1 (]/) v € b .
where the ie-prescription is equivalent to the contour in the frequency plane shown in
Figure 3.4.1. Calculating the Fourier transform gives

, (A 1pA il
G(l;t,zt,r) = C@(t)tT exp (—Qt(f? +r3H)(1 - ie)) . (3.4.27)

C — Z Dl 2 (3 4 28)
2 L 2 I(l/) o

The choice of contour therefore guarantees that the propagator is regular as r — oo for
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[ > 0. One can then read off the retarded two point function as

A A-1 -
(O(t,2")0_1(0,0)) = C(2A;,— D — Q)H(t)ltTl exp <—;§5£2(1 - ze)) . (3.4.29)
The addition of other normalizable modes would be associated with a different choice of
integration contour, and correspondingly different initial conditions, as we will discuss
further below.

We can similarly calculate the time ordered two point function as

A—1 ,
(TOWt,2)O_1(0,0)) = C(2A; — D — 2)9@)% exp (-Zf?(l - ie)) (34.30)

C(2A;— D —2)0 tlAl_l i i
+C(24, - D — )(‘)tTleXP 533( —i€) | -

Note that this two point function decays as a power law as t — +oo at fixed 7. Let us
now consider the matching between the Lorentzian segment and Euclidean segments.
A priori it is not obvious how to analytically continue the Schrédinger geometry to the
Euclidean. However, from the above discussions, it is clear that ¢ plays the role of time
and that the matching with Euclidean segments should be on hypersurfaces of ¢t = +7..
We therefore consider the Euclidean segments obtained by the replacement ¢t = —ir.
The resulting metric is

b2

= ,rQZ

1
ds? dr? + — (~2idrdv + dz® +dr?) . (3.4.31)

Note that this metric is complex and surfaces of constant 7 are null.

If however we consider the scalar field equation in this background we obtain for z = 2

D+1
7 (21@ + 07 4 02 — :a,> Yr = (m? + V1) = miy (3.4.32)

where we focus on modes of specific positive frequency [ with respect to the v coordi-
nate as in (3.4.15). This equation of motion is both real and elliptic and the resulting bulk
boundary propagator is

i LA Lo 2
G(l;,2",r)=C A eXP Z(m +7%) . (3.4.33)

with ,
Z'ezmr

C'=——FT5—.
2Alﬂ¥lﬂ(y)

(3.4.34)

The propagator is manifestly regular as » — oo and as 7 — oo and the normalisation

follows from matching with the Lorentzian propagator on the surfacet =T
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3.4.3 Extended Schrédinger spacetimes

Recently some authors [96, 97] have been interested in extensions to the Schrod-inger
spacetime (3.4.12) through the apparent singularity at » = co. A smooth extension exists

for z > 2 and is given by the coordinate transformation
1 . .
t=—tanwT, r= RsecwT, ¥=XsecwT, v=-V-— g(R2 + X% tanwT (3.4.35)
w

where w is some arbitrary real parameter. In these new coordinates the metric reads

2;:—4b2dT2 1 2 2 2 2 2 v 2
=1 +ﬁ(—2deV—w (R® + X*)dT* + dR* +dX*) (3.4.36)

ds? = —(coswT)

where the T-translational symmetry is restored only for z = 2. The free parameter w
was not considered in the previous discussions of [96] however it is necessary to realise
the original scaling symmetry explicitly. This new metric is invariant under the scaling

symmetry
T—NT, V272, X—>5AX, R—AR, w— A\ w. (3.4.37)
A free scalar field ¢ of mass u propagating on this background without backreaction
obeys the Klein-Gordon equation:
—2R*Y v+ (B +w’ R (R?+ X?)) vy + RV gr— (D+ 1) Rip g+ RV = pi*y (34.38)

where V% denotes the flat space Laplacian on the R? for the X boundary spatial direc-
tions. We can decompose solutions of this equation into spherical harmonic modes:

Y = e L™V G (R) by, 1(p)Yi(6;) (3.4.39)

where (p, 6;) are spherical coordinates for the X, and Y;(6;) are the spherical harmonics
of weight —I(I + D — 2) on SP~1.

The mode functions ¥ (R) and ¢,, ;(p) satisfy the following equation:

1 D+1 2 2p?
v=q [\1:” - Tj_\ll' + <2mE — m2R? — “J;;Q”) \If] (3.4.40)
1 D-1 I(1+D—2
_ _g [¢H + p ¢/ - ( ( + ; ) + m2p2> ¢] (3.4'41)

where v is some constant. Both of these equations can be solved exactly in terms of the

confluent hypergeometric functions U(a, b, z) and M(a, b, z), as in the Lifshitz case.

Imposing that the p mode function to convergent at p = 0 and that it be well behaved at
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infinity yields
1

Ol (p)=e 2
(a)

wheren € N, and L;,’(z) are the generalised Laguerre polynomials.

d_
mwp? pnglH 2-1) (mpr) (3.4.42)

The most general solution for the R mode function is given by
I'(ay)
L'(N2)
+T R M(ay, 1+ No,mwR?)]

U(R) = e 2™ | W RA- U(a_,1 — Nog,mwR?) (3.4.43)

where the constants are Ay = 1(D + 2) £ Ny, Ny = %\/(D +2)% 4+ 4(u2 + b2m?2), and
atr = % (l +2n+ Ay — %) and the normalisation of the U mode has been chosen such
that U(R) = RA*\II(O) + ... for small R.

The U modes are non-normalizable except in the degenerate case of a4y = —p € —Nin
which RA-U(a_,1 — Na,2) o« R®+M(ay, 1+ No, 2), i.e. they degenerate into M modes.

These modes are exponentially suppressed in the R — oo limit assuming mw > 0.

The M modes are always normalizable as M(a, b, z) is always a constant to leading order
in z. In the special case where a;. = —p € —N these modes are exponentially suppressed
as M(ay,1 + Ny, mwR?) is a polynomial in R? of degree at most p, otherwise they are
exponentially divergent.

Restricting to modes where a; = —p is the ideal choice for the normalizable modes,
however there does not appear to be any reason a priori to restrict to the similar case of
a_ = —p for the non-normalizable modes. Moreover, if one restricts to this case then
the U modes degenerate into normalizable modes whenever N, € N which is a case
that arises often in supergravity models.

This leads us to the somewhat unsatisfactory conclusion that the energy F is a con-
tinuous parameter for the non-normalizable modes, and a discrete parameter for the
normalizable modes with E = Ef = w(l+2(n+p) + A ). The most general solution to
the Klein-Gordon equation (3.4.38) for a mode of fixed V momentum m is:

Un(T, B X) = 37 7360 1(p)Yi(0) (3.444)
In
X ( / dE e "FT R4 (1,0, E) I(ay) U(a—,1 — Ny, mwR?)
['(No)
+ ) e BT RA 4y, LV (me2)>
p

where the d; ,, , are unknown constants that should be fixed with the appropriate match-
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ing conditions.

It is not obvious how to invert this expression into a position space propagator, even
though we accomplished this quite easily in the original coordinate system. Moreover
the propagator (3.4.27) found in the original coordinate chart can be easily rewritten in
terms of the extended coordinates as

- 1 Rw \*
G(l;t,z",r) =C0 ( tan(wT)) lAl_1< ) etV (3.4.45)

w sin(wT)

tlw 9 9 ,
X exp <_251n(2wT) (R* + X*)(1 4 cos(2wT) — 226)>
which manifestly solves the Klein-Gordon equation (3.4.38). It is clear that these ex-
tended coordinates provide no advantage in finding the propagator for holographic Sch-

rodinger spacetimes.

3.5 Lifshitz holography

The following bulk metric is dual to the vacuum state of a quantum field theory with
Lifshitz symmetry:

(3.5.1)

dez2  dx?  dr?
2

d33+2 = L2 (_7“22’ + g
where r is the holographic direction with » — 0 corresponding to the boundary, L is the
curvature radius, z is the dynamic Lifshitz exponent, and (¢, x) are the coordinates on the
D +1 dimensional boundary. Here D represents the number of spatial dimensions. The
Lifshitz scaling isometry is ¢ — A*t,x — Ax,r — Ar where A is a positive real constant.
Note that in the case z = 1 this spacetime reduces to the Poincaré patch of AdSp.
This spacetime is not a solution of the Einstein equations with negative cosmological

constant but can be supported by appropriate matter fields such as a massive vector

field.

We will consider a minimally coupled massive scalar field ¢ propagating without back-

reaction in this spacetime. The action for the scalar field is given by:

1
S = ~5 /dt dPxdr/—g (g“”@uwayw + m2¢2) (3.5.2)
and the equation of motion is thus:

202 — r(d + z — 1)) — 122824 + 1202 — (mL)* = 0. (3.5.3)

For simplicity we will consider the case of vacuum-to-vacuum correlators, similar to
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the above relativistic case and illustrated in Figure 3.2.3. Note that now the bulk mani-
fold segments will be of the form given by equation (3.5.1) and not Poincaré patch AdS.
As in the relativistic case our aim will be to compute the bulk-boundary propagator for
the various segments of the bulk manifold and then apply the matching conditions to
attempt to resolve any ambiguities and determined the correct ic insertions. Since the
equation of motion is a second order differential equation in » we would expect that
there will be two families of linearly independent solutions with different near bound-
ary behaviour. We begin by reviewing the correspondence between asymptotics and

normalizable and non-normalizable solutions.

A standard analysis of the equation motion shows that the scalar field solutions asymp-
totically behave as
Y e T N (3.5.4)

where A are roots of A(A — (D + z)) = m2L? or explicitly:

1 1
De=g(D42)ENs  No= (D427 +4(mi)? (355)

We require that AL € R is real, which in turn leads to the generalisation of the Breiten-

lohner-Freedman bound to Lifshitz spacetime:

(D—i—z)z'

(mL)* > =

(3.5.6)
This assumption is equivalent to requiring that N, > 0.

Modes with the asymptotic behaviour r*- are non-normalizable as can be demon-

strated by considering the following
/dr V—gh? ~ /dr P20 (3.5.7)

which is always divergent as » — 0. Similarly we have that modes with *+ asymptotics

are normalizable:

/dr V—gip? ~ /drr_HQNz. (3.5.8)

As in AdS, where A, and A_ differ by an integer, the second solution with develop
logarithmic contributions. For example, at N, = 0 the two independent modes behave
as

P~ r%(D“)zm_ +r3(DF2) logri_ (3.5.9)

with ¢_ corresponding to the non-normalizable (source) mode. In what follows we will
for simplicity mostly work with the generic case in which logarithmic terms do not arise

in the asymptotic expansions.
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As in the relativistic case, we will calculate the bulk-boundary propagator G(r, t, x)
which constructs a full bulk solution ¢ (r,¢,x) of the equation of motion from some
boundary data v (¢, x) via

Y(r t,x) = /dt/ d%'G(rt —t',x — X)) (', %) (3.5.10)

subject to the boundary conditions that 1(r, ¢, x) is regular as r — oo, and that ¢ cor-
responds to a non-normalizable source, i.e.:

lim r~ 2= (r, t,x) = Yoy (t,x). (3.5.11)

r—0

This problem can be simplified by performing the Fourier transform in the (¢, x) bound-

ary space so that (3.5.10) becomes simply
h(r,w, k) = G(r,w, k)i (w, k) (3.5.12)
which simplifies the equation of motion to
r202G — r(D 4 z — 1)0,G — (—w*r® + K22 + m?L?)G = 0. (3.5.13)
We can also simplify the asymptotic behaviour constraint (3.5.11) to simply

lim r*A—é(r,w,k) =1. (3.5.14)

r—0

Note that as in relativistic examples [21] we should not expect to be able to apply the bulk
regularity constraint at the level of the Fourier transform, rather we must insist it after

taking the inverse transform back to position space.

It is technically difficult to find analytic solutions to equation (3.5.13) for arbitrary z and
w though various limits exist which make the system more tractable. In the z = 1 limit
this reduces to the relativistic case with solutions given in terms of (modified) Bessel
functions

G = crrPTV2EK N (qr) + corPTV 21y (gr) (3.5.15)

which is exactly the relativistic case discussed above. Note that here the quantity la-
belled [ earlier is now Nj. Another directly tractable limit is the w — 0 limit where once
again the solutions are given by modified Bessel functions:

G = crr PR KN (|K|r) 4 corPTD2 Iy (k7). (3.5.16)

This is not entirely surprising as at zero frequency the system does not feel the non-
relativistic scaling directly; it is only felt through a modified effective dimension which
sends D + 1 — D + z. Although this limit is not directly useful in the calculation of the
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bulk-boundary propagator for generic z it does highlight the universal zero-frequency

limiting behaviour of the solutions for generic z.

3.5.1 Specialisationto z = 2

We will now specialise to the case of z = 2 where the scalar field equation is tractable
analytically. Consider a function y(r) which obeys the general confluent hypergeometric
differential equation given by:

24 bh B
vt < LA e h,) v (35.17)
bh'! '\ (A A(A—1) 247 h'?
+ 7—}7//—7 7_"_‘](-/ + ( )+ f +f//+f/2_a y:O,
h % r 72 r h

(3.5.18)

where A, a, and b are constants, and f(r) and h(r) are differentiable functions. This

equation has two linearly independent solutions given by [98]:

yar(r) = r~Ae” 1M (a, b, h(r) (3.5.19)
yu(r) = Ao Ul(a, b, h(r))

where M (a,b,w) and U(a, b, w) are the confluent hypergeometric functions of the first

and second kind respectively. M (a, b, w) is often referred to as the Kummer function
while U(a, b, w) is the Tricomi function.

To demonstrate the claim that equation (3.5.13) is indeed a confluent hypergeometric
differential equation we will make the following ansatze f(r) = pr? and h(r) = Ar?

which yield the following five constraints

A=2u, 204+24=-D, A(204+A—2)=—(mL)?, 4u(d—2a) = —k?, —4u®=u?

(3.5.20)
In total these five constraints can be solved to yield
1
u? = —Zw2, A =2u (3.5.21)
1 1
Ar=—5(D+2)F 5\/(D +2)2 4+ 4(mL)* = —A4
k? L
ar = —+ =
=5 T

1
by = 1i§\/(D+2)2+4(mL)2 =1+ N,.

M(a,b, z) is undefined when b is a non-positive integer, which will generically occur
whenever N is an integer, e.g. when m = 0. This problem can be avoided by consid-
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ering the regularised confluent hypergeometric function M(a, b, z) which is related to
M(a,b, z) whenever b is not a non-positive integer via M(a,b,z) = I'(b)M(a, b, z). The
regularised confluent hypergeometric function is defined for all values of b so we will

work with this version of the function to avoid having to restrict N.

Therefore, the most general solutions to equation (3.5.13) for z = 2 are given by

. k2 1
GE =rP+e M (8u +5 (1% No), 14 Ny, 2W2> (3.5.22)

. k? 1
GE = rPee <8u + (L4 No), 14 Ny, 2/u'2> .

We now need to choose two linearly independent solutions; these solutions are not all
linearly independent. First note that the choice of sign for any of 4, a, or b fixes the signs
of the other two quantities. The confluent hypergeometric functions are also related to
each other through various identities known as Kummer's relations and these relations
allow us to choose one set of signs without loss of generality. Firstly we can use the
relation

Ula,b,w) = 2'"U(a —b+1,2 — b, w) (3.5.23)

while a second identity, valid whenever Ns is not an integer, is:

™ M(a‘+7b+7w) —Ns M(a’—7b—7w)
= — —_— .5.24
Ulas;by,w) sin b, < I'(a_) v I'(ay) (35.24)
Similarly when Nj is an integer one can show the following
w 2T (a_)YM(a_,b_,w) = T(ay)M(ay, by, w) (3.5.25)

Therefore we have the following three relations linear relations between the solutions:

GE = (2p)TVGF (3.5.26)
GE =T (FN2)[(1 £ Ny) Cry_ Gy (N2 ¢ N)
v I(ag) T(ax)

[(a1)Gi =T(ax)GY; (N2 € N).

Let us choose C;’K/I and G(} as the independent solutions. Our solution is therefore:
G = e Hrph- [aU(a—,b_,2ur®) + M (a—, b_, 2ur?)] (3.5.27)

where « and $ are integration constants which remain to be determined. Note that the

parameter ; appearsin a_.

It is convenient to first analyse the solution in Euclidean signature, i.e. letting w? = —w?%,
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so that u = +3wp. Again one can fix a choice of sign without loss of generality, as Kum-

mer's relations relate U(a, b, £w) and M(a, b, £w). Choosing the positive sign we obtain

G = e 3wmr? A [aU(a_, b_,wpr?) + SM(a_, b_,wETQ)] ) (3.5.28)
Note that the parameter p appears in a_ and thus we have fixed
a-=——+-b_. (3.5.29)

We now need to apply the boundary conditions to fix the integration constants. In [84],
it was argued that the condition that G is regular as 7 — oo fixes 3 = 0. This argument
follows from the asymptotic behaviours of the confluent hypergeometric functions at

large argument:

1
Ula,b,w) ~w™* M(a, b, w) ~ ) Wb (3.5.30)

where the latter expression holds for |Arg(w)| < 7/21i.e.in the right hand complex plane
of z.

However, implicitly [84] was assuming that wg is real and positive: clearly for Re(wg) <
0 the exponential prefactor in the above solution diverges as » — oo. Moreover, the

Tricomi function U(a, b, 2) has a branch cut along the negative real axis.

Extending to the complex frequency plane, and imposing the normalisation condition
(3.5.14), we find that
F(l +a_ — b_) 1

N —Lopr?z A_ 2
G o) e 2B r2=U(a—, b_,wgr?) (3.5.31)

for Re(wg) > 0. This function is analytic over the domain Re(wg) > 0. To see this, note
that

1 1 k?
M(l4+a —b)=T ( FESVN w) | (3.532)

The Gamma function has poles at negative integers, but for Re(wg) > 0 the argument
(1+a_ —b_) never takes negative integer values. Since the Gamma function has no zeros

and U(a, b, z) is analytic for Re(z) > 0, the solution is indeed analytic over the domain.

However, for Re(wg) < 0 we should instead choose

I(l+a —b)
T(a)

G = e P AU (G_ b, —wpr?), (3.5.33)
to ensure that the function is bounded as r — oo for wg real and negative. Here we

denote
. =———+-b_, (3.5.34)
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Im(wE)

Re(wE)

Figure 3.5.1: The complex Euclidean frequency plane.

i.e. we take into account the switch in sign of 1 in this parameter. By the same arguments
as before, this function is analytic over this domain.

Both functions (3.5.31) and (3.5.33) reduce to the same limit as wg — 0 along the real axis.
However, the two solutions are clearly discontinuous as one crosses the imaginary axis,
i.e. we need to introduce branch cuts, as shown in Figure 3.5.1.

We can now extract the Euclidean two point functions in the standard way. First of all,
we need to calculate the renormalized one point function. To do this, we note that the
counter terms for the scalar field action are

1
SE=—2A / Al G + - - (3.5.35)

where the superscript £ denotes that we work in Euclidean signature and the ellipses
denote additional counter terms, depending on derivatives of the scalar field. The latter
contribute to contact terms in the correlation functions, which we will suppress in what
follows. Let us now write the near boundary expansion of the scalar field as

¥=r0 (o) + e o) A (Yag) e g ) (35.36)

where, as discussed earlier, the asymptotic expansion contains logarithmic terms when
(A4 — A_)is an integer. Defining the renormalized action as

SE —gF 4 gk (3.5.37)

then the one point function for the scalar operator is given by

59F

(Ou(ra)) = 5o

— —Nopa(m2) + ... (3.5.38)
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where the ellipses denote contact terms. (This expression is not applicable to integral IV,
for which logarithmic terms arise in the asymptotic expansion.) Differentiating a second
time gives

A 6¢(A+)(T7$)
<O¢(T,a})0w(7' , L )> = NZW (3.5.39)

Thus we find for z = 2 that

L(=N2)T(at) n,

(Oy(wE, k)Oy(—wE, —k)) = Na T(N,) F(a,)wE , (3.5.40)
for Re(wg) > 0 while
(Op(wp, k)Oy(—wg, —k)) = N FF((_]\],S) ?E:*; (—wg)™2, (3.5.41)
for Re(wg) < 0.
For integral values of N for Re(wg) > 0 and one finds that
(O (wr F)Oy(~wp, k) ~ (a-) 5, ¥lay ol (3542)

where a,, = I'(a+n)/T'(a) is the Pochhammer symbol and ¥(x) is the digamma function.
For Re(wg) < 0, the corresponding expression is obtained by replacing wg — —wg.

