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1 Introduction

The discovery of the Higgs boson by the Large Hadron Collider (LHC) [1, 2], indicates that

at least one Higgs doublet must be responsible for electroweak symmetry breaking (EWSB).

However, there is no special reason why there should be only one Higgs doublet in Nature,

and it is entirely possible that there could be additional Higgs doublets, accompanied by

further Higgs bosons which could be discovered in the next run of the LHC.

The simplest example is two-Higgs-doublet models (2HDMs) [3–6]. However, 2HDMs

generally face severe phenomenological problems with flavour changing neutral currents

(FCNCs) and possible charge breaking vacua, and it is common to consider restricted

classes of models controlled by various symmetries. In 2HDMs, the full list of possible

symmetries of the potential is now known [7–10]. In 2HDMs these symmetries can be

conserved or spontaneously violated after the EWSB, depending on the coefficients of the

potential. Generalising these results to NHDMs is technically difficult, although there has

been some recent progress in this direction [11–14].

The case of three-Higgs-doublet models (3HDMs) is particularly promising for sev-

eral reasons. To begin with, it is the next simplest example beyond 2HDMs which has

been exhaustively studied in the literature. Furthermore, 3HDMs are more tractable than

NHDMs, and all possible finite symmetries (but not all continuous ones) have been iden-

tified [15]. Finally, and perhaps most intriguingly, 3HDMs may shed light on the flavour

problem, namely the problem of the origin and nature of the three families of quarks and

leptons, including neutrinos, and their pattern of masses, mixings and CP violation. Typ-

ical examples of such models that use discrete symmetries to constrain the structure of

mass matrices need several multiplets of scalar fields that also transform under the same

symmetry (for reviews, cf. [16–21]). Such models provide a motivation to study multiple

SM Higgs singlets (sometimes called “flavons” in this context) as well as electroweak dou-

blets. In the context of flavour models it is natural to consider Higgs doublets or singlets

which play the role of “flavons” and form irreducible triplets under some spontaneously

broken discrete family symmetry. Motivated by the above considerations, we shall study

CP violating potentials with both three and six Higgs doublets and singlets.

CP symmetry, which for a single field is just the combination of particle-antiparticle

exchange and space inversion, is presently known to be violated only by the weak interac-

tions involving quarks in the Standard Model (SM) [22]. The origin of the observed SM

quark CP violation (CPV) is a natural consequence of three generations of quarks whose

mixing is described by a complex CKM matrix. Although the CKM matrix can be param-

eterised in different ways, it was realised that the amount of CPV in physical processes

always depends on a particular weak basis invariant which can be expressed in terms of

the quark mass matrices [23]. Although CP is automatically conserved by the Higgs po-

tential of the SM, with more than one Higgs doublet it is possible that the Higgs potential

violates CP, providing a new source of CPV [24]. We shall be interested in cases of three

and six Higgs doublets and singlets, whose potentials are controlled by various non-Abelian

discrete symmetries which admit irreducible triplet representations. In particular we are

interested in the cases of such potentials which conserve CP explicitly, but where the vacua

– 1 –



J
H
E
P
1
1
(
2
0
1
7
)
1
3
6

of such potentials may spontaneously break CP. We shall analyse this problem using basis

independent CP-odd invariants for the following reason.

As already mentioned in the context of the CKM matrix, the study of CP is a subtle

topic because of the basis dependent nature of the phases which control CP violation.

Similar considerations also apply to the phases which appear in the parameters of the

potentials of multiple scalars. An important tool to assist in determining whether CP is

violated or not are basis independent CP-odd invariants (CPIs), whose usefulness has been

shown in the SM in addressing CP violation arising from the CKM matrix, sourced from

the Yukawa couplings. The first example of the use of such invariants was the Jarlskog

invariant [23], which was reformulated in [25] in a form which is generally valid for an

arbitrary number of generations. Generalising the invariant approach [25] and applying it

to fermion sectors of theories with Majorana neutrinos [26] or with discrete symmetries [27,

28] leads to other relevant CPIs. In extensions of the Higgs sector of the SM, the CP

violation arising from the parameters of the scalar potential can be studied in a similar basis

invariant way as for the quark sector. For example, in the general two Higgs Doublet Model

(2HDM) [24] (see [29] for a recent analysis) a CPI was identified in [30]. More generally,

applying the invariant approach to scalar potentials has revealed relevant CPIs [31–33],

including for the 2HDM [7, 34]. The basic idea is that if CP is conserved then all CPIs

vanish (and vice versa). If any single CPI is non-zero then CP is violated. Finally, CP

violating observables all have to be functions of CPIs.

In a recent paper [35] we considered yet more general Higgs potentials and adopted

the powerful method of so-called contraction matrices in order to identify and construct

new non-trivial CPIs, which we subsequently applied to potentials involving three or six

Higgs fields (which can be either electroweak doublets or singlets) which form irreducible

triplets under a discrete symmetry [35]. Having translated the well-known technique for

constructing CPIs to diagrams and contraction matrices, we applied this formalism to some

physically interesting cases which involve three or six Higgs fields which fall into irreducible

triplet representations of discrete symmetries belonging to the ∆(3n2) and ∆(6n2) series,

including A4, S4, ∆(27) and ∆(54). We were mainly interested in the question of explicit

CP violation for such Higgs potentials, although a simple example of spontaneous CP

violation was also discussed. Here we shall be principally concerned with whether those

potentials which respect CP can lead to spontaneous CP violation. In other words we

extend our formalism by including also Vacuum Expectation Values (VEVs), obtaining

Spontaneous CPIs (SCPIs) that are non-vanishing if CP is spontaneously violated (as

considered earlier in [31, 32]).

The purpose of this paper, then, is to discuss Spontaneous CP Violation (SCPV) for

potentials involving three or six Higgs fields which fall into irreducible triplet representa-

tions of discrete symmetries belonging to the ∆(3n2) and ∆(6n2) series, including A4, S4,

∆(27) and ∆(54). These symmetry groups of the potentials considered in this paper are

motivated by the fact that all of them are good candidates for discrete flavour symmetries.

It should be noted that the actual symmetry of the potential can be different from the

symmetry group imposed and where this distinction is important, it will be discussed. For

each case, we write down the potential and find various global minima for different regions
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of the parameter space of the potential, as recently summarised in [36]. In principle one

could test which CP symmetries are preserved by VEVs, but it can be non-trivial to know

all CP symmetries of the potential, we therefore prefer to use invariants. In each case

we shall consider CP-odd basis Invariants (CPIs) that indicate SCPV — which we refer

to as Spontaneous CP-odd Invariants (SCPIs). This builds on and was enabled by [35],

where diagrammatic methods for constructing such invariants were further developed to

the point of making them useful for the analysis of complicated example models such as

the authors have in mind for this paper. In cases where CP is preserved we give a CP

symmetry of the potential that is preserved by those VEVs, otherwise we show a non-zero

CP-odd Invariant. In models where CP is violated spontaneously, thanks to the enhanced

symmetry at high energies, the number of parameters of the model can be greatly reduced,

and thanks to the controlled breaking of CP, the strength of CPV will have to be a func-

tion of these parameters too, which relates observable low-energy phenomena to possibly

extremely high-energy parameters.

We emphasise that the work here extends the scope of the existing main models of

SCPV considered in the literature based on models with 2 Higgs doublets (2HDM) or 3

Higgs doublets (3HDM). We remark that the most general 2HDM has a sufficient number

of complex parameters to allow for explicit CPV. If a CP symmetry is imposed on the

Lagrangian in the unbroken phase, the explicit CPV disappears and spontaneous CPV

becomes possible. However, in both of those cases, when coupled to fermions, the model

gives rise to flavour-changing neutral currents. When the latter are forbidden using any

kind of symmetry, also both of explicit CPV (i.e. CPV with zero VEV) and SCPV disap-

pear. 3HDMs improve a little on the situation of the 2HDM, as both of explicit CPV and

FCNCs can be eliminated separately by CP and flavour-type symmetries, such that SCPV

is possible without FCNCs. In particular a general analysis of CP invariants in 3HDMs

suitable for SCPV does not exist, and one of the motivations of this work is to extend the

discussion of CPIs suitable for these cases. We are also interested in models with 6 Higgs

doublets (6HDM), for which the question of SCPV has not been analysed at all, and we

extend our analysis to such cases also. Specifically, we expand our analysis by considering

also the 6-Higgs potentials invariant under the discrete symmetries A4, S4, ∆(27), ∆(54),

∆(3n2) and ∆(6n2) with n > 3. In very special symmetric cases a phenomenon called

geometric CP violation (GCPV) arises which means that values of complex CP-violating

phases of VEVs do no longer depend on the parameters of the potentials in the region of

the parameter space where they are minima. The only case that was known for a long time

was that of Higgs triplets of ∆(27) [37]. Recently, several other cases had been discussed

by [38, 39]. We shall discuss new examples of such GCPV.

It is important to further clarify which relevant results are already available in the

literature, and which we need to obtain for the first time. A complete list of possible global

minima for the A4, S4, ∆(27) and ∆(54) Higgs potentials with 3 Higgs fields has been

obtained by [40], which includes furthermore cases without irreducible triplets such as S3

(the S3 is itself studied in great detail in [41]). For the cases where the respective potential

is CP conserving in general (e.g. A4) [40] also verified none of these VEVs spontaneously

violate CP. While we analyse cases with 3 Higgs arranged as irreducible triplets, we go
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beyond confirming the existing results for the 3-Higgs potentials with SCPIs, employing our

methodology to analyse the VEVs and CP properties of other relevant cases. We continue

by checking 3-Higgs potentials where a specific CP symmetry is imposed in addition to

a discrete symmetry for which the potential is in general CP violating (e.g. the ∆(27),

∆(54)) — this includes the case where Spontaneous Geometrical CP Violation (SGCPV)

was first identified [37].

The layout of the paper is as follows: in section 2 we set our notation and describe

how to identify CP violation and spontaneous CP violation within the basis invariant

formalism. In section 2.3 we present the spontaneous CP invariants (SCPIs) that we will

use throughout the paper. In section 3 we list the discrete symmetry groups and the

potentials invariant under them that we consider (with one or two triplets), as well as a list

of candidate Vacuum Expectation Values (VEVs) that are global minima of some of those

potentials. In sections 4.1, and 4.2 we apply the SCPIs to the potentials invariant under

the respective symmetry groups, checking if CP is conserved when all SCPIs we calculate

vanish, and otherwise checking which of the VEVs we have found spontaneously violate

CP. For any VEVs that do violate CP, we further consider if their phases are geometrical,

i.e. if there is Spontaneous Geometrical CP Violation. Section 5 is a summary of our results

and section 6 concludes the paper.

2 CP violation

In this section we review the current understanding of CP symmetries in models of several

scalar fields.

2.1 Generalities

Usually, CP transformations are thought to act on scalars via complex conjugation of

the field itself and parity transformation of the field coordinates, combined with arbitrary

unitary basis transformations between fields with equal quantum numbers to form what is

then called generalized CP transformations. A multiplet of scalar fields ϕ = (ϕ1, . . . , ϕn)

would then be to transform under such a generalized CP transformation as

ϕ 7→ Xϕ∗(xP ) (2.1)

with a unitary matrix X and xP = (t,−x). Recently, [42] re-opened the discussion about

how for complex scalars that have no charge associated to an Abelian symmetry, CP trans-

formations without complex conjugation are equivalent to such with complex conjugation,

by which only the (generalised) parity part of the transformation plays a role.

In the scalar potentials considered by us, fields are assumed, at least before symme-

try breaking, to carry some conserved U(1) charge, as happens automatically for Higgs

doublets, and imposed on EW singlets where they are considered, in the latter case pri-

marily to render the potential even. For this reason, we think that at least symmetries

of CP-type before the symmetry breaking will involve complex conjugation for the fields

considered here.
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When defining a model, in principle arbitrary CP-type symmetries can just be imposed

onto a model at high energies in addition to all its other symmetries to render it explicitly

CP-conserving and in addition maybe constrain it in other ways. If the potential has

both pure flavour-type and CP-type symmetries, the notion of the consistency of these

symmetries exists [43, 44].

By this one means that only certain CP-type symmetries can be imposed onto a model

without enlarging the flavour-type symmetries of the potential. In essence, apart from

the different physical interpretation, there is no difference between flavour-type and CP

transformations, as both just relate different degrees of freedom. Consider a set of scalar

fields ϕ and its complex conjugate, and combine them as

φ =

(
ϕ

ϕ∗

)
. (2.2)

When written in this way, pure flavour-type and CP-type transformations act in the fol-

lowing ways:

φ
flavour−−−−→

(
ρ 0

0 ρ∗

)
φ , and φ

CP−−→

(
0 X

X∗ 0

)
φ. (2.3)

Next, consider basis transformations U that at this stage (before symmetry breaking) only

connect fields with identical (gauge) charges and thus act in the same way as a flavour

transformation on the fields. There are some basis transformations for which UρU † is just

another group element ρ′. If the potential already has some CP symmetries, then such basis

transformations generate additional CP transformations without changing the flavour type

symmetry at all (and can be eliminated in the same way). The CP symmetries generated

in this way are of the form (
0 UXUT

U∗X∗U † 0

)
. (2.4)

Such basis transformations had been considered in [45] and have the effect of leaving the

potential form-invariant and relate different points in the parameter space of the potential.

However, an arbitrary CP transformation with matrix X, which splits into symmetric

and antisymmetric parts, X = Xs + Xa, transforms under a flavour basis transformation

as follows,

UXUT = UXsU
T + UXaU

T = X̃s + UXaU
T =: X̃, (2.5)

where in the second step U can now be chosen such that it diagonalises Xs while UXaU
T

is still antisymmetric. Thus, always a flavour basis exists where at least for one of the pure

CP-type symmetries that are not related by flavour transformations or transformations

that leave the potential form-invariant the corresponding X can be made the sum of a

diagonal and an antisymmetric matrix. In addition, if X was symmetric from the start, it

can be made the identity matrix. This basis transformation does not change the size of the

overall symmetry of the potential which is generated by all of the above 2×2 block matrices

corresponding to flavour and CP transformations. Furthermore, this basis transformation

generally does not leave the flavour symmetry or the potential form-invariant. The order-4
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CP symmetry discussed in [46] and [42] is of this form of a sum of a diagonal and an

antisymmetric matrix.

Arbitrary CP transformations can enlarge the pure flavour-type symmetry. The

simplest way in which imposed flavour and CP symmetries combine to a pure

flavour-transformation is(
0 X

X∗ 0

)(
ρ 0

0 ρ∗

)(
0 X

X∗ 0

)
=

(
Xρ∗X∗ 0

0 X∗ρX

)
(2.6)

If now Xρ∗X∗ is not another element of the imposed flavour group, the actual flavour-type

symmetry has been enlarged, and if on the other hand, for every group element g a group

element g′ exists such that

Xρ(g)∗X∗ = ρ(g′) , (2.7)

then X is called consistent, cf. [43, 44].

In addition, it is clear that even powers of CP transformations are flavour transforma-

tions and corresponding conditions arise for (XX∗)n.

