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ABSTRACT 
 

The Ffowcs-Williams and Hawkings (FW-H) equation is widely used to predict sound generated from flow 

and its interaction with impermeable or permeable surfaces. Owing to the Heaviside function used, this 

equation assumes that sound only propagates outside the surface. In this paper, we develop a generalized 

acoustic analogy to account for sound generation and propagation both inside and outside the surface. The 

developed wave equation provides an efficient mathematical approach to predict sound generated from 

multiphase or multicomponent flow and its interaction with solid boundaries. The developed wave equation 

also clearly interprets the physical mechanisms of sound generation, emphasizing that the monopole and 

dipole sources are dependent on the jump of physical quantities across the interface of multiphase or 

multicomponent flow rather than the physical quantities on one-side surface expressed in the FW-H 

equation. Sound generated from gas bubbles in water is analyzed by the newly developed wave equation to 

investigate parameters affecting the acoustic power output, showing that the acoustic power feature 

concluded from the Crighton and Ffowcs-Williams equation is only valid in a specific case of all bubbles 

oscillating in phase. 
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1 Introduction 

The acoustic analogy proposed by Lighthill [1] is widely used to analyze sound 

generated from unbounded turbulence. Further developments have extended its 

applications in various engineering problems. An extension of the Lighthill’s acoustic 

analogy is to predict sound generated from turbulence and its interaction with solid 

surfaces or other mediums. Curle [2] and Ffowcs Williams and Hawkings (FW-H) [3] 

developed the Lighthill’s acoustic analogy to consider the effect of solid bodies immersed 

in turbulent flow on sound generation and propagation. An impermeable data surface was 

used to describe the fluid-solid interface in the equations, and the effect of the solid body 

on sound radiation was equivalently expressed by the monopole and dipole sources on 

the solid surface. After that, the FW-H equation was extended to a more comprehensive 

version with a permeable data surface [4, 5]. In most cases, the permeable FW-H 

equation is computationally more efficient than the impermeable FW-H equation to 

predict the flow induced noise because the sound generated by all the sources inside the 

permeable data surface, including the volume quadrupole source, can be equivalently 

represented by the monopole and dipole sources on the permeable data surface. Therefore, 

sound radiated to the farfield can be calculated without performing any volume 

integration if the quadrupole sources outside the permeable date surface can be ignored. 

Multiphase and multicomponent flows occur in various engineering fields. Crighton 

and Ffowcs Williams (C-FW) [6] developed the Lighthill’s acoustic analogy to analyze 

the sound generated from multiphase/multicomponent flow (MMF) by using a volume-

averaged method to describe the macroscopic properties of the MMF. In the C-FW 

equation, the effect of the dispersed phase (e.g. gas bubble) on the sound generated from 
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the continuous phase (e.g. water) is also represented by monopole and dipole sources. 

However, it should be emphasized that the monopole and dipole sources in the C-FW 

equation are volume sources rather than surface sources as in the FW-H equation. Howe 

[7] developed an alternative formulation of the Lighthill’s acoustic analogy, in which the 

specific stagnation enthalpy was used as the acoustic variable and acoustic sources were 

related to the vorticity and entropy gradient. He used this formulation to analyze sound 

generated from a specific multicomponent flow, i.e., entropy spots in ambient flow, 

where the density was discontinuous but the pressure was continuous across the surface 

enclosing the entropy spot. The result showed that the entropy spot was equivalent to a 

dipole surface source whose strength was related to the density difference across the 

surface. Note that, in the Howe’s equation, the fluid in both the continuous and dispersed 

phases is restricted to ideal gas because the perfect gas state equation was used to 

describe the thermodynamic relationship among the enthalpy, pressure and density. 

Furthermore, Campos [8] extended the Howe’s formulation to study sound generated by 

an ionized inhomogeneity.  

The FW-H equation is also applicable for predicting sound generated from MMF, 

where the monopole and dipole sources in the impermeable FW-H equation are related to 

mass flow rate and the force on the phase/component interface (PCI), respectively. 

However, the impermeable FW-H equation is only applicable to analyze sound generated 

from flow and its interaction with solid surfaces, which implies that the dispersed phase 

immersed in fluid must be in a solid object. On the other hand, if all the dispersed phase 

is enclosed by a permeable data surface, the permeable FW-H equation can also be used 
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to predict sound generated from MMF, regardless of the dispersed phase being solid or 

fluid.  

Compared with the impermeable FW-H equation, the C-FW and the permeable FW-H 

equations have no restriction on the state of the dispersed phase, thus they can be used to 

predict sound generated from fluid-solid two-phase flow, and also from gas-liquid two-

phase flow. However, the volume-averaging method used in the C-FW equation only 

provides information of the macroscopic flow quantities, therefore cannot describe the 

detailed flow around the PCI. The permeable FW-H equation does not explicitly account 

for the dispersed phase in source terms. Therefore, these two equations are not best 

placed in analyzing the effect of the parameters related to the PCI, such as its shape and 

velocity, on the sound radiation.  

