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1 Introduction

The discovery of the Higgs boson by the Large Hadron Collider (LHC) [1, 2], indicates that
at least one Higgs doublet must be responsible for electroweak symmetry breaking (EWSB).
However, there is no special reason why there should be only one Higgs doublet in Nature,
and it is entirely possible that there could be additional Higgs doublets, accompanied by
further Higgs bosons which could be discovered in the next run of the LHC.

The simplest example is two-Higgs-doublet models (2HDMs) [3-6]. However, 2HDMs
generally face severe phenomenological problems with flavour changing neutral currents
(FCNCs) and possible charge breaking vacua, and it is common to consider restricted
classes of models controlled by various symmetries. In 2HDMs, the full list of possible
symmetries of the potential is now known [7—10]. In 2HDMs these symmetries can be
conserved or spontaneously violated after the EWSB, depending on the coefficients of the
potential. Generalising these results to NHDMs is technically difficult, although there has
been some recent progress in this direction [11-14].

The case of three-Higgs-doublet models (3HDMs) is particularly promising for sev-
eral reasons. To begin with, it is the next simplest example beyond 2HDMs which has
been exhaustively studied in the literature. Furthermore, 3HDMs are more tractable than
NHDMs, and all possible finite symmetries (but not all continuous ones) have been iden-
tified [15]. Finally, and perhaps most intriguingly, 3HDMs may shed light on the flavour
problem, namely the problem of the origin and nature of the three families of quarks and
leptons, including neutrinos, and their pattern of masses, mixings and CP violation. Typ-
ical examples of such models that use discrete symmetries to constrain the structure of
mass matrices need several multiplets of scalar fields that also transform under the same
symmetry (for reviews, cf. [16-21]). Such models provide a motivation to study multiple
SM Higgs singlets (sometimes called “flavons” in this context) as well as electroweak dou-
blets. In the context of flavour models it is natural to consider Higgs doublets or singlets
which play the role of “flavons” and form irreducible triplets under some spontaneously
broken discrete family symmetry. Motivated by the above considerations, we shall study
CP violating potentials with both three and six Higgs doublets and singlets.

CP symmetry, which for a single field is just the combination of particle-antiparticle
exchange and space inversion, is presently known to be violated only by the weak interac-
tions involving quarks in the Standard Model (SM) [22]. The origin of the observed SM
quark CP violation (CPV) is a natural consequence of three generations of quarks whose
mixing is described by a complex CKM matrix. Although the CKM matrix can be param-
eterised in different ways, it was realised that the amount of CPV in physical processes
always depends on a particular weak basis invariant which can be expressed in terms of
the quark mass matrices [23]. Although CP is automatically conserved by the Higgs po-
tential of the SM, with more than one Higgs doublet it is possible that the Higgs potential
violates CP, providing a new source of CPV [24]. We shall be interested in cases of three
and six Higgs doublets and singlets, whose potentials are controlled by various non-Abelian
discrete symmetries which admit irreducible triplet representations. In particular we are
interested in the cases of such potentials which conserve CP explicitly, but where the vacua



of such potentials may spontaneously break CP. We shall analyse this problem using basis
independent CP-odd invariants for the following reason.

As already mentioned in the context of the CKM matrix, the study of CP is a subtle
topic because of the basis dependent nature of the phases which control CP violation.
Similar considerations also apply to the phases which appear in the parameters of the
potentials of multiple scalars. An important tool to assist in determining whether CP is
violated or not are basis independent CP-odd invariants (CPIs), whose usefulness has been
shown in the SM in addressing CP violation arising from the CKM matrix, sourced from
the Yukawa couplings. The first example of the use of such invariants was the Jarlskog
invariant [23], which was reformulated in [25] in a form which is generally valid for an
arbitrary number of generations. Generalising the invariant approach [25] and applying it
to fermion sectors of theories with Majorana neutrinos [26] or with discrete symmetries [27,
28] leads to other relevant CPIs. In extensions of the Higgs sector of the SM, the CP
violation arising from the parameters of the scalar potential can be studied in a similar basis
invariant way as for the quark sector. For example, in the general two Higgs Doublet Model
(2HDM) [24] (see [29] for a recent analysis) a CPI was identified in [30]. More generally,
applying the invariant approach to scalar potentials has revealed relevant CPIs [31-33],
including for the 2HDM [7, 34]. The basic idea is that if CP is conserved then all CPIs
vanish (and vice versa). If any single CPI is non-zero then CP is violated. Finally, CP
violating observables all have to be functions of CPIs.

In a recent paper [35] we considered yet more general Higgs potentials and adopted
the powerful method of so-called contraction matrices in order to identify and construct
new non-trivial CPIs, which we subsequently applied to potentials involving three or six
Higgs fields (which can be either electroweak doublets or singlets) which form irreducible
triplets under a discrete symmetry [35]. Having translated the well-known technique for
constructing CPIs to diagrams and contraction matrices, we applied this formalism to some
physically interesting cases which involve three or six Higgs fields which fall into irreducible
triplet representations of discrete symmetries belonging to the A(3n2) and A(6n?) series,
including A4, Sy, A(27) and A(54). We were mainly interested in the question of explicit
CP violation for such Higgs potentials, although a simple example of spontaneous CP
violation was also discussed. Here we shall be principally concerned with whether those
potentials which respect CP can lead to spontaneous CP violation. In other words we
extend our formalism by including also Vacuum Expectation Values (VEVs), obtaining
Spontaneous CPIs (SCPIs) that are non-vanishing if CP is spontaneously violated (as
considered earlier in [31, 32]).

The purpose of this paper, then, is to discuss Spontaneous CP Violation (SCPV) for
potentials involving three or six Higgs fields which fall into irreducible triplet representa-
tions of discrete symmetries belonging to the A(3n?) and A(6n?) series, including A4, Sy,
A(27) and A(54). These symmetry groups of the potentials considered in this paper are
motivated by the fact that all of them are good candidates for discrete flavour symmetries.
It should be noted that the actual symmetry of the potential can be different from the
symmetry group imposed and where this distinction is important, it will be discussed. For
each case, we write down the potential and find various global minima for different regions



of the parameter space of the potential, as recently summarised in [36]. In principle one
could test which CP symmetries are preserved by VEVs, but it can be non-trivial to know
all CP symmetries of the potential, we therefore prefer to use invariants. In each case
we shall consider CP-odd basis Invariants (CPIs) that indicate SCPV — which we refer
to as Spontaneous CP-odd Invariants (SCPIs). This builds on and was enabled by [35],
where diagrammatic methods for constructing such invariants were further developed to
the point of making them useful for the analysis of complicated example models such as
the authors have in mind for this paper. In cases where CP is preserved we give a CP
symmetry of the potential that is preserved by those VEVs, otherwise we show a non-zero
CP-odd Invariant. In models where CP is violated spontaneously, thanks to the enhanced
symmetry at high energies, the number of parameters of the model can be greatly reduced,
and thanks to the controlled breaking of CP, the strength of CPV will have to be a func-
tion of these parameters too, which relates observable low-energy phenomena to possibly
extremely high-energy parameters.

We emphasise that the work here extends the scope of the existing main models of
SCPV considered in the literature based on models with 2 Higgs doublets (2HDM) or 3
Higgs doublets (3HDM). We remark that the most general 2HDM has a sufficient number
of complex parameters to allow for explicit CPV. If a CP symmetry is imposed on the
Lagrangian in the unbroken phase, the explicit CPV disappears and spontaneous CPV
becomes possible. However, in both of those cases, when coupled to fermions, the model
gives rise to flavour-changing neutral currents. When the latter are forbidden using any
kind of symmetry, also both of explicit CPV (i.e. CPV with zero VEV) and SCPV disap-
pear. 3HDMs improve a little on the situation of the 2HDM, as both of explicit CPV and
FCNCs can be eliminated separately by CP and flavour-type symmetries, such that SCPV
is possible without FCNCs. In particular a general analysis of CP invariants in 3HDMs
suitable for SCPV does not exist, and one of the motivations of this work is to extend the
discussion of CPIs suitable for these cases. We are also interested in models with 6 Higgs
doublets (6HDM), for which the question of SCPV has not been analysed at all, and we
extend our analysis to such cases also. Specifically, we expand our analysis by considering
also the 6-Higgs potentials invariant under the discrete symmetries Ay, Sy, A(27), A(54),
A(3n?) and A(6n?) with n > 3. In very special symmetric cases a phenomenon called
geometric CP violation (GCPV) arises which means that values of complex CP-violating
phases of VEVs do no longer depend on the parameters of the potentials in the region of
the parameter space where they are minima. The only case that was known for a long time
was that of Higgs triplets of A(27) [37]. Recently, several other cases had been discussed
by [38, 39]. We shall discuss new examples of such GCPV.

It is important to further clarify which relevant results are already available in the
literature, and which we need to obtain for the first time. A complete list of possible global
minima for the Ay, Sy, A(27) and A(54) Higgs potentials with 3 Higgs fields has been
obtained by [40], which includes furthermore cases without irreducible triplets such as S3
(the Sj is itself studied in great detail in [41]). For the cases where the respective potential
is CP conserving in general (e.g. A4) [40] also verified none of these VEVs spontaneously
violate CP. While we analyse cases with 3 Higgs arranged as irreducible triplets, we go



beyond confirming the existing results for the 3-Higgs potentials with SCPIs, employing our
methodology to analyse the VEVs and CP properties of other relevant cases. We continue
by checking 3-Higgs potentials where a specific CP symmetry is imposed in addition to
a discrete symmetry for which the potential is in general CP violating (e.g. the A(27),
A(54)) — this includes the case where Spontaneous Geometrical CP Violation (SGCPV)
was first identified [37].

The layout of the paper is as follows: in section 2 we set our notation and describe
how to identify CP violation and spontaneous CP violation within the basis invariant
formalism. In section 2.3 we present the spontaneous CP invariants (SCPIs) that we will
use throughout the paper. In section 3 we list the discrete symmetry groups and the
potentials invariant under them that we consider (with one or two triplets), as well as a list
of candidate Vacuum Expectation Values (VEVs) that are global minima of some of those
potentials. In sections 4.1, and 4.2 we apply the SCPIs to the potentials invariant under
the respective symmetry groups, checking if CP is conserved when all SCPIs we calculate
vanish, and otherwise checking which of the VEVs we have found spontaneously violate
CP. For any VEVs that do violate CP, we further consider if their phases are geometrical,
i.e. if there is Spontaneous Geometrical CP Violation. Section 5 is a summary of our results
and section 6 concludes the paper.

2 CP violation

In this section we review the current understanding of CP symmetries in models of several
scalar fields.

2.1 Generalities

Usually, CP transformations are thought to act on scalars via complex conjugation of
the field itself and parity transformation of the field coordinates, combined with arbitrary
unitary basis transformations between fields with equal quantum numbers to form what is
then called generalized CP transformations. A multiplet of scalar fields ¢ = (¢1,...,¢n)
would then be to transform under such a generalized CP transformation as

o Xo*(ah) (2.1)

with a unitary matrix X and z¥ = (¢, —x). Recently, [42] re-opened the discussion about
how for complex scalars that have no charge associated to an Abelian symmetry, CP trans-
formations without complex conjugation are equivalent to such with complex conjugation,
by which only the (generalised) parity part of the transformation plays a role.

In the scalar potentials considered by us, fields are assumed, at least before symme-
try breaking, to carry some conserved U(1) charge, as happens automatically for Higgs
doublets, and imposed on EW singlets where they are considered, in the latter case pri-
marily to render the potential even. For this reason, we think that at least symmetries
of CP-type before the symmetry breaking will involve complex conjugation for the fields
considered here.



When defining a model, in principle arbitrary CP-type symmetries can just be imposed
onto a model at high energies in addition to all its other symmetries to render it explicitly
CP-conserving and in addition maybe constrain it in other ways. If the potential has
both pure flavour-type and CP-type symmetries, the notion of the consistency of these
symmetries exists [43, 44].

By this one means that only certain CP-type symmetries can be imposed onto a model
without enlarging the flavour-type symmetries of the potential. In essence, apart from
the different physical interpretation, there is no difference between flavour-type and CP
transformations, as both just relate different degrees of freedom. Consider a set of scalar
fields ¢ and its complex conjugate, and combine them as

¢ = <;> . (2.2)

When written in this way, pure flavour-type and CP-type transformations act in the fol-

avour X
¢ﬂ—><g;>¢,and¢—c—P—><£* 0>¢5. (2.3)

lowing ways:

Next, consider basis transformations U that at this stage (before symmetry breaking) only
connect fields with identical (gauge) charges and thus act in the same way as a flavour
transformation on the fields. There are some basis transformations for which UpUT is just
another group element p’. If the potential already has some CP symmetries, then such basis
transformations generate additional CP transformations without changing the flavour type
symmetry at all (and can be eliminated in the same way). The CP symmetries generated

0 uxur

Such basis transformations had been considered in [45] and have the effect of leaving the

in this way are of the form

potential form-invariant and relate different points in the parameter space of the potential.
However, an arbitrary CP transformation with matrix X, which splits into symmetric
and antisymmetric parts, X = X + X, transforms under a flavour basis transformation

as follows,
Uxut =X, 0" +UX,UT = X, + UX,UT = X, (2.5)

where in the second step U can now be chosen such that it diagonalises X while UX,U”
is still antisymmetric. Thus, always a flavour basis exists where at least for one of the pure
CP-type symmetries that are not related by flavour transformations or transformations
that leave the potential form-invariant the corresponding X can be made the sum of a
diagonal and an antisymmetric matrix. In addition, if X was symmetric from the start, it
can be made the identity matrix. This basis transformation does not change the size of the
overall symmetry of the potential which is generated by all of the above 2 x 2 block matrices
corresponding to flavour and CP transformations. Furthermore, this basis transformation
generally does not leave the flavour symmetry or the potential form-invariant. The order-4



CP symmetry discussed in [46] and [42] is of this form of a sum of a diagonal and an
antisymmetric matrix.

Arbitrary CP transformations can enlarge the pure flavour-type symmetry. The
simplest way in which imposed flavour and CP symmetries combine to a pure
flavour-transformation is

o) @) ) () e
x*0)\op ) \x*0 0 X*pX

If now X p* X™* is not another element of the imposed flavour group, the actual flavour-type
symmetry has been enlarged, and if on the other hand, for every group element g a group
element ¢’ exists such that

Xp(9)" X" =pld), (2.7)

then X is called consistent, cf. [43, 44].

In addition, it is clear that even powers of CP transformations are flavour transforma-
tions and corresponding conditions arise for (X X*)".

