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1 Introduction

Following the discovery of the Higgs boson of the Standard Model (SM), it remains an
intriguing possibility that there are more scalar bosons waiting to be discovered. In-
deed, many extensions beyond the Standard Model include additional scalars, whether
electroweak SU(2)L doublets in multi-Higgs doublet models or SU(2)L singlets typically
found for example in flavour models in order to break some family symmetry. Given this,
it is important to catalogue the minima of potentials including several scalars. In general
this is a technically difficult task, which simplifies somewhat for simple cases where the
potential is controlled by a large discrete symmetry.

In this paper we consider potentials of scalars which transform as triplets under various
non-Abelian discrete family symmetries. The potentials we consider therefore involve of
up to six scalar SU(2)L doublets or singlets. We follow a progressive method that relies on
considering which degrees of freedom become physical as the symmetry of the potential
decreases when adding terms, we find a list of minima (not necessarily exhaustive) for
potentials with one and two scalar triplets of A4, S4, ∆(27), ∆(54), and ∆(3n2) and
∆(6n2) with n > 3. These symmetries [1, 2] are typically used in multi-Higgs doublet
models [3–7] and as family symmetries [8, 9]. The explicit CP properties of all these
potentials were analysed recently with invariant methods [10]. We start with potentials
of one triplet, many of which had been studied in [11,12], and their minima found in [13]
with a geometric method developed in [14, 15]. Minimisation methods are also reviewed
in [16]. We then consider the two triplet cases based on the results of the one triplet cases.
Minima related by symmetries of the potential form sets of related Vacuum Expectation
Values (VEVs) referred to as orbits. When the symmetry of a potential is decreased
by adding terms, this has the effect of splitting larger orbits into several smaller orbits.
In addition, we mostly disregard the magnitude of the VEVs and focus mainly on their
alignments.

The layout of the remainder of the paper is as follows. We start by going through the
potentials with one triplet and list their minima throughout Section 2, with ∆(6n2) and
∆(3n2) with n > 3 on Section 2.1, S4 in 2.2, A4 in 2.3, ∆(54) and ∆(27) in 2.4. We use
these results to then find minima for two triplet potentials in Section 3, with ∆(6n2) and
∆(3n2) with n > 3 respectively in Sections 3.1 and 3.2, S4 and A4 in 3.3 and 3.4, ∆(54)
and ∆(27) in 3.5 and 3.6. We conclude in Section 4.

2 Potentials and VEVs with one triplet

We use cycl. to denote the cyclic permutations, and h.c. to indicate the hermitian con-
jugate. In addition to the discrete symmetries, the potentials of SU(2)L singlets are
invariant under additional U(1) symmetries to eliminate tri-linear terms, making the po-
tentials similar to those for SU(2)L doublets. As we assume the VEVs of SU(2)L doublets
preserve U(1)em the analysis of VEVs for singlets and doublets thus becomes interchange-
able. For presentational simplicity we list the VEV directions in flavour space for SU(2)L
singlets.
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2.1 One triplet of ∆(3n2) or equivalently of ∆(6n2), with n > 3

The simplest potential we consider is that of one triplet of ∆(3n2) with n > 3, which is the
same as for one triplet of ∆(6n2) with (n > 3). This potential wasn’t studied in [12,13], as
the renormalisable potential is invariant under a continuous symmetry (this potential has
additional continuous symmetries, cf. Eq. (2.8)). For SU(2)L singlets ϕi, where i = 1, 2, 3
is a flavour index, the potential is

V∆(3n2)(ϕ) = V∆(6n2)(ϕ) ≡ V0(ϕ) (2.1)

V0(ϕ) = − m2
ϕ

∑

i

ϕiϕ
∗i + r

(

∑

i

ϕiϕ
∗i

)2

+ s
∑

i

(ϕiϕ
∗i)2 . (2.2)

For electroweak SU(2)L × U(1)Y doublets H = (h1α, h2β, h3γ), the respective version is

V∆(3n2)(H) = V∆(6n2)(H) ≡ V0(H) (2.3)

V0(H) = − m2
h

∑

i,α

hiαh
∗iα + s

∑

i,α,β

(hiαh
∗iα)(hiβh

∗iβ)

+
∑

i,j,α,β

[

r1(hiαh
∗iα)(hjβh

∗jβ) + r2(hiαh
∗iβ)(hjβh

∗jα)
]

. (2.4)

where the greek letters denote the SU(2)L indices.
Minima are obtained analytically, and for mϕ 6= 0 the VEVs belong to four classes.

