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Abstract We explore some of the fundamental limits in small core silica holey fibres that have a direct bearing on
nonlinear device applications. In particular, we examine issues related to coupling and polarization in these fibres.

Introduction

Since the first holey fibre (HF) was fabricated in 1996
[1], progress in this field has been explosive. HFs that
combine wavelength-scale feature sizes with a large
air-filling fraction confine light tightly within the core.
Modest optical powers can then induce nonlinear
effects in short lengths of these highly nonlinear HFs
(HNLHFs). HNLHF's are thus a route towards efficient
compact nonlinear devices. To date most such
devices have made use of silica HFs, which can have
effective nonlinearities as high as y~60/(W.km), 60
times larger than standard fibre [2].

Fundamental limits in HNLHFs

Now that a range of devices have been demonstrated
(see for example [2]-[4)]), it is timely to assess the
factors that impact the practical use of HNLHFs. One
important consideration is the integration of HNLHFs
with existing technologies. Although it is possible to
splice HFs with solid fibres [5], the mode mismatch
between HNLHFs and standard fibres makes this
impractical. For laboratory demonstrations, free-
space coupling has generally been used. The
commercial development of HNLHF devices will
require new techniques for ensuring low-loss
interconnects to existing systems. In either case, it is
vital to understand the limits on the efficiency with
which light can be coupled into these extreme fibres.

To do this, we have used the multipole method [6] to
calculate the modal properties at 1550nm for a range
of small core high NA HFs with 4 rings of hexagonaily
arranged holes with hole-to-hole spacings (A) ranging
from 0.8-2.8um. The idealized HFs considered here
have 2-fold degenerate fundamental modes (a pair of
quasi-linearly polarized modes with the same
propagation cohstant) [7], and any linear combination
of these solutions is also a mode. In the following we
choose the linear combination that results in a circular
Poynting vector and transverse electric fields that are
approximately linearly polarized along the x-axis and
y-axis, labelled mode (7) and (2) respectively.

For some designs considered here, the core is sub-
wavelength, and so the mode overlaps significantly
with the holes. In Fig.1 (top left) the percentage of the
field located in the holes (PFhyes) is plotted as a
function of A for two air-filling fractions (d/A=0.6 and
0.9 where d is the hole diameter). For A <1.5um, the
mode/air overlap increases dramatically.
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Fig.1 Tap left: Percentage of the electric field in the holes
Bottom Left; Polarization extinction ratio Top Right; Minimum
coupling loss and Bottom Right: FWHM of the linearly
polarized Gaussian that results in optimal coupling

For the smallest structures considered here, the silica
bridges surrounding the core are sub-wavelength.
Hence one might expect the mode shape to be less
filamented for these fibres, and better coupling with a
conventional fibre mode or a free space beam might
be anticipated. To test this we calculated the coupling
efficiency (Cy) between the HF mode E=E(”(x,y) and
a Gaussian field distribution £ fx,y)=exp(-(+y*)/u?)
linearly polarized along the x-axis using the definition:
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where E, is the x-component of E. For any choice of
w, Cx represents the power fraction of the linearly
polarized Gaussian coupled into the HE mode. To
determine the optimal coupling, w is chosen in order
to maximize C,. The minimum coupling loss (CLy) is
then determined via CL, [dB]=-10 log1o(Cy).

Fig.1 shows the choice of Gaussian beam FWHM
(V2m?2 w) that results in optimum coupling for each
fiore and the corresponding loss CL, (solid lines). For
fibres with core dimensions larger than the
wavelength, reducing the core size indeed reduces
the coupling loss slightly, reflecting a more Gaussian-
like mode shape. However, for A<1.5um, the coupling
degrades. For Fibre A, which has an effective mode
area of 2 um?, the minimum coupling loss is ~0.2dR,
where for the larger Fibre B (mode area =5 pmz), the
loss is reduced to =0.04dB. Notice that for the
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smallest structures, sub-wavelength Gaussian beams
are required for optimal coupling, which is impractical.
Hence in practice the coupling loss would degrade
more at small structure scales than Fig.1 suggests,
and so these predictions should be viewed as an
upper bound on the coupling efficiency.