Next, if the imposed X was symmetric and one can use a basis transformation to go
to a basis where X = 1, combining CP and flavour transformations as above gives

0 X\[(poO 0 X 01\ (U 0\ [pO) (U 0 01
x o) \op)\x0) " \1o)\owv) o)\ ovr) 10
* k77T
:<U pOU U;?UT> (2.8)

while the original flavour transformations become UpUT and the flavour symmetry in the
basis where X = 1 is generated by all of UpUT and of U*p*U”. On the other hand, when
combined with CP with X = 1, the complete original flavour symmetry was generated by
all of p and of p*.

For CP transformations where no basis exists where X can be made the identity, the
same conditions arise, only with an additional matrix X appearing, and the full flavour
symmetry in the basis where the symmetric part of X has been made diagonal is generated
by all of UpU' and of XU*p*UT X*.

Conversely, when one assumes that the flavour symmetry is complete and the CP
part of the full symmetry is generated by a single matrix X, and as observables of CPV
are invariants under internal basis transformations, this means that for fixed flavour-type
symmetry combined with a single CP generator, the physically different CP generators are
of the form of the r.h.s. of eq. (2.5) (up to changes of the basis of the group matrices that
does not extend the flavour-type symmetry).

For models with more than one CP generator, the situation can be more complicated,
as in the basis where one of them is of the form of eq. (2.5), the other can still be arbitrary.
Unfortunately, this situation has to be outside the scope of this paper.

Later, when example potentials are studied, for chosen flavour symmetries, we still im-
pose various CP symmetries and boldly ignore the question of consistency. If the potential



invariant under the symmetry already is automatically CP invariant under some (general)
CP symmetry, then there is no doubt that the CP symmetry is consistent with the flavour
symmetry. Otherwise, the potential has explicit CPV in general and if we impose a CP
symmetry it necessarily increases the total symmetry content of the potential.! In those
cases there are situations where the CP symmetries will then enlarge the actual flavour-
type symmetry of the potential, and building a model this way is still fine, if one is aware
that the full symmetry is always generated by the 2 x 2 flavour-type and CP-type block
matrices. The first potential we discuss here where this is relevant has at least initially a
A(54) flavour symmetry and further discussion can be found in the respective section 3.1.4.
In all cases we always clearly specify the form of the potential, and when imposing a CP
symmetry, what coefficients are made to vanish or become related. In any case, of the
(imposed) CP symmetries appearing in table 6 and table 7, all are consistent in the sense
of eq. (2.7). However, in the case of X, for two triplets of A(3n?), the CP symmetry
is only consistent when considering also the U(1) x U(1) part of the flavour symmetry, as
noted again in section 3.2.2.

2.2 Spontaneous CP Violation

One of the questions we want to investigate in this paper is, when does geometrical CPV
arise spontaneously (SGCPV) — what are the conditions on the potential or on the sym-
metries of the potential? Finding more cases with SGCPV is a step in this direction. In
the literature, e.g. [37-39], geometrical CP violation has been defined as the situation when
the relative phases of a VEV become geometrical (originally denoted as “calculable” [37])
which is to mean that in the region of parameter space of the potential where this VEV is
a (global) minimum, these relative phases do not depend on the model parameters. This
criterion has two components, one, that the VEV is geometric, and second, that CP is vio-
lated spontaneously by it. Geometric CPV is theoretically appealing because the strength
of CP violation is no longer a function simply of arbitrary and at least in the near future
unmeasurable parameters and furthermore also as phases arising in geometric CPV are
stable against renormalization, as they are protected by a residual symmetry [37].

One good criterion for spontaneous violation of CP that we rely on throughout the
paper is when at least one CP-odd invariant that can indicate spontaneous CPV (see
next subsection) is non-zero. When CP is violated, then at least one CP-odd invariant
is non-zero, but it is not possible at the moment to obtain a complete list of invariants
and it is impractical to test all of them in any case. The situation would be simpler, if
one had a basis of CP-odd invariants, which is a (small) finite set of CP-odd invariants
with the property that if all of them are zero, CP is conserved. Indeed, such a basis of
CP-odd invariants is known for the 2HDM, [34], but for the more symmetric potentials we
will consider, all invariants from [34] vanish trivially without indicating CP-conservation,
because whether a set of invariants forms a basis is model-dependent, which is why in [35]
it was found necessary to find additional CP-odd invariants. Finally, if CP is conserved,

Note that additional care is required in situations where the total symmetry of the potential becomes
continuous, as this may lead to Goldstone bosons arising when the symmetry is broken.



then all CP-odd invariants (which includes all possible basis sets) vanish of course. Again,
the strength of CP-odd invariants that indicate spontaneous CP violation is that it is not
necessary to systematically know all CP symmetries of the unbroken potential, a task which
can be non-trivial.

Without SCPIs, one could also check directly whether a VEV preserves a specific CP
symmetry that leaves the potential invariant. This is arguably more direct, but it has the
significant drawback that it is not sufficient to find a CP symmetry not preserved by the
VEV for there to be CPV, but rather all CP symmetries that left the potential invariant
must be broken by the VEV. Finding all inequivalent CP symmetries that leave a potential
invariant can be non-trivial, as the above discussion elaborates, and checking each is broken
by the particular VEV is also cumbersome. Conversely, if a single CP symmetry that leaves
the (unbroken) potential invariant is preserved by the VEV, then CP is conserved (this
is a sufficient condition). This makes the direct check very convenient to confirm CP is
preserved. We now review this direct condition in a notation that follows [35]. Consider
an even scalar potential written in the following standard form,

V() = Yi0ap™ + Z% papro™ o™, (2.9)

where ¢ contains as components the components of all fields. Y and Z are tensors that
contain all allowed couplings and are subject to possible symmetries acting on . In the
following only the action of CP transformations is repeated from [35].? Assume that this
potential is CP-conserving, so in particular invariant under a set of CP transformations of
the fields, such that when one transforms the fields as in

o X, (2.10)
with a unitary matrix X, the potential is unchanged,
Vip) =V (Xe"). (2.11)
With indices explicitly shown, we write the transformation of eq. (2.10) as?

Pa F> Xaa"p*al = Z Xaa’((pa’>* (212)
a/

and for the complex conjugated field as
O s X*0 (2.13)

Note that in this notation, X*® = Xt¢e_ Denote the whole set of such X under which a
potential is invariant in the unbroken phase by X := {X}. In appendix A the traditional
argument is repeated in the notation of eq. (2.9) that a VEV v = (p) conserves CP if at
least for one of the matrices X € X holds that

Vo = X g™ . (2.14)

2The rules for indices can be summarized as follows: on ¢, (p.)* = ©**, (¢**)* = @, and on matrices,
e.g. a basis transformation U, (U,?)* = U*?,. Consequently, (Us%pp)* = U™ = (UT), .
3This is a slight improvement on the notation in [35], where CP transformations were written with one

upper and one lower index.



Inverting the argument this means that a VEV violates CP if for none of the original CP
trafos in the unbroken phase, egs. (2.12), (2.13), the previous condition can be fulfilled.*

The type of CP transformations without complex conjugation discussed in [42], while
they might be a symmetry of the neutral components of scalar fields after symmetry break-
ing, are in our case not symmetries in the unbroken phase.

2.3 Spontaneous CP invariants

From the standard form of the potential, eq. (2.9), invariants can be built in a model-
independent way that are CP-odd by construction. Model-independent here is to mean
that these invariants are constructed from the Y and Z tensor in eq. (2.9) and work for
every potential that can be put into this standard form.

Under basis transformations, the field multiplet and its conjugate transform as ¢ — U
with which the Y and Z tensor of the even potential in the standard form of eq. (2.9)
transform under basis transformations of the fields and its conjugate as

YP e Ul vy Ut (2.15)

Zv s eyl 28 oty utd, (2.16)

Additionally, VEVs transform as vectors under basis transformations,

v — U% vy and v — USv®™ (2.17)
and one can see now that every combination of Y, Z, v and v* where all indices are
correctly contracted forms a basis invariant. Complex conjugation acts on invariants by
interchanging upper and lower indices, such that the complex conjugate of a basis invariant
can be obtained by interchanging all upper and lower indices of all components. In [35],
invariants had been related to diagrams where arrows indicate index contractions and other
parts of the diagram tensors and VEVs. In that formalism, an invariant is CP-odd if the
diagram does not stay identical when inverting the direction of all arrows, which is the
diagrammatic equivalent to complex conjugation. We recall then that those basis invariant
contractions can be built into CPIs by subtracting its conjugate, for a given invariant .J,
J = J—J* is the CPI and for those relevant to SCPV we refer to J as a spontaneous CPI
(SCPI). The diagrammatic formalism furthermore allowed for a systematic search for CP-
odd invariants. In [35], all inequivalent CPIs up to some order were constructed, including
some SCPIs.

Here, all SCPIs that were listed in appendix B.5 of [35] have been evaluated for all
example potentials that will be considered in later sections. As a first example, we consider
here briefly the most general 2-Higgs Doublet Model (2HDM) potential. In our notation,
brackets indicate the SU(2) contractions e.g. (HIHl)Q = (h}lhl,l + h1’2h1’2)2, therefore

4Recently, in [47], a case was discussed where a CP-type transformation is preserved by the vev, but CP
is violated in the interplay of scalar and gauge sector.



Figure 1. The diagram corresponding to the invariant eq. (2.19). (In [35], the precise relation
between invariants and diagrams is explained.

we write the general two-Higgs-doublet (2HDM) potential as
V(Hy, Hy) = m3 H{Hy, +m?y €% HIHy+m2, e=% HIH, +m3 H]H,
2 2
+ar () +a (HiH)
+b (HlTH1> (HQTHQ) + Y (HIHQ) (Hng)
ter e (HH) (B + e e ™ (H{m) (H]H)
oo e (HYH) (HIHL) + e e (H{H) (HH)
0 AN 0 AN

+de® (H{H) +de ™ (Him). (2.18)

In it appear Hy = (hi1,h12) and Hy = (ho1, ho2), and the arbitrary coefficients a1, as,
b, b',c1, co, d. For the 2HDM, all SCPIs in [35] are non-zero although we don’t show
any as even the smallest expression is rather large. In any case they are not completely
meaningful at this stage, as the general 2HDM is explicitly CP violating. When imposing
a CP symmetry, the expression becomes meaningful — for example when imposing trivial
CP, the expression for the CP-odd invariant

__ r7a1Q2 704304 70506 *a7
J2HDM = Zgra? ZgPas Zgo08va; 0™ — c.c., (2.19)

which of the invariants tested produces the smallest non-zero expressions for the 2HDM,
becomes a function of the coefficients in the potential multiplying the VEVs in the following
combination:

Jotiom = F(a1,a2,b,b', ¢, co,d)[(ho1)(h11)* + (ha,2)(h1,2)" — h.c.] (2.20)

i.e. it correctly identifies that SCPV depends in this case on the relative phase between the
VEVs of H; and Hj (note that charge preserving VEVs correspond to (hi1) = (h21) = 0).
The diagram corresponding to this invariant is shown in figure 1. The same quadratic
VEV dependence factors out also when calculating the J1(3’2) SCPI that has 2 pairs of
VEVs, as the full expression is a more complicated quadratic function of the VEVs multi-
plying [(h21)(h1,1)* + (h22)(h12)* — h.c.]. For the more symmetric potentials considered
in the remainder, the above simple invariant vanishes trivially, i.e. without indicating CP-
conservation. We will not consider the 2HDM further and will instead use as our examples
3HDM and 6HDM potentials that are invariant under discrete symmetries.

For all potentials besides the 2HDM that we consider as examples, of the SCPIs listed

in [35] only j1(3’2) is non-zero. For this reason we drop the subscript, referring to it as
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Figure 2. The diagram corresponding to the invariant J(3:2).

Y
Y

Figure 3. The diagram corresponding to the invariant J(3:3).

JG2) (we keep the superscript to distinguish from another SCPI which we will use). The
contraction J32) of Z tensors and VEVs v out of which 732 is formed, is in terms of the
Z tensor and VEVs given by
JB = Z@1a2 gasas gasdsy, g 40Ty, (2.21)
The diagram corresponding to this invariant is shown in figure 2, where it also be seen that
it is CP-odd as the diagram with inverted arrows cannot be made identical to the original
diagram, however the dots (= Z tensors) and crosses (= VEVs) are moved around. Given
that only one of the previously constructed SCPIs is non-trivial for the potentials we are
interested in, the question arises if there is another SCPI which gives non-trivial results.
Searching for SCPIs with an additional Z tensor, i.e. considering invariants of type JZ-(4’2),
an explicit (but not systematic) search did not yield a positive answer. On the other hand,
an invariant J(®3) with an additional pair of VEVs revealed another interesting SCPI which
turned out to be sufficient for our purposes (and therefore we also do not use a subscript
to label it):
JB3) = garas zasag yaias

*ag , . ka4 ,,*%ag
al1a a3zaq a5a6va7va87)a9v v v . (222)

The diagram corresponding to this invariant is shown in figure 3.

The results of evaluating both these SCPIs for the various potentials, CP symmetries
and VEVs is summarized in section 5, including table 6 and table 7. As shown in the
following sections where different potentials are considered in detail, J1(3’3) provides us with
additional relevant information that complements what we learn from J 2. For example,
from our examples, the simplest 3 field potential that for arbitrary VEV values (which not

necessarily can be obtained from the potential) gives a non-vanishing expression for jl(g’g)
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is invariant under Sy, Vs, (¢). The SCPI J32) gives a vanishing expression independently
of the VEVs considered, whereas the expression for 733 is in general:

TG = ¢(c?—s?) [|vl 203 (052 4+052) + |va V3 (V52 +072) + v 05 (v2 +v5?) —h.c.} . (2.23)

Note that this doesn’t mean that it is possible to have SCPV in this potential, as when plug-
ging in any of the possible VEVs [40], J33) does indeed vanish, as shown in section 4.1.2
and summarised in section 5.

3 Potentials and Vacuum Expectation Values

In this paper we are mainly interested in three- and six-Higgs-doublet models, where fields
form one or two irreducible triplet representations of some discrete symmetry group. The
most complicated potentials that will be considered in this paper then describe six scalar
SU(2) 1, doublets (or if only U(1)em-preserving minima are considered, equivalently, SU(2),
singlets), and finding (global) minima can be a non-trivial task.

The aim of this section is to arrive at a list (not necessarily exhaustive, but complete
enough for further analysis) of possible VEVs of potentials of two scalar triplets of Ay, Sy,
A(27), A(54), and A(3n?) and A(6n?) with n > 3.

First, the potentials of one triplet will be re-analysed, after which the potentials of two
triplets are examined. As the aim in the next section will be to study geometrical CPV,
potentials are made CP-conserving via various additional CP symmetries.

We identify classes of potentials by the symmetry imposed by us. This differs from [40],
where potentials were identified by their full symmetry, both of flavour- and CP-type,
which was enabled by a classification of those symmetries in [15]. The full symmetry of the
potential can be different from the imposed symmetry, e.g. because cutting off the potential
at renormalisable operators can enlarge the symmetry group.