The analytic structure of this correlation function is the same as that of the bulk propa-
gator, shown in 3.5.1. The position space correlation function is obtained by the inverse
Fourier transform

(04 (1,2)04(0,0)) / dwp / dke —WET+ZkX£Ea+;wg2 (3.5.43)

/ dwp / dke BT Ea+§(—wE)N2

where we have suppressed numerical prefactors. This expression can be equivalently

written in terms of a cosine transform

(e 9]

A
dwg Cos(wET)/dkeZk'x (a+)wN2. (3.5.44)

(©ulr.2)040.,0) ~ [ TR

—00

For integral values of N, the expressions reduce to integrals over digamma functions;
for example, for N = 1 we obtain

o) 2
(Op(7,2)0y(0,0)) ~ / dwp / dkewET kX || 2 <1+ [ ) (3.5.45)
0 4w
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3.5.2 Lorentzian solutions

Now let us turn to Lorentzian solutions, in which y = +1iw. Applying the near boundary

limit lim, _,or~2-G = 1, we can again write

~ r
G = e HripA- (a4) [U(a,, b, 2ur?) + Borr 2 M(ay, by, 2,ur2)] . (3.5.46)

Let us consider first the case of y = %z’w:

~ i r
G = e 3w pA- (a4) [U(a_7 b_,iwr?) + Br*N2M(ay , by, iwrQ)] (3.5.47)
I'(N2)
where
a ——z‘k—2+1(1iN) (3.5.48)
T 7w T2 2 s

The U function has a branch cut on the negative real frequency axis while the M function
is entire. Neither the U nor the M function is bounded on the real frequency axis as
r — 00, but the U function is bounded in the complex frequency lower half plane while
the M function is bounded in the upper half plane. The normalisation factor I'(a.) has
poles when a is a negative integer, i.e. along the positive imaginary axis in the complex

frequency plane.

For the other choice u = —%iw:
~ i I'(a
G = 3w A- (@4) [U(a—,b_, —iwr?) + Br*>M(ay., by, —iwr?)] (3.5.49)
['(N2)
where
LN P (35.50)
T T 2 2 i

Here, the U function has a branch cut on the positive real frequency axis while the M
function is entire. Neither the U nor the M function is bounded on the real frequency
axis as r — oo, but the U function is bounded in the complex frequency upper half
plane and the M function is bounded in the lower half plane. The normalisation factor
I'(a4) has poles when a is a negative integer, i.e. along the negative imaginary axis in the
complex frequency plane. We can therefore see that neither choice of Green's function
is by itself satisfactory: note that both choices break the w — —w symmetry of the field

equation.

Putting these facts together, we can see that we should choose the following combina-

tion in the complex frequency upper half plane:

i I'(a i
GY(w,k,r) = ez A (@) Ula—,b_, —iwr?) + ﬂﬁkTA‘Le*?wQM(ajL, by, iwr?). (3.5.51)
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Im(w)

Figure 3.5.2: The complex frequency plane for Lifshitz.

This function is bounded as » — oo in the upper half plane and also has no poles in the
upper half plane. Similarly in the lower half plane we choose

~ 7 I_‘ i
G w, k,r) = e~ 3wt p A (a+) Ula_,b_,iwr?) + 5gk7”A+€§°”2M(d+, by, —iwr?). (3.5.52)

Note that invariance under w — —w requires ﬁgk = 3" There are two branch cuts in
the complex frequency plane, one along the negative real axis and one along the positive
real axis (excluding the origin). The analytic structure is shown in Figure 3.5.2.

Thus for general boundary data

O(t,z,r) = (Qi) 5 /C dw / dk / dfdfce*iw(t*f)ﬂk-(x**)(;5(0)({,g})é(w,k,r), (3.5.53)

= (271r)d /de/dke‘m+ik'x¢(0)(w,k)G(w,k,r),

where implicitly we use the appropriate form for G(w, k,r). The contour C' must be
specified; we will consider here the case of the Feynman contour.

To the far past of the sources one can deform the part of the Feynman contour lying
in the upper half plane back along the branch cut along the negative real axis. In this

regime, assuming that N = 1 + [ where [ € N, one can show that

1 0 o )
(t,z,r) = (27)? /ddk/ dw e_Wt“k'xe%WTQTA*M(dJmb+, —iwr?) (3.5.54)
—0o0

s N L —ima_
s [ﬁﬁk— e b0y, )y L TR0

Similarly to the far future of the sources the same can be done but in the lower half-
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oo
- (2 )d/ddk/ dw e witikxo—giwr® A Nf(q b, iwr?) (3.5.55)
7r 0

(<is) * (@4 Do )™

X lﬁsz — B — b0y (w, k) I

Now let us turn to the matching with Euclidean caps. On the Euclidean segments the
mode solutions are obtained by replacing ¢t = —ir. Since there are no sources on the
Euclidean boundaries, the solutions consist of only normalizable modes. Therefore

Op(r,z, 1) = /dwdk dfke:FWHk'xrA*e%“’T?M(ZLJﬂ by, —iwr?) (3.5.56)

(2m)"

with coefficients dfk which are determined by matching conditions. Finiteness as 7 —
oo implies that d_, = 0 (for w > 0), while finiteness as 7 — —oo implies d, = 0 (for
w > 0).

Consider for instance the in-out correlator shown in Figure 3.2.1. The matching condi-

tions are given by

—T,l‘,’l“) ‘I)l(t:T,:E,T) :(1)2(7_2 :O,l',’l")

(I)O(TO = O,LL',T‘) = (I)l(t =
O (t=-T,z,7) OP1(t=T,2,7) =10, P2(m2 =0,2,7)

iaTq)o(To = 0,$, T‘) = 3t

where the Euclidean propagators are

1 0 , .

o(T,2,7) = oy / dk / dw d_, e RXp A 3 M (ay by, —iwr?) (3.5.57)
7T —0o0
]. o0 ik A 1. .2 2

Qo (7,2,7) = ) /dk/ dw df, e THRXp 4 02 MGy, by, —iwr?).  (3.5.58)
T 0

The matching conditions, combined with with the symmetry constraint 8¢, = g*_, give
the following constraints:

Bk — B = 90 o R i) BT e () < ) 3559

: I'(ap)T ) .
dfy = BWT(—W)W (d(0)(—w, k)e™" ™ — o) (w, k)e™"™~)  (3.5.60)
dyp =0 (3.5.61)

which is insufficient to fix the ambiguity in the normalizable modes. Note that this is
only three constraints from four equations as one of the future matching conditions is
degenerate. This is not surprising since any further constraints on d;, would constrain

the form of the source term ¢g)(w, k).
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3.6 Conclusions

In this chapter we have studied real-time correlators for holographic models of theories
which possess either Lifshitz or Schrédinger symmetries. We started by reviewing a toy
free scalar model with a z = 2 Lifshitz symmetry and demonstrated that the usual prop-
agators and consequentially correlation functions were calculable in the framework of
real time QFT.

We then investigated the related case of a probe scalar operator in a holographic model
with dual z = 2 Lifshitz symmetry where we were unable to fully fix the ambiguity in
the normalizable modes by applying the standard matching conditions from the real
time holography prescription of [20]. Due to the presence of a branch cut in the prop-
agator we were only able to use the matching conditions to fix the discontinuity of the
normalizable modes across the branch cut. It is unclear what additional constraints are
required to fully fix this ambiguity, or what the dual interpretation of this residual am-
biguity is in the field theory.

In the Schrodinger case we specialised to operators with a fixed = momentum and
found that their functional form is fully fixed by the K~ special conformal symmetry.
This could be seen in the holographic case where the field equation dual to a probe scalar
operator of fixed 2~ momentum was exactly the same equation arising in AdSp3 with
a mass shifted by the x~ momentum and the deformation parameter b. The position
space propagator, and consequentially the correlation functions, were simple to calcu-
late via the standard prescription and gave the usual ic insertions used when analytically
continuing from the Euclidean propagators.

We then attempted to repeat the holographic calculation but using the extended Sch-
rodinger spacetime coordinates of [96] which aim to resolve the coordinate singular-
ity present in the Schrédinger metric. The resulting propagator did not have the de-
sirable features of the propagator found in the AdSp43 case, and was not readily in-
vertible back to position space. It was also unclear what regularity conditions should
be applied to limit the available selection of modes, since we were able to reduce to a
countable number of normalizable contributions but an uncountable number of non-
normalizable modes. From this we must conclude that these extended coordinates are

unsuitable for the purposes of real time holography.

It is surprising that the propagator has a form similar to that found in the Lifshitz case
considering that the functional form should be fixed by the special conformal symmetry.
This is likely due to the fact that the Schrédinger symmetry group, including the special
conformal transformation, is realised non-trivially in these coordinates, though we have
not confirmed this here. It would be interesting to confirm whether this is the case, and
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what implications this may have on the Lifshitz propagator.



CHAPTER 4

The holographic F-theorem

In a three-dimensional quantum field theory, the F quantity is defined in terms of the
renormalized partition function of the theory on a three-sphere Zgs as

F = —log Zgs; (4.0.1)

F gives the free energy on the three-sphere. The conjectured F-theorem [99, 100] states
that F' is positive in a unitary quantum field theory; F' is stationary at a fixed point;
Fyy > Fig for UV and IR fixed points and F' decreases monotonically along an RG
flow. Evidence in favour of the F theorem has been presented in a number of works.
In [99] it was shown in a number of ' = 2 theories that Fir < Fyy; examples included
holographic theories described by AdS, x Y7 M theory solutions in which the partition
function is [101]
276

27Vol(Y7)

Njw

F=N (4.0.2)

where Vol(Y7) is the volume of the Sasaki-Einstein manifold Y7 and N is the number of
colours in the dual theory.

Many subsequent papers have provided additional evidence that Frr < Fyy in holo-
graphic and field theory models. For example, [100] considered relevant double trace
deformations: given a single trace operator ® in a CFT of dimension A_ such that 1/2 <
A_ < 3/2, deforming the CFT by ®?2 causes an RG flow to an IR fixed point where ® has

119
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dimension A} =3 — A_.

The evidence for stationarity and monotonic decrease of the F quantity along an RG flow
is somewhat weaker. Arguments for stationarity are based on the fact that F is extrem-
ised with respect to the R charges of an IR CFT [102] and (holographically) with respect
to the parameters of the Sasaki-Einstein manifold Y7 [103, 99]. For monotonic decrease,
it was shown in [100] that the free energy decreases monotonically along weakly rele-
vant flows, while [104] argued that the volume of the compact manifold should increase
monotonically along an RG flow in holographic examples, implying monotonic decrease
of F. In [105] it was shown that F decreases along certain supersymmetric RG flows of
deformations of the ABJM theory.

In a conformal field theory, the partition function on the three sphere is related to the
(finite terms) in the entanglement entropy for a disk region in flat space by the Casini-
Huerta-Myers map [106]. If the finite contribution to the entanglement entropy of a disk
region in the ground state of the CFT is

S = —2rF, (4.0.3)

then F corresponds precisely to the F quantity, i.e. F is conjectured to be positive and to
decrease monotonically along an RG flow. The F theorem has hence also been explored
using entanglement entropy, see for example [107, 45, 108]. Ambiguities in defining the
finite contributions can be dealt with by working with the UV finite mutual informa-
tion [109] or by using renormalized entanglement entropy [110, 111]. There is however
evidence that the renormalized entanglement entropy thus defined is not stationary at
a fixed point [112].

In this chapter we show that the F quantity does not decrease for holographic RG flows
associated with deformations by single trace operators of dimension d/2 < A} < d.
Therefore the strong version of the F theorem, decrease of F under all relevant defor-
mations, is false.

4.1 Holographic RG flows

We begin by discussing holographic realisations of RG flows on curved manifolds. We
work in Euclidean signature with a bulk action

1 1
e =15, / d'z /g <R — 5 (00)° + V(<f>)> : 4.11)

where G4 is the Newton constant, which in a top-down holographic model is related

to the number of colours as 1/G4 ~ N3/2, as in (4.0.2). We consider solutions of the
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equations of motion such that
ds? = dw? + 62A(w)d85223 (4.1.2)

where Q3 is a homogeneous space with Ricci scalar R and the scalar field ¢ depends
only on the radial coordinate w. We will be interested in the case of a unit radius three

sphere for which R = 6. The equations of motion are then given by:

¢+ 340 = -V'(¢); (4.1.3)
R _2A ]. -2 N
AR (O

These equations reduce to the case of flat domain walls when R = 0.

4.1.1 Renormalization of action

We work perturbatively in the scalar field and assume that the potential has the follow-

ing analytic expansion in ¢ around an AdS background:
1
V(g) =6 oM + - (4.1.4)

In what follows we solve the field equations to quadratic order in ¢, taking into account
the backreaction onto the metric to this order. In anti-de Sitter the warp factor is:

A(w) = Ag(w) = log(sinh(w)). (4.1.5)

Working to quadratic order in the scalar field, the change in the warp factor is quadratic
in the scalar field, and therefore to the order required the scalar field equation is that in
AdS, ie.

é + 3 cothwd = M?o. 4.16)

This equation can be solved exactly (see below) and asymptotically near the conformal
boundary. The latter can be expressed as

¢ =BG + el BTG o) e B TR TG o (417)
where 33— A4) 3A40
== _7—"_ 5 = +7(0)
°0 = A0 Y@ T Ga, — 1y (4.1.8)

Here we implicitly assume that A, is neither 3/2 nor 5/2, since in these cases terms
proportional to w arise in the expansion. (These cases can be straightforwardly analysed

but we do not include details in what follows.)

One can then use the other equation of motion to solve for the warp factor up to quad-
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ratic order in the scalar field. Letting

then
2

a——5—
sinh® w

a= —%g{b?. (4.1.10)

The on-shell action is divergent for asymptotically locally AdS solutions, but the diver-
gences may be removed by using the asymptotic solutions of the field equations to regu-
late the bulk action and adding appropriate covariant countertermsi.e. the renormalized
action [78].

Len = I + Lot (4.1.11)

is finite. The AdS/CFT dictionary implies that the F quantity is calculated from the renor-

malized action in the limit in which the dual theory is well-described by supergravity.

Working to quadratic order in the scalar field ¢ the required counterterms to render the

action finite are [78]

_ 1
- 871Gy

(A4 —3)

I L/
! 16(2A4 — 5)

1 1
/d%\/ﬁ (—K +2+ SR+ 1(3 — AL+ Rh¢2> (4.1.12)
where Ry, is the Ricci scalar for the boundary metric h. We define A in terms of the
mass as
3

1
Ap =5+ 5Vo+4M2 (4.1.13)

and we assume that % < Ay < 3. For Ay > 5/2, Ay is the dimension of the operator
dual to the scalar field of mass M2. In the mass range

9 )
_ <M<t 4114
4~ - 4 ( )

two quantizations are possible [16]; we will discuss this situation below. In (4.1.12) we
do not include counterterms which depend on derivatives of the scalar field (see [78])),
since the scalar fields under consideration are homogeneous.

Note that the last counterterm in (4.1.12) is only required for Ay > 5/2. The corre-
sponding divergence becomes logarithmic at Ay = 5/2 and in this case the value of
the renormalized action can be adjusted by finite counterterms, so the F quantity is in-
herently scheme dependent. Correspondingly F is also scheme dependent for the A_
quantization of the same mass, i.e. A_ = 1/2. No finite counterterms arise for other
values of A} in the range of interest, although working to cubic order in the scalar field
finite counterterms would arise at integral values of A ; these can be fixed by requiring
supersymmetry [105].
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In the mass range —9/4 < M? < —5/4, two quantizations are possible:

Al = g 4 /91 AN (4.1.15)

with 1/2 < A_ < 3/2and 3/2 < A; < 5/2. As discussed in [18], the evaluation of
the renormalized action by adding covariant counterterms is not affected by whether
the dual operator has dimension A} or A_. The difference arises in the identification
of the functional that generates correlation functions for the dual operator. For the A
quantization, the coefficient ¢y in (4.1.7) acts as the source for the dual operator. The
renormalized action (4.1.11) is a functional of this coefficient and acts as the generating
functional for the dual operator.

For the A_ quantization, the renormalized action (4.1.11) is still a functional of the coef-
ficient ¢(g) in (4.1.7) but this coefficient is not the operator source. As discussed in [18],
following [16, 17], the correct generating functional is obtained by a Legendre transfor-
mation. Let us define the Legendre transformation as

f[¢(0)’ 1/}(0)] = Iren[¢((])] + /d3$1 /g(o)gf)(o)w(o) (4116)

where g ) is the boundary metric. Then extremising gives

Len[¥(0)] = 1¢{0) (¥0)): (o)) (4.1.17)
where SLeoslo)
ren [¥(0)
— | t+Y%0 =0 (4.1.18)
5¢)(0) o) ©

defines o) (¥(0)). Here Lien [¥(0] is identified as the renormalized generating functional

of correlation functions of the operator of dimension A_.

In the case at hand, we work perturbatively in the scalar field and thus the on-shell

renormalized action necessarily has the form
Lien[9(0)] = (To + I29p) + ), (4.1.19)

where Iy and I are numerical coefficients. (Recall that ¢y is homogeneous and there-
fore does not depend on the sphere coordinates.) The Legendre transformed action is
then given by

0), Vo)) = (o + Loy + ) + ¢(0) ¥ (0) (4.1.20)

where we denote

\P(O) = /(13.2:’1 /g(0)¢(0). (4.1.21)
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Extremising, we obtain
2I¢(0) + V(o) = 0 (4.122)
and hence

L 2

jren[‘ll(o)] = IO - IQQZ)%O) +-= IO - quj(o) + - (4123)

Inthe A quantization, ¢g) acts as the source for the dual operator and therefore (4.1.19)
gives the free energy to quadratic order in the source. In the A_ quantization, ¥ g acts
as the source for the dual operator and (4.1.23) gives the free energy to quadratic order in
the source. The quadratic terms have different signs in the two quantizations: if I > 0
the free energy on the S? increases for deformations by the A quantization operator
and decreases for deformations by the A_ quantization operator, and vice versa. For
M? = —9/4, the two quantizations coincide; note however that one needs to treat this

case separately, as the above formulae degenerate.

4.2 Evaluation of free energy

Having determined the renormalized free energy functional we now consider exact reg-
ular solutions of the field equations, to quadratic order in the scalar field. To the required
order we can solve the scalar field equation in the anti-de Sitter background. The scalar

field solution may be found analytically:

- U — DE202(7 4 1)A+/2 4.2.1)
o 2\/§F(3—A+)( ) ( )
1 35 1
[F(3—A+)2F1 31375 —A+72(1—U)>
U—1\2+"2 13 11
- (U—i—l) [(A4)2F <—2, 27A+ 272(1—U)>
U= — =cothw

where | F5(a, b; c; z) is the regularised hypergeometric function, and we have imposed
regularity throughout the bulk and have chosen the overall normalisation of the solution

to agree with the definition of ¢ given in (4.1.7).

To calculate the free energy for the RG flow, we need to solve numerically for the warp
factor and thus for the renormalized on-shell action. To carry out the numerics we
work with a compactified radial coordinate u = tanh w for all the calculations. Plotted
in Figures 4.2.1-4.2.2 is the change in the free energy normalised by the scalar source
and the Newton constant: we define 0 F" as

m

OF = F(d0)) = F(0) = Fl60) = 55 (4.2.2)
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Figure 4.2.1: The change in the renormalized free energy for § < A < 5.
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Figure 4.2.2: The change in the renormalized free energy for 2 < A < 3.
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where implicitly we use the appropriate source for A < 3/2.

The change in the free energy vanishes to quadratic order in the source for A = 3/2 and
for exactly marginal operators. The change in the free energy is however positive for
3/2 < A < 5/2, with the corresponding change in the free energy for 1/2 < A < 3/2
therefore being negative, in agreement with the arguments above.

