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Abstract

For any given Feynman graph, the set of integrals with all possible powers of
the propagators spans a vector space of finite dimension. We introduce the
package Azurite (A ZURich-bred method for finding master InTEgrals),
which efficiently finds a basis of this vector space. It constructs the needed
integration-by-parts (IBP) identities on a set of generalized-unitarity cuts.
It is based on syzygy computations and analyses of the symmetries of the
involved Feynman diagrams and is powered by the computer algebra systems
Singular and Mathematica. It can moreover analytically calculate the
part of the IBP identities that is supported on the cuts.

Keywords: Feynman diagrams, computational algebraic geometry,
integration-by-parts identities

PROGRAM SUMMARY
Program Title: Azurite

Licensing provisions: GNU General Public License (GPL)

Programming language: Wolfram Mathematica version 10.0 or higher

Supplementary material: A manual in the form of a Mathematica notebook

Nature of problem: Determination of a basis of the space of loop integrals spanned

by a given Feynman diagram and all of its subdiagrams

Solution method: Mathematica implementation

∗Corresponding author. E-mail address: Yang.Zhang@phys.ethz.ch
Email addresses: Alessandro.Georgoudis@physics.uu.se (Alessandro Georgoudis),

Kasper.Larsen@soton.ac.uk (Kasper J. Larsen)

Preprint submitted to Computer Physics Communications January 26, 2017

ar
X

iv
:1

61
2.

04
25

2v
2 

 [
he

p-
th

] 
 2

4 
Ja

n 
20

17



1. Introduction

Precision calculations of the cross sections of Standard Model processes
at the Large Hadron Collider (LHC) are crucial to gain a quantitative un-
derstanding of the background and in turn improve the ability to extract sig-
nals of new physics. This typically requires computations at next-to-next-to
leading order (NNLO) in fixed-order perturbation theory, in order to match
the experimental precision and the parton distribution function uncertain-
ties. Calculations at this order are challenging because of the large number
of contributing Feynman diagrams, which involve loop integrals with high
powers of loop momenta in the numerator of the integrand.

A key tool in these calculations are integration-by-parts (IBP) identities
[1, 2]. These are relations that arise from the vanishing integration of total
derivatives. Schematically, they take the form,∫ L∏

j=1

(
dDlj
iπD/2

) L∑
i=1

∂

∂lµi

vµi
Da1

1 · · ·D
ak
k

= 0 , (1)

where the vectors vµi are polynomials in the internal and external momenta,
the Dk denote inverse propagators, and ai ≥ 1 are integers. In practice, the
IBP identities generate a large set of linear relations between loop integrals,
and allow a significant fraction of them to be expressed in terms of a finite
linear basis. (The fact that the basis of integrals is always finite was proven in
ref. [3].) The latter step of solving the linear systems arising from eq. (1) may
be carried out by Gauss-Jordan elimination in the form of the Laporta algo-
rithm [4, 5], leading in general to relations involving integrals with squared
propagators. There are several implementations of automated IBP reduction
publically available: AIR [6], FIRE [7, 8], Reduze [9, 10], LiteRed [11], along
with private implementations. Finite field techniques can be used to speed
up the computation [12, 13, 14, 15].

A formalism for deriving IBP reductions that do not involve integrals
with squared propagators was developed in ref. [16], based on syzygy com-
putations. As observed in ref. [17], the syzygies can be computed with linear
algebra methods.

In addition to reducing the contributing Feynman diagrams to a small
set of basis integrals, the IBP reductions provide a way to compute these
integrals themselves through differential equations [18, 19, 20, 21, 22, 23].
Letting xm denote a kinematical variable, ε = 4−D

2
the dimensional regula-

tor, and I(x, ε) = {I1(x, ε), . . . , IN(x, ε)} the basis of integrals, the result of
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differentiating any basis integral wrt. xm can again be written as a linear
combination of the basis integrals by using, in practice, the IBP reductions.
As a result, one has a linear system of differential equations,

∂

∂xm
I(x, ε) = Am(x, ε)I(x, ε) , (2)

which, supplied with appropriate boundary conditions, can be solved to yield
expressions for the basis integrals. This has proven to be a powerful tool for
computing two- and higher-loop integrals. As observed in ref. [24], in many
cases of interest, with an appropriate choice of integral basis, the coefficient
matrix Am in eq. (2) becomes proportional to ε. As a result, the basis in-
tegrals are manifestly expressed as iterated integrals. Refs. [25, 26] provide
algorithms for finding a transformation to a canonical basis, which applies
provided that a rational transformation exists.1

In many realistic multi-scale problems, such as 2 → n scattering am-
plitudes with n ≥ 2, the step of generating IBP reductions with existing
algorithms is the most challenging part of the calculation. It is therefore of
interest to explore other methods for generating these reductions.

In ref. [30] a subset of the present authors showed how IBP reductions
that involve no squared propagators can be obtained efficiently on specific
(algorithmically determined) sets of generalized-unitarity cuts. A similar ap-
proach was introduced by Harald Ita in ref. [31] where IBP relations are also
studied in connection with cuts, and the underlying geometric interpretation
is clarified.

In this paper we introduce the Singular [32]/Mathematica package
Azurite (A ZURich-bred method for finding master InTEgrals) which de-
termines a basis for the space of integrals spanned by a given L-loop diagram
and all of its subdiagrams (obtained by shrinking propagators). Azurite can
also be used to analytically generate IBP identities evaluated on maximal
cuts.

In practice, the current version of this package can determine a basis
of integrals for a two-loop diagram and all of its subdiagrams (no matter
whether massless or massive, planar or non-planar) in seconds. It can also

1For some cases, the leading singularities are elliptic. Using complete elliptic integrals,
these differential equations can be solved as iterated integrals with elliptic kernels [27, 28,
29].
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determine master integrals for a three-loop diagram and all of its subdiagrams
in minutes.

Related work has appeared in ref. [33] where the number of basis inte-
grals is determined from the critical points of the polynomials that enter the
parametric representation, or equivalently the Baikov representation, of the
integral. This method has moreover been implemented in the Mathematica
package Mint.

2. Algorithm

The algorithm of Azurite may be summarized as follows: given an input
diagram, the code traces over all subdiagrams and

1. automatically determines the automorphism group of the involved Feyn-
man diagrams by graph theory algorithms,

2. detects and discards scaleless integrals (for example, diagrams with
massless tadpoles),

3. determines the linear relations between integrals evaluated on maximal
cuts for each subdiagram, using the methods of ref. [30] of construct-
ing the IBP identities on D-dimensional generalized-unitarity cuts and
solving syzygy equations. The on-shell version of the IBP identities,
which have been constructed so as to contain no integrals with higher-
power propagators, are generated numerically via finite field computa-
tions in Singular.

After these steps, Azurite chooses a basis of integrals according to the fol-
lowing conventions: it removes all edge-reducible integrals from the candidate
list of master integrals. (An edge-reducible integral is an integral which can
be expressed as a linear combination of integrals from its subdiagrams.) For
the remaining integrals, Azurite considers IBP relations between integrals
with different numerators, and finds a linear basis of integrals which contains
the lowest possible numerator degrees. Only IBP identities evaluated on cuts
are needed for determining the basis of integrals.