The full symmetry of the potential or of a part of it is what will be relevant in the
following, and it will hopefully always be made clear which exact symmetry is under dis-
cussion.

For SU(2);, singlets, always an additional U(1) symmetry was imposed to force the
potential to be even. In addition, to not break U(1)¢,, in a basis where at least one VEV
component of one doublet is zero, also the same component of the other doublets has to be
zero. When in a term in a potential of singlet fields the flavour indices allow for various ways
of contracting SU(2)r, indices, then if without loss of generality, the bottom component of
all doublets is set to zero, such terms in doublet potentials will coincide again.

For the aforementioned reasons the possible vacuum expectation values that don’t
break U(1)em of a doublet potential with some symmetry will be identical to those of the
corresponding singlet potential made even by an additional U(1). Some of these potentials
had been considered in [40], where also the full list of global VEVs was obtained via a
geometric method.

When searching for the minima of a potential, one is not just interested in the minimum
at some position in the parameter space of the potential, but one would ideally like to know
what the minima of the potential are in every corner of its parameter space.

- 12 —



Minima that are related by symmetries of the potential have the same energy by
definition and such sets of related VEVs are called orbits, of which a potential can have
more than one. Notably, when the symmetry of the potential is increased (of flavour- or
CP-type), this has the effect of merging orbits. Beyond this it should be noted that the
full symmetry of the VEV set is larger than that of the potential. The set of VEVs is
also invariant under transformations under which the potential was just form-invariant,
cf. [45], as such transformations connect orbits. In other words, while the symmetries of
the potential are valid at every point of the whole space of the parameters of the potential,
the set of VEVs additionally contains information about all potentials that differ by the
values of their parameters but not by their symmetries.

In the notation of section 2.2, classical minima of the potential are solutions of

0=V _ Vv 4+ 220 v*co*d (3.1)
ov;
and the corresponding conjugated equation, as well as the condition that the matrix of all
second derivatives is positive definite. The mixed derivative by VEV and conjugated VEV
would e.g. be
0*V
8’0181)*3

An alignment is basically, in accord with the literature, a VEV where one does not

= YZ + 4Z’dvbv (3.2)

care about its absolute length but only about its direction. The linear symmetries in
consideration can in any case not constrain the length of the VEV, as the overall sizes of
quadratic and quartic terms are entirely unrelated. At the end of the day one is interested in
interesting alignments, especially such that violate CP spontaneously or even geometrically.
In a following section, CP violation will be discussed in greater detail, this section focuses
on obtaining VEVs of the potentials considered in this paper.

New VEVs are generated by analysing which degrees of freedom become physical
when going from a potential with high symmetry to one with lower symmetry. Consider
a potential

V =Vg+ Vg with H C G. (3.3)

All alignments v; of potentials generally fall into orbits {H - v;}. If one considers the
subpotential Vi separately, it will have minima that again fall into orbits {G - v;}. Next,
consider Vi as terms that explicitly break the symmetry of the potential from G to H. By
this, the orbits of Viz are now split into several orbits organized by H, sometimes only a
finite number of orbits, occasionally there can be a new continuous parameter distinguishing
them. In this case the full potential can be minimized in this new parameter, which is often
possible analytically.

First, it is thus tested for potentials with one triplet of scalars, which orbits can be
obtained from the orbits of more symmetric potentials, just by applying the symmetries
of the less symmetric potential to the orbits of the more symmetric one. In this way,
degrees of freedom that were unphysical in the more symmetric potential can become
physical and after minimizing just the part of the potential that depends on these new
degrees of freedom, one obtains as global minima exactly those that had also been obtained
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in [40]. One could thus conjecture that for certain relations between symmetry groups, also
relations between the global minima of potentials with these symmetries exist which might
be made more precise.

After that, the same method is applied to obtain some of the (conjectured) global
minima of potentials of two triplets of scalars from those of potentials that are just the sum
of potentials of one triplet without cross-terms. Again this simply shows which degrees of
freedom become physical due to the reduced symmetry. Still, many new interesting global
minima are obtained, many of which are geometric and many of which will turn out to be
CP violating and especially geometrically CP violating, which constitute the first examples
of this phenomenon outside the original A(27) model and [38, 39]. The cases found here
are in particular the first new examples of geometric CPV with six scalars.

Generally, a VEV is defined as being geometric when in the region of the parameter
space of the potential where it is a (global) minimum, its direction but not its length depend
on the potential parameters, or if the potential is expressed in terms of Y and Z tensors,

= o|(Y, Z)s, (3.4)

where |v] is the length of the VEV and the only part that depends on the potential parame-
ters, and v is the normalised direction that does not depend on them. This is equivalent to
ol o

— 0 and . .
o ~ 0 an 577 =0 (3.5)

A VEV is primarily a solution of the minimisation conditions, in the notation of eq. (2.9),
given by

g(‘; — Yiv* +2Z8v0*v*? = 0 and 88(;

It is normally not possible to easily arrive at a closed form of the VEV, but it is implicitly

= Yj'vj + 2745 5dVa VbV *d, (3.6)

defined as solution of the minimisation conditions. This allows to use the theorem about
the derivatives of implicitly defined functions to arrive at a relation involving 99/9Y and
00/0Z. Call a vector of the potential parameters Z. If f(|v|,v,Z) is the implicit function
defining |v| and 0, i.e. the minimisation condition, then an expression for do/dZ, which is
identical to 00/0%, as ¥ only depends on Z, can be obtained via the differential of f:

of f
df = 8qd +8\ ’d| \+ (3.7)
from which follows .
9o (of\ ' (df _ 9f ol
97 (&3) ( > 30| 07 (3:8)

While the above is interesting and the most direct line of thought, we did not manage to
extract any practical criteria on the potential or its symmetries and do not follow it further
in this work.

We had recently listed the minima obtained in the following in a short note, [36], but
without such a detailed discussion of the derivation as given here and without considering
the effect of CP symmetries on the minima of the potentials of two triplets.

— 14 —



3.1 Potentials of one triplet
3.1.1 A(3n2) and A(6n?), with n > 3

We start with a discussion of the simplest potential considered in this paper: that of one
triplet of A(3n?), which is identical to the potential of one triplet of A(6n2).

In the notation from [48], triplets of A(3n?) can be enumerated as 3 (1), where k, | =
0,1,...,n — 1. The conjugate of 3y is 3(_,—y). For triplets in the same irrep.,

) @3ty = Beak2) +3(—k—pls + B—r—-pla- (3.9)

Here, s and a are the symmetric and antisymmetric combinations.

This potential had not been analysed in [15, 40], as the large discrete symmetry is
so constraining that the renormalisable potential ends up having a continuous symmetry:
apart from the U(1) symmetry that make the potentials even in ¢, this potential has
additional continuous symmetries, cf. eq. (3.21). The potential is

Va@n2)(#) = Va@n2) (@) = Vo(p) (3.10)

where, as it will appear in subsequent potentials, we define

2
Volp) = —m2 Y pip™ +r (Z sOisO*i) +5> (pip™)?. (3.11)
If each component of the triplet is an SU(2); doublet,
H = (hla, hQBa h3'y) 9 (312)

one additional invariant appears, due to the two different ways to perform the SU(2)
contraction on the discrete symmetry invariant (Zz goicp*i)2, when the ¢ are replaced by
Higgs doublets,’

3 [rl(hmh*m)(hjgh*jﬁ) +r2(hmh*iﬁ)(hjﬁh*ﬂ'a)] . (3.13)
i,5,0,

Here we highlight the SU(2), indices to clarify the distinct SU(2)y contractions. Then
we have

Va6n2)(H) = Va@n2y(H) = Vo(H) (3.14)
and we define Vy(H) in analogy with eq. (3.11):

Vo(H) = = md 3~ hiah™™ + 37 [r1(hiah™®) (hysh™3?) + ra(hiah™?) (hjsh )

(e 0,3,0,3

+5 Y (hiah™®)(high™™®). (3.15)

i,00

Since the doublet 2 of SU(2)r is a pseudoreal representation, it is also possible to combine
(hiah;pe*®)(R*""h*¥%¢,5) using the antisymmetric e tensor. However, such a term is not independent of
the two terms in eq. (3.13) as can be easily seen in an explicit calculation or by noting that 2 x 2 =1+ 3
which entails only two independent SU(2)r invariant quartic terms.
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The potential eq. (3.11) can be minimized analytically and one obtains for m, # 0 three
classes of non-zero VEVs that are internally related by symmetry transformations and
representatives of those classes are

v -(1,0,0), v~ (1,1,0), vz - (1,1,1), (3.16)
where ) ) )
2 My 2 My 2 My

pr— P— = . 3-17

U1 2r + 2s’ 2 4r 4 25’ Y3 6r + 2s ( )

It can be tested that for all of the alignments listed previously, regions in the parameter
space exist such that for potentials with parameters in that region, the corresponding
alignment is the global minimum of the potential.

The potential in eq. (3.11) decays into two parts, one, namely the two invariants with
parameters m, and r, invariant under all of U(3), and a second part, consisting of the
invariant with parameter s, invariant under ((U(1) x U(1)) x S3) x U(1) =: A(600%) x U(1),
where the U(1)? factor in brackets arises from sending n to infinity in A(6n2), and the
third U(1) was imposed to keep the potential even:

Vo = Vi) + 0VA(6002)xU(1)s (3.18)

where )
Vi == m ) pie™ +r (Z soiso*’) : (3.19)

and
SV (oso2)xu(1) = 5 > _(pig™)?, (3.20)

from eq. (3.11). Occasionally, the label on a potential will refer to the imposed symmetry
and occasionally, but only when talking about parts of potentials, to the full symmetry of
that part of the potential. It is hoped that it is mostly clear from context which symmetry
is meant.

The alignments of Viy3) all fall into one large orbit, represented e.g. by (1,0,0), con-
nected by arbitrary unitary transformations. The effect of the second, less symmetric, part
of the potential is that this big orbit decays into several orbits in which now not yet phases
but the direction of the VEV becomes physical.

To each of the alignments in eq. (3.16) quite a big orbit is attached, the members of
which are related by the full symmetries of the potential, both such of flavour and CP type.
The flavour symmetries of Vj are generated by

010 001 e 0 0 e 0 0 10 0
oo01],{o1o0],{0oe>*0 |, |01 0 |,]0e 0O |, (3.21)
100 100 0 0 @ 0 0e ™ 00 e™

where «, 3,7 are arbitrary phases. Additionally, the potential is automatically invariant
under canonical CP transformations, which we refer to as C'Fy. For one triplet, this
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corresponds to an X matrix

100
Xo=[010]. (3.22)
001

Note that the alignments in eq. (3.16) all conserve canonical CP (CPy). The orbits of
alignments of this potential are

et 0 0 et el
0l,len|,] o0 , e |, permut. p , e | ,permut. p . (3.23)
0 0 et 0 et

Now one could wonder into what kind of orbits the above alignments of eq. (3.23) are
bundled by applying a smaller symmetry group than A(6n%) x U(1). In other words,
one asks, which phases and permutations of the alignments of the one-triplet potential
of A(6n?), that were unphysical under the symmetries of eq. (3.21) would no longer be
unphysical, assuming for a moment that they could actually be minima of a potential with
a smaller symmetry.

3.1.2 S,
The potential of one triplet of Sy is

Vs, (@) = Vole) + Vs, xua) () (3.24)

with Vp(p) from eq. (3.11) and

SVauxu1)(©) = b (91010 0™ + 02020 0! + 300302 0*?)

+b (90*190*1903% + 2 20101 + 80*380*3902802) . (3.25)

Note that b is real. The abbreviations cycl. to denote the cyclic permutations, and h.c.
to indicate the hermitian conjugate allow us to write the potential of eq. (3.25) (and
subsequent potentials) in a more compact way:

5VS4><U(1)(</7) =b [(@upup*g@*g + Cycl.) + h.c.] , (3.26)
Vs, (0) = Volp) + b [(p19190*%0* + cycl) + hc] . (3.27)

The SU(2)1, doublet version is similar:
Ve, (H) = Vo(H) + b [(hlahmh*?’ah*w n cycl.) n h.c.] . (3.28)
a76

The flavour symmetries of the Sy potentials, eq. (3.27) and (3.28) for SU(2) singlets and
doublets respectively, are generated by

010 001 e 0 0 ~10 0 10 0
001|,l010f,{0e€e>0 |,[]010],[0-10 (3.29)
100 100 0 0 e 0 0-1 00 —1
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and in addition, the potential is automatically invariant under C'Fy. Under these symme-
tries, the elements of the orbits of the potential of one triplet of A(6n2), eq. (3.23), fall
into the following orbits:

et 1 et 1
0] —=10],[ec|—|e< | with ¢ €]0,7] (3.30)
0 0 0 0

and ‘
e 1
e | = | e | with ¢" €[0,7] and &' € [0, 27]. (3.31)
eie ez‘@’

What has happened so far is just that phases that were unphysical for A(6n?) can now be
physical. Minimizing the parts of the potential that depend on these potentially physical
phases for the various orbits yields the following possible global minima of just the phase-
dependent part, 6Vs, (1),

o
-
S
.

(3.32)
0 1 w? 0

which have been rephased into the form as they appear in [40], and where we have defined
w = e2/3, (3.33)

The above alignments obtained in this way are, maybe surprisingly, in agreement with [40].

Two questions arise now: firstly, does e.g. the potential of one triplet of S4 have global
VEVs that don’t arise from making unphysical phases in Vj(g,2) physical in 6Vg,.u(1)s
which would be in contradiction to [40], at least for the potential of one triplet of Sy?
With respect to the first question, for Sy or any of the one-triplet potentials this is not
the case. Secondly, what is the situation when going from A(6n2) to A(54), A(27) or Ay,
or from Sy to A4, or more interestingly for the actual topic of this paper, from potentials
of two copies of triplets without cross-terms to such with cross terms? We address this
second question in section 3.2.

3.1.3 Ay

The irreps. of A4 are three one-dimensional representations and a real triplet. Two triplet
products decompose as

33 = (1p+11+12+3)s+ 34, (3.34)

where subscripts s and a, denote symmetric and antisymmetric combinations respectively.
Throughout, we use the [49] basis for A4 products.