We should note that a related sign change at A = 3/2 was found in [113]. This paper
calculated one point functions of the deformation operator under relevant deforma-
tions, both holographically and using conformal perturbation theory. The sign of this
one point function, which is related to the sign of § F' found above, indeed changes at
A=d)2.

Thus, to summarise, working quadratically in the operator source, deformations by op-
erators of dimensions 3/2 < A < 5/2 lead to increases in the F quantity. Note that we
have worked only to quadratic order and changes in the F quantity to higher order in

the source would depend on the interactions in the theory.

The F theorem would be satisfied in a holographic theory which contains no operators
of dimensions 3/2 < A < 5/2, but generically such operators do exist. In particular, it is
well-known that in four-dimensional N' = 8 gauged supergravity there are 35 A_ =1
scalar operators and 35 A, = 2 pseudoscalars corresponding to the seventy scalars with
M? = —2,i.e. both quantizations arise [114]. (The pseudoscalar nature of the A ; quanti-
zation does not affect the arguments given here.) However, for the supersymmetric RG
flows in consistent truncations of A" = 8 analysed in [105] the F quantity does decrease:
in this setup supersymmetry does not allow a single real scalar (in the Euclidean) corre-
sponding to a A} = 2 operator to be switched on. A complete proof of the F theorem
would effectively restrict the allowed holographic theories, i.e. it would throw theories

such as those considered here into the swampland.

Now let us return to the relationship between the F quantity and the entanglement en-
tropy of a disk entangling region. One can use holographic renormalization techniques
to define renormalized entanglement entropy [2]. The renormalized entanglement en-
tropy of disk regions in theories deformed by relevant operators agrees with the be-
haviour of the F quantity found above: F increases for RG flows by operators of dimen-
sion 3/2 < A < 5/2 (see also [115]).

Our results do not contradict [103, 99]: these works showed that F is extremal within
the parameter spaces of putative conformal field theories. In the holographic setups,
an AdS, factor is assumed and the volume of the compactifying Sasaki-Einstein is ex-

tremised. This analysis does not imply that F' is decreased under relevant deformations
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which change the geometry away from AdSy. The scalar field ¢ and the change in the
warp factor a do not decrease monotonically along the flow but this does not in itself
contradict the arguments of [104]. From a top-down perspective scalar fields in four-
dimensional gauged supergravity theories arise not just from breathing modes of the
compact manifold, but also from the four-form flux in eleven dimensions.

In two dimensions one defines the Zamolodchikov c-function ¢(g;, 1) in terms of the
coupling constants g; and the energy scale u. Here implicitly we have defined F as a
renormalized quantity, dependent on UV data for coupling constants of the relevant
operators. It would be interesting to explore whether one could sharply define an F
function with explicit dependence on the energy (i.e. radial) scale holographically. One
natural way to do this would be to rewrite the source ¢ ) in terms of the bulk scalar field

¢(w), and interpret w as the energy scale.

Finally, there has been considerable recent interest in how much supersymmetry is re-

quired to determine uniquely partition functions on even-dimensional spheres [116].
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CHAPTER B

Renormalized holographic entanglement entropy

5.1 Introduction

In recent years there has been considerable interest in entanglement entropy and its
holographic implementation, following the proposal of [41] that entanglement entropy
can be computed from the area of a bulk minimal surface homologous to a boundary
entangling region. This proposal was proved for spherical entangling regions in confor-
mal field theories in [106] and arguments supporting the Ryu-Takayanagi prescription
based on generalised entropy were given in [44]. Entanglement entropy has by now
been computed in a wide range of holographic systems, see the review [117]. General
properties of holographic entanglement entropy are reviewed in [118].

Entanglement entropy is a UV divergent quantity, with the leading UV divergences scal-
ing with the area of the boundary of the entangling region. For a quantum field theory
in D spatial dimensions, the boundary of the entangling region is (D — 1)-dimensional
and thus S ~ AP~1Ap_; where A is the UV cutoff and Ap_; is the area of the boundary

of the entangling region.

If one is interested in the entanglement entropy of a discrete system, in which there is
a natural UV cutoff set by, for example, the lattice scale, then it may be natural to work
with this “bare” entanglement entropy. If however one is interested in entanglement

entropy in a quantum field theory context, then it natural to explore whether and how
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entanglement entropy can be renormalized.

Finite terms in the entanglement entropy are used in a number of contexts. Firstly, they
arise as order parameters for phase transitions, see the pioneering works [119, 86]. Finite
terms in the entanglement entropy for disk regions in three dimensional conformal field
theories are also related by conformal transformations [106] to the free energy on a three

sphere, which is the quantity appearing in the proposed F theorem [99].

As we will review in Section 5.2, in previous works the finite terms in the entanglement
entropy have been isolated using differentiation of the entanglement entropy with re-
spect to geometric parameters characterising the entangling region. Such procedures
can be implemented in a simple way, both holographically and in field theory calcula-
tions, but they have several disadvantages. The differentiation prescriptions depend on
the specific geometry of the entangling region, and thus it is hard to implement such
renormalization in situations where the shape of the entangling region is itself being
varied. Renormalization by differentiation is furthermore not directly related to the
renormalization procedures used for other quantum field theory quantities. Thus, in
particular, it is hard to understand issues such as the scheme dependence of the finite

answer.

In this chapter we will develop a systematic renormalization procedure for entangle-
ment entropy. We begin by setting up holographic renormalization for the Ryu-Takayanagi
entanglement entropy functional. Since the entanglement entropy is described by the
area of a minimal surface homologous to the boundary entangling region, the UV di-
vergences of the entanglement entropy are in direct correspondence with the area di-
vergences of this minimal surface. Following the holographic renormalization methods
of [15, 120, 78] one can identify covariant counterterms on the conformal boundary of

the minimal surface which renormalize the area of the minimal surface.

In Section 5.3 we derive the renormalized Ryu-Takayanagi functional for static entan-
gling surfaces in AdS spacetimes. Assuming flat spatial slices of the background for the
dual quantum field theory (i.e. a Poincaré representation of AdSp,2) the renormalized
functional takes the form

1
Sren = / dPo® (5.1.1)
4G pia Jx VI

1 1 1
_ dP-14./7 ( + IC2-~> ,
4G py2 /82 s D—-1 2(D-1)*D-3)

Here ¥ is the entangling surface,with induced metric v, and 0¥ is its boundary, with

induced metric 4. The extrinsic curvature K refers to the extrinsic curvature of 9% em-
bedded into a spatial slice of the boundary of the bulk manifold. The first counterterm
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becomes logarithmic for D = 1. Only the first counterterm given above is needed for
gravity in four bulk dimensions (D = 2). The second counterterm becomes logarithmic
at D = 3 and is needed in the form given above for D > 3. Additional counterterms
involving higher order curvature invariants are needed for D > 5. The counterterms
for entangling surfaces in general asymptotically locally AdS spacetimes can be found
in Section 5.5.

We then show that the renormalized entanglement entropy for a disk region in a three
dimensional conformal field theory dual to AdS, is in precise agreement with the holo-
graphically renormalized Euclidean action for AdS, with spherical slicing, i.e. the CHM

map [106] holds at the level of renormalized quantities.

In Section 5.4 we consider holographic RG flows in four bulk dimensions which respect
Poincaré invariance of the dual theory. For flows driven by a single scalar we compute
the renormalized Ryu-Takayanagi functional, expressing the counterterms in terms of

the superpotential associated with the flow.

We then use the renormalized entanglement entropy to explore the change in the F
quantity along RG flows. In particular, we consider a disk entangling region and cal-
culate the change the renormalized entanglement entropy (and hence F quantity) per-
turbatively in the source of the relevant deformation, ¢ . For operators of dimension
3/2 < Ay < 3 we find that

™

_ 2 pP23-AL) 3
5ien = 153n, —ig; A0 S+ O (¢%)) (5.1.2)

where R is the radius of the disk entangling region while §S;en, = 0 for exactly marginal
operators. This quantity is clearly negative for Ay < 5/2 which, since §S,en = —dF,
corresponds to an increase in the F quantity. We should note however that the corre-
sponding deformations on the three sphere are inhomogeneous and do not therefore
correspond to RG flows which respect the SO(4) invariance. Direct calculation of the
F quantity for SO(4) invariant RG flows on S? driven by such operators also gives an
increase in the F quantity to quadratic order in the source, see Chapter 4. It would be
interesting to understand whether such flows are unphysical or if the strong version of

the proposed F theorem is indeed violated.

In Section 5.5 we show that the holographically renormalized entanglement entropy can
be obtained from the holographically renormalized action. Using the replica trick, the
entropy associated with a density matrix p is expressed as

S = —ndyllog Z(n) —nlog Z(1)],_, (5.1.3)

where Z(n) = Tr(p") and Z(1) = Tr(p) is the usual partition function. If we are inter-
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ested in the entropy of a thermal state, then Z(n) is constructed by extending the period
of the thermal circle by a factor of n. In the case of entanglement entropy, Z(n) is con-
structed by extending the period of the circle around the boundary of the entangling
region by a factor of n, where implicitly n is an integer. Assuming that the resulting ex-

pression is analytic in n, one can obtain the entropy by analytically continuing to n = 1.

Holographically Z(n) can be computed in terms of the on-shell Euclidean action [44] as
S =nop[I(n) —nI(1)],_,. (5.1.4)

Here I(1) represents the on-shell Euclidean action for the bulk geometry while I(n) rep-
resents the on-shell Euclidean action for the replica bulk geometry. For a thermal state,
the bulk geometry associated with Z(1) is a black hole and the replica is constructed by
extending the period of the thermal circle by a factor of n. For the entanglement en-
tropy, the bulk geometry associated with Z(1) corresponds to the usual bulk dual of the
given state in the field theory and the replica is constructed by extending the period of
the circle around the entangling region boundary by a factor of n. Following the same
logic as in Lewkowycz-Maldacena [44], the expression (5.1.4) localises on the minimal
surface corresponding to the extension of the boundary of the entangling region into
the bulk. However, the entangling surface itself has area divergences, unlike the black

hole setup analysed in detail in [44].

In Section 5.5 we show that the renormalized entanglement entropy can be expressed

in terms of the renormalized on-shell action i.e.
Sren = 10 [Lren(n) — nlren(1)],—1 - (5.1.5)

In particular, using the standard counterterms for asymptotically locally AdS space-
times [78], together with results on the curvature invariants of the replica space [121, 122],
one obtains exactly the same S;en as computed directly via area renormalization. Thus,
the renormalization scheme for the entanglement entropy is inherited directly from the

renormalization scheme used for the partition function.

This result provides evidence for the applicability of the replica trick in the holographic
context. Note that the derivation of the entanglement entropy functional from the Eu-
clidean action functional requires only the local geometry of the replica; any potential
anomalies in the replica symmetry do not affect the derivation. The holographic renor-
malization counterterms for higher derivative gravity theories such as Gauss-Bonnet
also imply counterterms for the entanglement entropy, as we discuss at the end of Sec-
tion 5.5.

The plan of this chapter is as follows. In Section 5.2 we review the renormalization of
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entanglement entropy by differentiation. In Section 5.3 we setup area renormalization
for entangling surfaces in AdS spacetimes, and show that the renormalized entangle-
ment entropy for disk regions in AdS, indeed agrees with the F quantity. In Section 5.4
we consider entanglement entropy for RG flows while in Section 5.5 we show how the
renormalized entanglement entropy can be obtained from the renormalized action via

the replica trick. We conclude in Section 5.6.

5.2 Renormalization by differentiation

In previous works, the finite terms in the entanglement entropy have been isolated by
differentiation of the entanglement entropy. In the case of a strip of width R, UV di-
vergent contributions to the entanglement entropy in a local quantum field theory are
necessarily independent of R and therefore

oS

Sp=Ron (5.2.1)

is finite. This expression has been used in a number of earlier works, including [123, 124,
125].

For a spherical entangling region, the radius of the sphere controls the local curvature of
the boundary of the entangling region and therefore it is no longer true that UV diver-
gences are independent of the scale of the entangling region. In [110] it was noted that

the following quantity
oS
F =— — 522
(R) = =S(R) + Ry 522)
is manifestly finite in any 3d field theory which has a UV fixed point. (Analogous expres-
sions for general dimensions were given in [110].) In particular, for a three-dimensional

CFT the regulated entanglement entropy for a disc entangling region is

a_lR
0

Sreg = + ag (5.2.3)
where § < 11is the UV cutoff and (ag, a_1) are constants. Then by construction

F(R) = —ay. (5.2.4)

For theories with a holographic dual one can show (see Section 5.3) that

T R
Ses = 56 (5 - 1) (5.2.5)
and therefore
F(R) = —. (5.2.6)

2Gy
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The normalisation of (5.2.2) is chosen so that the latter indeed agrees with the F quantity.

The renormalized entanglement entropy defined by (5.2.2) has both positive and nega-
tive features. On the positive side, there is evidence that F'(R) behaves monotonically
as a function of R in free field theory and holographic examples [108, 111]. Also by con-
struction oF 26

35~ Bome (5.2.7)
and strong subadditivity of the entanglement entropy implies that in any Poincaré in-
variant field theory 925 /0 R? < 0 [45], so F(R) is a non-increasing function of the radius

R.

Let us suppose we deform a conformal field theory by an operator O of dimension
A <3
Icrr — Iopr + /dgsc\/ﬁ)\OA. (5.2.8)

The dimension of A is then (3 — A); the coupling provides another dimensionful scale
and it is no longer the case that (5.2.3) are the only divergences. There are in general
additional divergences which are analytic in the deformation parameter A and hence for
a disk region the change in the entanglement entropy under the relevant deformation is
2 3

0Sreg = a5—2A5A>\_§/2 + as-m(si\_f/:s + - (5.2.9)
where the coefficients a,, are dimensionless. Hence for A > 5/2 the relevant defor-
mation generates additional UV divergences in the entanglement entropy; additional
divergences arise for A > 3 — 1/n where n € N. The form of this expression follows
from conformal perturbation theory; in particular the term linear in A vanishes, while
all divergences scale extensively with the length of the boundary of the entangling re-
gion. By construction F'(R) is finite for all such deformations although it is not a priori

clear that F/(R) agrees with the F quantity.

On the negative side, there is evidence that F/(R) is not stationary at a UV fixed point [112].
Consider perturbations of a two-dimensional CFT by a slightly relevant operator of di-

mension 2 — da. Then Zamoldchikov's c-function behaves as
c(g) = cuv — g°0a + O(g?) (5.2.10)

where g is the renormalized coupling. For a theory with several coupling constants

Oc ~
— =G 211
ag Gi; B (5.2.11)

where Gj; is the Zamolodchikov metric and 7 = u%i: are the beta functions. Then non-
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t = const.

0¥ ~ 0A

p=0 B QFT4

(A)AdSy1

Figure 5.3.1: The entangling surface embedded into the bulk manifold.

singularity of the Zamolodchikov metric guarantees the stationarity of the ¢ function in
two dimensions. In [112] it was shown that the proposed F(R) is not stationary in this

sense at the UV fixed point in free massive scalar field theory examples.

Another drawback of the definition of the renormalized entanglement entropy (5.2.2) is
that the definition is only applicable to disk entangling regions, or to regions which are
characterised by one overall scale. This drawback is not an issue for applications to the
F theorem, for which only disk regions are needed, but prevents using (5.2.2) to explore

the general shape dependence of entanglement entropy.

The renormalization that we propose in this chapter by contrast is inherited directly
from the renormalization of the partition function, making scheme dependence and
the relation to the F quantity manifest, and is applicable to any shape entangling region.
Moreover, our renormalization is applicable in theories which are not conformal in the
Uv.

5.3 Renormalized entanglement entropy in anti-de Sitter

In this section we will define the renormalized area of (static) entangling surfaces in

anti-de Sitter. We parameterise the AdS;;; metric as

dp? 1
ds? = ﬁ + ;nuudx“dx” (5.3.1)

where p — 0 corresponds to the conformal boundary and 7,,, is the Minkowski metric.
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t = const.

(AAdS,41

Figure 5.3.2: The cutoff entangling surface.

The Ryu-Takayanagi function for the entanglement entropy is the area functional for a

codimension two surface: .

S = / dP o (5.3.2)
4Gd+1 b ﬁ

where G441 denotes the Newton constant (with the number of spatial dimensions in the

field theory being D = (d—1)) and vy is the determinant of the induced metric on the sur-
face. Throughout this section we work in a static setup, in which the entangling surface
is independent of time. To find the bulk minimal surface ¥, we solve the equations of
motion following from (5.3.2), subject to boundary conditions which define the entan-
gling region in the dual field theory. In particular, as shown in Figure 5.3.1, the minimal
surface ¥ has a conformal boundary 9% as p — 0 which is conformal to the boundary

0A of the entangling region A in the dual field theory.

When one evaluates the on-shell value of the functional (5.3.2), it has area divergences
which may conveniently be regulated by setting p = ¢, see Figure 5.3.2. Let us denote
the bulk manifold as M and the regulated conformal boundary at p = € as 9 M.. Since
the entangling surface itself is asymptotically locally hyperbolic, the regulated functional

(5.3.2) diverges as

A
Sreg ~ d‘i“i 4. (5.3.3)
€2

where Ap4 is the area of the (d — 2)-dimensional boundary of the entangling region 0 A.

Following the principles of [15, 120, 78] we can now define a renormalized functional
Sten as
Sren = lim (Sreg + Sct) (534)
e—0
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where the counterterm action S is defined in terms of covariant properties of the
boundary of the minimal surface and of the cutoff surface. Let the induced metric on
the cutoff surface be h,, and the metric on the boundary of the minimal surface be
Yap- Let us further denote the Ricci scalar of the boundary of the minimal surface as R,
with the corresponding Ricci tensor being R ;. Similarly we denote the extrinsic curva-
ture of the minimal surface embedded into the cutoff surface as K, with trace K. Then

counterterms must be expressible as
Sep = / AP~z /3L (/c, R, Ray R, Kk - ) : (5.3.5)
o%

i.e. as a functional of extrinsic and intrinsic curvature invariants. In our setup there are
three extrinsic curvatures arising from the following three different embeddings: the
embedding of ¥, in M., the embedding of 0. in ¥, and the embedding of 9%, in OM..
We should emphasise that it is the final one which is relevant for the counterterms, as

the first two are not intrinsic to the regulated boundary.

There is a further restriction on the allowed counterterms. The entanglement entropy
of region A is the same as the entanglement entropy of the complementary region B.
If we require that the renormalized entanglement entropy satisfies the same property,
then the counterterms should only depend on even powers of the extrinsic curvature i,
since the extrinsic curvature of A is minus the extrinsic curvature of the complementary

region B.

Finally, we should note that the intrinsic and extrinsic curvature are related by Gauss-
Codazzi relations. Throughout this section we will be interested in the case in which the
background for the dual field theory is flat, in which case

R =K% — KK, (5.3.6)

with analogous Gauss-Codazzi relations holding between higher order scalar invariants

of the intrinsic and extrinsic curvature.

5.3.1 Explicit computation of counterterms

Let us now express the area functional as

1
S = / d / dP—1g2 (5.3.7)
4G ) VI

where V48 = gmn0ax™ 032", gmn is the metric on the AdS target space and =™ () de-
fines the embedding in terms of the worldvolume coordinates ¢®. We have implicitly

fixed a static gauge, in which the time coordinate ¢ is constant and p is one of the world-
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volume coordinates, i.e. ¢ = {p,0%}. The spatial coordinates z are then functions of p

and 0% and D represents the number of spatial directions in the boundary theory.

In such a gauge the induced metric on the minimal surface is

Yoo = 4? + ;x,px,p (5.3.8)
1. . o
TR
where we denote 2?, = 9,z and z!, = 0,«2". One can often (but not always) further

gauge fix, setting 2% = 0% and 2" = y(p, 2%), so that

1 1
Yop = 1 — + y,pyp (5.3.9)

1 1
Ypa = ;y,py,a Yab = ;(5ab + Y.alb),

reflecting the fact that a codimension one spatial minimal surface has only one trans-
verse direction. Note however that such gauge fixing cannot be used to describe min-
imal surfaces with cusps which are known to introduce additional logarithmic diver-
gences proportional to some convex function of the cusp angle [126, 127]. In this chapter
we will restrict to the case of surfaces without cusps.