As representatives we take

(0, 0, 0), v1 · (1, 0, 0), v2 · (1, 1, 0), v3 · (1, 1, 1), (2.5)

where

v21 =
m2

ϕ

2r + 2s
, v22 =

m2
ϕ

4r + 2s
, v23 =

m2
ϕ

6r + 2s
. (2.6)

There are regions of parameter space where each of these can be the global minimum.
The potential in Eq. (2.2) can be split into two invariants with parameters mϕ and

r, invariant under all of U(3), and the term with parameter s, invariant under ((U(1) ×
U(1))⋊ S3)×U(1) =: ∆(6∞2)×U(1) (the third U(1) was imposed to keep the potential
even and is not needed for SU(2)L doublets).

V0 = VU(3) + V∆(6∞2)×U(1). (2.7)

The minima of VU(3) all fall into one large orbit, represented e.g. by (1, 0, 0), connected
to other alignments by arbitrary unitary transformations. The effect of the rest of the
potential makes it less symmetric and splits the big orbit into several orbits in which the
direction of the VEV becomes physical (but phases remain unphysical).
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The flavour symmetries of V0 (which relate each of the representative VEVs to the
rest of their respective orbits) are generated by





0 1 0
0 0 1
1 0 0



 ,





0 0 1
0 1 0
1 0 0



 ,





eiα 0 0
0 eiα 0
0 0 eiα



 ,





eiβ 0 0
0 1 0
0 0 e−iβ



 ,





1 0 0
0 eiγ 0
0 0 e−iγ



 , (2.8)

where α, β, γ are arbitrary phases. Additionally, the potential is automatically invariant
under canonical CP transformations, which we denotes as CP0 and is associated with a
unit matrix in flavour space (a 3 × 3 unit matrix in the case of one triplet) [10]. Note
that the alignments in Eq. (2.5) all conserve canonical CP. The orbits of alignments of
this potential are

{





eiη

0
0



 ,





0
eiη

0



 ,





0
0
eiη



}, {





eiη

eiζ

0



 , permut.}, {





eiη

eiζ

eiθ



 , permut.}. (2.9)

2.2 One triplet of S4

The potential of one triplet of S4 is

VS4
(ϕ) = V0(ϕ) + VS4×U(1)(ϕ) (2.10)

with
VS4×U(1)(ϕ) = c

[(

ϕ1ϕ1ϕ
∗3ϕ∗3 + cycl.

)

+ h.c.
]

. (2.11)

VS4
(H) = V0(H) +

∑

α,β

[

c
(

h1αh1βh
∗3αh∗3β + cycl.

)

+ h.c.
]

, (2.12)

for SU(2)L singlets and doublets respectively, and c is real.
The flavour symmetries of the S4 potential are generated by





0 1 0
0 0 1
1 0 0



 ,





0 0 1
0 1 0
1 0 0



 ,





eiα 0 0
0 eiα 0
0 0 eiα



 ,





−1 0 0
0 1 0
0 0 −1



 ,





1 0 0
0 −1 0
0 0 −1



 . (2.13)

The potential is automatically invariant under canonical CP. The elements of the orbits
of the potential of one triplet of ∆(6n2), Eq. (2.9), become the following orbits:





eiη

0
0



→





1
0
0



 ,





eiη

eiζ

0



→





1
eiζ

′

0



 with ζ ′ ∈ [0, π] (2.14)

and




eiη

eiζ

eiθ



→





1
eiζ

′′

eiθ
′



 with ζ ′′ ∈ [0, π] and θ′ ∈ [0, 2π]. (2.15)
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Essentially, phases that were unphysical for ∆(6n2) can become physical. Minimizing just
the phase-dependent part, VS4×U(1), reveals the global minima





1
0
0



 ,





1
1
1



 ,





±1
ω
ω2



 ,





1
i
0



 , (2.16)

which were rephased to match their appearance in [13].

2.3 One triplet of A4

The potential of one triplet of A4 is an extension of the potential of one triplet of ∆(3n2)
by a term that is invariant only under A4 × U(1):

VA4
(ϕ) = V0(ϕ) + VA4×U(1)(ϕ), (2.17)

VA4×U(1)(ϕ) = c
(

ϕ1ϕ1ϕ
∗3ϕ∗3 + ϕ2ϕ2ϕ

∗1ϕ∗1 + ϕ3ϕ3ϕ
∗2ϕ∗2

)

+ h.c., (2.18)

VA4
(H) = V0(H) +

∑

α,β

[

c
(

h1αh1βh
∗3αh∗3β + cycl.