In the following we will explain the above steps in greater detail. To this
end, we first introduce notation and some parametrizations of the integrals.
We consider a general L-loop Feynman diagram with n external lines, k
propagators, and all of its subdiagrams. The associated Feynman integrals
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are,

I[a1, . . . , ak;N ] ≡
∫ L∏

j=1

(
dDlj
iπD/2

)
N(l1, . . . , lL)

Da1
1 · · ·D

ak
k

. (3)

Let k1, . . . , kn be the external momenta, and l1, . . . , lL be the loop momenta.
Following ref. [16], we restrict attention to IBP identities that do not involve
integrals with higher-power propagators. Moreover, we will ultimately choose
bases which do not contain such integrals, but rather contain integrals with
numerator insertions. Therefore we require for the indices that ai ∈ {0, 1}, i =
1, . . . , k. To simplify the notation, we denote

〈s1 . . . sm〉[N ] ≡
∫ L∏

j=1

(
dDlj
iπD/2

)
N(l1, . . . , lL)

Ds1 · · ·Dsm

, (4)

where 1 ≤ s1 < s2 < · · · < sm ≤ k are the indices for existing propagators.
We moreover use 〈s1 . . . sm〉 to denote the topology of the corresponding
subdiagram.

The inverse propagators take the generic form,

Di =
( L∑
j=1

αijlj +
n∑
h=1

βihkh

)2

−m2
i ≡ v2

i −m2
i , (5)

where the αij and βih are ±1. vi denotes the momentum of the corresponding
line.

We use dimensional regularization and work in the four-dimensional helic-
ity scheme, taking the external momenta to be strictly four-dimensional. Ac-
cordingly, we decompose the loop momenta into four- and (D−4)-dimensional
parts, li = li+ l

⊥
i . As explained in section 2 of ref. [30], for n ≤ 4, the external

momenta span a vector space of dimension less than four, and the compo-
nents of the loop momenta along the orthogonal directions can be integrated
out directly. After having done so, there are

nSP = φ(n)L+
L(L+ 1)

2
, (6)

independent scalar products involving the loop momenta, where

φ(n) ≡
{

4 n ≥ 5 ,
n− 1 n ≤ 4 .

(7)
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An application of the Ossola-Papadopoulos-Pittau (OPP) reduction method
[34, 35, 36, 37, 38, 39], or integrand reduction via polynomial division wrt.
Gröbner bases [40, 41], shows that if the number of distinct propagators is
greater than the number of independent scalar products; i.e., k > nSP, then
the diagram is reducible at the integrand level. Hence we can assume without
loss of generality that k ≤ nSP.

An important tool used in Azurite is the Baikov representation [42] of
an integral,

〈12 . . . k〉[N ] ∝
∫

dz1 · · · dznSP
F (z1, . . . , znSP

)
D−h

2
N(z1, . . . , znSP

)

z1 · · · zm
, (8)

where the z1, . . . , zm denote the inverse propagatorsDs1 , . . . , Dsm . zm+1, . . . , zn′SP
denote irreducible scalar products (ISPs, i.e., terms appearing in the numer-
ator which cannot be written as linear combinations of inverse propagators).
The quantity F ≡ deti,j µij, i, j = 1, . . . , L appearing in the measure factor
is occasionally referred to as the Baikov polynomial, whereas the exponent
is defined as h ≡ L+ φ(n). Here

µij ≡ −l⊥i · l⊥j , (9)

where l⊥i is the (−2ε)-dimensional component of li.
This representation is particularly suitable for generating IBP identities

on generalized-unitarity cuts, and was used in refs. [31, 30]. Azurite com-
putes F through an appropriate change of variables of the loop momenta. It
first parametrizes the loop momenta via van Neerven-Vermaseren coordinates
[43], then separates the µij and finally obtains the Baikov representation. The
overall prefactor and the region of integration in eq. (8) are irrelevant for de-
riving IBP identities, and hence we neglect these. (The expressions for the
overall pre-factor of the Baikov representation can be found in ref. [44].)

2.1. Associated graphs and their symmetries

Given the propagators in eq. (5), it is useful to obtain the correspond-
ing graph algorithmically—i.e., to determine the vertices—for the purpose
of finding the discrete symmetries. This can be achieved by a backtracking
algorithm. Define the set of flows of momenta on external and internal lines,

M = {k1, . . . , kn, v1, . . . , vk,−v1, . . . ,−vk} . (10)
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Search through the subsets of M until finding a subset V1 containing at
least three entries and satisfying momentum conservation,

∑
p∈V1 p = 0. V1

is the candidate for the first vertex. Now redefine M := M − V1 and search
through the subsets of M to find V2 analogously. Iterate this process. If, at
some step, no Vi can be found, then backtrack and redefine M := M ∪ Vi−1

and proceed to find a new candidate V ′i−1 for the previous vertex. When nV
vertices have been found, and the resulting graph is connected and has L
loops, the algorithm terminates. Here,

nV = k − L+ 1 , (11)

denotes the number of vertices (cf. section II.3 of ref. [45]).
As an example let us consider L = 2 and the following eight inverse

propagators,

D1 = l21 , D2 = (l1 − k1)2 , D3 = (l1 −K12)2 , D4 = (l1 −K123)2 ,

D5 = (l2 +K123)2 , D6 = (l2 − k5)2 , D7 = l22 , D8 = (l1 + l2)2 .
(12)

where Ki1···is ≡ ki1 + · · ·+ kis . The backtracking method finds the vertices,

V1 = {k1,−l1, l1 − k1} , V2 = {k2, l1 −K12,−l1 + k1} ,
V3 = {k3, l1 −K123,−l1 +K12} , V4 = {k4, l2 +K123,−l2 + k5} ,
V5 = {k5,−l2, l2 − k5} , V6 = {−(l1 + l2), l1, l2} ,
V7 = {−l1 +K123,−(l2 +K123), l1 + l2} .

(13)
From this information it is straightforward to construct the adjacency matrix
of the graph. The graph is found to be the pentagon-box diagram illustrated
in fig. 1a.

Once the graph for 〈12 . . . k〉 has been found, all of its subdiagrams can be
obtained by pinching subsets of its propagators. Taking a graph theoretical
viewpoint, we obtain the various subdiagrams by appropriately truncating
the adjacency matrix of the original graph.2 For example, 〈12345678〉 in fig. 1a
corresponds to a pentagon-box diagram, and 〈145678〉 in fig. 1b corresponds
to to a triangle-box subdiagram.

2For example, if the edge e connecting two vertices v1 and v2 is pinched, then we merge
the two columns (and also the two rows) in the adjacency matrix that correspond to v1
and v2.
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D4
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D8
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4

5

(a) The pentagon-box diagram
〈12345678〉.

