- 1 **Title**: Maternal and offspring intelligence in relation to BMI across
- 2 childhood and adolescence.
- 3 **Running title**: Intelligence as a predictor of body mass index
- 4 Authors: Christina Wraw¹ (MSc), Ian J. Deary¹ (PhD), Geoff Der² (MSc),
- 5 Catharine R Gale ^{1, 3} (PhD)
- 6
- ¹Centre for Cognitive Ageing and Cognitive Epidemiology, Department of
- 8 Psychology, University of Edinburgh, 7 George Square, Edinburgh,
- 9 Scotland, EH8 9JZ
- 10
- ² MRC/CSO Social & Public Health Sciences Unit, 200 Renfield Street,
 University of Glasgow, Glasgow, G2 30B
- ³MRC Lifecourse Epidemiology Unit, University of Southampton,
- 14 Southampton General Hospital, Southampton, SO16 6YD
- Corresponding Author: Christina Wraw <u>s1457166@sms.ed.ac.uk</u>, Phone
 (+44 7906895540)

17 Acknowledgements

- 18
- 19 This work was undertaken in The University of Edinburgh Centre for
- 20 Cognitive Ageing and Cognitive Epidemiology, part of the cross council
- 21 Lifelong Health and Wellbeing Initiative (MR/K026992/1). Funding from
- 22 the BBSRC and the Medical Research Council (MRC) is gratefully
- acknowledged.
- 24

25 Conflict of interests

- 26 The authors have no conflicts of interest to declare
- 27

1	Objective: The present study tested the association between both mothers'
2	and offspring's intelligence and offspring's body mass index (BMI) in
3	youth.
4	
5	Method: Participants were members of the National Longitudinal Survey of
6	Youth 1979 (NLSY-79) Children and Young Adults cohort (n=11,512) and
7	their biological mothers who were members of the NLSY-79 (n=4,932).
8	Offspring's IQ was measured with the Peabody Individual Achievement
9	Test (PIAT). Mothers' IQ was measured with the Armed Forces
10	Qualification Test (AFQT). A series of regression analyses tested the
11	association between IQ and offspring's BMI by age group, while adjusting
12	for pre-pregnancy BMI and family SES. The analyses were stratified by sex
13	and ethnicity (non-Black & non-Hispanic, Black, and Hispanic).
14	
15	Results: The following associations were observed in the fully adjusted
16	analyses. For the non-Blacks and non-Hispanics, a SD increment in
17	mothers' IQ was negatively associated with daughters' BMI across all age-
18	groups, ranging from β =-0.12 (95% C.I0.22 to -0.02, p=0.021) in late
19	childhood, to β=-0.17 (95% C.I0.27 to -0.07, p=0001), in early
20	adolescence and a SD increment in boys' IQ was positively associated with
21	their BMI in early adolescence β =0.09 (95% C.I. 0.01 to 0.18, p=0.031).
22	For Blacks, there was a non-linear relationship between mothers' IQ and
23	daughters' BMI across childhood and between girls' IQ and BMI across
24	adolescence. There was a positive association between mothers' IQ and

25 sons' BMI in early adolescence (β =0.17, 95% C.I. 0.02 to 0.32,p=0.030).

- 26 For Hispanic boys, there was a positive IQ-BMI association in late
- 27 childhood (β =0.19, 95% C.I. 0.05 to 0.33, p=0.008) and early adolescence
- 28 (β =0.17, 95% C.I. 0.04 to 0.31, p=0.014).
- 29
- 30 Conclusion: Mothers' IQ and offspring's IQ were associated with
- 31 offspring's BMI. The relationships varied in direction and strength across
- 32 ethnicity, age group and sex. Obesity interventions may benefit from
- 33 acknowledging the heterogeneous influence that intelligence has on
- 34 childhood BMI.
- 35
- 36

37 38	Introduction
39	Rates of childhood obesity have increased over recent decades.
40	Between 1980 and 2012, in the United States, the percentage of obese
41	children aged 6-11 years increased from 7% to approximately 18%, and the
42	percentage of obese teenagers aged 12-19 years increased from 5% to
43	approximately 21% (1-2). Being obese in childhood is associated with
44	childhood comorbidities (3-5) and with an increased risk of being
45	overweight in adulthood (6). It is a matter of public health importance to
46	identify the factors that impact the risk of having a high BMI in early life.
47	The risk factor of interest in the present study is both mothers' and
48	offspring's intelligence.
49	
50	Findings from many studies suggest that there is a robust
51	relationship between lower intelligence in youth and higher body mass
52	index (BMI), obesity, and weight gain in adulthood (7-11).
53	
54	More recently, research has focused on analyzing the association
55	between childhood intelligence and early life BMI. Findings from some
56	studies suggest that lower intelligence in early life is associated with higher
57	BMI and a higher risk of obesity in childhood and adolescence (12-14).
58	Goldberg (12) found that lower intelligence was associated with increased
59	odds of being obese for both boys (OR=1.44, 95% CI 1.36 to 1.52) and girls
60	(OR=1.61, 95% CI 1.51 to 1.73), using data from the 404,922 adolescents
61	who responded to the Israeli military draft board. Other studies have not

62 found a significant association between general intelligence and BMI in63 childhood (14-16).

65	The studies cited above are limited because most analyses were
66	based on a single measure of both childhood intelligence and BMI that was
67	taken at a similar point in time and can only indicate the nature of the IQ-
68	BMI relationship at a single year of age (5,12-15,17-18), which likely gives
69	an incomplete picture of the relationship.
70	
71	One of the aims of the present study was to analyze the association
72	between intelligence and BMI in four, overlapping, cross-sectional samples
73	at different stages of childhood and adolescence.
74	
75	In order to establish whether or not intelligence is a risk factor for a
76	high BMI in childhood the possibility of reverse causality must be
77	addressed. Findings from two studies suggest that a high BMI is not a risk
78	factor for low cognitive ability (19, 20). Afzal and Gortmaker (20) tested the
79	effect of childhood BMI on childhood cognitive ability. They used two
80	cohorts (cohort 1, n=2,672 and cohort 2, n=1,991) from the National
81	Longitudinal Survey of Youth 1979-Child and Young Adults cohort. BMI
82	was the predictor variable. They did not find any significant results after
83	adjusting for time invariant traits on cognitive test scores (20). One
84	weakness of this study is that the analyses were based on a fixed-effect
85	model, which does not account for the possibility of cognitive ability
86	impacting the risk of being overweight or obese. This study was further

87	limited because it examined the implications of being either obese or not
88	obese on cognitive performance rather than testing this relationship across
89	the full range of BMI.

91	Factors that influence childhood BMI may span generations.
92	Findings from previous studies suggest that higher parental IQ is associated
93	with a lower risk of poor health outcomes in offspring (21-22). However,
94	only one known study has looked at the association between parental
95	intelligence and offspring BMI. Whitley et al. (22), analyzed the
96	relationship between parental IQ, measured at age 11, and BMI in children
97	aged 4-18 years in 2,268 parent-child pairs but did not find any significant
98	associations. Notwithstanding these null findings, there are reasons to
99	believe that parental intelligence might be associated with offspring's BMI.
100	Intelligence in youth is associated with adult BMI (7-11). Pre-pregnancy
101	BMI has been found to be associated with offspring's weight in infancy and
102	BMI in childhood (23-25). Therefore, maternal BMI may lie on a pathway
103	that links maternal intelligence with offspring's BMI.
104	
105	The second aim of the present study was to analyze the relationship
106	between mothers' intelligence in youth and offspring's BMI at different

107 stages of childhood and adolescence.

109 Sample

110 Mothers

111	The data were derived from two related cohorts. One of the cohorts
112	was the National Longitudinal Survey of Youth 1979 (NLSY-79). The
113	initial sample of the NLSY-79 was representative of non-institutionalized
114	young people who lived in the United States. It was a random household
115	sample and consisted of 12,686 individuals aged 14-21 years on 31st of
116	December 1978. The respondent gave verbal consent to participate at the
117	beginning of the interview (26). The NLSY79 study has been described in
118	detail elsewhere (27). A total of 4,932 women from this survey had children
119	and were followed up in the NLSY-79 Children and Young Adults survey
120	(28). The institutional review boards of Ohio State University and the
121	National Opinion Research Center at the University of Chicago granted
122	ethics approval for the NLSY.
123	Children
124	Data were also derived from the NLSY-79 Children and Young
125	Adults survey, which consists of the biological offspring of the mothers of
126	the NLSY-79 cohort. The initial interviews were held in 1986 and have
127	been conducted biennially since then. The children in the study were born
128	between 1973-2007. In total, 11,512 children and young adults have
129	completed the survey. Parents gave permission for their child to be

- 130 interviewed (26).
- 131

132 *Ethnicity*

133 The nomenclature used in the NLSY-79 documentation to refer to

134 ethnic group (non-Black & non-Hispanic, Black, and Hispanic) has been

adopted in the current study. Offspring's ethnicity was based on the

- 136 ethnicity reported by the mothers in the NLSY-79 (28).
- 137 Measures
- 138 Age groups
- 139 The following age groups were used in the present analyses:
- Middle childhood: ages 5-7 years
- Late childhood: ages 8-10 years
- Early adolescence: ages 11-13 years
- Middle adolescence: ages 14-18 years
- 144

145 Age group cut-off points were based around stages of physical development

146 (6,29,30). Stages of cognitive development were not considered because

147 the PIAT scores were age-standardized (28). Each child was only included

148 once per age-group. In cases where a child was surveyed more than once in

- a given age range the latest wave was used. Each age group included data
- 150 on a different set of children, but many children had information in more
- than one age group.
- 152 *BMI*

Weight in kilograms was divided by height in meters squared to make theBMI variables.

155 *Mother's pre-pregnancy BMI*

156	Maternal BMI was based on pre-pregnancy weight in the present
157	study because it is a good indicator of women's typical BMI and their BMI
158	throughout pregnancy (31). This measure was based on self-reports of
159	weight, immediately before each pregnancy, and height. The measure of
160	height from 1985 was selected because the respondents would have reached
161	their adult height (32). Self-reports of height and weight tend to be accurate
162	reports of actual height and weight (33).
163	Offspring's BMI
164	Offspring's height and weight measurements were either measured
165	at the interview or were recalled by the mother (Table S1). To overcome
166	the difficulty of using raw childhood anthropometric data to compare the
167	BMIs in youth, BMI was age and sex standardized using the <i>zanthro</i>

transformation method of Cole et al. (34). The WHO 2007 growth

169 reference charts were used as the reference population for this

transformation (34).

171 Intelligence

172 Mother's Intelligence

173 The mother's measure of intelligence was the Armed Forces

174 Qualification Test (AFQT), 1989 re-normed version. Mothers were aged 15-

- 175 23 years when they sat this test in 1980. The AFQT is composed of four
- 176 subtests: Arithmetic reasoning, mathematics knowledge, word knowledge
- and paragraph comprehension. The test had a total of 105 items and a time
- 178 limit of 84 minutes (35). AFQT is predictive of academic and job

performance (36). The AFQT variable used in the present study was
downloaded from The Bell Curve Page (37). This measure was scored as a
percentile, and was then z-scored.

182 Children's Intelligence

183 Offspring's measure of intelligence was the Peabody Individual 184 Achievement Test (PIAT). It was administered to children aged 5-14 years. 185 The present study included the three following PIAT sub-scales: reading 186 comprehension, reading recognition, and mathematical ability (28,38). The 187 reading recognition sub-scale consists of 84 multiple-choice questions and 188 measures the ability to pronounce and recognize words. The mathematics 189 sub-scale consists of 84 multiple-choice questions and measures the child's 190 level of mathematical ability. The reading comprehension sub-scale 191 consists of 66 items and measures children's ability to obtain meaning from 192 sentences that they read silently (28, 38). The exams are not timed (28, 38). 193 The PIAT has high validity and reliability (28,38). All three scales were age 194 standardized and each normed sub-scale had a mean score of 100 and a 195 standard deviation of 15.

196

For late childhood and early adolescence, the three sub-scales (mathematics, reading comprehension, and reading recognition) were averaged and a composite PIAT variable was created. For middle childhood, the composite measure was made from the mathematics and reading recognition sub-scale because the reading comprehension sub-scale had a high proportion of missing values (25%) at this age. Some children were not eligible to complete the reading comprehension test because they scored

204	below 19 on the reading recognition sub-scale. The 2-test PIAT composite
205	measure correlated with the 3-test PIAT composite measure with r=0.96 for
206	the boys and $r=0.97$ for the girls in middle childhood.
207	Socioeconomic Status
208	The composite family socioeconomic (SES) index was the average
209	of z-scored educational attainment and income. Education was a measure of
210	mothers' highest grade completed, for each survey year. Data was not
211	available for fathers' education. Income was a measure of total net
212	household income from all sources from both the mother and her partner,
213	for each survey year. A separate SES variable was created for each age
214	group.
215	Analyses
216 217	A series of linear regression analysis were run across middle
218	childhood, late childhood, early adolescence and middle adolescence to
219	answer the following questions.
220 221 222	1a. Is childhood IQ associated with BMI, upon adjusting for the child's age?
223 224 225	1b. Is this association significant upon further adjustment for mother's IQ, mother's pre-pregnancy BMI, and family SES?
223 226 227 228	2a. Is maternal IQ associated with offspring's BMI, upon adjusting for the offspring's age?
229 230 231 232	2b. Is this association significant upon further adjustment for offspring's own IQ, their mother's pre-pregnancy BMI, and family SES?
232	3. Do these associations vary by sex and ethnic group?
234 235	We analyzed the sexes separately because previous studies have
236	found the IQ-BMI association to be stronger in females than in males (7,12).