We charge ¢ under a U(1) symmetry (or a discrete subgroup) forbidding terms such
as p;; or w;p;p;, for a more direct generalisation to cases where the triplets transform
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under the SM gauge group. The renormalisable scalar potential invariant under A4 and
such a U(1) is then:

Va, () = Volp) + [c(pro19™9™ +cycl.) + he], (3.35)

with Vp(p) as defined in eq. (3.11), and where ¢ is complex in general.
This potential is automatically invariant under the CP symmetry with:

100
Xpz=|001], (3.36)
010

even for arbitrary complex coefficient c.
For SU(2)1, doublets, the potential is similar

Va,(H) = Vo(H) + 3 [c (hmhmh*?’ah*?’ﬁ + cycl.) + h.c.} . (3.37)
a,B

This potential is also invariant under a CP transformation that involves swapping the
second and third component in flavour space while keeping SU(2) 1, contractions unchanged,
i.e. hao — h*3% ete.:

100
Xh=1001|®d5. (3.38)
010

Therefore, CP is conserved automatically for this potential and all possible explicit CPIs
necessarily vanish.

One notes that the potential of one triplet of A4, egs. (3.35) and (3.37) for SU(2)
singlets and doublets respectively, is an extension of the potential of one triplet of A(3n?)
(in egs. (3.10), (3.11) and eq. (3.14), (3.15)) by a term that is invariant only under A4 xU(1):

VA4 = ‘/0 + 5‘/144><U(1)' (339)

The full flavour-type symmetries of the full potential V4, are generated by

010 e 0 0 -100 10 0
001f,] 0e>0|,]O010],|0-10], (3.40)
100 0 0 e« 0 0-1 00 —1

and in addition the potential has the CP symmetry generated by Xs3. Under these sym-
metries, the elements of the orbits of the potential of one triplet of A(6n2), eq. (3.23), fall
into the following orbits:

et 1 et 1
0—=]of,[e<] =[] with¢ €07 (3.41)
0 0 0 0
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and

ein 1
e | = | e | with ¢" €[0,7] and &' € [0, 27]. (3.42)
eié ei@’

So far this has been straightforward and one has learned that out of the orbits of the
potential invariant under A(6n?), up to two phases can become physical, which now have
to be determined by minimizing the parts of the potential that depend on them, which
happens to be exactly 0Vy4,xy(1). For example, plugging the alignment (1,€i<,,0) into
0V a,xU(1), one obtains

SVauml(L, €, 0)] = ce® + cre %<, (3.43)

which when minimizing this in ¢’ of course yields ¢’ = —Arg(c)/2 mod .

For the alignment candidate (1, e’ ew/) one obtains after a only slightly longer calcu-
lation for the phases which minimize 6V, (1) and after eliminating phase constellations
that are related by symmetries of the potential, eq. (3.40),

(¢”,0") = (0,0), (57 /3,7/3), (27 /3, 47 /3), (3.44)

which correspond to alignments of the type (1,1,1) and both of (+1,w,w?), such that with
eq. (3.41) the list of possible global alignments from [50, 51] and [40] for one triplet of A4
is completed. All of the alignments found above, in summary,

1 1 +1 1
of, 1], w ]|, |e¢ (3.45)
0 1 w? 0

have the same energy for Vj and are just further differentiated by dVy4,xu(1), as is well
known in the literature.

There are two ways in which one can reach the symmetries of the A4 potential from
the symmetries of the A(6n?) potential, namely directly and via the symmetries of the Sy
potential.

The potential of one triplet of Sy is actually contained in the potential of one triplet
of Ay:

Va, = Vo + 0Vs,xuq) + 0V, xuq) (3.46)

with 0Vg, xuq) from eq. (3.26) (with b real and the h.c. inside the bracket) and

5VA4xU(1) = (c—b) (p1919™°¢0™ + o™ 0™ + 330" ™) + h.c. (3.47)

Note that while b is real, ¢ is complex and in this expression the h.c. is outside of the
bracket. Following the same path, namely writing out the orbits of the VEVs of the Sy
potential and reducing them by the full symmetries of the A, potential, one recovers the
first three VEVs in eq. (3.45). However, there is no way of obtaining (1,e*",0)” from
the Sy x U(1) orbit of (1,4,0)T: the full symmetry of the potential invariant under Sy is
such that the orbit of (1,4,0)7 does not contain (1, eig/,O). Interestingly, this A4 VEV is
not geometric.
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3.1.4 A(27) and A(54)

As in the A4 case, we start with a single triplet of SM singlets and later consider up to two
A(27) triplets of SU(2), doublets.
A(27) has irreps. 3, its conjugate 3, and nine one-dimensional irreps. The product of
triplets decomposes as
33 = (3+3)s + 34, (3.48)

s and a are the symmetric and antisymmetric combinations, respectively.
In the basis used in [52, 53] The renormalisable scalar potential or one triplet is ,

Vaen () =Vo(e) + [d(pr1e19™¢™ + cycl) +h.e] . (3.49)

Apart from d € C, the coefficients are real. Note that this potential has no automatic CP
symmetry. In the literature, for the potential eq. (3.49), a variety of CP symmetries have
been discussed, starting with 12 CP transformations that had been found to be consistent
with A(27) in [54]. The enumeration of the X matrices here follows that paper. The full
discrete flavour symmetry of the potential invariant under A(27) is A(54) and in this case,
pairs of X matrices become related under the enlarged symmetry. In the following, the X
matrices are listed by the relation they enforce on the parameters of the potential. After
that, basis transformations that relate these CP symmetries, and their role are discussed.

e Arg(d) =0
100 100
Xo=1010 or X;=1001 (3.50)
001 010
o Arg(d) =4n/3
100 w00
Xo=1010] or Xg=1]1001 (3.51)
00w 010
o Arg(d) =2n/3
100 w200
Xs=X5=1010 or Xo=Xg=|[001 (3.52)
00 w? 010
o s=(d+d*) = 2Re(d)
111 11 1
X4:7 1ww2 or X5:X4X1:X*:7 1w2w (353)
V3 2 T3 2
1w w 1l ww
e s = —Re(d) — v/3Im(d)
i 1l ww i 1l ww
Xe=—4=|wwl or Xip=XeX1=—=|wluw 3.54
6 /3 10 651 /3 ( )
wlw ww 1
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e s = —Re(d) + v/3Im(d)

) 1 w?w? ) 1 w?w?

x ! 2 2 ! 2 2
X7:X6:% w* w? 1 or X11:X7X1:% w* 1 w (3.55)
w? 1 w? w? w? 1

We note that Xy was defined already in eq. (3.22) and X; (matching [54]) was defined
as Xo3 in eq. (3.36).

As all of the above X matrices are symmetric, there are basis transformations U; such
that in the new basis the matrix X; becomes the identity, and for X, and X3, these also

leave the potential form invariant, as was realised in [45],

100 100
Us=1010 andUs=1010]. (3.56)
00 w? 00w

There are of course also basis transformations from X4, X5, X4 to Xy, but these do not
leave the potential form-invariant. The basis transformation e.g. from X, to Xy is

1 0 0

0 01 —(=1)3% 0 0
Uy = 5 V2 V612v3 /343 0 -0 . (3.57)
1 1 0 _V3-1 1 0 01
V2 V2 V6—2v3 V3-V3
For SU(2)r, doublets, the potential is
Vaen(H) = Vo(H) + > [d (hahigh®h™ + cyel.) +he] (3.58)

a?ﬁ

For one triplet, the corresponding potentials invariant under are A(54) identical to those
invariant under A(27) [55]

Va@iay () = Vaen(e) (3.59)
Va@iay (H) = Vaen(H). (3.60)

The potential eq. (3.58) has been analysed in [40] and is the 3HDM potential with the
largest of the purely discrete symmetries (apart for the U(1) that arises from the potential
being even) for which CP may be spontaneously violated. In addition, this was the case
where so-called geometric violation was first discovered, see also section 4.1.3.

For generic values of the potential parameters, the potential violates CP explicitly.
Additional CP symmetries may be imposed that force the potential to be explicitly CP-
conserving. In [40] the two types of CP symmetry that are normally considered consistent
with the flavour-type symmetry of the potential are analysed. In [54], 12 CP symmetries
are listed as being consistent with A(27), but if considered in the A(54) context this number
reduces to 6. For example, C'Py and the C Py3 (the CP associated with Xs3) become related
by A(54). In this case, of the 6 remaining, 3 restrict the phase of parameter d in the
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potential, the remaining 3 additionally enforces an additional relation on the parameters,
such as 2s = (d + d*) if CP with X matrix

iRE
Xy=— 1w ?|, (3.61)
V3 1 w? w

is imposed. This second CP-type transformation (like X,) enlarges the flavour-type symme-
try of the potential to 3(36). It should be noted that the three CP symmetries that restrict
the phase of d are related by basis-transformations that leave the potential form-invariant,
cf. [45]. In addition, we found that the three CP symmetries that enforce 2s = d 4 d* are
also related with each other via such basis transformations, the simplest ones being for
connecting X4 with X79 and X711, respectively,

100 10 O
Up=v—-i|0w 0| and Ullz/ji 0w? 0 |. (3.62)
00w 00 w?

Furthermore, as X4 of eq. (3.61) is also symmetric, in principle a basis transformation
exists, such that in the new basis X4 would be diagonal, however this basis transformation
does not leave the potential form-invariant.

The full flavour-type symmetries of an even potential of one triplet of A(27) or one
triplet of A(54), both produce identical renormalisable potentials, are generated by

010 001 e 0 0 e2m/30 0 1 0 0
001],{fo1o0],{0e€e>0 |, 0 1 0 o€ /3 0 . (3.63)
100 100 0 0 e* 0 0ei2/3 0 0 ei27/3

Using these, the orbits of one triplet of A(6n2), eq. (3.23) become
(1,0,0), (1,€,0), (1, &) (3.64)

with g/, 8", € [0,27/3]. The CP symmetries, whether C'Py or the CP symmetry associ-
ated with X4 do at this point not further constrain the potentially physical phases. The
phases appearing here can now be physical within A(54) and need to be determined by
minimizing the parts of the potential that depend on them. Curiously, the phase dependent
part of Va(s4),

5VA(54)><U(1) = [d (golcp1g0*2g0*3 + Cycl.) + h.C.] (3.65)

yields simply zero for the alignment (1,e’,0), which already means that the phase 3’
remains unphysical. (1,1,0) could still be a local minimum of the potential, as it already
is a possible global minimum of V. When minimizing dVa 54)xu(1) with (1, e e”/), one
obtains the usual alignments of (1,1,1), (1,1,w), (1,w,w) (or for the last one equivalently
(1,1,w?)). Evaluating the potential at those alignments explains the fate of the (1,1,0)
alignment as a global minimum: 0V (s4)xu(1) always attains a negative value for at least
one of the alignments (1,1,1), (1,1,w), (1,1,w?), for any value of Arg(d). However, as
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this scales with the absolute size of d as well, (1,1,0) could still be quite a metastable
minimum. In any case, again, taking VEV candidates just from the VEV orbits of the
A(6n?) potential produces the full list of global minima that were obtained (painstakingly)
by [40], in summary:

(1,0,0), (1,1,1),(1,1,w), (1,1,w?). (3.66)

To also repeat the effect of CP transformations from [40]: with C' P, the last two VEVs
become related by symmetry and no longer represent different breaking patterns. With the
type of CP that extends the flavour symmetry to ¥(36), with matrix Xy, eq. (3.61), again
the last two VEVs in eq. (3.66) become part of the same orbit. In addition also the first
two VEVs in eq. (3.66) become part of the same orbit (separate from the last two VEVSs).

3.2 VEVs of potentials of two triplets

Typically, realistic models of flavour require more than just one triplet flavon. We therefore
consider potentials involving two physically different flavon fields ¢ and ¢’ which both
transform under a triplet representation of the symmetry groups we consider. Similarly
we also consider 6HDMs with the SU(2); doublets transforming as two triplets of the
discrete symmetries.

Potentials of two triplets consist of three parts: two sets of terms that each only
couple components of one triplet to each other on one hand, and cross terms that couple
components of different triplets to each other,

Vg, @) =V(p) + V' (¢') + Velp, ¢). (3.67)

If the two triplets transform identically under the symmetry, then V(¢) and V'(¢’) will be
functionally identical.

The orbits of minima of the potentials of single triplets are known completely for the
flavour symmetries in consideration. Similarly to potentials of one triplet, one can now
analyse which degrees of freedom of VEVs that are unphysical by the symmetry of the
two single-triplet potentials V() 4+ V'(¢’) can become physical by reducing the symmetry
either by introducing cross-terms between triplets, V.(p,¢’), or by considering a whole
potential invariant only under a smaller symmetry group.

As before, only the alignments of the VEVs are shown and for two triplets, this does
not mean that the VEVs v, vy of both triplets have to have the same length. Instead,
arbitrary lengths of both triplets are allowed and possible and generally |vi| # |va].

In the following subsections, we will consider potentials of two triplets, starting with
those invariant under A(3n?) and A(6n2) with n > 3 and then continuing to those with
smaller symmetries, all of which share certain common terms (this was already the case
for the potentials with a single triplet invariant under these groups). For this reason, it is

— 24 —



useful to define for the A(3n?) symmetries
Vi(p, @) =+71 <Z sozso*i> Z o™ | + 72 (Z %90'”> > e
, , - 7

+Slz QOZQD*ZSO; /*Z

+ 5 (s01s0*1<p’2s0’*2 + 20" 200" + 030" 1)
+1353 [(sow’*lso'zw + cycl.) — (" g% pa + Cycl-)}- (3.68)

Note that in this definition, the term multiplied by 71 contains the term multiplied by 59
as well as the term obtained from the latter by interchanging ¢ with ¢’,

(010" 020" + 09" 2 030" + P01 0*) (3.69)
which is not included separately in Ss.

Earlier, when considering a potential of one triplet of SU(2) doublets, the only differ-
ence was that the term with coefficient r split into two different invariants corresponding
to two different possible SU(2), contractions, cf. eq. (3.13). Similarly, the potential of two
triplets of SM doublets,

H = (hlom h2,37 h3’y) ) Hl ( la 257 hg’)'y) ) (370)

can be obtained from the corresponding potential of singlets, eq. (3.68). In the first two
parts of the potential, V() and Vj(¢'), as earlier, there are two different ways of SU(2) -
contracting the invariants with coefficients r and 7’. In the potential Vi(p, ¢'), there are
two possible ways of SU(2)-contracting for each invariant and therefore this part of the
potential becomes in its SU(2);, doublet version

VIH H') = 37 [Frihiah ™ Righ'™ 3 + Fiahiah9° 15h ™ |

i,5,a,8
+ Y [fglhiah’*mh;ﬂh*jﬁ +f22hiah*jah;6h’*ﬂ
i7j7a15
+ Z [gllhiah*iah;ﬁh,*iﬁ + 512hiah/*iozh{iﬁh*iﬁ:|
i,
+)° [521(h1ah*1ah/2,3hl*25 + cycl.) + 8o (1o hysh*'? + cycl.)
a’ﬁ
+id31 Y _[(hah/* " hysh™®® + cycl) — (W) ,h**P hyg + cycl.)]
a’ﬂ
+ids2 3 [(hah™ hhgh™1P + cycl) — (B %hooh™**P 1) g + cycl)].  (3.71)
a’ﬂ

As it is useful for all of the A(6n?) symmetries, we define also
Va(p,¢) = 71 (Z Wp“) Z P | + 7 (Z soiso’*i> >l
, . - F

+81Z (pir™ ™) , (3.72)
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and the SU(2)., doublet version

Va(H H') = 37 [Frnhiah* i gh" 9 4 Fiahiah/ R 57|
i7j7a’ﬂ
+ 3 [fglhmh'*mh;ﬁh*jﬂ +f22hiah*jah;6h’*i5}
i7j7a7ﬁ
+3 [guhmh*iah;ﬁh’*iﬁ n §1thh/*mh;5h*w} . (3.73)
i,

We note that one can obtain V5 from Vi by imposing
59 =383=0, (3.74)

for SU(2)r, singlets and, for SU(2);, doublets, s22 = 8§31 = 532 = 0.