)

+ h.c.
]

, (2.19)

respectively for SU(2)L singlets and doublets, and c can now be complex (in contrast to
S4). The full flavour-type symmetries of the full potential VA4

are generated by




0 1 0
0 0 1
1 0 0



 ,





eiα 0 0
0 eiα 0
0 0 eiα



 ,





−1 0 0
0 1 0
0 0 −1



 ,





1 0 0
0 −1 0
0 0 −1



 . (2.20)

In addition, the potential has a CP symmetry CP23 generated e.g. by a CP transformation
associated with the flavour space matrix [10]

X23 =





1 0 0
0 0 1
0 1 0



 . (2.21)

Under these symmetries, the elements of the orbits of the potential of one triplet of
∆(6n2), Eq. (2.9), fall into the following orbits:





eiη

0
0



→





1
0
0



 ,





eiη

eiζ

0



→





1
eiζ

′

0



 with ζ ′ ∈ [0, π] , (2.22)





eiη

eiζ

eiθ



→





1
eiζ

′′

eiθ
′



 with ζ ′′ ∈ [0, π] and θ′ ∈ [0, 2π]. (2.23)

Up to two phases can become physical, which can be determined by minimizing the
parts of the potential that depend on them, i.e. VA4×U(1). For the alignment (1, eiζ

′

, 0),

VA4×U(1)[(1, e
iζ′, 0)] = ce2iζ

′

+ c∗e−2iζ′, (2.24)
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such that ζ ′ = −Arg(c)/2 mod π. For the alignment (1, eiζ
′′

, eiθ
′

) we get

(ζ ′′, θ′) = (0, 0), (π/3, 5π/3), (2π/3, 4π/3), (2.25)

meaning we have minima (1, 1, 1) and (±1, ω, ω2), defining ω = e2πi/3. Overall, we obtain
the full list of possible global alignments from [13] for one triplet of A4:





1
0
0



 ,





1
1
1



 ,





±1
ω
ω2



 ,





1
eiζ

′

0



 . (2.26)

2.4 One triplet of ∆(27), or, equivalently of ∆(54)

The potential of one triplet of ∆(27) and ∆(54) is an extension of the ∆(3n2) by a term
that is invariant under ∆(54)

V∆(27)(ϕ) = V∆(54)(ϕ) = V0(ϕ) +
[

d
(

ϕ1ϕ1ϕ
∗2ϕ∗3 + cycl.

)

+ h.c.
]

, (2.27)

and the respective SU(2)L doublet version is

V∆(27)(H) = V∆(54)(H) = V0(H) +
∑

α,β

[

d
(

h1αh1βh
∗2αh∗3β + cycl.

)

+ h.c.
]

. (2.28)

The potential in general violates CP explicitly. One may of course impose a CP symmetry.
In [13] the two types of CP-symmetry that are normally considered consistent with the
flavour-type symmetry of the potential are analysed. The 12 CP symmetries listed in [17]
for ∆(27) are reduced to 6 in the context of ∆(54), e.g. canonical CP0 and the CP
symmetry associated with X23 become related. Of the 6 remaining, 3 restrict the phase
of parameter d in the potential, the other 3 enforce a relation between parameters, such
as 2s = (d + d∗) if imposing CP symmetry associated with the flavour matrix

X4 =
1√
3





1 1 1
1 ω ω2

1 ω2 ω



 (2.29)

The full flavour-type symmetries of this potential, are generated by





0 1 0
0 0 1
1 0 0



 ,





0 0 1
0 1 0
1 0 0



 ,





eiα 0 0
0 eiα 0
0 0 eiα



 ,





ω 0 0
0 1 0
0 0 ω2



 ,





1 0 0
0 ω 0
0 0 ω2



 . (2.30)

The orbits of one triplet of ∆(6n2), Eq. (2.9) become

(1, 0, 0), (1, eiζ
′

, 0), (1, eiζ
′′

, eiθ
′

). (2.31)

The phases can now be physical. The phase-dependent part

V∆(54)×U(1) =
[

d
(

ϕ1ϕ1ϕ
∗2ϕ∗3 + cycl.