237 Ethnicity is a known covariate of childhood BMI (39-41) so we also 238 analyzed the ethnic groups separately. The non-Blacks and non-Hispanics 239 made up the largest ethnic group so they were used as the reference group. 240 All measures were normally distributed. 241 242 To test whether or not early life environmental factors, other than 243 maternal pre-pregnancy BMI, confounded or mediated the 244 offspring/maternal IQ-BMI association, we ran an additional set of analyses 245 that included adjustment for birth weight, gestation length, and infant 246 feeding (42-44). 247 248 Family SES was adjusted for because previous studies have found 249 indicators of family SES (i.e. parental education, occupation, and/or 250 income) to be negatively associated with childhood BMI (45 - 47). To 251 account for inflation, we also adjusted for the year that income was 252 recorded. Goldberg (12) found evidence of an interaction effect between 253 childhood intelligence and SES on childhood BMI such that the associations 254 between lower intelligence and an increased risk of being obese were 255 stronger for adolescents from a high SES (OR 1.61) than a low SES (OR 256 1.28); therefore, we tested for an interaction to see if the relationship 257 between childhood intelligence and offspring BMI varied by family SES. 258 259 Offspring's intelligence and BMI were taken from the same age 260 group for all of the offspring IQ-BMI analyses except for the analyses for 261 middle adolescence (age 14-18 years) BMI, which included a measure of

262	childhood intelligence from early adolescence (age 11-13 years). Although
263	children sat the PIAT across the ages of 5 to 14, by the age of 14 the number
264	of tests that were completed dropped and approximately 50% of values were
265	missing. No PIAT scores that were recorded in middle adolescence were
266	included in the analyses. To test for a nonlinear association between IQ and
267	BMI, mothers' squared AFQT score and offspring's squared PIAT score
268	were included in the models.
269	
270	Additional sets of multinomial logistic regression analyses tested the
271	above associations between intelligence and BMI category, across age
272	group, ethnicity and sex.
273	
274	Code availability
275	The STATA-13 code used in the present study is available upon
276	request.
277	Results
278	The original sample consisted of 4,932 mothers and 11,512
279	offspring, 51% were boys (n=5,876). The different sets of analytical
280	samples for each age group were based on the mothers and their offspring
281	who had complete data for the mothers' IQ, family SES, pre-pregnancy
282	BMI, and offspring's age, IQ, and BMI, separately, for each age and ethnic
283	group (Table 1 & 2). BMI varied significantly by ethnic group. Non-Black
004	

285 lowest percentage of overweight and obese youth (Table S2).

289	(boys). The majority of the covariates were significantly correlated with
290	each other and with offspring BMI.
291	
292	Girls' linear regression results
293	
294	The top of table 3 displays the results of the linear regression for non-
295	Black and non-Hispanic girls' BMI on their own IQ and their mothers' IQ,
296	with and without with adjustment for potential confounding and/or
297	mediating factors. In the age-adjusted analyses, mothers' IQ was negatively
298	associated with daughters' BMI in both childhood and adolescence (Table
299	3). The associations ranged from beta=-0.08 in middle childhood to beta=-
300	0.20 in middle adolescence, per standard deviation increment in mothers'
301	IQ. In the fully adjusted models, all four of the maternal IQ-BMI
302	associations remained significant and there was little change in effect size
303	(Figure 1). For the result of the age-adjusted analyses of non-Black and non-
304	Hispanic girls IQ-BMI association, a negative linear association was found
305	in middle adolescence (beta=-0.10). There was also a curvilinear
306	association in middle childhood (linear beta 0.07, non-linear beta=-0.05). A
307	standard deviation increment in IQ was associated with a higher BMI up
308	until the average IQ score; beyond this point a standard deviation increment
309	in IQ was associated with a slightly decreasing BMI. In the fully adjusted
310	analyses, the linear association was attenuated to the null but the non-linear
311	association remained significant (Figure 1). There were no other significant

287 The correlations between the offspring BMI and the study covariates 288 are displayed in Supplementary Table 3 (girls) and Supplementary Table 4

- 312 maternal/offspring IQ-BMI associations for non-Black and non-Hispanic313 girls.
- 314

315	Some of the significant results for the Black and Hispanic girls differed
316	from the non-Black and non-Hispanic girls' results. See Table 4 for a
317	summary of these results and Table S5 for the full results. In the age-
318	adjusted analyses for the Black ethnic group, there was a curvilinear
319	association between mothers' IQ and daughters' BMI in middle (linear
320	beta=-0.21, non-linear beta=-0.14) and late (linear beta=-0.18, non-linear
321	beta=-0.16) childhood and a curvilinear association between girls' own IQ
322	and BMI in early (linear beta=-0.11, non-linear beta= -0.09) and middle
323	adolescence (linear beta=-0.25, non-linear beta=-0.07). All four of these
324	non-linear associations remained significant in the fully adjusted models
325	(Figure 1). For the girls in the Hispanic ethnic group, a standard deviation
326	increment in girls' IQ and mothers' IQ was negatively associated with girls'
327	BMI in adolescence. Each of these IQ-BMI associations were attenuated to
328	the null in the fully adjusted analyses (Table 4 & Tables S5).
329	
330	Boys' linear regression results
331	
332	The bottom of Table 3 displays the results of the linear regression for
333	non-Black and non-Hispanic boys' BMI on their own IQ and their mothers'
334	IQ, with adjustment for potential confounding and mediating factors. A

- 335 standard deviation increment in mothers' IQ was negatively associated with
- 336 sons' BMI in middle childhood (beta=-0.11) in the age-adjusted analysis.

This association was attenuated to the null in the fully adjusted analysis. A
SD increment in boys' IQ was positively associated with their BMI in early
adolescence (beta=0.09) in the fully adjusted model but not the baseline
model (Figure 1). There were no other significant maternal/offspring IQBMI associations for non-Hispanic & non-Black boys.

342

343 Some of the significant results for the Black and Hispanic boys 344 differed from the non-Black and non-Hispanic boys' results (Table 4 & 345 Table S5). For boys in the Black ethnic group, a standard deviation 346 increment in mothers' IQ was positively associated with sons' BMI in late 347 childhood and across adolescence in the age-adjusted analyses. These 348 associations were attenuated in the fully adjusted analyses and only 349 remained significant in early adolescence (beta=0.17) (Figure 1). For boys 350 in the Hispanic group, a standard deviation increment in boys' IQ was 351 positively associated with their BMI in late childhood in the age-adjusted 352 analysis. In the fully adjusted analysis, the association in late childhood 353 increased in size (beta=0.19) and the association in early adolescence 354 became significant (beta=0.17) (Figure 1). 355 356 In the analyses described above, we did not examine the independent 357 role played by family SES and pre-pregnancy BMI in the maternal/offspring 358 IQ-BMI association. It is unlikely that pre-pregnancy BMI mediated the

relationship between mothers' IQ and offspring BMI because in this sample

360 pre-pregnancy BMI was not associated with mothers' early life IQ.