As previously for one-triplet-potentials, minima of several doublets that conserve
U(1)em can be identified with the minima of the same number of singlets.

By restricting the potential with U(1) symmetries for each of the scalar fields, the
mixed terms appearing are limited to the form ¢ ¢’ ©* ¢"™*. For SU(2) doublets, it is even
sufficient to impose e.g. a Zs symmetry with non-trivial charge for only one of the two
triplets of Higgs doublets to distinguish them.

3.2.1 A(6n2) withn >3
The potentials of two triplets under A(6n2) of singlets and doublets have the form

Va(en2) (@, 9") = Vo(e) + Vo) + Vale, ¢') (3.75)
Vaen2)(H, H") = Vo(H) 4+ Vo (H') + Vo(H, H') , (3.76)

where V(¢') has the same functional form as Vy(p) with different coefficients m/,, r’, s’

and depends on ¢'. Vy(¢), Vo(H) were defined in eqs. (3.11) and (3.15), Va(p,¢’) and

Vo(H, H') were defined in eqs. (3.72) and (3.73). These A(6n?) potentials (with n > 3)

conserve CP explicitly. As the parameters are all real, one of the CP symmetries is C'F,.
The orbits of minima of a potential of one triplet of A(6n2) are (cf. eq. (3.23))

et 0 0 et el
o l.le|,[ o , e |, permut. p , e | , permut. » . (3.77)
0 0 et 0 eif

Without cross terms Va (g, '), both triplets can transform independently under A(6n2) and
thus have independent orbits. Thus, every member of each orbit may now be combined
with every other member of each orbit, but only the symmetries of the full potential of two
triplets including cross terms can be used to eliminate unphysical phases. The symmetries
of the full potential are generated by the simultaneous transformations of both triplets
under A(600?) and in addition separate U(1) phases acting on each triplet,

/

eia 1 1 eia
e ol 1 |,and | 1 |@ el : (3.78)
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as well as an overall canonical CP transformation (C'FPy). With these symmetries one
obtains the following reduction of combinations of orbits of VEVs of a potential of one
triplet of A(6n2):

(™,0,0)|(e"™",0,0) — (1,0,0)|(1,0,0) (3.79)
(e,0,0)|(0, e ,0) = (1,0,0)|(0,1,0) (3.80)
(e",0,0)|(e™, e, 0) — (1,0,0)|(1,1,0) (3.81)
(e",0,0)(0,e™, ") = (1,0,0)/(0,1,1) (3.82)
(",0,0)|(e™, ¢ ’,e ) = (1,0,0)|(1,1,1) (3.83)
(e, ¢,0)](0, e, ) = (1,1,0)](0,1,1) (3.84)
(e, €, 0)|(e™ e",0)—>(1,1,0)y(1,el< 0) (3.85)
(e",e,0)|(e™, e, ey — (1,1,0)|(1,e%< 1) (3.86)
(e, e, e®)|(e™ e ) = (1,1,1)](1, W, (3.87)

Note that at this stage orbit pairs that arise from interchanging first and second triplet
are redundant, which is why e.g. (1,1,0)|(1,0,1) is not listed. The remaining phases are
determined by minimizing the parts of the potential that depend on them and one obtains
for both of (1,1,0)|(1,€,0) and (1,1,0)|(1,€’,1) that ¢’ = 0 for %, > 0 and ¢’ = = for
ro < 0, leading to the following alignments:

(1,1,0)|(1,+1,0) and (1,1,0)|(1,£1,1) (3.88)

-~

where different sign choices correspond to different orbits. For (1,1,1)|(1,e%, e

mini-

mizing the part of the potential depending on ¢’ and 6’ produces for ro < 1 the orbit
(1,1, 1[(1,1,1) (3.89)
and for r9 > 0 the two orbits
(1,1,1)|(1,w,w?) and (1,1,1)|(1,w? w). (3.90)
To summarize all possible pairs we list them in table 1.

3.2.2 A(3n?) withn >3
Next, consider the potential of two triplets of A(3n?) with n > 3,

VA(3n2)(§07 ) Vb( ) + ‘/0,(90,) + ‘/1(907 90/)7 (391)
with V(@) and Vi(p, ¢’) defined in egs. (3.11) and (3.68) for singlets and
Vagnz) (H, H') = Vo(H) + Vg (H') + Vi(H, H') (3.92)

for doublets, where Vo (H) and Vi (H, H') were defined in egs. (3.15) and (3.71).
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1,0,0
1,0,0
1,0,0

)[(1,0,0
)
)
1,0,0)
)
)
|
|
)
|
|

0,1,0
1,1,0

—_— o~

(
(
(
(
(1,0,0 17171
(1,1,0
1
1
(1
1
1

)
)
)
)
)
0,1,1)

—_— o~

(1,
(1,

,0
,0

—_

(7
(1,

Table 1. List of VEV directions for the potential of two triplets of A(6n2), Va(en2) (@, ¢').

The orbits of VEVs of the corresponding potential of one triplet are identical to that
of one triplet of A(6n2), cf. eq. (3.77). The difference to the previous potential lies in the
fact that the full symmetries of Vj(3,2) only allow for cyclic permutations, i.e. only

1| @ 1 (3.93)

with otherwise identical phase symmetries, i.e. all simultaneous phase symmetries arising
from A(3n?), and eq. (3.78).

This potential has no automatic CP symmetry. Possible CP symmetries are overall C' Py

. 100
xge =70 ., where Xo=]010], (3.94)
0 Xo 001

and simultaneous C'Pa3, i.e. a CP symmetry acting on both triplets with

o 0 100
xXgr =7 . where Xos=]001]. (3.95)
0 Xa 010

Besides overall CFy and C'P3, we will also consider a CP symmetry, C'P,,/, with

0 10 0 100
Xpw = |77 , with X,=|0w 0], Xpy=|0w?0], (3.96)
0 Xe 00 w? 00 w
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which was found in [35] for this potential.® Under CP,, all coefficients of the potential
become real such that 53 = 0. For CP3, 53 = 0. The CP symmetry with X, ./, eq. (3.96),
relates parameters of the potential via

53 = 7y i(w—w?). (3.97)

2mi/3 we get §3 = —v/3F9. The CP transformation where the roles of the explicit

Asw=e
matrices in eq. (3.96) are exchanged enforces 33 = v/373. The effect of the CP symmetries
on the VEV orbits will be discussed at the end of this subsection.

Again, arbitrary members of the one-triplet orbits can be combined to pairs which
are combined into orbits under the symmetry of the full potential. Compared to the
potential of two triplets of A(61n2), due to the missing permutation generator in A(3n?),
several orbits split. However, again at this stage it does not make difference to interchange
the first and second triplet. For this reason apart from egs. (3.79)-(3.87), only one new

combination survives:
(€™,0,0)[(e™,0,¢") — (1,0,0)|(1,0,1). (3.98)

Furthermore, the orbits that contained continuous degrees of freedom now need to be min-
imized for the more complicated potential invariant under A(3n?). This is still analytically
possible and one obtains

(1,1,0)|(1,¢",0) and (3.99)
(1,1,0)[(1,€"", 1) (3.100)

with
¢’ = arctan(fq/33) (3.101)

a function of 53 and 7 in contrast to the situation with a A(6n?) symmetry, where ¢’ = 0, 7,
depending on the value of 75. The orbit with two phases again results in

(1,1,1)[(1,1,1), (3.102)
(1,1,1)(1,w,w?), (3.103)
(1,1, 1)](1,w?, w), (3.104)

depending on the values of 75 and 33.
To summarize all possible pairs before applying CP symmetries we list them in table 2.
Next, consider the effects of the various CP symmetries on the orbits. For CPp,
nothing happens to the orbits with real representatives. §3 = 0, so ¢’ becomes +7/2 and
thus ¢’ = 4. Furthermore, the orbits (1,1,1)](1,w,w?) and (1,1,1)|(1,w?,w) merge. For

5This CP symmetry is not consistent with the A(3n?) part of the flavour symmetry acting on both
triplets simultaneously. However, under the action of the two independent U(1)s of each triplet, any
different overall phases appearing in the consistency condition for each triplet can be absorbed, which
makes this CP transformation consistent with the full flavour symmmetry of the potential. The same is
true for the related CP transformation where X, and X, have been interchanged.
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1,0,0
1,0,0
1,0,0

)[(1,0,0
)
)
1,0,0)
)
)
0)

( )
( 0,1,0)
( 1,1,0)
( 1,0,1)
(1,0,0)[(0,1,1)
(1,00 1,1,1)
(1 )
1
1
(1
1
1

0,1,1

e~~~ o~~~ =

(1,
(1,

(1,

Table 2. List of VEV directions for the potential of two triplets of A(3n?), Vasn2) (@, ¢').

CPas, (1,0,0)|(1,0,1) and (1,0,0)|(1,1,0) merge. ¢’ remains free and nothing happens to
the orbits with ws. Lastly, for the CP symmetry with X¢¥'| §5 = /37, thus ¢/ = +7/6.
Additionally, (1,1,1)[(1,w,w?) and (1,1,1)|(1,1,1) merge. For the CP symmetry similar
to that with X¥¥ but with block matrices interchanged, (1,1,1)|(1,w?,w) merges with
(1,1,1)|(1,1,1).

3.2.3 5S4

The Sy potential for one triplet was

Vs, (©) = Vo(e) + b [(e1010"2¢* + cycl.) + hee ], (3.105)
with real b. For two triplets we use eq. (3.72), and write
Vs, (0, ¢) = Vo) + V5 (¢) + Va(e, ¢') (3.106)

+b[(pre19™0* + cycl.) + he.] + ¥ [(¢1e1 ™3™ + cyel.) + h.c.]
+b [(90190/ CP*SQDI*S + Cycl.) + h.c.] )

For SU(2) doublets, we use eq. (3.73) and write
Vi, (H, H') = Vo(H) + Vy(H') + Va(H, H') (3.107)
+ Z b [ (Prahsh™*h + cyel ) + hec.|

h/ h/*Sahl*?)/B + cycl. ) + h.C._

¢
+ Z b [ (rah™ Bsh™® + cyel.) + h.c.:
(

+ Z b [ hlah'*3o‘h' h*3P + cyel. ) + h.c.
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(1,0,0)|(1,0,0)
(1,0,0)|(0,1,0)
(1,0,0)|(1,0,1)
(1,0,0)|(0,1,7)
(1,0,0)|(1,1,1)
(1,0,0)|(1,w? w)
(1,0,2)|(1
(1,0,4)

(1,0,4)
(1,0,9)[(1,
(1,1,1)
(1,1,1)]

,0,£17)
(1,4,0)
(1,1,1)
1,w?, +w)
(1,1 ﬂ)
1
(

|
(
(
|

|
( ,i W)
(1,w?, w)| 1, +w)
(1,w?,w)|(1, ~w, —w?)
(1, w? w)|(1,w, w?)

Table 3. List of VEV directions for the potential of two triplets of Sy, Vs, (¢, ¢’).

All Sy-invariant potentials listed here, even the two triplet cases, conserve CP explicitly:
the parameters, including b, ¥, b, by, by are all real, so one of the CP symmetries is CPy.

For one triplet of Sy, the full symmetries of an even potential are generated by
eq. (3.29), and notably, this potential has an automatic CP symmetry. The orbits are
(and again plus permutations)

ieia (_l)keia (_1)keia _(_l)keia 0
0 , (_1)leia , w(_l)leia , w(_l)leia , ieia ,
0 (_1)k+l€ia w2(_1)k+leia w2(_1)k+leia ﬂ:ieia

where the last set stands for separate orbits for each combination of signs. These combine
to the VEVs pairs listed in table 3, where the sign choices correspond to separate orbits
(again only orbit representatives).

3.24 Ay

In the case of two Ay triplets distinguished by additional symmetries so that the total
symmetry is A4 x U(1) x U(1)’, the potential includes a total of seven independent mixed
quartic invariants of the form ¢ ¢ ©* ¢'*.

The A4 symmetric renormalisable potential takes the following explicit form, with V{
as defined in eq. (3.11), and using eq. (3.68) we write

Vai(e,¢') = Vole) + V5 (¢) + Vile,¢) + (3.109)
+ e (‘P1901<P*3<P*3 +cycl.) + he] + [¢ (gp&«p’lgol*?’cp'*s + cycl.) + h.c.]
+[E (11979 +cyel.) +hue] .

~ 31—



The potential is explicitly CP violating [35] but it is interesting to consider the CP sym-
metry where one imposes X3 of eq. (3.36) on both triplets, i.e. the block matrix szf/ in
eq. (3.95). This CP symmetry constrains the potential such that 5o = 0, which forces all
explicit CPIs to vanish as expected from the presence of a CP symmetry [35].

Furthermore, applying instead the trivial CP symmetry CFy forces 53 = 0 and all
complex parameters (¢, ¢, ¢) to be real.

For the SU(2)., version we use eq. (3.71) and, for the remainder of the potential Ay
potential with two triplets, only the invariant with coefficient ¢ from eq. (3.109) needs to
be doubled:

Y [5l(hmh*3ah’wh’*3ﬁ +cyel.) + E(haah™ 1 sh* + cycl) + h.c.} . (3.110)
a76

We therefore write

Va,(H,H') =Vo(H)+Vy(H)+Vi(H,H') (3.111)
+Z [c (hlahlgh*3ah*3ﬂ+cycl.> +c ( ﬁahﬁﬂh’*3ah’*3ﬁ+cycl.) —|—h.c.}
a7ﬁ

+y [61(h1ah*3ah’mh’*35 +eycl)+éa(hiah™**hl gh**° —l—cycl.)—i—h.c.] .
o,

We note that due to SU(2), not allowing cubic invariants of H and/or H', it is sufficient
to use a Z3 symmetry to distinguish the A, triplets.”
It is possible to impose a CP symmetry with

;[ X
XA :( 2 0 )@55, (3.112)

which, similarly to previous examples, restricts the coefficients in the potential, namely
So1 = §09 =0. (3.113)

Imposing, alternatively, the canonical CP symmetry CFy leads to S31 = §320 = 0 as well as
c,d,c1,c0 €R.