The gauge fixed minimal surface action is given by

1 D—1 1 2 1/2
o)

D-1, a
4Gd+1/ /d D+1)/ m(p, %) (5.3.10)

where we have introduced the shorthand m(p, z%) = \/ L+ Yaya +4py3,.

S =

The regulated action is then of the form

_ 1 D1 1 L\ M2
Sreg - 4Gd+1 /Edp/d xT <4D+1(1 +y,ay,a +4py70)> (5311)

1
= dP-1y x) + logeb
o e ) )

where the explicit powers arising in the divergences and their coefficients (ay(x), bx(x))

are determined by analysing solutions to the minimal surface equations with the re-

quired boundary conditions asymptotically near the conformal boundary.

Note that the action does not depend explicitly on y and the minimal surface equation
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Is:

. Ya Yo
omo(2a) e (202), sarm

which should be solved near p = 0 subject to the boundary condition
lim y(p, ) = y(0) (=), (5.3.13)
p—0

where yg)(z*) specifies the entangling region in the dual geometry.

We wish to solve this equation iteratively for y(p,z?) as a series expansion in p. We

consider the following Taylor series expansions for y(p, %):

y(p, %) = y(o) () + Yy ()™ + yiay (@)p™ + ... (5.314)

where we assume that 0 < 1 < 2 < .... To solve the PDE we insert these expan-
sions into the minimal surface equation and set p = 0. We then fix 81 and y(g,) to solve
the resulting equation such that y ) remains unconstrained. We then differentiate the

minimal surface equation with respect to p and repeat to find fs.

After substituting the expansions into the minimal surface equation, one finds that the
leading order terms are p® and p#~!. To leave Y(0) unconstrained we must therefore set
51 = 1 and deduce that:

aay 0
Y1) () = 24/1 + Y(0).a¥%(0).a0a < i y(o() ly(o) a) ‘ (5.3.15)

To find higher terms in the asymptotic expansion we can use radial derivatives of the

minimal surface equations. Before carrying out this procedure, let us consider the reg-

ulated on-shell action (5.3.11) and determine the leading divergences, which are

= ! D-1 3-D
Sreg = 4D —1)Gysger @D /8E A 1+ Y(0),0%0)0 + O (6 2 ) (5.3.16)

for D > 1. As anticipated above, this divergence scales with the area A5 4 of the bound-

ary of the entangling region

Aga = / dD_1$1 /14 Y(0),a¥(0),a- (5.3.17)
ox

The case of D = 1, corresponding to a dual two-dimensional conformal field theory, is

degenerate. The divergence is logarithmic:

1
Sreg = @Ekyk loge (5.3.18)
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with yi, being the endpoints of the intervals defining the entangling region. The required

counterterm action is therefore
S L Yyl < (5.3.19)
= —— og | — 3.
ct 8G3 LYk 108 [ )

where (1 is an arbitrary renormalization scale.

5.3.2 Entangling surfaces in AdS,

For minimal surfaces in AdS, the only divergence in the on-shell functional is

1 1
Spop = —— / dz ( 1t o x) (53.20)
¢~ 4G, Jox 1 Y(0),2Y(0),

where the entangling region in the boundary is defined by a curve yg)(z) in two dimen-
sional space. Noting that the induced line element on the boundary of the entangling
surface is .

,Ygich = ;(1 + y,xy,w) (5.3.21
the divergence is manifestly removed by the covariant counterterm

1

= ——— 3, 3.22
Set e 8deﬁ (5.3.22)

where 7 is the determinant of the induced metric on 9X. This is the only possible diver-

gent counterterm but the following counterterm is finite:

Sep = 2 / da\/3K (5.3.23)
4 Jox

where K denotes the trace of the extrinsic curvature of the boundary of the minimal
surface embedded into the regulated cutoff surface. For a curve y(x, ¢) embedded into

the cutoff surface

1
ds? = = (—=dt* + da? + dy?) (5.3.24)

€

the trace of the extrinsic curvature is
K=e—Yor (5.3.25)

(1+9%):
and thus

N o L — | O ST (5.3.26)

which is indeed finite.
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Thus the complete renormalized action for the minimal surface is

1 1
Sren = —— / PoyA+ — | dzVA(ask —1). (5.3.27)
1, LYV g, | VA ( )

Note that terms depending on higher powers of the extrinsic curvature cannot con-
tribute in the limit ¢ — 0. The finite counterterm is however not consistent with the
requirement that the renormalized entropy for any region is equal to that of its comple-

ment, and we must therefore set a; = 0.

As an example, let us evaluate the renormalized action for a disk entangling region, of
radius R. The exact solution for the minimal surface is conveniently expressed in terms

of the following coordinates

dp> 1

ds? = -
4p? " p

(=dt* + dr? + r?d¢?) (5.3.28)
as the circularly symmetric surface at constant time:
r? +p= R (5.3.29)

The renormalized action for this surface is then

™

Sren = _27(;,4-

(5.3.30)
Note that this is independent of the choice of the radius R. Implicitly our Newton con-
stant has been fixed to be dimensionless, as we chose the anti-de Sitter metric to have
unit radius, absorbing the curvature radius into the overall prefactor of the bulk action.
To reinsert the AdS radius we need only rescale the bulk metric by ¢ and the covariant
counterterm by a further /. The result of these insertions is to simply rescale the results
for the entanglement entropy by ¢2:
A

ren — — 5 .3.31
S, e (5.3.31)

where the Newton constant Gy now has the standard dimensions. Since the dual field
theory is conformal there is no other scale apart from R and therefore S, which is

dimensionless, cannot depend explicitly on R.

Next we consider an entangling surface of two infinitely long parallel lines with sepa-
ration R. We will regulate the lines to have length L and by symmetry we may choose
these lines to lie in the z direction and to be located at y = j:%. The minimal surface

can be characterised by worldsheet coordinates (p, z) and by symmetry the transverse
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coordinate y depends only on p. The surface equations can be solved to obtain

R p3/2 137 p?
S e O SR 5.3.32
y(p) ( 2 + 3p02 1 254747p(2) ( )

We can also rewrite this hypergeometric function in terms of the incomplete beta func-
tion B,(a, b) using the identity

oF1(a,b; 14 b;2) = bz °B.(b,1 — a). (5.3.33)
The surface has a turning point at pg, where by symmetry y(pg) = 0, and hence

_ G/ e

—0 — o — (5.3.34)
y(ro) 07 4T (7/4)
The regularised holographic entanglement entropy is then given by
I po 2
Sreg = —— | dp——to (5.3.35)
*8Ga e TR - p?)
This integral is elliptic and can be calculated analytically using
a? — w? (5.3.36)

1 2
| o= e

o (f9)) (o (D)

where F(¢|k?) and E(¢|k?) are the incomplete elliptic integrals of the first and second
kind respectively.

The renormalized holographic entanglement entropy is:

V2r®T(7/4) L
3G4T(1/4)*1(5/4) R

ren —

(5.3.37)

Note that in the above calculation we have implicitly assumed that L > R and that there
are no contributions from the lines + = +L/2, —R/2 < y < R/2. To take the limit of

L — oo we can calculate the renormalized entropy density

(5.3.38)

Sren = lim
L—oo

<Sren>__ V2120(7/4)
L ) 3RG,(1/4)T(5/4)

Finally let us consider the half plane entangling region with a boundary at y = 0; again
we regulate the x direction to have length L. The bulk minimal surface has worldsheet

coordinates (p, x) and by symmetry y = 0 over the surface. The regularised holographic
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entanglement entropy is

L [>~d L
Sreg = oo / —f =— (5.3.39)
8GaJe p2 AGuer

and this term exactly cancels the counterterm giving
Sren =0 (5340)

which was to be expected since there is no other scale in the problem but L and the
dual theory is conformal.

The calculation of the renormalized area of a two-dimensional minimal surface in four
bulk dimensions has arisen in other contexts, including Wilson loops. In particular,
anomalies were discussed in [120] while the counterterm involving the regulated length
of the boundary of the surface was discussed in the context of Wilson loops in [126];
the counterterm was derived by requiring a well-defined variational principle. The re-
lation of holographic renormalization to variational principles for minimal surfaces was

discussed in detail in [128].

Minimal surfaces in hyperbolic spaces were also analysed in [129]: generalising [120], it
was noted that submanifold observables have conformal anomalies for specific codi-
mensions. In particular, the results of [129] imply that codimension two minimal sur-
faces in odd bulk dimensions have logarithmic divergences in their regulated volumes.
This is consistent with our D = 1 result above, and the D = 3 result we will give below.

According to the results of [129] the renormalized area of a codimension two minimal
surface in an even dimensional hyperbolic space should be a conformal invariant. This
is not however apparent from the above results: the renormalized entropy of the half
plane was found to be zero (5.3.40), while the renormalized entropy of the disk is finite
and negative. Yet, as is well known, one can find a conformal bijective map between the
disk and the half plane and therefore these entangling regions are conformally equiva-

lent. We will explore this issue further in the next section.

The renormalized entropy for the strip entangling region is negative. This is unsurpris-
ing: in [123, 124] the entanglement entropy for free scalars and fermions was calculated
for strip entangling regions and it was found that the entanglement entropy contains
finite terms of the form

Stinite = —k% (5.3.41)
where again L is the regulated length of the strip, R is its width (with L/R > 1) and k is
a positive constant, which takes the value of k = 0.039 for a real scalar and £ = 0.072 for
a Dirac fermion.
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5.3.2.1 Relation to F theorem

More generally, we should be unsurprised about finding negative values for the renor-
malized entanglement entropy. The conjectured F-theorem in three dimensions is the
following. For a three-dimensional CFT we define the F quantity in terms of the (renor-

malized) partition function of the theory on a three sphere [99], i.e.
F = —log Zgs (5.3.42)

and then the F theorem states that Fi;yy > Frr. More precisely, in [99] it was conjec-
tured that F is positive in a unitary CFT, that it decreases along any RG flow and that it is
stationary at fixed points. Support for the conjecture can be found in [99, 100, 107] and

many subsequent works.

In odd spacetime dimensions the finite terms in the entanglement entropy of a spherical
region
1
Stinite = (—1)2"Y2ra, (5.3.43)

are conjectured to satisfy the relation (aq);;,, > (aq); for any RG flows between fixed
points [130]. Indeed it has been shown that the sphere partition function and the sphere
entanglement entropy are proportional using the CHM map [106], thus establishing a
connection between the F theorem and monotonous running of the finite part of the

disk entanglement entropy. In three dimensions
F = 2mas (5.3.44)

and hence positivity of F is equivalent to negativity of the finite parts of the entanglement

entropy.

To understand the relation between (5.3.42) and (5.3.43) it is useful to recall the argu-
ments of CHM [106] in more detail. Let us parameterise the flat three-dimensional met-
ric in as

ds? = —dt? + dr? + r2d¢? (5.3.45)

Now consider the following change of coordinates

cosfsinh7/R
(1 + cos@cosht/R)’
sin 6

(1+ cos@coshT/R);

t=R (5.3.46)

r=R

so that the metric becomes

ds? = Q2 (= cos® 0dr* + R*(d6? + sin® 0d¢?)) (5.3.47)
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with conformal factor
Q= (1+4cosfcosht/R)"". (5.3.48)

One can clearly absorb the R dependence as an overall factor by introducing 7 = 7/R, so
that the metric is conformal to the static patch of de Sitter space. Since 0 < § < 7/2 the
new coordinates cover 0 < r < R, i.e. the disk of radius R in the original flat coordinates,
with § — 7/2 (the cosmological horizon) corresponding to » = R. The limits 7 — 400
correspond tot — + R and therefore the new coordinates cover the causal development
of the disk r < R fromt = 0.

Modular transformations inside the causal development act as time translations in de
Sitter space, and therefore the state in the de Sitter geometry is thermal with 5 = 27 R.
One can then identify the entanglement entropy for the disc of radius R in flat space
with the thermodynamic entropy of the thermal state in de Sitter space, which in turn
is given by

Sdesitter = —W (5.3.49)

where W = —log Z is the free energy of the partition function Z. This relation is the
origin of the above statement that the disc entanglement entropy is related to the par-
tition function on the sphere, since the analytic continuation of de Sitter is the three-

dimensional sphere.
The corresponding Euclidean transformations begin from the metric
ds? = dt%, + dr? + r?d¢? (5.3.50)

with the transformations being

e =G iocsoe:élr;gf 7/53) ; (5350
sin 0
" :R(l + COSHCOSTE/R);
so that the metric becomes
ds® = Q7 (cos® dr + R*(d6? + sin® 0d¢?)) (5.3.52)
with conformal factor
Q= (1+cosfcosTg/R) . (5.3.53)

In the transformed coordinates the Euclidean time 7 is periodic with period 27 R for
the sphere to be regular and 0 < 6 < 7/2.

Implicitly the finite parts of the partition function on the S? are computed by renormal-
ization; the CHM map thus relates the (renormalized) F quantity to the the corresponding
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renormalized entanglement entropy i.e.
F = —5Sen (5.3.54)

with F' being positive and decreasing along an RG flow. For the disk entangling region

we thus find holographically that

™

F=_——
2G,

(5.3.55)

which is indeed positive.

Let us now review the evaluation of the partition function on S? for a conformal field
theory with a holographic dual described by Einstein gravity. The renormalized partition
function is then calculated by evaluating the renormalized Euclidean action [78]:

1

_ 4 1 / 3 _R
I= e /d z/g(Ry + 6) + o~ d®zvh(1 ) (5.3.56)

where R, is the bulk Ricci scalar and R is the Ricci scalar for the boundary metric h. For

the AdS, geometry with spherical slicing
ds* = dp? + sinh? p dQ3 (5.3.57)

the renormalized on-shell action is then

s

I=—.
2G,

(5.3.58)
Comparing (5.3.58) with (5.3.55), the values indeed agree. Note that there is no ambigu-
ity in the holographically renormalized action (5.3.56): there are no candidate covari-
ant finite counterterms. We will explain further in Section 5.5 how the renormalization

schemes for the bulk action and for the entanglement entropy are related.

5.3.3 Renormalization for AdS in general dimensions

In this section we describe the holographic renormalization of the entanglement en-
tropy for AdS in general dimensions, noting the generic forms of possible counterterms,

anomalies, and finding the first two counterterms.

We begin by establishing the notational conventions we will use in this section. We
will take our bulk manifold M to be AdSp.2 and will work exclusively in coordinates in
which the metric takes the form

dp?

2 _ — 2 .
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where i, = 1,..., D are the boundary spatial directions. The entangling surface ¥ is a
codimension 2 surface of M satisfying the appropriate boundary conditions. We choose
the coordinates on ¥ to be (p, z*) wherea = 1,..., D — 1. The embedding of ¥ in M is
then given by:

XM= (p,t,zt, ..., 2P y(p, z%)) (5.3.60)

where t is a constant. This is an appropriate gauge whenever the boundary entangling

region specified by y(0, %) is smooth.

We regulate the bulk as M. by restricting p > ¢ > 0, and similarly define the regu-
lated entangling surface ¥, by the same restriction. The surface ¥ is a constant time
hypersurface of M.. The metric y,5 on ¥; is given by

1 1 2 1
ds3, = <4p2 + p?/,zp> dp® + ;y,py,adxa + ;(5@ + Yayp)dada’. (5.3.61)

In this gauge the regulated bare entanglement entropy is given by

_ 1 p-1 [ 1 2 . 2
St = JGps /azsd / o5 oz VLA, + v (5562

where summation is implicit for the a, b, . .. indices.

From the action one can find the equation of motion for y(p, %), as in the previous sec-
tion. Expanding the solution near the conformal boundary one finds:

. NONURNO
y(p,2") =y +yDp+0(?); YV = o |y - (5.3.63)
2(D — 1) 0

Note that this result agrees with the D = 2 case we considered above.

Inserting the asymptotic expansion into the regulated functional yields for AdS5 (D = 3)

1/2 (0), (1) (1)2
Sreg = 1/ Pa(l @) L Ve T (5.3.64)
4G5 0% ’ 2¢e 2(1+y(£) )

where the ellipses denote finite terms. Similarly for D > 3

_ (D=1 _(D=3) 2
Sreg = / 4Pty (ST v v
reg 4GD+2 o5, y,c D—-1 D — 3 1 " y(o)z e
b

(5.3.65)

where the ellipses denote subleading divergences and terms that are finite as ¢ — 0.

Our task is now to find counterterms which are integrals of covariant quantities defined
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on 0%, i.e. scalars constructed from the intrinsic and extrinsic curvature tensors. The

induced metric on 0%, 44 is given by

1
ds,% = —(0ap + y7ay7b)da:admb (5.3.66)
€
which has determinant
~ ~ _D=1 2
¥=det(Yap) =€ 2 (1+y3,) (5.3.67)

by Sylvester’s determinant theorem.

Using the asymptotic expansion we can expand the volume form to first subleading or-

derin € as:
(0), (0)

= _D-1 2,1/2 )
Vi=e T (14407 1+5’l’7(’g)2+... : (5.3.68)
1+ye

On dimensional grounds we can show that all curvature scalars will be at least O(c'/?)
and so we can uniquely identify the leading divergence in S, as coming from the area
divergence, as expected. Our first counterterm is therefore

1 1
S 1= — - dP 1z /~ 5.3.69
R crry e /8 LA (5.3.69)

which is again consistent with our previously found AdSs (D = 2) result.

We now need to find the counterterms for the subleading divergences. Let us consider

first the case of D = 3. Using integration by parts we can rewrite:

0), (1) (1)2
a1y YAvA [ gp, W (5.3.70)
o5 02,1/ o%. 02,1/
1+yes ) 1+ye )
and hence for D = 3

1 y(l)2
Sreg + Set1 = —/ d2xﬂ72 lne+... (5.3.71)

8G's Jox. 1+ y(o)

,C

To rewrite this term covariantly we note that the metric on a constant time hypersurface

of the regulated boundary is given by
| o
ds?, = gyyda‘da? = géijdarldx] (5.3.72)
and the embedding of 9%, is given by 2” = y(e, 2%). The unit normal covector is then

given by 1 B
n, =¢ 2(1+ y?c) 2(y odz® — dz?) (5.3.73)
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From this we define the induced metric 7;;, and the extrinsic curvature K;; by
;)./ij = gij - nﬂl]’ ICZ']' = &kanj (5374)

where V|, is the covariant derivative with respect to g;;. The trace of the extrinsic cur-
vature is then given by

1 L@
K:m<yyaa_yﬂyvaby’b> —oD-1)—Y 4 (5.3.75)
1+’

1
(L+32)? e
By contrast, the Ricci scalar has a qualitatively different structure:

2e

R = a+2) (yzaa ~ Y,abY,ab — Y,a¥b (5.3.76)

(1+92

y,aby,cc - y,acy,bc
1+ y%

Comparing with (5.3.71) we can see that the required logarithmic counterterm is hence

written in terms of the extrinsic curvature as

1 €
Sepo=——n d®z\/AK% In =, 5.3.77
e /626 oAk S (5.3.77)

with p a cutoff scale.

Similarly for D > 3 we can show that

2
1 2 _ — Ey(l)
Spp + S :/ Y A (5.3.78)
BB 2 T 4G pra (D = 3) Jox., ﬁl INOE

At this order the only possible intrinsic curvature term would be R, the Ricci scalar on
0%, but from (5.3.76) this does not have the right structure to be the correct counterterm.
Using (5.3.75) we can show that the required counterterm is

1 1
Sepo = — / dP o /AK2. (5.3.79)

Note that other extrinsic curvature invariants again either do not have the correct ¢
2 . . .
structure or the correct ¥ behaviour to arise as possible counterterms.

In the D = 2 analysis we found that K would be a finite counterterm, but it is excluded
by the requirement that the renormalized entanglement entropy of the complementary

region is equal to that of the original region. For D > 2 we can further note that

/ Pz /3P (5.3.80)
)
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are finite counterterms. The complementarity requirement rules out such countert-
erms for even D (corresponding to field theories in odd spacetime dimensions). For odd
D (corresponding to field theories in even spacetime dimensions), these counterterms
are consistent with the requirement that the entropy of the complement is the same as
that of the original region. Indeed we already saw that such a term arises in D = 3: it is
automatically included in (5.3.77) in the x dependent part.