Since some physical parameters, such as density, are discontinuous across the PCI, the 

PCI is usually modeled via a boundary condition in fluid mechanics. In the FW-H 

equation, a generalized function, i.e. the Heaviside function ( )H f , is used to describe the 

discontinuity across the PCI, where 0f   defines the data surface [5, 9]. With the help of 

the Heaviside function, the generalized continuity and momentum equations, which are 

valid throughout the entire fluid and solid regions, can be derived. However, the FW-H 

equation, with either an impermeable or a permeable data surface, only deals with the 

sound generated from an elastic medium and its interaction with a rigid medium because 

the Heaviside function forces all parameters inside the data surface to constants. 

Therefore, the FW-H equation implies that no sound propagates inside the date surface.  

For a gas-liquid two-phase flow, the mediums on both sides of the PCI are elastic, and 

sound synchronously generates and propagates in both mediums. These acoustic 
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phenomena widely exist, such as sound generated from ocean surface, and are of great 

interest to many engineering applications, such as bubble noise in water. Obviously, the 

Heaviside function used in the FW-H equation needs to be replaced by another 

generalized function to describe the discontinuity on the gas-liquid interface to consider 

the acoustic field inside the data surface.  

This paper aims to develop a generalized acoustic analogy for analyzing sound 

generation and propagation inside and outside the surfaces. The developed wave equation 

extends the FW-H equation to make it capable of analyzing sound generated from MMF. 

Compared with the C-FW equation, the developed wave equation provides a more 

efficient mathematical approach for predicting sound propagation, and also a clear way to 

interpret the physical mechanisms of sound generation in MMF. The remainder of this 

paper is organized as follows. In Section 2, some acoustic analogies are reviewed for 

predicting the sound generated from MMF. Following the derivation of the FW-H 

equation but without assuming that the medium inside the PCI is rigid, we derive a set of 

generalized continuity and momentum equations with a new generalized function for the 

PCI and the corresponding wave equation in Section 3. In Section 4, further extensions of 

the developed wave equation are conducted to consider effects of solid surfaces and 

uniform mean flow on sound generated from MMF. Section 5 applies the developed 

acoustic analogy to calculate sound generated from pulsating gas bubbles immersed in 

water and to analyze the parameters affecting the acoustic power output. Section 6 

presents conclusions from this work. 

2 Review of acoustic analogies  

2.1  Lighthill’s equation 
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The continuity and momentum equations describing the motion of viscous 

compressible fluid are as follows: 
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where   is the density of the fluid; iu  is the component of flow velocity in the ith 

coordinate direction xi; p  is the static pressure; 
ij  is the viscous stress tensor; 

ij  is the 

Kronecker delta function. 

Starting from Eqs. (1) and (2) and assuming that the acoustic medium is at rest, 

Lighthill [1] derived the following wave equation by performing the temporal derivative 

over Eq. (1) and the spatial derivative over Eq. (2) and then eliminating terms related to 
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where 0c  is the speed of sound in the quiescent medium. Eq. (3) is the well-known 

Lighthill’s acoustic analogy, which describes sound generation and propagation in 

unbounded flow. The source term on the right-hand side (RHS) of Eq. (3) is known as 

quadrupole source, representing the acoustic contribution from the fluctuations of fluid.  
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2.2  C-FW equation 

A volume-averaging method was employed by Crighton and Ffowcs Williams [3] to 

describe a two-phase flow and this method is still widely used for MMF. Assuming that 

  and   are the densities of the continuous phase and dispersed phase, respectively, the 

macroscopic density of the two-phase fluid is represented by 

 = +(1 )     (5) 

where   and 1   are the bulk concentrations of the dispersed phase and the continuous 

phase, respectively. With this definition, the continuity and momentum equations of the 

continuous phase can be expressed as 
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where iF  denotes the component of the interphase force in the ith direction. By starting 

from Eqs. (6) and (7) and following the derivation of the Lighthill’s equation, the 

following C-FW equation can be obtained: 
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with 
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In Eq. (10), the quadrupole source 
ijT  given in Eq. (11), which has a subtle difference 

from the Lighthill’s quadrupole source given in Eq. (4), represents the acoustic 

contribution from the continuous phase. The monopole source Q  given in Eq. (8) and the 

dipole source iL  given in Eq. (9) are the additional sources to represent the effect of the 

dispersed phase on sound generation. Note that the monopole and dipole sources in Eq. 

(10) are volume sources, which are computationally more time-consuming than the 

surface monopole and dipole sources in the FW-H equation. The C-FW equation only 

employs a parameter, the bulk concentration  , to characterize the bulk fluid parameters 

on MMF. This macroscopic model does not describe the intrinsic flow of each phase, 

thus could not account for the effects of variations in the PCI on sound radiation. 

2.3  FW-H equation 

It is assumed that 0f   defines a data surface, and 0f   and 0f   represent the 

regions outside and inside the data surface, respectively. It should be noted that the only 

restriction placed on the data surface 0f   is smoothness, it can move in an arbitrary 

fashion, and change its shape and orientation [3]. To simplify the derivation of the wave 

equation, it is reasonable to assume 1f   because all terms associated with these 
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derivatives will cancel exactly in the final result [9]. Under this assumption, we can 

obtain the following identities: 

 
i if x n    (12) 

 nf t v     (13) 

where in  is the component of the unit normal vector on the data surface 0f   in the ith 

direction, nv  is the component of the data surface velocity normal to the surface. 