)

+ h.c.
]

(2.32)
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yields simply zero for the alignment (1, eiζ
′

, 0), thus ζ ′ remains unphysical and (1, 1, 0) is at
least a local minimum of the potential, as it was already a possible global minimum of V0.
For (1, eiζ

′′

, eiθ
′

), one obtains the alignments (1, 1, 1), (1, 1, ω), (1, ω, ω) (or equivalently
(1, 1, ω2)). As for any value of Arg(d), one of (1, 1, 1), (1, 1, ω), (1, 1, ω2) makes V∆(54)×U(1)

negative, we verify that (1, 1, 0) is never a global minimum. We have thus obtained the
full list of global minima by [13]:

(1, 0, 0), (1, 1, 1), (1, 1, ω), (1, 1, ω2). (2.33)

With canonical CP (CP0), the last two VEVs are related whereas with the type of CP
with matrix X4 the last two VEVs in Eq. (2.33) become part of the same orbit and also
the first two VEVs in Eq. (2.33) become part of the same orbit (separate from the last
two VEVs).

3 Potentials and some VEVs with two triplets

Potentials of two triplets have two sets of terms for each triplet by themselves and also
cross terms

V (ϕ, ϕ′) = V (ϕ) + V ′(ϕ′) + Vc(ϕ, ϕ
′). (3.1)

In the cases we consider, the two triplets transform identically under the symmetry,
making V (ϕ) and V ′(ϕ′) functionally identical.

The complete set of orbits for minima are known for the single triplet cases above,
and we can proceed to two triplet potentials by analysing which degrees of freedom of
V (ϕ)+V ′(ϕ′) can become physical when the symmetry of the potential is reduced (e.g. by
the cross-terms in Vc(ϕ, ϕ

′)). We omit the magnitudes of the VEVs, which are in general
different for the two triplets.

It is convenient to define

V1(ϕ, ϕ
′) = + r̃1

(

∑

i

ϕiϕ
∗i

)(

∑

j

ϕ′

jϕ
′∗j

)

+ r̃2

(

∑

i

ϕiϕ
′∗i

)(

∑

j

ϕ′

jϕ
∗j

)

+ s̃1
∑

i

(

ϕiϕ
∗iϕ′

iϕ
′∗i
)

+ s̃2
(

ϕ1ϕ
∗1ϕ′

2ϕ
′∗2 + ϕ2ϕ

∗2ϕ′

3ϕ
′∗3 + ϕ3ϕ

∗3ϕ′

1ϕ
′∗1
)

+ i s̃3

[

(ϕ1ϕ
′∗1ϕ′

2ϕ
∗2 + cycl.) − (ϕ∗1ϕ′

1ϕ
′∗2ϕ2 + cycl.)

]

, (3.2)
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V1(H,H ′) =
∑

i,j,α,β

[

r̃11hiαh
∗iαh′

jβh
′∗jβ + r̃12hiαh

′∗jαh′

jβh
∗iβ
]

+
∑

i,j,α,β

[

r̃21hiαh
′∗iαh′

jβh
∗jβ + r̃22hiαh

∗jαh′

jβh
′∗iβ
]

+
∑

i,α,β

[

s̃11hiαh
∗iαh′

iβh
′∗iβ + s̃12hiαh

′∗iαh′

iβh
∗iβ
]

+
∑

α,β

[

s̃21(h1αh
∗1αh′

2βh
′∗2β + cycl.) + s̃22(h1αh

′∗2αh′

2βh
∗1β + cycl.)

]

+ is̃31
∑

α,β

[(h1αh
′∗1αh′

2βh
∗2β + cycl.) − (h∗1αh′

1αh
′∗2βh2β + cycl.)]