In addition, higher dimensions allows the possibility of other finite counterterms con-

structed from curvature invariants such as

/ AP\ /3Ky P2, / AP~y /FRO-D/2 (5.3.81)
0% 0%e

which are both valid for odd D, so that they are analytic. These counterterms are how-
ever not linearly independent of each other, due to the Gauss-Codazzi relations. In gen-
eral there will always be finite counterterms possible in even spacetime dimensions and
the number of such terms will increase with D implying there are an increasing num-
ber of scheme dependent terms. We will understand in Section 5.5 how these finite

counterterms relate to the scheme dependence of the partition function.

Thus, to summarise the results in this section, the renormalized entanglement entropy

for static surfaces in AdSpy2 is

1
Sren = / dPs” (5.3.82)
4Gpt2 Jx VI

1 1 1
— dDilx ~ < _|_ ]C2> ,
4Gpya /32 \/; D—-1 2(D- 1)2(D —3)

where D represents the number of spatial dimensions in the dual field theory. The first

counterterm is logarithmic for D = 1. Only the first counterterm given above is needed
for gravity in four bulk dimensions (D = 2). The second counterterm is logarithmic
at D = 3 and is needed in the form given above for D > 3. Additional counterterms
involving higher order curvature invariants are needed for D > 5; the additional coun-
terterms are associated with logarithmic divergences (i.e. conformal anomalies) in odd
dimensions.

The analysis in this section assumed a Poincaré parameterisation of AdSp», i.e. we as-
sumed a flat background metric for the dual field theory. We will generalise these re-
sults in Section 5.5. Note that although the renormalized entanglement entropy can be
covariantized as shown in Section 5.5 the complete holographic dictionary would also
need to take into account real time issues [21] for non-static setups.
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5.4 Entanglement entropy for holographic RG flows

A holographic RG flow (for a field theory in a flat background) can be described by a
domain wall geometry
ds? = dw? + *AWdztdz, (5.4.1)

where the warp factor A(w) is linear in w at a fixed point. The geometry satisfies the
equations of motion derived from Einstein gravity coupled to scalar fields ¢*, and the
scalar fields have corresponding radial profiles ¢ (w). In what follows we will consider
the case of a single scalar field with the bulk action being

_ 1 4 — _ 1 2
= o / 'z /=g (Rg S(00)° + v<¢>> , (54.2)

with V' (¢) being the scalar potential. The generalisation to multiple scalar fields would

be straightforward.

We restrict to UV conformal theories, so that the scalar potential V' (¢) can be expanded

as a power series in ¢ near the boundary:

A@n) ,on
2n) . (5.4.3)

V(g)=6->

n=1

The mass M of the scalar is then given by M? = X(), so the scalar field is dual to a
dimension A operator in the boundary CFT where M? = A(A — 3). In what follows we
will denote 3

1
Ap =5+ 5V9+4M2 (5.4.4)

For —9/4 < M? < —5/4, two quantizations are possible with the operator dimension

corresponding to the second quantization being

3 1
A= o 5\/9 +4M2. (5.4.5)

The equations of motion are

A= —%(é)Q (5.4.6)
b+ 3Ap = —Z‘;

where a dot denotes a derivative with respect to w. It is well-known, see [131], that these
equations are always equivalent to first order equations
aw

A=W =1t (54.7)
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where the superpotential W (¢) is given by

AW \? )
V—_9 (4<d¢) 3w ) 7 (54.8)

W = 1+é(3—A+)¢2+-~ (54.9)

Note that the superpotential is not unique at higher orders in the scalar field: differ-

with

ent choices are associated with different RG flows and in a supersymmetric theory only
one choice will be supersymmetric. For flat sliced domain walls corresponding to holo-
graphic RG flows, the appropriate counterterm for the bulk action can be expressed in

terms of the superpotential as

1

I =—
ot 4Gy

/ B3z —hW. (5.4.10)
M

To match with conventions in earlier sections, it is convenient to express the asymptot-

ically AdS4 domain wall spacetime in the coordinates

dp? 1
ds* = # + ;eA(p)nuudu’U“dl’V (5.4.11)

where p — 0 corresponds to the conformal boundary, 7,,, is the flat metric, with coor-
dinates (¢, z,y). Near the conformal boundary

AP =14 ..., (5.4.12)

where the subleading terms depend on the form of the scalar potential. In these coor-
dinates the Einstein and scalar equations become

yan ;A’ . —%@')2; 128" + 2(3p A" — 1)pg! = —‘g. (5.413)

These equations can also be rewritten in terms of the superpotential as

. dW
A = 1 o™V 414
p W pd 2 (5.4.14)

where W =W — 1.
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5.4.1 Renormalization of entanglement entropy

Consider a codimension two minimal spacelike surface probing the domain wall space-

time. The entanglement entropy functional is

1

where v, = gmn0, X™(p, )0, X" (p, &), gmn is the metric on the full target space, and
X™(p, x) is the embedding. We will again work in static gauge where the embedding is
given by X™(p,z) = (p, t,z,y(p,z)) and t is a constant. Therefore

1 eAle)
IRl
eA(p)

Yop = (5.4.16)

Yoxr = YpYx

Alp)
e
y2

1
Yex = 76A(p) +
P

where we denote y, = 0,y and y, = 0,y. The entanglement entropy is thus given by

1

(p)/2 "
S:Mh/wm’ngﬂww4myp (5.4.17)

1 dod eA/2
- 4G4/ P 33'2p3/2m(p,33)

where we have introduced the shorthand m(p, z) = \/ 1+ y2 + dpety?.
The minimal surface equation is:

0= (1 + 4P6Ay;2;)ymc + P€A(1 + yg)ypp - 5peAypyxypa: (5.4.18)

1
+5e Ayo(pA'(3+ 3y2 + 8pey?) — 1 — yi — 8pe’y?).

We now solve this equation iteratively for y(p, z) as a series expansion in p. We assume

the following Taylor series expansions for A(p) and y(p, z):

M) =1+ Ayp™ + ... (5.4.19)
y(p, ) = y(0) (@) + Y, (@)™ + y(sy) (@)™ + ..

where we assume that « > 0and 0 < 51 < 32 < .... To solve the PDE we insert these
expansions into equation (5.4.19) and set p = 0. We then fix ; and y(3,) to solve the
resulting equation to leave y) unconstrained and differentiate equation (5.4.19) with
respect to p and repeat to find 5.
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After substituting the expansions into the minimal surface equation, one finds that the
leading order behaviour is a term constant in p and a term scaling as p? ~!. To leave Y(0)
unconstrained we must set 81 = 1 (as before) and deduce that:
2y(0
Y1) () = % (5.4.20)
L+ (Y0))

Next we substitute the expansions into the p derivative of equation (5.4.19). In all cases
the lowest power involving 32 is p?2~2 and we choose f3; so as to cancel the leading order

divergence involving a.

In the case that a < 1 the leading order divergence involving a goes as p®~! which

requires 2 = 1 + a and the following value of y(;4,) to cancel the divergence:

A (Ba— 1)y
Ya+a) = — (;;2 - 1( ) (5.4.21)
Note that the denominator here vanishes when a = % (and when a = —1 which is

excluded by the boundary conditions) and this case needs to be treated separately.

In the case a > 1 the leading order term involving « is not divergent and we can set
BQ = 2 with
B 4y€’1) + 6Y(1)Y(0)2Y(1)z — 4y(21)y(0)z:v — Y1)z

Y2 (5.4.22)
@ 1+ (y(0)e)’
In the case where a = 1 these two results overlap to give 5, = 2 and
4y? )+ 6Y(1)Y(0)r — AU Y(O)er — Y(D)aa
vy = — . —Awy): (5423

L+ (Y0)e)

One can similarly analyse the asymptotic expansions to higher order but this will not be

needed in calculating the regularised entanglement entropy.

Let us now turn to the regularisation of the entanglement entropy functional. Using the

series expansion for y(p, z) the small p behaviour of the action is

1 eA/2 2 1

where B(p, z) is a function which is constant in p to leading order. The full expression
for B(p, x) is given by
2 +dpety) — (y0y)”

1+ (y(O)z)2

where it is understood that the series expansions for e/ and y are inserted above. It is

pB(p, ) (5.4.25)
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clear that

(& /2 2 1
-/ -12p . c1/2
/d:c /Edp 1 1+ (y(o)x) P B~e/f4 . (5.4.26)

which vanishes as the cutoff is removed.

Hence to find the regularised action we only need to expand the function ¢*4()/2 and

1/2

keep terms which are powers of p*/< or lower:

1 5 oA/2
Sreg = 1G, / dz \/1+ (Y0)z) / dp2p—3/2 (5.4.27)

The latter radial integral depends only on the background and not on the specific em-

bedding.

The first counterterm we require is needed in all cases independently of a: this is the
volume divergence associated with the asymptotically AdS background. The necessary
counterterm here is as before

1
Set = ——— d . 54.28
ct 1G4 /82 X \/’; ( )

The remaining divergent terms depend explicitly on A,y and a. These terms can only
be non-trivial if there is a non-trivial matter content in the bulk and consequentially the
counterterms must be functions of the scalar fields on the p = ¢ slice pulled back on to

the minimal surface.
Solving the field equations (5.4.13) to leading orders in p implies that
= pypT A 4. (54.29)

and for the warp factor:

1 2
= B0y (5.4.30)

a:3—A+; A(a):—S

Subleading divergences in the entanglement entropy are only present when A, > 5/2.

The regulated on-shell action up to the first subleading divergence is:

1 x 3-Ar 9 34
g = — | d e . 5.4.31
Sre 4Gy /325 oV < - 8(5 — 2A+)¢(0)5 + ( )

and to leading order we also know that on the p = ¢ hypersurface ¢ = ¢(5)e®~2+)/2 so
it is simple to write the n = 1 divergence in a covariant form so that the corresponding
counterterm can then be read off:

_ 3-Ay 2.
Set, = — 4G4 dz e S5 _2A 0" (5.4.32)
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At A4 = 5/2 the divergence becomes logarithmic and is associated with a conformal

anomaly; we will discuss such anomalies further below.

Given a superpotential for the RG flow one can find an exact expression for the coun-
terterms to all orders as follows. We have argued that the counterterms can be written

covariantly as
1
Sop = — / dz \/3Y () (54.33)

where Y (¢) is analytic in the scalar field. (Here we exclude conformal anomalies, which

we will discuss below.) By construction the counterterm is chosen to cancel divergences

and hence

A A

ez 2

/ Al = oy (), (5.4.34)
e 2p2 €2

where implicitly the latter is evaluated at p = e. Differentiating this expression with

respect to the radius we then obtain

dy Y 1
AY +2—¢ — — ==, (5.4.35)
de p p

One can then substitute in the superpotential to get

. dY dw
1 Y -4——=1 4.
i.e. an expression for Y (¢) in terms of the superpotential W (¢) with no explicit radial
dependence. The superpotential W (¢$) can be expressed as

~ 1
W(g)=> wnd"  wy= SB-40) (5.4.37)
n>2
and correspondingly
Y(@) =1+ yno" (5.4.38)
n>2
with 3—-A 1+24
=BT S R & (5.4.39)

T86-2A,) BT 3"

and so on. Here the cubic counterterm is required for Ay > 8/3, and there is a corre-
sponding logarithmic divergence at Ay = 8/3 which is cubic in the scalar field.

For a free scalar in the bulk w, = 0 for n > 2, but the expansion of Y (¢) does not

terminate at n = 2:

_ 3¢? (—1)m ¢2m
Yig)=e ngo 4mm! (2mAyL —2m + 1)’ (5:440)
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However, one should implicitly only retain terms from this series which contribute to

divergences. The order m term is required for

1
Ap >3- —. (5.4.41)
2m

The associated divergence becomes logarithmic at Ay = 3—1/2m: the coefficient at or-
der m in (5.4.40) becomes ill-defined, corresponding to the breakdown of the assumed
form of the counterterms. Note that logarithmic terms appear in the asymptotic expan-
sion of the scalar field ¢ for half integer conformal dimensions but these are not related
to conformal anomalies in the entanglement entropy.

Inthe m = 1 case the regulated on-shell action has a logarithmic divergence when A, =
5/2

1 1
Sreg = T+~ /dx \ﬁ (1 — ng_A+51/2 log 5> + ... (5.4.42)
4Gy 4
Here A/, = —%(;5?0) and ¢ = ¢(0)€1/4 + ..., so we can write this divergence as
_ 1 S L
Steg = G, /dxﬁ(l + 559 logs> +o (5.4.43)

The corresponding logarithmic counterterm is then simply

1

Sct - —@

1
dx \ﬁB—Q $*loge. (5.4.44)
This result is consistent with that of [132] who found a logarithmic divergence, in their

notation, given by
A

08 =
S 8GN

(d —2)\?hglog(e/e1R) (5.4.45)

which matches our expression under the substitutions 4Gy = 1, A = [dz /7, d = 3,
ho = %, A = ¢ and the relabelling of the cut-off e — ¢!/2. This relabelling of the cut off is

necessary as theirs is imposed on a z = ¢ surface where p = 22.

Thus, to summarise the results of this section, the required counterterms are

- 14— -7 44
S 4G4/82da:ﬁ< +8(5_2A+>¢> + ) (5.4.46)

where the ellipses denote terms involving higher powers of the scalar field. The coun-
terterm quadratic in scalar fields is necessary for A} > 5/2 and is logarithmic at A =
5/2. More generally, new logarithmic divergences involving n powers of the scalar field
arise at

Ay —3- 1 (5.4.47)
n

and an additional counterterm involving n powers of the scalar field is switched on for
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AL > 3 — 1/n. The counterterms can be expressed compactly in terms of an analytic
function of the scalar field Y'(¢)

1 =
S = e /(‘9 § dz+/AY (¢), (5.4.48)

where Y (¢) is defined in terms of the superpotential for the flow by (5.4.36). We should
emphasise that both expressions (5.4.46) and (5.4.48) are applicable to entangling sur-
faces in holographic RG flows with flat slicings. For entangling surfaces in generic Ein-
stein-scalar backgrounds there could be additional counterterms dependent on gradi-
ents of the scalar field.

5.4.2 Entanglement entropy change under relevant perturbation

In this section we will calculate the change in the renormalized entanglement entropy
of a disk entangling region under a small relevant perturbation of the CFT, i.e. we work
perturbatively in ¢(g), the source of the relevant operator. As in [133, 134] it is convenient

to express the change in the bare entanglement entropy as

1 2
mnse o 44

where 7 is the metric on the unperturbed minimal surface, 77'" is the energy momen-

tum tensor for the minimal surface
i = P00 X" g X" (5.4.50)
and dgmy, is the change in the (Einstein) metric induced by the relevant deformation. The
latter can always be parameterised as
2 _ dp? 1
ds® = 4—2(1 +46f(p)) + = (14 0h(p))datda*, (5.4.51)
p p
and we can furthermore use the gauge freedom to fix § f(p) = 0. The latter gauge choice

was implicit in our earlier parameterisation of domain wall geometries.

One can then show that the change in the regulated (bare) entanglement entropy for a
disk is

R [T dp p
5Sreg - E ; g(l + ﬁ)éh(ﬂ) (5452)

Note that this expression holds for any small perturbation of the metric which preserves

Poincaré invariance of the dual field theory.

Working perturbatively in the scalar field amplitude, and taking into account Poincaré
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invariance, the most general solution possible for the scalar field is
¢ = doyp2 P A 4 pia,ypP (5.4.53)

(where we assume that Ay # 3/2)and ¢(a, ) is the normalizable mode of the scalar field.
Correspondingly the warp factor is given by

1 _ 8A 3
6h =3 (é?o)p(?’ A4 SEB - A d0da, 0t + ¢%A+)PA+> (5.4.54)

Since we are working perturbatively in the scalar field, we need only retain counterterms
which are quadratic in the scalars. In the case of a single scalar field this implies that the
only contributing counterterms are those given in (5.4.46). At Ay = 5/2, the change in
the entanglement entropy involves a logarithmic divergence, and thus the renormalized
entanglement entropy will be renormalization scheme dependent.

The change in the renormalized entanglement entropy is hence (for A, # 5/2)

s

55 — 2 p23-Ay) 5455
16(2A, — 5)Gy %) ( |
T B 3 m 2 2A
366, 0+ B+ 7300000 gaa T g, Y T

Working to quadratic order in the scalar field one cannot impose regularity in the bulk
as p — oo as both modes are unbounded. On dimensional grounds, however,

At

P(a) x ¢((S;A+) (5.4.56)

for% < A; <3 Hencega,)~ (;5‘(50) with § > 1, and the normalizable mode is subleading
in powers of the non-normalizable mode, as we will see in the full solution given in the

next section.

Therefore
™

Y ren —
5 16(2A4 — 5)G

4¢%0)R2(3—A+) I (5.4.57)

where ellipses denote terms which are of higher order in the source. This quantity is
positive for Ay > 5/2 but negative for relevant deformations with 3/2 < AL < 5/2.
Recalling that the F quantity is proportional to minus the renormalized entanglement
entropy the change in the F quantity is positive for relevant deformations with 3/2 <
A4 < 5/2. Arelated result was obtained in [115], although the sign of the quantity was
not explicitly identified in that work.

For operators of dimension A_ < 3/2, the non-normalizable mode ¢ () is not the oper-

ator source: the correct source is obtained from a Legendre transformation of the on-
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shell action [16]. Such a Legendre transformation cannot be carried out without working
to higher orders in the non-normalizable mode ¢y and thus we cannot obtain the en-

tanglement entropy for this case without knowledge of the higher order solution.

Now let us consider the special case of A = 3, i.e. marginal operators. In this case the
warp factor is unchanged by the non-normalizable mode of the scalar field ¢g), i.e. in-

tegrating the equations of motion we obtain

1 3 3

Since the non-normalizable mode does not affect the metric, there are no new diver-
gences and no counterterms depending on the scalar field to leading order in the per-
turbation. This suggests that the F' quantity should be stationary to leading order under
a marginal deformation, which is consistent with the numerical results seen earlier in
Figure 4.2.2. At A = 3 there are also no possible finite counterterms since the finite

counterterm )
_ h 2
Set = el dz/A" (K¢?) (5.4.59)

does not respect the complementarity requirement. The renormalized entanglement
entropy for a marginal deformation is thus
™
Sren = ==~ (g R.
806, °®)
In the vacuum of the marginally deformed conformal field theory ¢(3) = 0 and the
change in the renormalized entanglement entropy is therefore zero for the vacuum of
the deformed conformal field theory. Note that the change in the renormalized entan-

glement entropy is hence implicitly not analytic in the operator dimension as A — 3;
this is however permissible, since the spectrum of operators is discrete.

We can also compute the change in the quantity F'(R) defined in Section 5.2:

SF(R) = —0Syeg(R) + RaSS;ER) (5.4.60)
For A <3 )
TO0) L6-an

SF(R) = — (5.4.61)

16G4

which is negative for all relevant deformations. This does not agree numerically with
dSren, but it is the latter which is by construction related to the renormalized F quantity
by the CHM map.

For A = 3, the change in the regulated entanglement entropy is zero, as the metric is
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unchanged, and therefore
SF(R) = 0. (5.4.62)

Note that implicitly the change in § F/(R) is therefore also non-analytic at A — 3.

It may seem surprising that the F quantity increases along RG flows generated by opera-

tors of dimensions 3/2 < AL < 5/2. The results discussed above actually follow directly

from the subadditivity property of the (regularised) entanglement entropy: recall that

the latter implies that §%S,¢s/OR? < 0. Our analysis implies that the counterterms scale

with the size of the entangling region, i.e. St < R. Therefore subadditivity implies
0*Sren 0% Sreg

om = apr S0 (5.4.63)

However, on dimensional grounds, when we work to quadratic order in the source S;en
must take the form

s _
Sren = *E + CLQ(g_A+)¢%O)R2(3 A+) + - (5464)
for A, > 3/2where ay3_a ) is a dimensionless constant. Here we use the explicit form
for the leading term, which is independent of R. Differentiating twice with respect to R

then gives
82 Sren
OR?