Next, if the imposed X was symmetric and one can use a basis transformation to go

to a basis where X̃ = 1, combining CP and flavour transformations as above gives(
0 X

X∗ 0

)(
ρ 0

0 ρ∗

)(
0 X

X∗ 0

)
→

(
0 1

1 0

)(
U 0

0 U∗

)(
ρ 0

0 ρ∗

)(
U † 0

0 UT

)(
0 1

1 0

)

=

(
U∗ρ∗UT 0

0 UρU †

)
(2.8)

while the original flavour transformations become UρU † and the flavour symmetry in the

basis where X̃ = 1 is generated by all of UρU † and of U∗ρ∗UT . On the other hand, when

combined with CP with X = 1, the complete original flavour symmetry was generated by

all of ρ and of ρ∗.

For CP transformations where no basis exists where X can be made the identity, the

same conditions arise, only with an additional matrix X̃ appearing, and the full flavour

symmetry in the basis where the symmetric part of X has been made diagonal is generated

by all of UρU † and of X̃U∗ρ∗UT X̃∗.

Conversely, when one assumes that the flavour symmetry is complete and the CP

part of the full symmetry is generated by a single matrix X, and as observables of CPV

are invariants under internal basis transformations, this means that for fixed flavour-type

symmetry combined with a single CP generator, the physically different CP generators are

of the form of the r.h.s. of eq. (2.5) (up to changes of the basis of the group matrices that

does not extend the flavour-type symmetry).

For models with more than one CP generator, the situation can be more complicated,

as in the basis where one of them is of the form of eq. (2.5), the other can still be arbitrary.

Unfortunately, this situation has to be outside the scope of this paper.

Later, when example potentials are studied, for chosen flavour symmetries, we still im-

pose various CP symmetries and boldly ignore the question of consistency. If the potential
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invariant under the symmetry already is automatically CP invariant under some (general)

CP symmetry, then there is no doubt that the CP symmetry is consistent with the flavour

symmetry. Otherwise, the potential has explicit CPV in general and if we impose a CP

symmetry it necessarily increases the total symmetry content of the potential.1 In those

cases there are situations where the CP symmetries will then enlarge the actual flavour-

type symmetry of the potential, and building a model this way is still fine, if one is aware

that the full symmetry is always generated by the 2 × 2 flavour-type and CP-type block

matrices. The first potential we discuss here where this is relevant has at least initially a

∆(54) flavour symmetry and further discussion can be found in the respective section 3.1.4.

In all cases we always clearly specify the form of the potential, and when imposing a CP

symmetry, what coefficients are made to vanish or become related. In any case, of the

(imposed) CP symmetries appearing in table 6 and table 7, all are consistent in the sense

of eq. (2.7). However, in the case of Xϕϕ′ for two triplets of ∆(3n2), the CP symmetry

is only consistent when considering also the U(1) × U(1) part of the flavour symmetry, as

noted again in section 3.2.2.

2.2 Spontaneous CP Violation

One of the questions we want to investigate in this paper is, when does geometrical CPV

arise spontaneously (SGCPV) — what are the conditions on the potential or on the sym-

metries of the potential? Finding more cases with SGCPV is a step in this direction. In

the literature, e.g. [37–39], geometrical CP violation has been defined as the situation when

the relative phases of a VEV become geometrical (originally denoted as “calculable” [37])

which is to mean that in the region of parameter space of the potential where this VEV is

a (global) minimum, these relative phases do not depend on the model parameters. This

criterion has two components, one, that the VEV is geometric, and second, that CP is vio-

lated spontaneously by it. Geometric CPV is theoretically appealing because the strength

of CP violation is no longer a function simply of arbitrary and at least in the near future

unmeasurable parameters and furthermore also as phases arising in geometric CPV are

stable against renormalization, as they are protected by a residual symmetry [37].

One good criterion for spontaneous violation of CP that we rely on throughout the

paper is when at least one CP-odd invariant that can indicate spontaneous CPV (see

next subsection) is non-zero. When CP is violated, then at least one CP-odd invariant

is non-zero, but it is not possible at the moment to obtain a complete list of invariants

and it is impractical to test all of them in any case. The situation would be simpler, if

one had a basis of CP-odd invariants, which is a (small) finite set of CP-odd invariants

with the property that if all of them are zero, CP is conserved. Indeed, such a basis of

CP-odd invariants is known for the 2HDM, [34], but for the more symmetric potentials we

will consider, all invariants from [34] vanish trivially without indicating CP-conservation,

because whether a set of invariants forms a basis is model-dependent, which is why in [35]

it was found necessary to find additional CP-odd invariants. Finally, if CP is conserved,

1Note that additional care is required in situations where the total symmetry of the potential becomes

continuous, as this may lead to Goldstone bosons arising when the symmetry is broken.
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then all CP-odd invariants (which includes all possible basis sets) vanish of course. Again,

the strength of CP-odd invariants that indicate spontaneous CP violation is that it is not

necessary to systematically know all CP symmetries of the unbroken potential, a task which

can be non-trivial.

Without SCPIs, one could also check directly whether a VEV preserves a specific CP

symmetry that leaves the potential invariant. This is arguably more direct, but it has the

significant drawback that it is not sufficient to find a CP symmetry not preserved by the

VEV for there to be CPV, but rather all CP symmetries that left the potential invariant

must be broken by the VEV. Finding all inequivalent CP symmetries that leave a potential

invariant can be non-trivial, as the above discussion elaborates, and checking each is broken

by the particular VEV is also cumbersome. Conversely, if a single CP symmetry that leaves

the (unbroken) potential invariant is preserved by the VEV, then CP is conserved (this

is a sufficient condition). This makes the direct check very convenient to confirm CP is

preserved. We now review this direct condition in a notation that follows [35]. Consider

an even scalar potential written in the following standard form,

V (ϕ) = Y a
b ϕaϕ

∗b + Zabcdϕaϕbϕ
∗cϕ∗d, (2.9)

where ϕ contains as components the components of all fields. Y and Z are tensors that

contain all allowed couplings and are subject to possible symmetries acting on ϕ. In the

following only the action of CP transformations is repeated from [35].2 Assume that this

potential is CP-conserving, so in particular invariant under a set of CP transformations of

the fields, such that when one transforms the fields as in

ϕ 7→ Xϕ∗, (2.10)

with a unitary matrix X, the potential is unchanged,

V (ϕ) = V (Xϕ∗). (2.11)

With indices explicitly shown, we write the transformation of eq. (2.10) as3

ϕa 7→ Xaa′ϕ
∗a′ :=

∑
a′

Xaa′(ϕa′)
∗ (2.12)

and for the complex conjugated field as

ϕ∗a 7→ X∗aa
′
ϕa′ . (2.13)

Note that in this notation, X∗aa
′

= X†a
′a. Denote the whole set of such X under which a

potential is invariant in the unbroken phase by X := {X}. In appendix A the traditional

argument is repeated in the notation of eq. (2.9) that a VEV v = 〈ϕ〉 conserves CP if at

least for one of the matrices X ∈ X holds that

va = Xaa′v
∗a′ . (2.14)

2The rules for indices can be summarized as follows: on ϕ, (ϕa)∗ = ϕ∗a, (ϕ∗a)∗ = ϕa and on matrices,

e.g. a basis transformation U , (Ua
b)∗ = U∗ab. Consequently, (Ua

bϕb)∗ = U∗abϕ
∗b = (U†)b

a
ϕ∗b.

3This is a slight improvement on the notation in [35], where CP transformations were written with one

upper and one lower index.
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Inverting the argument this means that a VEV violates CP if for none of the original CP

trafos in the unbroken phase, eqs. (2.12), (2.13), the previous condition can be fulfilled.4

The type of CP transformations without complex conjugation discussed in [42], while

they might be a symmetry of the neutral components of scalar fields after symmetry break-

ing, are in our case not symmetries in the unbroken phase.

2.3 Spontaneous CP invariants

From the standard form of the potential, eq. (2.9), invariants can be built in a model-

independent way that are CP-odd by construction. Model-independent here is to mean

that these invariants are constructed from the Y and Z tensor in eq. (2.9) and work for

every potential that can be put into this standard form.

Under basis transformations, the field multiplet and its conjugate transform as ϕ 7→ Uϕ

with which the Y and Z tensor of the even potential in the standard form of eq. (2.9)

transform under basis transformations of the fields and its conjugate as

Y b
a 7→ Ua

′
a Y b′

a′ U
†b
b′ , (2.15)

Zbdac 7→ Ua
′

a U c
′
c Z

b′d′
a′c′ U

†b
b′ U

†d
d′ . (2.16)

Additionally, VEVs transform as vectors under basis transformations,

va 7→ Ua
′

a va′ and va
∗ 7→ Uaa′v

a′∗ (2.17)

and one can see now that every combination of Y , Z, v and v∗ where all indices are

correctly contracted forms a basis invariant. Complex conjugation acts on invariants by

interchanging upper and lower indices, such that the complex conjugate of a basis invariant

can be obtained by interchanging all upper and lower indices of all components. In [35],

invariants had been related to diagrams where arrows indicate index contractions and other

parts of the diagram tensors and VEVs. In that formalism, an invariant is CP-odd if the

diagram does not stay identical when inverting the direction of all arrows, which is the

diagrammatic equivalent to complex conjugation. We recall then that those basis invariant

contractions can be built into CPIs by subtracting its conjugate, for a given invariant J ,

J = J −J∗ is the CPI and for those relevant to SCPV we refer to J as a spontaneous CPI

(SCPI). The diagrammatic formalism furthermore allowed for a systematic search for CP-

odd invariants. In [35], all inequivalent CPIs up to some order were constructed, including

some SCPIs.

Here, all SCPIs that were listed in appendix B.5 of [35] have been evaluated for all

example potentials that will be considered in later sections. As a first example, we consider

here briefly the most general 2-Higgs Doublet Model (2HDM) potential. In our notation,

brackets indicate the SU(2)L contractions e.g. (H†1H1)2 = (h†1,1h1,1 + h†1,2h1,2)2, therefore

4Recently, in [47], a case was discussed where a CP-type transformation is preserved by the vev, but CP

is violated in the interplay of scalar and gauge sector.
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Figure 1. The diagram corresponding to the invariant eq. (2.19). (In [35], the precise relation

between invariants and diagrams is explained.

we write the general two-Higgs-doublet (2HDM) potential as

V (H1, H2) = m2
1 H

†
1H1 +m2

12 e
iθ0 H†1H2 +m2

12 e
−iθ0 H†2H1 +m2

2 H
†
2H2

+ a1

(
H†1H1

)2
+ a2

(
H†2H2

)2

+ b
(
H†1H1

)(
H†2H2

)
+ b′

(
H†1H2

)(
H†2H1

)
+ c1 e

iθ1
(
H†1H1

)(
H†2H1

)
+ c1 e

−iθ1
(
H†1H1

)(
H†1H2

)
+ c2 e

iθ2
(
H†2H2

)(
H†2H1

)
+ c2 e

−iθ2
(
H†2H2

)(
H†1H2

)
+ d eiθ3

(
H†1H2

)2
+ d e−iθ3

(
H†2H1

)2
. (2.18)

In it appear H1 = (h1,1, h1,2) and H2 = (h2,1, h2,2), and the arbitrary coefficients a1, a2,

b, b′,c1, c2, d. For the 2HDM, all SCPIs in [35] are non-zero although we don’t show

any as even the smallest expression is rather large. In any case they are not completely

meaningful at this stage, as the general 2HDM is explicitly CP violating. When imposing

a CP symmetry, the expression becomes meaningful — for example when imposing trivial

CP, the expression for the CP-odd invariant

J2HDM ≡ Za1a2a3a7Z
a3a4
a1a2Z

a5a6
a4a6 va5v

∗a7 − c.c., (2.19)

which of the invariants tested produces the smallest non-zero expressions for the 2HDM,

becomes a function of the coefficients in the potential multiplying the VEVs in the following

combination:

J2HDM = F (a1, a2, b, b
′, c1, c2, d)[〈h2,1〉〈h1,1〉∗ + 〈h2,2〉〈h1,2〉∗ − h.c.] (2.20)

i.e. it correctly identifies that SCPV depends in this case on the relative phase between the

VEVs of H1 and H2 (note that charge preserving VEVs correspond to 〈h1,1〉 = 〈h2,1〉 = 0).

The diagram corresponding to this invariant is shown in figure 1. The same quadratic

VEV dependence factors out also when calculating the J
(3,2)
1 SCPI that has 2 pairs of

VEVs, as the full expression is a more complicated quadratic function of the VEVs multi-

plying [〈h2,1〉〈h1,1〉∗ + 〈h2,2〉〈h1,2〉∗ − h.c.]. For the more symmetric potentials considered

in the remainder, the above simple invariant vanishes trivially, i.e. without indicating CP-

conservation. We will not consider the 2HDM further and will instead use as our examples

3HDM and 6HDM potentials that are invariant under discrete symmetries.

For all potentials besides the 2HDM that we consider as examples, of the SCPIs listed

in [35] only J (3,2)
1 is non-zero. For this reason we drop the subscript, referring to it as
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Figure 2. The diagram corresponding to the invariant J (3,2).

Figure 3. The diagram corresponding to the invariant J (3,3).

J (3,2) (we keep the superscript to distinguish from another SCPI which we will use). The

contraction J (3,2) of Z tensors and VEVs v out of which J (3,2) is formed, is in terms of the

Z tensor and VEVs given by

J (3,2) ≡ Za1a2a4a5Z
a3a4
a2a6Z

a5a6
a7a8 va1va3v

∗a7v∗a8 . (2.21)

The diagram corresponding to this invariant is shown in figure 2, where it also be seen that

it is CP-odd as the diagram with inverted arrows cannot be made identical to the original

diagram, however the dots (= Z tensors) and crosses (= VEVs) are moved around. Given

that only one of the previously constructed SCPIs is non-trivial for the potentials we are

interested in, the question arises if there is another SCPI which gives non-trivial results.

Searching for SCPIs with an additional Z tensor, i.e. considering invariants of type J
(4,2)
i ,

an explicit (but not systematic) search did not yield a positive answer. On the other hand,

an invariant J (3,3) with an additional pair of VEVs revealed another interesting SCPI which

turned out to be sufficient for our purposes (and therefore we also do not use a subscript

to label it):

J (3,3) ≡ Za7a8a1a2Z
a5a9
a3a4Z

a1a3
a5a6 va7va8va9v

∗a2v∗a4v∗a6 . (2.22)

The diagram corresponding to this invariant is shown in figure 3.

The results of evaluating both these SCPIs for the various potentials, CP symmetries

and VEVs is summarized in section 5, including table 6 and table 7. As shown in the

following sections where different potentials are considered in detail, J
(3,3)
1 provides us with

additional relevant information that complements what we learn from J (3,2). For example,

from our examples, the simplest 3 field potential that for arbitrary VEV values (which not

necessarily can be obtained from the potential) gives a non-vanishing expression for J (3,3)
1
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is invariant under S4, VS4(ϕ). The SCPI J (3,2) gives a vanishing expression independently

of the VEVs considered, whereas the expression for J (3,3) is in general:

J (3,3) = c(c2−s2)
[
|v1|2v2

1

(
v∗22 +v∗23

)
+|v2|2v2

2

(
v∗23 +v∗21

)
+|v3|2v2

3

(
v∗21 +v∗22

)
−h.c.

]
. (2.23)

Note that this doesn’t mean that it is possible to have SCPV in this potential, as when plug-

ging in any of the possible VEVs [40], J (3,3) does indeed vanish, as shown in section 4.1.2

and summarised in section 5.

3 Potentials and Vacuum Expectation Values

In this paper we are mainly interested in three- and six-Higgs-doublet models, where fields

form one or two irreducible triplet representations of some discrete symmetry group. The

most complicated potentials that will be considered in this paper then describe six scalar

SU(2)L doublets (or if only U(1)em-preserving minima are considered, equivalently, SU(2)L
singlets), and finding (global) minima can be a non-trivial task.

The aim of this section is to arrive at a list (not necessarily exhaustive, but complete

enough for further analysis) of possible VEVs of potentials of two scalar triplets of A4, S4,

∆(27), ∆(54), and ∆(3n2) and ∆(6n2) with n > 3.

First, the potentials of one triplet will be re-analysed, after which the potentials of two

triplets are examined. As the aim in the next section will be to study geometrical CPV,

potentials are made CP-conserving via various additional CP symmetries.

We identify classes of potentials by the symmetry imposed by us. This differs from [40],

where potentials were identified by their full symmetry, both of flavour- and CP-type,

which was enabled by a classification of those symmetries in [15]. The full symmetry of the

potential can be different from the imposed symmetry, e.g. because cutting off the potential

at renormalisable operators can enlarge the symmetry group.

The full symmetry of the potential or of a part of it is what will be relevant in the

following, and it will hopefully always be made clear which exact symmetry is under dis-

cussion.

For SU(2)L singlets, always an additional U(1) symmetry was imposed to force the

potential to be even. In addition, to not break U(1)em, in a basis where at least one VEV

component of one doublet is zero, also the same component of the other doublets has to be

zero. When in a term in a potential of singlet fields the flavour indices allow for various ways

of contracting SU(2)L indices, then if without loss of generality, the bottom component of

all doublets is set to zero, such terms in doublet potentials will coincide again.

For the aforementioned reasons the possible vacuum expectation values that don’t

break U(1)em of a doublet potential with some symmetry will be identical to those of the

corresponding singlet potential made even by an additional U(1). Some of these potentials

had been considered in [40], where also the full list of global VEVs was obtained via a

geometric method.

When searching for the minima of a potential, one is not just interested in the minimum

at some position in the parameter space of the potential, but one would ideally like to know

what the minima of the potential are in every corner of its parameter space.
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Minima that are related by symmetries of the potential have the same energy by

definition and such sets of related VEVs are called orbits, of which a potential can have

more than one. Notably, when the symmetry of the potential is increased (of flavour- or

CP-type), this has the effect of merging orbits. Beyond this it should be noted that the

full symmetry of the VEV set is larger than that of the potential. The set of VEVs is

also invariant under transformations under which the potential was just form-invariant,

cf. [45], as such transformations connect orbits. In other words, while the symmetries of

the potential are valid at every point of the whole space of the parameters of the potential,

the set of VEVs additionally contains information about all potentials that differ by the

values of their parameters but not by their symmetries.

In the notation of section 2.2, classical minima of the potential are solutions of

0 =
∂V

∂vi
= Y i

b v
∗b + 2Zibcdvbv

∗cv∗d (3.1)

and the corresponding conjugated equation, as well as the condition that the matrix of all

second derivatives is positive definite. The mixed derivative by VEV and conjugated VEV

would e.g. be
∂2V

∂vi∂v∗j
= Y i

j + 4Zibjdvbv
∗d. (3.2)

An alignment is basically, in accord with the literature, a VEV where one does not

care about its absolute length but only about its direction. The linear symmetries in

consideration can in any case not constrain the length of the VEV, as the overall sizes of

quadratic and quartic terms are entirely unrelated. At the end of the day one is interested in

interesting alignments, especially such that violate CP spontaneously or even geometrically.

In a following section, CP violation will be discussed in greater detail, this section focuses

on obtaining VEVs of the potentials considered in this paper.

New VEVs are generated by analysing which degrees of freedom become physical

when going from a potential with high symmetry to one with lower symmetry. Consider

a potential

V = VG + VH with H ⊂ G. (3.3)

All alignments vi of potentials generally fall into orbits {H · vi}. If one considers the

subpotential VG separately, it will have minima that again fall into orbits {G · vi}. Next,

consider VH as terms that explicitly break the symmetry of the potential from G to H. By

this, the orbits of VG are now split into several orbits organized by H, sometimes only a

finite number of orbits, occasionally there can be a new continuous parameter distinguishing

them. In this case the full potential can be minimized in this new parameter, which is often

possible analytically.

First, it is thus tested for potentials with one triplet of scalars, which orbits can be

obtained from the orbits of more symmetric potentials, just by applying the symmetries

of the less symmetric potential to the orbits of the more symmetric one. In this way,

degrees of freedom that were unphysical in the more symmetric potential can become

physical and after minimizing just the part of the potential that depends on these new

degrees of freedom, one obtains as global minima exactly those that had also been obtained
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in [40]. One could thus conjecture that for certain relations between symmetry groups, also

relations between the global minima of potentials with these symmetries exist which might

be made more precise.

After that, the same method is applied to obtain some of the (conjectured) global

minima of potentials of two triplets of scalars from those of potentials that are just the sum

of potentials of one triplet without cross-terms. Again this simply shows which degrees of

freedom become physical due to the reduced symmetry. Still, many new interesting global

minima are obtained, many of which are geometric and many of which will turn out to be

CP violating and especially geometrically CP violating, which constitute the first examples

of this phenomenon outside the original ∆(27) model and [38, 39]. The cases found here

are in particular the first new examples of geometric CPV with six scalars.

Generally, a VEV is defined as being geometric when in the region of the parameter

space of the potential where it is a (global) minimum, its direction but not its length depend

on the potential parameters, or if the potential is expressed in terms of Y and Z tensors,

v = |v|(Y, Z)v̂, (3.4)

where |v| is the length of the VEV and the only part that depends on the potential parame-

ters, and v̂ is the normalised direction that does not depend on them. This is equivalent to

∂v̂

∂Y a
b

= 0 and
∂v̂

∂Zabcd
= 0. (3.5)

A VEV is primarily a solution of the minimisation conditions, in the notation of eq. (2.9),

given by

∂V

∂φi
→ Y i

b v
∗ + 2Zibcdvbv

∗cv∗d ≡ 0 and
∂V

∂φ∗j
→ Y a

j vj + 2Zabjdvavbv
∗d. (3.6)

It is normally not possible to easily arrive at a closed form of the VEV, but it is implicitly

defined as solution of the minimisation conditions. This allows to use the theorem about

the derivatives of implicitly defined functions to arrive at a relation involving ∂v̂/∂Y and

∂v̂/∂Z. Call a vector of the potential parameters ~z. If f(|v|, v̂, ~z) is the implicit function

defining |v| and v̂, i.e. the minimisation condition, then an expression for dv̂/d~z, which is

identical to ∂v̂/∂~z, as v̂ only depends on ~z, can be obtained via the differential of f :

df =
∂f

∂~z
d~z +

∂f

∂|v|
d|v|+ ∂f

∂v̂
dv̂, (3.7)

from which follows
∂v̂

∂~z
= −

(
∂f

∂v̂

)−1(df
d~z

+
∂f

∂|v|
∂|v|
∂~z

)
. (3.8)

While the above is interesting and the most direct line of thought, we did not manage to

extract any practical criteria on the potential or its symmetries and do not follow it further

in this work.

We had recently listed the minima obtained in the following in a short note, [36], but

without such a detailed discussion of the derivation as given here and without considering

the effect of CP symmetries on the minima of the potentials of two triplets.
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3.1 Potentials of one triplet

3.1.1 ∆(3n2) and ∆(6n2), with n > 3

We start with a discussion of the simplest potential considered in this paper: that of one

triplet of ∆(3n2), which is identical to the potential of one triplet of ∆(6n2).

In the notation from [48], triplets of ∆(3n2) can be enumerated as 3(k,l), where k, l =

0, 1, . . . , n− 1. The conjugate of 3(k,l) is 3(−k,−l). For triplets in the same irrep.,

3(k,l) ⊗ 3(k,l) = [3(2k,2l) + 3(−k,−l)]s + [3(−k,−l)]a . (3.9)

Here, s and a are the symmetric and antisymmetric combinations.

This potential had not been analysed in [15, 40], as the large discrete symmetry is

so constraining that the renormalisable potential ends up having a continuous symmetry:

apart from the U(1) symmetry that make the potentials even in φ, this potential has

additional continuous symmetries, cf. eq. (3.21). The potential is

V∆(6n2)(ϕ) = V∆(3n2)(ϕ) ≡ V0(ϕ) (3.10)

where, as it will appear in subsequent potentials, we define

V0(ϕ) ≡ − m2
ϕ

∑
i

ϕiϕ
∗i + r

(∑
i

ϕiϕ
∗i

)2

+ s
∑
i

(ϕiϕ
∗i)2. (3.11)

If each component of the triplet is an SU(2)L doublet,

H = (h1α, h2β , h3γ) , (3.12)

one additional invariant appears, due to the two different ways to perform the SU(2)L
contraction on the discrete symmetry invariant

(∑
i ϕiϕ

∗i)2, when the ϕ are replaced by

Higgs doublets,5 ∑
i,j,α,β

[
r1(hiαh

∗iα)(hjβh
∗jβ) + r2(hiαh

∗iβ)(hjβh
∗jα)

]
. (3.13)

Here we highlight the SU(2)L indices to clarify the distinct SU(2)L contractions. Then

we have

V∆(6n2)(H) = V∆(3n2)(H) ≡ V0(H) (3.14)

and we define V0(H) in analogy with eq. (3.11):

V0(H) = − m2
h

∑
i,α

hiαh
∗iα +

∑
i,j,α,β

[
r1(hiαh

∗iα)(hjβh
∗jβ) + r2(hiαh

∗iβ)(hjβh
∗jα)

]
+s
∑
i,α,β

(hiαh
∗iα)(hiβh

∗iβ). (3.15)

5Since the doublet 2 of SU(2)L is a pseudoreal representation, it is also possible to combine

(hiαhjβε
αβ)(h∗iγh∗jδεγδ) using the antisymmetric ε tensor. However, such a term is not independent of

the two terms in eq. (3.13) as can be easily seen in an explicit calculation or by noting that 2× 2 = 1 + 3

which entails only two independent SU(2)L invariant quartic terms.
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The potential eq. (3.11) can be minimized analytically and one obtains for mϕ 6= 0 three

classes of non-zero VEVs that are internally related by symmetry transformations and

representatives of those classes are

v1 · (1, 0, 0), v2 · (1, 1, 0), v3 · (1, 1, 1), (3.16)

where

v2
1 =

m2
ϕ

2r + 2s
, v2

2 =
m2
ϕ

4r + 2s
, v2

3 =
m2
ϕ

6r + 2s
. (3.17)

It can be tested that for all of the alignments listed previously, regions in the parameter

space exist such that for potentials with parameters in that region, the corresponding

alignment is the global minimum of the potential.

The potential in eq. (3.11) decays into two parts, one, namely the two invariants with

parameters mϕ and r, invariant under all of U(3), and a second part, consisting of the

invariant with parameter s, invariant under ((U(1)×U(1))oS3)×U(1) =: ∆(6∞2)×U(1),

where the U(1)2 factor in brackets arises from sending n to infinity in ∆(6n2), and the

third U(1) was imposed to keep the potential even:

V0 = VU(3) + δV∆(6∞2)×U(1), (3.18)

where

VU(3) = − m2
ϕ

∑
i

ϕiϕ
∗i + r

(∑
i

ϕiϕ
∗i

)2

, (3.19)

and

δV∆(6∞2)×U(1) = s
∑
i

(ϕiϕ
∗i)2, (3.20)

from eq. (3.11). Occasionally, the label on a potential will refer to the imposed symmetry

and occasionally, but only when talking about parts of potentials, to the full symmetry of

that part of the potential. It is hoped that it is mostly clear from context which symmetry

is meant.

The alignments of VU(3) all fall into one large orbit, represented e.g. by (1, 0, 0), con-

nected by arbitrary unitary transformations. The effect of the second, less symmetric, part

of the potential is that this big orbit decays into several orbits in which now not yet phases

but the direction of the VEV becomes physical.

To each of the alignments in eq. (3.16) quite a big orbit is attached, the members of

which are related by the full symmetries of the potential, both such of flavour and CP type.

The flavour symmetries of V0 are generated by0 1 0

0 0 1

1 0 0

 ,

0 0 1

0 1 0

1 0 0

 ,

eiα 0 0

0 eiα 0

0 0 eiα

 ,

eiβ 0 0

0 1 0

0 0 e−iβ

 ,

1 0 0

0 eiγ 0

0 0 e−iγ

 , (3.21)

where α, β, γ are arbitrary phases. Additionally, the potential is automatically invariant

under canonical CP transformations, which we refer to as CP0. For one triplet, this
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corresponds to an X matrix

X0 =

1 0 0

0 1 0

0 0 1

 . (3.22)

Note that the alignments in eq. (3.16) all conserve canonical CP (CP0). The orbits of

alignments of this potential are
eiη0

0

 ,

 0

eiη

0

 ,

 0

0

eiη


 ,


eiηeiζ

0

 , permut.

 ,


eiηeiζ
eiθ

 , permut.

 . (3.23)

Now one could wonder into what kind of orbits the above alignments of eq. (3.23) are

bundled by applying a smaller symmetry group than ∆(6n2) × U(1). In other words,

one asks, which phases and permutations of the alignments of the one-triplet potential

of ∆(6n2), that were unphysical under the symmetries of eq. (3.21) would no longer be

unphysical, assuming for a moment that they could actually be minima of a potential with

a smaller symmetry.

