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Abstract
This work is inspired by natural flyers such bats and insects. They show
outstanding aerodynamic performance due to their flexible membrane wi-
ngs and their ability to control its stiffness to improve manoeuvrability.
In this work the fluid-structure coupling as well as the physics and the
control of electroactive membranes have been simulated in a multiphysics
framework. This study has allowed not only to have an insight of the flow
mechanisms which allow a membrane wing to enhace lift and delay stall
at high angles of attack but also lays the basis of the understanding of how
an active control of the membrane’s stiffness in response to the unsteadi-
ness of the fluid-structure coupling can deliver a more stable flight. In
particular, numerical simulations are conducted for an electroactive mem-
brane wing in a laminar incompressible flow. The fluid-structure inter-
action problem is simulated for electroactive polymers whose shape and
stiffness can be modified by applying an electric potential. The Maxwell
stresses generated by the electric field across the membrane produce an in-
plane relaxation. Results from this work show that a fixed voltage applied
to a prestretched membrane results in an increased camber and therefore
enhanced mean lift. Moreover, the effect of a partial activation is consid-
ered as well as an oscillating voltage across the membrane. The results
presented in this work indicate that the lift is increased at angles of attack
up to α = 12◦ when the back section of the membrane is activated. In addi-
tion, lift is increased at higher angles of attack when the voltage oscillates
at frequencies close to resonance of the coupled fluid-structure system. Fi-
nally, an active control has been simulated exploiting the electromechani-
cal characteristics of electroactive polymers and using the membrane itself
as a sensor. This work shows that when the whole surface of the mem-
brane is used as sensor and actuator, a proportional integral control is able
to reduce the membrane’s oscillations at medium angles of attack, deliv-
ering a more stable flight and smoother response to a gust.
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Nomenclature

Fluid:

α angle of attack (AoA) [ ◦ ]

p pressure [N/m2 ]
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u displacement vector (= x− X) [m ]
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Mathematical Notation

Throughout this work the following notation is adopted for tensor opera-
tions:

Inner product The inner product (·) operates on any two tensors of rank
r1 and r2 such that the rank of the result r = r1 + r2 − 2. In particular:

• The inner product of two vectors a and b is commutative and pro-
duces a scalar s = a · b where

s = aibi = a1b1 + a2b2 + a3b3.

• The inner product of two tensors T and S produces a tensor P = T · S
whose components are evaluated as

Pij = TikSkj.

It is non-commutative such that T · S =
(

ST · TT
)T

.

Outer product or tensor product The outer product (⊗) of two vectors
a and b is non-commutative and produces a tensor T = a⊗ b = (b⊗ a)T

whose components are evaluated as

Tij = aibj.

Double inner product or double contraction of two tensors It produces
a scalar s = A : B which can be evaluated as the sum of the 9 products of
the tensor components

s = AijBij = A11B11 + A12B12 + A13B13 + . . .



Chapter 1

Introduction

The interest in the research area of Micro Air Vehicle (MAV) is rapidly
increasing. Development is driven by applications for civil and military
purposes such as aerial photography, search-and-rescue or surveillance
missions. In fact, one of the main advantages of these micro aircrafts is
that they can perform remote observation of hazardous environments in-
accessible to ground vehicles. MAVs have a set of constraints which are, in
many ways, significantly different from those of conventional aircraft and
are often best addressed by a multidisciplinary approach. Fast-response
non-linear controls, nano-structures, integrated propulsion and lift mech-
anisms, highly flexible structures, and low Reynolds number (Re ≤ 105)
aerodynamics are just a few of the important features which may be com-
bined for the development of a MAV. Furthermore, the rising develop-
ment in miniaturized electronic systems is enabling many rapid advances
in insect-sized aircraft. Also, many improvements have been done in the
field of electroactive polymers used as artificial muscles. This technology
looks very promising for applications such as bio-inspired MAVs. In fact
birds and insects flying at low Reynolds number use membrane wings
to control perfectly their attitude and manoeuvers. Not only the intrinsic
membrane flexibility can deliver better aerodynamic performance than a
fixed airfoil but the ability to modify its stiffness in response to the external
flow conditions is the key factor to obtain an outstanding flight control.
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1.1. REVIEW OF MEMBRANE WINGS RESEARCH

The physics involved in the development of such devices is very com-
plex and is not limited to the flow physics of a deformable membrane.
In fact the design of electroactive membranes requires the understanding
of non-linear (hyperelastic) constitutive law as well as electrostatics and
electromechanical coupling. In order to address all these aspects a multi-
physics simulation environment has been developed in this research with
the OpenFOAM toolbox in order to help the design of electroactive mem-
brane wings.

1.1 Review of membrane wings research

Bats and gliding mammals use thin compliant wings as lifting surfaces
which twist and bend during the flight to achieve better aerodynamic
characteristics. These animals with flexible membranes fly at low Rey-
nolds numbers at moderate to high angles of attack, and show excellent
flight capabilities and high maneuverability [15, 119]. In the case of bats,
such control is obtained by changing the level of pre-tension in their wing
membrane, thus effectively changing the wing shape and camber through-
out the wingbeat cycle [29, 118, 123]. As consequence of its intrinsic flexi-
bility, a membrane wing can delay stall at high angle of attack [77] as well
as enhance its aerodynamic performance (i.e. lift-to-drag ratio) by control-
ling flow separation [109]. These flexibility effects on the wing aerodynam-
ics are confirmed by a recent biological experiment [89], where bumble-
bees with experimentally manipulated wing stiffness showed an 8.6 per
cent reduction in the vertical component of the aerodynamic force pro-
duced.

These characteristics, along with their light-weight nature, make mem-
brane wings particularly suitable for MAV applications [110], especially
where wind gust amplitudes are of the same order of magnitude as their
flying speeds [111]. Moreover, Albertani et al. [1] have shown that mem-
brane wings can significantly improve longitudinal static stability. These
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1.1. REVIEW OF MEMBRANE WINGS RESEARCH

studies have confirmed that membrane wings can be a suitable solution to
make MAVs more controllable and efficient.

In order to simulate the equilibrium shapes of a membrane in steady
conditions, calculations of potential flow [90], laminar flow [114], and tur-
bulent flow [116] have been performed. It has been found that the poten-
tial flow theory is reliable only at low incidences. For higher incidences,
viscous effects and flow separation need to be included for accurate sim-
ulations in steady flow. In particular, Smith and Shyy [114] showed that
results from numerical simulation of the aeroelastic membrane wing prob-
lem in a steady laminar flow using the Navier-Stokes equations were sig-
nificantly different than those from the potential theory at Re = 103− 104.
Therefore in a laminar regime at Re in the MAV flight regime, poten-
tial flow solutions may be inadequate. Further computations [108, 115]
have investigated the response of a membrane airfoil to an unsteady free
stream. Deformable thin airfoils have also been studied along with rigid-
body wing kinematics (flapping wing) by Walker and Patil [141]. In their
work Walker and Patil extended the potential flow theory around a flat
plate in rigid motion (i.e. Theodorsen model) to deformable airfoils us-
ing Chebychev polynomials. Rigid body motion is described by the first
two polynomials (plunging and pitching motion) and the other polyno-
mials account for the deformation. However the deformation in Walker
and Patil paper comes from a prescribed motion and not from the result of
the fluid-structure coupling. In fact the main objective of their study is to
show which deformation shapes and relative phase-shift between plung-
ing and pitching motion would lead to a maximum thrust production.

Several experimental studies have also focused on the membrane de-
formation characteristics. For instance, Particle Image Velocimetry (PIV)
measurements on compliant membrane aerofoils at high angles of attack
carried out by Rojratsirikul et al. [103] have shown that the mean mem-
brane shape is not very sensitive to the change in angle of incidence. Nu-
merical simulations by Gordnier [51] reported that the mean camber in-
creases with Reynolds number and that the mean membrane deflection is
almost symmetrical in the chordwise direction for low incidences. How-
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1.2. REVIEW OF FLUID-STRUCTURE INTERACTION

ever, as the angle of attack is increased, the point of maximum camber
moves forward and the mean displacement of the membrane becomes
more asymmetric. Studies by Galvao et al. [48] and Song et al. [119] have
also shown that membrane wings delay stall by as much as 10%, pre-
vent flow separation, and enhance lift-to-drag ratios. Other studies have
started to analyse and characterise the interaction between vortex shed-
ding and membrane vibrations. For example, Lian and Shyy [76] reported
a correlation between the vibration frequency of the membrane and the
vortex shedding frequency when analyzing the unsteady laminar-turbulent
transition of flows over a membrane wing. Rojratsirikul et al. [103] re-
ported that the vibrations occur at certain modes near the natural frequen-
cies of the membrane, and that they are larger for the second mode at
post stall incidences. Song et al. [119] showed that membrane deflection
could be successfully approximated by a parabola and they presented a
simple theoretical model to predict the membrane camber due to the aero-
dynamic loading. The model assumes that the membrane behaves like a
linearly elastic material with Young’s modulus, E, which is independent of
strain. However, in reality, membranes have a strain dependent Young’s
modulus and exhibit an inverted J-shape stress-strain curve.

1.2 Review of Fluid-Structure Interaction

An effective development of a bio-inspired MAV concept will require a
deep understanding of the unsteady aerodynamics at low Re and the as-
sociated Fluid-Structure Interaction (FSI). The intrinsic flexibility of mem-
brane wings generates strong coupling between the unsteady fluid dy-
namics and the structural response, giving rise to tightly integrated, mul-
tidisciplinary physics. In fact, membrane wings may be subject to aeroe-
lastic instabilities, which may limit their operating envelope, even when
they operate in steady free stream at low incidences. Thus, a deep under-
standing of the FSI problem is needed.

Apart from membrane wings, a wide range of applications have been
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studied exploiting FSI techniques in recent years. Some of them include
yacht sails [8, 79, 131], parachutes [120, 149] and other fabric dynamics
[11, 105], rotor dynamics [21, 47], and a vast number of biomedical applica-
tions including arterial blood flow [44, 50, 57], aortic heart valves [32, 140],
and aortic aneurysms [128, 148].

Typically, in FSI modeling there are two main approaches: monolithic
(direct) and partitioned (segregated). In the monolithic approach the gov-
erning equations for the fluid and the solid domains are expressed in terms
of the same primitive variables (usually pressure and velocity [53]), and
are solved simultaneously using a single large system of nonlinear equa-
tions. A big advantage of a monolithic approach is the use of a single
domain where the fluid and solid characteristics are specified, which can
lead to improved solution stability. Unfortunately some drawbacks to this
approach are the requirement of highly complex and specialized software
[37], the inefficiencies of using a single time step for all domains even if
different time scales are present [59], the use of a single mesh which cre-
ates a challenge to have a grid of suitably high quality for both domains
[112].

On the other hand, the partitioned scheme has gained popularity be-
cause of its modularity and possible re-use of separate efficient solvers
[84]. The most important advantages of the partitioned approach are the
ability to separately manage and develop the flow and structural solver
[84, 121] and to employ separate meshes for the structure and the fluid,
which often require different mesh resolutions. The known drawbacks to
this approach are reported as the need to accurately and efficiently couple
the two domains on the interface between fluid and solid [121], and the
degradation of solution stability due to small errors in this coupling [39],
as well as poor solution stability for weakly coupled schemes, or compu-
tationally expensive sub-iterations of a strongly coupled scheme [86] .

Partitioned methods can be further classified into weak [38] and strong
coupling [100]. Strong coupling enforces continuity of velocity and stress
at the fluid-solid interface through fixed-point iterations or Newton-type
iterations at each time step [44], while weak coupling requires only one so-
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lution of each field per time step in a sequentially staggered manner and
is thus particularly appealing in terms of efficiency. Weak coupling could
produce reasonable results when the coupling is not tight as in aeroelastic-
ity problems of full-scale airplanes, where the time lag between the flow
solution and the structural solution can be generally neglected and does
not affect the accuracy and stability of the results [38]. However, when the
density of the solid is comparable to that of the fluid as in hemodynamics
or for fabric materials, a tighter coupling between fluid and structure is re-
quired as an additional fluid acceleration acting on the solid – referred to
as added mass effect – may destabilize a weakly coupled numerical scheme
[26, 46]. In fact in weakly coupled schemes the fluid forces are calculated
for the predicted structural displacements rather than for the correct ones.
Therefore a large difference between predicted and actual displacement
might lead to incorrect results and instability issues.

On the contrary the simple fixed-point iterations used in strong cou-
pling problems may either not converge or be computationally expensive
due to the large number of iterations in case of intnse interaction. For this
reason Mok et al. [87] introduced Aitken acceleration to FSI with a dy-
namic relaxation factor for enhanced robustness and stability. To increase
computational efficiency, Fernandez et al. [41] proposed a semi-implicit
coupling scheme based on the pressure correction method where only the
pressure is coupled with the structure while non-linear and viscous terms
are updated explicitly. A semi-implicit coupling scheme using algebraic
splitting has also been proposed by Quaini and Quarteroni [99]; this ap-
proach shares a similar efficiency increase as the scheme of Fernandez et al.
[41].

Even though the partitioned approach requires a particular attention
at the fluid-solid interface to ensure an accurate and stable solution, the
use of a strong coupled algorithm can provide results that are equivalent
to those from a monolithic approach [6, 20, 84].
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1.3 Review of Finite Volume Method for struc-

tures

The computional modeling of FSI involves a combination of solvers, typi-
cally a Finite Volume (FV) solver for the flow domain, a Finite Element (FE)
solver for the structural analysis and a third code for coupling, data inter-
polation and simulation management. FV methods traditionally use low-
order approximations on structured or unstructured meshes and iterative
solvers while FE methods often use high-order elements on unstructured
meshes using direct solvers. The different approaches of the two methods
impose limitations on the way of coupling and might create issues in the
model setup. It has been shown that for many applications the two tech-
niques are equivalent and the difference between FE and FV discretization
of second-order accurate, partial differential equations is small [60]. For
this reason and to overcome the drawback of coupling FE and FV solvers,
some attempts have been made to model the entire FSI framework in the
context of FE [142] or FV [68, 112] methods.

With regard to FV analysis, its usage has gained popularity in Compu-
tational Structural Mechanics (CSM) from the early 90’s due to the attrac-
tively simple but strongly conservative nature of the method [36, 83]. At
present, the FV method has been applied to a large range of stress analysis
problems in linear-elasticity [64, 113, 143], thermo-elastoplasticity [33], in-
compressible elasticity [14], contact mechanics [22] as well as fluid–structure
interactions [53, 54, 68, 69, 112]. Moreover, solid mechanics solvers have
been recently included in the OpenFOAM-extend version [98], including
solvers for non-linear elasticity in the Total or Updated Lagrangian for-
mulation [23, 132]. These FV solvers as well as the linear elastic solver
developed by Jasak and Weller [64] are based on

• the second-order accurate discretization on control volumes of arbi-
trary polyhedral shape,

• a segregated solution procedure, in which the displacement compo-
nents are solved consecutively and
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• iterative solvers for the systems of linear algebraic equations.

The Total and Lagrangian formulation are used to describe large strain and
large rotation which can occur in the nonlinear analysis of a membrane.
These formulations are implemented in OpenFOAM for materials with a
Saint Venant-Kirchhoff constitutive equation, which is the simplest hyper-
elastic material model being just an extension of the linear elastic law to the
nonlinear regime. An incompressible Mooney-Rivlin constitutive equa-
tion has been studied with the FV method by Bijelonja et al. [14]. In or-
der to deal with incompressibility, the hydrostatic pressure which features
in the constitutive equation, has been treated as an additional dependent
variable and calculated with a Semi-Implicit Method for Pressure-Linked
Equations (SIMPLE) algorithm [94].

A big advantage of using the finite volume method for solid mechan-
ics rather than the finite element one is that when dealing with (nearly)
incompressible matherials (Poisson ratio νp approaching 0.5) results are
not affected by the locking effect. Locking is a numerical error that oc-
curs in FE analysis due to the linear nature of quadrilateral elements. The
linear elements do not accurately model the curvature present in the ac-
tual material under bending, and a shear stress is introduced. The addi-
tional fictitious shear stress causes the element to reach equilibrium with
smaller displacements, i.e. FE methods produce results showing stiffness
far greater then would be expected, rendering the results useless [9]. On
the contrary for the range of cases simulated by Bijelonja et al. [14], the FV
method appears to be locking free.

Therefore using the FV method can be very beneficial when dealing
with fluid-structure interaction problems. Not only the FVM is locking
free and strongly conservative for large deformations, but it is also very
efficient in terms of coupling with a FVM fluid solver especially if both
fluid and solid solver belongs to the same simulation tool box. In fact no
external applications needs to be run and the data between fluid and solid
are exchanged more efficiently as they are already in the same format. Ul-
timately fluid and solid solver can be seen as modules of the OpenFOAM
toolbox allowing easier extension to other physics models, e.g. multiphase
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or turbulent flow, solid plasticity or viscoelasticity, etc.

1.4 Review of Electro Active Polymers

The most effective way to activate a membrane is by means of Dielectric
Elastomers (DE). They belong to the category of electroactive polymers
(EAPs) as they convert electric energy into mechanical work exploiting
the electrostriction phenomenon. This technology, also known as artifi-
cial muscle [25, 95], has been intensely studied in the last few years be-
cause of its attractive features such as large deformation, fast response,
light weight, silent operation and low cost [18]. EAPs have been widely
used for diverse applications, including robotics [96], motors [2], adaptive
optics [13] and bioengineering [45].

Figure 1.1: Schematics of a dielectric elastomer [122].

EAPs essentially consist of an elastomeric film coated on both sides
with compliant electrodes (Fig. 1.1). These electrodes act as a capacitor:
when a voltage is applied the electrostatic force generates a compressive
pressure which squeezes the dielectric in the thickness direction, causing
a stretching in the other two directions (expansion in area). The achiev-
able voltage-induced deformation is strongly affected by how mechani-
cal loads are pre-applied. Using an acrylic elastomer, experiments have
demonstrated voltage-induced expansion in area by 160% with a mem-
brane biaxially prestretched and fixed to a rigid frame [95], by 488% with
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a membrane subject to biaxial dead loads [58], and by 1692% with a mem-
brane mounted on a chamber of air [70]. It has been shown that prestretch
is needed to eliminate the pull-in instability [74] (such that the elastomer
thins down drastically, leading to electric breakdown rather than actua-
tion), and to improve electric breakdown strength [73].

Since DE can achieve very large strains with a highly non-linear be-
haviour, their constitutive equation needs to be modelled with a hyperelas-
tic formulation. Hyperelastic models can be classified into phenomenolog-
ical or micro-mechanical. The latter are derived from statistical mechanics
arguments on networks of idealised chain molecules. Examples for micro-
mechanical models are the 3-chain, 4-chain, 8-chain models as well as the
unit sphere (21-chain) model which have all been shown to be appropriate
for moderate to large elastic deformations of rubber-like materials [5]. On
the other hand, a phenomenological formulation of a hyperelastic mate-
rial is based on the scalar quantity strain energy function, which depends
either on the invariants of the right (or left) Cauchy-Green strain tensor or
on the principal stretches, i.e. the eigenvalues of the Cauchy-Green tensor.
The relations between invariants (Ii) and principal stretches (λi) are the
following

I1 (C) = I1 (B) = tr (C) = λ2
1 + λ2

2 + λ2
3,

I2 (C) = I2 (B) = 1
2

[
tr2 (C)− tr

(
C2)] = λ2

1λ2
2 + λ2

2λ2
3 + λ2

1λ2
3,

I3 (C) = I3 (B) = det (C) = λ2
1λ2

2λ2
3,

where C = FTF (or B = FFT) is the right (or left) Cauchy-Green tensor
with F = ∂x/∂X being the deformation gradient (i.e. the derivative of
each component of the deformed x vector with respect to each component
of the reference X vector). Among the numerous phenomenological ap-
proches, the Odgen model [92] is very flexible in modelling rubber-like
materials, especially due to its modular polynomial formulation in terms
of principal stretches which additionally makes it manageable with math-
ematical analysis. Also widely used and of earlier origin are models of
Mooney-Rivlin type [88, 102], which are formulated in strain invariants.
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Its simplest realisation, called neo-Hookean model, is closely related to
micro-mechanical approaches since it coincides with a 3-chain model us-
ing Gaussian chain statistics.

The main challenge in designing invariant-based models is to choose
an appropriate (sub)set of invariants and to include sufficiently high or-
ders of them into the strain energy function. As pointed out by Yeoh [150],
cubic terms of I1 are able to reproduce the highly nonlinear, S-shaped uni-
axial behaviour of rubber, also at very large strains.

A higher order elasticity model, composed of a neo-Hookean-like com-
pressible and a generalised Mooney-type incompressible component, has
been proposed by Attard and Hunt [7] and was proven to perform ex-
cellently on experimental data of uniaxial and (equi)biaxial tension by
Vangerko and Treloar [136] and pure shear by Penn [97]. In particular,
it is pointed out that this formulation is capable of reproducing the Vala-
nis–Landel hypothesis [134], which states that interactions of principal
stresses are governed only by compressive deformation parts whereas the
incompressible strain energy density is represented by a superposition of
terms dependent on the principal stretches.

When a numerical simulation of a DE is performed, good agreement
with experimental data is achieved using a neo-Hookean formulation [124].
As a prestretch is needed for the electroactuation, a stretch-stiffening be-
haviour of the membrane might occur. In an elastomer, each individual
polymer chain has a finite contour length. When the elastomer is subject
to no loads, the polymer chains are wound, allowing a large number of
conformations. Subject to loads, the polymer chains extend. As the loads
increase, each polymer chain approaches its maximum unwinded length,
and the elastomer approaches a limiting stretch. On approaching the lim-
iting stretch, the elastomer stiffens steeply. To take into account this effect,
a small modification to the neo-Hookean model can be made introducing
a material constant related to the limiting stretch [80].
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1.5 Aim of the project

The design of an electroactive membrane wing for micro air vehicle ap-
plications is a very complex process. Experiments are required in order
to have a useful insight of the flow physics involved in the fluid-structure
coupling as well as to understand the potential and the limitations of deal-
ing with dielectric elastomers operating at high voltages. At the same time
a high fidelity computational model is essential in this kind of problems
not only because it allows to measure field variables (e.g. pressure and
velocity for the fluid, stress and strains for the structure), detect vortical
structures, separation and reattachment points in a non-intrusive way, but
also because it can provide a valuable tool for the system identification
which can be used for the control system design of an actuated mem-
brane wing. Moreover, a numerical model allows freedom of choice on
the boundary conditions to be applied. In fact it is possible to evaluate the
effect on the system performance of perfectly-rigid supports or find the
ideal material properties (stiffness, constitutive equation) which leads to
optimal flight characteristics.

To the author’s knowledge the numerical studies conducted so far have
focused mainly on passive membrane wings and the main effort has been
done mostly on the flow solver fidelity and little effort has been done on
the structural and control side. However for a bio-inspired membrane,
large stretch capabilities need to be addressed with an accurate hypere-
lastic constitutive law as well as the possibility to control the membrane’s
stiffness in response to the unsteadiness of the flow. In this context the ef-
fort of the present work is to lay the basis for the design of a multiphysics
framework where the fluid-structure coupling as well as the electrome-
chanical coupling can be predicted in a fully integrated simulation en-
vironment. For this purpose the whole code development in this thesis
has been done with the OpenFOAM toolbox. OpenFOAM is an open-
source collection of libraries and applications written in C++ specifically
designed to solve partial differential equation with the finite volume me-
thod using a relatively easy code syntax. It is nowadays widely used by
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the scientific community in the academia and in the industry not only be-
cause it has proven itself to produce the same performance and accuracy of
commercial CFD software, but especially because it offers the freedom of
implementing custom solvers and modules which can be efficiently com-
bined together. The physics modules developed during this thesis will be
made available to the OpenFOAM community.

35



1.5. AIM OF THE PROJECT

36



Chapter 2

Governing Equations

This chapter presents the equations used throughout the thesis to char-
acterize the physics of the flow and the structure as well as the way the
membrane is controlled. The Navier-Stokes equations for a laminar in-
compressible flow are derived in Section 2.1. The kinematics and equa-
tion of motion of the membrane are presented in Section 2.2 as well as the
derivation of a Neo-Hookean constitutive law in its incremental form. The
electrostriction effects on the membrane’s stiffness are described in Section
2.3. Finally the fundamental principles of the control theory are given in
Section 2.4.

2.1 Fluid dynamics

The governing equations for a viscous fluid flow, known as the Navier-
Stokes equations, are a coupled set of non-linear partial differential equa-
tions [3]. They can be derived from conservation of mass, momentum and
energy within an infinitesimally small spatial control volume.

For mass conservation, the following continuity equation is obtained:

∂ρ f

∂t
+∇ ·

(
ρ f U

)
= 0, (2.1)

where ρ f
[
kg/m3] is the fluid density, U [m/s] is the flow velocity vec-
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tor and the differential operator divergence, ∇·, operating on the velocity
vector field U produces a scalar defined as

∇ ·U =
∂Ux

∂x
+

∂Uy

∂y
+

∂Uz

∂z
.

For momentum conservation the following expression can be derived from
Newton’s second law (neglecting gravity and additional body forces):

∂
(
ρ f U

)
∂t

+∇ ·
(
ρ f U ⊗U

)
= ∇ · σ, (2.2)

where σ
[
N/m2] is the Cauchy stress tensor, which express the relation-

ship between stress and strain for a viscous fluid element. The outer prod-
uct, ⊗, operating on the vector U, generates a symmetric tensor whose
components are evaluated as

U ⊗U = UiUj =

 U2
1 U1U2 U1U3

U1U2 U2
2 U2U3

U1U3 U2U3 U2
3

 .

Here the divergence operator applied to second rank tensor fields (i.e.
U ⊗U and σ) produces a vector, e.g.

∇ · σ = ∂iσij =

 ∂σ11/∂x1 + ∂σ21/∂x2 + ∂σ31/∂x3

∂σ12/∂x1 + ∂σ22/∂x2 + ∂σ32/∂x3

∂σ13/∂x1 + ∂σ23/∂x2 + ∂σ33/∂x3

 ,

hence the momentum equation needs to be solved for each of the 3 velocity
components (Ux, Uy, Uz).

In the range of operation of a membrane wing the flow can be consid-
ered incompressible and the viscosity constant. With these assumptions
the energy equation is decoupled from the mass and momentum conser-
vation equation [3] and therefore has been neglected.

In order to close the system of four equations (2.1) and (2.2), constitu-
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tive relations are needed. For a Newtonian1 fluid and incompressible flow,
the Cauchy stress tensor, σ, is defined as

σ = −pI + η
(
∇U +∇UT

)
,

where I represents the identity tensor, p [N/m2] is the pressure, η
[
N s/m2]

is the dynamic viscosity and the differential operator gradient, ∇, ap-
plied to a vector produces a second rank tensor, namely in index notation
∇U = ∂iUj.