This is negative semi-definite (as required by strong subadditivity) provided that

=203 - Ay)(5— 281 )ag3-a, )Pl R2C4) + -+ (5.4.65)

(3 — A+)(5 — 2A+)a2(3,A+) S 07 (5466)

i.e. provided that aziz-a,) =0 for Ay >5/2and az3-a,) <0 for Ay <5/2, as we found
above.

Arelated result is found by directly computing the change in the free energy to quadratic
order in the source for holographic RG flows on a sphere driven by the same operators.

Deformations of the theory on the sphere

Icpr — IcpT + /3 d*Q ¢(0)0A+, (5.4.67)
S

where the source 1)) is independent of the spherical coordinates and df2 is the measure
on the S%, may be described holographically by spherical sliced domain walls. Again
working to quadratic order in the source, the change in the free energy is positive for
operators of dimensions 3/2 < Ay < 5/2[2].

Note that such deformations are not equivalent to conformal transformations of the
holographic RG flows considered here, which are dual to deformations of the theory on
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flat space:
Icpr — IopT + /3 d*2¢0)Oa, - (5.4.68)
R

To understand this point further, it is useful to recall the relationship between spherical
and Poincaré coordinates for anti-de Sitter. The former can be described in terms of the

following embedding into R+4:
X9 = coshw X' +iX? = sinhw cos 0e'E X3 +iX* =sinhwsine®  (5.4.69)

so that
ds® = dw? + sinh® w (d6? + cos® 0drp + sin® d¢?) . (5.4.70)

Poincaré coordinates can be obtained by setting

1 1
X0 4 xt =i X0 x!= <p1/2 + m(t% + 22+ y2)> (5.4.71)
2__t 3_ v 1_ Y
pl/2 pl/2 pl/2
resulting in
ds? = dp* 1. 5 2 2
s _@ju;(therx +dy?). (5.4.72)

From these relations it is clear that the radial coordinate in spherical slicings, w, depends
on both p and |z| = (2 + 2% + yz)%. Conversely the Poincaré radial coordinate p de-
pends on (w, 8, 7r). Therefore flows which depend only on w or p, respectively, are not
equivalent to each other: a flow which depends only on w will depend on the Poincaré

norm |z| as well as p.

From the field theory perspective, the theories on the $3 and on R? are related by the
conformal transformation described earlier, with the relevant conformal factor being
given by (5.3.53). While the original conformal field theory is of course unaffected by

this conformal factor, mapping (5.4.68) to the sphere results in
b) — QA+_3(977E)¢(0)7 (5.4.73)

i.e. the transformed source is not homogeneous over the S2, and therefore the defor-
mations on S® and R? by homogeneous sources are not conformally equivalent. Thus,
while the change in the renormalized entanglement entropy is related to a change in
the free energy on the S3, the latter is the change under a deformation which breaks the

SO(4) invariance.
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5.4.3 Top down RG flow

Let us now consider entanglement entropy in holographic RG flows which have top
down embeddings. We will discuss the following single scalar example, taken from [18].
Let the potential be

_ ¢
V(¢) = 6cosh < \/§> (5.4.74)

which arises in a consistent truncation of N' = 8 gauged supergravity, which in turn is
a consistent truncation of M theory compactified on S”. The RG flow equations can be
used to construct analytic domain wall solutions in which the metric is conveniently

expressed as

1 v1+2 2 V1—1r2
ds® = (Lt+vr+ Vit 2vr+r )dr2 + 2r (1+vr+ V14 2vr +r?)dztde, (5.4.75)
2r2y/1 — r2(1 4 2vr + r?) 2r
and the scalar field profile is
¢ = V/3tanh~1(r). (5.4.76)
The parameter v > —1 is arbitrary with v = —1 corresponding to a supersymmetric do-

main wall of the supergravity theory. Here » — 0 corresponds to the conformal bound-
ary. Note that in all cases the metric has a singularity at » = 1; this singularity is null in the
supersymmetric case and timelike in all other cases but the singularity is good accord-
ing to the standard criteria. The scalar mass associated with the potential is M? = —2,
which corresponds to the cases of A_ = 1 and A} = 2, i.e. the mass is such that both

quantisations are possible and mixed boundary conditions can be considered.
We can reintroduce the scalar field amplitude as a parameter by letting
r = cr; xH = ezt (5.4.77)

so that

(14 ver + V1 + 2uer + c272)
ds? = 7
2721 — 272 (1 + 2ver + ¢272)
V1 — 272
+ %2
2r
¢ =V/3tanh ™! (c7). (5.4.78)

(1 4+ ver + /1 + 2ver + 272)dzEMdi,

We can then change coordinates for ¢ < 1 as

72 = p+vep? + - (5.4.79)
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to obtain

(1—2p+---)di"dz,; (5.4.80)

from which we can read off that
1
P) = V3¢ Pay) = o) = 5\/51/62, (5.4.81)

i.e. the normalizable mode is of order the non-normalizable mode squared. (This had to
be true on dimensional grounds in a solution which depends on only one dimensionful

parameter, ¢.) Thus substituting into (5.4.55) we obtain

™

5Sren = - M

2 pd 3
Poft +0 (%)) ) (5.4.82)
in agreement with (5.4.57) in the case of A} = 2.

The result (5.4.82) can be interpreted as follows. There are only two physical scales in
the field theory: the source for the operator deformation c and the size of the entangling
region R. When cR < 1, the entangling surface is small and does not penetrate far into
the bulk. The region probed by the entangling surface is well-described by the asymp-
totic Fefferman-Graham expansion (5.4.80), and therefore one can use the results of the
previous section to compute the entanglement entropy. Note that the result does not
depend on the parameter v, i.e. it is same for supersymmetric and non-supersymmetric
RG flows.

Now consider increasing the radius of the entangling surface at fixed source. On di-
mensional grounds 65y, is a function of ¢ R. Since 9?Sien/OR? < 0, 96Sren/OR must
decrease monotonically with the radius R and 0.S,e, must be negative for all R.

5.5 Renormalization via the replica trick

In the previous sections we have described a renormalization procedure for entangle-
ment entropy which is based on the holographic realisation of entanglement entropy in
terms of minimal surfaces. It is difficult to translate this procedure directly into a field
theoretic definition of renormalization, since the Ryu-Takayanagi functional itself does
not follow directly from field theory.

A conceptual derivation of the Ryu-Takayanagi functional has been obtained by Lew-

kowycz-Maldacena [44] via the replica trick. The entropy associated with a density ma-
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trix p is expressed as
S = —ndy[log Z(n) —nlog Z(1)],_, (5.5.)

where Z(n) = Tr(p") and Z(1) = Tr(p) is the usual partition function. If we are inter-
ested in the entropy of a thermal state, then Z(n) is constructed by extending the period
of the thermal circle by a factor of n. In the case of entanglement entropy, Z(n) is con-
structed by extending the period of the circle around the boundary of the entangling
region by a factor of n, where implicitly n is an integer. Assuming that the resulting ex-
pression is analytic in n, one can obtain the entropy by analytically continuing to n = 1.

Holographically Z(n) can be computed in terms of the Euclidean actions:
S =nop[I(n) —nl(1)],_;. (5.5.2)

Here I(1) represents the on-shell Euclidean action for the bulk geometry while I(n) rep-
resents the on-shell Euclidean action for the replica bulk geometry. For a thermal state,
the bulk geometry associated with Z(1) is a black hole and the replica is constructed by
extending the period of the thermal circle by a factor of n. It was shown by Lewkowycz-
Maldacena [44] that for a bulk theory described by Einstein gravity (5.5.1) then localises
on the horizon of the black hole, i.e.

A

S = .
4G g41

(5.5.3)

In particular, the volume divergences of the on-shell actions (associated with UV diver-
gences in the field theory) by construction cancel, since the replica geometry asymptot-
ically matches n copies of the original geometry.

For the entanglement entropy, the bulk geometry associated with Z(1) corresponds to
the usual bulk dual of the given state in the field theory. The replica is constructed by
extending the period of the circle around the entangling region boundary by a factor of n.
Following the same logic as in Lewkowycz-Maldacena, the expression (5.5.2) localises on
the minimal surface corresponding to the extension of the boundary of the entangling
region into the bulk (see the discussions in [135]). However, unlike the black hole case,
the volume divergences of the bulk actions in (5.5.2) do not cancel, as the entangling
surface itself has area divergences.

We can formally write down a renormalized entanglement entropy as
Sren = nan [[ren(n) - nIren(l)]nzl (554)

where the quantities appearing on the right hand side are the renormalized bulk actions.
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Equivalently,
Sct = nan [Ict(n) — nICt(l)]nzl (555)

Let us first focus on the specific case of entangling surfaces in AdSy, for which the usual
counterterms for the on-shell action are [78]

(1) ! / d*zvh <—;K +1+ iR) : (5.5.6)

- 47TG4 OM

Here we define the bulk geometry to be M and its boundary to be OM, and K denotes
the trace of the extrinsic curvature of M embedded into M. (The first term is the usual
Gibbons-Hawking term.)

Since the replica geometry is also asymptotically locally AdS4, the counterterms are

Ig(n) = 4;(;4 /8 » P/ hy, <—;Kn +1+ iRn> . (5.5.7)
where h,, is the boundary metric for the replica geometry and K,, and R,, are the asso-
ciated extrinsic curvature and Ricci scalar, respectively. Now the replica geometry by
construction matches the original geometry except at the fixed point set of 9., where
7 is the circle around the boundary of the entangling region and its extension into the
bulk. At this fixed point set the metric and the extrinsic curvature of the replica match
the original metric, but the intrinsic curvature invariants of the replica receive contri-
butions from the conical singularity. In the case of interest R = 0 but in the replica

geometry due to the conical singularity

/d?’x\/HRn =4r(l - n)/ dz/5 (5.5.8)
1)

and hence we find that )
= ——— d v, 5.59
Set el /82 x\ﬁ ( )

which matches the counterterm obtained by our explicit calculations in Section 5.3.

For the case of entangling surfaces in holographic RG flows the counterterms to quad-

ratic order in the scalar field are [78]

1 1 1 AL —3
Let(1) / d3xx/ﬁ<1+m(3—A+)¢2+4R+ s

= ———T " R 5.5.10
47TG4 OM 32(2A+ - 5) R¢ > ’ ( )

where we drop the Gibbons-Hawking term as it does not contribute to the entanglement
entropy counterterms, and we also neglect terms involving derivatives of the scalar field,
i.e. we restrict to homogeneous scalar field configurations. Following the same steps as
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above, we can then show that
1 Pl AJr - 3 2
Set = ——— d 1+ —c— 5511
o= Ly (1 saa ) 5510
which is again in agreement with our explicit results of Section 5.4.

Let us now move to general dimensions. For an asymptotically locally AdSp.2 spacetime

the counterterms are [78]

1 1
Ii(1)=—— dP*tlaevh (2D R 5.5.12
«t(1) 167rGD+2/8M xf( Ry (5.5.12)
1 D+1
+ RaR“b—R2>+--->.
(D—3)(D—1) < ’ 4D

This expression should be understood as containing only the appropriate divergent te-
rms in any given dimension; moreover, for odd D there are logarithmic counterterms. In
particular, for D = 3 the third counterterm is replaced by the logarithmic counterterm

1 1 1
d*zvVh= [ Ry R™ — = R? ) loge. 5.5.13
167Gs /Ws x\rs ( b 3 > 08 e (5513)

In the replica geometry, the contributions to the curvature from the conical singularity
are given by [121]

Ry =R+ 47(1 — n)dss, + O(1 — n)?; (5.5.14)
Rpap =Rap + 27(1 — n)ngnpdpy + O(1 — n)2,

where dpy, is a delta function localised on the entangling surface. Here n¥ with k = 1,2

represent orthonormal vectors to the entangling surface and

NNy = Z n’jnlg (5.5.15)
k

Following the same steps as above, we can immediately read off the leading counterterm

for the entanglement entropy as

1
Set1 = —/ AP\ /7, (5.5.16)
" 4D - 1)Gpya Jox v

in agreement with our earlier result.
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For the higher order counterterms, one can use the following expressions [122]

/ dPey/h,R% = n/
oMy,

dPHavhR? 4+ 87(1 —n) / dP~tz\/3R (5.5.17)

oM 0%
1
/ dPH e/ hy Ry RY = n/ AP e v/h Ry RY + 47 (1 — n)/ dP~te\/A(Ry — =k?),
oM, oM o5 2
where implicitly we work to leading order in (1 — n) and we define
B =3 (kh? (5.5.18)
k

with R;; corresponding to invariant projections of the Ricci tensor onto the subspace
orthogonal to 0%, see [121].

In Section 5.3, we analysed the entanglement entropy counterterms assuming that the
entangling surface is static and that the curvature of the boundary metric is zero. In such
a case R;; = R = 0 and the extrinsic curvature in the time direction is zero. Thus the
second counterterm becomes

1
Seto = — / APz /3K2, (5.5.19)
o2 8(D — 1)2(D —3)Gp42 Jox f

where K refers to the trace of the extrinsic curvature of the surface embedded into a

constant time hypersurface. Similarly in D = 3 the logarithmic counterterm is

1
o = d3z/AK2%1 5.5.20
Set,2 e /az xﬂ/C ne, ( )

which is in agreement with the expression obtained in [121] for the anomaly in the en-
tanglement entropy for 4d CFTs with a holographic dual. (See [121] for the conformal

anomaly in a general 4d conformal field theory in which a # ¢.)

One can now immediately generalise the entanglement entropy counterterms to the

case of a general embedding into a curved boundary metric obtaining

1
S, =—/ dP1x\/5 (5.5.21)
' 4D —1)Gpya Jox VA

1 1 D+1
4(D —1)*(D - 3)Gp2 /32 VA 2 2D

where one can use the Gauss-Codazzi relations to write R;; and R in terms of intrinsic

and extrinsic curvatures of 9X..
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5.5.1 Higher derivative generalisations

Using the replica trick, we can derive the renormalized entanglement entropy functional
from any higher derivative gravity for which the renormalized bulk action is known. Let
us consider the particular example of Gauss-Bonnet gravity, with bulk action

1
I=——— [ qP+2 R, + D(D + 1) + X (Rympe R™™1 — AR, R™ + R2
167rGD+2/M m\/g[ g D+1)+ ( P * g)}
(5.5.22)

where ) is the Gauss-Bonnet coupling.

One can derive the entanglement entropy functional by the replica trick used above,
see [122, 136], using the bulk versions of (5.5.17) together with the additional relation

/ AP 22\ /G Rynpg R4 =n / AP 22\ /R pg R™PY (5.5.23)

n n

+8n(1—n) /2 Py (Rijij — TT(kQ)) )

where we neglect terms of higher order in (n — 1) and R;j;; denotes the projection of

the Riemann tensor in the directions orthogonal to the entangling surface. Also
2
Tr(k?) =) KhkFe. (5.5.24)
k=1

Thus the entanglement entropy functional consists of the usual Ryu-Takayanagi term

plus additional terms

A
S = / dPyy+ = / APy (Rijij — Tr(k*) — 2R; + k* + R),  (5.5.25)
4Gp+2 Jx Gp+2 Jx
where implicitly all terms can be written in terms of extrinsic and intrinsic curvatures
on the entangling surface. As shown in [122], in five bulk dimensions the latter term can

be simplified using the Gauss-Codazzi relations to give

_ 1 3 >
5= 4G5/2d Wl (1+2)\R), (5.5.26)

with R the intrinsic curvature of the entangling surface.

Now the bulk equations of motion admit as Ad.S5 as a solution, but the radius of the AdS5
depends on the Gauss-Bonnet coupling, i.e. the AdSs metric is
dp?

1
ds? =12(\) <4p2 + ;d:c - d:n> (5.5.27)
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where the radius is given by
P\ = 12(\) + 21 = 0. (5.5.28)

One can then straightforwardly show that the leading order counterterm for the entan-

glement entropy is given by

_ b 2/ 19 N
Set = 5C: /azdxﬂ<l(/\) 12l(A))’ (5.5.29)

where we use the fact that the entangling surface is asymptotically locally hyperbolic and
thus R = —6/I(\)? + - - -. There is also a subleading logarithmic divergence associated
with the conformal anomaly; this is known from the work of [121].

Now the leading order counterterm for the entanglement entropy is inherited from the
subleading counterterm for the bulk action, i.e. the counterterm

I = as / d*zVhR. (5.5.30)

This counterterm is not known to all orders in A, although it was derived perturbatively
in A in [137, 138, 139]. The relation with entanglement entropy immediately gives the
coefficient of this counterterm to be

1 A

i.e. the entanglement entropy counterterms provide a quick method of deriving or ver-
ifying counterterms in the bulk action involving the curvature.

5.5.2 Domain walls

In this section we show how the counterterms for asymptotically locally AdS solutions
of a theory with a single scalar imply the entanglement entropy counterterms discussed

in Section 5.4. The bulk Euclidean action is

_ 1 4 1 5
T E /M d*zv/g <Rg —5(09)" + V(¢)> : (5.5.32)

In general the counterterms for asymptotically locally AdS solutions of this action can

be expressed in the form

1
N 167Gy

Ict

/ dBzvVh (W(@) + V()R +---), (5.5.33)
oM

where W(¢) and Y(¢) are analytic functions of the scalar field ¢. Here the ellipses de-
note terms which depend on gradients of the scalar field; as in the discussions above,
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such terms are not relevant when using the replica trick to derive the entanglement
entropy counterterms. In the above expression we assume generic values of the dual
operator dimension such that there are no conformal anomalies; for specific values of

the operator dimension there will however be conformal anomalies.

For a flat domain wall solution, characterised by a given superpotential W (¢), the only
contributing counterterm is W(¢) = 4W (¢), since in this case R = 0. To use the replica
trick we need to know how the counterterms for the bulk action depend on the cur-
vature of the boundary metric i.e. we cannot restrict to flat sliced domain walls: the
counterterm for the entanglement entropy follows from the term involving the Ricci

scalar above, i.e. )

Ser = e /a § dz/FY(). (5.5.34)

We can understand the specific form of Y(¢) for entanglement entropy in a flat sliced
domain wall as follows. We begin with solutions of the equation of motion correspond-

ing to domain walls with homogeneous slicing, i.e. the metric is
ds? = dw? + e*A a2 (5.5.35)

and the scalar field profile is ¢(w). We let the Ricci scalar of the slicing be 7 where, for
example, # = 6 for unit radius spherical slices. The equations of motion are then

b+ 3pA=—V'(¢); P24 _ lq.b2 = A (5.5.36)

These equations are identical to those discussed in Section 5.4, apart from the curvature

contribution to the second equation.

Now let us work in the limit that # <« 1. For 7 = 0, the equations admit the first order form
discussed in Section 5.4, in terms of the superpotential W (¢). For 7 < 1, the equations

of motion are solved to order 72 by

A=W ¢= —4% + 7 f () (5.5.37)
provided that
d dw
3Wf(¢) — 4% < f(¢)d¢) =0; (5.5.38)
T
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The regulated on-shell action (including the Gibbons-Hawking term) thus becomes

R 1
Lieg = — / dw / dQs (e + O(#?)) — ye—eh / Qs [e* W] . (5.5.39)
_ /Rdw/dﬂg (eA? + O(#%)) — : / dBavVhW,
167Gy 4Gy oM ’

where we have used the field equations to linear order in 7 and in the second line we
write the boundary term in covariant form. The bulk term can be expressed as a covari-
ant boundary term

1 3
ey /8 dVhRY(9) (5.5.40)
provided that
d L
- (VhRY (9)) = e, (5.5.41)
However,
d i Ay — A _ W ay
S (VRRY ) =7 (Y ) = r(WY o d¢), (5.5.42)

where we drop terms of higher order in 7 and use the field equations. Therefore the
required counterterms are

1
Iy = / d32vh (AW + RY), (5.5.43)
167TG4 OM
with dW dY
Y —4— ) =1 5.44
<W i d¢> , (5.5.44)

as we found in Section 5.4. Note that terms of higher order in # would not contribute to

the counterterms, as they do not give rise to divergent terms.