The discontinuity on the data surface can be represented by a Heaviside function 

defined as 
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With this definition, generalized continuity and momentum equations can be derived as 

follows: 
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By performing temporal derivative over Eq. (15) and subtracting the spatial derivative of 

Eq. (16) to eliminate the terms related to ( ) iH f u , one can deduce the following FW-H 

equation: 
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where 0      is the density perturbation. Although the quadrupole source expression 

given in Eq. (20) is slightly different from that in Eq. (4), but they are actually equivalent 

as the density 0  and the sound speed 0c  for the undisturbed homogeneous fluid are 

constants. The monopole source Q  and the dipole source iL  in the FW-H equation (19) 

are given in Eqs. (17) and (18), respectively. It is worth pointing out that the Dirac delta 

function ( )f  in the monopole and dipole sources in the above FW-H equation limits the 

sources to the data surface only, which is different from the C-FW equation, where the 

monopole and dipole sources are volume sources. Moreover, the Heaviside function 

( )H f  combined with the quadrupole source and the wave operator indicates that the 

quadupole source only exists and sound can only propagate outside the data surface. 

When the data surface coincides with the solid surface, the corresponding 

impermeable FW-H equation is only suitable for predicting sound generated from MMF 

with a solid dispersed phase. Sound generated from gas-liquid two-phase flow can be 

predicted with the permeable FW-H equation, however only for propagation outside the 

data surface. Moreover, effects of the gas-liquid interface on sound generation cannot be 

considered as the permeable data surface is required to include all interfaces.  

Based on the above analysis, both the C-FW and the FW-H equations have pros and 

cons in predicting sound generated from MMF. The C-FW equation and the permeable 
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FW-H equation do not limit the state of the dispersed phase, but it is difficult to analyze 

the effect of the PCI on sound generation. Moreover, the C-FW equation is usually 

computationally inefficient because volume integrals are required to calculate sound 

radiated from monopole and dipole sources. The impermeable FW-H equation has an 

advantage in analyzing the mechanics of sound generation, but it is only suitable for the 

MMF with a solid dispersed phase. Additionally, the FW-H equation, with either a 

permeable data surface or an impermeable data surface, assumes that no sound generates 

and propagates inside the data surface. Therefore, all the wave equations mentioned 

above are not best placed for analyzing sound generated from MMF, it is meaningful to 

develop a generalized wave equation which avoids the above disadvantages and 

combines the merits of the C-FW and FW-H equations.  

2.4  Howe’s equation 

Starting from the continuity and Crocco’s equations, Howe [7] deduced the following 

wave equation to describe sound generated from flow in which vorticity and entropy-

gradient vectors are non-vanishing: 
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where B  is the stagnation enthalpy, ω  is the vorticity vector, T  is the temperature, c  is 

the local speed of sound and S  is the entropy. For mean irrotational flow with low Mach 

numbers, Eq. (21) can reduce to  
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We consider sound radiated from an entropy spot in ambient fluid, where the density is 

discontinuous but the pressure is continuous across the PCI. By assuming that the fluid 

on both sides of the PCI is deal gas, one can deduce the following wave equation to 

describe sound generated from an entropy spot bounded by a closed surface ( , ) 0f t x : 

  
2

2

2 2

0

1
( )

1

D p
B f

c Dt
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where       is the jump of the density across the surface ( , ) 0f t x ,   is the specific 

heat ratio. Both terms on the RHS of Eq. (23) are dipole sources. The first is a volume 

distribution while the second only exists on the data surface. The volume dipole source 

has the same acoustic contribution as the quadrupole term in Eq. (3) for low-Mach-

number flow. The strength of the surface dipole source is related to the jump of the 

density across the surface ( , ) 0f t x . Compared with the FW-H equation, Howe’s 

equation does not have a monopole source, thus the effect of the moving speed of the 

entropy spot on the source strength is not explicitly expressed. Moreover, it should be 

noted that Eq. (23) is only valid for a multicomponent flow of ideal gas. 

3 Generalized acoustic analogy for MMF 

3.1  Definition and notation 

The Heaviside function is used in the FW-H equation to describe the discontinuity on 

the data surface. Therefore, no sound sources are located and sound does not propagate 

inside the data surface, which implies that the medium in the region of 0f   is rigid and 

sound only propagates in the region of 0f  . To consider sound propagation in the entire 
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region, a new generalized/window function ( )M   is employed to describe the parameters 

in the entire space:  
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where   is a generic flow parameter. Hats   and   denote quantities inside and outside 

the data surface, respectively. An equivalent expression of Eq. (24) is as follows 

 ( ) ( )( )M f H f       (25) 

Especially, if the medium in the region of 0f   is rigid, i.e. 0  , the generalized 

function ( )M   reduces to the Heaviside function. Actually, similar mathematic treatments 

have been employed in previous studies related to jet noise [10, 11] where parameters on 

the interface of the high-speed jet and ambient fluid are discontinuous. 