The dashed lines in Fig.1 show the coupling loss
between mode (1) and a Gaussian beam, ignoring the
contribution from the mode polarization. They thus
describe the contribution to the coupling loss purely
due to the mode shape. This contribution increases
significantly for the smallest structures, and so the
principal reason for the coupling degradation is the
non-Gaussian mode shape that results when a
significant fraction of the light is located in the holes.

The loss difference between solid and dashed lines in
Fig.1 reflects the deviation from linearity of the holey
fibre mode. The effect of the mode polarization on the
coupling foss worsens for small-scale HFs, and to
understand this trend, Fig.2 shows a close-up of the
electric field for Fibres A and B. The bottom left
corner of each box corresponds to the centre of the
fibre. For each fibre, the field is essentially linearly
polarized throughout the core region. For the largest
fibre (B), the mode is effectively confined to the core.
In contrast, in fibre (A), the field curvature becomes
significant in the silica bridges between the holes.
This deviation from linear polarization explains why
the coupling from a linearly polarized Gaussian beam
is poorer when the structure scale is decreased.

d/A=0.9

Fig.2 Vector plots of the transverse electric field for: (Left)
Fibre A; (Right) Fibre B, Shading denotes silica regions.

We now further explore the implications of this field
curvature for practical devices. Although it is known
that HNLHFs are typically birefringent due to the
effect of small asymmetries in the fibre profile, one
related quantity of interest that has not previously
been explored in any detail is the polarization
extinction ratio. For many applications, a large
extinction ratio is crucial to avoid problems related to
walk-off effects from light coupled into the orthogonal
mode. The extinction ratio is defined in the usual way
to be ER,{dB}=10 (0G10{Prmax/Pmin) where Py (Pain) is
the maximum (minimum) power that can be
transmitted through a linear polarizer positioned at the
output of the fibre when linearly polarized light is

launched onto the x-axis of the fibre. Hence
P.=CVIVic™r and p_ =CVV y vy

max x x x x min x y x y
where the overlap between a linear polarizer oriented
in the o direction and mode (n) is defined by:
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and C, is the coupling between mode (n) and a
Gaussian polarized in the o direction, as defined by
Eq.(1). For a perfectly linearly-polarized mode, it is
possible to avoid exciting the orthogonal mode and so
ER=xdB. In real fibres, modal field curvature
reduces the value of ER, that can be achieved.

In Fig.1 (bottom left) the polarization extinction ratio is
plotted for a range of HNLHFs. The extinction ratio
worsens significantly for smallest A, which reflects the
increasing deviation from linear polarization for the
modes of these fibres. At first, it appears that the
extinction ratio is independent of the air-filling fraction
(d/A). However, by plotting the extinction ratio as a
function of the effective mode area (see the insert) it
is clear that the use of larger filling fractions leads to
fibres with smaller mode areas without worsening the
extinction ratio. In other words, for a specified mode
area, the fibre with larger air-filling fraction has a
higher extinction ratio. Note that larger air-filling
fractions also produce fibres with lower confinement
loss [8]. Hence HNLHFs with large d/A reduce the
impact of coupling, polarization and coupling
penalties in this sub-wavelength core regime.

Conclusions

We have identified practical penalties associated with
HNLHFs. For structures with sub-wavelength cores,
both the coupling efficiency and polarization extinction
ratio are reduced. These penalties pose a challenge
for the realization of HF-based dispersion
compensators and evanescent field devices, both of
which require small structure scales. For other
devices, it is possible to design fibres that represent
an acceptable compromise between nonlinearity and
these penaities. For example, a fibre with A=1.8um
and d/A=0.9 has an extinction ratio of >25dB,
coupling loss of <0.05dB and a small effective area
(=3pm2). Such fibres reduce the power length product
requirements of nonlinear devices to the 10W.m level.
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