We calculated the curvature term in (5.5.43) by working with a homogeneous domain
wall. To use the replica trick, we need to consider a replica space in which the curvature
of the boundary is given by (5.5.14), in the limit that n — 1, i.e. it is not homogeneous,
but (5.5.43) is covariant and still applies. Note that the slices of the domain wall are flat,
up to conical singularity terms which are proportional to (n — 1), and hence R is small
asn — 1. It is therefore indeed true to leading order in (n — 1) that the replica geometry
is still governed by the superpotential W. Following the same steps as earlier in this
section, we can then immediately read off the counterterm action for the entanglement

entropy as
1
Syt = ——— / dz/3Y (¢), (5.5.45)
4G4 Jox

as we found in Section 5.4.

It is important to note that this expression holds specifically for flat domain wall geome-
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tries associated with a superpotential W. A generic curved domain wall geometry is not
governed by a single real superpotential (see [140, 141]) and the analysis above would
need to be generalised for such cases.

5.6 Conclusions

In this chapter we have shown how the holographic entanglement entropy may be renor-
malized using appropriately covariant boundary counterterms. This renormalization
procedure is inherited directly from the renormalization of the partition function, using
the replica trick.

We analysed renormalization for entangling surfaces in asymptotically locally AdS spa-
cetimes in any dimension and in flat sliced holographic RG flows in four bulk dimen-
sions. We also showed that the renormalization procedure can be extended to higher
derivative theories such as Gauss-Bonnet. It would be straightforward to generalise our
results to include entangling surfaces with cusps and to non-conformal holographic se-
tups using [142]. It would be interesting to explore real-time holography in the context

of entanglement entropy, using the techniques of [21] for the HRT functional [143].

While it is difficult to relate the area renormalization of the holographic entanglement
entropy functional directly to field theory renormalization, the replica trick expresses
our renormalized entanglement entropy in terms of renormalized partition functions,
Le.

Sren = =0 [log Zren(n) — nlog Zren(1)],,—1- (5.6.1)

This expression can be directly implemented in a field theoretical calculation: having
fixed a renormalization scheme for the partition function, the partition function on the
replica space (which has the same UV divergence structure) will inherit a renormaliza-
tion scheme and thus S, will be determined. This assumes that the replica trick is
applicable but in practice most explicit calculations of entanglement entropy in field
theory do in any case make use of the replica trick. Computations of the renormalized

entanglement entropy in free field theory examples will be presented elsewhere.

There has been considerable interest recently in supersymmetric renormalization sch-
emes for field theories on curved spaces and, in particular, in analysing how much su-
persymmetry is required for the partition function to be uniquely defined [116]. It would
be interesting to understand the role of supersymmetry in our analysis.

In Section 5.4 we showed that the renormalized entanglement entropy of a disk de-
creases under deformations of a conformal field theory by operators of dimension 3/2 <

A < 5/2. Under the CHM map, this corresponds to an increase in the F quantity when
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one makes corresponding deformations of the theory on a three sphere; note however
that these deformations do not preserve the symmetry of the S3. In Chapter 4 we found
analogous results for flows which are homogeneous on the three sphere. It would be
interesting to understand whether these examples indeed disprove the strong version

of the F theorem, or whether the flows under consideration are unphysical.



CHAPTER O

Examples of renormalized holographic entanglement entropy

6.1 Introduction

Entanglement entropy is widely used in condensed matter physics, quantum informa-
tion theory and, more recently, in high energy physics and black holes. Consider a re-
duced density matrix p4, obtained from tracing out certain degrees of freedom from a
quantum system. The associated entanglement entropy is then the von Neumann en-
tropy:

S = —try(palogpa) . 6.1.1)

Throughout this chapter we will be interested in the case for which a quantum system
is subdivided into two, via partitioning space. In such a case A is a spatial region, with
boundary 0A.

The entanglement entropy characterises the nature of the quantum state of a system.

For example, in the ground state of a quantum critical system in D spatial dimensions:

Area(0A R
SZCl_Dreeg(_l)—F”'—i-C()lOg(E)—i—éo—i-"'7 (6.1.2)

where ¢;_p, ¢p and ¢y are dimensionless; R is a characteristic scale of the region A, and

e is a UV cutoff. Logarithmic terms arise when D is odd, and their coefficients are re-
lated to the a anomalies of the stress energy tensor. More generally, the famous area

175



176 Chapter 6. Examples of renormalized holographic entanglement entropy

law leading term characterises the ground state of a system and can be used to test
trial ground state wavefunctions. Entanglement entropy can also be used to distinguish
between different phases of a system, such as the confining/deconfining phase transi-
tion [119, 144, 145].

Continuum quantum field theory (with a cutoff) is often used as a tool to describe dis-
crete condensed matter systems. In this context, the cutoff appearing in (6.1.2) is related
to the underlying physical lattice scale in the discrete system and the coefficients of
power law terms such as ¢;_p capture the leading physical contributions to the entan-
glement entropy. From the quantum field theory perspective, the expansion in (6.1.2)
implicitly assumes the use of a direct energy cutoff as a regulator. Different methods
of regularisation result in different regulated divergences and thus the power law di-
vergences are often called non-universal. By contrast logarithmic divergences are often

denoted as universal as their coefficients are related to the anomalies of the theory.

In even spatial dimensions, the logarithmic term in (6.1.2) is absent but the constant term
¢p is believed to be related to the number of degrees of freedom of the system. However,

¢p is manifestly dependent on the choice of the cutoff. In two spatial dimensions, if
R
S=e Fras... (6.1.3)
€

for a spatial region with boundary of length R, then changing the cutoff as

6/
(1 — 4. 6.14
€ 6( —l—aR-i- ) ( )

for any choice of the dimensionless constant « gives
R
S = -1 + (¢o — ac—1), (6.1.5)

so the constant term in the entanglement entropy clearly depends on the choice of reg-
ulator.

If one is interested in isolating finite contributions to the entanglement entropy, one
can evade the issue of regulator dependence. For example, if the entangling region is a
strip of width L and regulated length R > L, then the divergent contributions in (6.1.3)
cannot, by locality of the quantum field theory, depend on the width of slab, so

9S04

“L)=3L= 3L

(6.1.6)
is finite as ¢ — 0 [124, 125, 111]. However, such an approach has several drawbacks. The
regularisation is specific to the shape of the geometry (a slab) and a modified prescrip-

tion is needed for curved entangling region boundaries such as spheres, for which the
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scale of the entangling region is related to the local curvature of the entangling region
boundary (see proposals in [110]). Any such prescription depends explicitly on the UV
behaviour of the theory. More generally, extraction of finite terms by differentiation ob-
scures scheme dependence: there is no connection with the renormalization scheme

used for other QFT quantities such as the partition function and correlation functions.

From a quantum field theory perspective, as opposed to a condensed matter perspec-
tive, it is very unnatural to work with a regulated rather than a renormalized quantity.
In the previous Chapter 5, we introduced a systematic renormalization procedure for
entanglement entropy, in which the counterterms are inherited directly from the par-
tition function counterterms. As we review in Section 6.2, such renormalization guar-
antees that the counterterms depend only on the quantum field theory sources (non-
normalizable modes in holographic gravity realisations) and not on the state of the quan-

tum field theory (normalizable modes in holographic gravity realisations).

The renormalized entanglement entropy S™" expressed as a function of a characteristic
scale of the entangling region L implicitly captures the behaviour of the theory under an
RG flow: small entangling regions probe the UV of the theory, while larger regions probe
the IR. In this chapter we will establish how these finite contributions to entanglement

entropy behave in a variety of theories using holographic models.

The outline of this chapter is as follows. In Section 6.2 we review the definition of renor-
malized entanglement entropy introduced in Chapter 5. In Section 6.3 we calculate the
entaglement entropy for a slab region in anti-de Sitter (in general dimensions). The latter
is relevant for the non-conformal branes discussed in Section 6.4 as they can be viewed
as dimension reduction of anti-de Sitter theories in general dimensions. In Section 6.4
we also compute the renormalized entanglement entropy for a slab region in the Witten
holographic model for QCD. Section 6.5 explores renormalized entanglement entropy
for operator driven holographic RG flows, which are UV conformal.

6.2 Renormalized entanglement entropy

Entanglement entropy is usually calculated using the replica trick. The Rényi entropies

are defined as

Sp = (log Z(n) —nlog Z(1)) (6.2.1)

(1—n)
where Z(1) is the partition function and Z(n) is the partition function on the replica

space obtained by gluing n copies of the geometry together along the boundary of the
entangling region. The entanglement entropy is obtained as the limit

S = lim S,. (6.2.2)

n—1
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Note that this limit implicitly assumes that the Rényi entropies are analytic in 7.

Both sides of (6.2.1) are UV divergent. In alocal quantum field theory, the UV divergences
of log Z(n) cancel with those of nlog Z(1) except at the boundary of the entangling re-

gion; therefore the UV divergences of S(n) scale with the area of this boundary.

We can formally define the renormalized entanglement entropy as

1
(1—=n)

with S™" = S7". Here the renormalized partition functions are defined with any suit-

ren __
Syt =

(log Z™"(n) — nlog Z™"(1)) (6.2.3)

able choice of renormalization scheme.

The replica space matches the original space, except at the boundary of the entangling
region where there is a conical singularity. To define the renormalization on the replica
space it is therefore natural to work within a renormalization method that works for
generic curvature backgrounds for the quantum field theory.

6.2.1 Direct cutoff: field theory

Consider for example a Euclidean free massive scalar field theory on a background ge-
ometry M of dimension d and let Z(1) be the partition function in the ground state. Us-
ing locality of the quantum field theory and dimensional analysis, the UV divergences in

the partition function behave as
log Z(1) = agVaA? + ag_om?VyAT2 + by_oA972 / deVhR + - (6.2.4)
M

where A is the UV cutoff, V is the volume of the background (Euclidean) geometry, m?
is the mass and R is the Ricci scalar. The coefficients a4, ag—2, bg—2, . . . are dimensionless

and in the above expressions we ignore boundaries of M.

The divergences of the partition function on the replica space Z(n) have exactly the
same structure and coefficients. However, the curvature of the replica space has an

additional term from the conical singularity [121]
Ry =R+ 4n(n —1)6(8%) + O(n — 1)2, (6.2.5)

where §(0Y) is localised on a constant time hypersurface, on the boundary of the en-
tangling region. (Here and in what follows we consider only static situations.) Therefore,
when we use the replica formula (6.2.2) the leading divergences of the partition func-
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tions cancel so that the leading divergence in the entanglement entropy behaves as
Sreg = 47de_2Ad_2/ dd_Qx\Fy 4. (6.2.6)
)y
Such a divergence can clearly be cancelled by the counterterm

Sy = —Amby_oA?2 / A4 2z, /7, (6.2.7)
ox

which is covariantly expressed in terms of the geometry of the entangling region.

6.2.2 Holographic renormalization

In gauge-gravity duality, the defining relation is [19, 13]
Ip = —logZ, (6.2.8)

where If is the on-shell action for the bulk theory dual to the field theory. In the su-
pergravity limit this is given by the on-shell Euclidean Einstein-Hilbert action together

with appropriate matter terms i.e.

1 1
Ip=———— [ q™! c) = / d?2vVh(K + - 6.2.9
F 167TGd+1/ o(R+-) 87Ga+1 Joy, K+, (629

n

where the latter is the usual Gibbons-Hawking-York boundary term. The volume di-
vergences of the bulk gravity action correspond to UV divergences of the dual quan-
tum field theory; these divergences can be removed by appropriately covariant coun-
terterms at the conformal boundary. For example, in the case of asymptotically locally

anti-de Sitter solutions of Einstein gravity the action counterterms are

e 1 d _ R ...
Iy = e /aynd vVh <(d 1) + 2 —7) + ) (6.2.10)

where the ellipses denote terms of higher order in the curvature and logarithmic coun-
terterms arise for d even.

Applying the replica formula to the bulk terms in the action, and using the analogue
of (6.2.5) for the bulk curvature, namely,

R, = R+ 4n(n —1)5(%) (6.2.11)

gives the Ryu-Takayanagi functional for the entanglement functional:

1
g_ / N (6.2.12)
4Ga1 Jx
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Applying the replica formula to the counterterms gives

1
D (sl LA (6213

with the leading counterterm being proportional to the regulated area of the entangling
surface boundary. Analogous expressions for higher derivative gravity and gravity cou-
pled to scalars can be found in Chapter 5.

Using a radial cutoff to regulate is perhaps the most geometrically natural way to renor-
malize the area of the minimal surface but it is not the only holographic renormalization
scheme. Dimensional renormalization for holography was developed in [146] and this
method could be used to renormalize the holographic entanglement entropy.

6.3 AdS entanglement entropy in general dimensions

In this section we derive the renormalized entanglement entropy for a slab domain in

general dimensions. Let us parameterise AdSp42 as

1
ds? = = (dp® — dt* + dz - dap) . (6.3.1)
p
The entangling functional is
1
G / aPavh (6.3.2)
4Gpy2 Jx

We now consider an entangling region in the boundary of width L in the z direction, on
a constant time hypersurface, longitudinal to the other (D — 1) coordinates y*. The bulk

entangling surface is then specified by the hypersurface z(p) minimising

1 - dp | 2
S = /lea/ 1+ (af (6.3.3)
4G py2 Y pP ()

where 2/ = d,z. The equation of motion admits the first integral

2D

/ P
() = D~ ) (6.3.4)

where pg is the turning point of the surface, related to L via
PO Dd
L=2 / e
o ./ p2D — p2D

1 D 1+D
I = on/ & = po (W(QD)> ) (6.3.6)
0

(6.3.5)

or equivalently

I'(3p)
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The regulated on-shell value of the entangling functional is then

V. ro d
Sreg - L / p =5 (637)
2Gpy2 J. pP /1 — fp’TD
0

where V, is the regulated volume of the y“ directions. For D > 0 the only contributing

counterterm is the regulated area of the boundary i.e.

1 _
Sep =—————————— / dab-1 \/ﬁ (6.3.8)
ot 4(D - 1)Gpy2 Jos

(where we assume that D # 1) and therefore

V. PO dp 1
Sren - L / - — s (639)
2GD+2 € pD 1— Zgg (D — I)GD 1

which can be rewritten in terms of dimensionless quantities as

V. 1 dx 1
Sren = Y |:/ - = . (6310)
2Gpyopy "t e aPV1—a2D (D —1)eP7!

This can be evaluated to give

Sten = - (6.3.1)

and hence

D
_ vy 2Vl (55 + 5)
Sren - _4(D — 1)GLD71 ( (6312)

In the case of D = 1(AdS3) the entangling functional is logarithmically divergent, and the
renormalized entanglement entropy depends explicitly on the renormalization scale:

for a single interval

1 2

ren — —1 — ] 6.3.13
o 2G30g<#> ( )

where 1 is the (dimensionless) renormalization scale.

6.4 Non-conformal branes

In this section we will consider entangling surfaces in Dp-brane and fundamental string
backgrounds. It is convenient to express these backgrounds in the so-called dual frame

in ten dimensions as [147]

N2
(2m) '

/ dzVGNY e (R(G) + B(0¢)? — ngpy?) (6.4.1)

Iip = —
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where the constants (3, y) are given below for Dp-branes and fundamental strings re-
spectively. (Note that it is convenient to express the field strength magnetically, so for

p < 3weuse Fyo = *Fg_p)

The field equations admit AdS,+2 x S®7P solutions with a linear dilaton. The field equa-
tions following from the action above can be reduced over a sphere, truncating to a

(p + 2)-dimensional metric and scalar. The resulting action is then

Iijn=-N / Atz /ger? (R + B(0¢)* + C) (6.4.2)

where d = p+ 1 and the constants (N, 3, v, C') depend on the type of brane under con-
sideration.

For Dp-branes

2(p—3) 4(p—1)(p—4)
v = f=—"5" (6.4.3)
(7—p) (7 —p)?
O w N = 5, N5 203/
(5-p)
where -
22<§f54) (5 — p)%wgr (%) »—5
8y = (6.4.4)

()

and g2 is the dimensionful coupling of the dual field theory, which is related to the string
coupling by

p—3

93 = gs(2m)P (/) 2 . (6.4.5)

At any length scale [ there is an effective dimensionless coupling constant

ge(l) = ggNIP (6.4.6)
For the fundamental string
30 N1/2
2 gsNz2(d)
= -, = C = 07 N - — (64.7)
V=3 B i
and the dimensionful coupling is
1
2 _
SO
N:
(6.4.9)
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In all cases, the dual frame is chosen such that the equations of motion admit an AdS;+1
solution: )
ds? = ? (dp2 +dzx - d:cd) , e? = pza (6.4.10)

where the constant « again depends on the case of interest: for Dp-branes

a:_@;DQ;Q (6.4.11)

Ap - 5)
while a = —3/4 for fundamental strings. In general the equations admit an AdS solution

with linear dilaton provided that the parameters are related as

g1 o = [0 = B) +7")(d(r* — B) + B)
S :

, 6.4.12
207~ ) o= B) 6412

For further discussion of this point, see [142].

The non-conformal branes are formally related to AdS gravity in the following way. Let

us define a parameter o as

d
o= 5 ay. (6.4.13)
Now we consider (20 +1)-dimensional gravity with cosmological constant A = —o (20 —
1), so that the action is
Q%HJ:_NAE/d%“mAMWMR%H+aa@a—ny (6.4.14)

Reducing on a (20 — d)-dimensional torus with coordinates z¢ via a diagonal reduction

ansatz
279

ds? = ds3, (z) + exp ((20 —0

> dz%dz, (6.4.15)

results in the action (6.4.2) where

N = NAdSV(QU—d)a (6.4.16)
with V(55_g) the volume of the compactification torus.
6.4.1 Entanglement functional and surfaces

The entanglement functional follows from the replica trick: in the dual frame

S = 471'/\// d? eV he?? (6.4.17)
>
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The equations for the entangling surface can be expressed geometrically as
K =7 (0o — W 0;XP0; X" g 0pp) = 0 (6.4.18)

where g, is the background metric, h;; is the induced metric on the entangling surface,
X™(x') specifies the embedding of the entangling surface into the background and K,
are the associated traces of the extrinsic curvatures.

The dual frame entanglement functional follows directly from the reduction of the pure

gravity entanglement functional

S = 47 Nags / d*~'zvH, (6.4.19)
Y201

when one again uses the diagonal reduction ansatz (6.4.15), and assumes that the entan-

gling surface wraps the torus and that the shape of the surface does not vary along the

torus directions. In the upstairs picture the entangling surface satisfies
Ky =0, (6.4.20)

where the background metric is now denoted g(2,4+1)nn and Kys denotes the traces of
the extrinsic curvatures. Thus, any AdS entangling surface which factorises as 9,1 =
T(20=d) » 5> will give an entangling surface for non-conformal branes; moreover, the
non-conformal brane surface will inherit its renormalized entanglement entropy from

the upstairs entangling surface.

As an example, let us consider slab entangling regions, characterised by a width Az =

L. The bulk entangling surface is specified as z(p) and in the background (6.4.10) the

dp 2
S = 47TNVy / F 1 + (x/) 5 (6421)

which is indeed precisely the functional obtained in (6.3.3), identifying D = (20 — 1).

entangling functional is

The renormalized entanglement entropy can then be expressed as

Sren = — (6.4.22)

20—1
2rN'V, (2\/7?F(2(201_1)+§)>
1)

(0 —1)L2=1) F(2(20'—1)

The renormalized entanglement entropy for a strip in the F1 background can be ex-

pressed as

Sren = — (6.4.23)
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where the effective coupling is expressed as gZ;(L) = g7NL?. The expression for the

renormalized entanglement entropy of a strip in the D1 background is analogous:

(6.4.24)

6.4.2 Witten model

The Witten [148] model for 4-dimensional Yang-Mills can be expressed in terms of the
following six-dimensional background:

dp?

1 1
ds? = ——— + = (—=dt®* + dz - dzs + f(p)dr?), e® = =, (6.4.25)
P f(p)  p? ( (p)d") 3
where
P
flp) = (1 - ) : (6.4.26)
PrK
Regularity of the geometry requires that the circle direction 7 must have periodicity
2
L, = %,;KK. (6.4.27)

This model originates from D4-branes wrapping the circle 7 with anti-periodic bound-
ary conditions for the fermions which breaks the supersymmetry. At low energies the
model resembles a four-dimensional gauge theory, with the gauge coupling being ¢? =
g2/L.. The gravity solution captures the behaviour of this theory in the limit of large 't
Hooft coupling A2 = ¢ N > 1.

