Single-RF index shift keying aided differential space-time block coding
Single-RF index shift keying aided differential space-time block coding
We propose a new single-RF Differential Space-Time Block Coding using Index Shift Keying (DSTBC-ISK), which is the first in the family of Differential Space-Time Modulation (DSTM) schemes that can simultaneously achieve the following three imperative objectives of (1) forming a finite-cardinality transmit-signals set under the matrix multiplications of differential encoding; (2) retaining a single-stream ML detection complexity that does not grow with the constellation size; (3) offering a beneficial transmit diversity gain over the recently developed Differential Spatial Modulation (DSM). In order to make a fair comparison, we also conceive a low-complexity single-stream detector for DSM, which does not impose any performance loss in comparison to the existing solutions in open literature. Furthermore, in order to improve the performance of finite-cardinality DSTM schemes at higher throughputs, we propose to generalize both Differential Amplitude Shift Keying (DASK) and Amplitude Shift Keying (ASK), which form the generic multi-level-ring star QAM constellation that subsumes the existing two/four-level-ring DASK solutions as special cases. Although the DASK approach has been popularly used in DSTM schemes, we demonstrate that our generalized ASK technique achieves a higher capacity and a better performance in channel coding assisted systems. Moreover, since the employment of star QAM constellations imposes the ring-amplitude dependent signal power problem for detection, we further develop bespoke Maximum-Likelihood (ML), Minimum Mean Squared Error (MMSE) and Least Square (LS) detectors for DSTM using DASK/ASK, which exhibit different performance versus complexity tradeoffs. Our simulation results demonstrate that the proposed DSTBC-ISK is capable of achieving substantial diversity gains over DSM without eroding its low transceiver complexity.
773 - 788
Xu, Chao
5710a067-6320-4f5a-8689-7881f6c46252
Rajashekar, Rakshith
d2fbbb04-57c5-4165-908f-600fc1fbdeab
Ishikawa, Naoki
7330750b-e4bc-4f46-b500-e190264b2af6
Sugiura, Shinya
4c8665dd-1ad8-4dc0-9298-bf04eded3579
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
1 February 2018
Xu, Chao
5710a067-6320-4f5a-8689-7881f6c46252
Rajashekar, Rakshith
d2fbbb04-57c5-4165-908f-600fc1fbdeab
Ishikawa, Naoki
7330750b-e4bc-4f46-b500-e190264b2af6
Sugiura, Shinya
4c8665dd-1ad8-4dc0-9298-bf04eded3579
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Xu, Chao, Rajashekar, Rakshith, Ishikawa, Naoki, Sugiura, Shinya and Hanzo, Lajos
(2018)
Single-RF index shift keying aided differential space-time block coding.
IEEE Transactions on Signal Processing, 66 (3), .
(doi:10.1109/TSP.2017.2768019).
Abstract
We propose a new single-RF Differential Space-Time Block Coding using Index Shift Keying (DSTBC-ISK), which is the first in the family of Differential Space-Time Modulation (DSTM) schemes that can simultaneously achieve the following three imperative objectives of (1) forming a finite-cardinality transmit-signals set under the matrix multiplications of differential encoding; (2) retaining a single-stream ML detection complexity that does not grow with the constellation size; (3) offering a beneficial transmit diversity gain over the recently developed Differential Spatial Modulation (DSM). In order to make a fair comparison, we also conceive a low-complexity single-stream detector for DSM, which does not impose any performance loss in comparison to the existing solutions in open literature. Furthermore, in order to improve the performance of finite-cardinality DSTM schemes at higher throughputs, we propose to generalize both Differential Amplitude Shift Keying (DASK) and Amplitude Shift Keying (ASK), which form the generic multi-level-ring star QAM constellation that subsumes the existing two/four-level-ring DASK solutions as special cases. Although the DASK approach has been popularly used in DSTM schemes, we demonstrate that our generalized ASK technique achieves a higher capacity and a better performance in channel coding assisted systems. Moreover, since the employment of star QAM constellations imposes the ring-amplitude dependent signal power problem for detection, we further develop bespoke Maximum-Likelihood (ML), Minimum Mean Squared Error (MMSE) and Least Square (LS) detectors for DSTM using DASK/ASK, which exhibit different performance versus complexity tradeoffs. Our simulation results demonstrate that the proposed DSTBC-ISK is capable of achieving substantial diversity gains over DSM without eroding its low transceiver complexity.
Text
DSTBC_ISK_two_column_accept
- Accepted Manuscript
More information
Accepted/In Press date: 5 October 2017
e-pub ahead of print date: 30 October 2017
Published date: 1 February 2018
Identifiers
Local EPrints ID: 416055
URI: http://eprints.soton.ac.uk/id/eprint/416055
ISSN: 1053-587X
PURE UUID: e7ca5ed4-a519-4592-a2a7-b0e2ce5d2b5f
Catalogue record
Date deposited: 01 Dec 2017 17:30
Last modified: 18 Mar 2024 03:17
Export record
Altmetrics
Contributors
Author:
Chao Xu
Author:
Rakshith Rajashekar
Author:
Naoki Ishikawa
Author:
Shinya Sugiura
Author:
Lajos Hanzo
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics