The University of Southampton
University of Southampton Institutional Repository

Degradation of some EN13432 compliant plastics in simulated mesophilic anaerobic digestion of food waste

Degradation of some EN13432 compliant plastics in simulated mesophilic anaerobic digestion of food waste
Degradation of some EN13432 compliant plastics in simulated mesophilic anaerobic digestion of food waste
The research looked at the anaerobic biodegradation of 9 different bioplastics, all of which were commercially available and certified in Europe as compostable packaging material compliant with the biodegradation and other requirements of the EN13432 standard. A combination of testing strategies was used to assess the degree of degradation both under batch conditions, and in a simulation in which the plastics and food waste were fed daily to a digester for a period of 147 days. Two non-biodegradable plastics were used as controls, and verified the robustness of the sampling regime and the recovery of the plastic film, with errors of<1% in the final balance. The simulation allowed quantification of the weight loss of the plastics and determination of a decay coefficient for the different materials, which was then used to estimate long-term degradation. Use of a biochemical methane potential (BMP) batch test allowed estimation of the conversion of carbon into gaseous products. There was no evidence that any of the plastic films inhibited the anaerobic digestion process when continuously fed to digesters, although some inhibition occurred when the most readily degradable materials were tested at higher concentrations in batch mode. There were some interesting differences between results from the various measures of plastic degradation in the batch and simulation experiments, with batch testing in most cases suggesting a higher degree of degradation than was achieved in a semi-continuous system at a solids retention time of 50 days. The exceptions to this were two plastics that appeared to show rapid weight loss in the simulation experiment. BMP test results confirmed this was not through biological conversion of the bioplastic to gaseous carbon products, and was therefore probably due to physical disintegration. It was concluded that, of the 9 bioplastics tested, only 4 showed substantial biodegradability under anaerobic conditions. Further evidence to support the mechanism of biodegradation was obtained by microscopy, and photomicrographs using different techniques are included to illustrate the process. Even the most degradable materials would not break down sufficiently to meet the physical contaminant criteria of the UK PAS110 specification for anaerobically digested material, if fed to a digester at 2.0% of the input load on a volatile solids basis.
Bioplastic, Anaerobic digestion, Biodegradation, Plastic film, Food waste, Co-digestion
0141-3910
76-88
Zhang, Wei
2ddf6d07-244b-4a0b-8a96-2867deb060d5
Heaven, Sonia
f25f74b6-97bd-4a18-b33b-a63084718571
Banks, Charles J.
5c6c8c4b-5b25-4e37-9058-50fa8d2e926f
Zhang, Wei
2ddf6d07-244b-4a0b-8a96-2867deb060d5
Heaven, Sonia
f25f74b6-97bd-4a18-b33b-a63084718571
Banks, Charles J.
5c6c8c4b-5b25-4e37-9058-50fa8d2e926f

Zhang, Wei, Heaven, Sonia and Banks, Charles J. (2018) Degradation of some EN13432 compliant plastics in simulated mesophilic anaerobic digestion of food waste. Polymer Degradation and Stability, 147, 76-88. (doi:10.1016/j.polymdegradstab.2017.11.005).

Record type: Article

Abstract

The research looked at the anaerobic biodegradation of 9 different bioplastics, all of which were commercially available and certified in Europe as compostable packaging material compliant with the biodegradation and other requirements of the EN13432 standard. A combination of testing strategies was used to assess the degree of degradation both under batch conditions, and in a simulation in which the plastics and food waste were fed daily to a digester for a period of 147 days. Two non-biodegradable plastics were used as controls, and verified the robustness of the sampling regime and the recovery of the plastic film, with errors of<1% in the final balance. The simulation allowed quantification of the weight loss of the plastics and determination of a decay coefficient for the different materials, which was then used to estimate long-term degradation. Use of a biochemical methane potential (BMP) batch test allowed estimation of the conversion of carbon into gaseous products. There was no evidence that any of the plastic films inhibited the anaerobic digestion process when continuously fed to digesters, although some inhibition occurred when the most readily degradable materials were tested at higher concentrations in batch mode. There were some interesting differences between results from the various measures of plastic degradation in the batch and simulation experiments, with batch testing in most cases suggesting a higher degree of degradation than was achieved in a semi-continuous system at a solids retention time of 50 days. The exceptions to this were two plastics that appeared to show rapid weight loss in the simulation experiment. BMP test results confirmed this was not through biological conversion of the bioplastic to gaseous carbon products, and was therefore probably due to physical disintegration. It was concluded that, of the 9 bioplastics tested, only 4 showed substantial biodegradability under anaerobic conditions. Further evidence to support the mechanism of biodegradation was obtained by microscopy, and photomicrographs using different techniques are included to illustrate the process. Even the most degradable materials would not break down sufficiently to meet the physical contaminant criteria of the UK PAS110 specification for anaerobically digested material, if fed to a digester at 2.0% of the input load on a volatile solids basis.

Text
Zhang et al bioplastics AD - scholar text 171031 - Accepted Manuscript
Download (1MB)

More information

Accepted/In Press date: 8 November 2017
e-pub ahead of print date: 21 November 2017
Published date: January 2018
Keywords: Bioplastic, Anaerobic digestion, Biodegradation, Plastic film, Food waste, Co-digestion

Identifiers

Local EPrints ID: 416333
URI: http://eprints.soton.ac.uk/id/eprint/416333
ISSN: 0141-3910
PURE UUID: f9fa8249-3971-46b7-ae59-4947df74d79c
ORCID for Sonia Heaven: ORCID iD orcid.org/0000-0001-7798-4683
ORCID for Charles J. Banks: ORCID iD orcid.org/0000-0001-6795-814X

Catalogue record

Date deposited: 13 Dec 2017 17:30
Last modified: 16 Mar 2024 06:01

Export record

Altmetrics

Contributors

Author: Wei Zhang
Author: Sonia Heaven ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×