With the above definition, the spatial and temporal derivatives of a generalized 

parameter are given by 

 
[ ( ) ] ( )

( ) ( )i

i i i

M f
H f n f

x x x

  
 

   
   

  
 (26) 

 
[ ( ) ] ( )

( ) ( )n

M f
H f v f

t t t

  
 

   
  

  
 (27) 

where       is the difference of the parameter   for the two mediums.  

3.2  Generalized governing equations 
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The following two identities can be derived with the newly-defined generalized 

function ( )M f  by employing Eqs. (26) and (27): 
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with        , 0      and 0     . 0  and 0  are the densities of undisturbed 

mediums outside and inside the data surface, respectively. The sum of Eq. (28) and Eq. 

(29) gives the following generalized continuity equation: 
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Similarly, by employing the following two identities 
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the following generalized momentum equation can be deduced 
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By following same steps in deriving the FW-H equation [3], we perform the temporal 

derivative of Eq. (30) and the spatial derivative of Eq. (34) to obtain the following two 

equations: 
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
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 (37) 

Subtracting Eq. (37) from Eq. (36) yields 

 

22

2

[ ( )( )][ ( )][ ( ) ] [ ( )] i j ij iji

i i j

M f u u pL fM f Q f

t x x xt
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  

   
 (38) 

As the speed of sound 0c  usually varies with properties of the medium, the following 

identity is used for the Laplace operator: 

 
2 2

2 2 0
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[ ( ) ] ij

i j

M f c
M f c

x x


 


 

 
 (39) 

where 
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Subtracting Eq. (39) from Eq. (38) gives the following generalized wave equation of 

aeroacoustics: 
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[ ( ) ]

iji

i i j

M f TL fM f Q f
M f c

t x x xt

 


    
   

   
 (41) 

where source terms Q , iL  and 
ijT  are given in Eqs. (31), (35) and (20), respectively. Eq. 

(41) is the first main result of this paper. Similar to the FW-H equation, Eq. (41) is also 

an exact rearrangement of the generalized continuity and momentum equations, and three 

terms on the RHS of Eq. (41) are monopole, dipole and quadrupole sources, respectively. 

The Dirac delta function indicates that the monopole and dipole sources only appear on 

the data surface 0f  , and this feature is the same as the monopole and dipole sources in 

the FW-H equation. However, the generalized function ( )M f  in the quadrupole source 

indicates that fluctuations of fluid stress on both sides of the data surface contribute to 

sound generation. Similarly, the generalized function ( )M f  in the wave operator 

indicates that sound can propagate both inside and outside the data surface. Therefore, the 

developed wave equation can account for sound generation and propagation on both sides 

of the data surface.  

3.3  Green’s function and integral solution 

Eq. (41) can also be expressed as the following equivalent equations:  
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 (42) 

For observers located either in the region of 0f   or 0f  , the monopole and dipole 

sources on the data surface contribute to the sound. However, only the quadrupole source 

in the same region contributes directly to the sound generated in that region. This feature 

is similar to the FW-H equation, thus Eq. (42) can also be solved by existing methods, 

such as time-domain numerical methods [5, 9], frequency-domain numerical methods [12] 

and spherical harmonic series expansion methods [13, 14]. These methods actually 

describe the sound propagation once sources are known.  

The time-domain Green’s function in three-dimensional free space for Eq. (42) can be 

expressed as 
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 (43) 

Therefore, the time-domain integral formulation for Eq. (41) is  

 
2

0 0 0

( ) ( , ) ( )i ij

i i jf f f

M f p t QgdSd L gdSd M f T gd d
t x x x

  
  

     

  
     

        x y  (44) 

with 2

0=p c  . By starting from Eqs. (43) and (44), time-domain and frequency-domain 

acoustic pressure integral formulations suitable for numerical computation can be derived 

analytically, which are similar to those obtained by Farassat [9] and Tang [12].  
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3.4  Discussion 

The wave equation (41) is compared with the wave equations reviewed in Section 2. 

Firstly, we discuss the relationship between existing acoustic analogies and Eq. (41). In 

the case of a rigid medium in the region of 0f  , the parameter   is zero and the 

function ( )M f  becomes the Heaviside function ( )H f . Therefore, sound wave does not 

propagate in the region of 0f  , and Eq. (41) reduces to the permeable FW-H equation. 

Furthermore, if the data surface coincides with the solid surface, there are n nu v  and 

=0 , thus Eq. (41) reduces to the impermeable FW-H equation. If physical parameters 

are continuous across the PCI, i.e.     , the monopole and dipole sources disappear 

and Eq. (41) reduces to the Lighthill’s equation. Therefore, the Lighthill’s equation and 

the FW-H equation with either an impermeable or a permeable data surface, are only 

specific cases of the generalized wave equation (41).  