D6

D5

D7

D8

1

2

3

4

5

(b) The 〈145678〉 subdiagram of
the pentagon-box diagram.

Figure 1: Pentagon-box diagram and one of its subdiagrams.

Given a subdiagram 〈s1s2 . . . sm〉, after having obtained its graph, we pro-
ceed to find its automorphism group G′ via a graph theory based algorithm.
G′ acts on the propagators. Let G denote the subgroup of G′ which preserves
all external Lorentz invariants. G is the physical symmetry group of this
diagram. G actually classifies all subdiagrams of 〈s1s2 . . . sm〉 into equiva-
lence classes. (If two subdiagrams g1 and g2 are equivalent, then any integral
with the topology g1 must equal an integral with the topology g2 with the
appropriate numerator insertion.)

Furthermore, G acts on momenta as affine transformations (linear and
shift transformations). We explicitly find these transformations by linear al-
gebra. This enables us to determine the action of G on irreducible scalar
products appearing in the numerator.

For instance, diagram 〈145678〉 associated with the inverse propagators
in eq. (B.3) has the symmetry group G = Z2, whose non-trivial element is
(cf. fig. 1b),

D1 7→ D4 , D4 7→ D1 , D5 7→ D7 , D7 7→ D5 , D8 7→ D8 . (14)

(Note that since both k4 and k5 are massless this symmetry preserves external
Lorentz invariants, and hence is physical.) This implies symmetry relations
for all of its subdiagrams. For example, by this symmetry, the integral 〈158〉
is equal to 〈478〉. Thus, we only need to consider 〈158〉 during the search for
master integrals, and can neglect 〈478〉.

In this example, the non-trivial element of G given in eq. (14) corresponds
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to the affine transformation,

k4 7→ k5 , k5 7→ k4 , l1 7→ −k4 − k5 − l1 , l2 7→ −k4 − k5 − l2 . (15)

From this, the action of G on numerator polynomials can readily be found.
This backtracking graph-construction algorithm is implemented in Azu-

rite, powered by Mathematica. The graph automorphism groups, con-
nectedness condition, and other graph information are computed via Math-
ematica’s embedded graph commands.3 The affine transformations such as
those in eq. (15) are obtained by setting up an ansatz of the action on the
momenta of the internal lines,

vi 7→ civg(i) , ∀i ∈ {s1, . . . , sm} (16)

for g ∈ G. To ensure that this is a permutation of the propagators, all of the
ci must be ±1. Using standard linear algebra techniques, the values of the ci
are readily solved for, and the affine transformation is determined.

2.2. Adaptive parameterization and further graph simplifications

To optimize the search for master integrals we apply the following sim-
plifications during the study of the input diagram and all of its subdiagrams.
(Similar simplifications for subdiagrams are used in the adaptive integrand
decomposition approach of ref. [46].)

1. If a diagram has a loop which corresponds to a scaleless integral, then
the diagram vanishes in dimensional regularization. For example, with
the inverse propagators in eq. (B.3), the diagram 〈12346〉 (illustrated
in fig. 2a) contains a massless tadpole and hence vanishes. Azurite
finds such loops by examining the fundamental cycles4 of the graph.
Moreover, the diagram 〈1234〉 corresponds to an integral without l2
appearing in the denominator, so that the l2 integral is scaleless and
hence vanishes. Both of these diagrams are therefore discarded.

2. If for a diagram, two or more external lines attach to one vertex, we
may combine these external lines into one external line with the sum
of the individual momenta flowing on it. We let n′ denote the number

3Mathematica 10.0.0 or later versions are required for the graph theory computations
in Azurite.

4See section II.3 of ref. [45] for the definition of fundamental cycles.
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(a) The subdiagram 〈12346〉,
which contains a massless tad-
pole.

D2 D1

D3 D4

D6

1

2

3

4

5

(b) The subdiagram 〈1234567〉,
which is factorable.

Figure 2: Some diagrams which can be simplified in the adaptive parametriza-
tion.

of new external lines after this procedure, where clearly n′ < n. As an
example, for the inverse propagators in eq. (B.3), the diagram 〈145678〉
(illustrated in fig. 2b) can be treated as a three-point diagram with the
new external momenta K123, k4 and k5. It may occasionally be neces-
sary to shift the loop momenta to ensure that only the new external
momenta appear in the propagators. This is achieved in Azurite by
linear algebra methods.
We also define n′SP = φ(n′)L + L(L + 1)/2 as the number of new in-
dependent scalar products. For example, the diagram 〈145678〉 (illus-
trated in fig. 2b) has n′SP = 2 × 2 + 3 = 7. This process decreases the
number of scalar products and thereby significantly speeds up the IBP
computations.

3. If a diagram consists of nΓ (nΓ > 1) loops that do not share com-
mon edges, we call the diagram factorable and treat the corresponding
integral as a product of nΓ integrals. For example, with the inverse
propagators given in eq. (B.3), the diagram 〈1234567〉 is treated as
the product of two one-loop diagrams. This is achieved in Azurite by
examining the fundamental cycles of the graph.

For any subdiagram 〈s1 . . . sm〉 encountered we apply these simplifica-
tions. After doing so, the diagram has n′ external lines and n′SP independent
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scalar products, and we can assume without loss of generality that the di-
agram is non-factorizable and contains no scaleless integrals. By integrand
reduction, we furthermore have m ≤ n′SP. We then proceed to cast the cor-
responding integrals in their Baikov representation (8) (with the number of
independent scalar products computed from the adaptive parametrization of
the integral so that nSP → n′SP and h = L+ φ(n′)).

2.3. IBP identities on maximal cuts and master integrals

Given the input diagram 〈12 . . . k〉, let us denote the set which consists
of 〈12 . . . k〉 and all of its subdiagrams as S ′′. Using symmetries we identify
equivalent diagrams within S ′′ and obtain the subset S ′ ⊂ S ′′ such that
no two elements of S ′ are equivalent by a discrete symmetry. S ′ consists of
candidate topologies for master integrals.

Furthermore, we discard diagrams in S ′ with scaleless loops, and simplify
diagrams by rewriting them in their adaptive representation if applicable,
as described in the previous subsection. The set of remaining diagrams is
denoted by S. Then we cast the integrals in S in their Baikov representation
(cf. eq. (8)).