The equations (2.1) and (2.2) can be simplified for the incompressible
case to the following expressions

∇ ·U = 0

∂U
∂t

+∇ · (U ⊗U) = −∇ p
ρ f

+ ν∇2U,

where ν = η/ρ f
[
m2/s

]
is the kinematic viscosity.

Micro Air Vehicles operate at Reynolds numbers ranging between Re =
2500− 20000. The Reynolds number is defined for a flow as the ratio bet-
ween inertial and viscous forces. In particular insects such butterflies or
small mammals like bats set the operation range of membrane wings in
the lower boundary of the foramended range. In fact in these regimes the
viscous forces have a significant role in the flow evolution which is char-
acterised by unsteady large coherent structures. At such low Reynolds
numbers the Navier-Stokes equations can be solved directly without any
turbulence modeling [3].

1The Newtonian model of fluid response is based on the assumption that in a fluid
particle the shear stress is proportional to the rate of shear strain.
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2.2 Structural dynamics

2.2.1 Kinematics

In finite deformation analysis, there are different definitions of deforma-
tion and strain. All of them are expressed in terms of the deformation gra-
dient tensor, F, which is defined as the derivative of each component of
the deformed x vector (current position) with respect to each component
of the reference X vector (initial position) [55]

F =
∂x
∂X

=
∂xi

∂Xj
=


∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

 .

It is more convenient to express the deformation gradient in terms of the
displacement vector u = x− X (Fig. 2.1a):

F =
∂ (X + u)

∂X
= I +

∂u
∂X

= I +∇u.

For realistic deformation not all the off-diagonal components of the defor-
mation gradient are non-zero [81] and therefore the determinant is always
given by det (F) = dx1

dX1

dx2
dX2

dx3
dX3

. It can be noted that this is the volume ratio

between the current and initial configuration dx1
dX1

dx2
dX2

dx3
dX3

= dVc
dV0

. Therefore,
for realistic deformation, the Jacobian must satisfy the condition

J = det (F) > 0.

The deformation gradient F can be decomposed in a pure rotation ma-
trix R, and in the right (or left) stretch tensor U (or V ), the latter being
symmetric by definition (Fig. 2.1b)

F = R ·U = V · R,

where the rotation matrix, R, is a particular matrix such that its transpose
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is equal to its inverse

RT = R−1 or R · RT = 1.

(a) (b) Polar decomposition of the deforma-
tion gradient F

Figure 2.1: Motion of a deformable body

Since a pure rotation does not induce any stress in a deformable solid, it
is often convenient to use rotation-independent measures of deformation.
The Right Cauchy-Green deformation tensor, C, is rotation-independent
and is defined as

C = FT · F = (R ·U)T · (R ·U) = UT · RT · R ·U = UT ·U = U2

and similarly the Left Cauchy-Green deformation tensor, B

B = F · FT = (V · R) · (V · R)T = V · R · RT · V T = V · V T = V2.

By definition C and B are symmetric tensors and share the same invari-
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ants which are:

I1 := tr (C) , (2.3)

I2 := 1
2

[
tr (C)2 − tr

(
C2
)]

, (2.4)

I3 := det (C) = J2. (2.5)

As measure of strain, the Green-Lagrange strain tensor, E will be used
for the purpose of this work. It is defined as

E =
1
2
(C− I) =

1
2

(
FT · F − I

)
=

1
2

[
∇uT +∇u +∇uT∇u

]
.

When large strains are considered, the definition of stress can be sig-
nificantly affected by the configuration chosen as reference [81]. The fol-
lowing definitions of stress are considered:

Cauchy stress, σ, expresses the force per unit deformed area acting on sur-
faces on the deformed body (i.e. the true stress) (symmetric σ = σT),

1st Piola-Kirchhoff stress, P, the force per unit undeformed area acting on
surfaces on the deformed body (not symmetric),

2nd Piola-Kirchhoff stress, S, the force per unit undeformed area acting on
surfaces on the undeformed body (symmetric S = ST).

The following relationships occur between the different definitions of stress:

P = JF−1 · σ = Jσ · F−T = F · S = S · FT,
S = P · F−T = F−1 · P = JF−1 · σ · F−T,
σ = 1

J F · S · FT = 1
J P · FT.

(2.6)

Although the 2nd Piola-Kirchhoff stress tensor, S, is difficult to use for
a physical interpretation, it is useful for the mathematical material model
and numerical calculations because

1. it is a symmetric tensor,
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2. it is energy conjugate to the Green-Lagrange strain tensor, E. The
internal energy E(t) of a deformable body at any time is defined as

E(t) =
ˆ

∂B
eρ0dV

where e is the internal energy density of the body. Also, for isother-
mal processes the stress power is defined as the weighted rate of the
specific internal energy or ρ0ė. The internal energy is special in the
sense that it is a state function, that is, it is independent of the process
by which a body goes from one state to another. In fact, it is a func-
tion of the material property of the body. The equation for the stress
power can be derived from the kinetic energy balance of a solid body
as

ρ0ė = P : Ḟ

that is, the double contraption of the 1st Piola-Kirchhoff stress tensor
and the rate of deformation gradient [101]. This condition is known
as energy conjugation of the stress tensor and the rate of the defor-
mation gradient, Ḟ . This definition can be used to determine the
deformation measure whose rate is the energy conjugate with the
2nd Piola-Kirchhoff stress tensor or

ρ0ė = P : Ḟ = S : Ė.

The complete derivation can be found on the book by Debabrata Ray
[101]

3. it is parameterized by material coordinates (initial configuration) only,
that is, it is a material (initial) tensor field, in the same way as the
Cauchy stress is a spatial (current) tensor field.

It is important to note that at small strains, the differences between various
measures of stresses and strains are negligible.
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2.2.2 Momentum equation

The motion of an isothermal solid in an arbitrary volume V, bounded by
a surface S, is governed by the Newton’s second law, which in Eulerian
description reads

D
Dt

ˆ
V

ρsvdV =

˛
S

n · σdS +

ˆ
V

ρs f bdV, (2.7)

where ρs is the solid density, n is the outward pointing unit normal to
the surface S, v is the velocity of the solid, σ is the Cauchy stress tensor
and f b is the resulting body force and the operator D

Dt denotes material or
substantial derivative. The relationship between the rate of change of the
volume V and the motion of its surrounding surface is given by the space
conservation law

d
dt

ˆ
V

dV +

˛
S

n · vdS = 0.

Writing the linear momentum conservation equation (eqn. 2.7) with
respect to the initial undeformed configuration (Lagrangian formulation)
requires to express the stresses with the 1st Piola-Kirchhoff stress tensor,
P = S · FT. Thus, in a total Lagrangian description, equation 2.7 can be
written as

ˆ
V0

ρ0
∂v
∂t

dV0 =

˛
S0

n0 ·
(

S · FT
)

dS0 +

ˆ
V0

ρ0 f bdV0

where the subscripts 0 represent the quantities related to the initial con-
figuration. When dealing with large displacements, the incremental form
can be expressed as

ˆ
V0

ρ0
∂δv
∂t

dV0 =

˛
S0

n0 ·
(

δS · FT + S · δFT + δS · δFT
)

dS0 +

ˆ
V0

ρ0δ f bdV0

where δ refers to the increment of the corresponding variable, the defor-
mation gradient tensor increment reads δF = (∇δu), and S and F are re-
spectively the 2nd Piola-Kirchhoff stress tensor and the deformation gra-
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dient at the beginning of the current time increment.

The incremental form is also used in the updated Lagrangian formula-
tion, where the last calculated configuration is used as the reference con-
figuration. One advantage of using the updated Lagrangian formulation
is that we can introduce the identity F = I and the linear momentum
equation can be simplified as

ˆ
Vu

ρu
∂δv
∂t

dVu =

˛
Su

nu ·
(

δS + S · δFT + δS · δFT
)

dSu +

ˆ
Vu

ρuδ f bdVu,

(2.8)
where now the subscripts u represent quantities related to the updated
configuration. After updating the configuration, the accumulated 2nd
Piola-Kirchhoff stress, Su + δSu needs to be transformed for the new con-
figuration. Such tensorial transformation is equivalent to the transforma-
tion of the 2nd Piola-Kirchhoff stress tensor into the Cauchy stress tensor
for the time increment prior to the configuration update.

Given the equation of motion, the way a specific material behaves un-
der a given load will depend on its constitutive equation, i.e. the relation-
ship between stress and strain. For example, for a Saint Venant-Kirchhoff
material the 2nd Piola-Kirchhoff and its incremental form are given by

S = 2µE + λtr (E) I
δS = 2µδE + λtr (δE) I,

(2.9)

where µ and λ are the Lamé coefficients which are functions of the Young
modulus, E, and the Poisson’s ratio, νp, given by

µ =
E

2
(
1 + νp

) ; λ =
Eνp(

1 + νp
) (

1− 2νp
) . (2.10)

The incremental form of the Green-Lagrange strain tensor, δE,

δE =
1
2

[
∇δu + (∇δu)T +∇δu · (∇u)T +∇u · (∇δu)T +∇δu · (∇δu)T

]
can be simplified in the updated Lagrangian formulation by noting that

45



2.2. STRUCTURAL DYNAMICS

∇u = 0:
δE =

1
2

[
∇δu + (∇δu)T +∇δu · (∇δu)T

]
. (2.11)

Substituting equation (2.11) into equation (2.9) leads to the final form
of the incremental constitutive equation for a Saint Venant-Kirchhoff ma-
terial in an updated Lagrangian formulation

δS = µ
[
∇δu + (∇δu)T +∇δu · (∇δu)T

]
(2.12)

+λtr (∇δu) I +
1
2

λ (∇δu : ∇δu) I,

where the double inner product of two second-rank tensors, ∇δu : ∇δu,
produces a scalar, s, being the sum of the 9 products of the tensor compo-
nent

s = ∇δuij∇δuij.

Introducing the constitutive equation (2.12) into equation (2.8), makes
it possible to obtain a formulation where only the displacement vector in-
crement δu appears as primitive variable [132].

2.2.3 Neo-Hookean hyperelastic model

The Saint Venant-Kirchhoff model is the simplest hyperelastic formulation
as it represents just an extension of the linear elastic material model to
the nonlinear regime. However it presents some limitations as it does not
treat change in volume appropriately. Moreover it performs well for large
deformations and small strains, but it produces unphysical results (infinite
stresses) for large strains [55]. Therefore a more accurate model such as
the Neo-Hookean one is going to be presented in this section and used to
characterize the membrane.

The starting point of a hyperelastic formulation is the definition of a
stored strain energy function, W, as a function of C and its invariants

W = W (I1, I2, I3) .
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From the strain energy function the 1st and 2nd Piola-Kirchhoff can be
derived as

P =
∂W
∂F

,

S = 2
∂W
∂C

=
∂W
∂E

.

When dealing with a compressible or nearly incompressible material, the
best way to handle the different behaviour of materials in bulk and shear is
to decompose the strain energy function in its isochoric (volume-preserv-
ing) and volumetric (volume-changing) components

W = Wiso
(
C
)
+ Wvol (J) ,

where the volumetric contribution is a function only of J = det (F) as
it represents the volume ratio between current and initial configuration
(see Section 2.2.1), and the isochoric component is defined in terms of the
modified right Cauchy-Green, C, defined as

C = J−2/3C,

whose relative invariants are

I1
(
C
)
= tr

(
C
)

,

I2
(
C
)
=
[
tr2 (C)− tr

(
C2
)]

,

I3
(
C
)
= det

(
C
)

.

The strain energy density for a compressible Neo-Hookean material is
defined as

W =
µ

2
(

I1 − 3
)
+

κ

2
(J − 1)2 ,

where µ is the shear modulus or Lamé second parameter and κ is the bulk
modulus. These two parameters can be expressed in terms of the Young
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modulus, E, and the Poisson’s ratio, νp, as

µ =
E

2
(
1 + νp

) ,

κ =
E

3
(
1− 2νp

) .

The 1st and 2nd Piola-Kirchhoff stress tensors can be derived from the
strain energy function as follow [91]:

P (F) =
∂W
∂F

= 2F
∂W
∂C

=
µ

2
J−2/3

(
F − 1

3
tr
(

F · FT
)

F−T
)

+
κ

2
(J − 1) JF−T,

S (C) = 2
∂W
∂C

=
µ

2
J−2/3

(
I − 1

3
tr (C)C−1

)
+

κ

2
(J − 1) JC−1.

(2.13)

In OpenFOAM the structural momentum equation is solved in an up-
dated Lagrangian formulation. In order to plug the Neo-Hookean consti-
tutive law in the linear momentum equation solved by OpenFOAM (eqn.
2.8) the 2nd Piola-Kirchhoff stress tensor needs to be expressed in its incre-
mental form. This can be done by means of the finite difference technique.
This derivation has been an original work of this thesis and can be found
in the Appendix A. We report here the final result

δS =
µ

6

(
∇δu + (∇δu)T + (∇δu)T · ∇δu

)
+

[(
κ

2
− 10µ

18

)
tr (∇δu)− µ

6
tr
(
(∇δu)T · ∇δu

)]
I.

2.3 Electrostatics

Electroactive polymers are here modelled as compliant capacitors. Gen-
erally a charged capacitor made of parallel plates have a uniform electric
field between them. This is true within the main body of the plates. How-
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ever since the electric charges tend to accumulate to the sharp edges of the
plates here the uniformity is disrupted due to edge effects. For the purpose
of this thesis these effects of the electric field are neglected, as the area
of the electrodes is much bigger than the thickness of the dielectric [147].
Also, the electrodes are assumed to remain parallel during deformation
and the dielectric is assumed to have a constant value of the relative di-
electric permittivity, εR.

By definition the electric field in a point in space is equal to the negative
gradient of the scalar field voltage, φ (electric potential) in that point[52]

E = −∇φ.

The measure of the electric flux through a closed surface can be calculated
with the Gauss law

∇ · E =
ρc

ε0εR
,

where ρc is the charge density and ε0 is the electric permittivity of vacuum.
Since the charge is conserved, the relative continuity equation must be
satisfied

∂ρc

∂t
+∇ · J = 0.

Here J is the current density, i.e. the electric current per unit area. The
current density is commonly approximated by the electrical conductivity,
k, times the electric field:

J = kE.

According to the Lorentz force law, the presence of the electric field
generates a force between the two electrodes which eventually induces a
state of stress in the dielectric, known as Maxwell stress tensor. Neglecting
the magnetic contribution, the Maxwell stress tensor is given by

σm = ε0εR

(
E⊗ E− 1

2
(E · E) · I

)
. (2.14)

This expression is general and it does not require any assumption on the
behavior of the material. Therefore it can be used for every dielectric with
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isotropic electric properties and the total stress tensor, σtot, will be given
by the sum of the elastic, σe, and the Maxwell, σm, stress tensors as they
can be considered completely decoupled [122]:

σtot = σe + σm.

Furthermore, the evolution of the electrostatic forces is assumed to be
instantaneous since its time scale is several orders of magnitude faster than
the mechanical one.

2.4 PID control theory

PID (Proportional-Integral-Derivative) control is the most common con-
trol algorithm used in industry because of its robustness and functional
simplicity. The purpose of a PID controller is to feed a process with an ac-
tuator input in order to have control of an output variable [72]. In a typical
control system, a sensor is used to read the process output (y) that is going
to be controlled. Then an error, e(t), is calculated as the difference between
the actual output and the desired one, usually referred as set point (ysp),

e(t) = y− ysp.

The PID controller is in charge to compute the actuator input, u(t), as a
function of the error, with the purpose of eventually driving the error to
zero. Reading the sensor, evaluating the error and feed a control input
to the system is done continuously during the process, therefore this is
known as closed-loop control [135]. As the name suggests the actuator in-
put, u(t), can be split into 3 contributions which are independent from
each other: a term proportional to the instantaneous error, e(t), a term
which takes into account the history of the error (integral term) and a term
which is proportional to the rate of change of the error (derivative term),

u(t) = µpe(t) + µi

ˆ t

0
e(τ)dτ + µd

de(t)
dt

.
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The weight of these three terms is given by multiplying each of them by a
constant (gain). How these constants are tuned depends on the case and it
is ultimately the objective of designing an efficient control law for a specific
process.

Figure 2.2: Response of a typical PID closed loop system [17].

In a standard process the control system performance is usually evalu-
ated by applying a step function on the set point and measuring the output
variable. With reference to Fig. 2.2, the following quantities are defined:

rise time is the time the system takes to go from 10% to 90% of the steady-
state value,

percent overshoot is how much the output variable overshoot the final
value, expressed as percentage of the final value,

settling time is the time required for the output variable to have an error
less than 5%,

steady-state error is the final difference between the output variable and
the set point.

Generally the proportional, integral and derivative term affect these pa-
rameters differently. In a P-only control, increasing the proportional gain,
µp, has the effect of reducing the rise time and the steady-state error but
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in some cases also increasing the percent overshoot. However if the pro-
portional gain is too high the ouput variable will start oscillating and the
system can eventually become unstable. As the integral component sums
over time, even a small error will cause the integral component to raise
slowly and therefore drive the steady-state error to zero. At the same time
the integral term increases the overshoot, however in some occasions some
amount of overshoot might be useful for a fast system so that it could re-
spond to changes immediatly. Adding a derivative term will cause the
control system to react more strongly to error variations and will increase
the overall speed of the control system. However as the derivative re-
sponse is highly sensitive to noise it might make the control system unsta-
ble.

The process of finding the optimal values of the gains for µp, µi and
µd to get an ideal response from the control system is called tuning. For
simple systems the most common methods are the empirical “guess and
check” method and the semi-empirical Ziegler-Nichols method [152]. In
both methods µi and µd are set to zero first and the proportional gain is
increased until the output of the loop oscillates. Once oscillations start,
µi, µd are then adjusted empirically in the first method to stop the oscil-
lations, achieve a minimal steady state error and to reduce overshoot. In
the Ziegler-Nichols method µi, µd are functions of the critical proportional
gain µc and the relative period of oscillations. The unsteady nature of the
Fluid-Structure coupling of the membrane at high angles of attack makes
these methods not really applicable as the system is already oscillating
without control, therefore the initial choice of the gains has been made in
a heuristic way.
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Chapter 3

Numerical Methods

Since the Navier-Stokes equations will be solved numerically, an appropri-
ate method of discretization needs to be chosen. Generally there are three
different methods: the finite difference, finite element and finite volume
method. Another important aspect, concerning a Computational Fluid
Dynamics (CFD) simulation, is how the computational domain is divided
into a finite amount of control volumes (the numerical grid). Generally
grids can be divided into two families: structured and unstructured. When
using structured grids, the cell ordering is fairly straight-forward such that
the flow solver uses this fact to solve the system in a more efficient way.
Unfortunately, structured grids become more difficult to generate when
the geometry to discretize is complex (common in engineering problems).
This can be more easily done with unstructured grids, although their al-
gorithmic cost becomes higher.

3.1 Properties of numerical solution methods

A numerical solution is obtained as result of the discrete description of the
solution domain and the governing equations. Its accuracy is determined
by the relation between the exact and numerical solution. Since in most of
the applications of interest the exact solution is not available, it is useful to
know what kind of errors affect a numerical solution. Generally they are
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divided in three main groups [78]:

Modelling errors are defined as the difference between the actual flow and
the exact solution from the partial differential equations chosen
to describe the flow. In case of a laminar flow the Navier-Stokes
equations represent with good accuracy the flow behaviour.
However for turbulent flows the additional models might not
always describe the underlying physical process with good ac-
curacy.

Discretization errors are defined as the difference between the exact solu-
tion of the linear system of algebraic equations obtained by
discretising the governing equations on a discretized solution
domain and the exact solution of the partial differential equa-
tions, the latter being usually unknown. These errors depend
on the accuracy of the method used to discretize the govern-
ing equations as well as the discretization of the solution do-
main. The difference between the discretised and the exact
solution represents the truncation error. For a numerical so-
lution to be consistent the solution of the discretised system
of equations should tend to the exact solution of the govern-
ing partial differential equations as the mesh spacing and the
time step tend to zero. Commonly this is proved with an em-
pirical approach where the same computation is repeated on
subsequently refined meshes until the solution converges to a
grid-independent solution.

Iterative convergence errors represent the difference (also referred to as resid-
uals) between the approximate solution calculated using itera-
tive methods and the exact solution of the linear system of al-
gebraic equations. For the numerical process to be stable these
errors should not be amplified when performing the iterations.

Moreover, since the Navier-Stokes equations express the conservation of
mass, momentum and energy also the discretized equations should guar-
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antee conservation. In a finite volume formulation the governing equa-
tions are written in their conservative form and this property is intrinsi-
cally respected by the discretised equations. This is one of the advantages
of the finite volume approach since the conservation is guaranteed for ev-
ery small Control Volume (CV) and, therefore, for the whole computa-
tional domain.

3.2 Finite Volume Method

As the FV is the method used in OpenFOAM, an explanation of its strategy
applied to the discretization of a general transport equation will be quickly
reviewed here for clarity. In general a transport equation in conservative
form1 for a generic variable φ inside a control volume V can be written as

ˆ
VP

∂ρφ

∂t
dV︸ ︷︷ ︸

temporal derivative

+

ˆ
VP

∇ · (ρUφ) dV︸ ︷︷ ︸
convective term

+

−
ˆ

VP

∇ ·
(
ρΓφ∇φ

)
dV︸ ︷︷ ︸

diffusion term

=

ˆ
VP

Sφ (φ) dV︸ ︷︷ ︸
source term

, (3.1)

where ρ is the density, U the velocity and Γφ is a generic diffusivity con-
stant. This equation needs to be solved in a given domain, with given
boundary conditions and initial conditions. For good accuracy, it is nec-
essary for the order of the discretisation to be equal to or higher than the
order of the equation that is being discretised [65]. As consequence of this
requirement, all dependent variables are assumed to vary linearly around

1conservative and nonconservative are equivalent forms of the conservation equa-
tions, which differ by the use of the partial or total derivative ( dφ

dt = ∂φ
∂t + U ·∇ (φ)). The

conservative form (Eulerian formulation) states the conservation laws through a control
volume fixed in space and the convective term is calculated as ∇ (Uφ); the nonconser-
vative form (Lagrangian formulation) enforces the conservation laws in a control volume
as it moves with the fluid and the convective term has the form U ·∇ (φ)[137].
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a point P in space and instant t in time

φ (x) = φP + (x− xP) · (∇φ)P

φ (t + δt) = φt + δt
(

∂φ
∂t

)t
,

where φP = φ (xP) and φt = φ (t).

The whole computational domain is divided into arbitrary control vol-
umes as represented in Fig. 3.1. The control volume VP has a volume V
and is constructed around its centroid, P. d is the vector from the centroid
P to the centroid of the neighbour cell, N. S f is the face area vector of the
face f , pointing outwards. It is located at the face centroid, is normal to the
face and has a magnitude equal to the area of the face. In the FV method
we assume that the values of all variables are computed and stored in the
centroid P, this is known as collocated grid arrangement [137].

Figure 3.1: Control Volume (from Jasak [65])

The application of Gauss’ theorem for the FV method is particularly
convenient in dealing with volume integrals of the divergence of a given
vector, as they represent the flux of that vector through the surrounding
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surface of the volume. Gauss’ theorem states
ˆ

VP

∇ · adV =

˛
∂VP

dS · a,

where ∂Vp is a closed surface bounding the control volume VP and dS =

ndS represents the infinitesimal area vector pointing outward of the sur-
face ∂VP. Thus, using Gauss’ theorem to convert volume integrals into
surface integrals and assuming that the control volumes do not change in
time, equation 3.1 can be written as

∂

∂t

ˆ
VP

(ρφ) dV +

˛
∂VP

dS · (ρUφ)︸ ︷︷ ︸
convective flux

−
˛

∂VP

dS ·
(
ρΓφ∇φ

)︸ ︷︷ ︸
diffusive flux

=

ˆ
VP

Sφ (φ) dV.

(3.2)

The surface integrals can be easily discretized as follows

Convective term
˛

∂VP

dS · (ρUφ)︸ ︷︷ ︸
convective flux

= ∑
f

ˆ
f

dS · (ρφU)

≈ ∑
f

S f ·
(
ρφU

)
f = ∑

f
S f · (ρUφ) f .

Diffusive (Laplacian) term

˛
∂VP

dS ·
(
ρΓφ∇φ

)︸ ︷︷ ︸
diffusive flux

= ∑
f

ˆ
dS ·

(
ρΓ f∇φ

)
f

≈ ∑
f

S f ·
(
ρΓ f∇φ

)
f = ∑

f
S f ·

(
ρΓ f∇φ

)
f . (3.3)

In the convective and diffusive terms the integrands have been ap-
proximated using the values at the midpoint of the faces. This corre-
sponds to numerical integration by means of the midpoint method,
which is second-order accurate (with respect to the face length) [106].
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Source term ˆ
VP

Sφ (φ) dV =
(
Sc + SpφP

)
VP.

All the terms that can not be written as convection, diffusion or tem-
poral terms are treated as sources. The source term, Sφ(φ) is a gen-
eral function of φ and it has been linearized. Therefore its approx-
imation is exact if Sφ is either constant or varies linearly within the
CV; otherwise it is second order accurate [30]. Here Sc is the constant
part of the source term and Sp is the non-linear part.

Gradient term
(∇φ)P =

1
VP

∑
f

(
S f φ f

)
.

Here the centroid gradient has been approximated using Gauss’ the-
orem. This method is second-order accurate as it is equivalent to a
central differencing scheme.

Since all the variables are computed and stored at the centroid of the con-
trol volumes, the values at the faces have to be evaluated by some sort
of interpolation for both sides of face f . The face values appearing in the
convective flux can be computed as follows:

Linear interpolation (Fig. 3.2a)

φ f = fxφP + (1− fx) φN

with fx = f N
PN =

|x f−xN|
|d| .

This method is equivalent to a central differencing scheme and it
is second-order accurate, but it might generate oscillatory solutions
(unbounded solutions).

Upwind differencing (Fig. 3.2b)

φ f =

φ f = φP for
◦
F ≥ 0,

φ f = φN for
◦
F < 0.
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where
◦
F is the mass flux through the face,

◦
F = S · (ρU) f and therefore

the value for an internal face is the same of the cell upstream. This
type of interpolation does not generate oscillatory solutions (bound-
ed), but is first order accurate and adds numerical diffusion to the
solution.

(a) Linear interpolation. (b) Upwind differencing.

Figure 3.2: Face interpolation [65].

For the diffusive flux the quality of the mesh can induce errors in calcu-
lating the gradient at the face. In particular non-orthogonality and skewness
are significant contributors to error. Referring to Figs. 3.3a and 3.3b, non-
orthogonality measures the misalignment between the face normal vector,
S, and the vector connecting adjacent cell centers, d, while skewness, ∆i

(Figs. 3.3c and 3.3d), measures the distance between the location of the
face center, f , and the vector connecting adjacent cell centers, d.

For meshes of different quality the diffusive flux can be calculated as
follows:

Orthogonal mesh (Fig. 3.3a)

S · (∇φ) f = |S|
φN − φP

|d| .