362	There was essentially no evidence of an interaction between
363	maternal/offspring IQ and family SES on offspring's BMI (data not shown).
364	
365	We repeated the linear regression analyses including adjustment for
366	birth weight, gestation and infant feeding but including these covariates had
367	little or no impact on associations between maternal IQ and offspring BMI
368	(data not shown).
369	
370	Multinomial regression results
371	
372	The results of the multinomial regression analyses of the association
373	between IQ and BMI category are shown in supplementary Table S6 (girls)
374	and supplementary Table S7 (boys). The results are generally in
375	agreement with the linear regression analyses. In the fully adjusted
376	model, a SD increment in maternal IQ was associated with lower odds of
377	having obese daughters for the non-Black and non-Hispanic ethnic group in
378	each age group except for late childhood. The odds ratios ranged from 0.59
379	(95% CI 0.41 to 0.83, p=0.003) in early adolescence to 0.61 (95% CI 0.44 to
380	0.84, p=0.003) in middle childhood, in the fully adjusted model (Table S6).
381	For the black ethnic group, a standard deviation increment in mothers' IQ
382	was associated with increased odds of having an overweight son (OR=1.35,
383	95% CI 1.01 to 1.80, p=0.046) in early adolescence after adjusting for
384	covariates (Table S7).
385	
386	

387 Discussion

388	We examined the associations between maternal and offspring IQ
389	and offspring BMI in youth. Looking first at girls, higher maternal IQ was
390	associated with lower BMI in all age groups in the non-Black and non-
391	Hispanic ethnic group. By contrast, there was no association between
392	maternal IQ and offspring BMI in the Hispanic group after adjustment for
393	covariates, and in the Black ethnic group, associations were curvilinear and
394	only present in childhood. The association between girls' IQ and BMI was
395	curvilinear in the Black ethnic group, across adolescence, and in the non-
396	Black and non-Hispanic ethnic group, in middle childhood. There were no
397	associations between girls' IQ and BMI in the Hispanic ethnic group, after
398	adjusting for covariates.

399

400 Looking at the results for the boys, higher maternal intelligence was 401 associated with higher BMI in the Black ethnic group, in early adolescence, 402 after adjusting for covariates. There were no associations between maternal 403 IQ and sons' BMI in the Hispanic ethnic group or in the non-Black and non-404 Hispanic ethnic group in the fully adjusted analyses. Upon adjustment for 405 the study covariates, higher offspring IQ was associated with higher BMI 406 for boys in the non-Black/non-Hispanic group in early adolescence and for 407 boys in the Hispanic ethnic group in late childhood and early adolescence. 408 Boys' IQ was not associated with their BMI in the Black ethnic group. 409 410 Many of the results from the linear regressions were also observed in

411 the multinomial logistic regressions; however, there were some results that

were present in the latter but not the former. The observed discrepanciescould be due low power across certain BMI categories.

414

The observed trans-generational maternal IQ-offspring BMI association was novel to this study. The positive IQ-BMI association for boys and the curvilinear association for girls were also findings that were novel to the present study. These observations were not consistently found across age group and ethnicity.

420

421 The heterogeneous relationships between maternal/offspring IQ and 422 offspring BMI that were found across ethnicity and sex could be due to 423 ethnic differences in the values underlying diet, exercise, and gender role, 424 and whether or not being overweight or obese is thought to be associated 425 with adverse health effects (39). Ideal body shape is known to vary across 426 ethnic group and sex. For instances the ideal body shape for Black women 427 is larger than it is for non-Hispanic white women (39,48). The observed 428 offspring/maternal IQ and BMI relationships could be explained by 429 offspring achieving the body shape that is valued for their sex and by their 430 ethnic group, via their own or their mothers' intelligence (39, 48). More 431 intelligent mothers' and more intelligent children could have higher health 432 literacy, which helps them to achieve their ideal BMI (39, 48). This line of 433 reasoning is partly supported by studies that have found health literacy to be 434 related to adolescent BMI (49) and other work, which has conceptualized 435 health literacy as a specialized domain of cognitive ability (50).

437	The association between maternal/offspring IQ and BMI could also
438	be partly due to genetic factors. Marioni et al. (10) found seven genetic
439	variants that were associated with BMI and intelligence, correlations ranged
440	from -0.51 to -0.10. This would probably only explain some of the observed
441	negative IQ-BMI associations.
442 443 444 445 446	Strengths & limitations This present study had several strengths. First, the IQ-BMI
447	associations were analyzed at four different stages of youth instead of at a
448	single year of age, which previous studies have done (5,12-15,17,18).
449	Second, the associations of interest were analyzed in girls and boys
450	separately, which was done in some (12,15,19) but not in other previous
451	studies (5, 13,16-18). Third, we analysed the IQ-BMI association separately
452	by ethnic group categories, where as other studies only adjusted for
453	ethnicity (5, 17, 20). This was valuable as it demonstrated that the IQ-BMI
454	association varied by ethnic group. Fourth, this study included continuous
455	measures of intelligence and BMI as well as information on BMI by
456	category. Several previous studies only treated intelligence and/or BMI as a
457	categorical variable (7,13,12,16). Fifth, the analyses were based on the
458	NLSY, which is a large inter-generational sample of mothers and their
459	children that are representative of the American population.
460	
461	The present study had some limitations. First, it did not include a
462	measure of fathers' IQ or education. Second, BMI is limited as a measure of
463	adiposity because it does not distinguish between fat and lean muscle mass

464	(51). Third, mothers' pre-pregnancy BMI and, in many cases, offspring's
465	BMI was derived from mothers' self-reports of height and weight. Mothers
466	tend to overestimate the BMI of their children who are under the age of 12
467	and underestimate the BMI of their older children (52,53). Due to low
468	numbers, it was not possible to restrict the analyses to those whose BMI was
469	derived from measured height and weight (Table S1). It is unlikely that self-
470	reports of maternal pre-pregnancy BMI biased the results because these tend
471	to be valid reports of BMI (54). Mothers may also have been biased
472	towards reporting more socially desirable height and weight for their
473	children based on their ethnicity and the child's sex (55). While this might
474	bias ethnic differences in BMI, it is less likely to bias the association of IQ with
475	BMI. Fourth, physical activity was not included as a covariate as it was not
476	measured consistently across all survey years. Fifth, due to the large
477	amount of missing data we did not include measures of offspring's mental
478	health as a covariate.
479	
480	In conclusion, the findings from this study suggest that both

481 mothers' intelligence and offspring's intelligence may lie on the pathway
482 that influences BMI in youth but the strength and direction of the
483 associations vary by sex, ethnicity and age group. Future studies could
484 investigate the factors that underlie the observed differences in the IQ485 childhood BMI relationship. Childhood obesity interventions may benefit
486 from acknowledging the heterogeneous influence that intelligence has on
487 childhood BMI.