There are many different ways of choosing a basis of integrals. Azurite
chooses the basis as follows: it prefers integrals with monomials in the nu-
merator to integrals with higher-power propagators. Moreover, it prefers a
choice of basis whose integrals have as few propagators as possible. This is to
make the computation more efficient, as this convention facilitates the use of
IBP relations evaluated on their maximal cuts. (Otherwise, we need complete
IBP relations, without cuts applied, to find an integral basis.) Accordingly, as
the code traces over the subdiagrams of the input diagram, it removes edge-
reducible integrals. These are integrals which can be expressed as a linear
combination of integrals that correspond to strict subdiagrams. Evaluated
on its maximal cut Ds1 = · · · = Dsm = 0, an edge-reducible integral reads,

〈s1 . . . sm〉[N ] = 0 + (strict subdiagrams) , (17)

where the strict subdiagrams vanish on this cut. N is a monomial of irre-
ducible scalar products. Similarly, for the remaining integrals, we consider
IBP identities without squared propagators (cf. ref. [16]) to find linear re-
lations between integrals with different numerators. Again, evaluated on its
maximal cut, a general IBP identity reads,∑

i

ci〈s1 . . . sm〉[Ni] = (· · · ) , (18)
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where each Ni is a monomial, and (· · · ) denotes integrals that correspond to
strict subdiagrams. We moreover use the symmetry group G of 〈s1 . . . sm〉 to
find linear relations, taking a form similar to that of eq. (18). To find the linear
basis of integrals, we introduce a monomial order � for all monomials in the
irreducible scalar products. After obtaining enough IBP and symmetry rela-
tions, we linearly reduce integrals according to � via Gaussian elimination.
In practice, a good choice of � is either degree reverse lexicographic or degree
lexicographic order, as this ensures that the chosen basis contains monomials
with as low degree as possible. (In contrast, lexicographic monomial order
may lead to high-degree numerators.)

Azurite traces through all diagrams in S and obtains the complete list
of master integrals. Because of the nature of sub-diagrams, this computa-
tion can be finished in a parallelized way. Only IBP identities evaluated on
their maximal cuts and symmetry relations are needed to find a basis. Hence
we focus our attention to obtaining eqs. (17) and (18), i.e., IBP identities
evaluated on their maximal cut. The representation in eq. (8) can easily ac-
commodate the maximal cut of any subdiagram by taking the residue at
z1 = · · · = zm = 0, (adaptive parametrization is used so that z1, . . . , zm
denote propagators and zm+1, . . . , zn′SP denote ISPs)

〈s1 . . . sm〉[N ]
∣∣∣
maximal cut

∝
∫

dzm+1 · · · dzn′SPF (0, . . . , 0, zm+1, . . . , zn′SP)
D−h

2

×N(0, . . . , 0, zm+1, . . . , zn′SP) . (19)

Again we neglect the overall prefactor and the region of integration. Define
f(zm+1, . . . , zn′SP) ≡ F (0, . . . , 0, zm+1, . . . , zn′SP). Cf. refs. [31, 30], IBP identi-
ties evaluated on their maximal cut take the following form,5

0 =

∫
dzm+1 · · · dzn′SP

n′SP∑
i=m+1

∂

∂zi

(
ai(zm+1, . . . , zn′SP)f(zm+1, . . . , zn′SP)

D−h
2

)
(20)

=

∫
dzm+1 · · · dzn′SP

(
f

D−h
2

n′SP∑
i=m+1

∂ai
∂zi

+
D − h

2
f

D−h−2
2

n′SP∑
i=m+1

ai
∂f

∂zi

)
. (21)

5Note that the third term of the general form given in eq. (11) of ref. [30] is absent on
the maximal cut where the number of cuts is equal to the number of propagators, c = k.
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Here the ai (a priori) are arbitrary polynomials in the ISPs zm+1, . . . , zn′SP .
The second term in eq. (21) corresponds to integrals in D − 2 dimensions.
To compensate this shift we require,

n′SP∑
i=m+1

ai
∂f

∂zi
+ af = 0 , (22)

where a is a polynomial in the ISPs. Equations of this kind are known in
algebraic geometry as syzygy equations. Syzygy equations were also used for
deriving IBP identities for integrals in Feynman parametrization [47]. The
current version of Azurite uses the command syzsyzsyz in Singular to find all
generators of the solution set of eq. (22).

Then the IBP identity evaluated on its maximal cut reads,

0 =

∫
dzm+1 · · · dzn′SPf

D−h
2

( n′SP∑
i=m+1

∂ai
∂zi
− D − h

2
a

)
, (23)

or equivalently,

〈s1 . . . sm〉
[ n′SP∑
i=m+1

∂ai
∂zi
− D − h

2
a

]
= (· · · ) , (24)

where (· · · ) denotes integrals that correspond to strict subdiagrams.
In practice, given the generators of the syzygy module,

g(j) = (a
(j)
m+1, . . . a

(j)

n′SP
, a(j)), (25)

we need to consider the syzygy (am+1, . . . an′SP , a) = Pg(j) for the IBP formula
(23). Here P is an arbitrary polynomial in the ISPs, with the degree up to a
fixed integer.

Azurite generates IBP identities evaluated on their maximal cut by
the use of eq. (23) allowing IBP identities up to a maximum degree. For
the Gaussian elimination step, it lists the coefficients of monomials in each
IBP identity in a monomial order of ISPs (degree reverse lexicographic by
default). In this way a matrix of IBP coefficients is obtained. Then by Gaus-
sian elimination of this matrix, independent IBP identities are identified. The
master integrals correspond to the non-pivot columns of the reduced matrix.
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The current version of Azurite uses slimgbslimgbslimgb in Singular, which applies
fast sparse linear algebra algorithms to carry out Gaussian elimination. The
integral basis search can be parallelized for the sub-diagrams in S, via the
command ParallelTableParallelTableParallelTable in Mathematica.

For the purpose of finding a basis of integrals, numerical values for the
external kinematic invariants and spacetime dimension suffice. Using in ad-
dition finite field techniques, this has the benefit of speeding up the com-
putation of syzygies and the Gauss-Jordan elimination step. In some cases
analytic IBP identities evaluated on maximal cuts are useful, for instance for
the study of multi-loop maximal unitarity in integer spacetime dimensions
[48, 49, 50, 51, 52, 53]. In this case analytic kinematics and spacetime dimen-
sion D would be used by Azurite for generating analytic IBP identities on
the maximal cut.

2.4. Geometric interpretation of syzygy equation

In this subsection we digress from the mainstream of the text to discuss
a geometric interpretation of the constraint (22). The geometric picture of
syzygies evaluated on unitarity cuts was first discussed in ref. [31]. Here we
reformulate the geometric interpretation in tangent algebra language.

The basic observation is that the polynomial-valued vector field

n′SP∑
i=m+1

ai
∂

∂zi
, (26)

is tangent to the hypersurface defined by f(zm+1, . . . , zn′SP) = 0 [31]. The
solution set of eq. (22) is the module of syzygies,

syz

(
∂f

∂zm+1

, . . . ,
∂f

∂zn′SP
, f

)
. (27)

The (am+1, . . . , an′SP) from this syzygy module form the module of the tangent
algebra Tf [54], i.e., the set of all polynomial-valued tangent vector fields
for the hypersurface f = 0. Tf is a Lie algebra and infinite-dimensional in
general.

The structure of Tf depends on the geometric properties of the hyper-
surface f = 0. For example, when the hypersurface is non-singular, i.e., the
singular ideal Is satisfies

Is ≡
〈

∂f

∂zm+1

, . . . ,
∂f

∂zn′SP
, f

〉
= 〈1〉 , (28)
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then the solution of eq. (22) is generated by principal syzygies (trivial syzygy
relations) [55]. This can be proven by multiplying any syzygy relation by “1”,
and replacing “1” by the generators of the singular ideal in eq. (28). In this
case, no computation is needed for obtaining the generators of Tf .