This is a central difference approximation of the first order derivative
and is second order accurate,
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(a) Orthogonal and non-skewed mesh. (b) Non-orthogonal and non-skewed mesh.

(c) Orthogonal and skewed mesh. (d) Non-orthogonal and skewed mesh.

Figure 3.3: Mesh non-orthogonality and skewness [65].

Non-orthogonal mesh (Fig. 3.4)

S · (∇φ) f = |∆⊥|
φN − φP

|d|︸ ︷︷ ︸
orthogonal contribution

+ k · (∇φ) f︸ ︷︷ ︸
non−orthogonal contribution

.

The orthogonal part of the face vector, ∆⊥, can be calculated with a
minimum correction approach (∆⊥ = d·S

d·d d, Fig. 3.4a) or with an over-
relaxed approach (∆⊥ = d

d·S |S|
2, Fig. 3.4b), and the non-orthogonal

contribution is evaluated by using linear interpolation from the gra-
dient of the control volumes centroid, computed using the Gauss the-
orem.

Skewed mesh (Fig. 3.3c and 3.3d) in order to maintain second-order ac-
curacy and avoid unboundedness a correction must be introduced.
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(a) Minimum correction approach.

(b) Over-relaxed approach.

Figure 3.4: Non-orthogonal contribution [65].

The gradient can be evaluated as

(∇φ)P =
1

VP
∑

f
S f φ f =

1
VP

∑
f

S f

[
φ fi + ∆i · (∇φ) fi

]
,

where fi refers to the intersection between the vector d and the face
f , which for a skewed mesh does not correspond to the face center.

In OpenFOAM the method of lines (MOL) is used for solving the gov-
erning equations. The MOL is a solving technique of a partial differential
equation (PDE) where the first step is to replace the spatial derivatives
with algebraic approximations. Once this is done, the spatial derivatives
are no longer stated explicitly in terms of the spatial independent vari-
ables. Thus, effectively only the time derivative remains and the starting
equation can be solved as an ordinary differential equation (ODE). In other
words we have a system of ODEs which approximates the original PDE
[107]. Using the technique of the MOL, the temporal discretization is made
after the spatial discretization. The main advantage of the MOL technique
is that different numerical approximations can be selected for the spatial
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and temporal terms. Each term can be treated differently to yield different
accuracies. At this stage any temporal discretization scheme can be used,
e.g. Crank-Nicolson, Euler implicit, forward Euler, backward differencing.

3.2.1 Solution of the structural momentum equation

The finite volume discretization procedure explained above is general and
in this work has been applied to the structural momentum equation as
well. In absence of body forces the discretized form of the linear momen-
tum equation in an Updated Lagrangian formulation (Eqn. 2.8) can be
written using the Gauss’ theorem as

ρPuVPu
∂δv
∂t

= ∑
f

n f uS f u ·
(

δS + S · δFT + δS · δFT
)

f
, (3.4)

where the subscript u indicates that the value are calculated for the up-
dated configuration and the subscripts P and f represent the cell and the
face value. n f uS f u is the face area vector, S and δS are the total and in-
crecemntal 2nd Piola-Kirchhoff stress tensor respectively and δF is the in-
cremental deformation tensor. The face values of all dependent variables
are calculated by linear interpolation of the neighbouring cell values. The
total and incremental 2nd Piola-Kirchhoff stress tensors, S and δS, and the
incremental deformation tensor, δF are functions of the gradient of the in-
cremental displacement, ∇δu (see Section 2.2.2). Therefore equation 3.4 is
solved iteratively for δu updating ∇δu at the end of every iteration until
the solution changes less than some pre-defined tolerance. This is done for
every time step of the transient simulation [132].

At the end of each time step, the total displacement vector and the total
2nd Piola- Kirchhoff stress tensor are updated as follows:

un = uo + δun,

Sn = So + δSn,

where the superscripts n and o refer to the new and old time step respec-
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tively. The 2nd Piola-Kirchhoff stress tensor increment δSn is calculated
using the newly calculated displacement vector increment δun. When the
mesh is moved at the beginning of the new time step by using the dis-
placement increment from the previous time step, the 2nd Piola-Kirchhoff
stress tensor related to the old updated configuration must be transformed
to the new updated configuration as it effectively represents the Cauchy
stress tensor:

So = σ =
1
J

F · S · FT =
1

detFo Fo · So · FoT.

3.2.2 SIMPLE, PISO and PIMPLE algorithms

A further note should be made on the solution strategy adopted by Open-
FOAM to solve the incompressible Navier-Stokes equations. Two issues
require special attention: non-linearity of the momentum equation and
the pressure-velocity coupling.

The non-linear term in the momentum equation is ∇ · (U ⊗U), i.e.
the “trasport of velocity by itself”. The discretized for of this expression
would be quadratic in velocity and the resulting system of algebraic equa-
tions would be non-linear. OpenFOAM takes care of this problem linearis-
ing the convection term

∇ · (U ⊗U) =∑
f

S · (U) f (U) f = ∑
f

◦
F (U) f

= apU p + ∑
N

aNUN

where
◦
F is the mass flux through the face f , and ap , aN are coefficients

function of U respectively at the centroid P and at the neighbours cen-
troids N and represent the diagonal and off-diagonal terms of the sparse
system of equations, respectively. Linearization of the convection term im-
plies that an existing flux field that satisfies the continuity equation will be
used to calculate ap and an [65].

In a steady-state calculation the linearization does not affect the final
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result because the fact that the non-linear term has been lagged is not sig-
nificant. However in transient flows since the flux needs to be updated
at each time step a different approach can be adopted: either introduce
subiterations for each time step to update the fluxes or neglect the lagged
non-linearity effects. If the time step is sufficiently small the change bet-
ween consecutive solutions will also be small and it is therefore possible to
lag the non-linearity effect without any significant effect. However, if the
time step is large it is necessary to iterate over the non-linear term. Itera-
tions can significantly increase the computational time but the advantage
is that the non-linear system is fully resolved for every time step whose
size limitation comes only from the temporal accuracy requirements.

For transient simulations the pressure implicit with splitting of op-
erator (PISO) algorithm [62] is used for the pressure-velocity coupling
whereas for steady-state calculations the semi-implicit method for press-
ure-linked equations (SIMPLE) [30] is adopted. In both methods a semi-
discretised form of the momentum equation calculated at the each cen-
troid P is used

aPUP = H(U)−∇p. (3.5)

Equation 3.5 is obtained from the integral form of the momentum equa-
tion using the discretization procedure described previously. At this stage
the pressure has not been discretized yet. The H (U) term consists of the
“transport part” including the matrix coefficients for all neighbours mul-
tiplied by corresponding velocities and the “source part” including the
souce part of the transient term and all other sources terms apart from the
pressure gradient:

H (U) = −∑
N

aNUN +
Uo

∆t
.

Here U is the velocity at time t + ∆t whereas Uo is the velocity at the time
t. The discretized form of the continuity equation reads

∇ ·U = ∑
f

S ·U f = 0. (3.6)

64



3.2. FINITE VOLUME METHOD

Velocities on the cell face are expressed as the face interpolate of equa-
tion 3.5

U f =

(
H (U)

aP

)
f
−
(

1
aP

)
f
(∇p) f . (3.7)

Substituting equation 3.7 into equation 3.6 the following form of the
pressure equation is obtained

∇ ·
(

1
aP
∇p
)
= ∇ ·

(
H (U)

aP

)
= ∑

f
S ·
(

H (U)

aP

)
f

(3.8)

where the Laplacian of the pressure on the left hand side is discretised as
previously described in equation 3.3.

The final form of the discretised incompressible Navier-Stokes equa-
tions is

conservation of momentum aPUP = H(U)−∑
f

S (p) f ,

continuity ∑
f

S ·
[(

1
ap

)
f
(∇p) f

]
= ∑

f
S ·
(

H (U)

aP

)
f

.

The face flux
◦
F is calculated using equation 3.7

◦
F = S ·U f = S ·

[(
H (U)

aP

)
f
−
(

1
aP

)
f
(∇p) f

]
. (3.9)

When equation 3.8 is satisfied, the face fluxes are guaranteed to be conser-
vative.

Starting from the discretised Navier-Stokes equations the PISO algo-
rithm can be described with the following steps:

moment predictor: the momentum equation is solved using the pressure
field from the previous time step, giving an approximation of
the new velocity field.

pressure solution: using the predicted velocities, the H (U) operator is as-
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sembled and the pressure equation (continuity) gives the first
estimation of the new pressure field.

explicit velocity correction: in order to have a set of conservative fluxes
(eqn. 3.9) consistent with the pressure field, the velocity field
needs to be corrected. This is done explicitly using the momen-
tum equation.

So far during the velocity correction only the new pressure gradient has
been updated in the momentum equation. However also the term H (U)

which appears in the momentum equation needs to be corrected in order
to reflect the new velocity field. Therefore a loop of pressure solutions with
the new value of H (U) and the correspondent velocity corrections are
performed until a pre-determined tolerance is reached before proceding
to the new time step.

In the case of a steady-state problem solved iteratively the changes bet-
ween consecutive solutions might not be as small as the ones between
small consecutive time steps of a transient problem. Therefore the SIM-
PLE algorithm uses under-relaxation to avoid numerical instabilities. In
particular, the steps of the SIMPLE algorithm are:

• The under-relaxed momentum equation is solved using the velocity
under-relaxation factor αU and the pressure field from the previous
iteration.

• The pressure equation is solved in order to obtain the new pressure
distribution, pp.

• A new set of conservative fluxes is calculated using equation 3.7. In
the SIMPLE scheme rather than solving again the momentum equa-
tion like in the PISO algorithm, the velocity part of the error is taken
into account relaxing the pressure solution with

pnew = pold + αp

(
pp − pold

)
where
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– pnew is the approximation of the pressure field that will be used
in the next momentum predictor,

– pold is the pressure field used in the momentum predictor,

– pp is the solution of the pressure equation,

– αp is the pressure under-relaxation factor (0 < αp ≤ 1).

Generally the SIMPLE algorithm is developed to reach the steady-state
conditions very quickly but does not contain the time derivative and there-
fore no time information. On the contrary the PISO scheme which is de-
signed for transient simulations relies on a small time step to be stable. The
Courant-Friedrichs-Lewy (CFL) number, defined as CFL = ∆t

∆x U, needs to
be smaller than unity in the PISO algorithm in order to avoid the pressure-
velocity coupling errors to be amplified. This means that it is very expen-
sive to solve a complex problem for a long physical time. For this reason
a merged PISO - SIMPLE algorithm (PIMPLE) has been developed to take
advantage from both schemes and avoid the limitations on the CFL [56].
In fact, using under-relaxation for each time step would allow to use a
larger CFL (CFL � 1). The CFL number can be seen as the ratio between
the velocity of the partial differential equation, U and the velocity at which
the information travels across the mesh, ∆x

∆t . Therefore a CFL < 1 guaran-
tees not only the stability of an explicit numerical scheme [137] but also
the accuracy of a transient simulation in such a way that at each time step
the information about the flow velocity has traveled less than a mesh size
length. However the CFL is a field variable and for a fixed time step it de-
pends on the local value of the fluid velocity and the mesh size. Therefore
it might happen that once the time step has been accurately chosen to have
a good time resolution of the physics, the CFL could have a local value
larger than unity in small areas such as the leading edge where the flow
accelerates and the mesh size is smaller than in the rest of the grid. Here lo-
cal values of CFL > 1 can cause a PISO scheme to diverge even if the time
step is already small enough to sample accurately the relevant frequencies
of the system. On the contrary the PIMPLE algorithm can handle local-
ized peaks of CFL > 1 much more safely because of the additional outer
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corrections. For each outer correction the pressure and velocity fields are
under-relaxed and the inner correctors of the PISO scheme are performed.
In order to increase the stability more corrector steps (outer and inner) are
needed requiring more computational time per time step. However the
computational gain is still very large when compared with decreasing the
time step and use the PISO algorithm.

For this reason the PIMPLE algorithm has been included as original
work of this thesis in the FSI solver and the code is reported in Appendix
B. In particular, with the PIMPLE algorithm the FSI solver could handle
local CFL ≈ 5 without losing resolution of the most relevant time scales
using generally 3 outer corrections and 2 inner corrections.

3.2.3 Boundary conditions

In order to obtain a single solution of the discretised governing equations,
boundary conditions must be specified at the boundaries of the compu-
tational domain. The boundary conditions, which are used to close the
system are:

zero-gradient: the normal gradient of the solution is zero at the bound-
ary. This condition is known as a Neumann-type condition,
∂φ/∂n = 0,

fixed-value: the value of the solution is specified at the boundary. This is
a Dirichlet-type condition, φ = b,

symmetry: treats the conserved variables as if the boundary was a mirror
plane. This condition defines that the component of the solu-
tion gradient normal to this plane should be fixed to zero. The
parallel components are extrapolated from the interior cells,

moving-wall-velocity: it is used on a moving boundary in order to have
zero flux, using the Arbitrary Lagrangian Eulerian (ALE) ap-
proach as explained in Section 3.2.4.
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For external flow simulations, such as those of membrane wings, a distinc-
tion has to be made between the outer and the inner boundaries. The latter
correspond to the deforming membrane. In case of forward flight, two do-
main boundaries are defined as inlet and outlet, respectively. At the inlet
boundary the velocity is defined as fixed-value and the pressure as zero-
gradient. On the other hand, at the outlet boundary, the pressure has to be
fixed-value and the velocity zero-gradient [144]. On a stationary wall the
no-slip condition needs to be guaranteed, therefore a fixed-value (U = 0)
is specified for the velocity in combination with a zero-gradient for the
pressure. If the boundary of the wall moves, then the proper boundary
condition is the moving-wall-velocity which introduces an extra velocity
in order to maintain the no-slip condition and ensures a zero flux through
the moving boundary.

3.2.4 Arbitrary Lagrangian-Eulerian formulation

The governing equations of the fluid dynamics are generally discretised
using the Eulerian description, where the fluid moves through a fixed con-
trol volume (i.e. fixed grid). On the contrary, in the Lagrangian formula-
tion the grid is attached to the fluid (or the solid) and follows its movement
and deformation. In fluid dynamics when the domain moves or deforms
in time due to a moving boundary, a fixed mesh becomes inconvenient, be-
cause it requires the explicit tracking of the domain boundary. Therefore,
the arbitrary Lagrangian-Eulerian (ALE) formulation is used to discretise
the flow equations on moving and deforming meshes. This method blends
both Lagrangian and Eulerian frameworks. The Lagrangian contribution
allows the mesh to move and deform according to the boundary motion,
whereas the Eulerian part takes care of the fluid flow through the mesh.

In general, the transport equation (3.2) for a scalar field φ can be modi-
fied for a moving mesh as
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∂

∂t

ˆ
VP

(ρφ) dV +

˛
∂VP

dS · (ρφ (U −w)) =

=

˛
∂VP

dS ·
(
ρΓφ∇φ

)
+

ˆ
VP

Sφ (φ) dV,

where w is the relative velocity of the mesh. The relationship between the
rate of change of the volume VP and the mesh velocity, w is defined by the
so-called Space Conservation Law (SCL) [34]

∂

∂t

ˆ
VP

dV −
˛

∂VP

dS ·w = 0.

The rate of change of the volume is handled automatically in Open-
FOAM [63], whereas the mesh motion flux correction needs to be accounted
for and it is calculated as

∑
f

S f · ρφ f
(
U f −w f

)
.

Given the displacement of the membrane interface calculated from the
structural solver, the mesh velocity, w, is calculated solving a Laplace
smoothing equation for every cell center

∇ · (γ∇w) = 0, (3.10)

where γ is the diffusivity. The updated position of the mesh points at the
new time step is given by

xnew = xold + ∆tw.

Equation 3.10 can be compared with the diffusion term of the Navier-
Stokes equations where the diffusivity γ is equivalent to the molecular
viscosity. However, when the diffusion equation is solved for the mesh
points displacement the mesh viscosity does not have a physical meaning
and its value is chosen only to preserve the final mesh quality and avoid
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numerical instabilities. For this reason the diffusivity can be treated as a
field value and calculated with many different methods. In this way it
is possible to control the local deformation of the cells in such a way the
higher the value of the diffusivity the more rigid the cells is and more
resistence opposes to distortion. In OpenFOAM two main approaches are
available [63]:

Distance-based, where the diffusion field is a function of the cell centre
distance, l, to the nearest selected boundary:

• Linear: γ = 1
l ,

• Quadratic: γ = 1
l2 ,

• Exponential: γ = e−l.

Quality-based, where the diffusion field is a function of the local mesh
quality measure:

• Mean cell non-orthogonality,

• Mean cell skewness,

• Combination of non-orthogonality and skewness.

The main argument of the distance-based approach is that the mesh qual-
ity is preserved in proximity of the selected boundary and most of the
internal mesh deformation happens in the far field where the mesh grid is
coarser and can absorb more easily the deformation without worsen the
mesh quality. However in this work the mesh motion is solved not in the
whole domain but only in a small subset around the membrane as will be
explained in Section 4.4. In this condition a distance-based diffusivity field
did not prove to be more efficient or generate a better quality mesh than a
uniform field, therefore a constant value of γ = 1 has been adopted in the
small domain around the membrane where the mesh motion is solved.

Figure 3.5 shows a particular of the mesh in proximity of the 2D mem-
brane in its most deformed configuration using a uniform diffusivity. It is
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possible to see how the deformation of the cells is mainly a shearing de-
formation and therefore the error induced by the skewness is negligible.
In fact if we consider the face between two quadrilateral cells, its face cen-
tre correspondes with the intersection on that face between the line that
connects the two cell centres (see Fig. 3.3d). On the contrary the non-
orthogonality increases when the membrane moves. However the max-
imum non-orthogonality value experienced in all the simulations of this
work has always been smaller than 30◦ and in has been taken into account
performing 2 additional non-orthogonal corrections in the PIMPLE loop
(see Sec. 3.2 on page 60).

An other note must be done on Fig. 3.5 where a gap at the interface
between the solid and fluid mesh is visible. Generally the solid and the
fluid meshes are not conformal as they do not share the same points and
faces. The displacements are calculated from the structural equations on
the solid mesh (yellow) and need to be interpolated to the membrane in-
terface on the fluid mesh (gray). At each time step subiterations are per-
formed in order to avoid the lag between the displacement solution from
the solid solver and the pressure solution from the fluid solver. For the so-
lution to be considered converged at a certain time step, a dynamic equi-
librium at the membrane interface must be satisfied. This means that the
difference between the fluid and solid mesh at the membrane interface
needs to be smaller than a threshold value in order for the pressure dis-
tribution to be consistent with the true shape of the membrane. The av-
eraged magnitude of the displacement difference at each face of the fluid

Figure 3.5: Particular of deformed mesh (grey: fluid, yellow: solid).
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mesh is defined as the FSI residual and is used to judge when the FSI solu-
tion is converged for each time step. In particular when the FSI residual is
smaller than 1/1000 of the membrane thickness the solution is considered
converged. Therefore the gap between the solid and the fluid in Fig. 3.5 is
considered to be smaller in average than the threshold value and the error
given by that difference negligible. A more detailed explanation of the FSI
algorithm is given in the next section.

3.3 Fluid-Structure interaction algorithm

In problems involving strong deformations, such as a membrane wing, a
partitioned strong coupling algorithm (1.2) is the most suitable in order to
avoid numerical instabilities due to the artificial added mass effect. Strong
coupling enforces continuity of velocity and stress at the fluid/solid inter-
face through fixed-point iterations at each time step. In such an algorithm
the following tasks are looped at each time step until convergence:

1. Set pressure from the previous iteration (or previous time step at the
first iteration) on the solid patch by interpolating the fluid pressure
on the fluid side of the boundary and update the traction forces on
the solid boundary accordingly.

2. Solve solid equation with the external pressure calculated previously
as boundary condition.

3. Move the fluid mesh in accordance with the previously calculated
solid deformations.

4. Solve the fluid motion on the updated geometry and mesh.

In case of strong interaction, the pressure solution (point 1) and the dis-
placement solution (point 3) might have strong gradients especially at the
first iteration and they eventually need to be under-relaxed in order to
avoid instabilities. Because of under-relaxation the convergence might be
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very slow and computationally expensive due to the large number of it-
erations. Hence, Mok et al. [87] introduced a dynamic relaxation factor
based on the Aitken method for enhanced robustness and stability which
is briefly introduced below.

A generic solution gn
k (displacement or pressure) at time n and iteration

k is under-relaxed with

g̃n
k = λk g̃n

k−1 + (1− λk) gn
k , (3.11)

where ˜ denotes the relaxed solution and λk is the relaxation factor. With
the Aitken method, the relaxation factor is calculated at each iteration as

λk = λk−1 + (λk−1 − 1)
(Qk−1 −Qk) ·Qk

‖Qk−1 −Qk‖2 . (3.12)

where Qk = g̃n
k−1− gn

k is the difference between the relaxed solution at the
previous iteration and the original numerical solution at the current itera-
tion. The calculated λk is set to be in a range [λmin, λmax] which depends
on the specific application, but usually set to [0, 1].

Figure (3.6) better explains how an under-relaxed solution leads to con-
vergence at each time step. The red line represents the normalized FSI
residual (values on the left), defined as the difference between the calcu-
lated solid displacement and the fluid mesh displacement at the interface
fluid/solid, the latter being the under-relaxed solution of the solid dis-
placement. As the number of iterations for each time step is variable, the
x-axis shows the total number of iterations and the change in time step can
be easily identified by the peaks of the quantities plotted. The FSI resid-
ual can be seen as a measure of the gaps between the solid mesh and the
fluid mesh at the interface. The green and the blue line represent the mean
incremental displacement of the solid patch and the fluid patch, respec-
tively.

At the first iteration, from the displacement of the previous time step
1©, the pressure distribution is calculated 4©, and consequently the relative
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incremental displacement of the membrane 2©. The difference between
1© and 2© is the reference value for the normalization of the FSI residual,
which therefore is equal to unity at the first iteration 3©. At the second iter-
ation, the fluid mesh interface is moved by an under-relaxed value of the
structural displacement 6© (note 6© 6= 2©). The pressure distribution is cal-
culated for this new configuration 5© and then a new structural displace-
ment 7©. Going ahead with this procedure the convergence is reached
when the difference between the structural displacement and the fluid
mesh interface 8© is smaller than a tolerance value 10© and consequently
the pressure distribution is not changing anymore 9©. This is a condition
of dynamic equilibrium at each time step.
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Figure 3.6: FSI Residuals
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Chapter 4

Validation

This section deals with the validation and verification of the existing Open-
FOAM solvers of the version 3-extend as well as the modified ones, that
have been used throughout the current research. To validate the flow
solver accuracy simpleFoam has been used for steady state simulations
whereas unsteady cases have been simulated with pimpleFoam. For the
validation of the structural and FSI code elasticNonLinULSolidFoam
and icoFSIelasticNonLinULSolidFoam have been used, respectively.
These solvers are the building blocks of the original solver developed as
original work of this thesis, pimpleFsiHyperElasticULSolidFoam
which will be presented in Chapter 5.1 and 6.

The accuracy of the OpenFOAM solvers has been evaluated simulating
a 2D flow around the membrane wing geometry of Rojratsirikul et al. [103]
(Fig. 4.1), and comparing the results (deflection and pressure distribution)

Figure 4.1: Membrane wing geometry of Rojratsirikul et al. [103].
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Fluid (Re = 2,500)
kinematic viscosity ν = 1.44 · 10−5 [

m2/s
]

fluid density ρ f = 1.21
[
kg/m3]

freestream velocity U∞ = 0.24 [m/s]
Solid

solid density ρs = 534.5175
[
kg/m3]

Young’s modulus E = 2613.6
[
kg/

(
m s2)]

Poisson’s ratio νp = 0.45 [−]
Membrane geometry

chord c = 0.15 [m]

thickness h = 2 · 10−4 [m]

Table 4.1: Dimensional parameters used for the simulations in OpenFOAM

with the reference data by Gordnier [51], based on numerical simula-
tions on the same geometry with a high fidelity solver.

In Gordnier’s work the fluid and solid equations are solved with a
finite-difference approach with second-order temporal and sixth-order spa-
tial accuracy. The setup (Fig. 4.1) consists of a 2D membrane 15 cm long
with tear-shaped leading and trailing edges, at Re = 2,500− 10,000 and
with angle of attack varying between 4◦ and 20◦. In Gordnier’s work
the governing equations have been solved in their nondimensional form.
In particular, to characterize the solid part, its nondimensional modu-
lus of elasticity, Ẽ, thickness, h̃, and mass ratio, ρ̃, have been assigned.
These quantities have been nondimensionalized by the fluid density, ρ f ,
dynamic pressure, ρ f U2

∞, and chord length, c, as follows

Ẽ =
E

ρ f U2
∞

, h̃ =
h
c

, ρ̃ =
ρs

ρ f
. (4.1)

Since Gordnier’s computations assume a nondimensional mass ratio
of ρ̃h̃ = 0.589 and a nondimensional modulus of elasticity, Ẽh̃ = 50, given
the fluid parameters all the dimensional values needed by an OpenFOAM
simulation can be easily computed. They are reported in Table 4.1.

Before simulating the complete FSI case, a grid independence study
has been performed separately on the fluid and on the structural domains,
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respectively. A domain independence study has also been carried out for
the fluid mesh in order to be sure that the solution does not depent on the
size of the computational domain.

Figure 4.2: Fluid and solid mesh.
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An unstructured mesh for the fluid domain has been generated with
the OpenFOAM utility snappyHexMesh, with a finer grid resolution in
proximity of the membrane, whilst blockMesh has been used to generate
a structured mesh for the membrane (Fig. 4.2).

The bottom right of Fig. 4.2 shows the solid mesh for the membrane
in light blue. Since the leading and trailing edges are fixed the origin of
the membrane’s reference system has been taken where the membrane at-
taches to the leading edge and its nondimensional length corresponds to
the actual deformable length as shown in Fig. 4.3. The pressure distribu-
tion and the membrane displacement will be presented in this reference
system.

Figure 4.3: Membrane reference system.

4.1 Grid and Domain analysis

4.1.1 Fluid grid convergence study

The grid and domain independence study for the fluid part has been per-
formed for a laminar and steady flow around the membrane, frozen at
its initial condition (flat plate) and with the angle of attack varying from
α = 0◦ to α = 3◦. The computational domain is squared and the mem-
brane is equidistant from the top and the bottom and at 33% of the domain
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length from the inlet. The quantities of interested measured are the lift and
the drag coefficient defined as

Cl =
L

0.5ρ f U2
∞

and Cd =
D

0.5ρ f U2
∞

,

where L and D are the lift and drag, respectively.
The values of the drag and lift coefficient at Re = 2,500 and Re = 5,000

and for a squared domain size of 36c are reported in Fig. 4.4. The cell
counts of 1 · 104, 2.3 · 104, 3.4 · 104 and 2.3 · 105 have been tested and it
has been found that the variation of the solution between domains with
3.4 · 104 and 2.3 · 105 cells is negligible.
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Figure 4.4: Grid refinement study.