- 489 Supplementary information is available at the International Journal
- 490 of Obesity's website.
- 491
- 492

493		References
494		
495	1.	Ogden CL, Carroll MD, Kit BK, Flegal KM, Prevalence of childhood
496		and adult obesity in the United States 2011-2012 J Am Med Assoc
497		[Internet] 2014:311:806–14 Available from:
498		http://www.nchi.nlm.nih.gov/nuhmed/24570244
490	r	National Contor for Health Statistics, United States, 2011; With
499	۷.	National Center for freature statistics, Onited States, 2011. With
500		special features on socioeconomic status and health. [Internet]. vol.
501		No. 2003 Hyattsville, MD; 2012. Available from:
502		http://www.cdc.gov/nchs/hus.htm
503	3.	Pulgarón ER. Childhood Obesity: A Review of Increased Risk for
504		Physical and Psychological Co-morbidities. Clin Ther. 2013;35(1):1–
505		21.
506	4.	Freedman DS, Mel Z, Srinivasan SR, Berenson GS, Dietz WH.
507		Cardiovascular Risk Factors and Excess Adiposity Among
508		Overweight Children and Adolescents : The Bogalusa Heart Study. J
509		Pediatr. 2007.
510	5.	Li Y, Dai Q, Jackson JC, Zhang J. Overweight Is Associated With
511		Decreased Cognitive Functioning Among School-age Children and
512		Adolescents. Behav Psychol. 2008;16(8):1809–15.
513	6.	Guo SS. Chumlea WC. Roche AF. Predicting overweight and obesity
514		in adulthood from body mass index values in childhood and
515		adolescence Am I Clin Nutr 2002.76
516	7	Chandola T. Deary II. Blane D. Batty GD. Childhood IO in relation
517	7.	to obesity and weight gain in adult life: the National Child
518		Development (1958) Study Int I Obes (Lond) 2006:30:1422–32
510	8	Batty GD Gale CR Mortensen I H Langenberg C Shinley MI
520	0.	Deary II. Pre-morbid intelligence, the metabolic syndrome and
520		mortality: The Vietnam Experience Study, Dishetalogia
521		montanty. The vietnam experience study. Diabetologia. $2008.51(2).426.42$
522	0	2008,51(5).450-45.
523	9.	Lawlor D a, Clark H, Davey Smith G, Leon D a. Childhood
524		intelligence, educational attainment and adult body mass index:
525		findings from a prospective cohort and within sibling-pairs analysis.
526		Int J Obes (Lond). 2006;30(12):1758–65.
527	10.	Marioni RE, Yang J, Dykiert D, Mõttus R, Campbell A, Group
528		CCW, et al. Assessing the genetic overlap between BMI and
529		cognitive function. Mol Psychiatry. 2016;(August 2015):1–6.
530	11.	Rosenblad A, Nilsson G, Leppert J. Intelligence level in late
531		adolescence is inversely associated with BMI change during 22 years
532		of follow-up : results from the WICTORY study. Eur J Epidemiol.
533		2012;27:647–55.
534	12.	Goldberg S, Werbeloff N, Fruchter E, Portuguese S, Davidson M,
535		Weiser M. IO and obesity in adolescence: a population-based, cross-
536		sectional study. Pediatr Obes [Internet], 2013;9(6):419–26. Available
537		from: http://doi.wilev.com/10 1111/i 2047-6310 2013 00203 x
538	13	Maavan L. Hoogendoorn C. Sweat V. Convit A. Disinhibited Fating
539	19.	in Obese Adolescents Is Associated With Orbitofrontal Volume
540		Reductions and Executive Dysfunction Rehav Psychol
541		2011.10.1382_7
542	1/	Liang I Matheson B Kaye W Boutalle K Neurocognitive correlates
512	ıт.	Drang s, manoson D, Kayo W, Doulone K. Meurocognitive conclates

543		of obesity and obesity-related behaviours in children and adolescents.
544		Int J Obes. 2014;38(4):494–506.
545	15.	Gunstad J, Spitznagel M, Paul RH, Cohen RA, Kohn M, Luyster FS,
546		et al. Body mass index and neuropsychological function in healthy
547		children and adolescents. Appetite. 2008;50:246-51.
548	16.	Krombholz H. The motor and cognitive development of overweight
549		preschool children. Early Years. 2012;32(1).
550	17.	Davis C, Cooper S. Fitness, Fatness, cognition, behaviour, adn
551		academic achievment among overweight children: Do cross-sectional
552		associations correspond to exercise trial outcomes? Prev Med.
553		2011;52(Suppl 1):1–13
554	18.	Parisi P, Verrotti A, Paolino MC, Miano S, Urbano A, Bernabucci M,
555		et al. Cognitive Profile, Parental Education and BMI in Children:
556		Reflections on Common Neuroendrocrinobiological Roots. J Pediatr
557		Endocrinol Metab. 2010;23:1–9.
558	19.	Belsky DW, Caspi A, Goldman-Mellor S, Meier MH, Ramrakha S,
559		Poulton R, et al. Is obesity associated with a decline in intelligence
560		quotient during the first half of the life course? Am J Epidemiol.
561		2013;178(9):1461–8. Available from:
562		http://www.ncbi.nlm.nih.gov/pubmed/24029684
563	20.	Afzal AS, Gortmaker S. The Relationship between Obesity and
564		Cognitive Performance in Children: A Longitudinal Study. Child
565		Obes. 2015;11(4):466–74.
566	21.	Jelenkovic A, Silventoinen K, Tynelius P, Rasmussen F. Association
567		of paternal IQ in early adulthood with offspring mortality and
568		hospital admissions for injuries : a cohort study of 503 492 Swedish
569		children. J Epideiol Community Heal. 2014;68:679–82.
570	22.	Whitley E, Gale CR, Deary IJ, Kivimaki M, Singh-manoux A, Batty
571		GD. Influence of maternal and paternal IQ on offspring health and
572		health behaviours : Evidence for some trans-generational associations
573		using the 1958 British birth cohort study. Eur Psychiatry.
574		2013;28(4):219–24. Available from:
575	• •	http://dx.doi.org/10.1016/j.eurpsy.2012.01.005
576	23.	Li C, Goran MI, Kaur H, Nollen N, Ahluwalia JS, Goran MI, et al.
577		Developmental Trajectories of Overweight During Childhood : Role
578		of Early Life Factors. Obesity. 2007;15(3).
579	24.	Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A,
580		Suderman M, et al. Maternal pre-pregnancy BMI and gestational
581		weight gain, offspring DNA methylation and later offspring
582		adiposity: Findings from the Avon Longitudinal Study of Parents and
583		Children. Int J Epidemiol. 2015;44(4):1288–304.
584	25.	Heude B, Thiebaugeorges O, Goua V, Forhan A, Kaminski M,
585		Foliguet B, et al. Pre-pregnancy body mass index and weight gain
586		during pregnancy: Relations with gestational diabetes and
587		hypertension, and birth outcomes. Matern Child Health J.
588	26	2012;16(2):355–63.
589	26.	Bureau of Labor Statistics, U.S. Department of Labor. National
590		Longitudinal Survey of Youth 19/9 cohort, 19/9-2012 (rounds 1-26).
591		Produced and distributed by the Center for Human Resource
592		Research, The Ohio State University. Columbus, OH: 2012. [cited