+ is̃32
∑

α,β

[(h1αh
∗2αh′

2βh
′∗1β + cycl.) − (h∗1αh2αh

′∗2βh′

1β + cycl.)], (3.3)

V2(ϕ, ϕ
′) = r̃1

(

∑

i

ϕiϕ
∗i

)(

∑

j

ϕ′

jϕ
′∗j

)

+ r̃2

(

∑

i

ϕiϕ
′∗i

)(

∑

j

ϕ′

jϕ
∗j

)

+ s̃1
∑

i

(

ϕiϕ
∗iϕ′

iϕ
′∗i
)

, (3.4)

V2(H,H ′) =
∑

i,j,α,β

[

r̃11hiαh
∗iαh′

jβh
′∗jβ + r̃12hiαh

′∗jαh′

jβh
∗iβ
]

+
∑

i,j,α,β

[

r̃21hiαh
′∗iαh′

jβh
∗jβ + r̃22hiαh

∗jαh′

jβh
′∗iβ
]

+
∑

i,α,β

[

s̃11hiαh
∗iαh′

iβh
′∗iβ + s̃12hiαh

′∗iαh′

iβh
∗iβ
]

. (3.5)

3.1 Two triplets of ∆(6n2) with n > 3

The potentials of two triplets of ∆(6n2) are, using the definitions of V0 and V2 previously,

V∆(6n2)(ϕ, ϕ
′) = V0(ϕ) + V ′

0(ϕ′) + V2(ϕ, ϕ
′) , (3.6)

V∆(6n2)(H,H ′) = V0(H) + V ′

0(H ′) + V2(H,H ′) . (3.7)

The orbits for one triplet of ∆(6n2) are in Eq. (2.9), and we can obtain minima for the
two triplet case by combining any two members of any orbit (not just the representatives),
and then check which phases are unphysical. The symmetries of the two triplet potential
are generated by simultaneous transformations of both triplets under ∆(6∞2) and by
separate U(1) phases acting on each triplet,





eiα

eiα

eiα



⊕





1
1

1



 , and





1
1

1



⊕





eiα
′

eiα
′

eiα
′



 , (3.8)
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as well as an overall canonical CP transformation. Accounting for these, we get the
following combinations of orbits:

(eiη, 0, 0), (eiη
′

, 0, 0) → (1, 0, 0), (1, 0, 0) (3.9)

(eiη, 0, 0), (0, eiη
′

, 0) → (1, 0, 0), (0, 1, 0) (3.10)

(eiη, 0, 0), (eiη
′

, eiζ
′

, 0) → (1, 0, 0), (1, 1, 0) (3.11)

(eiη, 0, 0), (0, eiη
′

, eiζ
′

) → (1, 0, 0), (0, 1, 1) (3.12)

(eiη, 0, 0), (eiη
′

, eiζ
′

, eiθ
′

) → (1, 0, 0), (1, 1, 1) (3.13)

(eiη, eiζ , 0), (0, eiζ
′

, eiθ
′

) → (1, 1, 0), (0, 1, 1) (3.14)

(eiη, eiζ , 0), (eiη
′

, eiζ
′

, 0) → (1, 1, 0), (1, eiζ
′

, 0) (3.15)

(eiη, eiζ, 0), (eiη
′

, eiζ
′

, eiθ
′

) → (1, 1, 0), (1, eiζ
′

, 1) (3.16)

(eiη, eiζ , eiθ), (eiη
′

, eiζ
′

, eiθ
′

) → (1, 1, 1), (1, eiζ
′

, eiθ
′

). (3.17)

The phases can now be fixed by the minimisation of the phase-dependent part of the
potential. We get for (1, 1, 0), (1, eiζ

′

, 0) and for (1, 1, 0), (1, eiζ
′

, 1) that ζ ′ = 0 for r′2 > 0
and ζ ′ = π for r2 < 0, i.e.:

(1, 1, 0), (1,±1, 0) and (1, 1, 0), (1,±1, 1) (3.18)

different sign choices are different orbits. For (1, 1, 1), (1, eiζ
′

, eiθ
′

), we get for r2 < 1 the
orbit

(1, 1, 1), (1, 1, 1) (3.19)

and for r2 > 0 the orbits

(1, 1, 1), (1, ω, ω2) and (1, 1, 1), (1, ω2, ω). (3.20)

3.2 Two triplets of ∆(3n2) with n > 3

The potentials for two triplets of ∆(3n2) with n > 3 are

V∆(3n2)(ϕ, ϕ
′) = V0(ϕ) + V ′

0(ϕ′) + V1(ϕ, ϕ
′), (3.21)

V∆(3n2)(H,H ′) = V0(H) + V ′

0(H ′) + V1(H,H ′) . (3.22)

The single triplet orbits of ∆(3n2) and ∆(6n2) were the same and listed in Eq. (2.9). The
difference to the previous potential lies in the fact that the full symmetries of V∆(3n2) only
allow for cyclic permutations, i.e. only