3.1.2 S4

The potential of one triplet of S4 is

VS4(ϕ) = V0(ϕ) + δVS4×U(1)(ϕ) (3.24)

with V0(ϕ) from eq. (3.11) and

δVS4×U(1)(ϕ) = b
(
ϕ1ϕ1ϕ

∗3ϕ∗3 + ϕ2ϕ2ϕ
∗1ϕ∗1 + ϕ3ϕ3ϕ

∗2ϕ∗2
)

+ b
(
ϕ∗1ϕ∗1ϕ3ϕ3 + ϕ∗2ϕ∗2ϕ1ϕ1 + ϕ∗3ϕ∗3ϕ2ϕ2

)
. (3.25)

Note that b is real. The abbreviations cycl. to denote the cyclic permutations, and h.c.

to indicate the hermitian conjugate allow us to write the potential of eq. (3.25) (and

subsequent potentials) in a more compact way:

δVS4×U(1)(ϕ) = b
[(
ϕ1ϕ1ϕ

∗3ϕ∗3 + cycl.
)

+ h.c.
]
, (3.26)

VS4(ϕ) = V0(ϕ) + b
[(
ϕ1ϕ1ϕ

∗3ϕ∗3 + cycl.
)

+ h.c.
]
. (3.27)

The SU(2)L doublet version is similar:

VS4(H) = V0(H) +
∑
α,β

b
[(
h1αh1βh

∗3αh∗3β + cycl.
)

+ h.c.
]
. (3.28)

The flavour symmetries of the S4 potentials, eq. (3.27) and (3.28) for SU(2) singlets and

doublets respectively, are generated by0 1 0

0 0 1

1 0 0

 ,

0 0 1

0 1 0

1 0 0

 ,

eiα 0 0

0 eiα 0

0 0 eiα

 ,

−1 0 0

0 1 0

0 0 −1

 ,

1 0 0

0 −1 0

0 0 −1

 (3.29)
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and in addition, the potential is automatically invariant under CP0. Under these symme-

tries, the elements of the orbits of the potential of one triplet of ∆(6n2), eq. (3.23), fall

into the following orbits:eiη0
0

→
1

0

0

 ,

eiηeiζ
0

→
 1

eiζ
′

0

 with ζ ′ ∈ [0, π] (3.30)

and eiηeiζ
eiθ

→
 1

eiζ
′

eiθ
′

 with ζ ′′ ∈ [0, π] and θ′ ∈ [0, 2π]. (3.31)

What has happened so far is just that phases that were unphysical for ∆(6n2) can now be

physical. Minimizing the parts of the potential that depend on these potentially physical

phases for the various orbits yields the following possible global minima of just the phase-

dependent part, δVS4×U(1), 1

0

0

 ,

1

1

1

 ,

±1

ω

ω2

 ,

1

i

0

 , (3.32)

which have been rephased into the form as they appear in [40], and where we have defined

ω ≡ ei2π/3. (3.33)

The above alignments obtained in this way are, maybe surprisingly, in agreement with [40].

Two questions arise now: firstly, does e.g. the potential of one triplet of S4 have global

VEVs that don’t arise from making unphysical phases in V∆(6n2) physical in δVS4×U(1),

which would be in contradiction to [40], at least for the potential of one triplet of S4?

With respect to the first question, for S4 or any of the one-triplet potentials this is not

the case. Secondly, what is the situation when going from ∆(6n2) to ∆(54), ∆(27) or A4,

or from S4 to A4, or more interestingly for the actual topic of this paper, from potentials

of two copies of triplets without cross-terms to such with cross terms? We address this

second question in section 3.2.

3.1.3 A4

The irreps. of A4 are three one-dimensional representations and a real triplet. Two triplet

products decompose as

3⊗ 3 = (10 + 11 + 12 + 3)s + 3a , (3.34)

where subscripts s and a, denote symmetric and antisymmetric combinations respectively.

Throughout, we use the [49] basis for A4 products.

We charge ϕ under a U(1) symmetry (or a discrete subgroup) forbidding terms such

as ϕiϕi or ϕiϕiϕi, for a more direct generalisation to cases where the triplets transform
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under the SM gauge group. The renormalisable scalar potential invariant under A4 and

such a U(1) is then:

VA4(ϕ) = V0(ϕ) +
[
c
(
ϕ1ϕ1ϕ

∗3ϕ∗3 + cycl.
)

+ h.c.
]
, (3.35)

with V0(ϕ) as defined in eq. (3.11), and where c is complex in general.

This potential is automatically invariant under the CP symmetry with:

X23 =

1 0 0

0 0 1

0 1 0

 , (3.36)

even for arbitrary complex coefficient c.

For SU(2)L doublets, the potential is similar

VA4(H) = V0(H) +
∑
α,β

[
c
(
h1αh1βh

∗3αh∗3β + cycl.
)

+ h.c.
]
. (3.37)

This potential is also invariant under a CP transformation that involves swapping the

second and third component in flavour space while keeping SU(2)L contractions unchanged,

i.e. h2α → h∗3α etc.:

XH
23 =

1 0 0

0 0 1

0 1 0

⊗ δαβ . (3.38)

Therefore, CP is conserved automatically for this potential and all possible explicit CPIs

necessarily vanish.

One notes that the potential of one triplet of A4, eqs. (3.35) and (3.37) for SU(2)

singlets and doublets respectively, is an extension of the potential of one triplet of ∆(3n2)

(in eqs. (3.10), (3.11) and eq. (3.14), (3.15)) by a term that is invariant only under A4×U(1):

VA4 = V0 + δVA4×U(1). (3.39)

The full flavour-type symmetries of the full potential VA4 are generated by0 1 0

0 0 1

1 0 0

 ,

eiα 0 0

0 eiα 0

0 0 eiα

 ,

−1 0 0

0 1 0

0 0 −1

 ,

1 0 0

0 −1 0

0 0 −1

 , (3.40)

and in addition the potential has the CP symmetry generated by X23. Under these sym-

metries, the elements of the orbits of the potential of one triplet of ∆(6n2), eq. (3.23), fall

into the following orbits:eiη0
0

→
1

0

0

 ,

eiηeiζ
0

→
 1

eiζ
′

0

 with ζ ′ ∈ [0, π] (3.41)
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and eiηeiζ
eiθ

→
 1

eiζ
′

eiθ
′

 with ζ ′′ ∈ [0, π] and θ′ ∈ [0, 2π]. (3.42)

So far this has been straightforward and one has learned that out of the orbits of the

potential invariant under ∆(6n2), up to two phases can become physical, which now have

to be determined by minimizing the parts of the potential that depend on them, which

happens to be exactly δVA4×U(1). For example, plugging the alignment (1, eiζ
′
, 0) into

δVA4×U(1), one obtains

δVA4×U(1)[(1, e
iζ′ , 0)] = ce2iζ′ + c∗e−2iζ′ , (3.43)

which when minimizing this in ζ ′ of course yields ζ ′ = −Arg(c)/2 mod π.

For the alignment candidate (1, eiζ
′′
, eiθ

′
) one obtains after a only slightly longer calcu-

lation for the phases which minimize δVA4×U(1) and after eliminating phase constellations

that are related by symmetries of the potential, eq. (3.40),

(ζ ′′, θ′) = (0, 0), (5π/3, π/3), (2π/3, 4π/3), (3.44)

which correspond to alignments of the type (1, 1, 1) and both of (±1, ω, ω2), such that with

eq. (3.41) the list of possible global alignments from [50, 51] and [40] for one triplet of A4

is completed. All of the alignments found above, in summary,1

0

0

 ,

1

1

1

 ,

±1

ω

ω2

 ,

 1

eiζ
′

0

 (3.45)

have the same energy for V0 and are just further differentiated by δVA4×U(1), as is well

known in the literature.

There are two ways in which one can reach the symmetries of the A4 potential from

the symmetries of the ∆(6n2) potential, namely directly and via the symmetries of the S4

potential.

The potential of one triplet of S4 is actually contained in the potential of one triplet

of A4:

VA4 = V0 + δVS4×U(1) + δV ′A4×U(1) (3.46)

with δVS4×U(1) from eq. (3.26) (with b real and the h.c. inside the bracket) and

δV ′A4×U(1) = (c− b)
(
ϕ1ϕ1ϕ

∗3ϕ∗3 + ϕ2ϕ2ϕ
∗1ϕ∗1 + ϕ3ϕ3ϕ

∗2ϕ∗2
)

+ h.c. (3.47)

Note that while b is real, c is complex and in this expression the h.c. is outside of the

bracket. Following the same path, namely writing out the orbits of the VEVs of the S4

potential and reducing them by the full symmetries of the A4 potential, one recovers the

first three VEVs in eq. (3.45). However, there is no way of obtaining (1, eiζ
′
, 0)T from

the S4 × U(1) orbit of (1, i, 0)T : the full symmetry of the potential invariant under S4 is

such that the orbit of (1, i, 0)T does not contain (1, eiζ
′
, 0). Interestingly, this A4 VEV is

not geometric.
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3.1.4 ∆(27) and ∆(54)

As in the A4 case, we start with a single triplet of SM singlets and later consider up to two

∆(27) triplets of SU(2)L doublets.

∆(27) has irreps. 3, its conjugate 3̄, and nine one-dimensional irreps. The product of

triplets decomposes as

3⊗ 3 = (3 + 3)s + 3a , (3.48)

s and a are the symmetric and antisymmetric combinations, respectively.

In the basis used in [52, 53]The renormalisable scalar potential or one triplet is ,

V∆(27)(ϕ) = V0(ϕ) +
[
d
(
ϕ1ϕ1ϕ

∗2ϕ∗3 + cycl.
)

+ h.c.
]
. (3.49)

Apart from d ∈ C, the coefficients are real. Note that this potential has no automatic CP

symmetry. In the literature, for the potential eq. (3.49), a variety of CP symmetries have

been discussed, starting with 12 CP transformations that had been found to be consistent

with ∆(27) in [54]. The enumeration of the X matrices here follows that paper. The full

discrete flavour symmetry of the potential invariant under ∆(27) is ∆(54) and in this case,

pairs of X matrices become related under the enlarged symmetry. In the following, the X

matrices are listed by the relation they enforce on the parameters of the potential. After

that, basis transformations that relate these CP symmetries, and their role are discussed.

• Arg(d) = 0

X0 =

1 0 0

0 1 0

0 0 1

 or X1 =

1 0 0

0 0 1

0 1 0

 (3.50)

• Arg(d) = 4π/3

X2 =

1 0 0

0 1 0

0 0 ω

 or X8 =

ω 0 0

0 0 1

0 1 0

 (3.51)

• Arg(d) = 2π/3

X3 = X∗2 =

1 0 0

0 1 0

0 0 ω2

 or X9 = X∗8 =

ω2 0 0

0 0 1

0 1 0

 (3.52)

• s = (d+ d∗) = 2Re(d)

X4 =
1√
3

1 1 1

1 ω ω2

1 ω2 ω

 or X5 = X4X1 = X∗4 =
1√
3

 1 1 1

1 ω2 ω

1 ω ω2

 (3.53)

• s = −Re(d)−
√

3Im(d)

X6 =
−i√

3

 1 ω ω

ω ω 1

ω 1 ω

 or X10 = X6X1 =
−i√

3

 1 ω ω

ω 1 ω

ω ω 1

 (3.54)
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• s = −Re(d) +
√

3Im(d)

X7 = X∗6 =
i√
3

 1 ω2 ω2

ω2 ω2 1

ω2 1 ω2

 or X11 = X7X1 =
i√
3

 1 ω2 ω2

ω2 1 ω2

ω2 ω2 1

 (3.55)

We note that X0 was defined already in eq. (3.22) and X1 (matching [54]) was defined

as X23 in eq. (3.36).

As all of the above X matrices are symmetric, there are basis transformations Ui such

that in the new basis the matrix Xi becomes the identity, and for X2 and X3, these also

leave the potential form invariant, as was realised in [45],

U2 =

1 0 0

0 1 0

0 0 ω2

 and U3 =

1 0 0

0 1 0

0 0 ω

 . (3.56)

There are of course also basis transformations from X4, X5, X6 to X0, but these do not

leave the potential form-invariant. The basis transformation e.g. from X4 to X0 is

U4 =

 0 0 1

− 1√
2

1√
2

0
1√
2

1√
2

0




1 0 0

0 − 1+
√

3√
6+2
√

3

1√
3+
√

3

0
√

3−1√
6−2
√

3

1√
3−
√

3


−(−1)3/4 0 0

0 −i 0

0 0 1

 . (3.57)

For SU(2)L doublets, the potential is

V∆(27)(H) = V0(H) +
∑
α,β

[
d
(
h1αh1βh

∗2αh∗3β + cycl.
)

+ h.c.
]
. (3.58)

For one triplet, the corresponding potentials invariant under are ∆(54) identical to those

invariant under ∆(27) [55]

V∆(54)(ϕ) = V∆(27)(ϕ) , (3.59)

V∆(54)(H) = V∆(27)(H). (3.60)

The potential eq. (3.58) has been analysed in [40] and is the 3HDM potential with the

largest of the purely discrete symmetries (apart for the U(1) that arises from the potential

being even) for which CP may be spontaneously violated. In addition, this was the case

where so-called geometric violation was first discovered, see also section 4.1.3.

For generic values of the potential parameters, the potential violates CP explicitly.

Additional CP symmetries may be imposed that force the potential to be explicitly CP-

conserving. In [40] the two types of CP symmetry that are normally considered consistent

with the flavour-type symmetry of the potential are analysed. In [54], 12 CP symmetries

are listed as being consistent with ∆(27), but if considered in the ∆(54) context this number

reduces to 6. For example, CP0 and the CP23 (the CP associated with X23) become related

by ∆(54). In this case, of the 6 remaining, 3 restrict the phase of parameter d in the
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potential, the remaining 3 additionally enforces an additional relation on the parameters,

such as 2s = (d+ d∗) if CP with X matrix

X4 =
1√
3

1 1 1

1 ω ω2

1 ω2 ω

 , (3.61)

is imposed. This second CP-type transformation (like X4) enlarges the flavour-type symme-

try of the potential to Σ(36). It should be noted that the three CP symmetries that restrict

the phase of d are related by basis-transformations that leave the potential form-invariant,

cf. [45]. In addition, we found that the three CP symmetries that enforce 2s = d+ d∗ are

also related with each other via such basis transformations, the simplest ones being for

connecting X4 with X10 and X11, respectively,

U10 =
√
−i

1 0 0

0 ω 0

0 0 ω

 and U11 =
√
−i

1 0 0

0 ω2 0

0 0 ω2

 . (3.62)

Furthermore, as X4 of eq. (3.61) is also symmetric, in principle a basis transformation

exists, such that in the new basis X4 would be diagonal, however this basis transformation

does not leave the potential form-invariant.