3	2015 Apr 10]. Available from:
ŀ	https://www.nlsinfo.org/investigator/pages/login.jsp?p=timeout
5 27.	Wraw C, Deary IJ, Der G, Gale CR. Intelligence Intelligence in youth
5	and mental health at age 50. Intelligence [Internet]. 2016;58:69–79.
7	Available from: http://dx.doi.org/10.1016/j.intell.2016.06.005
3 28.	Bureau of Labor Statistics, U.S. Department of Labor. National
)	Longitudinal Survey of Youth 1979 Children and Young Adults
)	1986-2010. Produced and distributed by the Center for Human
L	Resource Research, The Ohio State University. Columbus, OH. 2012.
2	Available from: http://www.bls.gov/nls/nlsy79ch.htm
3 29.	Rubin C, Maisonet M, Kieszak S, Monteilh C, Holmes A, Flanders
ŀ	D, et al. Timing of maturation and predictors of menarche in girls
5	enrolled in a contemporary British cohort. Paediatr Perinat
5	Epidemiol. 2009;23:492–504.
7 30.	Monteilh C, Kieszak S, Flanders WD, Maisonet M, Rubing C,
3	Holmes A, et al. Timing of maturation and predictors of Tanner stage
)	transitions in boys enrolled in a contemporary British cohort. Paediatr
)	Perinat Epidemiol. 2010;25:75–87.
31.	Weight Gain During Pregnancy: Reexamining the Guidelines. 2009.
2	Institute of Medicine of the National Academies
3 32.	Rogol AD, Clark PA, Roemmich JN. Growth and pubertal
ŀ	development in children and adolescents : effects of diet and physical
5	activity 1 – 4. Am J Clin Nutr. 2000;72.
5 33.	Spencer EA, Appleby PN, Davey GK, Key TJ. Validity of self-
7	reported height and weight in 4808 EPIC – Oxford participants.
}	Public Health Nutr. 2001;5(4):561–5.
9 34.	Cole T, Vidmar S, Carlin J, Hesketh K. Standardizing anthropometric
)	measures in children and adolescents with new functions for egen.
L	STATA J. 2004;4(1):50–5.
2 35	Maier, M. H. (1993). Military Aptitude Testing: The Past Fifty Years
3	(Technical Report No. 93-007). Monterey, CA.
ł 36.	Welsh, J., Kucinkas, S., & Curran, L. (1990). Armed Service
5	Vocational Battery (ASVAB): Integrative Review of validity STudies.
5	San Antonio Texas.
<i>y</i> 37.	Herrnstein, R., & Murray, C. (1994). The Bell Curve: Intelligence
3	and Class Structure in American Llfe. New York: The Free Press.
)	Retrieved from
)	http://www.rasmusen.org/xpacioli/bellcurve/bellcurve.htm
38.	Barker PC, Mott FL. NLSY Child Handbook 1989: A Guide &
2	Resource Document. Columbus, Ohio; 1989.
3 39.	Caprio S, Daniels S, Drewnowski A, Kaufman F, Palinkas L,
ŀ	Rosenbloom A, et al. Influence of Race, Ethnicity, and Culture on
5	Childhood Obesity : Implications for Prevention adn Treatment: A
5	consensus statement of shaping america's health and the obesity
7	society. 2008;31(11).
3 40.	Dixon B, Peña M, Taveras E. Lifecourse approach to racial / ethnic
)	disparities in childhood obesity. Adv Nutr. 2012;3(1):73-82.
) 41.	Martinson, M. L., McLanahan, S., & Brooks-Gunn, J. (2015).
L	Variation in Child Body Mass Index Patterns by Race/Ethnicity and
2	Maternal Nativity Status in the United States and England. Maternal
	 27. 28. 29. 30. 31. 32. 33. 34. 35 36. 37. 38. 39. 40. 41.

643		and Child Health Journal, 19(2), 373–380.
644		http://doi.org/10.1007/s10995-014-1519-7
645	42.	Eriksen, H. L. F., Kesmodel, U. S., Underbjerg, M., Kilburn, T. R.,
646		Bertrand, J., & Mortensen, E. L. (2013). Predictors of intelligence at
647		the age of 5: Family, pregnancy and birth characteristics, postnatal
648		influences, and postnatal growth, <i>PLoS ONE</i> , 8(11), 1–8.
649		http://doi.org/10.1371/journal.pone.0079200
650	43.	Zhang, L., Himes, I. H., Guo, Y., Jiang, L., Yang, L., Lu, O.,, Shi, S.
651		(2013), Birth Weight, Growth and Feeding Pattern in Early
652		Infancy Predict Overweight /Obesity Status at Two Years of Age:
653		A Birth Cohort Study of Chinese Infants, <i>PLoS ONE</i> , 8(6), 4–11.
654		http://doi.org/10.1371/journal.none.0064542
655	44	Der G Batty G D & Deary I I (2006) Effect of breast feeding
656	1 1.	on intelligence in children: prospective study sibling pairs analysis
657		and meta-analysis <i>BMI (Clinical Research Ed.)</i> 333(7575) 945
658		http://doi.org/10.1136/bmi.38978.699583.55
659	45	Shrewshury V Wardle I Socioeconomic Status and Adinosity in
660	10.	Childhood · A Systematic Review of Cross-sectional Studies 1990 –
661		2005 Obesity 2008:16(2)
662	46.	Howe LD. Tilling K. Galobardes B. Smith GD. Ness AR. Lawlor
663		DA. Socioeconomic disparities in trajectories of adiposity across
664		childhood. Int J Pediatr Obes. 2011:(6):144–53.
665	47.	Wang YF. Cross-national comparison of childhood obesity: the
666		epidemic and the relationship between obesity and socioeconomic
667		status. Int J Epidemiol. 2001;30(5):1129–36.
668	48	Townsend, C., Takishima-Lacasa, J. Y., Latner, J. D., Grandinetti,
669		A., & Keawe'aimoku Kaholokula, J. (2014). Ethnic and gender
670		differences in ideal body size and related attitudes among Asians,
671		Native Hawaiians, and Whites. Hawai'i Journal of Medicine &
672		Public Health: A Journal of Asia Pacific Medicine & Public Health,
673		73(8), 236–243. Retrieved from
674		http://www.ncbi.nlm.nih.gov/pubmed/25157324
675	49.	Chari R, Warsh J, Ketterer T, Hossain J, Sharif I. Association
676		between health literacy and child and adolescent obesity. Patient
677		Educ Couns [Internet]. 2014;94(1):61–6. Available from:
678		http://dx.doi.org/10.1016/j.pec.2013.09.006
679	50.	Reeve CL, Basalik D. Is health literacy an example of construct
680		proliferation? A conceptual and empirical evaluation of its
681		redundancy with general cognitive ability. Intelligence [Internet].
682		2014;44:93–102. Available from:
683		http://dx.doi.org/10.1016/j.intell.2014.03.004
684	51.	Willet WC. Anthropometric measures and body composition.
685		Nutritional Epidemiology, 2 nd edn. Oxford University Press. New
686		York, 1998, pp 244-272.
687	52.	Weden, M. M., Brownell, P. B., Rendall, M. S., Lau, C., Fernandes,
688		M., & Nazarov, Z. (2013). Parent-reported height and weight as
689		sources of bias in survey estimates of childhood obesity.
690		American Journal of Epidemiology, 178(3), 461–473.
691		http://doi.org/10.1093/aje/kws477
692	53.	Akinbami, L. J., & Ogden, C. L. (2009). Childhood overweight