1
1

1



⊕





1
1

1



 , (3.23)

in addition to all phase symmetries arising arising from ∆(3n2) and Eq. (3.8). This two
triplet potential has no automatic CP symmetry. Compared to ∆(6n2), several orbits
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split, but interchanging the first and second triplet allow us to reduce the number of
distinct such orbits to (1, 0, 0), (1, 1, 0) and (1, 0, 0), (1, 0, 1). Besides Eqs. (3.9)–(3.14),
Eqs. (3.19),(3.20), and the two orbits above that arise from splitting known orbits, two
other new orbits can arise due to the lacking CP symmetry, namely

(1, 1, 0), (1, eiζ
′

, 0) and (1, 1, 0), (1, eiζ
′

, 1) (3.24)

with ζ ′ = arctan(r̃2/s̃3) a function of s̃3 and r̃2 in contrast to the situation with a ∆(6n2)
symmetry, where ζ ′ = 0, π, depending on the value of r̃2. The pair (1, 1, 0), (1, eiζ

′

, 0) and
the pair (1, 1, 0), (1, eiζ

′

, 1) have the same ζ ′. When special CP symmetries are imposed,
then ζ ′ can be forced to take special values again.

3.3 Two triplets of S4

The potentials for two triplets of S4 are

VS4
(ϕ, ϕ′) = V0(ϕ) + V ′

0(ϕ′) + V2(ϕ, ϕ
′) + (3.25)

+ c
[(

ϕ1ϕ1ϕ
∗3ϕ∗3 + cycl.

)

+ h.c.
]

+ c′
[(

ϕ′

1ϕ
′

1ϕ
′∗3ϕ′∗3 + cycl.

)

+ h.c.
]

+ c̃
[(

ϕ1ϕ
′

1ϕ
∗3ϕ′∗3 + cycl.

)

+ h.c.
]

,

VS4
(H,H ′) = V0(H) + V ′

0(H ′) + V2(H,H ′) (3.26)

+
∑

α,β

c
[(

h1αh1βh
∗3αh∗3β + cycl.

)

+ h.c.
]

+
∑

α,β

c′
[(

h′

1αh
′

1βh
′∗3αh′∗3β + cycl.

)

+ h.c.
]

+
∑

α,β

c̃1
[(

h1αh
∗3αh′

1βh
′∗3β + cycl.

)

+ h.c.
]

+
∑

α,β

c̃2
[(

h1αh
′∗3αh′

1βh
∗3β + cycl.

)

+ h.c.
]

.

For one triplet, the symmetry generators are in Eq. (2.13), and the potential has an
automatic CP symmetry. The single triplet orbits are

{





±eiα

0
0



}, {





(−1)keiα

(−1)leiα

(−1)k+leiα



}, {





(−1)keiα

ω(−1)leiα

ω2(−1)k+leiα



}, {





−(−1)keiα

ω(−1)leiα

ω2(−1)k+leiα



}, {





0
±eiα

±ieiα



},

(3.27)
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where the sign choices represent independent orbits. We combine the single triplet orbits
to obtain the two triplet orbit representatives

(1, 0, 0), (1, 0, 0) (3.28)

(1, 0, 0), (0, 1, 0) (3.29)

(1, 0, 0), (1, 0, i) (3.30)

(1, 0, 0), (0, 1, i) (3.31)

(1, 0, 0), (1, 1, 1) (3.32)

(1, 0, 0), (1, ω2, ω) (3.33)

(1, 0, i), (1, 0,±i) (3.34)

(1, 0, i), (1, i, 0) (3.35)

(1, 0, i), (1, 1, 1) (3.36)

(1, 0, i), (1, ω2,±ω) (3.37)

(1, 1, 1), (1, 1,±1) (3.38)

(1, 1, 1), (1,±ω2, ω) (3.39)

(1, ω2, ω), (1, ω2,±ω) (3.40)

(1, ω2, ω), (1,−ω,−ω2) (3.41)

(1, ω2, ω), (1, ω, ω2) (3.42)

3.4 Two triplets of A4

The potentials for two triplets of A4 are

VA4
(ϕ, ϕ′) = V0(ϕ) + V ′

0(ϕ′) + V1(ϕ, ϕ
′) + (3.43)

+
[

c
(

ϕ1ϕ1ϕ
∗3ϕ∗3 + cycl.