Secondly, we analyze sound generation inside and outside the data surface with the 

developed wave equation. We assume that the data surface 0f   coincides with the PCI, 

and this data surface can move and change its shape arbitrarily, but it is impermeable 

because 0f   and 0f   always represent the regions of different fluids. Therefore, the 

velocity on the PCI satisfies the following identity: 

 n n nu u v   (45) 

In this situation, the monopole and dipole sources given earlier in Eqs. (31) and (35) can 

be simplified to  

 0 0 0( ) n nQ v v        (46) 
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 ( ) ( )i ij ij j ij ij jL p n p n         (47) 

Therefore, the velocity of the PCI, the jumps in density and pressure on the PCI are 

crucial factors affecting sound generated from MMF. Young-Laplace equation denotes 

that the jump of the static pressure across the PCI is proportional to the interfacial tension, 

thus the dipole source is mainly from the interfacial tension.  

Compared with the impermeable FW-H equation, the developed wave equation 

enables us to analyze sound generated from gas-liquid two-phase flow. Compared with 

the C-FW equation and the permeable FW-H equation, the developed wave equation 

explicitly reveals crucial factors affecting sound generated from MMF, as shown in Eqs. 

(46) and (47).  

For a specific multicomponent flow, i.e., entropy spots in ideal gas, the pressure is 

continuous but the density is discontinuous across the PCI. In this situation, the Howe’s 

equation (23) shows that the source strength is proportional to the jump of the density. 

However, the Howe’s equation does not account for the effect of the velocity of the PCI 

on the source strength because the monopole source on the RHS of the continuity 

equation is not considered in Howe’s study [7].  

Furthermore, we analyze physical meaning of the sound sources. The FW-H equation 

denotes that, only the quadruple source is the physical source outputting acoustic energy 

from turbulence. In the impermeable FW-H equation, the monopole and dipole source 

terms are equivalent sound sources, representing the effects of motion and scattering of 

the solid surface on sound propagation. In the permeable FW-H equation, the monopole 

and dipole terms are still equivalent sources, but they represent the contribution from all 

sound sources, including the quadrupole source, inside the data surface 0f  .  
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The quadrupole source in Eq. (41) also represents the generation of acoustic energy, 

but the turbulence in both regions ( 0f   and 0f  ) contributes to sound generation. The 

monopole and dipole sources in Eqs. (46) and (47) are also equivalent sources, and they 

represent sound scattering and transmission owing to the discontinuity on the PCI. The 

sources in the FW-H equation and Eq. (41) are summarized in Table 1. 

Thirdly, we analyze sound propagation inside and outside the data surface. All the 

wave equations can be used to analyze sound outside the data surface. Therefore, we only 

compare the features of flow and sound inside and through these data surfaces between 

the FW-H equation and Eq. (41). Obviously, impermeable data surfaces in all the wave 

equations imply that the fluid cannot go through the surfaces. A subtle difference is that 

the FW-H equation implies there is no flow inside the impermeable data surface, however, 

flow exists inside the impermeable data surface of Eq. (41). Moreover, no sound 

propagates through the impermeable and permeable data surfaces in the FW-H equation, 

but sound can propagate inside and through the impermeable data surface in Eq. (41). 

These features are summarized in Table 2. 

4 Further extensions to consider the effects of solid surfaces and uniform mean 

flow 

The wave equation developed in Section 3 enables us to analyze sound generation and 

propagation in MMF, but it does not consider sound scattered by solid surfaces and 

assumes that the acoustic medium is at rest. In this section, we carry out further 

extensions to analyze sound generated from MMF and its interaction with solid surfaces. 

The effect of a uniform mean flow on sound generation and propagation is also 
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considered to develop a convective wave equation. The extended equation can be applied 

to analyze, e.g. cavitation noise of marine propellers.  

4.1  Effect of solid surfaces 

We define another data surface 0sf  , which fully includes or coincides with the solid 

surfaces. Similarly, we have the following identities: 

 s s

i if x n    (48) 

 s s

nf t v     (49) 

where s

in  is the unit vector normal to the data surface 0sf  , and s

nv  is its normal 

velocity. The Heaviside function is used to describe the discontinuity on the data surface 

0sf  , which is the same as was used in the FW-H equation.  

With the preceding definition, we can deduce the following two equations: 
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 (50) 
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s
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 

   
   
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

 (51) 

The sum of Eq. (50) and Eq. (51) gives the following generalized continuity equation: 

 
0

[ ( ) ( ) ][ ( ) ( )( )]
( ) ( ) ( ) ( )

ss
j s s s

j

M f H f uM f H f
H f f Q M f f Q

t x
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   

 
 (52) 

with 
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0( )s s s

n n nQ u v v     (53) 

Moreover, we can deduce the following identities with the properties of the generalized 

function: 
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 (55) 

Thus, the generalized momentum equation can be expressed as 
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 (56) 

with 

 ( ) ( )s s s

i ij ij j i n nL p n u u v       (57) 

Finally, the following wave equation can be deduced from Eqs. (52) and (56): 
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 (58) 

where the quadrupole source 
ijT  is given by Eq. (20); the monopole source Q  and dipole 

source iL  on the data surface 0f   are given by Eqs. (46) and (47), respectively; the 

monopole source sQ  and dipole source s

iL  on the data surface 0sf   are given in Eqs. (53) 

and (57), respectively. Eq. (58) is the second main result of this paper as an extension of 

Eq. (41). Compared with the FW-H equation, Eq. (58) can also account for sound 
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generated from the interaction between different fluids, apart from the fluid and solid 

surface interaction. Therefore, Eq. (58) is capable of predicting noise generated from 

MMF and its interaction with solid surfaces, such as cavitation noise of marine propellers.  