The full symmetries of an even potential acting on one triplet are generated by
eq. (3.40),

010 e 0 0 -10 0 10 0
001, 0e>0],l010],]0-10 (3.114)
100 0 0 ¢« 0 0-—1 00 —1

and the orbits of one-triplet VEVs are, again with permutations, where now only cyclic
permutations are allowed and no longer, as for Sy, all possible permutations, and in addition

"The potential invariant under a Z, [56] would additionally allow for invariants of the form
Rio hl*iah]'ﬁh/*jﬁ and hmh'*iﬂh]ﬂh'*jo‘ where the conjugated fields are both related to H’.
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(1,0,0)|(1,0,0)
(1,0,0)|(0, 1,0)
(1,0,0)|(1, €%, 0)
(1,0,0)](0,1, e<"
(1,0,0)|(e¢’,0,1)
(1,0,0)|(1,1,1)
(1,0,0)](1,w, w?)
(1,€,0)](1, £ei<", 0)
(1,€%,0)](0,1, ")
(1,€,0)[(e’¢",0,1)
(1,€%,0)[(1,41,1)
(1,€%,0)|(1, +w,w?)

(1,1,1)](1,1,£1)
(1,1, 1)|(1, w, w?)
(1, w,w?)|(1, w, w?)

Table 4. List of VEV directions for the potential of two triplets of A4, Va4, (¢, ¢").

( is an arbitrary phase,

:I:em (71)k6io¢ (71)k6ia 7(71)k6io¢ 0
0 , (_1)l€ia , w(—l)leio‘ , w(—l)leia , 4l
0 (_l)kz—i-leia w2 (_1)k+leia w2(_1)k’+leia ieioc-‘riﬁ

The alignment classes listed after this paragraph arise in this case. Note that in the
following, the phases ¢ and ¢’ are not arbitrary, but are fixed by the one-triplet parts of the
two-triplet potential, as by eq. (3.43). Where two sign choices are given, they correspond
to separate orbits.

table 4 contains the list of VEVs for Vi, (¢, ¢’). Minima (1,0, 0)|(e*’, 1,0) correspond
to a rephasing of the triplets and lie in the same orbit as (1,0,0)|(1,e%’,0). Similarly,
(1,0,0)](0,€",1) and (1,0,0)|(1,0,e ") are already included in the orbits above.

Under trivial CP, orbits with phases merge with their complex conjugates. In partic-
ular, as ¢, =0, (, (' = 0.

3.2.5 A(54)
Next, consider potentials of two triplets of A(54). Using eq. (3.72) we write

Vaia (e, ') = Vole) + Vo (¢') + Valp, ¢) (3.116)

+ [d (p1p19™29*™ + cyel) + hoe.] + [d (P11 ?¢™* + cycl.) + h.c]

+dy [(gplcp’lgo*%/*?’ + cycl.) + (golcpllso*?’go/*Z + cycl.)] +h.c..

Finally, setting

dyy =dy1, dyy=diz, 21 =89 =33 =83 =0, (3.117)

— 33 —



we obtain

Vs (H, H') = Vo(H)+Vy (H')+Va(H, H') (3.118)
+3 | (hlahmh*mh*?’ﬂ +cyc1.> +d ( o gh! 23 +cyc1.) +h.c.}
o,

+ 37 [din (k™ gh"* 4 eyel )+ da(hia b5 N, gh*° +cyc1.)+h.c.}

o,
+3 o1 (hiah 30, Bh’*2ﬁ+cyc1.)+&12(h1ah’*2ah’mh*35+cyc1.)+h.c.}.
o,B

The full symmetries of an even potential of one triplet of A(54) were generated by eq. (3.63).
Again, the potential of two triplets of A(54) has no automatic CP symmetries. The po-
tential of two triplets of A(54) could be reached in several ways: the single-triplet parts of
the potential each consist of a A(6n?) part and a A(54) part, while the same is true for
the cross-terms. With eq. (3.67) we can write

Vaen (@ ¢') = Vaes (@) + VA (@) + Vaea.(e ¢, (3.119)

where each part splits into the part that is symmetric under the larger group and the part
that is specific to A(54), e.g. for the cross-terms

Vaa).e(#: ©') = Vagen2)e (9, ¢") + VAa) (9, ¢)- (3.120)

The orbits of VEVs of a potential of one triplet of A(54) are

wkeia wkeia
0 ,perm. » whete ,perm. » |
0 W2k+2l gia
wkeia wkeioz
wlei® ,perm. » | whei@ ,perm.p. (3.121)
w2k+2l+leia w2k+2l+2eio¢

Here, there are no permutations that are not reproduced by some combination of (k,1).

The full phase symmetries of two triplets are generated by the direct sum of the
generators in eq. (3.63) except for the potential having two separate phase symmetries for
each triplet, equivalently to eq. (3.78). Again combining members of single triplet orbits
and using the symmetries of the full potential to reduce the orbits yields the VEVs in
table 5.

Here, the last line stands for several orbits distinguished by the value of ¢/ and i. As
all of k, k', 1,1',i,i' = 0,1,2, especially pairs like (1,w,1)|(1,1,w?) occur, where the phase
differences appearing between first and second triplet had previously been unphysical.
Nevertheless, as these orbits had only been obtained by reducing the orbits of triplets that
already had a A(54) symmetry instead of A(6n?), the above list is probably incomplete,
similarly to the A4 reduction of Sy orbits at the end of section 3.1.3.

The effects of imposing C'Py are analysed in section 4.2.9.
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(1,0,0)|(1,0,0)
(1,0,0)[(0,1,0)
(1,0,0)|(1,1,1)
(1,0,0)|(1,1,w)

(1,0,0)|(1,1,w?)
(1,1, w)|(wF —F, b 1, 2N 22k 20

Table 5. List of VEV directions for the potential of two triplets of A(54), Va(sa) (¢, ¢').

3.2.6 A(27)
Using eq. (3.68), the potential of two triplets of A(27) even in both triplets is

Vagn (e ¢') = Volp) + V5 (¢') + Vilp, ¢) (3.122)
+ [d (g01<,01g0*2g0*3 + cycl.) + h.c.] + [d’ (cp'lgollgo'*zgal*?’ + cycl.) + h.c.}

+ [621 (9014,0/190*290/*3 + Cycl.) + h.c.} + [Jz (<P1<,0/1<P*3<p’*2 + Cycl.) + h.c.}.

Only d, d', dy and dy are generally complex, the other coefficients are real. We note also
that the A(54) potential (eq. (3.116)) is a particular case of this one, obtained by setting

So=383=0, d = dy. (3.123)

For SU(2) doublets, using eq. (3.71), the potential is:

Vaqn(H, H') = Vo(H) + Vo (H') + Vi(H, H')+ (3.124)
> |d (h1ah15h*2ah*3f8 + cycl.) +d ( o gh!2en 8 cycl.) + h.c.}
a8
+> i (b2, 513 4 cyel.) + dia(haah™3H, sh*P 4 cycl.) + h.c.}
o8
37 [dor (k™1 g1'*28 + cyel.) + doo(hah"*2* i sh™ + cycl.) + h.c.} .
o8

The VEVs of one triplet of A(27) are identical to that of one triplet of A(54), the
VEV pairs generated in this way are almost identical for two triplets of A(27) to the above
ones of two triplets of A(54). The only effect of the missing permutation in A(27) with
respect to A(54) is that several orbits split and that in addition to table 5, the following
pairs represent new independent orbits:
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(1,0,0)|(1,1,w) (3.125)
(1,0,0)|(1,w, 1) (3.126)
(1,0,0)|(1,1,w?) (3.127)
(1,0,0)|(1,w?, 1). (3.128)



4 Spontaneous CP-odd invariants applied

Recall that for SU(2) doublets we consider only VEVs that preserve U(1)¢p,. By an SU(2)
gauge transformation one can without loss of generality assume that for each doublet one
component is zero. Due to this, the conclusions about presence or absence of CPV are
the same as for the respective potentials of SU(2) singlets, and the SCPI expressions are
slightly simpler. For this reason, in this section we refer only to the potentials of (¢)

or (¢, ¢").

4.1 Potentials of one triplet
4.1.1 A(3n?) and A(6n2?) with n > 3

For the potential of one triplet of A(6n?) or A(3n?), eq. (3.11), the CP-odd invariants
JG2 and JG3) vanish independently of the triplet VEV. As the phases of the allowed
VEVs are unphysical, one can always find a CP symmetry that is present in the potential
and preserved by the particular VEV. There is no possibility for SCPV.

4.1.2 A4 and S4

Even for A4 and Sy, the one triplet cases eq. (3.35) and eq. (3.27) are fairly trivial, as
J32) vanishes before introducing any VEV and 733 vanishes after introducing each of
the VEVs found. In each case, a CP symmetry preserved by the respective VEV has
been found — in particular all the VEVs preserve X3, except (0, 1,¢e'®), which preserves
a rephased version of Xs3 (alternatively, one can perform an unphysical global rephasing
of the VEV such that it also preserves X»3).

4.1.3 A(27) and A(54)

For the discrete symmetries A(27) and A(54), the single triplet potentials eq. (3.49) and
eq. (3.59) are the same. This potential features the first known case of SGCPV.

In [35], already the value of J2) was found for Vaen) (@) = Vasa)(@). For complete-
ness, we repeat it here:

1 *
g2 =7 (@ =) (jor]" + ool + [vs|" = 2fv1*|va]* = 2fvr*[us]* - 2Jva[vs[*)
1
+ i(dd*Q — 2d*s% + d?s) (vau3v}% + v1v3vE2 + vivevl?) — hee.| . (4.1)

When imposing CFy (trivial CP, which in this case constrains Arg(d) = 0) or any of the
other 5 CP transformations listed by [54] which constrain Arg(d) to be 0, 27/3 or 4m/3,
the expression simplifies to

1 * * * * *
jé?;,i) — 5[dd 2 —2d*s® + d°s] [vavsvi? 4 v1v3vs® + v1vavs?] — hec. (4.2)

As described previously [37, 55, 57, 58], the potential admits minima such as the complex
VEV (1,w,w?), which is however not CP violating when the potential had trivial CP
imposed. It can be confirmed easily that the expression above vanishes for this case —
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it preserves not C' Py, but the product of C'Py with one of the group elements of A(27)
(indeed, (1,w,w?) is in the same VEV orbit as (1,1, 1), which is real and preserves CP,).
Instead, the SGCPV VEV (w,1,1) can be inserted into the expression and gives (for C P
making d = d*):
TEI p(w, 1,1)] = gd(d ) (d + 2)(w — W)t (4.3)

For the CP transformation X3 forcing Arg(d) = 27/3 (see eq. (3.52)), d is complex, the
results are that the VEVs (0,0, 1) and (w, 1, 1) preserve some subset of the CP symmetries,
so again no SCPV occurs. Instead, the real VEV (1,1, 1) and in the same orbit, the complex
VEV (1,w,w?) show SGCPV [45], as indicated by the SCPI giving J1(3’2) o (w— w?).

The other 6 CP transformations that can be applied to the potential [54], such as X4
(see eq. (3.53)), don’t constrain the phase of d, but rather relate the parameters d and s
such that the SCPI simplifies to:

TED = 2 = ) (forl* + ol + ol — 2urPloal? = 2enPJosl? = 2l esf?) . (4.4)
The SCPI reveals that for these CP symmetries, SCPV is independent of the phases of the
VEV. We verified that the known VEVs for the C Py symmetric potential, including real
VEVs such as (0,0, 1), (1,1,1) and complex ones such as (w, 1,1) are still candidate VEVs
of the X4 symmetric potential and all violate CP spontaneously, as indicated by the SCPI
not vanishing, e.g.:

1
TEPW(,0,0)] = 1 (d? — )’ (4.5)

4.2 Potentials of two triplets

4.2.1 A(3n?) and A(6n?) with n > 3

The useful SCPI 732 also takes a non-zero expression for the potential of two triplets of
A(3n?), eq. (3.91) for SU(2),, singlets (the respective potential for doublets can be found
in eq. (3.92)).

1
g2 =15 [Fo(—4s—48'+25] —594372) — 32 Wep,

L. o .
—gi8s [53—37’3] Wepy,
— T6i§2§3 [—4s—4s"+231 — &) (V102050 5 40 quzv50 s +v1v 30" v +hee)  (4.6)

where we define VEV dependences for convenience:

Wers, = [([071P|oal* + [V us]? + [o3P[01]%) = ([o1P[v"2]? + [o2*[05]? + [vs|*[0"1]%)]
(4.7)

and
Wep, = [(v10'10'205 + vov'50 305 + v30/30"107) — hue)] (4.8)

which is similar to the remaining VEV dependence apart from the relative minus sign with
respect to the hermitian conjugate.
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In contrast, for A(6n?) with two triplets, shown in eq. (3.75), .71(3’2) vanishes indepen-
dently of the VEVs, and j1(3’3) takes a non-vanishing expression in general which vanishes
when inserting the VEV candidates we found. In each case, all the VEV candidates for the
two triplets preserve a CP symmetry (some combination of C'Py or C'Py3), that is auto-
matically present in the general VA(&Lz)(gp, ¢') potential - therefore this potential does not
admit SCPV.

4.2.2 A(3n?), n > 3 with CP,

For Va(sp2), n > 3, the non-zero j1(3’2) expression becomes meaningful as a measure of
SCPV when imposing a CP symmetry on the potential. If we choose C'Fy, then §3 = 0
and the SCPI becomes:

1 _ . - - -
"76(':;3) = —1—67“282[—48 — 45" +25 — 5 + ST‘Q]WCPO (4.9)
One can note from
Wep, = [(v10'10'205 + v2v'50' 305 + v30'30"107) — huc)] (4.10)

that the expression vanishes if the VEVs of the two triplets do not have matching entries,
such as v(1,0,0)[v'(0,1,1), where v and v’ are real here and thoughout the rest of the
paper. This suggests that those types of VEVs will not show SCPV in this case, regardless
of complex phases, confirming that only the relative phase across the same component of
the two triplets is physical for this potential. In contrast, a non-zero result is sufficient to
show that the VEV pair does SCPV, and the three classes of VEVs that can SCPV in this
case are those that in general depend at least on one phase, such as

. 1

TED (1, 1,0)[0' (1, ,0)] = qir2fa(372 — 4s + 251 — 5 — 4s') sin(¢)o2’? (4.11)
. 1

T2 (1, 1,0)0' (1, 1)) = qir2Sa (372 — ds + 251 — 5 — 4s') sin(¢)o*’? (4.12)

In this notation, the square brackets denote the pair of VEV considered (including the v,
v' normalisation), in order to more easily track which VEVs are being plugged in. Note
that the ordering of the VEVs can affect the results, e.g.