)

+ h.c.
]

+
[

c′
(

ϕ′

1ϕ
′

1ϕ
′∗3ϕ′∗3 + cycl.

)

+ h.c.
]

+
[

c̃
(

ϕ1ϕ
′

1ϕ
∗3ϕ′∗3 + cycl.

)

+ h.c.
]

,

VA4
(H,H ′) = V0(H) + V ′

0(H ′) + V1(H,H ′) (3.44)

+
∑

α,β

[

c
(

h1αh1βh
∗3αh∗3β + cycl.

)

+ c′
(

h′

1αh
′

1βh
′∗3αh′∗3β + cycl.

)

+ h.c.
]

+
∑

α,β

[

c̃1(h1αh
∗3αh′

1βh
′∗3β + cycl.) + c̃2(h1αh

′∗3αh′

1βh
∗3β + cycl.) + h.c.

]

.

The symmetry generators for one triplet are in Eq. (2.20), and the orbit representatives
are

{





±eiα

0
0



}, {





(−1)keiα

(−1)leiα

(−1)k+leiα



}, {





(−1)keiα

ω(−1)leiα

ω2(−1)k+leiα



}, {





−(−1)keiα

ω(−1)leiα

ω2(−1)k+leiα



}, {





0
±eiα

±eiα+iβ



},

(3.45)
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For two triplets we get

(1, 0, 0), (1, 0, 0) (3.46)

(1, 0, 0), (0, 1, 0) (3.47)

(1, 0, 0), (1, eiα
′

, 0) (3.48)

(1, 0, 0), (0, 1, eiα
′

) (3.49)

(1, 0, 0), (eiα
′

, 0, 1) (3.50)

(1, 0, 0), (1, 1, 1) (3.51)

(1, 0, 0), (1, ω, ω2) (3.52)

(1, eiα, 0), (1,±eiα
′

, 0) (3.53)

(1, eiα, 0), (0, 1, eiα
′

) (3.54)

(1, eiα, 0), (eiα
′

, 0, 1) (3.55)

(1, eiα, 0), (1,±1, 1) (3.56)

(1, eiα, 0), (1,±ω, ω2) (3.57)

(1, 1, 1), (1, 1,±1) (3.58)

(1, 1, 1), (1, ω,±ω2) (3.59)

(1, 1, 1), (1, ω, ω2) (3.60)

(1, ω, ω2), (1, ω,±ω2) (3.61)

(1, ω, ω2), (1, ω, ω2) (3.62)

where α and α′ are fixed by the respective one-triplet parts of the two-triplet poten-
tial, as in Eq. (2.24). Note that (1, 0, 0), (eiα

′

, 1, 0) as well as (1, 0, 0), (0, eiα
′

, 1) and
(1, 0, 0), (1, 0, eiα

′

), are part of the above orbits due to the separate rephasing symmetries
of each triplet.

3.5 Two triplets of ∆(54)

The potentials for two triplets of ∆(54) are

V∆(54)(ϕ, ϕ
′) =V0(ϕ) + V ′

0(ϕ′) + V2(ϕ, ϕ
′) (3.63)

+
[

d
(

ϕ1ϕ1ϕ
∗2ϕ∗3 + cycl.

)

+ h.c.
]

+
[

d′
(

ϕ′

1ϕ
′

1ϕ
′∗2ϕ′∗3 + cycl.

)

+ h.c.
]

+ d̃1
[(

ϕ1ϕ
′

1ϕ
∗2ϕ′∗3 + cycl.

)

+
(

ϕ1ϕ
′

1ϕ
∗3ϕ′∗2 + cycl.

)]

+ h.c.,

V∆(54)(H,H ′) = V0(H) + V ′

0(H ′) + V2(H,H ′) (3.64)

+
∑

α,β

[

d
(

h1αh1βh
∗2αh∗3β + cycl.

)

+ d′
(

h′

1αh
′

1βh
′∗2αh′∗3β + cycl.

)

+ h.c.
]

+
∑

α,β

[

d̃11(h1αh
∗2αh′

1βh
′∗3β + cycl.) + d̃12(h1αh

′∗3αh′

1βh
∗2β + cycl.) + h.c.

]

+
∑

α,β

[

d̃11(h1αh
∗3αh′

1βh
′∗2β + cycl.) + d̃12(h1αh

′∗2αh′

1βh
∗3β + cycl.) + h.c.