We analyze the source terms on the RHS of Eq. (58). The quadrupole source term 
ijT  

in the first line accounts for sound generated from turbulence inside and outside the data 

surface 0f   but outside the data surface 0sf  . The monopole and dipole sources in the 

second line are the equivalent sources to represent sound scattering and transmission on 

the data surface 0f  . The monopole and dipole sources in the third line are the 

equivalent sources to represent the sound scattering on the impermeable data surface 

0sf   or all sources inside the permeable data surface 0sf  .  

Although the data surface 0f   is fixed on the PCI, the data surface 0sf   can be 

defined independently. Fig.1 illustrates four possible relative positions of these two data 

surfaces. As shown in Fig.1(a), if the data surface 0f   is in the region of 0sf  , the 

source terms on the second line disappear, and then Eq. (58) reduces to the FW-H 

equation. As shown in Fig.1(b) and 1(c), if the data surface 0f   is in the region of 

0sf  , the monopole and dipole sources in the second line can be equivalently expressed 

as  

 
[ ( ) ( )] [ ( )][ ( ) ( )] [ ( )]

ss

i i

i i

L f H f L fQ f H f Q f

t x t x

        
  

   
 (59) 

Moreover, as shown in Fig.1(c), if the data surface 0sf   is in the region of 0f  , the 

monopole and dipole sources in the last line can be expressed as 
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 (60) 

However, if the position relationship of these two data surfaces is shown in Fig.1(d), the 

source terms in Eq. (58) cannot be simplified.  

4.2  Effect of uniform mean flow 

In all the wave equations given in the previous sections, it is assumed that the acoustic 

medium is at rest. In previous investigations, a convective FW-H equation has been 

deduced to consider the effect of a uniform mean flow on sound generation and 

propagation, see for examples [15-17]. Howe [7, 18] proposed a reverse-flow reciprocal 

theorem to analyze the effect of an irrotational non-uniform mean flow. However, the 

developed wave equation usually cannot be solved with the method of Green’s function 

because neither the sound speed nor the mean flow velocity is constant. For simplicity, 

we only consider uniform mean flow in this paper. It is assumed that the acoustic wave is 

propagating in a uniform mean flow with the velocity U . The local flow velocity is U u , 

where u  is the fluctuation of the local flow velocity. By using this definition and 

following the derivation of the convective FW-H equation, we can deduce the following 

convective wave equation: 
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 (61) 
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with 
i

i

D
U

Dt t x

 
 
 

. The source term 
ijT  is given in Eq. (20), iL  is given in Eq. (47), and 

the other source terms are expressed by 

 0 ( )n nQ v U     (62) 

 
0 ( ) ( ( ))s s s

n n n n nQ v U u v U       (63) 

 0(( ) ) ( ( ))s s

i ij ij j i n n nL p p n u u v U         (64) 

Eq. (61) is the third main result of this paper. The convective wave operator represents 

the effect of a uniform mean flow on sound propagation. Note that the source terms in Eq. 

(61) have subtle differences from those in Eq. (58) owing to the effect of the uniform 

mean flow on sound generation. The quadrupole source term 
ijT  in Eq. (61) has the same 

expression as that in Eq. (58). However, the parameter u  in Eq. (61) only represents the 

fluctuating component of the flow velocity whereas u  in Eq. (58) represents the flow 

velocity. In the monopole sources of the convective wave equation, the partial derivative 

is replaced by the material derivative. Moreover, the dipole term iL  in Eq. (61) is the 

same as that in Eq. (58), representing the pressure jump across the PCI, and the dipole 

term s

iL  given in Eq. (64) has the same physical meaning as that given in Eq. (57). 

Particularly, if the data surface 0sf   coincides with the solid surface, the second term in 

Eq. (64) will disappear and s

iL  represents the static pressure on the solid surface.  

5 Sound generated from gas bubbles in water 

5.1  Definitions and assumptions 

Sound generated from gas bubbles immersed in water has been analyzed by Crighton 

and Ffowcs Williams [6]. This problem is revisited with the developed wave equation 

(41). We consider gas bubbles in a finite turbulence region. The following four 
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parameters are used to characterize the turbulence: characteristic length of the finite 

region L , mean flow velocity U , characteristic length of the turbulence eddy 0l  and root-

mean-square turbulence velocity 0u . Therefore, 0u U   is the turbulence intensity or the 

relative turbulence level as defined by Crighton and Ffowcs Williams [6], and the angular 

frequency of turbulent fluctuation   is in the order of 0 0u l . 