Keeping the same density of cells around the membrane from the pre-
vious case with 3.4 · 104 cells, the domain size has been changed to examine
when the solution can be considered independent of it. Six domain sizes
have been tested in total and their characterisitcs are shown in Table 4.2
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along with a sketch of one of the domains.

c = 0.15m

Domain n.2
23k cells

1.5m = 10c

1.5m = 10c

3.3c 5.7c

5c

5c

Domain n. cells nondim. domain length
1 22k 6c
2 23k 10c
3 27k 24c
4 34k 36c
5 40k 44c
6 92k 88c

Table 4.2: Different domain sizes.

Furthermore, different boundary conditions (Fig. 4.5) have been tested
in order to check whether they might give different results (in particu-
lar the top and the bottom boundaries). In Fig. 4.5a the top and bottom
boundaries are treated as inlet/outlet. With such boundary conditions, the
membrane remains fixed at different angles of attack and the free-stream
velocity, U∞, is given at the inlet in terms of vertical and horizontal com-
ponents to obtain the angle of attack needed. On the other hand, if slip or
free stream boundary conditions are given at the top/bottom (Fig. 4.5b),
U∞ is always perpendicular to the inlet and a new mesh is generated for
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each angle of attack since the membrane has to be rotated by the angle of
attack needed.
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Figure 4.5: Different boundary conditions tested for the domain study.
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Figure 4.6: Computational domain study.

83



4.1. GRID AND DOMAIN ANALYSIS

Figure 4.6 displays the values of Cl and Cd at Re = 2,500 and 5,000
for α = 2◦ and for different domain sizes and for different boundary con-
ditions. These results show that the solution converges faster with a slip
boundary condition rather than with free-stream or inlet/outlet boundary
condition. However when the domain is large enough (> 80c) the dif-
ference between solutions with different boundary conditions is less than
0.01%. Thus, the Inlet/Outlet boundary condition and a domain of 80c
will be used for the following simulations because it will be computation-
ally cheaper to change the angle of attack while the simulation is running
and eventually assign a time-varying inlet boundary condition without
moving the mesh.

4.1.2 Time step study for the unsteady fluid solver

Increasing the angle of attack the flow becomes unsteady and the influ-
ence of the time step needs to be analysed in order to accurately predict the
vortex shedding frequency and the mean force coefficients. At Re = 2,500
and α = 8◦ the flow detaches from the leading edge of the fixed membrane
and vortices are shed. The force coefficients history of the last 5 seconds
of simulation is shown in Fig. 4.7 for time steps going from ∆t = 0.02 s
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Figure 4.7: Comparison between unsteady simulations with different ∆t.
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to ∆t = 0.0025 s. For ∆t = 0.02 s the max CFL has been CFL = 15 in
proximity of the leading edge whereas with ∆t = 0.0025 s the max CFL
was CFL = 2. Even though pimpleFoam can handle CFL numbers larger
than unity, the lack of accuracy given by using very large ∆t can be clearly
seen in Fig. 4.7 and in Tab. 4.3 where the mean force coefficients and
the Strouhal number are reported. The Strouhal number is the nondimen-
sional frequency and it is defined as

St =
f · c
U∞

,

where f is the frequency in Hz, c is the chord length and U∞ is the freestream
velocity.

∆t [s] C̄l C̄d St
0.02 0.942 0.234 0.547
0.01 0.987 0.244 0.641

0.005 1.002 0.249 0.657
0.0025 0.997 0.251 0.658

Table 4.3: Mean force coefficients for different ∆t.

The time step convergence is achieved with ∆t = 0.005 s as the mean
force coefficients and the Strouhal number calculated with ∆t = 0.0025 s
and ∆t = 0.005 s differ by less than 1%.

4.1.3 Solid grid convergence study

4.1.3.1 Steady solution

In order to evaluate the dependence of the solution on the solid grid,
steady and unsteady simulations with the structural solver only have been
performed. For the steady case the pressure distribution around the mem-
brane in its initial undeformed state (flat plate) at α = 4◦ and Re = 2,500
has been calculated and used as boundary condition for the solid solver.
The pressure distribution of the flat plate at α = 4◦ is shown in Fig. 4.8.
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Figure 4.8: Pressure distribution around a flat membrane at α = 4◦.

Note that the jump in pressure at x/c = 0 and x/c = 1 is due to the origin
of the membrane not corresponding with the membrane’s leading edgebut
right behind it where the membrane starts to displace (Fig. 4.3). As the
fluid solver is frozen during these simulations the pressure distribution
is fixed and acts as an external force while the membrane is reaching the
equilibrium. The parameters of the solid mesh which have been analyzed
are the cell aspect ratio (length-width ratio), ar, and the total number of
cells. In this way it is possible to evaluate if varying the number of cells
only streamwise (along the chord) or only widthwise (along the thickness)
has an effect on the solution. For instance when the aspect ratio is kept
constant, doubling the number of cells lengthwise implies doubling the
number of cells widthwise, or also, two grids with the same total number
of cells can have different aspect ratio (600 × 4 or 1,200 × 2). Different

Figure 4.9: Solid grid convergence study

86



4.1. GRID AND DOMAIN ANALYSIS

combinations have been simulated (Fig. 4.9), showing that the solution is
not very sensitive to these parameters with the difference of the maximum
displacement being less than 0.3% (Fig. 4.9b).

4.1.3.2 Unsteady solution

A dynamic test with the unsteady structural solver has been performed
as well to verify the effect of different mesh resolution on the amplitude
and frequency of the membrane’s oscillations. In this case the OpenFOAM
FSI solver icoFSIelasticNonLinULSolidFoam has been run at α = 8◦

and Re = 2,500 starting from a flat membrane in order to obtain the initial
condition for the structural solver. When the membrane started oscillating
around its equilibrium shape the fluid solver has been switched off. As the
pressure distribution was not updating anymore at each time step it was
possible to isolate the effect of the solid mesh resolution and time step of
the structural solver on the dynamic behavior of the membrane. The shape
of the membrane at the end of the FSI simulation used as initial condition
for the structural solver simulations is shown in Fig. 4.10 along with the
time history of the midpoint displacement calculated with the structural
solver only, with a time step ∆t = 0.005 s and a solid mesh of 600× 2.
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Figure 4.10: Unsteady structural solver.
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Figure 4.11 shows the spectra of the midpoint displacement for all the
mesh resolution tested and a time step ∆t = 0.005 s. All these simulations
predict a main peak at 1.63 Hz and a smaller one at 2.2 Hz with the error
in amplitude around the first peak being smaller than 0.1% of the mean
displacement.
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Figure 4.11: Spectrum of the midpoint displacement for different mesh resolu-
tions and ∆t = 0.005 s.

4.1.4 Time step study for the unsteady solid solver

The same test has been performed with different time steps using the mesh
600× 2. The results are reported in Fig. 4.12 showing that all the time steps
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mesh resolution 600× 2.
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tested are small enough to capture the two frequencies at 1.63 Hz and 2.2
Hz. Since flow simulations were time resolved with a time step ∆t = 0.005
s the same will be used for the FSI simulations as it is a good compromise
between computational cost and accuracy.

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1

z/
c

x/c

membrane
mode 1
mode 2
mode 3
mode 5

−0.0075

−0.005

−0.0025

0

0.0025

0.005

0 0.2 0.4 0.6 0.8 1

z/
c

x/c

membrane
mode 1
mode 2
mode 3
mode 5

Figure 4.13: Shape of the spatial modes (zoom on the right).

An additional note can be made on the shape of the spatial modes.
A Fourier analysis of the shape of the membrane shows that up to the
fifth spatial mode has a contribution to the final shape (Fig. 4.13). The
second spatial mode is responsible to the shift of the point of maximum
displacement towards the leading edge. In particular the nondimensional
amplitude of each mode is reported in the following table

mode z/c
1 0.0785

2 0.0018

3 0.0034

5 0.0009

4.2 Fluid-structure interaction

The solver which has been used for the validation is icoFsiElastic-
NonLinULSolidFoam, available in the OpenFOAM-extend version. It
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solves the N-S equations for a laminar and incompressible flow using the
PISO algorithm (Sec. 3.2.2), but also solves the Laplace smoothing equa-
tion to calculate the movement of the mesh for all the points of the mesh,
which might become computationally very expensive for external flows
where the moving boundary (the membrane) is several orders of magni-
tude smaller than the domain length. In fact, depending on the resolu-
tion of the mesh around the moving body, the displacement of the mesh
points will be higher near the fluid-solid interface and virtually zero far
away from it. In particular for the grid used in this study the displace-
ment of a point whose location is further than 4-5c from the membrane is
negligible. Solving the Laplace smoothing equation for the whole domain
means that a big matrix containing the coordinates of all the points of the
mesh is generated, stored and solved for each sub-iteration of the FSI algo-
rithm (Sec. 3.3), even though the calculated displacement will be non-zero
only for a small portion of the grid points. The computational resources
requested (memory, I/O operations and computation) therefore become
much larger than what is actually needed. This issue has been addressed
in the current work by making it possible to specify only the region of the
domain where the mesh motion is needed (Sec. 4.4).

The results of the validation simulations are in good agreement with
the reference [51]. Figures 4.14 and 4.15 show the mean displacement and
the mean pressure distribution at Re = 2,500 for angles of attack α = 4◦
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Figure 4.14: Mean displacements for Re = 2,500, compared with Gordnier [51].
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Figure 4.15: Mean pressure distribution for Re = 2,500.

and α = 8◦. At α = 4◦ the mean displacement and pressure distribution
coincide with the equilibrium values since after a transient of 25 nondi-
mensional time-units the membrane reaches a steady shape as shown in
Fig. 4.16 by the time history of the displacement of the membrane mid-
point.
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Figure 4.16: Displacement history of the membrane midpoint for α = 4◦, Re =
2,500.

The position and the value of the maximum displacemement of the
membrane (Fig. 4.14) calculated with OpenFOAM match those of Gord-
nier, with only minor discrepancies on the sides of the membrane (error
not larger than 0.8% at α = 4◦ at x = 0.87c). There is good agreement also
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in the pressure distribution (Fig. 4.15): the maximum error (ε = 4.8%) is
for the case at α = 4◦ where OpenFOAM overestimates the pressure on
the bottom side of the membrane and underestimates the one on the back
section of the suction side. However this discrepancy has a minor effect
on the total lift generated by the membrane, and therefore on the final dis-
placement, because the pressure difference between the top and bottom
side of the membrane (Fig. 4.15a) obtained from the current case and the
reference simulation are comparable (ε < 0.4%). Even better agreement
with the reference is obtained at α = 8◦ (Fig. 4.15b).

At α = 8◦ the interaction between fluid and structure becomes signifi-
cant and the membrane starts to oscillate, developing a third mode stand-
ing wave response. This can easily be seen in a contour plot (Fig. 4.171)
where the perturbation around the mean displacement of each point of the
membrane (x-axis) is reported for each time (y-axis).

(a) Gordnier [51]: (a) α = 4◦, (b) α = 8◦, (c) α =
12◦, (d) α = 16◦, (e) α = 20◦.
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Figure 4.17: Perturbation from the mean membrane deflection for various angles
of attack.

The regular pattern for α = 8◦ indicates that the membrane vibrates in
its third structural mode around the mean shape, but as the angle of attack
increases a large number of modes are excited and the behaviour appears
more chaotic and with higher amplitudes of oscillation (darker colours).

1Note that Gordnier’s plots did not report the time scale, therefore for the OpenFOAM
plots time scale has been deducted from spectral analysis data
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Also, the V-patterns at higher angles of attack (especially at α = 20◦) indi-
cate that the maximum displacement travels back and forth between the
leading and the trailing edge.

Whereas at α = 8◦ the amplitude and the frequency of the displace-
ment calculated by OpenFOAM and Gordnier can be easily compared
showing a good match (Fig. 4.18), at higher angles of attack the membrane
exhibits a more complex behaviour and it is not possible to reproduce the
exact results of Gordnier for the perturbation around the mean. At α = 20◦

although the vorticity field from OpenFOAM (Fig. 4.19) shows flow pat-
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Figure 4.18: Spectral analysis of structural response for α = 8◦.

(a) Gordnier [51]: from top to
bottom (a) α = 4◦, (b) α = 8◦,
(c) α = 12◦, (d) α = 16◦, (e)
α = 20◦.

(b) OpenFOAM: top α = 4◦and bottom α =
20◦

Figure 4.19: Instantaneous vorticity contours for various angles of attack.
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terns similar to Gordnier’s simulations, it is quite difficult to compare the
instantaneous displacement of the membrane. However if we consider
statistical quantities we still obtain a good agreement in terms of mean
displacement, amplitudes and frequencies of oscillations (Fig. 4.20). In
particular at α = 20◦ the Strouhal number of the structural response from
both OpenFOAM and the reference are St = 0.59 , 1.09 , 1.73.
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Figure 4.20: Spectral analysis of structural response for α = 20◦, Re = 2,500.

Since icoFsiElasticNonLinULSolidFoam is a solver for strong cou-
pled FSI problems (Sec. 1.2), the computational time is highly dependant
on the number of sub-iterations performed at each time step. At each
sub-iteration the fluid, the solid, and mesh motion equations are solved
and therefore different time steps might require more clock time than oth-
ers depending on the level of unsteadiness of the flow. In fact, the more
the flow is unsteady the more the pressure fluctuations induce high dis-
placements on the membrane. And since for stability reasons at each sub-
iteration the mesh is moved by an under-relaxed value of the calculated
solid displacement (Sec. 3.3) this means that more sub-iterations will be
needed for each time step in order to minimize the fsi residual (i.e. nondi-
mensional difference between the displacement of the membrane bound-
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ary on the fluid and on the solid mesh). Generally high displacements
are generated either at the beginning of a simulation when the membrane
starts from its flat configuration (Fig. 4.16) or at high angles of attack
(α ≥ 12◦) when the flow is detached and therefore in these conditions a
large number of sub-iterations are performed. For these simulations in
the worst case (α = 20◦) up to 20 sub-iterations have been required for
one time step and on average the wall-clock time for the simulation of
one nondimensional time unit on a local machine (Intel® Core™ i7-2600
CPU @ 3.40GHz) using one processor has been around 2.5 hours. The
solver also works in parallel however the maximum number of processors
is limited by the number of subdomains the solid mesh can be decom-
posed into. In fact the OpenFOAM parallel libraries are written in such a
way that each processor has to perform the same operations and therefore
run the fluid, the solid and the mesh motion solver. Since for these partic-
ular simulations the solid mesh is far smaller than the fluid one, the bene-
fits of a parallel simulation can only be obtained using up to 8 processors.
In particular the average wall-clock time to simulate with 8 processors one
nondimensional time unit (in the worst case described above) can decrease
down to 30 minutes. More detailed values of number of sub-iterations for
a typical simulation at different angles of attack are reported in Tab. 4.4
along with the minimum value of the fsi residual reached during subiter-
ations.

α sub-iter per ∆t fsi residual cores avg clock time per ∆t

4◦ 5-10 1e-6
1 51
4 17
8 10

12◦ 10-15 1e-5
1 64
4 23
8 14

20◦ 10-20 5e-5
1 72
4 26
8 16

Table 4.4: Sub-iterations and clock time for simulations at different angles of at-
tack.
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It is worth noting that at α = 20◦ more sub-iterations are needed to
reach an fsi residual which is one order of magnitude larger than at 4◦.
This indicates that more computational effort is needed for the fluid inter-
face to match a more complex shape of the membrane in order to calculate
the accurate pressure distribution. For each time step is also reported the
parallel scalability showing the average clock time per time step using 1,
4 or 8 cores.

4.3 Electrostriction

Further simulations have been performed to validate the electrostriction of
a Neo-Hookean material in OpenFOAM. The reference case is an experi-
ment conducted by Tagarielli [124] to investigate the electrostiction of rub-
bery polymers. For this experiment a rectangular specimen of the acrylic
tape VHB4905 with an equi-biaxial prestrain (change in area of 300%) has
been used and two compliant electrodes made of conductive grease have
been applied on the top and bottom surfaces of the stretched polymer.

(a) Reference state. (b) Stretched state. (c) Effect of electrostriction.

Figure 4.21: Numerical simulation of electrostriction.

As explained in Section 1.4 a prestrain is needed to increase the elec-
trical breakdown and to reduce the thickness of the polymer so a smaller
voltage can be applied. Thus, the Maxwell stresses will be added to the
mechanical stresses due to prestretch. The 3 stages of the simulation are
shown in Fig. 4.21. Since only the in-plane strain (i.e. variation in area)
due to electrostriction is measured from experiments, starting from the ref-
erence configuration (Fig. 4.21a), the stretched configuration is calculated
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assuming symmetry boundary conditions on the sides so the area of the
specimen remains constant while the thickness varies (Fig. 4.21b). The
Cauchy stress tensor (eqn. 2.6) in the stretched configuration is calculated
by transforming the 2nd Piola-Kirchhoff stress tensor (eqn. 2.13). From the
stretched configuration, given a certain value of voltage, the electric stress
is calculated with equation (2.14) and added to the mechanical stress due
to prestretch. Now the final displacement (Fig. 4.21c), and therefore the
in-plane strain is obtained by substituting the total 2nd Piola-Kirchhoff
stress tensor (eqn. 2.13) into the momentum equation (eqn. 2.8) as shown
in Sec. 2.2.2. The code which has been implemented in OpenFOAM to run
these simulations is reported in the Appendix D. Figure 4.22 shows the
non-linear response of the in-plane strain of the membrane.
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Figure 4.22: In-plane actuation strain
with prestrain 300%.

The relative permittivity εR

has been assumed to be constant
whereas in reality it is sensitive
to the load history, prestrain and
frequency of electrical excitation.
For values of relative permittivity
varying between 2 and 5, the ex-
perimental curve can be matched
in different sections. Lower values
of εR give a more accurate predic-
tion of the strain in the bottom part
of the curve which is more suitable
for an active control on the mem-
brane’s stiffness, i.e. φ < 1,500 V. It would not be recommended to control
the membrane at higher voltage, as for φ > 1,500 V the strain is very sen-
sitive to small variations of electric potential and an electric breakdown
might eventually occur (φ ≥ 2,000 V).

97



4.4. FSI WITH ELECTROSTRICTION

4.4 FSI with electrostriction

Before including the effect of electrostriction in the FSI solver, the same
cases as those described in Section 4.2 have been simulated with the Neo-
Hookean model with and without prestrain. The values of µ and κ in
equation (2.13) have been calculated with equation (2.10) using the same
Young’s modulus as that used earlier (E = 2613.6 Pa). It can be observed
that without prestrain the Saint Venant-Kirchhoff and the Neo-Hookean
formulation give the same results (Fig. 4.23) indicating that the strain in-
duced by the flow on the membrane (< 10%) is still in a range where the
stress-strain curve shows a linear behaviour.

This simulation has proved that the Neo-Hookean formulation can be
used to produce accurate results also for the cases simulated by Gord-
nier and therefore they can be extended to more complex physics where
the Saint Venant-Kirkhoff formulation cannot be used due to its known
limitiations [55, 81]. In particular the Saint Venant-Kirkhoff model fails
in predicting the stress distribution when very large values of prestretch
are applied. Moreover numerical simulations of a Saint Venant-Kirchoff
material have shown a tendency to locally tangle the mesh when subject
to strong compressive forces or kinematic constraints [35]. Therefore for
realistic simulations of dielectric elastomers subject to large prestrain and
compression loads due to electrostriction a Neo-Hookean formulation has
been preferred.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.2 0.4 0.6 0.8 1

z/
c

x/c

Gordnier (Linear Elastic)
Saint Venant-Kirchhoff
Neo-Hookean

Figure 4.23: Membrane displacement for different constitutive laws at α =
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The effect of electrostriction is now taken into account in the FSI simu-
lations. A few modifications have been made to the solver icoFsiElas-
ticNonLinULSolidFoam in order to make it more computationally effi-
cient. The PIMPLE (merged PISO-SIMPLE) algorithm (Sec. 3.2.2) has been
included in the solver in order to use a larger time step as the PIMPLE gen-
erally is more stable for CFL > 1 , unlike the PISO algorithm. The PIMPLE
algorithm in OpenFOAM also supports adaptive time stepping, i.e. it is
possible to run simulations with a fixed value of CFL and the solver au-
tomatically adjusts the time step while the simulation is running. Further,
the subsetMotion feature has been added so it is possible to select only
the area near the membrane in which the mesh will be moving (green box
in Fig. 4.24). Details of the code development of the subsetMotion are

(a) Whole domain. (b) close-up of the moving mesh region.

Figure 4.24: subsetMotion mesh.

given in the Appendix C. Solving the Laplace smoothing equation only in
a small region of the domain allows the solver to save computational time.
It has been estimated that for each time step the reduction in time has been
more than 40%. Also, in the previous simulations at each angle of attack
the membrane started from its undeformed configuration (flat plate) and
the transient to achieve periodical behaviour could last between 20 and
40 nondimensional time units. For these simulations a time-varying inlet
boundary condition has been adopted, so it is now possible to assign a
ramp-up input angle of attack and the membrane can smoothly adapt to
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4.4. FSI WITH ELECTROSTRICTION

the flow conditions. In this way not only the physical transient has been
reduced (up to 15%) but also the number of sub-iterations needed for each
time step of the transient period.

Whereas the main effect of the Maxwell stresses is to stiffen the mem-
brane in the thickness direction, they also induce an in-plane relaxation.
This can easily be seen by writing the Maxwell stress tensor (eqn. 2.14) in
matrix notation, neglecting edge effects and assuming that the potential φ

varies only along the thickness h, i.e. E = −∇φ ≈
(

0, 0,−φ
h

)

σm = ε0εR
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Then it is clear that the stress σxx and σyy have the same value of σzz, but
with opposite sign. On the other hand, the stresses induced by an equib-
iaxial prestretch generally have the same absolute value for the x and y
components but a different one for the z component of the stress tensor.
Thus, for validation purposes, the value of the voltage φ which neutral-
izes the in-plane stresses induced by a given prestretch has been calcu-
lated and the results for this particular case have been compared with the
case of the membrane without prestrain. By doing so, it is possible to
find in which range of voltages the membrane can be controlled by mod-
ifying the stiffness. Such control of the stiffness translates to a control of
the mean camber and consequently the aerodynamic performance of the
membrane. The dimensional value of electric potential which creates the
same in-plane stress of an equibiaxial prestrain of 300% (λpre = 3) is re-
ported in Table 4.5 along with the other relevant parameters. Also, for the
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purpose of this study the following assumptions have been made: (a) the
material viscosity has been neglected, therefore hysteresis effects cannot
be reproduced by these simulations; (b) the membrane thickness remains
constant during prestretch and electric activation: since the membrane is
already very thin, the effects of its variation on the flow field can be ne-
glected; (c) electrostriction induces an instantaneous change in stiffness,
as the electric time-scale is several orders of magnitude faster than the me-
chanical one.

Voltage φ = 1,390 [V]

relative permittivity εR = 1.66 [−]
shear modulus µ = 901.24

[
kg/

(
m s2)]

bulk modulus κ = 8,712
[
kg/

(
m s2)]

Poisson’s ratio νp = 0.45 [−]
in-plane stress for λpre = 3 σxx = σyy = 141.7

[
kg/

(
m s2)]

Table 4.5: Dimensional values for the FSI simulation with electrostriction.

4.5 Summary

In this chapter a study on the grid and time step resolution has been per-
formed with the fluid and solid solvers available in OpenFOAM in order
to find the best numerical setup for the FSI simulations of a membrane
wing. It has been found that for the fluid solver a domain size of 88 chord
length and 93k cells gives a mesh independent result whereas for the solid
solver a mesh resolution 600× 2 is enough to accurately predict the mem-
brane displacement. For both fluid and solid solver a time step ∆t = 0.005
s showed to give accurate results in the time domain.

These numerical settings have been used to validate the FSI solver
against the results of Gordnier [51] of a passive membrane wing in a lami-
nar flow at Re = 2,500. The OpenFOAM results showed good agreement
with the reference. It is worth noting that the results from this validation
have been obtained using a numerical approach which is quite different
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from the one used in the reference. In fact, OpenFOAM uses a second-
order finite volume approach for both the fluid and solid solver whereas
Gordnier [51] solved the FSI problem of the membrane with a high-order
finite-difference solver. Also the structural model is very different: in
Gordnier a model for a one-dimensional membrane subjected to a normal
force is adopted, whereas a Saint Venant-Kirchhoff constitutive equation is
used in OpenFOAM. Therefore the good agreement of the results between
the two approaches suggests that the level of accuracy of OpenFOAM in
dealing with the FSI problem of a membrane in the range of parameters
presented in this chapter can be considered more than satisfactory.

Moreover, a Neo-Hookean formulation for hyperelastic materials has
been presented in order to simulate the effect of electrostriction of dielec-
tric elastomers. This formulation coupled with the effects of the Maxwell
stress tensor has been validated against the results of Tagarielli et al. [124]
where the change in area due to electrostriction was measured for an acrylic
tape specimen under equi-biaxial prestrain.

Finally the setup of the FSI simulations of a passive membrane and the
setup of the electromechanical simulations of a Neo-Hookean hyperelas-
tic dielectric elastomer have been joined together in order to predict the
behaviour of an electroactive membrane wing. For validation purposes
the structural characteristics of a hyperlastic electroactive membrane wing
have been calculated in order to match the behaviour of the passive mem-
brane simulated by Gordnier. This numerical setup will be used in the
next chapters to study more in detail the behaviour of a fully and partially
activated membrane wing.
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Chapter 5

Electroactive membrane

The change in material properties due to electrostriction has been further
simulated in this chapter in order to study its effect on the fluid-structure
coupling. The whole surface of the membrane is activated in the simula-
tions in Section 5.1 whereas the activation of only a portion along the chord
has been considered in Section 5.2. In every case a prestrain λpre = 3 is ap-
plied before activating the membrane. The activation voltage (φ = 1,200
V) has been lowered by 15% compared to the previous simulation in order
to simulate conditions where the sensitivity of the prestrain with respect
to the voltage variation is smaller than 5% for a variation of 500 V. In fact
for values of V > 1,500 the gradient of the strain-voltage curve (Fig. 4.22)
is too large meaning that the membrane is too sensitive to very small vari-
ations of voltage and therefore very difficult to control and not feasible for
realistic applications.

5.1 Fully-activated membrane

The membrane displacement and the aerodynamic characteristics have
been compared for angles of attack α = 12◦, 16◦, 20◦ at Re = 2,500. When
only the prestretch acts on the membrane, the midpoint displacement (red
dashed lines in Fig. 5.1) is smaller than in the activated case. This is due to
the effect of the Maxwell stresses which produce an in-plane relaxation. As

103



5.1. FULLY-ACTIVATED MEMBRANE

the membrane relaxes it opposes less resistance to the pressure difference
generated by the flow resulting in an increased camber. Also, for a non-
active membrane the amplitude of oscillations at different angles of attack
remains of the same order of magnitude, whereas the activated membrane
(black lines) exhibits an increasing amplitude of oscillations for increasing
angles of attack.
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Figure 5.1: Time history of the membrane midpoint displacement.