If the hypersurface f = 0 is singular, then locally around a singular point,
Tf is generated by principal syzygies and weighted Euler vectors [54]. More-
over, cf. Schreyer’s theorem [55], the generators of the solutions of eq. (22)
can be found algebraically via S-polynomial computations.

3. Examples and performance

In this section we present some non-trivial results obtained from Azu-
rite along with some benchmarks of its performance. An introduction to
the functions and their usage can be found in Appendix A. In all of the
following cases, the full numerical approach is used.6 This setup is the most
computationally favourable for Singular.

As an example, let us consider the triple-box diagram with k = 10 prop-
agators illustrated in the top row of fig. 3. First we present the initialization
of Azurite for this diagram, shown in the sample code 1.

The list of loop momenta is declared in LoopMomenta. A list of linearly
independent momenta is declared in ExternalMomenta. The list Propagators

consists of the propagators of the diagram, augmented by a list of the inde-
pendent ISPs. They are found by enumerating all the possible scalar products
involving the loop momenta, and by finding a maximum-rank subset. In the
case at hand there are, cf. eq. (6), nSP − k = 15 − 10 = 5 independent
ISPs. These are the last five elements of Propagators below. In Kinematics,
Lorentz invariants formed of external momenta are expressed in terms of the
Mandelstam invariants. In Numerics, numerical values are given for the kine-
matical invariants. These must be chosen randomly, so as to avoid poles in
the intermediate reduction steps.

Having declared the diagram, we can now proceed to compute the master
integrals of the vector space spanned by this diagram and its subdiagrams.
This is done with the FindAllMIs function, where the first input entry of
FindAllMIs (sample code 2) is a list of labels of the propagators of the di-

6The computations were carried out on a i7-6700, 32GB DDR4 RAM machine using
Singular v4.0.3, with parallel computations.
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LoopMomenta = {l1, l2, l3};
ExternalMomenta = {k1, k2, k4};
Propagators = {l1ˆ2, (l1 - k1)ˆ2, (l1 - k1 - k2)ˆ2, l3ˆ2, (-l3 - k1 -
k2)ˆ2, (l1 + l3)ˆ2, (l2 - l3)ˆ2, l2ˆ2, (l2 - k4)ˆ2, (l2 + k1 + k2)
ˆ2, (l1 + k4)ˆ2, (l2 + k1)ˆ2, (l3 + k1)ˆ2, (l3 + k4)ˆ2, (l1 + l2)ˆ2};
Kinematics = {k1ˆ2 -> 0, k2ˆ2 -> 0, k4ˆ2 -> 0, k1 k2 -> s/2, k2 k4 ->
(-s - t)/2, k1 k4 -> t/2};
Numerics = {s -> 1, t -> -6};
Symmetries = {};
Preparation[];

Azurite sample code 1: Initialization for a massless triple-box diagram.

MIs=FindAllMIs[{1,2,3,4,5,6,7,8,9,10},NumericMode -> True,NumericD ->
1119/37,Characteristic -> 9001,HighestPower -> 3,WorkingPower -> 3,
Symmetry -> True]

Azurite sample code 2: Example of use for FindAllMIs.

agram. FindAllMIs can be used with the parallel computation. We refer to
section Appendix A.2.4 for further details on the syntax.

The computation is performed by making use of adaptive parametriza-
tions (cf. section 2.2) of all the subdiagrams encountered in the IBP rela-
tions that are generated, and taking into account their discrete symmetries
(cf. section 2.1). With the options chosen above, the computation is moreover
performed in a finite field of characteristic 9001 and with the numerical value
of 1119

37
for the space-time dimension, chosen such that there are no dimension

dependent poles in the reduction coefficients.
The total time elapsed for the complete reduction is, on our desktop

computer with parallel computation, 68 seconds. The irreducible topologies
that are chosen as a basis are shown in fig. 3. Their respective graphs were
drawn using the function FeynmanGraph.
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Figure 3: Irreducible topologies for the massless triple-box diagram.

Using the notation of eq. (8) we can rewrite the 26 basis elements as

〈123456789 10〉[z11, z13, 1] 〈1236789 10〉[z4, 1] 〈1234679 10〉[z5, 1]

〈12345679〉[z8, 1] 〈125678 10〉[1] 〈1256789〉[z3, 1] 〈245679〉[z1, 1]

〈13678 10〉[1] 〈13458 10〉[1] 〈134579〉[1] 〈12679 10〉[1] 〈125679〉[1]

〈123679〉[1] 〈15679〉[1] 〈15678〉[1] 〈13679〉[1] 〈1347 10〉[1]

〈2679〉[1] 〈167 10〉[1] , (29)

where the values inside the square brackets represent the irreducible numer-
ators for the given topology. The numerators are expressed in the Baikov
representation using the variables zi. Here i is an integer corresponding to
the ith element of the list Propagators. The possible values of i are determined
by the uncut propagators, for example for the 〈1236789 10〉 subdiagram the
numerators can be chosen as:

z4 = (l3)2 , z5 = (l3 + k1 + k2)2 , z11 = (l1 + k4)2 ,

z12 = (l2 + k1)2 , z13 = (l3 + k1)2 , z14 = (l3 + k4)2 ,

z15 = (l1 + l2)2 .

(30)
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Other than the 5 initial ISPs the two uncut denominators {z4, z5} can appear
as numerators.
The reduction is very efficient. This is evidenced in fig. 4 which displays
results for a variety of diagrams at various loop orders and configurations of
internal and external masses7. Here, N, � and represent different masses.

1.3s, 8 MIs 2.4s, 81 MIs 1.8s, 18 MIs 2.2s, 31 MIs

2.7s, 73 MIs
1.3s, 12 MIs 2.8s, 70 MIs 2.5s, 35 MIs

3.5s, 31 MIs 6.4s, 61 MIs

170s, 42 MIs

67s, 85 MIs

Figure 4: Computation time and number of master integrals for different
topologies and mass configurations.

3.1. IBP identities evaluated on their maximal cut

Azurite can also obtain IBP identities on maximal cuts, both analyt-
ically or numerically, using the function IntegralRed. For example, for the
triple-box diagram (Azurite sample code 1), the analytic IBP identities on

7Part of these results were already known, and our results agree with the literature,
see for example refs. [26, 28, 56].
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IntegralRed[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}];

Azurite sample code 3: Sample code for IntegralRed

the maximal cut D1 = D2 = . . . = D10 = 0 can be obtained. The output is
a list whose first element contains the master integrals and the second one
contains the IBP identities evaluated on the cut, in the form of replacement
rules.