The full flavour-type symmetries of an even potential of one triplet of ∆(27) or one

triplet of ∆(54), both produce identical renormalisable potentials, are generated by0 1 0

0 0 1

1 0 0

 ,

0 0 1

0 1 0

1 0 0

 ,

eiα 0 0

0 eiα 0

0 0 eiα

 ,

ei2π/3 0 0

0 1 0

0 0 e−i2π/3

 ,

1 0 0

0 ei2π/3 0

0 0 e−i2π/3

 . (3.63)

Using these, the orbits of one triplet of ∆(6n2), eq. (3.23) become

(1, 0, 0), (1, eiβ
′
, 0), (1, eiβ

′′
, eiγ

′
) (3.64)

with β′, β′′, γ′ ∈ [0, 2π/3]. The CP symmetries, whether CP0 or the CP symmetry associ-

ated with X4 do at this point not further constrain the potentially physical phases. The

phases appearing here can now be physical within ∆(54) and need to be determined by

minimizing the parts of the potential that depend on them. Curiously, the phase dependent

part of V∆(54),

δV∆(54)×U(1) =
[
d
(
ϕ1ϕ1ϕ

∗2ϕ∗3 + cycl.
)

+ h.c.
]

(3.65)

yields simply zero for the alignment (1, eiβ
′
, 0), which already means that the phase β′

remains unphysical. (1, 1, 0) could still be a local minimum of the potential, as it already

is a possible global minimum of V0. When minimizing δV∆(54)×U(1) with (1, eiβ
′′
, eiγ

′
), one

obtains the usual alignments of (1, 1, 1), (1, 1, ω), (1, ω, ω) (or for the last one equivalently

(1, 1, ω2)). Evaluating the potential at those alignments explains the fate of the (1, 1, 0)

alignment as a global minimum: δV∆(54)×U(1) always attains a negative value for at least

one of the alignments (1, 1, 1), (1, 1, ω), (1, 1, ω2), for any value of Arg(d). However, as
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this scales with the absolute size of d as well, (1, 1, 0) could still be quite a metastable

minimum. In any case, again, taking VEV candidates just from the VEV orbits of the

∆(6n2) potential produces the full list of global minima that were obtained (painstakingly)

by [40], in summary:

(1, 0, 0), (1, 1, 1), (1, 1, ω), (1, 1, ω2). (3.66)

To also repeat the effect of CP transformations from [40]: with CP0, the last two VEVs

become related by symmetry and no longer represent different breaking patterns. With the

type of CP that extends the flavour symmetry to Σ(36), with matrix X4, eq. (3.61), again

the last two VEVs in eq. (3.66) become part of the same orbit. In addition also the first

two VEVs in eq. (3.66) become part of the same orbit (separate from the last two VEVs).

3.2 VEVs of potentials of two triplets

Typically, realistic models of flavour require more than just one triplet flavon. We therefore

consider potentials involving two physically different flavon fields ϕ and ϕ′ which both

transform under a triplet representation of the symmetry groups we consider. Similarly

we also consider 6HDMs with the SU(2)L doublets transforming as two triplets of the

discrete symmetries.

Potentials of two triplets consist of three parts: two sets of terms that each only

couple components of one triplet to each other on one hand, and cross terms that couple

components of different triplets to each other,

V (ϕ,ϕ′) = V (ϕ) + V ′(ϕ′) + Vc(ϕ,ϕ
′). (3.67)

If the two triplets transform identically under the symmetry, then V (ϕ) and V ′(ϕ′) will be

functionally identical.

The orbits of minima of the potentials of single triplets are known completely for the

flavour symmetries in consideration. Similarly to potentials of one triplet, one can now

analyse which degrees of freedom of VEVs that are unphysical by the symmetry of the

two single-triplet potentials V (ϕ) +V ′(ϕ′) can become physical by reducing the symmetry

either by introducing cross-terms between triplets, Vc(ϕ,ϕ
′), or by considering a whole

potential invariant only under a smaller symmetry group.

As before, only the alignments of the VEVs are shown and for two triplets, this does

not mean that the VEVs v1, v2 of both triplets have to have the same length. Instead,

arbitrary lengths of both triplets are allowed and possible and generally |v1| 6= |v2|.
In the following subsections, we will consider potentials of two triplets, starting with

those invariant under ∆(3n2) and ∆(6n2) with n > 3 and then continuing to those with

smaller symmetries, all of which share certain common terms (this was already the case

for the potentials with a single triplet invariant under these groups). For this reason, it is
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useful to define for the ∆(3n2) symmetries

V1(ϕ,ϕ′) = + r̃1

(∑
i

ϕiϕ
∗i

)∑
j

ϕ′jϕ
′∗j

+ r̃2

(∑
i

ϕiϕ
′∗i

)∑
j

ϕ′jϕ
∗j


+ s̃1

∑
i

(
ϕiϕ

∗iϕ′iϕ
′∗i)

+ s̃2

(
ϕ1ϕ

∗1ϕ′2ϕ
′∗2 + ϕ2ϕ

∗2ϕ′3ϕ
′∗3 + ϕ3ϕ

∗3ϕ′1ϕ
′∗1)

+ i s̃3

[
(ϕ1ϕ

′∗1ϕ′2ϕ
∗2 + cycl.)− (ϕ∗1ϕ′1ϕ

′∗2ϕ2 + cycl.)
]
. (3.68)

Note that in this definition, the term multiplied by r̃1 contains the term multiplied by s̃2

as well as the term obtained from the latter by interchanging ϕ with ϕ′,(
ϕ′1ϕ

′∗1ϕ2ϕ
∗2 + ϕ′2ϕ

′∗2ϕ3ϕ
∗3 + ϕ′3ϕ

′∗3ϕ1ϕ
∗1) , (3.69)

which is not included separately in s̃2.

Earlier, when considering a potential of one triplet of SU(2)L doublets, the only differ-

ence was that the term with coefficient r split into two different invariants corresponding

to two different possible SU(2)L contractions, cf. eq. (3.13). Similarly, the potential of two

triplets of SM doublets,

H = (h1α, h2β , h3γ) , H ′ = (h′1α, h
′
2β , h

′
3γ) , (3.70)

can be obtained from the corresponding potential of singlets, eq. (3.68). In the first two

parts of the potential, V0(ϕ) and V0(ϕ′), as earlier, there are two different ways of SU(2)L-

contracting the invariants with coefficients r and r′. In the potential V1(ϕ,ϕ′), there are

two possible ways of SU(2)L-contracting for each invariant and therefore this part of the

potential becomes in its SU(2)L doublet version

V1(H,H ′) =
∑
i,j,α,β

[
r̃11hiαh

∗iαh′jβh
′∗jβ + r̃12hiαh

′∗jαh′jβh
∗iβ
]

+
∑
i,j,α,β

[
r̃21hiαh

′∗iαh′jβh
∗jβ + r̃22hiαh

∗jαh′jβh
′∗iβ
]

+
∑
i,α,β

[
s̃11hiαh

∗iαh′iβh
′∗iβ + s̃12hiαh

′∗iαh′iβh
∗iβ
]

+
∑
α,β

[
s̃21(h1αh

∗1αh′2βh
′∗2β + cycl.) + s̃22(h1αh

′∗2αh′2βh
∗1β + cycl.)

]
+ is̃31

∑
α,β

[(h1αh
′∗1αh′2βh

∗2β + cycl.)− (h∗1αh′1αh
′∗2βh2β + cycl.)]

+ is̃32

∑
α,β

[(h1αh
∗2αh′2βh

′∗1β + cycl.)− (h∗1αh2αh
′∗2βh′1β + cycl.)]. (3.71)

As it is useful for all of the ∆(6n2) symmetries, we define also

V2(ϕ,ϕ′) = r̃1

(∑
i

ϕiϕ
∗i

)∑
j

ϕ′jϕ
′∗j

+ r̃2

(∑
i

ϕiϕ
′∗i

)∑
j

ϕ′jϕ
∗j


+ s̃1

∑
i

(
ϕiϕ

∗iϕ′iϕ
′∗i) , (3.72)
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and the SU(2)L doublet version

V2(H,H ′) =
∑
i,j,α,β

[
r̃11hiαh

∗iαh′jβh
′∗jβ + r̃12hiαh

′∗jαh′jβh
∗iβ
]

+
∑
i,j,α,β

[
r̃21hiαh

′∗iαh′jβh
∗jβ + r̃22hiαh

∗jαh′jβh
′∗iβ
]

+
∑
i,α,β

[
s̃11hiαh

∗iαh′iβh
′∗iβ + s̃12hiαh

′∗iαh′iβh
∗iβ
]
. (3.73)

We note that one can obtain V2 from V1 by imposing

s̃2 = s̃3 = 0 , (3.74)

for SU(2)L singlets and, for SU(2)L doublets, s22 = s̃31 = s̃32 = 0.

As previously for one-triplet-potentials, minima of several doublets that conserve

U(1)em can be identified with the minima of the same number of singlets.

By restricting the potential with U(1) symmetries for each of the scalar fields, the

mixed terms appearing are limited to the form ϕϕ′ ϕ∗ ϕ′∗. For SU(2)L doublets, it is even

sufficient to impose e.g. a Z3 symmetry with non-trivial charge for only one of the two

triplets of Higgs doublets to distinguish them.

3.2.1 ∆(6n2) with n > 3

The potentials of two triplets under ∆(6n2) of singlets and doublets have the form

V∆(6n2)(ϕ,ϕ
′) = V0(ϕ) + V ′0(ϕ′) + V2(ϕ,ϕ′) , (3.75)

V∆(6n2)(H,H
′) = V0(H) + V ′0(H ′) + V2(H,H ′) , (3.76)

where V ′0(ϕ′) has the same functional form as V0(ϕ) with different coefficients m′ϕ′ , r
′, s′

and depends on ϕ′. V0(ϕ), V0(H) were defined in eqs. (3.11) and (3.15), V2(ϕ,ϕ′) and

V2(H,H ′) were defined in eqs. (3.72) and (3.73). These ∆(6n2) potentials (with n > 3)

conserve CP explicitly. As the parameters are all real, one of the CP symmetries is CP0.

The orbits of minima of a potential of one triplet of ∆(6n2) are (cf. eq. (3.23))
eiη0

0

 ,

 0

eiη

0

 ,

 0

0

eiη


 ,


eiηeiζ

0

 , permut.

 ,


eiηeiζ
eiθ

 , permut.

 . (3.77)

Without cross terms V2(ϕ,ϕ′), both triplets can transform independently under ∆(6n2) and

thus have independent orbits. Thus, every member of each orbit may now be combined

with every other member of each orbit, but only the symmetries of the full potential of two

triplets including cross terms can be used to eliminate unphysical phases. The symmetries

of the full potential are generated by the simultaneous transformations of both triplets

under ∆(6∞2) and in addition separate U(1) phases acting on each triplet,eiα eiα
eiα

⊕
1

1

1

 , and

1

1

1

⊕
eiα

′

eiα
′

eiα
′

 , (3.78)
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as well as an overall canonical CP transformation (CP0). With these symmetries one

obtains the following reduction of combinations of orbits of VEVs of a potential of one

triplet of ∆(6n2):

(eiη, 0, 0)|(eiη′ , 0, 0)→ (1, 0, 0)|(1, 0, 0) (3.79)

(eiη, 0, 0)|(0, eiη′ , 0)→ (1, 0, 0)|(0, 1, 0) (3.80)

(eiη, 0, 0)|(eiη′ , eiζ′ , 0)→ (1, 0, 0)|(1, 1, 0) (3.81)

(eiη, 0, 0)|(0, eiη′ , eiζ′)→ (1, 0, 0)|(0, 1, 1) (3.82)

(eiη, 0, 0)|(eiη′ , eiζ′ , eiθ′)→ (1, 0, 0)|(1, 1, 1) (3.83)

(eiη, eiζ , 0)|(0, eiζ′ , eiθ′)→ (1, 1, 0)|(0, 1, 1) (3.84)

(eiη, eiζ , 0)|(eiη′ , eiζ′ , 0)→ (1, 1, 0)|(1, eiζ′ , 0) (3.85)

(eiη, eiζ , 0)|(eiη′ , eiζ′ , eiθ′)→ (1, 1, 0)|(1, eiζ′ , 1) (3.86)

(eiη, eiζ , eiθ)|(eiη′ , eiζ′ , eiθ′)→ (1, 1, 1)|(1, eiζ′ , eiθ′). (3.87)

Note that at this stage orbit pairs that arise from interchanging first and second triplet

are redundant, which is why e.g. (1, 1, 0)|(1, 0, 1) is not listed. The remaining phases are

determined by minimizing the parts of the potential that depend on them and one obtains

for both of (1, 1, 0)|(1, eiζ′ , 0) and (1, 1, 0)|(1, eiζ′ , 1) that ζ ′ = 0 for r′2 > 0 and ζ ′ = π for

r2 < 0, leading to the following alignments:

(1, 1, 0)|(1,±1, 0) and (1, 1, 0)|(1,±1, 1) (3.88)

where different sign choices correspond to different orbits. For (1, 1, 1)|(1, eiζ′ , eiθ′) mini-

mizing the part of the potential depending on ζ ′ and θ′ produces for r2 < 1 the orbit

(1, 1, 1)|(1, 1, 1) (3.89)

and for r2 > 0 the two orbits

(1, 1, 1)|(1, ω, ω2) and (1, 1, 1)|(1, ω2, ω). (3.90)

To summarize all possible pairs we list them in table 1.

3.2.2 ∆(3n2) with n > 3

Next, consider the potential of two triplets of ∆(3n2) with n > 3,

V∆(3n2)(ϕ,ϕ
′) = V0(ϕ) + V ′0(ϕ′) + V1(ϕ,ϕ′), (3.91)

with V0(ϕ) and V1(ϕ,ϕ′) defined in eqs. (3.11) and (3.68) for singlets and

V∆(3n2)(H,H
′) = V0(H) + V ′0(H ′) + V1(H,H ′) (3.92)

for doublets, where V0(H) and V1(H,H ′) were defined in eqs. (3.15) and (3.71).
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(1, 0, 0)|(1, 0, 0)

(1, 0, 0)|(0, 1, 0)

(1, 0, 0)|(1, 1, 0)

(1, 0, 0)|(0, 1, 1)

(1, 0, 0)|(1, 1, 1)

(1, 1, 0)|(0, 1, 1)

(1, 1, 0)|(1,±1, 0)

(1, 1, 0)|(1,±1, 1)

(1, 1, 1)|(1, 1, 1)

(1, 1, 1)|(1, ω, ω2)

(1, 1, 1)|(1, ω2, ω)

Table 1. List of VEV directions for the potential of two triplets of ∆(6n2), V∆(6n2)(ϕ,ϕ
′).

The orbits of VEVs of the corresponding potential of one triplet are identical to that

of one triplet of ∆(6n2), cf. eq. (3.77). The difference to the previous potential lies in the

fact that the full symmetries of V∆(3n2) only allow for cyclic permutations, i.e. only

 1

1

1

⊕
 1

1

1

 (3.93)

with otherwise identical phase symmetries, i.e. all simultaneous phase symmetries arising

from ∆(3n2), and eq. (3.78).

This potential has no automatic CP symmetry. Possible CP symmetries are overall CP0

Xϕϕ′

0 =

(
X0 0

0 X0

)
, where X0 =

1 0 0

0 1 0

0 0 1

 , (3.94)

and simultaneous CP23, i.e. a CP symmetry acting on both triplets with

Xϕϕ′

23 =

(
X23 0

0 X23

)
, where X23 =

1 0 0

0 0 1

0 1 0

 . (3.95)

Besides overall CP0 and CP23, we will also consider a CP symmetry, CPϕϕ′ , with

Xϕϕ′ =

(
Xϕ 0

0 Xϕ′

)
, with Xϕ =

1 0 0

0 ω 0

0 0 ω2

 , Xϕ′ =

1 0 0

0 ω2 0

0 0 ω

 , (3.96)
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which was found in [35] for this potential.6 Under CP0, all coefficients of the potential

become real such that s̃3 = 0. For CP23, s̃2 = 0. The CP symmetry with Xϕϕ′ , eq. (3.96),

relates parameters of the potential via

s̃3 = r̃2 i(ω − ω2) . (3.97)

As ω = e2πi/3, we get s̃3 = −
√

3r̃2. The CP transformation where the roles of the explicit

matrices in eq. (3.96) are exchanged enforces s̃3 =
√

3r̃2. The effect of the CP symmetries

on the VEV orbits will be discussed at the end of this subsection.