Moreover, we assume this finite turbulence region is acoustically compact, i.e., 

0 0 0L c l u , and there are N air bubbles in this region and each bubble has a mean radius 

a  in the undisturbed state. Therefore, the bulk concentration of the gas bubbles is 

 3

3

4

3

Na

L


 

 (65) 

By following the analysis of Crighton and Ffowcs Williams [6], who only considered 

the symmetric oscillation mode with a low amplitude, it is reasonable to assume that the 

gas bubbles always remain a spherical shape. The instantaneous velocity on a single 

bubble surface is 
0

i t

nv V e  , where 0V  is the amplitude of the bubble pulsation, which is in 

the order of 0u .  

5.2  Sound generated from a single gas bubble 

Based on the above definitions and assumptions and ignoring sound generated from 

turbulence, the frequency-domain acoustic pressure radiated from a single bubble into 

water is 
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 (66) 

where 0k c , subscript B represents a single gas bubble. The dipole source strength on 

the bubble surface varies with the oscillation of the bubble. However, it should be 
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emphasized that the total acoustic contribution from the dipole source is zero for an 

acoustically compact bubble, because the overall force on the bubble surface is always 

zero. Crighton and Ffowcs Williams [6] obtained a similar conclusion from the C-FW 

equation by qualitatively suggesting that the dipole contribution was negligible compared 

with the monopole contribution. Howe [19] also pointed out that if the radius of the 

spherical gas bubble is much smaller than the wavelength and the bubble is excited by a 

uniformly distributed, time harmonic force on the PCI, the sound is mainly contributed 

from the monopole source and the contribution from the dipole source can be ignored. 

Therefore, the acoustic pressure radiated from a pulsating gas bubble is computed by 
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This expression is very similar to Eq. (2.4.1) deduced in reference [19], but there is a 

subtle difference between these equations. Eq. (2.4.1) of reference [19] is derived from 

the Lighthill’s equation, thus the strength of the monopole source is only related to the 

fluid density around the bubble. However, Eq. (67) indicates that the strength of the 

monopole source is actually dependent on the jump of the density across the PCI.  

We assume that the sound propagation is lossless, thus the acoustic power output 

from a single gas bubble is  
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Eq. (68) indicates that the acoustic power output from a single bubble is proportional to 

the fourth power of the Mach number, which is the fundamental feature of a compact 

monopole source. Furthermore, we will analyze sound generated from a bubble cloud in a 

finite region by using this fundamental model.  
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5.3  Sound generated from bubble cloud 

We assume that there are N bubbles with the radius of a in a finite turbulence region 

with the characteristic length of L. By starting from Eqs. (65) and (67) and employing the 

assumption of an acoustically compact region, we can calculate the total acoustic 

pressure radiated from bubbles via a simple summation when the bubbles are oscillating 

in phase 
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 (69) 

where subscript C represents the bubble cloud. Furthermore, we can deduce that the total 

acoustic power output is 
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Eq. (70) indicates that the acoustic power is proportional to the square of the bull 

concentration  , and this conclusion is the same as that obtained by Crighton and Ffowcs 

Williams [6]. However, we emphasize that Eqs. (69) and (70) are only valid for all 

bubbles oscillating in phase, otherwise the total acoustic pressure cannot be calculated via 

a simple summation owing to the phase difference of source pulsation.  

For a bubble cloud with many gas bubbles oscillating with a random phase correlation, 

a more reasonable method for calculating the total acoustic power is the superposition 

method of energy. Therefore, the acoustic power calculated from Eq. (68) is as follows 
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Eq. (71) shows that, for gas bubbles oscillating randomly, the acoustic power output is 

still proportional to the fourth power of the Mach number, but is only proportional to the 
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bull concentration  , which is different from the conclusion obtained from Eq. (70) and 

the C-FW equation. 

Additionally, both Eqs. (70) and (71) indicate that the acoustic power output depends 

on the jump of the density 0  and the radius of the bubble a . Decreasing the density 

jump is beneficial for reducing the noise level. The relationship between the acoustic 

power output and the radius of the bubble depends on the oscillation phases of the 

bubbles. If all the gas bubbles oscillate in phase, the acoustic power output is inversely 

proportional to the square of the gas bubble radius. However, if the gas bubbles oscillate 

with a random phase correlation, the acoustic power output is proportional to the radius 

of the gas bubble.  

6 Conclusion 

The FW-H equation deals with sound generated from flow and its interaction with a 

data surface with an assumption of no sound propagation inside the surface due to the 

Heaviside function used to describe the discontinuity on the data surface. In this paper, 

generalized continuity and momentum equations and the corresponding wave equation 

were derived by replacing the Heaviside function with a newly-defined generalized 

function to describe the discontinuity on the data surface, which allows for variations of 

flow parameters both inside and outside the data surface. The developed wave equation 

consists of three sources: the volume quadrupole source which exists both inside and 

outside the data surface, the monopole and dipole sources on the data surface. It is worth 

emphasizing that the surface sources are highly dependent on the jump of the quantities 

across the surface instead of flow quantities on one side of the surface. The Lighthill’s 
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equation and the FW-H equation with impermeable or permeable data surfaces are 

specific cases of the developed wave equation. 