The flow patterns and the evolution of the vortices released at the trail-
ing edge of the membrane are displayed for both cases and for each angle
of attack in 4 snapshots of the vorticity field (Figs. 5.2, 5.3 and 5.4), starting
from an arbitrary time t = t̄ at intervals of 0.35 and 0.5 nondimensional
time units t∗. These intervals allow to visually track the vortices that are
shed from the leading and trailing edge.

When only the prestretch is applied the flow pattern at α = 12◦ (Fig.
5.2) reveals that the downwash angle is lower than the case with the mem-
brane fully activated, i.e. the wake in the baseline case (Figs. 5.2.a2) points
upward more than in the activated case (Figs. 5.2.a1). The downwash
generated also gives us an indication about the lift generated by the mem-
brane. In fact, according to the Kutta-Joukowski theorem the lift per unit
span, L′, is proportional to the air density, ρ, the free-stream velocity, U∞,
and the circulation, Γ, around the membrane

L′ = ρU∞Γ,

therefore the higher the downwash the more lift is produced by the mem-
brane. This can be seen in Fig. 5.5 where the streamlines at α = 12◦ for
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5.1. FULLY-ACTIVATED MEMBRANE

(a1) 1200 V (b1) 1200 V

(a2) 0 V (b2) 0 V
(a) t = t̄ (b) t = t̄ + 0.35t∗

P

(c1) 1200 V (d1) 1200 V

P

(c2) 0 V (d2) 0 V
(c) t = t̄ + 0.7t∗ (d) t = t̄ + 1.05t∗

Figure 5.2: Vorticity field at α = 12◦.
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(a1) 1200 V (b1) 1200 V

(a2) 0 V (b2) 0 V
(a) t = t̄ (b) t = t̄ + 0.5t∗

P + S

(c1) 1200 V (d1) 1200 V

P

(c2) 0 V (d2) 0 V
(c) t = t̄ + t∗ (d) t = t̄ + 1.5t∗

Figure 5.3: Vorticity field at α = 16◦.
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(a1) 1200 V (b1) 1200 V

(a2) 0 V (b2) 0 V
(a) t = t̄ (b) t = t̄ + 0.5t∗

(c1) 1200 V (d1) 1200 V

(c2) 0 V (d2) 0 V
(c) t = t̄ + t∗ (d) t = t̄ + 1.5t∗

Figure 5.4: Vorticity field at α = 20◦.
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5.1. FULLY-ACTIVATED MEMBRANE

the fully activated membrane (1,200 V) and the non-activated one (0 V) are
compared. The streamlines highlighted at the trailing edge of the mem-
brane show the different angles of downwash generated by the two cases.
The vertical component of velocity U1 at the trailing edge of the activated
membrane is larger than the vertical component of the velocity U2 of the
non-actived membrane. Therefore the circulation, defined as the line inte-
gral of the velocity on a closed curve around the membrane

Γ =

˛
C

U · dl,

is larger for the activated membrane. According to the Kutta-Joukowski

α = 12◦

U∞

U1

1200 V 0 V

U2

U1

U2

C

Figure 5.5: Streamlines comparison at α = 12◦.
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theorem this is equivalent to a higher lift experienced by the activated
membrane. In particular the increment in downwash is due to the in-
creased camber of the membrane. In fact as the slope of the back part of
the membrane increases, it forces the attached flow on the bottom of the
trailing edge to point downwards (this is the same effect that a flap has on
a fixed airfoil).

The higher camber of the activated case also helps keeping the flow at
the leading edge to be more attached. At α = 16◦ (Fig. 5.3) the increased
camber of the activated case still keeps the flow attached to the membrane
for longer even though the intensity of the leading edge vortices is bigger
than in the case at α = 12◦ (Figs. 5.2.a1 and 5.3.a1). At α = 16◦ the lead-
ing edge vortices do not interact anymore with the ones generated at the
trailing edge, unlike the non-active case (Figs. 5.3.a1 and 5.3.a2) and both
the active and non-active case at α = 12◦ (Figs. 5.2.a1 and 5.2.a2). The
interaction between leading and trailing edge vortices leads to different
vortex shedding patterns. Studies on oscillating cylinders by Williamson
and Roshko [146] found a selection of vortex formation modes which were
defined as “2S” indicating 2 single counter-rotating vortices shed per cy-
cle, “2P” meaning 2 pairs of vortices per cycle, and the pattern comprising
three vortices per cycle thus was termed “P+S” (Fig. 5.6).

Figure 5.6: Vortex formation modes from Williamson and Roshko [146]
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5.1. FULLY-ACTIVATED MEMBRANE

The same patterns are found here in the flow past the membrane. In
particular at α = 12◦ for the active and non-active membrane the vortices
are shed in the “P” mode (Fig. 5.2), whereas at α = 16◦ vortices are shed
in the “P+S” mode for the active membrane and “P” mode for the non
active (Fig. 5.3). At α = 20◦ (Fig. 5.4) the high unsteadiness of the flow
in both cases is mainly due to the detached eddies at the leading edge
which do not follow the path of the trailing edge vortices, as it happened
at lower angles of attack. In fact at α = 12◦ the leading edge vortices
travel downstream on top of the membrane and merge with the trailing
edge vortices, whereas at α = 20◦ the leading and trailing edge vortices
do not merge.

The vortices released from the leading edge of a flexible membrane
share some characteristics with those of oscillating rigid airfoils. In 1935
Theodorsen obtained the unsteady flow solution for small disturbances
around a thin oscillating rigid airfoil in an inviscid and incompressible
flow [129]. Because his theory was developed to handle purely sinusoidal
maneuvres it is represented in the frequency domain. Theodorsen’s model
predicts the unsteady lift for a plunging and pitching airfoil as

CL =
π

2

[
ḧ + α̇− a

2
α̈
]
+ 2π

[
α + ḣ +

1
2

α̇

(
1
2
− a
)]

C(k),

where ḣ and ḧ are the velocity and acceleration of the center of mass of the
airfoil, respectively. α is the angle of attack, α̇ and α̈ are the pitch velocity
and acceleration, respectively. a is the pitch axis location with respect to
the half chord and C(k) is a transfer function relating sinusoidal input to
their aerodynamic response. Even though in this thesis the membrane’s
simulations are at a fixed angle of attack and there is no plunging move-
ment (i.e. the membrane’s supports are fixed), the causes of the unsteady
lift can be related with those of an oscillating rigid airfoil. In fact, the
movement of the membrane induces a local change of incidence at the
leading edge which could be compared to the the effect of α̇ and α̈ for a
rigid pitching airfoil. At the same time the change in camber is effectively
a vertical movement of the center of mass of the membrane, ḣ. However,
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5.1. FULLY-ACTIVATED MEMBRANE

Theodorsen’s theory is valid only for small pitching and plunging move-
ments. In fact, when the angular amplitudes are wide enough, the phe-
nomenon of the dynamic stall occurs and there is no exact theory able
to predict the aerodynamics [19]. Dynamic stall is a complicated aerody-
namic phenomenon in which a vortex-like disturbance is shed by an airfoil
at large angle of attack. The disturbance often originates near the leading
edge and translates along the airfoil, resulting in a highly non-linear pres-
sure disturbance. This nonlinearity causes the airloads to diverge signifi-
cantly from those predicted by linear, thin-airfoil theory. There have been
many semi-empirical models designed to quantify the effect of dynamic
stall of fixed airfoils [85], whereas for flexible membranes the analysis of
the dynamic stall can be made only by CFD and by experimental measure-
ments.

Modifying the stiffness of the membrane via electrostriction is ulti-
mately motivated by the possibility of evaluating how the aerodynamic
characteristics can be improved. Therefore the lift and drag coefficients
and lift-to-drag ratio have been analyzed for the same simulations. Their
mean value, root mean square (RMS) and standards deviation (SD) are re-
ported in Tab. 5.1. For every angle of attack the mean lift coefficient is
higher for the activated membrane whereas the drag coefficient is lower.
At α = 12◦ lift and drag for the non-active membrane (red dashed line in
Fig. 5.7) both oscillate with a larger amplitude and lower frequency com-
pared with those of the activated case. Also, the difference between the

Lift coefficient Drag coefficient Lift-to-drag ratio

mean RMS SD mean RMS SD mean RMS SD

α = 12◦
1200 V 1.422 1.424 0.069 0.204 0.205 0.018 6.808 6.821 0.418

0 V 1.287 1.345 0.388 0.247 0.259 0.075 5.216 5.240 0.504

α = 16◦
1200 V 1.674 1.749 0.507 0.356 0.395 0.152 5.202 5.418 1.514

0 V 1.516 1.568 0.397 0.399 0.415 0.111 3.816 3.823 0.221

α = 20◦
1200 V 1.763 1.821 0.493 0.554 0.586 0.168 3.735 3.792 0.650

0 V 1.703 1.772 0.458 0.570 0.594 0.155 2.989 3.01 0.228

Table 5.1: Force coefficients: mean, root mean square (RMS) and standard devia-
tion (SD) at different angles of attack.
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mean values of the force coefficients of the active and the non-active cases
diminishes at higher angles of attack (Figs. 5.8 and 5.9).

At α = 16◦ the standard deviation of the aerodynamic forces (Figs.
5.8a and 5.8b) in the activated case (black line) is 25% larger than in the
non-activated one (red dashed line), whereas at α = 20◦ (Figs. 5.9a and
5.9b) this difference decreases to less than 10%. However additional higher
frequencies are present in the signal of the activated membrane (black line)
at α = 20◦ showing the effect of a highly unsteady flow.
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Figure 5.7: Time history of the force coefficients at α = 12◦.
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Figure 5.8: Time history of the force coefficients at α = 16◦.
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Figure 5.9: Time history of the force coefficients at α = 20◦

If we now consider the lift-to-drag ratio Cl/Cd as indication of the aero-
dynamic efficiency of the membrane, we see that for every angle of attack
(Tab. 5.1 and Fig. 5.10) the electroactive one (black line) performs better
than the non-active (red dashed line). The mean value of the lift-to-drag
ratio Cl/Cd, decreases as the angle of attack increases. In particular, for
the activated case (black line) it goes from Cl/Cd = 6.81 at α = 12◦ down
to Cl/Cd = 3.75 at α = 20◦. Also, the improvement in the lift-to-drag
ratio for the activated cases decreases as the angle of attack increases, i.e.
the difference between Cl/Cd of the active and non-active case is higher at
α = 12◦ (∆

(
Cl/Cd

)
= 1.4) than at α = 20◦ (∆

(
Cl/Cd

)
= 0.74).
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Figure 5.10: Lift-to-drag ratio at different angles of attack.

On the one hand the electroactive membrane shows an improvement
in the aerodynamic efficiency (the Cl/Cd peaks in the active case can even
double the values of a non-active one) but on the other hand its oscilla-
tions would not be beneficial for the attitude control of a micro air vehicle
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(MAV). Therefore some considerations on the dynamics of the interaction
between the membrane and the flow can be useful to better understand
how modifying the stiffness of the membrane via electrostriction might
bring some aerodynamic benefits.

In order to do this, we analyse for the case at α = 20◦ the instantaneous

Force coefficients and force ratio history.
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Figure 5.11: Correlation between membrane shape and local maximum/mini-
mum peak in lift at α = 20◦.
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shapes of the membrane and the associated pressure distribution when
the lift coefficient reaches a local maximum and minimum, respectively.
This is shown in Fig. 5.11 with the plots on the left and right columns rel-
ative to the non-activated membrane and the activated one, respectively.
The instants which the shape of the membrane refers to are circled in the
time history of the force coefficients in black for the local maximum in lift
and red for the local minimum of lift. As expected the higher camber is
associated with larger pressure difference across the whole length of the
membrane and therefore higher lift. On the contrary when a local mini-
mum of lift is reached, this is due mainly to the unload of the back portion
of the membrane, i.e. the pressure difference between pressure and suc-
tion side of the membrane for x/c > 0.6 is negligible in both activated
and non-activated case. The rise in camber and lift are strongly dependent
on each other and the complex behaviour of the membrane is character-
ized by a continuous exchange of energy: the flow pressure exerts a force
on the membrane which expands the camber of the membrane. As the
membrane displaces it stores elastic potential energy until it reaches the
maximum displacement. At this point there is a force unbalance between
the pressure distribution and the elastic force of the membrane. This en-
ergy is released as membrane pushes against the flow and shrinks. As the
pressure is constantly acting on the membrane while it oscillates, the lift
opposes the motion of the membrane on its way down and stops it at its
lowest camber.

The main difference between the activated and the non-activated case
is given by the increased relaxation of the membrane due to electrostric-
tion and for this reason not only the membrane reaches a higher camber
but also a larger number of structural modes is excited, i.e. the shape of
the membrane is wavier and so is the pressure distribution. The interac-
tion with the flow is therefore more complex and this can be seen from
the additional high frequencies present in the time history of the lift (top
right graph in 5.11). However these modes are not excited at lower an-
gles of attack (α ≤ 16◦ , Figs. 5.7 and 5.8) and do not bring any benefit in
terms of increasing the lift as in both cases (activated and non-activated)
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Cl oscillates in the same range (1 < Cl < 2.6 in top graphs of Fig. 5.11).

It is also useful to understand in which conditions the maximum (and
minimum) aerodynamic efficiency (Cl/Cd) can be obtained. Again, we
analyse the shapes of the membrane when the lift-to-drag ratio reaches its
local maximum and minimum, respectively. This is shown in Fig. 5.12 with

Force coefficients and force ratio history.

Instantaneous membrane shape.

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

z/
c

x/c

t = 41.5 s
t = 39.9 s

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

z/
c

x/c

t = 23.5 s
t = 25.1 s

Instantaneous pressure distribution.
−4

−3

−2

−1

0

1

2
0 0.2 0.4 0.6 0.8 1

C
p

x/c

t = 41.5 s
t = 39.9 s

−4

−3

−2

−1

0

1

2
0 0.2 0.4 0.6 0.8 1

C
p

x/c

t = 23.5 s
t = 25.1 s

(a) 0 V. (b) 1200 V.

Figure 5.12: Correlation between membrane shape and local maximum/mini-
mum peak in lift-to-drag ratio at α = 20◦.
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the plots on the left and right columns corresponding to the non-activated
membrane and the activated one, respectively. The instants which the
shape of the membrane refers to are circled in the time history of the lift-
to-drag ratio in black for the local maximum in lift-to-drag ratio and red
for the local minimum of lift-to-drag ratio. In this case the feature associ-
ated with high (or low) lift-to-drag ratio is the position of the maximum
displacement. In fact, for the activated and non-activated membrane the
point of maximum displacement is at x/c = 0.32 whereas in condition
of high lift it was further back (x/c = 0.5 for the non-activated mem-
brane and x/c = 0.68 for the activated one). Since in the aerodynamic
efficiency the information about the absolute value of lift and drag is lost,
when Cl/Cd reaches its local maximum (or minimum) the lift and the drag
will do not necessarily the same. When the point of maximum displace-
ment is shifted towards the front (Fig. 5.12) there is also a higher pressure
difference in the front part of the membrane. Here the component of pres-
sure normal to the membrane points in the velocity direction and therefore
the resultant force will have a component projected in the velocity direc-
tion as well which can be seen as a pressure contribution to the thrust. This
explains the reduction in drag at this instant and therefore a higher value
of Cl/Cd. The opposite happens when a higher pressure difference acts on
the back of the membrane (red pressure distribution in Fig. 5.12).

As mentioned earlier there is not much difference in the maximum lift
achievable by the activated and the non-activated one. In contrast, the
maximum aerodynamic efficiency achievable by the membrane improves,
going from Cl/Cdmax = 3.4 for the non-active one up to Cl/Cdmax = 5− 6
for the active membrane. This effect can be better understood by com-
paring the shape of the membrane for the activated and the non-activated
cases when they experience a high local peak in Cl/Cd (black membrane
shapes in Fig. 5.12). We observe that the position of the maximum dis-
placement is similar in both cases (x/c = 0.32). However, since the ac-
tivated case has a higher camber, the pressure contribution to the thrust
is enhanced not only by the larger pressure difference at the leading edge
but also by two more factors:
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5.1. FULLY-ACTIVATED MEMBRANE

1. the higher geometric slope of the membrane in the front section re-
sulting in a higher projection of the resultant force in the velocity
direction and

2. the larger area where the front pressure difference acts resulting in a
higher absolute value of the resultant force.

It is worth mentioning that the opposite effect of decreasing Cl/Cd oc-
curs when the point of maximum displacement is shifted backward is fur-
ther reduced in the activated case. In fact, even if Cl/Cd for the active
membrane varies in a larger range (Cl/Cdmax − Cl/Cdmin = 2.5 against
Cl/Cdmax− Cl/Cdmin = 1 for the non-active case) this is mainly due to the
enhancement of Cl/Cdmax for the active case while the minimum value of
Cl/Cd is never lower than the lowest one of the non-activated membrane
(Fig. 5.10c). Again, this phenomenum can be explained by comparing the
pressure distribution at a local minimum of Cl/Cd (red pressure distribu-
tion in Fig. 5.12): in the non-active case (Fig. 5.12a) the pressure difference
in the back section of the membrane is higher than in the rest of the mem-
brane and its projection in the velocity direction gives a higher contribu-
tion to the drag. On the contrary in the active case (Fig. 5.12a) a higher
pressure difference is present also in the front section of the membrane
canceling out the effect of the one in the back section.

These simulations have shown that the main benefit of a more relaxed
membrane is the enhancement of the aerodynamic efficiency rather than
the absolute value of the lift. The maximum efficiency depends on the
membrane shape and it is achieved when the point of maximum displace-
ment is shifted as much as possible towards the front. For this reason
it would be useful also to investigate if activating only a section of the
membrane can bring the same improvements or even more. This study is
described in the next section.
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5.2. PARTIALLY ACTIVATED MEMBRANE

5.2 Partially activated membrane

A voltage acting only on a portion of the membrane has also been simu-
lated in order to test the solid solver’s capability of dealing with bound-
ary conditions for the electric potential on arbitrary locations of the mem-
brane. More importantly it was intended to investigate whether the reduc-
tion in power consumption, obtained through the activation of a smaller
part of the membrane, might still achieve the same improvements in aero-
dynamic performances and, if so, which activated part gives better re-
sults. Therefore the membrane’s length has been divided arbitrarily into
three equal parts and the same voltage of the case discussed in Section 5.1
(φ = 1,200 V) has been applied to the front, the middle and the back sec-
tions of the membrane, keeping the same solid characteristics of the previ-
ous simulations. The effect of the actuator applied to different parts of the
membrane has been simulated in the same flow conditions as the previous
simulations (Re = 2,500) and at high angles of attack (α = 8◦, 12◦, 20◦) for
which the membrane develops an unsteady behaviour.

Shown in Fig. 5.13 is the comparison of the mean displacement for α =

8◦, 20◦ where also an inactive membrane and an all active one have been
included for reference. A membrane with actuation applied to the front
(or back) section presents a shape whose maximum displacement point
is shifted towards the front (or the back) because of the higher relaxation
induced by the Maxwell stresses in the front (or in the back). When the
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Figure 5.13: Mean displacement.
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middle section is actuated the membrane develops a bump in the cen-
tral part and the maximum displacement is always smaller than in the
cases with actuators in the front or back sections whose maximum dis-
placements are similar.

The comparison between the contours of the displacement history of
the membrane at α = 8◦ (Fig. 5.14) shows very different behaviours de-
pending on the location of the actuator. The inactive membrane presents a
first mode standing wave as does as the membrane with a front actuator.
In the latter case the amplitude is larger and the maximum displacement
point is shifted towards the front. When the actuator in is the middle sec-
tion the membrane responds more irregularly to the flow and when it is
in the back section the membrane develops a second mode standing wave
which can be identified in the contours of the perturbation around the
mean (Fig. 5.15). More unsteadiness is introduced into the system as the
angle of attack increases. In fact for α ≥ 12◦when the membrane is activa-
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Figure 5.17: Structural spectra of the displacement around the mean at α = 8◦.
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ted on the back section, the second structural mode cannot be distinguished
anymore (Fig. 5.16) and the differences between the behaviours of the
three different cases are attenuated.

From the spectra of the perturbations around the mean obtained at two
points along the membrane (x = 0.5c and x = 0.75c) shown in Fig. 5.17,
it is possible to see how the front and back section actuators damp the os-
cillation of the membrane (only for the back section actuator at x = 0.75c
the amplitude of the peak at high frequency is amplified because at that
point the membrane is more relaxed). In contrast, the mid-section actu-
ator tends to amplify the amplitude of oscillations of the membrane (Fig.
5.17c). On the one hand this behaviour is not be beneficial in a steady flight
condition but on the other hand this strong response might be exploited
to obtain more control authority in unsteady manouvers. At higher angles
of attack the mid-section actuator again amplifies the unsteadiness of the
membrane, unlike the front or back section actuators whose peaks are lo-
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Figure 5.18: Structural spectra of the displacement around the mean at α = 12◦.
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wer or equal to the inactive case, as can be seen from the spectra of the
structural response at α = 12◦ in Fig. 5.18 and at α = 20◦ in Fig. 5.19.
Also, looking at the time history of the force coefficients at α = 8◦ (Fig.
5.20), the lift and the drag of the membrane with a mid-section actuator
present high amplitudes of oscillations (black line), whereas the ampli-
tude is smaller for a front and back section actuator. Furthermore, the
aerodynamic efficiency (Fig. 5.20c) of a back actuated membrane has a
mean value (Cl/Cd = 9.1) slightly larger than the one of a front actuated
membrane (Cl/Cd = 8.9) but with higher amplitude of oscillation. Unlike
the case at α = 8◦, the force coefficients at α = 12◦ (Fig. 5.21) for a mid-
section actuated membrane have similar amplitude, frequency and mean
value of a front or back section actuated one. Increasing the angle of attack
to α = 20◦ the actuation on the back section allows to reach peak values of
Cl 50% higher than activating the membrane in the middle or in the front
(Fig. 5.22a). Presented in Tab. 5.2 are the mean force coefficients and lift-
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Figure 5.19: Structural spectra of the displacement around the mean at α = 20◦.
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to-drag ratio along with their root mean square (RMS) and standard devia-
tion (SD). Between the three configurations the one that shows the highest
mean lift coefficient at all the angles of attack tested is the membrane with
a back section actuation. However at α = 20◦ its mean lift coefficient is
lower than the one generated by a fully-activated membrane. In terms of
mean drag reduction there is no advantage in a partial activation of the
membrane as at α = 8◦ and α = 12◦ the lowest mean drag coefficient is
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Figure 5.20: Force coefficients and force ratio at α = 8◦.
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Figure 5.21: Force coefficients and force ratio at α = 12◦.
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Figure 5.22: Force coefficients and force ratio at α = 20◦.
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achieved by a fully activated membrane. Only at α = 20◦ a front activated
shows a mean drag coefficient lower than the one of a fully activated mem-
brane. The small amplitude of oscillation of a front and back section acti-
vated membrane at low angles of attack make them good candidates for
real applications unlike a mid-section activated membrane whose larger
amplitudes would make the attitude control of a micro air vehicle more
difficult. Moreover, the aerodynamic behaviour at low angles of attack
(α = 8◦) which allows to increase the lift of a membrane activated on the
back section more than one activated on the front can be better under-
stood looking at their vorticity fields in Fig. 5.23. The instant taken in
consideration corresponds to the time when both membranes experience
a maximum lift to drag ratio. Both membranes have a similar maximum
camber (Fig. 5.23d). However, the back activated membrane (Fig. 5.23b)
oscillating in its second structural mode releases vortices from the leading

Lift coefficient Drag coefficient Lift-to-drag ratio

mean RMS SD mean RMS SD mean RMS SD

α = 8◦

mid 0.942 0.966 0.213 0.112 0.116 0.033 8.622 8.665 0.864

front 0.917 0.918 0.048 0.104 0.105 0.014 8.891 8.921 0.980

back 0.981 0.982 0.048 0.110 0.112 0.022 9.184 9.316 1.563

all 0.917 0.918 0.044 0.100 0.101 0.010 9.240 9.275 0.805

inactive 0.870 0.875 0.097 0.114 0.115 0.017 7.708 7.757 0.869

α = 12◦

mid 1.320 1.370 0.364 0.241 0.252 0.071 5.518 5.550 0.600

front 1.339 1.378 0.324 0.230 0.241 0.072 6.050 6.162 1.168

back 1.428 1.445 0.221 0.226 0.231 0.047 6.407 6.446 0.712

all 1.422 1.424 0.069 0.204 0.205 0.018 6.808 6.821 0.418

inactive 1.287 1.345 0.388 0.247 0.259 0.075 5.216 5.240 0.504

α = 20◦

mid 1.534 1.556 0.263 0.498 0.507 0.093 3.095 3.102 0.212

front 1.360 1.393 0.299 0.456 0.469 0.110 3.002 3.008 0.195

back 1.684 1.752 0.484 0.537 0.566 0.177 3.181 3.193 0.269

all 1.763 1.821 0.493 0.554 0.586 0.168 3.735 3.792 0.650

inactive 1.703 1.772 0.458 0.570 0.594 0.155 2.989 3.01 0.228

Table 5.2: Force coefficients and lift-to-drag ratio: mean, root mean square (RMS)
and standard deviation (SD) at different angles of attack. (in bold: the highest lift
coefficient and lift-to-drag ratio and the lowest drag coefficient).

126



5.3. SUMMARY

edge at a faster rate. Therefore for a back section activated membrane two
vortices travel downstream instead of a single one as is the case of a front
activated membrane (Fig. 5.23c). The two vortices on the suction side of
the membrane are low pressure zones (peaks in the pressure distribution
in 5.23d) which increase the overall lift of the membrane. Moreover, the
first low pressure peak on the suction side of the back section activated
membrane acts in the front portion of the membrane where the local cur-
vature is negative. This translates in a higher projection of the pressure
force in the direction of motion and therefore a reduction in drag.

5.3 Summary

In this chapter the mechanical characteristics of the membrane have been
modified by means of electrostriction and its relative fluid-structure cou-
pling has been analysed. In Section 5.1 a constant voltage across the whole
membrane has been applied to a prestretched membrane and its aero-
dynamic performances have been compared with those of a only pre-
stretched one. As consequence of electrostriction producing an in-plane
relaxation of the membrane, the mean camber of an activated membrane
is larger than a non-activated one. Also, it has been shown that for an
activated membrane the mean lift coefficient is larger than that of a non-
activate one whereas the mean drag coefficient is smaller. However the
difference between force coefficients of an activated and non-activated
membrane decreases for increasing angles of attack due to the increasing
level of unsteadiness of the fluid-structure coupling. Moreover, the analy-
sis of the instantaneous shape of the membrane when it experiences a local
maximum of lift-to-drag ratio revealed that high aerodynamic efficiency is
achieved when the point of maximum displacement is shifted towards the
front.