Again, arbitrary members of the one-triplet orbits can be combined to pairs which

are combined into orbits under the symmetry of the full potential. Compared to the

potential of two triplets of ∆(6n2), due to the missing permutation generator in ∆(3n2),

several orbits split. However, again at this stage it does not make difference to interchange

the first and second triplet. For this reason apart from eqs. (3.79)–(3.87), only one new

combination survives:

(eiη, 0, 0)|(eiη′ , 0, eiζ′)→ (1, 0, 0)|(1, 0, 1). (3.98)

Furthermore, the orbits that contained continuous degrees of freedom now need to be min-

imized for the more complicated potential invariant under ∆(3n2). This is still analytically

possible and one obtains

(1, 1, 0)|(1, eiζ′ , 0) and (3.99)

(1, 1, 0)|(1, eiζ′ , 1) (3.100)

with

ζ ′ = arctan(r̃2/s̃3) (3.101)

a function of s̃3 and r̃2 in contrast to the situation with a ∆(6n2) symmetry, where ζ ′ = 0, π,

depending on the value of r̃2. The orbit with two phases again results in

(1, 1, 1)|(1, 1, 1), (3.102)

(1, 1, 1)|(1, ω, ω2), (3.103)

(1, 1, 1)|(1, ω2, ω), (3.104)

depending on the values of r̃2 and s̃3.

To summarize all possible pairs before applying CP symmetries we list them in table 2.

Next, consider the effects of the various CP symmetries on the orbits. For CP0,

nothing happens to the orbits with real representatives. s̃3 = 0, so ζ ′ becomes ±π/2 and

thus ζ ′ = ±i. Furthermore, the orbits (1, 1, 1)|(1, ω, ω2) and (1, 1, 1)|(1, ω2, ω) merge. For

6This CP symmetry is not consistent with the ∆(3n2) part of the flavour symmetry acting on both

triplets simultaneously. However, under the action of the two independent U(1)s of each triplet, any

different overall phases appearing in the consistency condition for each triplet can be absorbed, which

makes this CP transformation consistent with the full flavour symmmetry of the potential. The same is

true for the related CP transformation where Xϕ and Xϕ′ have been interchanged.
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(1, 0, 0)|(1, 0, 0)

(1, 0, 0)|(0, 1, 0)

(1, 0, 0)|(1, 1, 0)

(1, 0, 0)|(1, 0, 1)

(1, 0, 0)|(0, 1, 1)

(1, 0, 0)|(1, 1, 1)

(1, 1, 0)|(0, 1, 1)

(1, 1, 0)|(1, eiζ′ , 0)

(1, 1, 0)|(1, eiζ′ , 1)

(1, 1, 1)|(1, 1, 1)

(1, 1, 1)|(1, ω, ω2)

(1, 1, 1)|(1, ω2, ω)

Table 2. List of VEV directions for the potential of two triplets of ∆(3n2), V∆(3n2)(ϕ,ϕ
′).

CP23, (1, 0, 0)|(1, 0, 1) and (1, 0, 0)|(1, 1, 0) merge. ζ ′ remains free and nothing happens to

the orbits with ωs. Lastly, for the CP symmetry with Xϕϕ′ , s̃3 =
√

3r̃2, thus ζ ′ = ±π/6.

Additionally, (1, 1, 1)|(1, ω, ω2) and (1, 1, 1)|(1, 1, 1) merge. For the CP symmetry similar

to that with Xϕϕ′ but with block matrices interchanged, (1, 1, 1)|(1, ω2, ω) merges with

(1, 1, 1)|(1, 1, 1).

3.2.3 S4

The S4 potential for one triplet was

VS4(ϕ) = V0(ϕ) + b
[(
ϕ1ϕ1ϕ

∗3ϕ∗3 + cycl.
)

+ h.c.
]
, (3.105)

with real b. For two triplets we use eq. (3.72), and write

VS4(ϕ,ϕ′) = V0(ϕ) + V ′0(ϕ′) + V2(ϕ,ϕ′) (3.106)

+ b
[(
ϕ1ϕ1ϕ

∗3ϕ∗3 + cycl.
)

+ h.c.
]

+ b′
[(
ϕ′1ϕ

′
1ϕ
′∗3ϕ′∗3 + cycl.

)
+ h.c.

]
+ b̃

[(
ϕ1ϕ

′
1ϕ
∗3ϕ′∗3 + cycl.

)
+ h.c.

]
.

For SU(2) doublets, we use eq. (3.73) and write

VS4(H,H ′) = V0(H) + V ′0(H ′) + V2(H,H ′) (3.107)

+
∑
α,β

b
[(
h1αh1βh

∗3αh∗3β + cycl.
)

+ h.c.
]

+
∑
α,β

b′
[(
h′1αh

′
1βh
′∗3αh′∗3β + cycl.

)
+ h.c.

]
+
∑
α,β

b̃1

[(
h1αh

∗3αh′1βh
′∗3β + cycl.

)
+ h.c.

]
+
∑
α,β

b̃2

[(
h1αh

′∗3αh′1βh
∗3β + cycl.

)
+ h.c.

]
.
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(1, 0, 0)|(1, 0, 0)

(1, 0, 0)|(0, 1, 0)

(1, 0, 0)|(1, 0, i)
(1, 0, 0)|(0, 1, i)
(1, 0, 0)|(1, 1, 1)

(1, 0, 0)|(1, ω2, ω)

(1, 0, i)|(1, 0,±i)
(1, 0, i)|(1, i, 0)

(1, 0, i)|(1, 1, 1)

(1, 0, i)|(1, ω2,±ω)

(1, 1, 1)|(1, 1,±1)

(1, 1, 1)|(1,±ω2, ω)

(1, ω2, ω)|(1, ω2,±ω)

(1, ω2, ω)|(1,−ω,−ω2)

(1, ω2, ω)|(1, ω, ω2)

Table 3. List of VEV directions for the potential of two triplets of S4, VS4
(ϕ,ϕ′).

All S4-invariant potentials listed here, even the two triplet cases, conserve CP explicitly:

the parameters, including b, b′, b̃, b̃1, b̃2 are all real, so one of the CP symmetries is CP0.

For one triplet of S4, the full symmetries of an even potential are generated by

eq. (3.29), and notably, this potential has an automatic CP symmetry. The orbits are

(and again plus permutations)
±eiα0

0


 ,

 (−1)keiα

(−1)leiα

(−1)k+leiα


 ,

 (−1)keiα

ω(−1)leiα

ω2(−1)k+leiα


 ,

 −(−1)keiα

ω(−1)leiα

ω2(−1)k+leiα


 ,

 0

±eiα

±ieiα


 ,

(3.108)

where the last set stands for separate orbits for each combination of signs. These combine

to the VEVs pairs listed in table 3, where the sign choices correspond to separate orbits

(again only orbit representatives).

3.2.4 A4

In the case of two A4 triplets distinguished by additional symmetries so that the total

symmetry is A4 ×U(1)×U(1)′, the potential includes a total of seven independent mixed

quartic invariants of the form ϕϕ′ ϕ∗ ϕ′∗.

The A4 symmetric renormalisable potential takes the following explicit form, with V0

as defined in eq. (3.11), and using eq. (3.68) we write

VA4(ϕ,ϕ′) = V0(ϕ) + V ′0(ϕ′) + V1(ϕ,ϕ′) + (3.109)

+
[
c
(
ϕ1ϕ1ϕ

∗3ϕ∗3 + cycl.
)

+ h.c.
]

+
[
c′
(
ϕ′1ϕ

′
1ϕ
′∗3ϕ′∗3 + cycl.

)
+ h.c.

]
+
[
c̃
(
ϕ1ϕ

′
1ϕ
∗3ϕ′∗3 + cycl.

)
+ h.c.

]
.
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The potential is explicitly CP violating [35] but it is interesting to consider the CP sym-

metry where one imposes X23 of eq. (3.36) on both triplets, i.e. the block matrix Xϕϕ′

23 in

eq. (3.95). This CP symmetry constrains the potential such that s̃2 = 0, which forces all

explicit CPIs to vanish as expected from the presence of a CP symmetry [35].

Furthermore, applying instead the trivial CP symmetry CP0 forces s̃3 = 0 and all

complex parameters (c, c′, c̃) to be real.

For the SU(2)L version we use eq. (3.71) and, for the remainder of the potential A4

potential with two triplets, only the invariant with coefficient c̃ from eq. (3.109) needs to

be doubled:∑
α,β

[
c̃1(h1αh

∗3αh′1βh
′∗3β + cycl.) + c̃2(h1αh

′∗3αh′1βh
∗3β + cycl.) + h.c.

]
. (3.110)

We therefore write

VA4(H,H ′) =V0(H)+V ′0(H ′)+V1(H,H ′) (3.111)

+
∑
α,β

[
c
(
h1αh1βh

∗3αh∗3β+cycl.
)

+c′
(
h′1αh

′
1βh
′∗3αh′∗3β+cycl.

)
+h.c.

]
+
∑
α,β

[
c̃1(h1αh

∗3αh′1βh
′∗3β+cycl.)+c̃2(h1αh

′∗3αh′1βh
∗3β+cycl.)+h.c.

]
.

We note that due to SU(2)L not allowing cubic invariants of H and/or H ′, it is sufficient

to use a Z3 symmetry to distinguish the A4 triplets.7

It is possible to impose a CP symmetry with

XHH′
23 =

(
X23 0

0 X23

)
⊗ δαβ , (3.112)

which, similarly to previous examples, restricts the coefficients in the potential, namely

s̃21 = s̃22 = 0 . (3.113)

Imposing, alternatively, the canonical CP symmetry CP0 leads to s̃31 = s̃32 = 0 as well as

c, c′, c̃1, c̃2 ∈ R.

The full symmetries of an even potential acting on one triplet are generated by

eq. (3.40), 0 1 0

0 0 1

1 0 0

 ,

eiα 0 0

0 eiα 0

0 0 eiα

 ,

−1 0 0

0 1 0

0 0 −1

 ,

1 0 0

0 −1 0

0 0 −1

 (3.114)

and the orbits of one-triplet VEVs are, again with permutations, where now only cyclic

permutations are allowed and no longer, as for S4, all possible permutations, and in addition

7The potential invariant under a Z2 [56] would additionally allow for invariants of the form

hiαh
′∗iαhjβh

′∗jβ and hiαh
′∗iβhjβh

′∗jα where the conjugated fields are both related to H ′.
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(1, 0, 0)|(1, 0, 0)

(1, 0, 0)|(0, 1, 0)

(1, 0, 0)|(1, eiζ′ , 0)

(1, 0, 0)|(0, 1, eiζ′)
(1, 0, 0)|(eiζ′ , 0, 1)

(1, 0, 0)|(1, 1, 1)

(1, 0, 0)|(1, ω, ω2)

(1, eiζ , 0)|(1,±eiζ′ , 0)

(1, eiζ , 0)|(0, 1, eiζ′)
(1, eiζ , 0)|(eiζ′ , 0, 1)

(1, eiζ , 0)|(1,±1, 1)

(1, eiζ , 0)|(1,±ω, ω2)

(1, 1, 1)|(1, 1,±1)

(1, 1, 1)|(1, ω,±ω2)

(1, ω, ω2)|(1, ω,±ω2)

Table 4. List of VEV directions for the potential of two triplets of A4, VA4
(ϕ,ϕ′).

β is an arbitrary phase,
±eiα0

0


 ,

 (−1)keiα

(−1)leiα

(−1)k+leiα


 ,

 (−1)keiα

ω(−1)leiα

ω2(−1)k+leiα


 ,

 −(−1)keiα

ω(−1)leiα

ω2(−1)k+leiα


 ,

 0

±eiα

±eiα+iβ


 .

(3.115)

The alignment classes listed after this paragraph arise in this case. Note that in the

following, the phases ζ and ζ ′ are not arbitrary, but are fixed by the one-triplet parts of the

two-triplet potential, as by eq. (3.43). Where two sign choices are given, they correspond

to separate orbits.

table 4 contains the list of VEVs for VA4(ϕ,ϕ′). Minima (1, 0, 0)|(eiζ′ , 1, 0) correspond

to a rephasing of the triplets and lie in the same orbit as (1, 0, 0)|(1, eiζ′ , 0). Similarly,

(1, 0, 0)|(0, eiζ′ , 1) and (1, 0, 0)|(1, 0, eiζ′) are already included in the orbits above.

Under trivial CP, orbits with phases merge with their complex conjugates. In partic-

ular, as c, c′ = 0, ζ, ζ ′ = 0.

3.2.5 ∆(54)

Next, consider potentials of two triplets of ∆(54). Using eq. (3.72) we write

V∆(54)(ϕ,ϕ
′) = V0(ϕ) + V ′0(ϕ′) + V2(ϕ,ϕ′) (3.116)

+
[
d
(
ϕ1ϕ1ϕ

∗2ϕ∗3 + cycl.
)

+ h.c.
]

+
[
d′
(
ϕ′1ϕ

′
1ϕ
′∗2ϕ′∗3 + cycl.

)
+ h.c.

]
+ d̃1

[(
ϕ1ϕ

′
1ϕ
∗2ϕ′∗3 + cycl.

)
+
(
ϕ1ϕ

′
1ϕ
∗3ϕ′∗2 + cycl.

)]
+ h.c..

Finally, setting

d̃21 = d̃11 , d̃22 = d̃12 , s̃21 = s̃22 = s̃31 = s̃32 = 0, (3.117)
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we obtain

V∆(54)(H,H
′) =V0(H)+V ′0(H ′)+V2(H,H ′) (3.118)

+
∑
α,β

[
d
(
h1αh1βh

∗2αh∗3β+cycl.
)

+d′
(
h′1αh

′
1βh
′∗2αh′∗3β+cycl.

)
+h.c.

]
+
∑
α,β

[
d̃11(h1αh

∗2αh′1βh
′∗3β+cycl.)+d̃12(h1αh

′∗3αh′1βh
∗2β+cycl.)+h.c.

]
+
∑
α,β

[
d̃11(h1αh

∗3αh′1βh
′∗2β+cycl.)+d̃12(h1αh

′∗2αh′1βh
∗3β+cycl.)+h.c.

]
.

The full symmetries of an even potential of one triplet of ∆(54) were generated by eq. (3.63).

Again, the potential of two triplets of ∆(54) has no automatic CP symmetries. The po-

tential of two triplets of ∆(54) could be reached in several ways: the single-triplet parts of

the potential each consist of a ∆(6n2) part and a ∆(54) part, while the same is true for

the cross-terms. With eq. (3.67) we can write

V∆(54)(ϕ,ϕ
′) = V∆(54)(ϕ) + V ′∆(54)(ϕ

′) + V∆(54),c(ϕ,ϕ
′), (3.119)

where each part splits into the part that is symmetric under the larger group and the part

that is specific to ∆(54), e.g. for the cross-terms

V∆(54),c(ϕ,ϕ
′) = V∆(6n2),c(ϕ,ϕ

′) + V ′∆(54),c(ϕ,ϕ
′). (3.120)

The orbits of VEVs of a potential of one triplet of ∆(54) are
ωkeiα0

0

 ,perm.