The developed wave equation has the following features in the prediction of sound 

generated from MMF. Firstly, compared with the impermeable FW-H equation, it does 

not limit the state of the dispersed phase and it is capable of predicting sound generated 

from fluid-solid two-phase flow and also from gas-liquid two-phase flow. Secondly, 

compared with the C-FW equation and the permeable FW-H equation, it explicitly 

accounts for the effect of the PCI on sound generation. The result indicates that the flow 

velocity and the jumps of density and pressure on the PCI are the crucial factors affecting 

sound generated from MMF. Thirdly, it synchronously accounts for sound propagation 

on both sides of the PCI by introducing a new generalized function, to replace the 

Heaviside function. This feature provides a direct method for predicting, e.g. ocean 

surface noise received by observers in air and underwater. In summary, the developed 

wave equation provides an efficient mathematical approach for predicting sound 

generated from MMF and also a clear physical explanation for analyzing mechanisms of 

sound generation.  

The developed wave equation is extended to consider the effects of solid surfaces and 

uniform mean flow on sound generation and propagation. In this situation, the following 

five sources contribute to sound radiation: quadrupole source in each phase/component of 

MMF, monopole and dipole sources on the PCI, and monopole and dipole sources on the 

date surface enclosing all solid surfaces. Note that all the monopole and dipole sources 

are equivalent sources, which represent the acoustic contribution of sources inside the 
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permeable data surface or the sound scattering and transmission on the impermeable data 

surface.  

Sound generated from gas bubbles in water is analyzed with the developed wave 

equation. The acoustic power output is proportional to the fourth power of the Mach 

number, which is consistent with the conclusion drawn from the C-FW equation. 

Compared with the C-FW equation, the result obtained from the developed equation 

further shows that decreasing the density jump across the PCI is beneficial for reducing 

the acoustic power level. Moreover, the oscillation phases of the bubbles have a 

significant effect on the acoustic power output. If all gas bubbles oscillate in phase, the 

acoustic power output is proportional to the square of the bulk concentration, which is 

consistent with the conclusion obtained from the C-FW equation. However, for bubbles 

oscillating with random phases, the result obtained from a superposition method of 

energy shows that the total acoustic power output is only proportional to the bulk 

concentration. This paper focuses on a theoretical analysis of sound generated from gas-

liquid two phase flow. It is planned to perform experimental and numerical studies of 

underwater jet noise to validate the conclusion presented in this paper. 
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Nomenclature 

a = gas bubble radius, m 

B = stagnation enthalpy, m2/s2 

0c  = speed of sound, m s-1 

f  = data surface function 

g  = time-domain Green’s function 

H = Heaviside function 

iL  = components of local loading intensity in the ith direction, Pa 

M = new generalized function defined in Eq. (24) 

in  = components of unit vector normal to the data surface 

p  = acoustic pressure in time domain, Pa 

p  = acoustic pressure in frequency domain, Pa 

Q = monopole source strength, kg·m-2
·s-1 

r  = distance between source and receiver, x y , m 

S = entropy, kJ/K 

T = temperature, K 

intT  = interval length of time-domain integration, s 

t  = observer time, s 

U  = velocity of uniform mean flow, m·s-1 

u  = flow velocity, m·s-1 

nv  = local normal velocity of the data surface, m·s-1 

W = acoustic power, w 
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x  = observer position vector, m 

y  = source position vector, m 

  = local fluid density, kg·m-3 

  = density perturbation, kg·m-3 

  = bulk concentration of the dispersed phase 

ij  = components of viscous stress tensor, Pa 

( )   = Dirac delta function 

ij  = Kronecker delta function 

  = source time, s 

Subscripts 

0  = fluid variable in unperturbed medium  

B = a single gas bubble 

C = bubble cloud 

x  = observer quantity 

y  = source quantity 
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Figure Caption List 

Fig. 1 Schematic of different relative positions of the data surfaces 
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Table Captions List 

Table 1 Source terms in different wave equations 

Table 2 Flow and sound inside and through data surfaces 
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Table 1 

 

Equation Quadrupole source Monopole and dipole sources 

C-FW equation All sources are volume sources and exist in the entire fluid domain 

Impermeable 

FW-H equation 

Only outside the 

data surface 

Equivalent contributions from the motion and 

scattering of the impermeable data surface (i.e. 

solid surface) 

Permeable 

FW-H equation 

Only outside the 

data surface 

Equivalent contributions from all the sources 

inside the permeable data surface 

Eq. (41) 
Inside and outside 

the data surface 

Equivalent contributions from the motion, 

scattering and transmission of the impermeable 

data surface (i.e. PCI) 
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Table 2 

 

 
Impermeable  

FW-H equation 

Permeable  

FW-H equation 
Eq. (41) 

Flow inside the data surface No Yes Yes 

Flow through the data surface No Yes No 

Sound inside the data surface No No Yes 

Sound through the data surface No No Yes 

 