In order to verify if this condition could be achieved by a different way
of applying the voltage across the membrane, a partial activation has been
simulated in Section 5.2. The membrane has been divided chordwise in
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three equal parts and a fixed voltage was applied only to the front, the
mid or the rear part of the membrane. Even though the point of maxi-
mum displacement was shifted towards the front more for a front acti-
vated membrane, the configuration which showed the best aerodynamic
performance was the membrane activated on the rear part. Especially at
low angles of attack this is due to the particular way the vortices are shed
from the leading edge. In fact at α = 8◦ a membrane activated on the
rear oscillates in its second structural mode at a higher frequency than the
other configurations. This translates in a higher shedding frequency from
the leading edge and more vortices (low pressure zone) travelling down-
stream on top of the membrane which increase the overall lift.
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(a) Lift-to-drag ratio history.

(b) Back activated membrane.

(c) Front activated membrane.
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Figure 5.23: Comparison between front and back section activated membrane at
high lift-to-drag ratio at α = 8◦.
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Chapter 6

Control of the electroactive
membrane

In the previous chapter we have seen how a fixed voltage allows to relax
the membrane and therefore increase the camber and the mean lift. In a
recent experiment Curet et al. [31] showed that the aerodynamic perfor-
mance of a membrane wing with variable compliance can be enhanced
even more applying a sinusoidal voltage at different frequencies. In his
experiments the membrane was flying in a turbulent flow at Re = 80,000
and the forcing frequency was given in terms of the reduced frequency
k = 2π f c/U, where c is the chord and U is the freestream velocity. Even
though the experimental parameters of Curet (3D membrane in a turbu-
lent flow) are different from those presented in this thesis, simulations
with a varying voltage have been extended to the current FSI setup (Sec-
tion 6.1) for the following reasons:

1. gradually increase the complexity of the current FSI solver and verify
its robustness in dealing with varying voltages,

2. verify whether the experimental findings of Curet [31] apply also to
a membrane in a laminar flow.

As showed in the previous chapter a membrane wing flying at high an-
gles of attack experiences high amplitude oscillations which are not ideal
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in operating conditions. A varying voltage might be used also to counter-
act the effects of the unsteady fluid-structure coupling. A first attempt to
reduce the amplitude of oscillations with an open loop control is done in
Section 6.1.1. However, the real potential of a dielectric elastomer is to ex-
ploit its electromechanic characteristics in order to use the membrane itself
as a sensor. Therefore the varying voltage can be controlled in response to
the unsteadiness of the flow-structure coupling in order to deliver a more
stable flight. These simulations are presented in Sections 6.2.1 and 6.2.2.

6.1 Open Loop Control

Further simulations have been conducted with a dynamic change of the
voltage applied across the membrane. The voltage was oscillating around
an offset value of 600 Volts with the following sinusoidal law

V = A sin (2π f t) + 600,

where A is the amplitude of the oscillations and the frequency f is given
in terms of the reduced frequency, k = 2π f c/U . For these simulations the
reduced frequency of the forcing voltage has been varied between 0.5 ≤
k ≤ 4 and the amplitude assumed the values of 50, 100 and 300 Volts. Sim-
ulations have been performed at 4 angles of attack α = [8◦, 12◦, 16◦, 20◦].

When only a fixed voltage is applied (k = 0) the membrane responds
oscillating at a frequency which increases for increasing angles of attack,
going from k = 3 at α = 8◦ to k = 4.5 at α = 20◦ as shown in Fig. 6.1 where
the spectra of the membrane’s midpoint displacement and pressure are re-
ported showing high correlation between them. The increasing frequency
with the angle of attack can be justified by the rise of the aerodynamic load
experienced by the membrane at increasing angles of attack. In fact, as the
lift increases the membrane stretches, increasing the tension and therefore
increasing the fundamental frequency.
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Figure 6.1: Structural and pressure spectra for k = 0.

As long as the electric field oscillates at a low frequency much smaller
than the structural one, the membrane is forced to oscillate with an ad-
ditional frequency whose amplitude is proportional to the input ampli-
tude, A. This is visible from the spectra of the midchord displacement in
Fig. 6.2a for a membrane at α = 16◦ forced with an oscillating voltage at
k = 2 with different values of input amplitude, A. In this condition (i.e.
when the structural and the forcing frequency are separated) the effect of
the electro-structural coupling on the vortex shedding frequency is negli-
gible as can be seen in the pressure coefficient spectra reported in Fig. 6.2b.
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Figure 6.2: Spectra for α = 16◦ and k = 2 .

Also, for a fixed input amplitude, A, the response frequency of the
membrane is as the same as the forcing one (Fig. 6.3). However, the
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response amplitude increases as the forcing frequencies approaches the
natural frequency of the fluid-structure system. The largest amplitude is
reached when the forcing frequency matches the natural one and the sys-
tem is in resonance. The resonance frequency depends on the angle of
attack as shown in Fig. 6.3 where it assumes the value of k = 3 and k = 3.5
at α = 8◦ and α = 16◦, respectively.
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Figure 6.3: Structure spectra for different k and A = 300 V.

It is worth noting that when the input amplitude is high (A = 300
V) and the forcing frequency is very close to the structural frequency, the
whole system (structure and vortex shedding) oscillates at the forcing fre-
quency. This is shown for the case at α = 12◦ in Fig. 6.4. At this angle
of attack the system without a sinusoidal electric field oscillates at k = 3.5
(black line) and with forcing frequencies up to k = 2.5, a peak at k = 3.5
is still present in both structural and pressure spectra (red dashed line).
However, when the system is excited either at k = 3 or at k = 4 the struc-
ture and the pressure field do not oscillate at k = 3.5 anymore but at the
new forcing frequency (blue dotted dash and solid orange line).

This phenomenon is known in fluid dynamics as frequency lock-in [12]
and it has been extensively investigated in many flow conditions. In the
context of low Reynolds number flows, experiments and numerical simu-
lations have been carried out for vortex-induced vibrations of rigid cylin-
ders [16], plunging airfoils [151] and flapping wings [130]. The lock-in
is defined as the local synchronization between the vortex shedding fre-
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quency and the structural vibration frequency where the risonance may
occur in a larger range of frequencies. For the cases analysed in this thesis
this is believed to be the first simulated example of frequency lock-in for
the fluid-structure interaction of an electroactive membrane wing. In fact
in the studies available in literature the excitation of the vortex shedding
is produced by the rigid motion of the airfoil whereas in the present work
the excitation does not come from a prescribed motion but it is due to the
secondary effect of the periodic relaxation/stiffening of the membrane in-
duced by the oscillating voltage.
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Figure 6.4: Spectra for α = 12◦ and A = 300 V.
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Figure 6.5: Spectra for α = 12◦ and A = 100 V.

Moreover, the frequency lock-in is triggered in the fluid-structure cou-
pling of an electroactive membrane wing only with a large amplitude of
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the forcing frequency (A = 300 V). In fact with a smaller input amplitude
(A = 100 V) the system’s response does not show shifts in the main fre-
quency but only exhibits smaller peaks relative to the forcing frequency
(Fig. 6.5).

As also reported by Curet [31], excitation at the resonance frequency
determines the degradation of the aerodynamic characteristics of the mem-
brane, whereas actuation at a slightly lower frequency determines an over-
all positive aerodynamic enhancement. This can be attributed to the very
high amplitude oscillations which occur at the resonance frequency along
with the excitation of many additional modes. This is clear if we look at the
displacement contours reported in Fig. 6.6 for an input amplitude A = 300
V at angles of attack α = 8◦ and α = 20◦. At α = 8◦ the resonance occurs
at k = 3 where the membrane shows high displacements with more than
one mode of vibration. However, at k = 2.5 the membrane oscillates in its
first mode with a smaller amplitude than the case at k = 3, but still with
larger and more coherent oscillations than in the case with a fixed voltage.
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Figure 6.6: Displacement contours for A = 300 V. (a) α = 8◦, (b) α = 20◦.
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The same can be observed at α = 20◦ and k = 3.5 which is the closest
frequency to the resonance, occuring at k = 4.5. For the case at α = 20◦ and
k = 4, data is only available to t∗ = 45 because the simulations diverged
due to the very large membrane displacement. In fact as the frequency
lock-in occurred the maximum displacement was growing over time (red
line in Fig. 6.7) and exceeded the maximum displacement allowed by the
current numerical setup. In particular the mesh motion solver started gen-
erating high aspect ratio and high skewness cells and eventually generated
negative volume cells which made the fluid mesh invalid.
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Figure 6.7: Midpoint displacement history for α = 20◦ and A = 300 V.

The increased camber at voltage frequencies close to the resonance is
the main reason of the enhanced lift, especially at high angles of attack.
Fig. 6.8 shows the lift coefficients for every forcing frequency and every
angle of attack. In particular at α = 20◦ (Fig. 6.8b) an improvement of
8% is observed at k = 3.5 whereas a sharp reduction of −4% occurs just
at k = 4 as the voltage frequency approaches the resonance at k = 4.5.
On the other hand, for α = 12◦ (Fig. 6.8b), where the resonance occurs
at a lower frequency, a maximum enhancement of the lift coeffcient of 4%
exists at k = 2.5 and a dramatic drop of −6% occurs right at the resonance
frequency of k = 3.5. In common with the findings of Curet is also the
fact that some combinations of voltage frequency and angles of attack can
worsen the aerodynamic performance of the membrane wing as happens
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Figure 6.8: Lift coefficient for A = 300 V.

for example at α = 20◦ for reduced frequencies k < 2 (Fig. 6.8d).
However, the maximum enhancement in lift from the simulations of

this work is smaller than the one found by Curet who reported improve-
ment in the lift coefficient of up to 20%. This gap might be attributed to
many differences between the model of the present study and the one of
Curet. First, all the simulations presented here are of a 2D laminar flow
at Re = 2500, whereas the Reynolds number of Curet’s experiments is
Re = 57k− 80k where the enhancement in lift might be due to transition
to a turbulent boundary layer, which is not considered in this work. The
oscillations of the membrane in the Reynolds number analyzed by Curet
might be acting as boundary-layer trip which has been shown to improve
the aerodynamic performance of a wing [24]. Secondly, the material ana-
lyzed in this study is different from the acrylic adhesive material VHB 4910
considered by Curet. In fact the constants for the Neo-Hooken formulation
used here have been chosen to fit with the results of the material used for
the validation of the FSI solver in the previous chapter and recently pub-
lished by the author [27]. Finally, the initial prestrain and voltages applied
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are different between this and Curet’s study in order to be consistent with
the validation of the Neo-Hookean material.

6.1.1 Membrane forced at its natural frequency

A last test with the open loop control has been made here in order to verify
if feeding the membrane with its own structural frequency would eventu-
ally attenuate its oscillations. Using the same setup of previous simula-
tions, results for a membrane at α = 12◦ fed with fixed 900 V show that it
oscillates in its first mode at f = 1.541 Hz (k = 5.5). Therefore this case has
been chosen as reference and the voltage at the same oscillating frequency
has been applied

V = 50 sin (2π f t) + 900.

The open loop control is applied to the membrane starting from two
different times of the reference case, t∗ = 30 and t∗ = 30.58, corresponding
to the membrane having respectively a high and a low displacement. The
resulting displacement and pressure history are shown in Fig. 6.9 and
6.10. In both cases the oscillations are amplified rather than attenuated.
Only for the case when the control starts from a high displacement the
oscillations are reduced in the first 5 nondimensional time units. In fact
at the beginning of the simulation the forcing and the natural frequencies
have opposite phases and they cancel out. However after a short transient
the membrane is forced to shift phase and therefore starts to resonate. In
the other case the two phases are already aligned and the oscillations grow
bigger from the the beginning of the simulation.

This behaviour could have been expected as it is the response of a sys-
tem excited at its natural frequency. Therefore these simulations showed
that an other approach has to be taken if we want to reduce the oscillations
of the membrane. In the next section a closed loop control is analyzed
where the membrane is used also as a sensor. In fact as the membrane
stretches and relaxes in response to the fluid-structure coupling, it induces
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Figure 6.9: Displacement history for a membrane at α = 12◦ with open loop
control (OLC) and same forcing frequency as the natural frequency of the system.
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Figure 6.10: Pressure history

a variation in the voltage across the membrane. This voltage can be used
as input for a proportional integral (PI) control.

6.2 Closed loop control

The first step in using a PI controller for the membrane is to define an
output to monitor through a sensor. This might be tricky because we ul-
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timately want to be able to control an aerodynamic property of the mem-
brane, such as lift coefficient or aerodynamic efficiency. Even though the
lift coefficient can be calculated from a CFD simulation and the error can
be used to calculate the actuator input, in a real application it is impractical
to have a direct measure of the lift. However the electromechanical charac-
teristics of the membrane can be exploited as it would experience a voltage
variation in response to a state of mechanical stress. In fact as feeding the
membrane with an electric field will generate the Maxwell stresses across
it, with the same principle mechanical stresses will modify the thickness
of the membrane and therefore the electric field across it. In this way the
electroactive membrane itself can be used as a sensor and an indirect mea-
sure of the lift can be obtained through the state of stress that it transfers
to the membrane. In fact the membrane’s lift varies as the mean camber
does, but at the same time the membrane’s camber varies in response to a
voltage input which relaxes or stiffen the membrane.

For an electroactive membrane the total stress is given by the sum of
the mechanical and electrical stress (see Section 2.3). Therefore the electri-
cal stress can be modulated in order to compensate the variations of me-
chanical stress due to the fluid-structure coupling and keep the total stress
- and consequently the displacement and the lift coefficient - as constant
as possible.

In 2D the Maxwell stress reads

σe = ε0εR
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therefore a measure of voltage from the state of stress in the chordwise
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direction, Exx, can be derived as

Vout = h

√
2Exx

ε
.

For the purpose of the simulations we have assumed a constant thick-
ness, h, whereas in reality it varies with the stress. However in our simula-
tions the strain along the chord is less than 10% and the thickness variation
has a neglectable effect on the fluid-structure coupling (the chord to thick-
ness ratio is 750). In practice using the membrane as sensor can be made
applying a second electrode on top of the actuator electrode - isolated from
this one - and reading the voltage variations on this second circuit [117].
We assume that the sensor electrode is applied in the same way of the ac-
tuator electrode along the whole surface of the membrane, therefore the
output voltage is a measure of the average stress across the membrane.
The information about the instantaneous state of the stress of the mem-
brane through the voltage reading, Vout can be used to design a control
law for the actuation voltage, Vin.

6.2.1 Proportional Integral Control at α = 12◦

In the first set of simulations we attempt to reduce the oscillations of the
case used previously for the openloop control (Section 6.1.1) at α = 12◦

with 900 V oscillating in its first mode at k = 5.5. The proportional con-
troller reads

Vin = V0 + µp
(
Vout −Vtarget

)
, (6.1)

where V0 = 900 is the offset voltage we modulate around, µp is the pro-
portional gain, Vout is the instantaneous voltage reading from the sensor
circuit and Vtarget is the voltage value which corresponds to the constant
state of stress we want to achieve. Generally V0 and Vtarget do not have the
same value because they are measured on different circuits (actuator and
sensor respectively). In fact the Vout might take into account also the offset
stress given by the prestrain. Vtarget is chosen as the mean value of Vout for
the last 50 oscillations of the simulation with a constant Vin = V0 = 900 V
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and its value is Vtarget = 1525.

The simulation with proportional control starts from the instant of the
case with fixed 900 V when the membrane experiences its maximum high
displacement. The sign of the gain µp should be chosen in a way that
the controller would compensate the mechanical stress due to the fluid-
structure coupling. In this particular case where only the first mode of os-
cillation is present, when the camber is increasing, the in-plane relaxation
of the membrane is increasing as well and the controller should contribute
to stiffen the membrane to actively resist the ascending motion. On the
contrary, when the camber is decreasing, the membrane is stiffening and
the controller should react relaxing the membrane. However, for this first
set of simulations values of ±µp have been tried in order to test the relia-
bility of the code implemented in OpenFOAM. The displacement histories
and their respective spectra for different values of the gain µp are shown
in Fig. 6.11 and 6.12.

As expected positive values of µp do not help to reduce the mem-
brane’s oscillations, whereas with µp = −0.5 the amplitude is reduced
by more than 50% (green line in Fig. 6.12). Increasing the negative gain
makes the membrane increase its natural frequency without a further re-
duction in amplitude. From Fig. 6.13 it can be seen how the reduced am-
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Figure 6.11: Displacement history for different values of µp.
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Figure 6.12: Structural spectra for different values of µp.

plitude of oscillations occurs when the control drives the input voltage
with opposite phase to the output voltage.

The flow field of the membrane with proportional control (µp = −0.5)
is compared against the case with fixed voltage and open loop control in
Fig. 6.14 showing 4 consecutive instants. At each instant the reference case
(fixed 900 V) is the center figure, the open loop is the top figure and the
proportional control is the bottom figure. The simulation for the open loop
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Figure 6.13: Input/output history.
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(a) (b)

(c) (d)

Figure 6.14: Vorticity field comparison (fixed voltage: center; open loop: top;
proportional control: bottom)

and the proportional control cases start at t = 30.2 s of the fixed voltage
run, therefore the top left comparison figure shows an identical flow struc-
ture (same initial condition). However as the time increases the beneficial
effect of the proportional control becomes evident. In fact for the refer-
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ence and the open loop cases the membrane’s oscillations are related with
the leading edge vortex shedding, whereas with the proportional control
(bottom) the flow is more attached and the leading edge vortex shedding
is suppressed.

An attempt to stabilize the membrane even more has been made in-
cluding also an integral control. In this case the controller has the form

Vin = V0 + µp
(
Vout −Vtarget

)
+ µi

ˆ t

0

(
Vout −Vtarget

)
dt,

where the integral is calculated adding up the instantaneous differences
between the Vout and the Vtarget at each time step tn. Therefore at each time
step the input voltage Vin is calculated as

Vtn
in = V0 + µp

(
Vtn

out −Vtarget

)
+ µi

tn

∑
0

(
Vtn

out −Vtarget

)
∆t. (6.2)

Here the proportional gain, µp has been kept consistent with the value
of the simulations with only the proportional control, µp = ±0.5 and a
value of the integral gain µi = 170 has been found to reduce significantly
the amplitude of oscillations of the monitored output, Vout. However look-
ing at the displacement histories and structural spectra in Fig. 6.15 and
6.16 we do not observe a further reduction of structural oscillations with
proportional and integral control, but rather a shift to lower frequencies.
In fact with proportional control only and µp = −0.5 the membrane was
oscillating at k ≈ 6 (red dashed line in Fig. 6.12) whereas adding the inte-
gral control there are two main peaks in the structural spectra at k ≈ 3 and
k ≈ 4 with the same amplitude as the case with proportional control only.

When using also the integral control we notice that the output signal is
actually kept around the target value with an amplitude of less than 10 V
(red line in Fig. 6.17) whereas for the case with only proportional control
the output had an amplitude of 100 V (Fig. 6.13). However now the input
voltage varies in a range of 200 V (black line in Fig. 6.17) with many additi-
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Figure 6.15: Displacement histories of PI control.
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Figure 6.16: Structural spectra for the PI cases.

onal frequencies whereas in the case with only proportional control the
input voltage varied in a range of 50 V oscillating at the same structural
frequency of the membrane (Fig. 6.13). Also, comparing the Vin signal
in Fig. 6.17 and 6.13 it is evident how the way the PI control works is
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to increase the V0 in equation 6.2. In fact Vin is not oscillating around the
initial value of V0 = 900 as in the proportional control, but around a higher
value V0 ≈ 1000.

From Figs. 6.15 and 6.16 we notice also that when proportional and
integral control is applied using either a positive or negative proportional
leads to a similar behaviour of the membrane. This can be explained if
we compare separately the contribution of the proportional and integral
term of equation 6.2 plotted in Fig. 6.18. The integral contribution builds
up at the very beginning of the simulation to a value 4 times larger than
the proportional contribution and drives the error immediately to a very
small value.
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Figure 6.17: Input/output history for µp = 0.5 and µi = 170.

Already after t∗ = 0.1, the error is very small and therefore the propor-
tional contribution is negligible. On the contrary the integral term oscil-
lates around the value built from the start of the simulation and its contri-
bution only is able to keep the error at a very low value. In this condition
the controller behaves as an integral compensator.
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Figure 6.18: Proportional and Integral contribution to the control input. On the
left, zoom to the beginning of the simulation.

It is worth pointing out that the choice of the target voltage defines also
the mean displacement the membrane is going to oscillate about. There-
fore the target voltage can be used to modify the mean camber and conse-
quently the aerodynamic characteristics of the membrane. In this case we
chose a target value which was the average of the output voltage during
the last 50 cycles of the case with fixed voltage and we would expect a sim-
ilar mean displacement for the case with fixed and proportional-integral
control. However this is not the case as we observe an increment of the
9% in the maximum mean displacement of the membrane as shown in
Fig. 6.19. This translates in an increment of the mean lift coefficient by the
1.6% and of the mean drag coefficient by 7% with the beneficial effect of
the oscillations being reduced more than 3 times as shown in Fig. 6.20.
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Figure 6.19: Mean displacement of the controlled membrane.
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Figure 6.20: Force coefficients of the controlled membrane.

This shows the real potential of controlling a membrane wing with
electroactive materials. Without the need of moving mechanisms the stiff-
ness and therefore the camber of the membrane can be modified on de-
mand to obtain the desired aerodynamic performance.

6.2.2 Proportional Integral Control at α = 20◦

The same type of controllers are now applied to a more complex case in
order to understand whether it is possible to stabilize a membrane at a
higher angle of attack oscillating with additional structural modes. The
reference case is a membrane flying at α = 20◦ and with a fixed voltage
of 600 V across it. With a voltage smaller than the previous case (900 V),
the prestretched membrane relaxes less and therefore the maximum dis-
placement of the membrane is smaller than before. However at α = 20◦

the fluid-structure coupling is more complex and the membrane does not
oscillate in its first structural mode anymore. It is worth remembering that
we are using a global sensor on the membrane, in fact the output volt-
age is technically a measure of the average stress across the whole mem-
brane. At the same time the Maxwell stresses induced by the actuator are
constant across the whole membrane as the electrodes are spread on the
whole membrane’s surface. Therefore these simulations are a good test
case to evaluate if a global sensor and global actuator are able to control
also a highly unstable membrane.
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Figure 6.21: Proportional Control at α = 20◦.

The displacement history for the proportional control with different
values of the gain, µp are shown in Fig. 6.21 and the input/output signal
for µ = ±0.5 in Fig. 6.22. Unfortunately, no matter the sign or the absolute
value of the proportional gain, µp used for the proportional controller, the
membrane does not reduce its oscillations amplitude.
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Figure 6.22: Input/Output signal at α = 20◦ with proportional control.
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The same behaviour is observed also when a proportional integral con-
trol is applied (Fig. 6.23). In this set of simulations also a local sensor (LS)
has been considered (center graph). In practice rather than using the av-
erage of the stresses to calculate the output voltage, only the stress value
at the mid-chord location has been used. This would be a simplification
of the condition where a tiny sensor’s electrode is applied at the center of
the membrane. Unfortunately also in this case the membrane cannot be
controlled.

However, if we look at the signal history in Fig. 6.24 we notice that the
proportional integral control is actually working in reducing oscillations
of the output voltage as its value is always around the target value. This
suggests that in these conditions the global output voltage is not represen-
tative of the membrane’s displacement which is ultimately what has to be
controlled.

In fact, looking at the stress distribution along the chord at two instants
where the membrane experiences a high and low displacement (Fig. 6.25)
we notice that they have a similar average value (≈ 104 Pa) but completely
different displacement as we have additional structural modes. Instead,
for the case at α = 12◦ where only the first structural mode is present the
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Figure 6.23: Proportional integral control at α = 20◦.
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Figure 6.24: Input/Output history at α = 20◦ with proportional integral control.

average value of the stress was more representative of the membrane’s
displacement (Fig. 6.26).

In order to have an effective control of a membrane which experiences
many structural modes we should use multiple sensors as well as multi-
ple actuators, each of them taking control of the portion of the membrane
where the curvature has the same sign. Moreover, the interaction between
different inputs and outputs voltages would make the control of the mem-
brane even more complex. This kind of study would goes far beyond the
purpose of this thesis but leaves a wide field of future work on controlling
an electroactive membrane wing.
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Figure 6.25: Chordwise stress distribution at α = 20◦.

153



6.3. SUMMARY

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

0 0.2 0.4 0.6 0.8 1
40
60
80
100
120
140
160
180

z/
c

x/c

E
xx [Pa]

displacement
chordwise Stress

t∗ = 18.1

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

0 0.2 0.4 0.6 0.8 1
40
60
80
100
120
140
160
180

z/
c

x/c

E
xx [Pa]

displacement
chordwise Stress

t∗ = 18.8

Figure 6.26: Chordwise stress distribution at α = 12◦.

6.3 Summary

The simulations in this Chapter have investigated the effect of a dynamic
change of the stiffness of the membrane due to a time-varying voltage.
This has been used in Section 6.1 to evaluate whether the aerodynamic
characteristics could be further improved. It has been found that with an
open loop control (i.e. feeding the membrane with a sinusoidal voltage)
the mean lift is increased with a forcing frequency slightly smaller than
the resonance frequency. However, for a large forcing amplitude the fre-
quency lock-in phenomenon occurs and at the resonance frequency the
aerodynamic performances worsen abruptly.

Feeding a varying voltage to reduce the oscillations amplitude of the
membrane’s displacement at high angles of attack has been also inves-
tigated. The first experiment in Section 6.1.1 demonstrated that feeding
the membrane at its natural frequency but with opposite phase was not
enough to cancel out the oscillations, as after the initial transient the mem-
brane was forced to shift phase and kept oscillating at the same frequency.
Therefore in Section 6.2 a closed loop control has been considered exploit-
ing the electromechanical characteristics of dielectric elastomers and using
the membrane itself as a sensor. In fact the stress due to the fluid-structure
coupling can be translated into a voltage reading and used as a control
variable for a proportional integral controller. A sensor’s electrode spread
across the whole surface of the membrane gives a voltage reading propor-
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tional to the average state of stress of the membrane and it has been found
to be very effective at moderate angles of attack when the membrane os-
cillates in its first mode. In fact, with a proportional integral control it is
possible to reduce the amplitude of oscillations by more than 50%. On
the contrary, at higher angles of attack when the membrane oscillates with
additional structural modes, a global sensor cannot give representative
information of the membrane’s displacement and a proportional integral
control is not able to reduce the membrane’s oscillations. This suggests
that more sensors and a more complex control law needs to be considered.
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Chapter 7

Conclusions

Fluid-structure interaction simulations of a 2D electroactive membrane
in a laminar and incompressible flow have been conducted in the Open-
FOAM framework. The existing solver icoFsiElasticNonLinULSol-
idFoam has been used to simulate the same cases as in the reference by
Gordnier [51] and the results obtained (Section 4.2) are in good agreement
with the reference, suggesting that OpenFOAM is a suitable CFD tool to
predict the passive fluid-structure coupling of membranes. This prelim-
inary study has been the base to develop a hyperelastic Neo-Hookean
structural solver to take into account the large strains achieved by elec-
troactive polymers. In this thesis an electroactive membrane has been
modelled with a compressible Neo-Hookean constitutive law and its com-
pliance has been modified by means of electrostriction. The Neo-Hookean
structural solver has been validated (Section 4.3) simulating the experi-
ments of Tagarielli et al. [124]. The validation also allowed to find the
range of voltages which have been used to modify the stiffness in the FSI
simulations of the hyperelastic membrane (Section 4.4).