Using a similar notation as in eq. (29) we can represent the master inte-
grals for this cut as {I[z11], I[z13], I[1]}. Here the prescription I[N] indicates,
using again the Baikov representation,

I[N] =

∫ 15∏
i=11

dzi F
d−7
2 N. (31)

The values of i run over the ISPs of this diagram, which can be read off from
eq. (30). For instance, the reduction of I[z2

11] is then written as

I[z2
11] =

1

2 (−3 + d)2

(
−2
((

8− 6d+ d2
)
s− (−3 + d) t

)
I[z11]

+2 (−4 + d)2 t I[z13] + (−4 + d) (−2 + d) st I[1]
)

+ . . . .
(32)

where . . . denotes integrals with fewer-than-ten propagators. It takes about
2.4 seconds to reduce all numerators up to rank 4 to the master integrals,
and about 18.0 seconds to reduce all numerators up to rank 6 to the master
integrals, on the maximal cut, with the same computer mentioned in the
previous subsection.

4. Summary and Outlook

In this paper, we have introduced our new algorithm for finding bases of
loop integrals and its implementation in the package Azurite. It constructs
the needed integration-by-parts identities on a specific set of (algorithmically
determined) cuts, and constructs identities where integrals with higher-power
propagators are absent by solving syzygy equations. By making use of further
simplifications, involving adaptive parametrizations of the involved diagrams,
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using graph theory tools to find discrete symmetries, finite-field computations
and parallel computations, the package finds master integrals for two- and
three-loop diagrams very efficiently. Therefore we expect that Azurite will
be a very useful tool for studies of multi-loop scattering amplitudes, for ex-
ample in IBP reductions and differential equations. This package can also be
used to find the IBP relations evaluated on their maximal cuts analytically.

There are several directions for developing new versions of Azurite. One
direction is to write a new syzygy generating code, based on new develop-
ments in computational algebraic geometry such as Faugère’s F5 algorithm
[57]. The goal is to get the code to produce a simpler form of syzygy gen-
erators, which would allow speeding up the search for master integrals. It
will also be very helpful to fully incorporate the tangent Lie algebra/variety
duality [54] for deriving syzygies. Furthermore, we are working on a public
package to produce complete IBP reductions efficiently, based on the present
algorithm to find a basis of integrals, and on the construction of IBP reduc-
tions on cuts via syzygy computations [31, 30].
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Appendix A. Usage of Azurite

Appendix A.1. Installation

To install Azurite, it is necessary to install the computer algebra sys-
tems Mathematica (10.0.0 or more recent versions) and Singular [32]
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first. Singular can be downloaded from http://www.singular.uni-kl.de.
Azurite version a.b.c can be downloaded from,

https://bitbucket.org/yzhphy/azurite/raw/master/release/
Azurite_a.b.c.tar.gz

Here a, b and c must be replaced by the corresponding version numbers, for
example,

https://bitbucket.org/yzhphy/azurite/raw/master/release/
Azurite_1.1.0.tar.gz.

After extracting the tar file Azurite_a.b.c.tar.gz, there will be a di-
rectory Azurite_a.b.c which consists of the sub-directories code, examples
and manual. The main package file Azurite.wl is located in code. examples
contains examples while manual contains a manual of Azurite in Mathe-
matica notebook format.

A directory for temporary files must be created by the user.

Appendix A.2. Commands and Options

Appendix A.2.1. Path setup

The paths of Azurite for temporary files and Singular binary file are
set up as follows, in Mathematica code. For example,

<< "/MyPathforAzurite/Azurite/code/Azurite.wl";
TemporaryDirectory = "/MyPathforTemporaryFiles/";
SingularDirectory = "/Applications/Singular.app/Contents/bin/";

Here TemporaryDirectory denotes the directory of temporary files, while the
variable SingularDirectory denotes the directory of the Singular binary file
which depends on the operating system.

Appendix A.2.2. Kinematics and loop structure information

The loop structure and kinematics information should be added after
the path set-up section. The names of loop momenta and external mo-
menta are declared in LoopMomenta and ExternalMomenta, respectively. In-
verse propagators, kinematics and numerical values of external invariants
are listed in Propagators, Kinematics and Numerics respectively. The com-
mand Preparation[] finds the Baikov representation.

For example, the input for the pentagon-box in eq. (B.3) is,
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LoopMomenta = {l1, l2};
ExternalMomenta = {k1, k2, k3, k4};
Propagators = {l1ˆ2, (l1 - k1)ˆ2, (l1 - k1 - k2)ˆ2, (l1 - k1 - k2 - k
3)ˆ2, (l2 + k1 + k2 + k3)ˆ2, (l2 + k1 + k2 + k3 + k4)ˆ2, l2ˆ2, (l1 +
l2)ˆ2, (l1 + k4)ˆ2, (l2 + k1)ˆ2, (l2 + k2)ˆ2};
Kinematics = {k1ˆ2 -> 0, k2ˆ2 -> 0, k3ˆ2 -> 0, k4ˆ2 -> 0, k1 k2 -> s
12/2, k1 k3 -> s13/2, k1 k4 -> s14/2, k2 k3 -> s23/2, k2 k4 -> s24/2,
k3 k4 -> (-s12 - s13 - s14 - s23 - s24)/2};
Numerics = {s12 -> 1, s13 -> 7, s14 -> 5, s23 -> 17, s24 -> 23};
Preparation[]

We have the following requirements,

• Only linearly independent external momenta can appear in ExternalMomenta

and Kinematics. For example, we do not have k5 in the input.

• The numerical input Numerics is necessary and the numerical values
for kinematic variables should be generic. For example, the following
input should be avoided, as the external mass m1 is set to a non-generic
value,

Kinematics={k1ˆ2 -> m1ˆ2, k2ˆ2 -> 0, k4ˆ2 -> 0, k1 k2 -> 1/2 (-m
1ˆ2 + s), k2 k4 -> 1/2 (m1ˆ2 - s - t), k1 k4 -> 1/2 (-m1ˆ2 + t)
};
Numerics={s -> 1, t -> 3, m1-> 0};

From the first line, Azurite will take k1 to be massive for deriving
the Baikov representation. However, m1->0 in second line may make
the obtained Baikov representation singular. The correct input for a
massless k1 is,

Kinematics={k1ˆ2 -> m1ˆ2, k2ˆ2 -> 0, k4ˆ2 -> 0, k1 k2 -> 1/2 (-m
1ˆ2 + s), k2 k4 -> 1/2 (m1ˆ2 - s - t), k1 k4 -> 1/2 (-m1ˆ2 + t)
}/.m1->0;
Numerics={s -> 1, t -> 3};

• Irreducible scalar products should be added to Propagators. The goal
is to ensure that the elements in Propagators independently span the
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space of scalar products formed out of li · lj and li · kj. (The li are the
loop momenta while the kj are the independent external momenta.)