 ,

 ωkeiα

ωleiα

ω2k+2leiα

 ,perm.

 ,
 ωkeiα

ωleiα

ω2k+2l+1eiα

 ,perm.

 ,

 ωkeiα

ωleiα

ω2k+2l+2eiα

 ,perm.

 . (3.121)

Here, there are no permutations that are not reproduced by some combination of (k, l).

The full phase symmetries of two triplets are generated by the direct sum of the

generators in eq. (3.63) except for the potential having two separate phase symmetries for

each triplet, equivalently to eq. (3.78). Again combining members of single triplet orbits

and using the symmetries of the full potential to reduce the orbits yields the VEVs in

table 5.

Here, the last line stands for several orbits distinguished by the value of i′ and i. As

all of k, k′, l, l′, i, i′ = 0, 1, 2, especially pairs like (1, ω, 1)|(1, 1, ω2) occur, where the phase

differences appearing between first and second triplet had previously been unphysical.

Nevertheless, as these orbits had only been obtained by reducing the orbits of triplets that

already had a ∆(54) symmetry instead of ∆(6n2), the above list is probably incomplete,

similarly to the A4 reduction of S4 orbits at the end of section 3.1.3.

The effects of imposing CP0 are analysed in section 4.2.9.

– 34 –



J
H
E
P
1
1
(
2
0
1
7
)
1
3
6

(1, 0, 0)|(1, 0, 0)

(1, 0, 0)|(0, 1, 0)

(1, 0, 0)|(1, 1, 1)

(1, 0, 0)|(1, 1, ω)

(1, 0, 0)|(1, 1, ω2)

(1, 1, ωi)|(ωk′−k, ωl′−l, ω2k′+2l′−2k−2l+i′)

Table 5. List of VEV directions for the potential of two triplets of ∆(54), V∆(54)(ϕ,ϕ
′).

3.2.6 ∆(27)

Using eq. (3.68), the potential of two triplets of ∆(27) even in both triplets is

V∆(27)(ϕ,ϕ
′) = V0(ϕ) + V ′0(ϕ′) + V1(ϕ,ϕ′) (3.122)

+
[
d
(
ϕ1ϕ1ϕ

∗2ϕ∗3 + cycl.
)

+ h.c.
]

+
[
d′
(
ϕ′1ϕ

′
1ϕ
′∗2ϕ′∗3 + cycl.

)
+ h.c.

]
+
[
d̃1

(
ϕ1ϕ

′
1ϕ
∗2ϕ′∗3 + cycl.

)
+ h.c.

]
+
[
d̃2

(
ϕ1ϕ

′
1ϕ
∗3ϕ′∗2 + cycl.

)
+ h.c.

]
.

Only d, d′, d̃1 and d̃2 are generally complex, the other coefficients are real. We note also

that the ∆(54) potential (eq. (3.116)) is a particular case of this one, obtained by setting

s̃2 = s̃3 = 0, d̃1 = d̃2. (3.123)

For SU(2)L doublets, using eq. (3.71), the potential is:

V∆(27)(H,H
′) = V0(H) + V ′0(H ′) + V1(H,H ′)+ (3.124)

+
∑
α,β

[
d
(
h1αh1βh

∗2αh∗3β + cycl.
)

+ d′
(
h′1αh

′
1βh
′∗2αh′∗3β + cycl.

)
+ h.c.

]
+
∑
α,β

[
d̃11(h1αh

∗2αh′1βh
′∗3β + cycl.) + d̃12(h1αh

′∗3αh′1βh
∗2β + cycl.) + h.c.

]
+
∑
α,β

[
d̃21(h1αh

∗3αh′1βh
′∗2β + cycl.) + d̃22(h1αh

′∗2αh′1βh
∗3β + cycl.) + h.c.

]
.

The VEVs of one triplet of ∆(27) are identical to that of one triplet of ∆(54), the

VEV pairs generated in this way are almost identical for two triplets of ∆(27) to the above

ones of two triplets of ∆(54). The only effect of the missing permutation in ∆(27) with

respect to ∆(54) is that several orbits split and that in addition to table 5, the following

pairs represent new independent orbits:

(1, 0, 0)|(1, 1, ω) (3.125)

(1, 0, 0)|(1, ω, 1) (3.126)

(1, 0, 0)|(1, 1, ω2) (3.127)

(1, 0, 0)|(1, ω2, 1). (3.128)
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4 Spontaneous CP-odd invariants applied

Recall that for SU(2) doublets we consider only VEVs that preserve U(1)em. By an SU(2)

gauge transformation one can without loss of generality assume that for each doublet one

component is zero. Due to this, the conclusions about presence or absence of CPV are

the same as for the respective potentials of SU(2) singlets, and the SCPI expressions are

slightly simpler. For this reason, in this section we refer only to the potentials of (ϕ)

or (ϕ,ϕ′).

4.1 Potentials of one triplet

4.1.1 ∆(3n2) and ∆(6n2) with n > 3

For the potential of one triplet of ∆(6n2) or ∆(3n2), eq. (3.11), the CP-odd invariants

J (3,2) and J (3,3) vanish independently of the triplet VEV. As the phases of the allowed

VEVs are unphysical, one can always find a CP symmetry that is present in the potential

and preserved by the particular VEV. There is no possibility for SCPV.

4.1.2 A4 and S4

Even for A4 and S4, the one triplet cases eq. (3.35) and eq. (3.27) are fairly trivial, as

J (3,2) vanishes before introducing any VEV and J (3,3) vanishes after introducing each of

the VEVs found. In each case, a CP symmetry preserved by the respective VEV has

been found — in particular all the VEVs preserve X23, except (0, 1, eiα), which preserves

a rephased version of X23 (alternatively, one can perform an unphysical global rephasing

of the VEV such that it also preserves X23).

4.1.3 ∆(27) and ∆(54)

For the discrete symmetries ∆(27) and ∆(54), the single triplet potentials eq. (3.49) and

eq. (3.59) are the same. This potential features the first known case of SGCPV.

In [35], already the value of J (3,2) was found for V∆(27)(ϕ) = V∆(54)(ϕ). For complete-

ness, we repeat it here:

J (3,2) =
1

4
(d∗3 − d3)(|v1|4 + |v2|4 + |v3|4 − 2|v1|2|v2|2 − 2|v1|2|v3|2 − 2|v2|2|v3|2)

+

[
1

2
(dd∗2 − 2d∗s2 + d2s)(v2v3v

∗2
1 + v1v3v

∗2
2 + v1v2v

∗2
3 )− h.c.

]
. (4.1)

When imposing CP0 (trivial CP, which in this case constrains Arg(d) = 0) or any of the

other 5 CP transformations listed by [54] which constrain Arg(d) to be 0, 2π/3 or 4π/3,

the expression simplifies to

J (3,2)
CP0

=
1

2
[dd∗2 − 2d∗s2 + d2s]

[
v2v3v

∗2
1 + v1v3v

∗2
2 + v1v2v

∗2
3

]
− h.c.. (4.2)

As described previously [37, 55, 57, 58], the potential admits minima such as the complex

VEV (1, ω, ω2), which is however not CP violating when the potential had trivial CP

imposed. It can be confirmed easily that the expression above vanishes for this case —
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it preserves not CP0, but the product of CP0 with one of the group elements of ∆(27)

(indeed, (1, ω, ω2) is in the same VEV orbit as (1, 1, 1), which is real and preserves CP0).

Instead, the SGCPV VEV (ω, 1, 1) can be inserted into the expression and gives (for CP0

making d = d∗):

J (3,2)
CP0

[v(ω, 1, 1)] =
3

2
d(d− s)(d+ 2s)(ω − ω2)v4 (4.3)

For the CP transformation X3 forcing Arg(d) = 2π/3 (see eq. (3.52)), d is complex, the

results are that the VEVs (0, 0, 1) and (ω, 1, 1) preserve some subset of the CP symmetries,

so again no SCPV occurs. Instead, the real VEV (1, 1, 1) and in the same orbit, the complex

VEV (1, ω, ω2) show SGCPV [45], as indicated by the SCPI giving J (3,2)
1 ∝ (ω − ω2).

The other 6 CP transformations that can be applied to the potential [54], such as X4

(see eq. (3.53)), don’t constrain the phase of d, but rather relate the parameters d and s

such that the SCPI simplifies to:

J (3,2)
X4

=
1

4
(d∗3 − d3)(|v1|4 + |v2|4 + |v3|4 − 2|v1|2|v2|2 − 2|v1|2|v3|2 − 2|v2|2|v3|2) . (4.4)

The SCPI reveals that for these CP symmetries, SCPV is independent of the phases of the

VEV. We verified that the known VEVs for the CP0 symmetric potential, including real

VEVs such as (0, 0, 1), (1, 1, 1) and complex ones such as (ω, 1, 1) are still candidate VEVs

of the X4 symmetric potential and all violate CP spontaneously, as indicated by the SCPI

not vanishing, e.g.:

J (3,2)
X4

[v(1, 0, 0)] =
1

4
(d∗3 − d3)v4 (4.5)

4.2 Potentials of two triplets

4.2.1 ∆(3n2) and ∆(6n2) with n > 3

The useful SCPI J (3,2) also takes a non-zero expression for the potential of two triplets of

∆(3n2), eq. (3.91) for SU(2)L singlets (the respective potential for doublets can be found

in eq. (3.92)).

J (3,2) =− 1

16
s̃2[r̃2(−4s−4s′+2s̃1−s̃2+3r̃2)−s̃2

3]WCP0

− 1

8
is̃3

[
s̃2

3−3r̃2
2

]
WCP23

− 1

16
is̃2s̃3[−4s−4s′+2s̃1−s̃2](v′1v2v

∗
1v
′∗
2+v′2v3v

∗
2v
′∗
3+v1v

′
3v
′∗
1v
∗
3 +h.c.) (4.6)

where we define VEV dependences for convenience:

WCP23 ≡ [(|v′1|2|v2|2 + |v′2|2|v3|2 + |v′3|2|v1|2)− (|v1|2|v′2|2 + |v2|2|v′3|2 + |v3|2|v′1|2)]

(4.7)

and

WCP0 ≡ [(v1v
′∗
1v
′
2v
∗
2 + v2v

′∗
2v
′
3v
∗
3 + v3v

′∗
3v
′
1v
∗
1)− h.c.] (4.8)

which is similar to the remaining VEV dependence apart from the relative minus sign with

respect to the hermitian conjugate.
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In contrast, for ∆(6n2) with two triplets, shown in eq. (3.75), J (3,2)
1 vanishes indepen-

dently of the VEVs, and J (3,3)
1 takes a non-vanishing expression in general which vanishes

when inserting the VEV candidates we found. In each case, all the VEV candidates for the

two triplets preserve a CP symmetry (some combination of CP0 or CP23), that is auto-

matically present in the general V∆(6n2)(ϕ,ϕ
′) potential - therefore this potential does not

admit SCPV.

4.2.2 ∆(3n2), n > 3 with CP0

For V∆(3n2), n > 3, the non-zero J (3,2)
1 expression becomes meaningful as a measure of

SCPV when imposing a CP symmetry on the potential. If we choose CP0, then s̃3 = 0

and the SCPI becomes:

J (3,2)
CP0

= − 1

16
r̃2s̃2[−4s− 4s′ + 2s̃1 − s̃2 + 3r̃2]WCP0 (4.9)

One can note from

WCP0 ≡ [(v1v
′∗
1v
′
2v
∗
2 + v2v

′∗
2v
′
3v
∗
3 + v3v

′∗
3v
′
1v
∗
1)− h.c.] (4.10)

that the expression vanishes if the VEVs of the two triplets do not have matching entries,

such as v(1, 0, 0)|v′(0, 1, 1), where v and v′ are real here and thoughout the rest of the

paper. This suggests that those types of VEVs will not show SCPV in this case, regardless

of complex phases, confirming that only the relative phase across the same component of

the two triplets is physical for this potential. In contrast, a non-zero result is sufficient to

show that the VEV pair does SCPV, and the three classes of VEVs that can SCPV in this

case are those that in general depend at least on one phase, such as

J (3,2)
CP0

[v(1, 1, 0)|v′(1, eiζ′ , 0)] =
1

8
ir̃2s̃2(3r̃2 − 4s+ 2s̃1 − s̃2 − 4s′) sin(ζ ′)v2v′

2
(4.11)

J (3,2)
CP0

[v(1, 1, 0)|v′(1, eiζ′ , 1)] =
1

8
ir̃2s̃2(3r̃2 − 4s+ 2s̃1 − s̃2 − 4s′) sin(ζ ′)v2v′

2
(4.12)

In this notation, the square brackets denote the pair of VEV considered (including the v,

v′ normalisation), in order to more easily track which VEVs are being plugged in. Note

that the ordering of the VEVs can affect the results, e.g.

J (3,2)
CP0

[v(1, 1, 0)|v′(1, eiζ′ , 1)] = −J (3,2)
CP0

[v(1, eiζ
′
, 1)|v′(1, 1, 0)] . (4.13)

We note also that for s̃3 = 0, ζ ′ = π/2 and therefore the VEV of the second triplet becomes

(1, i, 0) and (1, i, 1) respectively (cf. eq. (3.101)). As the CP violating phases are fixed to

geometric values, they are geometrical and these cases are considered SGCPV. The third

class that is also very interesting is

J (3,2)
CP0

[v(1, 1, 1)|v′(1, ω, ω2)] = − 3

16
r̃2s̃2(3r̃2 − 4s+ 2s̃1 − s̃2 − 4s′)(ω − ω2)v2v′

2
(4.14)

as the phases of the VEVs take special values ω and ω2

When the VEV pair representatives take the special values of phases that minimize

the potential in certain regions of parameter space, namely one of the triplets aligns in the
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directions with one entry being i, or in the (1, ω, ω2) direction, the SCPI reveals cases with

SGCPV. This is interesting as these are the first reported cases of SGCPV in potentials

with 6 fields (arranged here as two triplets), the potential is relatively simple due to the

symmetry and the special ω, ω2 phases appear for a symmetry that is not ∆(27) or ∆(54)

(the n = 3 cases).