Electrostriction is generally applied to prestretched membranes. The
prestretch is requested because it increases the break-out strength and de-
creases the membrane thickness so a smaller value of voltage can be ap-
plied. Therefore a prestretched membrane has been simulated first, and
a static voltage has been applied afterwards. Results show that for a pre-
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stretched membrane the mean camber is reduced compared with a non
prestretched one because of the stiffness produced by prestretch. In con-
trast, since the main effect of the Maxwell stresses is to produce an in-plane
relaxation, when a prestretched membrane is affected by electrostriction
it can achieve a higher camber. The aerodynamic characteristics of ac-
tivated and non-activated membranes as well as partially activated ones
have been deeply analyzed showing that the lift increases as the camber in-
creases and the aerodynamic efficiency increases significantly as the point
of maximum displacement shifts toward the front. Moreover the results
reported in this work show an aerodynamic improvement at low angles of
attack for membranes whose back section has been activated with a fixed
voltage. This improvement is due to the excitation of the second structural
mode which is coupled with a higher vortex shedding frequency. The vor-
tices released at the leading edge travel downstream increasing the suction
on the top of the membrane and therefore increasing the overall lift.

Further simulations have been performed with a sinusoidal voltage
driven at different frequencies across the membrane (Section 6.1). Results
show that the mean lift and lift-to-drag ratio are enhanced when the forc-
ing frequency approaches the natural frequency of the system but drop
sharply as soon as the resonance is reached. These results are qualitatively
consistent with experiments by Curet et al. [31] but quantitative discrep-
ancies are observed and might be explained by the choice of different flow
and material characteristics between the experiments and the numerical
simulations.

Finally, the last set of cases analysed represents to the author’s knowl-
edge, the first documented simulations of the active control of a membrane
wing in order to achieve optimized flight performances (Section 6.2). In
fact, an offset voltage can be applied to the membrane to modify the mean
camber and therefore to achieve a mean target lift coefficient. Varying the
mean camber has the same effect as using a flap, but with the advantage of
not having any moving mechanism. Moreover as the camber increases it
creates more lift at smaller angles of attack where the interaction between
the fluid and the structure is not as strong as at high incidences. Around
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this offset value the voltage is controlled in time in order to keep the target
lift coefficient as constant as possible in response either to a gust or to the
intrinsic structural dynamics of the membrane. For this purpose the elec-
tromechanical characteristics of the electroactive polymers are exploited
in order to use the membrane itself as a sensor. In fact, the interaction
between the electric field across the membrane and its mechanical state of
stress is represented by the Maxwell stress tensor. In this study the elec-
trodes are spread across the whole surface of the membrane therefore a
voltage reading can be taken on a first layer of compliant electrodes as
measure of the mean stress across the membrane. This signal can be used
to design a control law and feed the input voltage on a second compliant
layer to actuate the membrane.

Results show that with this configuration, a proportional integral con-
trol is able to reduce the membrane’s oscillations at medium angles of at-
tack as long as the membrane oscillates in its first structural mode, de-
livering a more stable flight and smoother response to a gust. However
increasing the angle of attack the fluid-structure interaction becomes more
complex and only one actuator applied to the whole membrane is not ade-
quate anymore to damp oscillations. In fact the membrane oscillates with
additional structural modes which are not captured when the output sig-
nal is function only of the average stress across the membrane. In order to
address this issue multiple sensors and actuators as well as a more com-
plex control law need to be considered.

7.1 Original contributions

The numerical tools developed during this thesis not only have allowed
to have an insight in the complex physiscs of the fluid-structure interac-
tion of membrane wings, but more importantly showed the great potential
that an actuated membrane has to control its flight performances. In sum-
mary, the work done in this thesis resulted in the original contributions
here highlighted:
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1. The development of a strongly coupled FSI solver, pimpleFsiHy-
perElasticULSolidFoam, in the opensource framework Open-
FOAM. It extends the capabilities of the existing icoFSIElastic-

NonLinULSolidFoam with the new following features:

• it uses the PIMPLE algorithm in order to predict a more accurate
and stable solution for time steps larger than unity;

• it allows to choose an arbitrary size of the moving mesh domain
through the definition of a subsetMotion mesh. This feature
drastically reduces the computational time if the moving mesh
is smaller than the whole fluid domain;

• it allows to nondimensionalise the FSI residual by an arbitrary
length size. In particular, in this work the FSI residual was ex-
pressed as fraction of the membrane thickness.

• it allows to choose either a Saint Venant-Kirchhoff or a Neo-
Hookean constitutive law for the solid;

2. The derivation of a compressible Neo-Hookean constitutive law for
hyperelastic materials in the Updated Lagrangian formulation. Mo-
reover, the equation of the Maxwell stress tensor has been included
in the Neo-Hookean solver in order to calculate the stress induced
by electrostriction. Given an electric potential field as boundary con-
dition for the solid, the Maxwell stress tensor is calculated starting
from the electrostatics equations and added to the mechanical stress
tensor.

3. The pimpleFsiHyperElasticULSolidFoam solver along with ti-
me-varying boundary conditions have allowed to design a control
law for the activation of the membrane. With an open loop control
the electric field across the membrane was forced to oscillate at differ-
ent frequencies showing that the mean lift was enhanced for forcing
frequencies close to the resonance. Also, the open loop control sim-
ulations have allowed for the first time to observe the phenomenon
of the frequency lock-in for an electroactive membrane wing.
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4. The closed loop control simulations have indicated a practical way to
exploit the electromechanical characteristics of a dielectric elastomer
and use the membrane itself as a sensor. The real time reading of
the varying electric field across the membrane due to the mechanical
response to the fluid-structure coupling gives an indirect measure of
the membrane’s displacement. This input can be used in realistic ap-
plications (experimental setup or operative flight conditions) to feed
a closed loop controller. Moreover, simulations at a moderate angle
of attack have showed the effectiveness of a proportional integral
control in reducing significantly the amplitude of oscillations of the
membrane.

7.2 Future work

The purpose of this thesis was to develop a multiphysiscs simulation frame-
work in order to help the design of membrane wings for micro air vehicle
applications. On the one hand the results achieved in this dissertation
showed that an electroactive membrane wing is a promising device for
future micro air vehicle applications because of its aerodynamic perfor-
mance and control authority. On the other hand, more work is needed
in order for an electroactive membrane wings to achieve the same flight
performance that bats and insects have gained in millions of years of evo-
lutions. Therefore, to conclude, the additional features to be considered to
further help the understanding and the design of a successful membrane
wing in the years to come are here proposed:

3D simulations. A complete design of a membrane wing would include
addressing the issues of 3D flow effects. Therefore 3D simulations
need to be performed in order to understand the influence of the
aspect ratio and wing shape on the overall flight performances.

Turbulence modeling The flow at larger Reynolds numbers needs also to
be considered in order to validate the results from the FSI simula-
tions against experimental data. In fact, all the experiments about
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membrane wings are performed in a range of Reynolds numbers
where turbulence effects cannot be neglected. Phenomena like tran-
sition from laminar to turbulent boundary layer can lead to a signifi-
cant improvement of the aerodynamic characteristics of a membrane
[24] and need to be accurately predicted.

Leading and trailing edge effects. The vortices shed from the leading ed-
ge play a significant role in the overall flight performance of a mem-
brane wing as it has been shown in this thesis. Not only the move-
ment of the membrane is responsible of how these vortices are shed
but also the shape of the leading edge struts [4]. Therefore more
simulations with different shapes of the leading and trailing edge
might help to find the optimal one. Moreover, in this work the struts
where fixed, whereas for a more realistic simulation the contribu-
tion of their rigid body rotation to the vortex shedding should be
accounted for.

More sophisticated constitutive laws. For validation purposes the struc-
tural parameters of the Neo-Hookean membrane used in this the-
sis have been calculated in order to match the nondimensional ones
used by Gordnier (see Section 4.4). Future simulations might be
performed with different solid parameters in order to match those
of new hyperelastic materials. Moreover, in this thesis the defor-
mation hysteresis due to viscoelasticity effects has been neglected.
This property can significantly change the behaviour of the fluid-
structure coupling and its effects should be considered using a more
sophisticated constitutive law.

Different control laws. The simulations performed in Section 6.2.2 high-
lighted that at high angles of attack when the membrane oscillates
with many structural modes it is not possible to reduce its oscilla-
tions using only one global sensor and one global actuator. There-
fore for high unsteadiness conditions a more effective control strat-
egy should be considered. The input from multiple sensors should
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be used in order to have a meaningful information about the instan-
taneous shape of the membrane. At the same time multiple actuators
should be coordinated by a complex control law in order to locally
modify the membrane’s stiffness.
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Appendix A

Derivation of incremental form of
2nd Piola-Kirchhoff for a
Neo-Hookean material

The incremental form of the 2nd Piola-Kirchhoff for a Neo-Hookean ma-
terial has been derived here by the author in order to use an Updated
Lagrangian formulation in the OpenFOAM structural solver.

The 2nd Piola-Kirchhoff stress tensors for a compressible Neo-Hookean
material reads

S =
µ

2
J−2/3

(
I − 1

3
tr (C)C−1

)
+

κ

2
(J − 1) JC−1 (1)

where J = det (F) and C = FT · F.

In order to calculate its incremental form

δS = δ

(
µ

2
J−2/3

(
I − 1

3
tr (C)C−1

)
+

κ

2
(J − 1) JC−1

)
it is useful to first calculate separetely the derivative of the single terms as
derivatives of the determinant, product and inverse of a tensor. Also it is
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worth reminding that in the Updated Lagrangian formulation

F = I and δF = ∇δu.

derivative of the determinant

∂
(

J
)
= ∂

(
det (F)

)
= det (F) tr

(
F−1 · δF

)

derivative of the product

∂
(
(J − 1) J

)
= ∂

((
det (F)− 1

)
det (F)

)

∂
((

det (F)− 1
)
det (F)

)
= ∂

(
det (F)− 1

)
· det (F)

+
(
det (F)− 1

)
· ∂
(

det (F)
)

= det (F) tr
(

F−1 · δF
)

det (F)

+ (det (F)− 1)det (F) tr
(

F−1 · δF
)

= (2det (F)− 1)det (F) tr
(

F−1 · δF
)

= tr (∇δu)

derivative of the inverse

∂
(

F−1
)
= −F−1 · δF · F−1

∂
((

det (F)
)−2/3

)
= −2

3
det (F)−5/3 ∂

(
det (F)

)
= −2

3
det (F)−5/3 det (F) tr

(
F−1 · δF

)
= −2

3
tr (δF) = −2

3
tr (∇δu)
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Substituting the above relations into the differential of the 2nd
Piola-Kirchhoff stress tensor

δS = δ

(
µ

2
J−2/3

(
I − 1

3
tr (C)C−1

)
+

κ

2
(J − 1) JC−1

)

=
µ

2

[(
−2

3
tr (∇δu)

)(
I − 1

3
tr (C)C−1

)
+ J−2/3

(
−1

3
tr (δC)C−1 +

1
3

tr (C)C−1 · δC · C−1
) ]

+
κ

2

[
tr (∇δu) · C−1 − (J − 1) JC−1 · δC · C−1

]

=
µ

2

[(
−2

3
tr (∇δu)

)(
I − 1

3
I
)
+

(
−1

3
tr (δC) I +

1
3

δC
)]

+
κ

2
tr (∇δu) I

=
µ

2

[
−4

9
tr (∇δu) I − 1

3
tr
(
∇δu + (∇δu)T + (∇δu)T · ∇δu

)
I

+
1
3

(
∇δu + (∇δu)T + (∇δu)T · ∇δu

) ]
+

κ

2
tr (∇δu) I

=
µ

2

[
−10

9
tr (∇δu) I − 1

3
tr
(
(∇δu)T · ∇δu

)
I

+
1
3

(
∇δu + (∇δu)T + (∇δu)T · ∇δu

)]
+

κ

2
tr (∇δu) I

=
µ

6

(
∇δu + (∇δu)T + (∇δu)T · ∇δu

)
+

[(
κ

2
− 10µ

18

)
tr (∇δu)− µ

6
tr
(
(∇δu)T · ∇δu

)]
I
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And finally

δS =
µ

6

(
∇δu + (∇δu)T + (∇δu)T · ∇δu

)
+

[(
κ

2
− 10µ

18

)
tr (∇δu)− µ

6
tr
(
(∇δu)T · ∇δu

)]
I

(2)

A.1 Neo-Hookean Updated Lagrangian solver

The linear momentum conservation equation, Eqn. 2.8

ˆ
Vu

ρu
∂δv
∂t

dVu =

˛
Su

nu ·
(

δS + S · δFT + δS · δFT
)

dSu,

is solved iteratively in OpenFOAM applying Gauss’ theorem

ρ
∂2δu
∂t2 = ∇ ·

(
δS + S · δFT + δS · δFT

)
,

where S is the total 2nd Piola-Kirchhoff stress tensor at the beginning of
the time step given by Eqn. 1, δS is the incremental 2nd Piola-Kirchhoff
stress given by Eqn. 2 and δFT = ∇δu.

int iCorr = 0;

do

{ //solves for incremental displacement DU using Newton second

law

fvVectorMatrix DUEqn =

(

rho*fvm::d2dt2(DU) ==

fvm::laplacian(mu/6.0 + kappa, DU)

+ fvc::div(

- kappa*gradDU //this helps convergence as in

Tukovic2007 [103]

+ (mu/6.0) * (gradDU.T())

+ I*((kappa/2.0) - 10.0*mu/18.0) * tr(gradDU)

+ (mu/6.0) * (gradDU & gradDU.T())

- I*(mu/6.0) * tr(gradDU & gradDU.T())

+ ((sigma + DSigma) & gradDU),

)

);
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solverPerf = DUEqn.solve();

DU.relax();

if(iCorr == 0)

{

initialResidual = solverPerf.initialResidual();

}

//update the value of gradDU

gradDU = fvc::grad(DU);

//calculate DSigma using the constitutive equation

DEpsilon = symm(gradDU) + 0.5*symm(gradDU & gradDU.T());

DC = 2*DEpsilon;

DSigma = (mu/6.0)*DC

+ I*((kappa/2.0) - 10.0*mu/18.0) * tr(gradDU)

- I*((mu/6.0) * tr(gradDU & gradDU.T()));

# include "calculateRelativeResidual.H"

}

while

(

solverPerf.initialResidual() > convergenceTolerance

&& relativeResidual > convergenceTolerance

&& ++iCorr < nCorr

);

# include "moveMesh.H" //update the mesh to the new

calculated position

//update the total quantities

volTensorField F = I + gradDU;

U += DU;

epsilon += DEpsilon;

sigma += DSigma;

J = det(F);

// and rotate the stress and strain tensors to the new

configuration

rho = rho/J;

epsilon = symm(Finv & epsilon & Finv.T());

sigma = 1/J * symm(F.T() & sigma & F);
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Appendix B

PIMPLE algorithm for the fluid
solver

//solveFluid.H

Info<< "Solving Fluid \n" << endl;

if (mesh.moving() && checkMeshCourantNo)

{

Info<< "\n Correct mesh Courant Number \n" << endl;

# include "meshCourantNo.H"

}

// Mesh motion update

if (correctPhi)

{

Info<< "Correct phi \n" << endl;

# include "correctPhi.H"

}

# include "CourantNo.H"

// Make the fluxes relative to the mesh motion

fvc::makeRelative(phi, U); //from pimpleDyMFoam

// --- PIMPLE loop

label oCorr = 0;
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Info<< "\nOuter Corrections (PIMPLE loop): " <<

nOuterCorr <<" -----****" <<endl;

do

{

if (nOuterCorr != 1)

{

p.storePrevIter();

}

# include "UEqn.H"

// --- PISO loop

for (int corr = 0; corr < nCorr; corr++)

{

Info<< "\n pisoCorrection: " << corr << endl;

rAU = 1.0/UEqn.A();

U = rAU*UEqn.H();

phi = (fvc::interpolate(U) & mesh.Sf());

adjustPhi(phi, U, p);

for (int nonOrth=0; nonOrth<=nNonOrthCorr;

nonOrth++)

{

Info<< "\n nonOrthogonal correction: " << nonOrth

<< endl;

fvScalarMatrix pEqn

(

fvm::laplacian(rAU, p) == fvc::div(phi)

);

pEqn.setReference(pRefCell, pRefValue);

if

(
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// oCorr == nOuterCorr - 1

corr == nCorr - 1

&& nonOrth == nNonOrthCorr

)

{

pEqn.solve

(

mesh.solutionDict().solver(p.name()

+ "Final")

);

}

else

{

pEqn.solve(mesh.solutionDict().solver(p.

name()));

}

if (nonOrth == nNonOrthCorr)

{

phi -= pEqn.flux();

}

}

# include "continuityErrs.H"

// Explicitly relax pressure for momentum

corrector

if (oCorr != nOuterCorr - 1)

{

p.relax();

}

// Make the fluxes relative to the mesh motion

fvc::makeRelative(phi, U);

# include "movingMeshContinuityErrs.H"

U -= rAU*fvc::grad(p);

U.correctBoundaryConditions();
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}

turbulence->correct();

} while (++oCorr < nOuterCorr);
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Appendix C

Subset mesh motion

Even though explaining the file structure of an OpenFOAM simulation
goes beyond the purpose of this thesis, a brief overview is given here in
order to show the original work done by the author. For a more complete
explanation the reader should refer to the OpenFOAM website.

The file structure of a FSI case solved with icoFSIelasticNonLinUL-
SolidFoam looks like the following

|----0

| |----p

| |----U

| |----motionU

| |----solid

| |----DU

|----system

| |----controlDict

| |----fvSchemes

| |----fvSolution

| |----tetFemSolution

| |----solid

| |-----fvSchemes

| |-----fvSolution

|----constant

|----polyMesh
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|----RASProperties

|----transportProperties

|----dynamicMeshDict

|----solid

|----polyMesh

|----physicalProperties

|----rheologyProperties

The 0 folder holds information about the initial conditions for the field
variables to be solved. The system folder contains all the information
about the discretization schemes (fvSchemes), linear solvers (fvSoluti-
on) and process (controlDict). The constant folder contains the mesh
(polyMesh) and the physical properties. Each of this folders contains the
solid subfolder where the settings for the solid solver are located.

When the simulation starts the mesh objects for the fluid and solid are
created at runtime and the relative field variables are stored in an array
having the same size of their respective cell count. The motionU field is
the array where the displacement for each cell is stored and it has the size
of the whole fluid mesh. Since the displacement of the mesh points far
away from the membrane is negligible it is more convenient to solve the
Laplace smoothing equation only in a small mesh subset in order to save
memory and computational time.

The class subsetMotionSolverFvMesh is present in the OpenFOAM-
extend version, however in order to use it some modifications to the file
structure and the source code of icoFSIelasticNonLinULSolidFoam
need to be done. The new file structure is modified as follow

|----0

| |----p

| |----U

| |----motionSubset

| | |----motionU

| |----solid

| |----DU

|----system

| |----controlDict
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| |----fvSchemes

| |----fvSolution

| |----motionSubset

| | |----tetFemSolution

| |----solid

| |-----fvSchemes

| |-----fvSolution

|----constant

|----polyMesh

|----RASProperties

|----transportProperties

|----dynamicMeshDict

|----motionSubset

| |----polyMesh

| |----dynamicMeshDict

|----solid

|----polyMesh

|----physicalProperties

|----rheologyProperties

The subfolder motionSubset contains the coordinates of the points
to be moved around the membrane along with the relative dictionary and
linear solver settings. However this folder is not seen by the fluid solver
and in order to access its information a motionMesh object needs to be
created at runtime. This is done adding the following line in the main
function of the FSI solver

const fvMesh& motionMesh =

runTime.objectRegistry::

lookupObject<fvMesh>("motionSubset");

In addition, the motionU field needs to be initialised as belonging to
the new motionMesh object registry

tetPointVectorField& motionU =

const_cast<tetPointVectorField&>

(

motionMesh.objectRegistry::

177



// mesh.objectRegistry:: // not in the fluid mesh

registry anymore

lookupObject<tetPointVectorField> ("motionU")

);

Note that there are two dictionaries dynamicMeshDict. The one in
constant/motionSubset contains the actual settings about the Laplace
solver, whereas the one in the constant tells OpenFOAM that a subset-
MotionSolverFvMesh will be used and what is the addressing between
points in the fluid mesh and subset mesh so the position of the points in
the fluid mesh can be updated accordingly.
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Appendix D

Structural code: calculate
prestretch and Maxwell stress at
the beginning of the FSI
simulation

//poisson ratio

scalar nuPoisson = average((3.0*kappa - 2.0*mu)/(6.0*kappa +

2.0*mu)).value(); //calculate the average because kappa and

mu are volScalarField

//read from dictionary the type of prestretch and the prestretch

value

word stretchType (rheologyProperties.lookup("prestretch")); //

uniaxial or equibiaxial

scalar lambda_pre(readScalar(rheologyProperties.lookup("

prestretchValue")));

//assign prestretch values to the prestretch tensor

tensor prestretch = I;

if(stretchType == "uniaxial")

{

prestretch.xx() = lambda_pre;

prestretch.yy() = Foam::pow(lambda_pre,-nuPoisson);
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prestretch.zz() = Foam::pow(lambda_pre,-nuPoisson);

}

else if(stretchType == "equibiaxial")

{

prestretch.xx() = lambda_pre;

prestretch.yy() = lambda_pre;

prestretch.zz() = Foam::pow(lambda_pre,-(1.0/nuPoisson));

}

//assign the prestretch value to the deformation tensor field

volTensorField F

(

IOobject

(

"F",

runTime.timeName(),

mesh,

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

mesh,

prestretch //I + fvc::grad(DU);

);

//volume ratio

volScalarField J = det(F);

//Green-Lagrangian strain tensor

epsilon = symm(0.5*((F.T() & F) - I));

//Right Cauchy-Green strain tensor

volSymmTensorField C = 2.0*epsilon + I;

if(hyperElasticModel == "Neo-Hookean") //compressible Neo-

Hookean model

{

//calculate the Cauchy stress tensor as we already know the

final configuration

sigma = ((mu/2.0)/pow(J,(-2.0/3.0)))
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*(I - (tr(C)/3.0)*inv(C))

+ (kappa/2.0)*(J-1)*J*inv(C);

}

else if(hyperElasticModel == "SaintVenant-Kirchhoff")

{

sigma = 2*mu*epsilon + I*(lambda*tr(epsilon));

}

////**** ELECTROSTATICS ****\\\\

//reading the phi boundary condition

volScalarField phi

(

IOobject

(

"phi",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

//Gauss’ Law

solve

(

fvm::laplacian(phi) + rhoE/epsilon0

);

//Electric field

E = -fvc::grad(phi);

//Maxwell stress tensor

sigmaE = epsilon0*symm(E * E - 0.5*(E & E) * I); //this is

cauchy stress

//Sum up mechanical and Maxwell stress tensor

sigma += sigmaE;

181



182



Bibliography

[1] R. Albertani, B. Stanford, and P. Hubner, J.and Ifju. Aerodynamic
coefficients and deformation measurements on flexible micro air ve-
hicle wings. Experimental Mechanics, 47:625–635, 2007.

[2] I. Anderson, T. Hale, T. Gisby, T. Inamura, T. McKay, B. O’Brien,
S. Walbran, and E. Calius. A thin membrane artificial muscle rotary
motor. Applied Physics, 98:75–83, 2010.

[3] J. D. Anderson Jr. Fundamentals of Aerodynamics. McGraw-Hill Inc.,
1991.

[4] S. Arbos, Z. Pang, B. Ganapathisubramani, and R. Palacios. Leading
and trailing edge effects on the aeromechanics of membrane aero-
foils. In Preprint submitted to Journal of Fluids and Structures, February
2012.

[5] E.M. Arruda and M.C. Boyce. A three-dimensional constitutive
model for the large stretch behavior of rubber elastic materials. J.
Mech. Phys. Solids, 41:389–412, 1993.

[6] M. Astorino, F. Chouly, and M.A. and Fernandez. Robin based
semi-implicit coupling in fluid-structure interaction: stability analy-
sis and numerics. SIAM J. Sci. Comput., 31:4041–4065, 2009.

[7] M.M. Attard and G.W. Hunt. Hyperelastic constitutive modeling
under finite strain. Int. J. Solid Struct., 41:5327–5330, 2004.

[8] B. Augier, P. Bot, F. Hauville, and D. Mathieu. Dynamic behaviour
of a flexible yacht sail plan. Ocean Engineering, 66:32–43, 2013.

183



[9] I. Babuska and M. Suri. Locking effects in the finite element approx-
imation of elasticity problems. Numer. Math, 62:439–463, 1992.

[10] H. Baek and G. E. Karniadakis. A convergence study of a new parti-
tioned fluid-structure interaction algorithm based on fictitious mass
and damping. Journal of Computational Physics, 231:629–652, 2012.

[11] S. Banerjee. 3-dimensional Effects on Flag Flapping Dynamics. PhD
thesis, MIT, Department of Mechanical Engineering, 2013.

[12] P.W. Bearman. Vortex shedding from oscillating bluff bodies. Annual
Review of Fluid Mechanics, 16:195–222., 1984.

[13] M. Beck, R. Fiolka, and A. Stemmer. Variable phase retarder made
of a dielectric elastomer actuator. Optic Letters, 34:803–805, 2009.

[14] I. Bijelonja, I. Demirdzic, and S. Muzaferija. A finite volume method
for large strain analysis of incompressible hyperelastic materials. In-
ternational Journal for Numerical Methods in Engineering, 64:1594–1609,
2005.

[15] K.L. Bishop. The relationship between 3-d kinematics and gliding
performance in the southern flying squirrel, glaucomys volans. J
Exp Biol, 4:689–701, 2006.

[16] R. Bourguet, G. E. Karniadakis, and M.S. Triantafyllou. Lock-in of
the vortex-induced vibrations of a long tensioned beam in shear
flow. Journal of Fluid and Structures, 27:838–847, 2011.

[17] T. Bower. The PID Controller. LabVIEW Robotics Programming
Guide, 2015.