Appendix A.2.3. Associated graphs and their discrete symmetries

After the preparation, Azurite can find graphs and symmetries via the
graph functions of Mathematica. For example, with the inverse propaga-
tors given in eq. (B.3), the graphs of 〈12345678〉 and 〈145678〉 are obtained
by calling,

FeynmanGraph[{1, 2, 3, 4, 5, 6, 7, 8}]
FeynmanGraph[{1, 4, 5, 6, 7, 8}]

FeynmanGraph has several options, including,

1. DiagramExtendedOutput with the default value False. If its value is True,
then propagator labels will appear on the corresponding internal lines.8

2. FetchCachedGraphInfo with the default value True. To speed up the
drawing of graphs, it is advantageous to first store the input diagram
in RAM. This is achieved by calling DiagramCache, for example,

DiagramCache[{1, 2, 3, 4, 5, 6, 7, 8}];

Then, provided FetchCachedGraphInfo has the value True, for any subdi-
agram of 〈12345678〉, Azurite will simply pinch propagators to obtain
the graph, without running the backtracking algorithm again.

Azurite also finds the discrete symmetries of a given graph. PropagatorSymmetry
[index] provides the permutation symmetry of propagators. For example,
with the inverse propagators given in eq. (B.3), the (physical) symmetry
group of diagram 〈145678〉 is given by PropagatorSymmetry[{1,4,5,6,7,8}].
The output is,

{{z[1] -> z[1], z[4] -> z[4], z[5] -> z[5], z[6] -> z[6], z[7] -> z
[7], z[8] -> z[8]}, {z[1] -> z[4], z[4] -> z[1], z[5] -> z[7], z[6]
-> z[6], z[7] -> z[5], z[8] -> z[8]}}

8Versions 10 and 11 of Mathematica have a problem in labelling edges of multi
graphs: the multiple edges cannot be distinctly labelled. We expect that this issue will be
solved in future versions of Mathematica.
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where z[i] denotes the Baikov variable zi, namely, the ith propagator.
On the other hand, the action of the symmetries on the momenta can be

obtained by Azurite’s MomentaSymmetry[index]. For example, the output of
MomentaSymmetry[{1,4,5,6,7,8}] reads,

{{k4 -> k4, -k1 - k2 - k3 - k4 -> -k1 - k2 - k3 - k4, l1 -> l1, l2 ->
l2}, {k4 -> -k1 - k2 - k3 - k4, -k1 - k2 - k3 - k4 -> k4, l1 -> k1 +
k2 + k3 - l1, l2 -> -k1 - k2 - k3 - l2}}

The non-trivial element is the affine transformation given in eq. (15). (Note
that -k1 - k2 - k3 - k4 means k5, since the latter is a linearly dependent
momentum.)

Appendix A.2.4. Master integrals

DiagramAnalysis[index] provides the list of basis integrals for a given
diagram, without considering its subdiagrams. It is useful for studying an
individual diagram in detail. For example, with the inverse propagators given
in eq. (B.3), DiagramAnalysis[{1,2,3,4,5,6,7,8}] finds the master integrals
of 〈12345678〉. The output is,

{z[10], z[9], 1}

which means that there are three master integrals supported on the maximal
cut z1 = z2 = ... = z8 = 0. They are integrals with numerators z10 = (l2+k1)2,
z9 = (l1 + k4)2 and 1. Similarly, DiagramAnalysis[{1,4,5,6,7,8}] gives {},
which means that this diagram has no master integrals which are supported
on the maximal cut z1 = z4 = z5 = z6 = z7 = z8 = 0. DiagramAnalysis has
the following options,

• NumericMode with the default value True. This determines if the compu-
tation is carried out numerically.

• Characteristic with the default value 0. This is the characteristic of
the number field, which can be chosen as either a prime number p, or
0. In the former case, the finite field Z/pZ is used, while in the latter
case the field of rational numbers Q is used.

• NumericD with the default value Null. When this value is a number, then
the spacetime dimension will be set to this numerical value. Note that
only rational non-integer values can be used.
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• WorkingPower with the default value 4. This is the degree limit for the
numerators appearing in the independent IBP identities, after Gaussian
elimination. In general, to get the integral basis, we do not need to
reduce all renormalizable terms by IBP identities.

• HighestPower with the default value 4. Occasionally, to get all IBP iden-
tities up to the degree specified by WorkingPower, we need IBP identities
with the degrees higher than WorkingPower. Otherwise, the output ba-
sis may be redundant and contain integrals with the degree exactly the
same as WorkingPower. HighestPower sets the limit for IBP identities in
the intermediate steps. HighestPower should be greater than or than
WorkingPower.

• Symmetry with the default value True. It determines if symmetries are
used for the integral reduction.

• WatchingMode with the default value False. If it is set to be True, then
the intermediate steps of the computations are printed.

DiagramAnalysis applies adaptive parametrizations. Hence if several ex-
ternal lines attach to one vertex, or if the diagram is factorizable, it will au-
tomatically determine a new list of ISPs. If the adaptive parametrization is
used, the output may contain expressions mp2[...] which denotes Minkowski
scalar products (...)2. Scalar products can be expressed as a function of the
original propagators, via SPExpand[]. For example,

SPExpand[mp2[-k1 - k2 - k3 - k4 + l1]]

gives the output,

-s12 - s13 - s23 + z[1] + z[4] - 2 z[9]

which means (l1 + k5)2 = −s12 − s13 − s23 +D1 +D4 − 2D9.
Note that DiagramAnalysis considers a diagram individually, and sym-

metries between different diagrams are ignored. For example, for the inverse
propagators given in eq. (B.3), DiagramAnalysis determines both 〈158〉[1] and
〈478〉[1] as master integrals. However, they are equal by a discrete symmetry.

On the other hand, FindAllMIs[index] finds all master integrals within a
diagram and all of its subdiagrams. It first finds the symmetries between dif-
ferent diagrams, and then determines the candidate diagrams for the search of
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master integrals. For example, all master integrals, including subdiagrams, for
the inverse propagators given in eq. (B.3), can be found by calling FindAllMIs

[{1,2,3,4,5,6,7,8}]. During the computation of FindAllMIs, the obtained
master integrals are printed in the following format,

{1,2,3,4,5,6,7,8} {z[10],z[9],1}
{2,3,4,5,6,7,8} {z[9],z[1],1}
...

For each line the first entry is the list of propagators of a diagram, while the
second entry is the list of numerators for master integrals of this topology.
When the computation has finished, the total time used is also displayed.
The output of FindAllMIs is a list which consists of items whose first element
is the diagram index, and the second item is the list of numerators of master
integrals.

After calling FindAllMIs, the associated diagrams of master integrals can
be obtained and displayed by calling,

MIList = FindAllMIs[{1, 2, 3, 4, 5, 6, 7, 8}];
FeynmanGraph[#[[1]],DiagramExtendedOutput -> True] & /@ MIList

Most options of FindAllMIs are the same as those of DiagramAnalysis.
However to speed up the search process, some default values are different:

{NumericMode->True,Characteristic->9001,NumericD->1138/17,
HighestPower->4,WorkingPower->3,
WatchingMode->False,Symmetry->True, GlobalSymmetry->True,
ParallelMode->True}

Here GlobalSymmetry is a special option which determines whether the sym-
metries between different diagrams are used. ParallelMode is the option which
indicates if the parallel computation is used. If its value is True, then the sub-
diagrams are assigned to several processors, and the integral basis searching
can be significantly sped up.