]

.
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This potential has no automatic CP symmetries. We can write

V∆(54)(ϕ, ϕ
′) =V∆(6n2)(ϕ) + V ′

∆(6n2)(ϕ
′) + V∆(54)(ϕ) + V ′

∆(54)(ϕ
′) (3.65)

+ Vc,∆(6n2)(ϕ, ϕ
′) + Vc,∆(54)(ϕ, ϕ

′). (3.66)

The orbits of VEVs for one triplet are

{





ωkeiα

0
0



 , perm.}, {





ωkeiα

ωleiα

ω2k+2leiα



 , perm.}, {





ωkeiα

ωleiα

ω2k+2l+1eiα



 , perm.}, {





ωkeiα

ωleiα

ω2k+2l+2eiα



 , perm.}.

(3.67)
In addition to the direct sum of the generators in Eq. (2.30), the potential is invariant
under separate phase symmetries for each triplet, as in Eq. (3.8). By combining single
triplet orbits and then eliminating unphysical degrees of freedom we get

(1, 0, 0), (1, 0, 0) (3.68)

(1, 0, 0), (0, 1, 0) (3.69)

(1, 0, 0), (1, 1, 1) (3.70)

(1, 0, 0), (1, 1, ω) (3.71)

(1, 0, 0), (1, 1, ω2) (3.72)

(1, 1, ωi), (ωk′−k, ωl′−l, ω2k′+2l′−2k−2l+i′) (3.73)

where the last case has several orbits labeled by i and i′. We note that phase differences
between the two triplets are physical.

3.6 Two triplets of ∆(27)

The potentials for two triplets of ∆(27) are

V∆(27)(ϕ, ϕ
′) = V0(ϕ) + V ′

0(ϕ′) + V1(ϕ, ϕ
′) (3.74)

+
[

d
(

ϕ1ϕ1ϕ
∗2ϕ∗3 + cycl.

)

+ h.c.
]

+
[

d′
(

ϕ′

1ϕ
′

1ϕ
′∗2ϕ′∗3 + cycl.

)

+ h.c.
]

+
[

d̃1
(

ϕ1ϕ
′

1ϕ
∗2ϕ′∗3 + cycl.

)

+ h.c.
]

+
[

d̃2
(

ϕ1ϕ
′

1ϕ
∗3ϕ′∗2 + cycl.

)

+ h.c.
]

,

V∆(27)(H,H ′) = V0(H) + V ′

0(H ′) + V1(H,H ′) + (3.75)

+
∑

α,β

[

d
(

h1αh1βh
∗2αh∗3β + cycl.

)

+ d′
(

h′

1αh
′

1βh
′∗2αh′∗3β + cycl.

)

+ h.c.
]

+
∑

α,β

[

d̃11(h1αh
∗2αh′

1βh
′∗3β + cycl.) + d̃12(h1αh

′∗3αh′

1βh
∗2β + cycl.) + h.c.

]

+
∑

α,β

[

d̃21(h1αh
∗3αh′

1βh
′∗2β + cycl.) + d̃22(h1αh

′∗2αh′

1βh
∗3β + cycl.) + h.c.

]

.

The one triplet VEVs for ∆(27) are the same as for ∆(54), so the VEV pairs generated
by our method are similar to the case of two triplets of ∆(54). There is however the
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permutation generator that is missing in ∆(27), and therefore several orbits split with
respect to ∆(54). In addition to Eqs. (3.68-3.73), we get independent orbits:

(1, 0, 0), (1, 1, ω) (3.76)

(1, 0, 0), (1, ω, 1) (3.77)

(1, 0, 0), (1, 1, ω2) (3.78)

(1, 0, 0), (1, ω2, 1). (3.79)

4 Conclusions

In this paper we have analysed the minima of scalar potentials for multi-Higgs models,
where the scalars are arranged as either one triplet or two triplets of the discrete symme-
tries ∆(3n2) and ∆(6n2) with n = 2 (A4, S4), n = 3 (∆(27), ∆(54)) and n > 3. We have
found the minima with a technique where we consider by steps the symmetry of parts of
the potential and progressively add terms that reduce the symmetry, minimizing them in
turn. Whether the minima spontaneously violate CP or not will be discussed in a future
work [18]. The results should be useful for both multi-Higgs models involving electroweak
doublets and multi-flavon models involving electroweak singlets, where in both cases the
fields transform as triplets under some non-Abelian discrete symmetry.
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