TSI 0(1,1,0)|0'(1,6', 1)) = — TS5 [o(1, €<, 1)/ (1, 1,0)]. (4.13)

We note also that for §3 = 0, ¢/ = 7/2 and therefore the VEV of the second triplet becomes
(1,4,0) and (1,4, 1) respectively (cf. eq. (3.101)). As the CP violating phases are fixed to
geometric values, they are geometrical and these cases are considered SGCPV. The third
class that is also very interesting is

3
TSP (1, L) (1 w,02)] = 1 gT252(37 — ds 4281 — 8y — 4s')(w - woR'?  (4.14)

as the phases of the VEVs take special values w and w?
When the VEV pair representatives take the special values of phases that minimize
the potential in certain regions of parameter space, namely one of the triplets aligns in the
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directions with one entry being i, or in the (1,w,w?) direction, the SCPI reveals cases with
SGCPYV. This is interesting as these are the first reported cases of SGCPV in potentials
with 6 fields (arranged here as two triplets), the potential is relatively simple due to the
symmetry and the special w, w? phases appear for a symmetry that is not A(27) or A(54)
(the n = 3 cases).

4.2.3 A(3n?), n > 3 with CPe3

When C Py3 (2-3 swap CP) is imposed on V(3,2 (¢, ¢), the respective SCPI j1(3’2) expres-
sion becomes particularly simple. C'Pso3 for two triplets swaps the 2-3 components of both
triplets, i.e. X337 in eq. (3.95), which leads to §; = 0:

1. - -
jc?}?z; = —g'ss (85 — 375 Wy, (4.15)
where the VEV dependence

Wy = [([01112[va]? + [0"2*[vs]? + [v5%[01]) = (Jor |02 + [oa] 2|05 + |vs[*0'1[?)]
(4.16)

reveals SPCV occurs (or not) regardless of the phases of the VEVs. The three representa-

. . . 2
tives that give non-zero results are proportional to v%v’

TS [0(1,0,0)[v/(0,1,0)] # 0 (4.17)
T 0(1,0,0)[0'(1,0,1)] £ 0 (4.18)
T v(1,1,0)[0/(0,1,1)] #0 (4.19)

featuring three cases with SGCPV. This may appear peculiar given all the phases are zero,
but they are geometrical and therefore these cases fall under the definition of SGCPV
— the (vanishing) phases of the VEVs are stable under small variations of the potential
parameters, and there is SCPV.

For the type of VEV where the phase ¢’ appears with a physical non-trivial value, CP
is spontaneously violated, even though both invariants we are using vanish:

TED (1, 1,0)[0' (1,9, 0)] = TS (1, 1,0)[0' (1,6, 0)] = 0 (4.20)
TS (1, 1,0)[0' (1, e, 1)] = T4 [v(1,1,0)[v' (1, €%, 1)] = 0 (4.21)

As a systematic search for further SCPIs is beyond the scope of this work, instead we
have excluded the possibility of X matrices that are simultaneously a symmetry of the
potential with general §3 # 0 and are preserved by the VEVs. The first condition fails
for CP symmetries that transform the triplets differently, whereas the second cannot be
fulfilled if both triplets transform identically under the CP symmetry. In fact, we were able
to find a SCPI which indeed gives a non-zero result for v(1,1,0)[v'(1, €, 1), but as this is
the only instance in this paper where it is important, we haven’t mentioned it previously.
The relevant SCPI is:

(3,4) ai1as r7a30a4 70506 *ay, *ag, *ag, *a10
O Pys = Zasas Zagas ZagayyVaiVasVagVa, v 0" 0™ %0 (4.22)
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Y

Figure 4. The diagram corresponding to the invariant eq. (4.22).

with diagram in figure 4 and we have

TG (1, 1,000/ (1,¢, 1)] o (2sin ¢’ — sin2¢"). (4.23)

4.2.4 A(3n2?), n > 3 another CP

In [35], explicit CP violation was studied and another class of CP symmetry was found
that made the potential CP conserving by relating the parameters 53 and 72 in 3 similar
ways. Of these, we denoted in eq. (3.96)):

X 0 100 100
Xgogo/ — ¥ , Wlth XQD = Ow O R Xﬂol = 0 (J)2 0 , (424)
0 Xy 2
00w 00 w

which we repeat here as this CP symmetry relates the parameters as
53 = 7y i(w —w?), (4.25)

i.e. 53 = —/372. This CP symmetry makes the explicit CPIs vanish [35] and simplifies the
SCPI we are considering such that the first two lines of eq. (4.6) vanish. Indeed, when this
is inserted into the SCPI (considering that 2w = i(v/3 + 1)):

1 ~ ~ ~ ~ * * *
j)((i’? = §r252[4s + 48’ — 251 + &) [w(v1v' [V 205 + vov' 50 305 + v3v'3v1v)) — heel, (4.26)

the SCPI becomes similar to the C' Py case but there are relevant factors of w and w? which
change the VEV dependence crucially (note this is not wWep,, so it is not just an overall
multiplicative factor). Indeed, the cases with VEVs featuring powers of w that were SGCPV
for CPy are CP conserving for this case and instead, the pair of VEVs (1,1,1)[(1,1,1) is
SGCPV. Further, the classes of VEVs with ¢/, which gets fixed to ¢ = —7/6 due to
the CP symmetry, also gives a non-zero value for the SCPI and are therefore more cases
with SGCPV.

4.2.5 A4 and 54

The general expression of J®2) for the Va, (g, ') potential with two triplets (listed in
eq. (3.109)) is non-zero. We don’t show it as it is rather long, and strictly speaking it
carries no physical meaning as the potential is explicitly CPV. The expression simplifies
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sufficiently for relevant cases, when specific CP symmetries are imposed, as shown below
as we test each of the twenty two (22) VEV pairs from section 3.2.4.

In contrast, Vg,(¢,¢’) (seen in eq. (3.106)) is a particular case of Vi, (p,¢’) that
automatically preserves both C'Py and C Pa3. The general expression of 732 for Vg, (i, ')
vanishes, although this does not happen with the SCPT J®3) for Vg, (¢, ¢'). When testing
the twenty (20) VEV pairs from section 3.2.3 we found the SCPI J®?) always vanishes,
which is understood as the VEVs either preserve CPy (the real VEVs) or C'Pe3. In this
potential there is no SCPV.

Given this, of the many SCPIs we calculated for the discrete groups A4 and Sy, it is
only interesting to look in more detail to V4, (¢, ¢').

4.2.6 A4 with CPO
When CPy (trivial CP) is imposed on Vi, (¢, ¢'), the respective SCPI 7(32) becomes:

with the coefficient dependence
1
Ca, = 17552(772(—3772 + 4s — 251 + So + 48") — 4é(c + ) (4.28)

and the same VEV dependence, Wep, in eq. (4.8), that appeared in the SCPI in eq. (4.9),
of the analogous A(3n?) case invariant under CPy. This is not completely unexpected,
as the SCPI should vanish regardless of the discrete symmetry being A4 or A(3n?) with
n > 3, for VEVs that preserve C'Py (note though that for the A(27) case, the functional
dependence is different).

An analysis of the expression reveals that for this SCPI, only relative phases between
the same component of the two triplets appear. This was the case for the A(3n?) potential,
but for A4 there are actually some additional physical phases, which the more complicated
SCPI J33) is sensitive to.

Using J®2) we can confirm that the following VEV pairs SCPV, being proportional

to v2u'?:
T (1€, 0)]0/ (1, 6, 0)] # 0 (4.29)
TG (1, €, 0) ' (1,41,1)] £ 0 (4.30)
T2 (1, e, 0)0! (1, w, £w?)] # 0 (4.31)
and specifically
Jg};i) [v(1,1,1)[v'(1,w,w?)] = 3Ca, (w — w2)v21/2 (4.32)
TED (L1 D[ (1w, ~w?)] = Ca, (@ — w2, (4.33)

The most interesting cases are arguably these latter ones where VEVs only have geomet-
rical phases and therefore SGCPV, although one notes they are essentially the same cases
obtained for the slightly simpler A(3n?) potential.

For the cases where the pair of VEVs returns a vanishing expression we confirm if CP
is not broken by identifying a CP symmetry preserved by the VEVs (such as C'Py itself,
for any real VEVs).
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4.2.7 A4 with CP23

When C Pog (2-3 swap CP) is imposed on Vy, (¢, ¢'), the respective SCPI 51(3’2) expression
becomes:

1
jci;z; =3 [i53 (2¢" (c + ) + 2¢(c* + ¢*) + 3?%) + 279(¢*(c — ') — c*¢ + c*¢) — zég] Wep,s-
(4.34)

Note this is the same VEV dependence, Wep,, in eq. (4.7), that does not depend on the
phases of the VEVs and which appeared in the SCPI in eq. (4.15), of the analogous A(3n?)
potential invariant under C'P,3. This is not completely unexpected, as the SCPI should
vanish, regardless of the discrete symmetry being A4 or A(3n?) with n > 3, for VEVs that
preserve C Psg.

We use this SCPI to check the pairs of VEVs for this potential. We display here only
the non-vanishing ones, which are always proportional to v?v’ 2, and are:

TEpmlv(1,0,0)[2/(0,1,0)] # (4.35)
Torlv(1,0,0)[v(1,€,0)] # (4.36)
Termlv(1,0,0)[0/(0,1,€)] (4.37)
jcpgg[v(l 0,0)v'(e 4,0,1)] (4.38)
TEpmv(1,e,0)10/(0,1,¢)] # (4.39)

T (1, €, 0) v/ (e, 0,1)] # (4.40)

The SCPI vanishes for the pair (1,1, 1)|(1,w,w?) regardless of the physical complex phases
(this is clear from the SCPI expression, which depends only on the absolute values). It
must do so, as the VEV pair preserves C'Py3. In contrast, [(1,0,0)[(0,1,0)] is a SGCPV
pair of VEVs as the vanishing phases are geometrical.

Furthermore, for A4 we have cases entirely analogous to the two VEV pairs that CPV,
even though the SCPIs j(?”z), J3:3) vanish:

TS (L, 1,0)[0' (1,9, 0)] = TS (1, 1,0)[0' (1,6, 0)] = 0 (4.41)
TS (1, 1,0)[0' (1, e, 1)] = T8 [v(1,1,0) v/ (1, 1)] = 0 (4.42)

The conclusions are the same as in A(3n?), as there is no CP symmetry that is both
preserved by these VEVs (this condition requires X matrices transforming the two triplets
differently) and is a symmetry of the potential with 53 # 0 (this condition requires X
matrices that transform the two triplets equally).

4.2.8 A(27) and A(54)

For two triplets the potentials Va(a7)(¢,¢) and Vi (@, ¢) are different, as seen in
eq. (3.122) and eq. (3.116) respectively. Nonetheless, the VEV candidates are the same,
and the SCPI results are similar. We found several new VEV pairs, many of which are
cases with SGCPV.

— 492 —



It turns out the SCPI expressions are slightly more complicated in the A(27) case,
but they vanish whenever the corresponding expression in A(54) vanishes, and they are
proportional to (w—w?) = iv/3 when the corresponding SCPI expression in A(54) has that
dependence. For this reason, we display the SCPI results only for A(54).

4.2.9 A(54) with CP,

The last 3 representative VEV pairs from section 3.2.5 can give non-zero results with
SGCPV. In this case we show some cases that make the SCPI vanish, for clarity:

TED[0(1, 1, )]0/ (1L, w,w?)] = 0 4.43)
3,2)
T (1w, w?) ' (1,w,0%)] = 0. (4.44)
The non-vanishing cases include
T w(1,0,0)[0' (1, 1,w)] = =7 [0(1,0,0)[v/(1,1,w?)] (4.45)
136 (2d2(d/ +§') 4 4dy7os’ + d'(8(d — ') (d' +25") — 51 (27 + 51))> (w— w2)v’4
and
T [ (L LW (1,w,0?)] = =7 (11,030 (1,w,02)] (4.46)
=16 <8d3 + 8d%s 4 d (2d1 — 51(272 + 51) — 165 ) + 2dys(dy + 2172)> (w — w?)ot

Note the dependence is either on v* or v'* exclusively in these cases (and not on v?v’ 2).

We recall for A(27) and A(54), SCPV is already possible in the single triplet potentials.
This contrasts with the A4 and A(3n?) cases, where only the two triplet potentials admit
SCPV — with only two triplets enabling SCPV, the non-vanishing SCPIs for those cases
depend always on v2v/ 2 In A(54) we also found VEV pairs for which the SCPI has the
v2v'? dependence, one such instance is (1,1,w)[(1,1,w?) which when plugged into the SCPI

4
has all three dependences, v*, v'* and v%v’

4.3 Spontaneous Geometrical CP Violation

We have found several new cases of SGCPV. Through these new cases we hope to advance
the understanding of what the conditions are for it to occur.

Clearly, as part of the definition, all of the cases found that show SGCPV have geo-
metrical phases inside the VEVs. We also demonstrate in this section that these VEVs
preserve a different geometrical CP symmetry (e.g. real VEVs that violate C Pa3 but would
have preserved C'Py). We conjecture that this is a requirement for SGCPV to occur. It
is important to stress that the CP symmetries that these VEVs would have preserved are
themselves geometrical, having only geometrical phases that do not depend on the pa-
rameters of the potential. For cases with SCPV that is not geometric one can find CP
symmetries that would have been preserved by the respective VEVs, but those CP sym-
metries will also not be geometrical: the phases inside the VEVs and the associated CP
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symmetries the VEVs would have preserved depend on the parameters of the potential,
which run with energy scale.

This usefulness of this conjecture is illustrated by our examples. In cases where it
is possible to identify distinct geometrical CP symmetries that can be imposed to con-
strain the parameters of a specific potential, that potential can then give rise to SGCPV,
depending of course on the VEVs allowed by the respective minimisation conditions.

We divide our cases mainly in VEVs of one or two triplets where the imposed CP
symmetry is C' Py and cases where the imposed CP symmetry is C Pos.