Appendix A.2.5. Analytic IBP identities evaluated on their maximal cut

Analytic (or numerical) IBP identities evaluated on their maximal cut
can be obtained by the IntegralRed command. For example, for the triple-
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box diagram (shown in Azurite code sample 1), the IBP identities on the
maximal (10-propagator) cut can obtained via,

{MIs,IBP}=IntegralRed[{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}];

where the variable MIs contains master integrals and IBP contains IBP iden-
tities evaluated on their maximal cut, in the form of replacement rules. The
reduction of a specific integral can now be obtained,

Int[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -3, 0, 0, 0, 0] /. IBP

where Int[a1, . . . , ak, . . . anSP
] denotes the integral with the integrand,

D
−ak+1

k+1 · · ·D−anSP
nSP

Da1
1 · · ·D

ak
k

. (A.1)

where Dk+1, . . . DnSP
are irreducible scalar products.

The options for IntegralRed are similar to those of DiagramAnalysis, ex-
cept that the default values are for analytic computation:

{NumericMode->False,Characteristic->0,NumericD->Null,HighestPower->4,
WorkingPower->4, WatchingMode->False,Symmetry->True}

Note that IntegralRed does not use adaptive parametrization. Hence for
IntegralRed, the kinematic input must correspond to a non-factorizable dia-
gram whose external lines attach to distinct vertices.

Appendix B. Integrals with squared propagators in Baikov repre-
sentation on maximal cuts

In this paper, we mainly discuss integrals without squared propagators.
However, integrals with squared propagators do appear in various contexts,
for example, importantly, in the context of differential equations [18, 19, 20,
21, 22, 23, 24]. To explain the relation between integrals with and without
squared propagators, in this section we derive the form of squared-propagator
integrals in their Baikov representation on maximal cuts.

Recall that in eq. (19), the maximal-cut form of an integral without
squared propagators is obtained by simply setting z1, ..., zm to zero in the
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integrand. If a propagator zj is squared (1 ≤ j ≤ m), then a residue computa-
tion is necessary to obtain the Baikov representation on the maximal cut. In
the notation of eq. (19), the integral with the integrand N/(D1 · · ·D2

j · · ·Dm),
evaluated on the maximal cut is proportional to,∫

dzm+1 · · · dzn′SP

∮
Cj

dzj
1

z2
j

F (0, . . . , zj . . . , 0, zm+1, . . . , zn′SP)
D−h

2

×N(0, . . . , zj, . . . , 0, zm+1, . . . , zn′SP) , (B.1)

in Baikov representation. Here Cj is a small contour around the point zj =
0. Furthermore, assume that the integrand has been reduced so that the
numerator N is independent of zj. After evaluating this residue, the maximal-
cut form reads,∫

dzm+1 · · · dzn′SPF (0, . . . , 0, zm+1, . . . , zn′SP)
D−h−2

2

×D − h
2

∂F

∂zj
(0, . . . , 0, zm+1, . . . , zn′SP)N(0, . . . , 0, zm+1, . . . , zn′SP) . (B.2)

Therefore a squared-propagator integral evaluated on its maximal cut, in its
Baikov representation, is equivalent to a (D−2)-dimensional integral without
squared propagators. So by dimension-shift identities and IBP identities, a
D-dimensional integral with squared propagators equals a linear combination
of D-dimensional integrals without squared propagators.

As an example, consider the two-loop four-point massless double-box di-
agram with inverse propagators:

D1 = l21 , D2 = (l1 − k1)2 , D3 = (l1 −K12)2 , D4 = (l1 +K12)2 ,

D5 = (l2 − k4)2 , D6 = l22 , D7 = (l1 + l2)2 ,
(B.3)

where k2
1 = k2

2 = k2
3 = k2

4 = 0, (k1 + k2)2 = s and (k1 + k4)2 = t. As in
eq. (A.1), we define

I[m1, . . .m9;D] =

∫
dDl1
iπD/2

dDl2
iπD/2

(l1 + k4)−m8(l2 + k1)−m9

Dm1
1 · · ·Dm7

7

. (B.4)

Define Baikov variables as, zi ≡ Di, i = 1, . . . , 7, z8 ≡ (l1 + k4)2 and z9 ≡
(l2 + k1)2. The Baikov representation is,

I[m1, . . .m9;D] = C(D)

∫ 9∏
i=1

dziF (z)
D−6
2
z−m8

8 z−m9
9

zm1
1 . . . zm7

7

, (B.5)
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where C(D) is a dimension-dependent prefactor. Now consider the maximal
cut z1 = . . . = z7 = 0. For example,

I[1, 1, 1, 1, 1, 1, 2, 0, 0;D] = C(D)

∫
dz8dz9

D − 6

2

(
∂F

∂z7

F (z)
D−8
2

)∣∣∣∣
z1=...=z7=0

.

(B.6)

Hence on the maximal cut, I[1, 1, 1, 1, 1, 1, 2, 0, 0;D] equals a (D−2)-dimensional
integral with the numerator ∂F/∂z7, but without squared propagators. Using
(D − 2)-dimensional IBP identities, we obtain,

I[1, 1, 1, 1, 1, 1, 2, 0, 0;D] =
C(D)

C(D − 2)
(a1B1[D − 2] + a2B2[D − 2]) , (B.7)

where

B1[D] ≡ I[1, 1, 1, 1, 1, 1, 1, 0, 0;D − 2] ,

B2[D] ≡ I[1, 1, 1, 1, 1, 1, 1,−1, 0;D − 2] , (B.8)

are the two master integrals of the double-box topology. The coefficients are
a1 = (D − 6)s2/(16(s + t)) and a2 = −(D − 6)s(3s + 2t)/(16t(s + t)). Here
. . . denotes integrals with fewer-than-seven propagators.

On the other hand,

I[m1, . . .m9;D] = C(D)

∫ 9∏
i=1

dziF (z)
D−8
2
z−m8

8 z−m9
9 F (z)

zm1
1 . . . zm7

7

. (B.9)

which implies dimension-shift identities. Again using (D − 2)-dimensional
IBP identities,

Bi[D] =
C(D)

C(D − 2)

(
T1iB1[D − 2] + T2iB2[D − 2]) + . . . , (B.10)

where i = 1, 2. Now compare eqs. (B.7) and (B.10), and define(
c1

c2

)
≡
(
T11 T12

T21 T22

)−1(
a1

a2

)
. (B.11)

Then, on the maximal cut, the squared-propagator integral is related to inte-
grals without squared propagators as I[1, 1, 1, 1, 1, 1, 2, 0, 0;D] = c1B1[D] +
c2B2[D] + . . .. Here,

c1 = −(D − 5)(3D − 14)

(D − 6)t
, c2 = −2(D − 5)(D − 4)

(D − 6)st
. (B.12)
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Note that the explicit form of C(D) is not needed for deriving these coeffi-
cients.

This representation of integrals with squared propagators on maximal
cuts clearly generalizes to integrals with squared propagators on non-maximal
cuts.
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