693		prevalence in the United States: the impact of parent-reported
694		height and weight. Obesity (Silver Spring, Md.), 17(8), 1574–1580.
695		http://doi.org/10.1038/oby.2009.1
696	54.	Natamba, B. K., Sanchez, S. E., Gelaye, B., & Williams, M. A. (2016).
697		Concordance between self-reported pre-pregnancy body mass
698		index (BMI) and BMI measured at the first prenatal study contact.
699		BMC Pregnancy and Childbirth, 16(1), 187.
700		http://doi.org/10.1186/s12884-016-0983-z
701	55.	Larson, M. R. (2000). Social desirability and self-reported weight
702		and height. International Journal of Obesity, 24(5), 663–665.
703		http://doi.org/10.1038/sj.ijo.0801233
704		
705		
706		
707		
708		
709		
710		
711	The a	uthors declare no conflict of interest.
712		

- 713 714 715 716 Figure Legend
- Figure 1
- 717 Fitted estimates of the significant associations between both girls' and boys' BMI and
- 718 offspring's/maternal IQ across age and ethnic groups, adjusted for
- offspring's/maternal IQ, offspring's age at interview, maternal pre-pregnancy BMI, and SES (net family income, year income was recorded, & mothers' education). 719
- 720

	· · · · · · · · · · · · · · · · · · ·		
	Obs	Mean	SD
Total number of mothers ^a	4 932		
Total number of children ^b	11 512		
AFQT	4 680	-0.35	0.99
2.			
Mothers pre-pregnancy BMI kg/m ² ^c	9 400	22.99	4.67
Total net family income ^c			
When child was aged 5 to 7	7 275	\$45 875	\$79 241
When child was aged 8 to 10	7 281	\$48 378	\$71 180
When child was aged 11 to 13	6 818	\$53 362	\$71 509
When child was aged 14 to 18	7 003	\$60 230	\$70 839
-			
Mother's total years of education ^c			
When child was aged 5 to 7	8 296	12.63	2.45
When child was aged 8 to 10	8 295	12.63	2.48
When child was aged 11 to 13	8 096	12.72	2.52
When child was aged 14 to 18	7 278	12.85	2.49
Child's Sex			
Male	5 876		
Female	5 635		
Age groups "			
Girls	4.050	6.96	0.67
L ste skildhood (8-10 years)	4 059	0.80	0.67
Late childhood (8-10 years)	4 110	9.87	0.67
Early adolescence (11-13 years)	5 894 2 810	12.83	0.68
Middle adolescence (14-18 years)	3 810	17.06	1.03
Boys	1 2 5 2		0.67
Middle childhood (5-7 years)	4 252	6.86	0.67
Late childhood (8-10 years)	4 216	9.86	0.69
Early adolescence (11-13 years)	3 973	12.90	0.68
Middle adolescence (14-18 years)	3 966	17.05	1.04

Table 1. Descriptive statistics for sample size, AFQT, BMI pre-pregnancy, net family income, maternal education and offspring's age groups

Note.^a The total number of mothers represents the total number of mothers that participated in the Children and Young

Adults survey between the years 1986 and 2012. ^b The total number of children represents all of the children that responded to the Children and Young adult survey between the years 1986 and 2012.

^cMothers pre-pregnancy BMI, education, and income for each age group have high number of observations because these scores were recorded separately for each pregnancy/child. ^d Each child was counted once per age group. Many children were included in more than one age group.

	Non-Black & non-Hispanic	Black	Hispanic		All Ethnic Groups
Observations across ethnicity, age group, & sex		Obs (%)			
Girls					
Middle childhood	2 032 (50)	1 190 (29)	835 (21)		
Late childhood	1 992 (49)	1 286 (31)	830 (20)		
Early adolescence	1 799 (46)	1 276 (33)	818 (21)		
Middle adolescence	1 718 (45)	1 285 (34)	806 (21)		
Boys					
Middle childhood	2 166 (51)	1 196 (28)	889 (21)		
Late childhood	2 031 (48)	1 278 (30)	904 (22)		
Early adolescence	1 839 (46)	1 265 (32)	869 (22)		
Middle adolescence	1 804 (45)	1 279 (33)	883 (22)		
Mean BMI across ethnicity, age group, & sex					
	В	MI ^a mean (SD) n		ANOVA	BMI ^a mean (SD) n
Girls BMI					
Middle childhood	16.20 (2.70) n=1 947	17.08 (3.64) n=1 127	16.67 (3.27) n=782	29.08 (p<0.001)	16.55 (3.14) n=3 856
Late childhood	18.27 (3.78) n=1 944	19.56 (4.92) n=1 233	18.84 (4.31) n=804	34.81 (p<0.001)	18.78 (4.30) n=3 981
Early adolescence	20.73 (4.37) n=1 762	22.79 (5.75) n=1 243	21.73 (4.87) n=806	63.09 (p<0.001)	21.61 (5.04) n=3 811
Middle adolescence	22.90 (4.74) n=1 713	25.25 (5.84) n=1 268	23.72 (4.83) n=793	76.05 (p<0.001)	23.86 (5.25) n=3 774
Boys BMI					
Middle childhood	16.30 (2.74) n=2 085	16.75 (3.22) n=1 157	16.77 (3.40) n=860	11.83 (p<0.001)	16.53 (3.03) n=4 102
Late childhood	18.30 (3.77) n=1 980	18.83 (4.51) n=1 242	19.01 (4.20) n=865	11.43 (p<0.001)	18.61 (4.11) n=4 087
Early adolescence	20.80 (4.50) n=1 801	21.39 (5.10) n=1 234	21.32 (5.03) n=844	6.71 (p=0.001)	21.10 (4.82) n=3 879
Middle adolescence	23.83 (4.69) n=1 795	24.33 (5.19) n=1 274	24.41 (5.06) n=873	5.67 (p=0.003)	24.12 (4.95) n=3 942

Table 2 Descriptive statistics of ethnicity for boys and girls by age group and standardized BMI scores for boys and girls by age group and ethnicity

Note. The number of observations are lower in the bottom half of the table than they are in the top half of the table because some children are missing BMI measures at particular ages ${}^{a}BMI = (kg/m^{2})$, all scores are raw and un-transformed.