One of the main applications of this model is in the context of flavour physics: Sakai
and Sugimoto [149, 150] introduced D8-branes wrapped around the S$* on which the
theory is reduced from ten to six dimensions. These D8-branes model chiral flavours in
the dual gauge theory and the resulting Witten-Sakai-Sugimoto model has been used
extensively as a simple holographic model of a non-supersymmetric gauge theory with
flavours.

The operator content of the dual theory captured by the metric and scalar field is the
four-dimensional stress energy tensor 1, a scalar operator O, corresponding to the
component of the five-dimensional stress energy tensor 7, and the gluon operator O

corresponding to the bulk scalar field. These operators satisfy a Ward identity

(T9) + (O;) + ;2<o> —0 (6.4.28)

and their expectation values can be extracted from the above geometry. For example,
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the condensate of the gluon operator

_ 272 X°N

(0) = =7 Nz (6.4.29)

and therefore L, controls the QCD scale of the theory.

Next we can consider a slab entangling region, wrapping the circle direction 7, charac-
terised by a width Az = L. Entanglement entropy in this theory was previously dis-
cussed in [119], with the confinement transition being associated with a discontinuity in

the derivative of the entanglement entropy with respect to L. The bare entanglement

S = 4NV, L, / Cplfm + fp)(z')? (6.4.30)

where V4 is the volume of the two-dimensional cross-section of the slab. The entangle-

functional is

ment entropy can then be written as

S =STNVL, [ S8V 14 F0)@? (6431

where p, is the turning point of the surface, related to the width of the entangling region
as

1

L =2pxx / Cdv _ (6.4.32)
’ $ (5fs - 1)

where p = pxiv. This can be renormalized as before, with the counterterm contribu-

tions being

L,
Set = —2TNVa=T. (6.4.33)
€

For large entangling regions, the only possible entangling surface is the disconnected

configuration, for which the renormalized entanglement entropy is

PKK d 1
Sren = 8TNVaL, ( / L 4> (6.4.34)
. p 4e
B _47r2./\f Va
3 Pk

For small entangling regions the condensate is negligible and the renormalized entan-

glement entropy is controlled by the conformal structure

Sren ~

27T (3/5)\° VoL,
—m\/< ot ) = (6.4.35

The renormalized entaglement entropy is plotted in Figure 6.4.1. As discussed in [119]
there is a discontinuity in the derivative of the entanglement entropy for slab widths
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Figure 6.4.1: The renormalized entanglement entropy for the Witten model. The solid
blue and orange lines indicate the renormalized entropy for the two possible connected
minimal surfaces. The dotted line denotes the disconnected solution.

around L ~ 0.4pgg. For larger values of L the entanglement entropy saturates at a

constant value.

6.5 Renormalized entanglement entropy along RG flows

In this section we will consider holographic entanglement entropy in geometries dual

to RG flows. We work in Euclidean signature with a bulk action

_ v faan IR
I= e /d /g <R 5 (09)° + V(gb)) . (6.5.1)
Holographic RG flows with flat radial slices can be expressed as
ds? = dr® 4 exp(2A(r))dz'dz;, (6.5.2)

where the warp factor A(r) is related to a radial scalar field profile ¢(r) via the equations

d2¢ dA\ (do\ = dV A 1 do\?
oL a(B) (L)t AL (Y ey

of motion
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These equations can always be expressed as first order equations

dA dp AW
=W o =2d- 1) i (6.5.4)

where the superpotential W (¢) is related to the potential as

2
V=-(d-1)7 <2<dW> - dflw2> . (6.5.5)

Near the conformal boundary the potential can be expanded in powers of the scalar
field as

1
V=dd-1)— §m2¢2 N (6.5.6)
and hence the superpotential can be written as

(d—A4)

2
4(d_1)¢ N (6.5.7)

W=1+

where A = d/2 + v/d? + 4m?/2. The higher order terms in the superpotential are not
unique, as different choices are associated with different RG flows.

Note that for flat domain walls, a single counterterm (in addition to the usual Gibbons-

Hawking term) is sufficient

(d—l)/ d
T = — W, 5
o (6.5.8)

although the derivation of the entanglement entropy counterterms requires knowledge
of the counterterms for a curved background (since the replica space is curved).

The entanglement entropy for a slab region Az = L in the RG flow geometry is
Vy (D-1)A(r) 24 2
S = 1 dre 1+ e240) (2)*, (6.5.9)

where D is the number of spatial directions in the dual theory, V,, is the regulated volume
of the longitudinal directions and z(r) defines the entangling surface. Then

o) DAOd
IL—9 / ¢ dar : (6.5.10)
ro eAlr)/e2DA(r) — ¢2DAo

where at the turning point ry of the surface A(r) = Aj. The regulated on-shell action is

. v, [ o(2D—-1)A(r)

= —= d S
e 2G T\/esz(r)_eszo’ (6.51)

with the cutoff being r = A.
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The entanglement entropy counterterms for RG flows driven by relevant deformations
were discussed in Chapter 5, working perturbatively in the deformation. Here we will
analyse both spontaneous and explicit symmetry breaking, using exact supergravity so-

lutions.

6.5.1 Spontaneous symmetry breaking: Coulomb branch of N/ = 4 SYM

In this section we consider the case of VEV driven flow, i.e. spontaneous symmetry
breaking. In such a situation, the scalar field has only normalizable modes and thus
asymptotically the scalar field behaves as

¢ — dye N+ (6.5.12)
where ¢(q) is related to the operator expectation value as
(0) = —(2A = d)¢ ). (6.5.13)

From (6.5.4) and (6.5.7), one can immediately read off the asymptotic form of the warp

factor:
(d—A)

Al == A=)

¢§0)e—2m 4+ (6.5.14)

Substituting into the regulated action, we then obtain

Sreg =

V, [eld=2A (d—A)
(d—2) 4A(d—1)(d—2—2A)

Y — (d=2-2A)A o .
5G e + > (6.5.15)

The second term vanishes as A — oo for A > (d — 2)/2, and is logarithmically divergent
for A = (d — 2)/2. (The latter case does not however arise holographically, as when the
lower bound on the conformal dimension is saturated the operator automatically obeys
free field equations.) Therefore, for VEV driven flows the only counterterm required is
the regulated area of the boundary of the entangling surface:

1
St =———+——= [ d"2aVh. 6.5.16

ST S (6510

Note that one can derive the same result from the bulk action counterterms, using the
replica trick; see below for the case of the Coulomb branch of ' = 4 SYM. Thus the

renormalized entanglement entropy for slabs in VEV driven flows is

Sren =

e (6.5.17)

d
"o " Ve2DA(r) _ 204y (d —2)

v, < A e(2D—1)A(r) 6(d2)A>
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Now let us consider the general structure of the renormalized entropy. In the vacuum

of the conformal field theory, the renormalized entropy must behave as

v

Sren = O GT T (6.5.18)

with ¢y a dimensionless constant on dimensional grounds: the entropy scales with the
longitudinal volume V,, and the width of the entangling region L is the only other dimen-

sionful scale in the problem. The value of ¢y in holographic theories is given in (6.3.12).

Now working perturbatively in the operator expectation value (O) the renormalized en-

tropy must behave as

Sren (co+c1(O)2L*A +-.) (6.5.19)

_ Y
- GLDP-1

where ¢; is dimensionless and we work in a limit in which

(0) < LLA (65.20)

i.e. the width of the entangling region is much smaller than the length scale set by the

condensate.

6.5.1.1 Coulomb branch disk distribution

We now analyse a specific example: the renormalized entanglement entropy of slab do-
mains on the Coulomb branch of N' = 4 SYM. We consider the case of a disk distribution
of branes preserving SO(4) x SO(2) symmetry, for which the equations of motion follow
from (6.5.1), with the superpotential being [151]

W(e¢) = %exp (3%) + %exp (—3%) (6.5.21)

The metric in five-dimensional gauged supergravity is then

d 2
ds® = \2w? <)\61f1)4 +dzx - da:) (6.5.22)
with )
26— (1 + 02> . (6.5.23)
w

Here the coordinate w — oo at the conformal boundary and o characterises the expec-

tation value of the dual scalar operator. The scalar field can be expressed by the relation

2
2 e\/gqﬁ

o T A2w?. (6.5.24)
— e
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Using the standard Fefferman-Graham coordinates near the conformal boundary:

1 1 1 1
ds? = ?dp2 + e (1 - E04P4 + - ) dz - dz, ¢ = %0202 + (6.5.25)

We can then read off the expectation values of the dual stress energy tensor and scalar

operator, following [152, 153]:

N2
T;:) =0 0) = o? (6.5.26)
T)=0  (©)= 7
where we use the standard relation between the Newton constant and the rank of the
dual gauge theory:
LN 6.5.27)
167Gs  2m2’ -

The vanishing of the dual stress energy tensor is required given the supersymmetry but

careful holographic renormalization is required to derive this answer.

The regulated entanglement entropy of a slab domain in this geometry can be written

Using the first integral of the equations of motion the width of the entangling region can
be expressed in terms of the turning point of the surface wy as

b cdw
L= 2/11}0 RETEN e (6.5.29)

where c is an integration constant and wy satisfies

wa(o® + wd) = . (6.5.30)

The regulated entanglement entropy is then

Vo (A w3vVw? + o2
— dw
2G5 Juy,  Jwt(w? + 02) — 2

Sreg = (6.5.31)

and the required counterterm is expressed in terms of the regulated area of the bound-
ary of the entangling surface i.e. there are counterterm contributions

. VQ 2 0'2 3
S = —ggA (1 + A2> (6.5.32)

ateach side of the slab. (The total contribution is therefore twice this value.) Note that the

counterterms in this case clearly contribute both divergent and finite parts: expanding
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in powers of the cutoff A

‘/QAQ ‘/2 2

N e (6.5.33)

Sct =

It is then convenient to write the entanglement entropy in terms of dimensionless quan-

tities as
2 A
Ve -
S = 277 lim dy yvy - g ~A-Z), (6.5.34)
4G5 Rsoo \Jyo  VY2(y+1) —y3(yo + 1) 3

where A is a rescaled dimensionless cutoff. Implicitly this expression assumes that
02 # 0 and yp is the turning point of the surface. Then

(6.5.35)

oL =yo\/yo+1

vo YWDV +1)—ydy+1)

These integrals can be computed numerically. There is a maximal value of L (for fixed

o) for which a connected entangling surface exists: the critical value of L is such that
0Lt = 1.5708. (6.5.36)

For L > L there is no connected entangling surface but the disconnected entangling
surface consisting of two components z = —L/2 and « = L/2 still exists. For the latter
one can straightforwardly calculate the renormalized entanglement entropy as

Voo

Sren = — 12G: (6.5.37)

The renormalized entanglement entropy is plotted in Figure 6.5.1: it is continuous at L =
Leyit, and saturates for L > L. For small values of L, the analytic expressions (6.5.19) is
valid:

2
Va 2/a0(3)\ " 1
Seen = — | — 3 Cio*L? + . 6.5.38
and the constant C; can be determined as:
Ci ~ —0.03137 (6.5.39)

6.5.1.2 Coulomb branch spherical distribution

We now consider the renormalized entanglement entropy of slab domains on the Coul-
omb branch of N/ = 4 SYM for the case of a spherical distribution of branes, preserving
SO(4) x SO(2) symmetry. The equations of motion follow from (6.5.1), with the super-
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Figure 6.5.1: The renormalized entropy for Coulomb branch disk distribution. The blue
line shows the numerical results for a cut-off of A = 109, the dotted red line shows the
small o L fit of equation (6.5.38), the dashed yellow line shows the value of the renormal-
ized entropy for disconnected surfaces.

potential being [151]

2 2\ 1 46 >
W) = Zexo [ 22 + Lexp (22 (6.5.40)
@ =50 (-35) * 5o (1
The metric in five-dimensional gauged supergravity is then
2 2, o dw?
ds® = A\ w o +dx - dx (6.5.41)
with
. 0'2
A = (1 — 2) . (6.5.42)
w

Here the coordinate w — oo at the conformal boundary and o characterises the expec-
tation value of the dual scalar operator. The scalar field can be expressed by the relation

2
~ 2
NG
—_— e_

Using the standard Fefferman-Graham coordinates near the conformal boundary:

1 1 1 1
ds? = ﬁdp2 + e <1 - E04p4 + - > dx - dz, o= %Usz +oee (6.5.44)

We can then read off the expectation values of the dual stress energy tensor and scalar
operator, following [152, 153]:

(6.5.45)
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where we use the standard relation between the Newton constant and the rank of the
dual gauge theory:
1 N?

167G 37 (6.5.46)

The vanishing of the dual stress energy tensor is required given the supersymmetry but

again careful holographic renormalization is required to derive this answer.

The regulated entanglement entropy is then

Vs A w3vVw? — o2

Sre = 3~ d
® 2G5 i, w\/w4(w2—02)—c2

(6.5.47)

and the required counterterm is expressed in terms of the regulated area of the bound-
ary of the entangling surface i.e. there are counterterm contributions

1
Va o o2\ 3
b= —— A1 6.5.48
St = 50 ( A2> (6.548)

ateach side of the slab. (The total contribution is therefore twice this value.) Note that the
counterterms in this case clearly contribute both divergent and finite parts: expanding

in powers of the cutoff A

Ve o
8Gs 24G5

24 ... (6.5.49)

It is then convenient to write the entanglement entropy in terms of dimensionless quan-

tities as

Vo2 A 21 T
Sren = 270— NliIIl dy IvYy 5 —A +=1, (6550)
4G5 Asoo \Jyo  VY2(y—1) — 3 (yo — 1) 3

where A is a rescaled dimensionless cutoff. Implicitly this expression assumes that o2 #

0 and g is the turning point of the surface. Then

o0 d
oL = yo/yo — 1 / Y (6.5.51)
Yo y\/

(y—DVe2y—1) —y3(yo — 1)

These integrals can again be computed numerically. As in the previous case, for fixed

o there is a maximal value of L for which a connected entangling surface exists. The
critical value is
0 Lyt = 0.8317 (6.5.52)

For lengths grater than the critical length, the minimal surface is disconnected and the
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renormalized entanglement entropy can be calculated analytically as

V20'2

Sren = - 6G5 .

(6.5.53)

For sub-critical values, there are two possible surfaces with turning points y for each
width L and one must choose the surface for which the renormalized area is min-
imised. These two different turning points can be categorised as either yo < yo crit Or
Yo > Yo,crit Where yg rir is some critical value where only one solution exists. In all cases
the yo > yo crit branch is preferred, which corresponds to entnagling surfaces that can

get arbitrarily close to the conformal boundary y — occ.

The renormalized entanglement entropy is plotted in Figure 6.5.2. There is a phase tran-
sition between the connected and disconnected entangling surfaces at L. such that

oL:.~0.75 (6.5.54)

ie. L. < Leit, and the entanglement entropy is saturated for L > L.. In the regime of

small L the analytic expressions (6.5.19) are valid:

2
Va 2703\ 1
Sien = — | —| =2 | —5 + C1o' L%+ --- 6.5.55
G- ( o0 gz T L+ ( )
where the constant C; can be determined as:
C1 ~ —0.03167 (6.5.56)

6.5.2 Operator driven RG flow

In this section we consider the case of an operator driven RG flow, the GPPZ flow [154].

The equations of motion again follow from (6.5.1), with the superpotential being

W(g) = % <1 + cosh (fj;:)) 65.57)

The metric can be expressed as

dp? 1
ds? = p—g + ?(1 — 12p?)dzx - dx (6.5.58)

while the scalar field is given by

o= (6.5.59)

\/glog(l—i_up)

2 1—pp
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Figure 6.5.2: The renormalized entropy for Coulomb branch sphere distribution. The
solid blue and solid orange lines indicate the renormalized entanglement entropy for
the two possible connected minimal surfaces. The dashed orange line indicates the en-
tanglement entropy for the disconnected surface. The dotted red line shows the small
oL fit of equation (6.5.55).

The scalar ¢ is dual to a dimension three operator. By expanding near the conformal
boundary and using the holographic renormalization dictionary, [152, 153] showed that
the GPPZ solution is dual to a deformation (proportional to u) of N' = 4 SYM by the
dimension three scalar operator, with the expectation values of the operators being

(Tij) = (0) = 0. (6.5.60)
The vanishing stress energy tensor is required by supersymmetry.

Now let us consider the renormalized entanglement entropy of a strip region in this

geometry. The entanglement entropy can be expressed as

1% (1—p*p?) ,
S = 2G25 /dp p \/1 + (1 — p2p?)(2!)? (6.5.61)

The overall dependence on the deformation i can be scaled out to give

Vop? (1—v%)
S = ;%./dv = ’¢1+(1—U%@%XF (6.5.62)

where v = up and X = pz. Then the entangling surface of width L satisfies

v3

vo
ul = 2)\/ dv
0 \/(1 —2)t — 0OA2(1 — 02)

(6.5.63)
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where the integration constant A is related to the turning point of the surface vy by

3/2

a2
Ao G (6.5.64)
g

As in the previous cases there is a phase transition between a connected solution for

uL < pLerir and a disconnected solution for L > Lt where
Lerir = 0.3008. (6.5.65)

For uL > Lt the renormalized entanglement entropy can be calculated analytically:

Vop? ([t 1—0? 1
Sren, = lim 21 </ dv 3U —— +1-2log e> =0. (6.5.66)
e—0 5 € v €

The regulated entanglement entropy is then

Vsl [, )"
2G5 Je 1;3\/(1 —2)3 B2

Sreg = (6.5.67)

The counterterms for the entanglement entropy can be derived from the bulk action
counterterms using the replica trick:

St = ——— / v/ (1 424 log(e)) (6.5.68)
8Gs Jos, 3

where the cutoff in the p coordinates is ¢ = ¢/u. Evaluating this counterterm gives a
contribution from each endpoint of the strip:

Vo 1
Sep = TeA (62 — 1+ 2log e> , (6.5.69)

which indeed matches the regulated divergences of (6.5.67). Thus the total renormalized

entropy is

2 v 1— %)™ 11
Sren = Vap lim 2/ dv ( Y ) ~ 53 + — —loge | . (6.5.70)
€ v3\/(1—v2)3 — ub6)\2 2¢ 2

These integrals can once again be evaluated numerically, the results of which are plotted
in Figure 6.5.3. As in the case of the spherical brane distribution there are two possible
turning points for a given length L < Lcj; and the branch with vy < vg it is preferred.

The entropy is strictly positive for uL. S uLcrit and so, like in the previous case, there is
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Figure 6.5.3: The renormalized entropy for the GPPZ flow. The solid blue line and solid
orange lines indicate the renormalized entropy for the two possible connected minimal
surfaces.

a phase transition between the connected and disconnected surface at around

il ~ 0.275 < pLcrit. (6.5.71)

6.6 Conclusions and outlook

In this chapter we have ivestigated a number of examples of the holographic renormal-
ization scheme for the entanglement entropy introduced in Chapter 5. We have demon-
strated that this method allows one to extract the scheme independent contributions to
the entanglement entropy both analytically and numerically in a range of holographic
models.

In the three RG flow models we investigated we discovered that the covariant countert-
erm action contained finite contributions. These contributions indicate that the renor-
malization is non-trivial and that naive subtraction is not an appropriate scheme for the
entanglement entropy. These finite contributions to the renormalized entanglement
entropy appeared regardless of the existence of wholly finite counterterms which cap-
ture the scheme dependence, which we did not investigate in this work.

We confirmed the ability of the renormalized entanglement entropy to probe both the
UV and IR of the dual theory by choosing an appropriate entangling surface. The inves-
tigation above focussed solely on infinite strip entangling regions where only one length
scale is being probed. It would be interesting to understand how different entangling
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regions can be used to probe different aspects of the RG flow, and what this can tell us
about the dual theory.

In all of the examples considered in this chapter the renormalized entanglement entropy
was found to be non-positive, a continuation of the trend that was seen in the analytic
examples studied in Chapter 5. It is important to understand the significance of this and
whether it is a robust feature of the renormalized entanglement entropy or if it is just an
artefact of the entangling surfaces and models we have chosen to investigate.
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