[18] P. Brochu and Q. Pei. Advances in dielectric elastomers for actuators
and artificial muscles. Macromol. Rapid Commun., 31:10–36, 2010.

[19] S. L. Brunton and C. W. Rowley. Modeling the unsteady aerody-
namic forces on small-scale wings. 47th AIAA Aerospace Sciences
Meeting, 2009.

184



[20] E. Burman and M.A. Fernandez. Stabilization of explicit coupling in
fluid-structure interaction involving fluid incompressibility. Comput
Methods Appl Mech Eng, 198:766–784, 2009.

[21] R. L. Campbell. Fluid-structure interaction and inverse design simula-
tions for flexible turbomachinery. PhD thesis, The Pennsylvania State
University, 2010.

[22] P. Cardiff. Development of the Finite Volume Method for Hip Joint Stress
Analysis. PhD thesis, University College Dublin, 2012.

[23] P. Cardiff, A. Karac, and A. Ivankovic. A large strain finite volume
method for orthotropic bodies with general material orientations.
Comput Methods Appl Mech Eng, 268:318–335, 2014.

[24] B.H. Carmichael. Low reynolds number airfoil survey. Technical
report, NASA CR-165803, 1982.

[25] F. Carpi, S. Bauer, and D. De Rossi. Stretching dielectric elastomer
performance. Science, 330:1759–1761, 2010.

[26] P. Causin, J.F. Gerbeau, and F. Nobile. Added-mass effect in the de-
sign of partitioned algorithms for fluid-structure problems. Comput.
Methods Appl. Mech. Eng., 194:4506–4527, 2005.

[27] G. Cetraro and R. Sandberg. High fidelity simulations of elec-
troactive membrane wings. In AIAA SciTech, 2015. doi: 10.2514/
6.2015-1301. URL http://arc.aiaa.org/doi/abs/10.2514/

6.2015-1301.

[28] G. Cetraro and R. Sandberg. Fluid-structure interaction simulations
of a membrane wing with variable compliance. In AIAA SciTech,
2016. doi: 10.2514/6.2016-1351. URL http://arc.aiaa.org/

doi/abs/10.2514/6.2016-1351.

[29] J.A. Cheney, N. Konow, K.M. Middleton, K.S. Breuer, T.J. Roberts,
E.L. Giblin, and S.M. Swarts. Membrane muscle function in the com-
pliant wings of bats. Bioinspiration & Biomimetics, 9:025007, 2014.

185

http://arc.aiaa.org/doi/abs/10.2514/6.2015-1301
http://arc.aiaa.org/doi/abs/10.2514/6.2015-1301
http://arc.aiaa.org/doi/abs/10.2514/6.2016-1351
http://arc.aiaa.org/doi/abs/10.2514/6.2016-1351


[30] Hemisphere Publishing Corporation, editor. Numerical heat transfer
and fluid flow. Patankar, S.V., 1981.

[31] Oscar M. Curet, Alex Carrere, Rye Waldman, and Kenneth S. Breuer.
Aerodynamic characterization of a wing membrane with variable
compliance. AIAA Journal, 52:1749–1756, 2014. URL http://dx.

doi.org/10.2514/1.J052688.

[32] J. De Hart, G. Peters, P. Schreurs, and F. Baaijens. A three-
dimensional computational analysis of fluid-structure interaction in
the aortic valve. Journal of Biomechanics, 36:103–112, 2003.

[33] I. Demirdzic and D. Martinovic. Finite volume method for thermo-
elasto-plastic stress analysis. Comput Methods Appl Mech Eng, 109:
331–349, 1993.

[34] I. Demirdzic and M. Peric. Space conservation law in finite volume
calculations of fluid flow. Int. J. Num. Meth. Fluids, 8:1037–1050, 1988.

[35] J. Barbic E. Sifakis. Finite Element Method Simulation of 3D Deformable
Solids. Morgan & Claypool, 2015.

[36] N. Fallah, C. Bailey, M. Cross, and C. A. Taylor. Comparison of
finite element and finite volume methods application in geometri-
cally non-linear stress analysis. Applied Mathematical Modelling, 24:
439–455, 2000.

[37] C. Farhat, P. Geuzaine, and G. Brown. Application of a three-field
nonlinear fluid-structure formulation to the prediction of the aeroe-
lastic parameters of an f-16 fighter. Computers and Fluids, 32:3–29,
2003.

[38] C. Farhat, K.G. van der Zee, and P. Geuzaine. Provably second-order
time-accurate loosely-coupled solution algorithms for transient non-
linear computational aeroelasticity. Comput. Methods Appl. Mech.
Eng, 195:1973–2001, 2006.

186

http://dx.doi.org/10.2514/1.J052688
http://dx.doi.org/10.2514/1.J052688


[39] C. Felippa, K. Park, and C. Farhat. Partitioned analysis of coupled
mechanical systems. Computer Methods in Applied Mechanics and En-
gineering, 190:3247–3270, 2001.

[40] M.A. Fernandez and M. Moubachir. A newton method using exact
jacobians for solving fluid-structure coupling. Comput. Struct, 83:
127–142, 2005.

[41] M.A. Fernandez, J.F. Gerbeau, and C. Grandmont. A projection
semi-implicit scheme for the coupling of an elastic structure with an
incompressible fluid. Int. J. Numer. Methods Eng., 69:794–821, 2007.

[42] P. J. S. A. Ferreira De Sousa and J. J. Allen. Thrust efficiency of har-
monically oscillating flexible flat plates. Journal of Fluid Mechanics,
674:43–66, May 2011. doi: 10.1017/S0022112010006373.

[43] J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics.
Springer-Verlag Berlin, 2002.

[44] C.A. Figueroa, Vignon-Clementel I.E., K.E. Jansen, T. J. R. Hugues,
and C. A. Taylor. A coupled momentum method for modeling blood
flow in three-dimensional deformable arteries. Comput. Methods
Appl. Mech. Eng, 195:5685–5706, 2006.

[45] V.L. Finkenstadt. Natural polysaccharides as electroactive polymers.
Applied Microbiology and Biotechnology, 67:735–745, 2005.

[46] C. Förster, W. A. Wally, and E.s Ramm. Artificial mass instabilities
in sequential staggered coupling of nonlinear structures and incom-
pressible viscous flows. Comput Methods Appl Mech Eng, 196:1278–
1293, 2007. URL http://www.sciencedirect.com/science/

article/pii/S0045782506002544#.

[47] Jacquet-Richardet G. and Rieutord P. A three-dimensional fluid-
structure coupled analysis of rotating flexible assemblies of turbo-
machines. Journal of Sound and Vibration, 209:61–76, 1998.

187

http://www.sciencedirect.com/science/article/pii/S0045782506002544#
http://www.sciencedirect.com/science/article/pii/S0045782506002544#


[48] R. Galvao, E. Israeli, A. Song, X. Tian, K. Bishop, S. Swartz, and
K. Breuer. The aerodynamics of compliant membrane wings mod-
elled on mammalian flight mechanics. Fluid Dynamics, 2866:1–12,
2006.

[49] M.W. Gee, U. Küttler, and W.A. Wall. Truly monolithic algebraic
multigrid for fluidstructure interaction. Int. J. Numer. Methods Eng.,
8:987–1016, 2011.

[50] J. Gerbeau, M. Vidrascu, and P. Frey. Fluid-structure interaction in
blood flows on geometries based on medical imaging. Computers
and Structures, 83:155–165, 2005.

[51] R. E. Gordnier. High fidelity computational simulation of a mem-
brane wing airfoil. Journal of Fluids and Structures, 25(5):897–917,
2009. ISSN 0889-9746. URL http://www.sciencedirect.com/

science/article/pii/S088997460900036X.

[52] I.S. Grant and W.R. Phillips. Electromagnetism (2nd Edition). Manch-
ester Physics, 2008.

[53] C. Greenshields and H. Weller. A unified formulation for continuum
mechanics applied to fluid-structure interaction in flexible tubes. In-
ternational Journal for Numerical Methods in Engineering, 64:1575–1593,
2005.

[54] C.J. Greenshields, H.G. Weller, and A. Ivankovic. A finite volume
formulation for fluid structure interaction. In Problems and Perspec-
tives, Finite Volumes for Complex Applications, vol. II,. Hermes Science,
1999.

[55] G.A. Holzapfel. Nonlinear Solid Mechanics. 2001.

[56] Tobias Holzmann. Mathematics, Numerics, Derivations and Open-
FOAM. Holzmann CFD, 2014.

188

http://www.sciencedirect.com/science/article/pii/S088997460900036X
http://www.sciencedirect.com/science/article/pii/S088997460900036X


[57] J. Hron and S. Turek. A monolithic fem/multigrid solver for ale for-
mulation of fluid-structure interaction with applications in biome-
chanics. Lecture Notes in Computational Science and Engineering, 53:
146–170, 2006.

[58] J. Huang, T. Li, C.C. Foo, J. Zhu, D. Clarke, and Z. Suo. Giant,
voltage-actuated deformation of a dielectric elastomer under dead
load. Appl. Phys. Lett., 100:041911, 2012.

[59] J. Hubner, E. Walhorn, and D. Dinkler. A monolithic approach to
fluid-structure interaction using space-time finite elements. Com-
puter methods in applied mechanics and engineering, 193:2087–2104,
2004.

[60] S.R. Idelsohn and E. Onate. Finite volumes and finite elements: two
"good friends". International Journal for Numerical Methods in Engi-
neering, 37:3323–3341, 1994.

[61] D. Ishihara and S. Yoshimura. A monolithic approach for interac-
tion of incompressible viscous fluid and an elastic body based on
fluid pressure poisson equation. International Journal for Numerical
Methods in Engineering, 64:167–203, 2005.

[62] R.I. Issa. Solution of the implicitly discretized fluid flow equations
by operator-splitting. J. Comp. Physics, 62:40–65, 1986.

[63] H. Jasak and Z. Tukovic. Automatic mesh motion for the unstruc-
tured finite volume method. Transactions of FAMENA, 30:n2, 2007.

[64] H. Jasak and H. G. Weller. Application of the finite vol-
ume method and unstructured meshes to linear elastic-
ity. International Journal for Numerical Methods in Engineer-
ing, 48(2):267–287, 2000. ISSN 1097-0207. URL http:

//dx.doi.org/10.1002/(SICI)1097-0207(20000520)48:

2<267::AID-NME884>3.0.CO;2-Q.

189

http://dx.doi.org/10.1002/(SICI)1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1097-0207(20000520)48:2<267::AID-NME884>3.0.CO;2-Q


[65] Hrvoje Jasak. Error Analysis and Estimation for the Finite Volume
Method with Applications to Fluid Flows. PhD thesis, Imperial College,
1996.

[66] J. W. Jaworski and R. E. Gordnier. High-order simulations of
low reynolds number membrane airfoils under prescribed mo-
tion. Journal of Fluids and Structures, 31(0):49–66, 2012. ISSN
0889-9746. URL http://www.sciencedirect.com/science/

article/pii/S0889974612000801.

[67] R. Kamakoti and W. Shyy. Fluid-structure interaction for aeroelastic
application. Progress in Aerospace Sciences, 40:535–558, 2004.

[68] A. Karac. Drop impact of fluid-filled polyethytlene containers. PhD the-
sis, Imperial College, University of London, 2003.

[69] A. Kelly and M.J. O’Rourke. Fluid, solid and fluid-structure interac-
tion simulations on patient-based abdominal aortic aneurysm mod-
els. Proc. Inst. Mech. Eng. Part H, 226:288–304, 2012.

[70] C. Keplinger, T. Li, R. Baumgartner, Z. Suo, and S. Bauer. Harnessing
snap-through instability in soft dielectrics to achieve giant voltage-
triggered deformation. Soft Matter, 8:285–288, 2012.

[71] A. Khalak and C.H.K. Williamson. Motions, forces and mode transi-
tions in vortex-induced vibrations at low mass-damping. Journal of
Fluid and Structures, 13:813–851, 1999.

[72] Myke King. Process Control: A Practical Approach. 2010.

[73] G. Kofod, R. Kornbluh, R. Pelrine, and P. S. Larsen. Actuation re-
sponse of polyacrylate dielectric elastomer. J. Intell. Mater. Syst.
Struct., 14:787–793, 2003.

[74] S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo.
Mechanisms of large actuation strain in dielectric elastomers. J.
Polym. Sci, Part B: Polym. Phys., 49:504–515, 2011.

190

http://www.sciencedirect.com/science/article/pii/S0889974612000801
http://www.sciencedirect.com/science/article/pii/S0889974612000801


[75] R. Kornbluh, R. Pelrine, J. Joseph, R. Heydt, Q. Pei, and S. Chiba.
High-field electrostriction of elastomeric polymer dielectrics for ac-
tuation. Proc. SPIE, 3669:149–161, 1999.

[76] Y. Lian and W. Shyy. Laminar-turbulent transition of a low reynolds
number rigid or flexible airfoil. AIAA Journal, 45:1501–1513, 2007.

[77] Y. Lian, W. Shyy, D. Viieru, and B. Zhang. Membrane wing mechan-
ics for micro air vehicles. Progress in Aerospace Sciences, 39:425–465,
2003.

[78] Z. Lilek and M Peric. A fourth-order finite volume method with
collocated variable arrangement. Computers and Fluids, 24(3):239–
252, 1995.

[79] M. Lombardi, N. Parolini, A. Quarteroni, and G. Rozza. Numerical
simulation of sailing boats: Dynamics, fsi, and shape optimization.
In Variational Analysis and Aerospace Engineering: Mathematical Chal-
lenges for Aerospace Design. Springer, 2012.

[80] T. Lu, J. Huang, C. Jordi, G. Kovacs, R. Huang, D. Clarke, and Z. Suo.
Dielectric elastomer actuators under equal-biaxial forces, uniaxial
forces, and uniaxial constraint of stiff fibers. Soft Matter, 8:6167, 2012.

[81] Lawrence E. Malvern. Introduction to the Mechanics of a Continuous
Medium. Prentice-Hall, 1969.

[82] K. Maneeratana. Development of the finite volume method for non-linear
structural applications. PhD thesis, Imperial College, University of
London, 2000.

[83] K. Maneeratana and A. Ivankovic. Finite volume method for large
deformation with linear hypoelastic materials. In Finite Volumes for
Complex Applications II. HERMES Science, 1999.

[84] H.G. Matthies and J. Steindorf. Partitioned but strongly coupled
iteration schemes for nonlinear fluid-structure interaction. Comput.
Struct., 80:27–30, 2002.

191



[85] W. J. McCroskey. The phenomenon of dynamic stall. NASA TM
81264, 1981.

[86] C. Michler, S. Hulshoff, E. van Brummelen, and de Borst R. A mono-
lithic approach to fluid-structure interaction. Computer and Fluids,
33:839–848, 2004.

[87] D. Mok, W. Wall, and E. Ramm. Accelerated iterative substructuring
schemes for instationary fluid-structure interaction. In USA) Else-
vier, Cambridge (MA, editor, First MIT Conference on Computational
Fluid and Solid Mechanics, pages 1325–1328, 2001.

[88] M. Mooney. A theory of large elastic deformation. Journal of Applied
Physics, 11(9):582–592, 1940. URL http://scitation.aip.org/

content/aip/journal/jap/11/9/10.1063/1.1712836.

[89] A. M. Mountcastle and S.A. Combes. Wing flexibility enhances load-
lifting capacity in bumblebees. Proc. R. Soc B, 280, 2013.

[90] B.G. Newman. Aerodynamic theory for membranes and sails. Prog
Aerosp Sci, 24:1–27, 1987.

[91] R. W. Odgen. Nonlinear Elastic Deformations. 1984.

[92] R.W. Odgen. Large deformation isotropic elasticity on the correla-
tion of theory and experiment for incompressible rubberlike solids.
Proc. R. Soc. Lond. A Math. Phys. Sci., 326:565–584, 1972.

[93] K. Park, C. Felippa, and J. De Runtz. Stabilization of staggered so-
lution procedures for fluid-structure interaction analysis. AMD, 26:
95–124, 1977.

[94] S.V. Patankar and D.B. Spalding. A calculation procedure for heat,
mass and momentum transfer in three-dimensional parabolic flows.
International Journal of Heat and Mass Transfer, 15:1787–1806, 1972.

192

http://scitation.aip.org/content/aip/journal/jap/11/9/10.1063/1.1712836
http://scitation.aip.org/content/aip/journal/jap/11/9/10.1063/1.1712836


[95] R. Pelrine, R. Kornbluh, Q.B. Pei, and J. Joseph. High-speed electri-
cally actuated elastomers with strain greater than 100%. Science, 287:
836–839, 2000.

[96] R. Pelrine, R. Kornbluh, Q. Pei, B. Stanford, S. Oh, J. Eckerle, R. Full,
M. Rosenthal, and K. Mejer. Dielectric elastomer artificial muscle
actuators: toward biomimetic motion. Proc. SPIE, 126, 2002.

[97] R.W. Penn. Volume changes accompanying the extension of rubber.
Transactions of the Society of Rheology, 14(4):509–517, 1970.

[98] The OpenFOAM Extend Project. http://www.extend-project.de.
2014.

[99] A. Quaini and A. Quarteroni. A semi-implicit approach for fluid-
structure interaction based on an algebraic fractional step method.
M3AS, 17:957–983, 2007.

[100] A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular
fluid dynamics: problems, models and methods. Comput. Visual Sci.
2, 4:163–197, 2000.

[101] Debabrata Ray. Computation of Nonlinear Structures: Extremely Large
Elements for Frames, Plates and Shells. John Wiley & Sons, Ltd., Chich-
ester, 2015.

[102] R.S. Rivlin. Large elastic deformations of isotropic materials. iv. fur-
ther developments of the general theory. Philos. TRans. R. Soc. A,
241:379–397, 1948.

[103] P. Rojratsirikul, Z. Wang, and I. Gursul. Unsteady fluid-structure
interactions of membrane airfoils at low reynolds numbers. Experi-
ments in Fluids, 46:859–872, 2009.

[104] S. Sane. The aerodynamics of insect flight. J. Exp. Biol., 206:4191–
4208, 2003.

193



[105] T. Sawada and T. Hisada. Fluid-structure interaction analysis of
a two-dimensional flag-in-wind problem by the ale finite element
method. JSME International Journal Series A, 49:170–179, 2006.

[106] M. Schafer. Computational Engineering - Introduction to Numerical
Methods. Springer, 2006.

[107] W. E. Schiesser. The Numerical Method of Lines. 1991.

[108] W. Shyy and R. Smith. A study of flexible airfoil aerodynamics with
application to micro aerial vehicles. AIAA, 1933, 1997.

[109] W. Shyy, F. Kelvebring, M. Nilsson, J. Sloan, B. Carroll, and
C. Fuentes. Rigid and flexible low reynolds number airfoils. Journal
of Aircraft, 36, 1999.

[110] W. Shyy, P. Ifju, and D. Viieru. Membrane wing-based micro air
vehicles. Applied Mechanics Reviews, 58:283–301, 2005.

[111] W. Shyy, B. Stanford, P. Ifju, and R. Albertani. Fixed membrane
wings for micro air vehicles: Experimental characterisation, numer-
ical modelling and tailoring. Progress in Aerospace Sciences, 44:258–
294, 2008.

[112] A. K. Slone, K. Pericleous, C. Bailey, M. Cross, and C. Bennett. A fi-
nite volume unstructured mesh approach to dynamic fluid-structure
interaction: an assessment of the challenge of predicting the onset of
flutter. Applied mathematical modelling, 28:211–239, 2004.

[113] A.K. Slone, C. Bailey, and M. Cross. Dynamic solid mechanics us-
ing finite volume methods. Applied Mathematical Modeling, 27:69–87,
2003.

[114] R. Smith and W. Shyy. Computational model of flexible membrane
wings in steady laminar flow. AIAA Journal, 33(10):1769–1777, 1995.

194



[115] R. Smith and W. Shyy. Computation of unsteady laminar flow over a
flexible two-dimensional membrane wing. Physics of Fluids, 9:2175–
2184, 1995.

[116] R. Smith and W. Shyy. Computation of aerodynamic coefficients for
a flexible membrane airfoil in turbulent flow: a comparison with
classical theory. Phys Fluids, 8:3346–3353, 1996.

[117] S. Son and N.C. Goulbourne. Dynamic response of tubular dielectric
elastomer transducers. International Journal of Solids and Structures,
47:2672–2679, 2010.

[118] A. Song and K. Breuer. Dynamics of a compliant membrane as re-
lated to mammalian flight. AIAA Paper, 41:1257–1265, 2004.

[119] A. Song, X. Tian, E. Israeli, R. Galvao, K. Bishop, S. Swartz, and
K. Breuer. Aeromechanics of membrane wings with implications for
animal flight. AIAA Journal, 46:2096–2196, 2008.

[120] K. Stein, R. Benney, V. Kalro, T. Tezduyar, J. Leonard, and M. Accorsi.
Parachute fluid-structure interactions: 3-d computation. Computer
Methods in Applied Mechanics and Engineering, 190:373–386, 2000.

[121] J. Steindorf and H. Matthies. Numerical efficiency of different par-
titioned methods for fluid-structure interaction. Journal of Applied
Mathematics and Mechanics, 2:557–558, 2000.

[122] Z. Suo. Theory of dielectric elastomers. Acta Mecanica Solida Sinica,
23:549–578, 2010.

[123] S.M. Swartz, J. Iriarte-Diaz, D.K. Riskin, A. Song, X. Tian, D. Willis,
and K.S. Breuer. Wing structure and the aerodynamic basis of flight
in bats. Proceedings of the 45th AIAA aerospace sciences meeting and
exhibit, 42, 2007.

[124] V.L. Tagarielli, R. Hildick-Smith, and J.E. Huber. Electro-mechanical
properties and electrostriction response of a rubbery polymer for

195



eap applications. International Journal of Solids and Structures, 49:
3409–3415, 2012.

[125] C. A. Taylor, T. J. R. Hugues, and C. K. Zarins. Finite element mod-
eling of blood flow in arteries. Computer methods in applied mechanics
and engineering, 158:155–196, 1998.

[126] G.A. Taylor, C. Bailey, and M. Cross. Solution of the elastic/visco-
plastic constitutive equations: a finite volume approach. Applied
Mathematical Modeling, 19:746–760, 1995.

[127] T. Tezduyar, S. Sathe, R. Keedy, and K. Stein. Space-time finite el-
ement techniques for computation of fluid-structure interactions.
Comput. Methods Appl. Mech. Eng., 195:2002–2027, 2006.

[128] T. Tezduyar, S. Sathe, T. Cragin, B. Nanna, B.S. Conklin, J. Pause-
wang, and M. Schwaab. Modelling of fluid-structure interactions
with the space-time finite elements: arterial fluid mechanics. Inter-
national Journal for Numerical Methods in Fluids, 54:901–922, 2007.

[129] T. Theodorsen. General theory of aerodynamic instability and the
mechanics of flutter. NACA Report, 496:413–433, 1935.

[130] L. Tregidgo, Z. Wang, and I. Gursul. Frequency lock-in phenomenon
for self-sustained roll oscillations of rectangular wings undergoing
a forced periodic pitching motion. Physiscs of Fluids, 24:117101, 2012.

[131] D. Trimarchi. Analysis of downwind sail structures using non-linear shell
finite elements. PhD thesis, University of Southampton, June 2012.

[132] Z. Tukovic and H. Jasak. Updated lagrangian finite volume solver
for large deformation dynamic response of elastic body. Transactions
of FAMENA, 31 n1, 2007.

[133] S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-
structure interaction between an elastic object and laminar incom-
pressible flow. Lecture Notes in Computational Science and Engineering,
53:371–385, 2006.

196



[134] K.S. Valanis and R.F. Landel. The strain-energy function of a hy-
perelastic material in terms of the extension ratios. J. Appl. Phys., 7:
2997–3002, 1967.

[135] Vance J. Van, Doren. Loop Tuning Fundamentals. Reed Business Infor-
mation, 2003.

[136] H Vangerko and L.R.G Treloar. The inflation and extension of rubber
tube for biaxial strain studies. Journal of Physics D: Applied Physics,
11:1969–1978, 1978.

[137] H. Versteeg and W. Malalasekera. An introduction to computational
fluid dynamics: the finite volume method. Pearson Education Ltd, 2007.

[138] J. Videler and E. Samhuis. Leading-edge vortex lifts swifts. Science,
306:1960–1962, 2004.

[139] J. Vierendeels, L. Lanoye, J. Degroote, and P. Verdonck. Implicit cou-
pling of partitioned fluid-structure interaction with reduced order
models. Comput. Struct., 85:970–976, 2007.

[140] J. Vierendeels, K. Dumont, and P. Verdonck. A partitioned strongly
coupled fluid-structure interaction method to model heart valve dy-
namics. Journal of Computational and Applied Mathematics, 215:602–
609, 2008.

[141] William P. Walker and Mayuresh J. Patil. Unsteady aerodynamics of
deformable thin airfoils. Journal of Aircraft, 51:1673–1680, 2014.

[142] W. A. Wall, C. Forster, M. Neumann, and E. Ramm. Advances in
fluid-structure interaction. In Proceedings of 17th international confer-
ence on the application of computer science and mathematics in architecture
and civil engineering, 2006.

[143] H. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to
computational continuum mechanics using object orientated tech-
niques. Comput. Phys., 12:620–631, 1998.

197



[144] P. Wesseling. Principles of Computational Fluid Dynamics. Springer-
Verlag Berlin, 2001.

[145] M. A. Wheel. Geometrically versatile finite volume formulation for
plane strain elastostatic stress analysis. Journal of Strain Analysis for
Engeneering Design, 31:111–116, 1996.

[146] C.H.K. Williamson and A. Roshko. Vortex formation in the wake
of an oscillating cylinder. Journal of Fluids and Structures, 2:355–381,
1988.

[147] M. Wissler and E. Mazza. Modeling and simulation of dielectric
elastomer actuators. Smart Materials and Structures, 14:1396–1402,
2005.

[148] B. Wolters, M. Rutten, Schurink G., U. Kose, J. De Hart, and F. Van
De Vosse. A patient-specific computational model of fluid-structure
interaction in abdominal aortic aneurysms. Medical Engineering and
Physics, 27:871–883, 2005.

[149] G Xing-long, Z. Qing-bin, and T. Qian-gang. Fluid-structure interac-
tion simulation of parachute in low speed airdrop. Proceedings of the
World Congress on Engineering, 3, 2013.

[150] O.H. Yeoh. Some forms of the strain energy function for rubber.
Rubber Chem. Technol., 66:754–771, 1993.

[151] J. Young and J.C.S. Lai. Vortex lock-in phenomenon in the wake of a
plunging airfoil. AIAA Journal, 45:485–490, 2007.

[152] J.G. Ziegler and N.B. Nichols. Optimum settings for automatic con-
trollers. Transactions of the ASME, 64:759–768, 1942.

[153] O.C. Zienkiewicz and R.L. Taylor. The Finite Element Method. Basic
Formulation and Linear Problems. McGraw-Hill, 1989.

198