In the latter case, where C'Ps3 is imposed, we found three cases with SGCPV for
A(3n?) with n > 3:

TED10(1,0,0)[v/(0,1,0)] # 0 (4.47)

TErv(1,0,0)[0/(1,0,1)] #0 (4.48)

TED [0(1,1,0)[v/(0,1,1)] #0 (4.49)
and one similar case for Ag:

TS w(1,0,0)[v/(0,1,0)] # 0. (4.50)

It occurs always in situations with two triplets where the VEVs have the geometrical
phase of zero (i.e. the VEVs are real), in pairs that simultaneously violate C' P35 and the
cyclic permutations of C'P,3 (which we may refer to as C'P3; and C'Pj2) that are also CP
symmetries of the potential when CPs3 is imposed, due to the flavour symmetries we are
considering. Indeed, it is understandable why there is no SGCPV of this type for the
respective one triplet potentials, as a real single triplet VEV cannot violate all 3 of those
CP symmetries. We note though that the real VEV pairs that SGCPV in these cases would
have preserved C' Py, which is not however a symmetry of the potentials (otherwise there
wouldn’t be SCPV).

In the cases where C' Py is imposed, which include also the original SGCPV cases with
one triplet of A(27) (or A(54)), we note also that the VEVs with geometrical phases that
have SGCPV would have preserved some other geometrical CP symmetry® that is not a
symmetry of the potential. In the one triplet case, take:

jc(v?}’gz) [v(w,1,1)] = gd(d —5)(d +2s)(w — w?)v! (4.51)
this VEV would have preserved a variant of the X3, X3 CP transformations (which is
consistent):

w00
X,=(010]. (4.52)
001

8By extension of the definition of “calculable” phases [37], which we refer to as geometrical phases heres,
we refer to a geometrical CP symmetry as one that is independent of the parameters of the potential.
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The SGCPV VEVs in A(3n?):

|

T (1, 1,0)[v'(1,4,0)] = SiT282(8, — 45 + 281 — 5 45" w2 (4.53)
1

TS (1, 1,000/ (1,4,1)] = SiT282(372 — ds + 251 — 5 — 45 o™ (4.54)

would have preserved a CP with diagonal matrix diag(1,1,1,1,—1,1),° and
(3,2) / 21 3 s ~ ~ / 2\ 2 /2
Jop, (L LD (1,w,w?)] = _ETQSQ(?WQ —4s+ 251 — 53 —4s')(w — w*)v v (4.55)

would have preserved C'Ps3. C' Pa3 would also be preserved by the first of the SGCPV pair
of VEVs in Ay:

TEI (1,1, )Y (1, w,0%)] = 3C4, (W — w?)o' (4.56)
TEI (1,1, 1) (1,0, —w2)] = Cay (w — w20’ (4.57)

The second pair, due to the minus sign, would have preserved the CP symmetry with a
block matrix with the regular X3 for the first triplet and for the second triplet:

10 0
0-10

The new SGCPV VEVs we find in A(54) (and A(27)) are essentially two triplet versions
of the one triplet case:

TSR [(1,0,0)|(1,1,w)] # 0 (4.59)
TED (1, 1, w)' (1,w,0%)] # 0 (4.60)
T (1, L w)[e'(1,1,0%)] # 0 (4.61)

and for each case one can find X matrices of the geometrical CP symmetries that would
have been preserved. With one triplet the other case with SGCPV that we presented is

(3:2)

TED[(1,0,0)] = (@ ~ )0’ (462

and this VEV would have preserved CFy. Finally, the other CP symmetry we studied for
two triplets of A(3n?) with n > 3 led to the following cases of SGCPV:

TER Iw(1,1,0)10' (1,775, 0)] # 0 (4.63)
TER 11,1010/ (1,e77/%, 1)] £ 0 (4.64)
TED (L1, 1) (1,1,1)] 0. (4.65)

Of these, the last VEV pair would clearly have preserved C' Py, and the other VEVs pre-
serve a CP with diagonal matrix diag(1,1,1,1, el /3, 1) featuring only geometrical phases
(0 and 7/3).

9This CP symmetry would not be consistent with the flavour symmetry of the potential, but if imposed
it changes the potential only by setting 7> = 53 = 0.

45 —



5 Summary of results

In this section we summarise the results presented throughout section 4, in two tables.
Table 6 lists the potentials with one triplet of the discrete symmetries and table 7 the
potentials with two triplets. For both tables, the leftmost column notes what is the imposed
discrete symmetry and, in cases where it is also imposed, the CP symmetry. The next two
columns show the two SCPIs we calculated and distinguish whether the expression vanishes
in general (before plugging in the VEVs) — note that in some of the cases, despite the
expression not vanishing in general, it vanishes for all the VEVs. The fourth column lists
if a CP symmetry is present, listing the matrix associated with the CP symmetry of one
triplet (for two triplets, this means it is the diagonal 2 x 2 block matrix with the same
transformation for both triplets) — this column is relevant because in many cases where
there was no CP symmetry imposed, there is nevertheless a CP symmetry present for the
potential that is invariant under the imposed discrete flavour symmetry. The last column
notes whether there is Spontaneous CP Violation. In this last column we note 2 categories
when there is no imposed CP symmetry — the potential is either CP conserving, and
all of these cases have no SCPV either,'? or alternatively the potential is explicitly CP
violating and therefore we denote the SCPV column with NA for Not Applicable. The
final possibility is when a CP symmetry is imposed, and it turned out that for all the cases
analysed with these discrete symmetries, whenever there was the possibility of SCPV, there
were some (but not all) VEVs that have SGCPV, and therefore this column is marked as
“S(G)CPV”, because that potential can have regular SCPV or SGCPV depending on the
VEVs (we note though that this is probably due to the discrete symmetries we analyse
being special, as many potentials, such as the 2HDM with imposed CP symmetry, can have
SCPV but don’t have SGCPV).

In summary:
e We present new results for Vas,2)(H) = Va6n2)(H)-

e Of the 1 triplet potentials we studied, only Va7 (H) = Va(sa)(H) has non-trivial
CP properties, which includes cases with Spontaneous Geometrical CP Violation.

e All the 2 triplet results we present are new.

e Of the 2 triplets potentials we studied, all that can have SCPV, also show explicit
CPV.

e For the potentials we studied where SCPV can be found, some VEVs exist with
SGCPV (this is a peculiarity of the symmetries we considered, as it is not true in
general).

e We have found several new cases of SGCPV beyond the few known cases up to now,
finding also the first cases of SGCPV for 6HDMs.

e We formulate a conjecture relating SGCPV with geometrical CP symmetries.

%These results support a conjecture from [40], proven for specific cases in [59].

— 46 —



J@32) | y(3.3) CP CP type | SCPV
3A(3n2)=A(6n2) 0 0 | Xo, eq. (3.22); Xas, eq. (3.36) | Automatic No
34, 0 * Xos, eq. (3.36) Automatic No
33, 0 * | Xo, eq. (3.22); Xa3, eq. (3.36) | Automatic No
3A27)=A(54) * * None NA NA
3a@n=AG4), Xo| * * Xo, eq. (3.22) Imposed | S(G)CPV
3a@n=A®Ga), Xa| * * X4, eq. (3.53) Imposed | S(G)CPV

Table 6. Summary of the value of J32) J3:3) CP symmetry transformations and whether SCPV
is possible, for the 1 triplet scalar potentials analysed. The % denotes that a SCPI is non-zero for
arbitrary VEVs (it may still vanish for the potential’s VEVs), NA stands for Not Applicable (SCPV
is not meaningful in cases without a CP symmetry).

J32) | g@:3) CP Type of CP | SCPV
2 X 3A(3n2) * * None NA NA
2 X 3a(3n2):.CH * * Xé‘w/, eq. (3.94); | Imposed | S(G)CPV
2 X 3a@3n2); CPa3 * * Xf;f,, eq. (3.95); | TImposed | S(G)CPV
2 X 3A@3n2), CPpy * * W/, eq. (3.96) Imposed | S(G)CPV
2 X 3a(6n2) 0 * , eq. (3.94) | Automatic No
ngo , eq. (3.95)

2 X 34, * * None NA NA
2x34,, CF * * X(s)vsv’, eq. (3.94) Imposed | S(G)CPV
2%x34,, CPo3 * * ngpl, eq. (3.95) Imposed S(G)CPV

2 x 3g, * X X8 | Automatic No

2 X 3a(27) * None NA NA
2% 3a07), CPy | * * | X¢%, eq. (3.94) | Imposed | S(G)CPV
2 X 3a(s4) * * None NA NA
2 X 3a(54), C P * * Xéwl, eq. (3.94) Imposed | S(G)CPV

Table 7. Summary of the value of J32) JG:3) CP symmetry transformations and whether
SCPYV is possible, for the 2 triplet scalar potentials analysed. The * denotes the SCPI is non-zero
for arbitrary VEVs (it may still vanish for the potential’s VEVs), NA stands for Not Applicable
(SCPV is not meaningful in cases without a CP symmetry).
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6 Conclusions

We have analysed 3 and 6 Higgs scalar potentials invariant under discrete symmetries
A(3n?) and A(6n?) with n = 2 (A4, S4), n = 3 (A(27), A(54)) and n > 3. For these po-
tentials, we have presented their VEVs and considered whether they can have Spontaneous
CP Violation, and if so, if it can be Spontaneous Geometrical CP Violation.

Concerning the minimisation of such complicated potentials, the strategy we have
followed in this paper may be summarised as follows. We started with more symmetric
cases, which can be minimised analytically, where each of the minima of these potentials is
associated with an orbit, which is generated by the representative VEV by the symmetry
group. For the less symmetric potentials, we have analysed how these orbits are broken
up and which phases can become physical as a result of reducing the original symmetry.
We find that for potentials involving one triplet, this method reproduces perfectly the
minima found by a previous thorough analysis done by other authors. We then proceeded
to construct the orbits of potentials of two triplets, again starting from more symmetric
cases, which in this case means the potentials of two triplets without cross-terms. We then
used the conjectured minima in the subsequent analysis of CPV.

With respect to Spontaneous CP Violation, using the basis invariant formalism, we
presented two Spontaneous CP-odd Invariants and used these to confirm cases where there
is Spontaneous CP Violation. With our methods, we have confirmed several existing results
in the literature for the 3 Higgs potentials, i.e. involving one triplet under the specified
symmetries of A4, S4, A(27) and A(54). Beyond that, we present new results for the
potentials invariant under A(3n?) and A(6n2) with n > 3 and those with 6 Higgs, i.e.
involving two triplets under the above symmetries. Of the potentials considered, for those
that were automatically CP invariant we found no VEVs that spontaneously violate CP
— all the SCPIs vanish and we found for each VEV at least one preserved CP symmetry.
This is in line with what was the case for 3 Higgs [40] and the more general conjecture
proven in the particular case of rephasing symmetries in [59].

For potentials that in general have explicit CP violation, however, we considered im-
posing different CP symmetries and then checking which (if any) VEVs spontaneously
violate CP. After revisiting the well-known case for the 3 Higgs potential invariant under
both A(27) and trivial CP (where SGCPV was first identified) we also found SGCPV in
the 6 Higgs potentials invariant under Ay, A(27), A(54) and A(3n?) with n > 3. These
new cases were found by finding a non-zero SCPI and checking that the VEVs in question
have geometrical phases. We have proposed the following conjecture: SGCPV appears
when there are different geometrical CP symmetries that can be imposed on a potential,
and the VEV violates the imposed geometrical CP symmetry but would have preserved a
different geometrical CP symmetry.

Finally we remark that the results in this paper may be applied to physical CP violating
processes involving three and six-Higgs doublet potentials controlled by classes of non-
Abelian discrete symmetries.
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A Technical details from section 2
In this appendix, first the argument leading to eq. (2.14) is given. After that, additionally a

related relation between VEVs is derived. From each allowed CP transformation, conditions
on Y and Z follow,

Y =YY Xy X*00 (A1)

and

Z% = 7268 X 1 X g X*@ o X, (A.2)

When the potential “acquires” a VEV, i.e. when the parameters of the potential are chosen
such that the energy is classically minimized at a value of the field different from zero,

(6) = # 0, (A.3)

then first the fields and with them the potential can be expanded around this VEV:

v+ (A.4)

V(9) = V(v,0) = Y (v +9)a(v+9)* + Zsg (v + 9)a(v + @)p(v + 0) (v + ). (A.5)
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This potential can be reordered by the number of fields ¢, i.e.

V(’U,QO) — }/;)ava,v*b + YaU @*b —f‘YaQOa’U*b +}/ba@a90*b
+ chvav ’U*C’U*d 4 Z L oapp (P*CQD*d
= Yv,v* + 7% vavbv*cv*d
(VR £+ 2% 0 g,
+ ...
+ Z2pasppp™ ™. (A.6)

The coefficients of this potential are now combinations of Y, Z, and v. This potential is
CP-conserving in the new degrees of freedom, ¢, if a CP trafo

o Xp* (A.7)
exists, such that the minimized potential is invariant,
V(v,9) = V(v, X¢"). (A-8)

From this, conditions on the coefficients of the expanded potential follow. For the coefficient
quartic in ¢, this happens to be the original condition, only with X replaced with X,

7 XY XY XXt = 7279Y (A.9)
while for the trilinear coefficient in ¢, a new condition arises,

Z%

C

d aXb X*ch/ = Z*eld/ve (AlO)

together with the CP-conjugate of this condition. (Similarly for lower powers of ¢, only
with more complicated conditions that involve combinations of Y and Zvv.)

Can there be X that are not in X = {X}? First, as the condition for CP-conservation
in the quartic terms in ¢ and ¢ are identical, and all CP transformations of ¢ were assumed
to be known, there cannot be any more general CP transformations under which the
whole potential is invariant than these known ones. In other words, all candidates for CP
transformations of ¢, X are in X = {X}.

Using the invariance of Z on the Lh.s. of eq. (A.10) leads to

7548 X1 0, = 7% Y0, (A.11)

from which with X Tzlva = (vy)* follows that the potential conserves CP if for at least one
of the original X matrices holds that

Vg = X g™ . (A.12)

Which conditions follow on VEVs or on relations between VEVs from an existing CP
symmetry with unitary matriz X at high energy? Transform the potential with said CP
transformation to obtain

V= Y()aXaa/X*bb/¢*a/¢b/ + ZggXaa’Xbb’X*CC/X*ddl¢*a/ ¢*b’ ¢c’¢d’- (A13)
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From this potential, minimisation conditions can be derived, and from

oV
=0 A.14
99, (A.14)
follows
0= Y X v™ + 228 X gov* Xy X4 1. (A.15)

Comparing this with the CP-conjugate of the untransformed minimisation condition, i.e.
the condition obtained by taking the derivative of V by ¢**,

0 = Y0 + 2Z%v,up0*?, (A.16)

one finds that v, and ug := X v*® fulfill exactly the same sets of equations. This means
that the solution sets, {v,} and {Xaev*®} are identical:

{va} = {Xa@v* ™} =: V. (A.17)

Note that this does not mean that for every v, holds that v, = X, , but instead, as X
is unitary, the only thing that can be said is that for symmetric X for every v, € V exactly
one u, € V exists, such that

Vo = Xauu*® (A.18)

and longer chains for non-symmetric X matrices.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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