Table 3

Regression analyses of the relation between an SD increase in IQ and non-Black/non-Hispanic girls' and boys' BMI in childhood and adolescence adjusting for potential confounding and/or mediating variables.

meula	ling variables.												
		Middle Childhood			Late Childhood			Early Adolescence			Middle Adolescence		
		N	Beta (95% CI)	P value	Ν	Beta (95% CI)	P value	Ν	Beta (95% CI)	P value	Ν	Beta (95% CI)	P value
Girls Girls IQ													
	Baseline model	1458	0.07 (-0.01 to 0.14)	0.067	1430	-0.03 (-0.11 to 0.05)	0.473	1295	-0.07 (-0.14 to 0.01)	0.084	1193	-0.10 (-0.17 to -0.02)	0.013
	Quadratic coefficient		-0.05 (-0.10 to -0.002)	0.042									
	Fully adjusted model		0.08 (0.004 to 0.15)	0.040		0.01 (-0.07 to 0.10)	0.825		0.02 (-0.06 to 0.10)	0.572		-0.02 (-0.10 to 0.06)	0.622
	Quadratic coefficient		-0.05 (-0.10 to -0.01)	0.023									
Mothers	IQ Baseline model Fully adjusted model		-0.08 (-0.16 to -0.01) -0.14 (-0.24 to -0.05)	0.037 0.004		-0.13 (-0.21 to -0.04) -0.12 (-0.22 to -0.02)	0.002 0.021		-0.19 (-0.27 to -0.11) -0.17 (-0.27 to -0.07)	<0.001 0.001		-0.20 (-0.28 to -0.12) -0.16 (-0.26 to -0.06)	<0.001 0.002
Boys													
Boys IQ	Baseline model Fully adjusted model	1533	-0.02 (-0.09 to 0.06) 0.04 (-0.04 to 0.12)	0.691 0.304	1435	-0.04 (-0.13 to 0.04) 0.01 (-0.08 to 0.10)	0.287 0.790	1325	0.05 (-0.03 to 0.13) 0.09 (0.01 to 0.18)	0.230 0.031	1192	-0.01 (-0.08 to 0.06) 0.05 (-0.03 to 0.13)	0.772 0.229
Mothers	IQ Baseline model Fully adjusted model		-0.11 (-0.19 to -0.03) -0.09 (-0.19 to -0.02)	0.008 0.100		-0.05 (-0.13 to 0.04) -0.03 (-0.14 to 0.07)	0.279 0.535		-0.01 (-0.09 to 0.08) -0.02 (-0.12 to 0.08)	0.877 0.698		-0.03 (-0.10 to 0.05) 0.003 (-0.09 to 0.10)	0.521 0.946

 Note. *PIAT was the measure of offspring's intelligence

 b^AAFQT was the measure of mothers' intelligence

 c values that are in **bold** are statistically significant.

 Baseline Model: PIAT or AFQT & child age

 Fully adjusted Model: PIAT, AFQT, child age, mothers' pre-pregnancy BMI, family SES (net family income, year income was recorded, & maternal education).

Table 4

Summary results from the regression analyses of the relation between an SD increase in IQ and Black and Hispanic girls' and boys' BMI in childhood and adolescence upon full adjustment for PIAT, AFQT, child age, mothers' pre-pregnancy BMI, family SES (net family income, year income was recorded, & maternal education) analyses

Middle Childhood			Late Childhood			Ea	rly Adoles	cence	Middle Adolescence		
Ν	Beta	P value	Ν	Beta	P value	Ν	Beta	P value	Ν	Beta	P value
819	-0.05	0.393	886	-0.04	0.445	863	-0.12 -0.08	0.043 0.023	852	-0.22 -0.07	<0.001 0.038
	-0.20 -0.17	0.182 0.011		-0.25 -0.20	0.078 0.001		0.06	0.438		-0.04	0.610
507	0.03	0.632	534	0.10	0.143	521	-0.02	0.754	480	-0.07	0.213
	-0.09	0.399		-0.03	0.802		-0.15	0.092		-0.03	0.677
793	0.06 0.03	0.369 0.769	840	0.07 0.06	0.245 0.440	846	0.04 0.17	0.420 0.030	824	0.02 0.05	0.631 0.489
							0127	01020			
576	0.08 -0.08	0.290 0.424	552	0.19 -0.09	0.008 0.361	546	0.17 -0.07	0.014 0.448	531	0.02 -0.06	0.806 0.459
	M 819 507 793 576	Middle Chi N Beta 819 -0.05 -0.20 -0.17 507 0.03 -0.09 -0.03 793 0.06 0.03 -0.03 576 0.08 -0.08 -0.08	Middle Childhood N Beta P value 819 -0.05 0.393 -0.20 0.182 -0.17 0.011 507 0.03 0.632 -0.09 0.399 793 0.06 0.369 0.03 0.769 576 0.08 0.290 -0.08 0.424	Middle Childhood I N Beta P value N 819 -0.05 0.393 886 -0.20 0.182	Middle Childhood Late Childl N Beta P value N Beta 819 -0.05 0.393 886 -0.04 -0.20 0.182 -0.25 -0.20 -0.17 0.011 -0.20 507 0.03 0.632 534 0.10 -0.09 0.399 534 0.10 -0.03 793 0.06 0.369 840 0.07 0.06 576 0.08 0.290 552 0.19 -0.09	Middle Childhood Late Childhood N Beta P value N Beta P value 819 -0.05 0.393 886 -0.04 0.445 -0.20 0.182 -0.25 0.078 -0.17 0.011 -0.20 0.001 507 0.03 0.632 -34 0.10 0.143 -0.09 0.399 -34 0.03 0.802 793 0.06 0.369 840 0.07 0.245 0.03 0.769 552 0.19 0.008 576 0.08 0.290 552 0.19 0.008 -0.08 0.424 -0.09 0.361 0.361	Middle Childhood Late Childhood Ea N Beta P value N Beta P value N 819 -0.05 0.393 886 -0.04 0.445 863 -0.20 0.182 -0.25 0.078 -0.20 0.001 534 0.10 0.143 521 507 0.03 0.632 534 0.10 0.143 521 793 0.06 0.369 840 0.07 0.245 846 576 0.08 0.290 552 0.19 0.008 546 576 0.08 0.424 -0.09 0.361 546	Middle Childhood Late Childhood Early Adoles N Beta P value N Beta 819 -0.05 0.393 886 -0.04 0.445 863 -0.12 -0.08 -0.20 0.182 -0.25 0.078 0.06 -0.08 0.06 -0.09 0.06 0.06 0.06 0.06 -0.15 -0.02 -0.02 -0.02 -0.02 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.17 -0.17 0.04 0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.07 -0.07 -0.07 -0.0	Middle Childhood Late Childhood Early Adolescence N Beta P value N D value N	Middle Childhood Late Childhood Early Adolescence Mid N Beta P value N Beta P value N Beta P value N 819 -0.05 0.393 886 -0.04 0.445 863 -0.12 0.043 852 -0.20 0.182 -0.25 0.078 0.06 0.438 852 -0.17 0.011 -0.20 0.001 0.06 0.438 852 507 0.03 0.632 534 0.10 0.143 521 -0.02 0.754 480 793 0.06 0.369 840 0.07 0.245 846 0.04 0.420 824 576 0.08 0.290 552 0.19 0.008 546 0.17 0.014 531 -0.08 0.424 -0.09 0.361 -0.07 0.448 531	Middle Childhood Late Childhood Early Adolescence Middle Adole N Beta P value N Beta 819 -0.05 0.393 886 -0.04 0.445 863 -0.12 0.043 852 -0.22 -0.07 -0.17 0.011 -0.20 0.078 0.06 0.438 -0.04 -0.04 507 0.03 0.632 534 0.10 0.143 521 -0.02 0.754 480 -0.07 -0.03 793 0.06 0.369 840 0.07 0.245 846 0.04 0.420 824 0.02

Note. ^a PIAT was the measure of offspring's intelligence ^bAFQT was the measure of mothers' intelligence ^c Quadratic coefficient

* values that are in **bold** are statistically significant.