4.2.3 ∆(3n2), n > 3 with CP23

When CP23 (2-3 swap CP) is imposed on V∆(3n2)(ϕ,ϕ
′), the respective SCPI J (3,2)

1 expres-

sion becomes particularly simple. CP23 for two triplets swaps the 2-3 components of both

triplets, i.e. Xϕϕ′

23 in eq. (3.95), which leads to s̃2 = 0:

J (3,2)
CP23

= −1

8
is̃3

[
s̃2

3 − 3r̃2
2

]
WCP23 (4.15)

where the VEV dependence

WCP23 ≡ [(|v′1|2|v2|2 + |v′2|2|v3|2 + |v′3|2|v1|2)− (|v1|2|v′2|2 + |v2|2|v′3|2 + |v3|2|v′1|2)]

(4.16)

reveals SPCV occurs (or not) regardless of the phases of the VEVs. The three representa-

tives that give non-zero results are proportional to v2v′2

J (3,2)
CP23

[v(1, 0, 0)|v′(0, 1, 0)] 6= 0 (4.17)

J (3,2)
CP23

[v(1, 0, 0)|v′(1, 0, 1)] 6= 0 (4.18)

J (3,2)
CP23

[v(1, 1, 0)|v′(0, 1, 1)] 6= 0 (4.19)

featuring three cases with SGCPV. This may appear peculiar given all the phases are zero,

but they are geometrical and therefore these cases fall under the definition of SGCPV

— the (vanishing) phases of the VEVs are stable under small variations of the potential

parameters, and there is SCPV.

For the type of VEV where the phase ζ ′ appears with a physical non-trivial value, CP

is spontaneously violated, even though both invariants we are using vanish:

J (3,2)
CP23

[v(1, 1, 0)|v′(1, eiζ′ , 0)] = J (3,3)
CP23

[v(1, 1, 0)|v′(1, eiζ′ , 0)] = 0 (4.20)

J (3,2)
CP23

[v(1, 1, 0)|v′(1, eiζ′ , 1)] = J (3,3)
CP23

[v(1, 1, 0)|v′(1, eiζ′ , 1)] = 0 (4.21)

As a systematic search for further SCPIs is beyond the scope of this work, instead we

have excluded the possibility of X matrices that are simultaneously a symmetry of the

potential with general s̃3 6= 0 and are preserved by the VEVs. The first condition fails

for CP symmetries that transform the triplets differently, whereas the second cannot be

fulfilled if both triplets transform identically under the CP symmetry. In fact, we were able

to find a SCPI which indeed gives a non-zero result for v(1, 1, 0)|v′(1, eiζ′ , 1), but as this is

the only instance in this paper where it is important, we haven’t mentioned it previously.

The relevant SCPI is:

J
(3,4)
CP23

= Za1a2a5a7Z
a3a4
a6a8Z

a5a6
a9a10va1va2va3va4v

∗a7v∗a8v∗a9v∗a10 (4.22)
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Figure 4. The diagram corresponding to the invariant eq. (4.22).

with diagram in figure 4 and we have

J (3,4)
CP23

[v(1, 1, 0)|v′(1, eiζ′ , 1)] ∝ (2 sin ζ ′ − sin 2ζ ′). (4.23)

4.2.4 ∆(3n2), n > 3 another CP

In [35], explicit CP violation was studied and another class of CP symmetry was found

that made the potential CP conserving by relating the parameters s̃3 and r̃2 in 3 similar

ways. Of these, we denoted in eq. (3.96)):

Xϕϕ′ =

(
Xϕ 0

0 Xϕ′

)
, with Xϕ =

1 0 0

0 ω 0

0 0 ω2

 , Xϕ′ =

1 0 0

0 ω2 0

0 0 ω

 , (4.24)

which we repeat here as this CP symmetry relates the parameters as

s̃3 = r̃2 i(ω − ω2), (4.25)

i.e. s̃3 = −
√

3r̃2. This CP symmetry makes the explicit CPIs vanish [35] and simplifies the

SCPI we are considering such that the first two lines of eq. (4.6) vanish. Indeed, when this

is inserted into the SCPI (considering that 2ω = i(
√

3 + i)):

J (3,2)
Xϕϕ′

=
1

8
r̃2s̃2[4s+ 4s′ − 2s̃1 + s̃2][ω(v1v

′∗
1v
′
2v
∗
2 + v2v

′∗
2v
′
3v
∗
3 + v3v

′∗
3v
′
1v
∗
1)− h.c.], (4.26)

the SCPI becomes similar to the CP0 case but there are relevant factors of ω and ω2 which

change the VEV dependence crucially (note this is not ωWCP0 , so it is not just an overall

multiplicative factor). Indeed, the cases with VEVs featuring powers of ω that were SGCPV

for CP0 are CP conserving for this case and instead, the pair of VEVs (1, 1, 1)|(1, 1, 1) is

SGCPV. Further, the classes of VEVs with ζ ′, which gets fixed to ζ ′ = −π/6 due to

the CP symmetry, also gives a non-zero value for the SCPI and are therefore more cases

with SGCPV.

4.2.5 A4 and S4

The general expression of J (3,2) for the VA4(ϕ,ϕ′) potential with two triplets (listed in

eq. (3.109)) is non-zero. We don’t show it as it is rather long, and strictly speaking it

carries no physical meaning as the potential is explicitly CPV. The expression simplifies
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sufficiently for relevant cases, when specific CP symmetries are imposed, as shown below

as we test each of the twenty two (22) VEV pairs from section 3.2.4.

In contrast, VS4(ϕ,ϕ′) (seen in eq. (3.106)) is a particular case of VA4(ϕ,ϕ′) that

automatically preserves both CP0 and CP23. The general expression of J (3,2) for VS4(ϕ,ϕ′)

vanishes, although this does not happen with the SCPI J (3,3) for VS4(ϕ,ϕ′). When testing

the twenty (20) VEV pairs from section 3.2.3 we found the SCPI J (3,3) always vanishes,

which is understood as the VEVs either preserve CP0 (the real VEVs) or CP23. In this

potential there is no SCPV.

Given this, of the many SCPIs we calculated for the discrete groups A4 and S4, it is

only interesting to look in more detail to VA4(ϕ,ϕ′).

4.2.6 A4 with CP0

When CP0 (trivial CP) is imposed on VA4(ϕ,ϕ′), the respective SCPI J (3,2) becomes:

J (3,2)
CP0

= CA4WCP0 (4.27)

with the coefficient dependence

CA4 =
1

16
s̃2(r̃2(−3r̃2 + 4s− 2s̃1 + s̃2 + 4s′)− 4c̃(c+ c′)) (4.28)

and the same VEV dependence, WCP0 in eq. (4.8), that appeared in the SCPI in eq. (4.9),

of the analogous ∆(3n2) case invariant under CP0. This is not completely unexpected,

as the SCPI should vanish regardless of the discrete symmetry being A4 or ∆(3n2) with

n > 3, for VEVs that preserve CP0 (note though that for the ∆(27) case, the functional

dependence is different).

An analysis of the expression reveals that for this SCPI, only relative phases between

the same component of the two triplets appear. This was the case for the ∆(3n2) potential,

but for A4 there are actually some additional physical phases, which the more complicated

SCPI J (3,3) is sensitive to.

Using J (3,2) we can confirm that the following VEV pairs SCPV, being proportional

to v2v′2:

J (3,2)
CP0

[v(1, eiζ , 0)|v′(1,±eiζ′ , 0)] 6= 0 (4.29)

J (3,2)
CP0

[v(1, eiζ , 0)|v′(1,±1, 1)] 6= 0 (4.30)

J (3,2)
CP0

[v(1, eiζ , 0)|v′(1, ω,±ω2)] 6= 0 (4.31)

and specifically

J (3,2)
CP0

[v(1, 1, 1)|v′(1, ω, ω2)] = 3CA4(ω − ω2)v2v′
2

(4.32)

J (3,2)
CP0

[v(1, 1, 1)|v′(1, ω,−ω2)] = CA4(ω − ω2)v2v′
2
. (4.33)

The most interesting cases are arguably these latter ones where VEVs only have geomet-

rical phases and therefore SGCPV, although one notes they are essentially the same cases

obtained for the slightly simpler ∆(3n2) potential.

For the cases where the pair of VEVs returns a vanishing expression we confirm if CP

is not broken by identifying a CP symmetry preserved by the VEVs (such as CP0 itself,

for any real VEVs).
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4.2.7 A4 with CP23

When CP23 (2-3 swap CP) is imposed on VA4(ϕ,ϕ′), the respective SCPI J (3,2)
1 expression

becomes:

J (3,2)
CP23

=
1

8

[
is̃3

(
2c̃∗(c+ c′) + 2c̃(c∗ + c∗) + 3r̃2

2

)
+ 2r̃2(c̃∗(c− c′)− c∗c̃+ c∗c̃)− is̃3

3

]
WCP23 .

(4.34)

Note this is the same VEV dependence, WCP23 in eq. (4.7), that does not depend on the

phases of the VEVs and which appeared in the SCPI in eq. (4.15), of the analogous ∆(3n2)

potential invariant under CP23. This is not completely unexpected, as the SCPI should

vanish, regardless of the discrete symmetry being A4 or ∆(3n2) with n > 3, for VEVs that

preserve CP23.

We use this SCPI to check the pairs of VEVs for this potential. We display here only

the non-vanishing ones, which are always proportional to v2v′2, and are:

J (3,2)
CP23

[v(1, 0, 0)|v′(0, 1, 0)] 6= 0 (4.35)

J (3,2)
CP23

[v(1, 0, 0)|v′(1, eiζ , 0)] 6= 0 (4.36)

J (3,2)
CP23

[v(1, 0, 0)|v′(0, 1, eiζ)] 6= 0 (4.37)

J (3,2)
CP23

[v(1, 0, 0)|v′(eiζ , 0, 1)] 6= 0 (4.38)

J (3,2)
CP23

[v(1, eiζ , 0)|v′(0, 1, eiζ′)] 6= 0 (4.39)

J (3,2)
CP23

[v(1, eiζ , 0)|v′(eiζ′ , 0, 1)] 6= 0 (4.40)

The SCPI vanishes for the pair (1, 1, 1)|(1, ω, ω2) regardless of the physical complex phases

(this is clear from the SCPI expression, which depends only on the absolute values). It

must do so, as the VEV pair preserves CP23. In contrast, [(1, 0, 0)|(0, 1, 0)] is a SGCPV

pair of VEVs as the vanishing phases are geometrical.

Furthermore, for A4 we have cases entirely analogous to the two VEV pairs that CPV,

even though the SCPIs J (3,2), J (3,3) vanish:

J (3,2)
CP23

[v(1, 1, 0)|v′(1, eiζ′ , 0)] = J (3,3)
CP23

[v(1, 1, 0)|v′(1, eiζ′ , 0)] = 0 (4.41)

J (3,2)
CP23

[v(1, 1, 0)|v′(1, eiζ′ , 1)] = J (3,3)
CP23

[v(1, 1, 0)|v′(1, eiζ′ , 1)] = 0 (4.42)

The conclusions are the same as in ∆(3n2), as there is no CP symmetry that is both

preserved by these VEVs (this condition requires X matrices transforming the two triplets

differently) and is a symmetry of the potential with s̃3 6= 0 (this condition requires X

matrices that transform the two triplets equally).

4.2.8 ∆(27) and ∆(54)

For two triplets the potentials V∆(27)(ϕ,ϕ
′) and V∆(54)(ϕ,ϕ

′) are different, as seen in

eq. (3.122) and eq. (3.116) respectively. Nonetheless, the VEV candidates are the same,

and the SCPI results are similar. We found several new VEV pairs, many of which are

cases with SGCPV.
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It turns out the SCPI expressions are slightly more complicated in the ∆(27) case,

but they vanish whenever the corresponding expression in ∆(54) vanishes, and they are

proportional to (ω−ω2) = i
√

3 when the corresponding SCPI expression in ∆(54) has that

dependence. For this reason, we display the SCPI results only for ∆(54).

4.2.9 ∆(54) with CP0

The last 3 representative VEV pairs from section 3.2.5 can give non-zero results with

SGCPV. In this case we show some cases that make the SCPI vanish, for clarity:

J (3,2)
CP0

[v(1, 1, 1)|v′(1, ω, ω2)] = 0 (4.43)

J (3,2)
CP0

[v(1, ω, ω2)|v′(1, ω, ω2)] = 0. (4.44)

The non-vanishing cases include

J (3,2)
CP0

[v(1, 0, 0)|v′(1, 1, ω)] = −J (3,2)
1 [v(1, 0, 0)|v′(1, 1, ω2)] (4.45)

=
3

16

(
2d̃2

1(d′ + s′) + 4d̃1r̃2s
′ + d′(8(d′ − s′)(d′ + 2s′)− s̃1(2r̃2 + s̃1))

)
(ω − ω2)v′

4

and

J (3,2)
CP0

[v(1, 1, ω)|v′(1, ω, ω2)] = −J (3,2)
1 [v(1, 1, ω2)|v′(1, ω, ω2)] (4.46)

=
3

16

(
8d3 + 8d2s+ d

(
2d̃2

1 − s̃1(2r̃2 + s̃1)− 16s2
)

+ 2d̃1s(d̃1 + 2r̃2)
)

(ω − ω2)v4

Note the dependence is either on v4 or v′4 exclusively in these cases (and not on v2v′2).

We recall for ∆(27) and ∆(54), SCPV is already possible in the single triplet potentials.

This contrasts with the A4 and ∆(3n2) cases, where only the two triplet potentials admit

SCPV — with only two triplets enabling SCPV, the non-vanishing SCPIs for those cases

depend always on v2v′2. In ∆(54) we also found VEV pairs for which the SCPI has the

v2v′2 dependence, one such instance is (1, 1, ω)|(1, 1, ω2) which when plugged into the SCPI

has all three dependences, v4, v′4 and v2v′2.

4.3 Spontaneous Geometrical CP Violation

We have found several new cases of SGCPV. Through these new cases we hope to advance

the understanding of what the conditions are for it to occur.

Clearly, as part of the definition, all of the cases found that show SGCPV have geo-

metrical phases inside the VEVs. We also demonstrate in this section that these VEVs

preserve a different geometrical CP symmetry (e.g. real VEVs that violate CP23 but would

have preserved CP0). We conjecture that this is a requirement for SGCPV to occur. It

is important to stress that the CP symmetries that these VEVs would have preserved are

themselves geometrical, having only geometrical phases that do not depend on the pa-

rameters of the potential. For cases with SCPV that is not geometric one can find CP

symmetries that would have been preserved by the respective VEVs, but those CP sym-

metries will also not be geometrical: the phases inside the VEVs and the associated CP
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symmetries the VEVs would have preserved depend on the parameters of the potential,

which run with energy scale.

This usefulness of this conjecture is illustrated by our examples. In cases where it

is possible to identify distinct geometrical CP symmetries that can be imposed to con-

strain the parameters of a specific potential, that potential can then give rise to SGCPV,

depending of course on the VEVs allowed by the respective minimisation conditions.

We divide our cases mainly in VEVs of one or two triplets where the imposed CP

symmetry is CP0 and cases where the imposed CP symmetry is CP23.

In the latter case, where CP23 is imposed, we found three cases with SGCPV for

∆(3n2) with n > 3:

J (3,2)
CP23

[v(1, 0, 0)|v′(0, 1, 0)] 6= 0 (4.47)

J (3,2)
CP23

[v(1, 0, 0)|v′(1, 0, 1)] 6= 0 (4.48)

J (3,2)
CP23

[v(1, 1, 0)|v′(0, 1, 1)] 6= 0 (4.49)

and one similar case for A4:

J (3,2)
CP23

[v(1, 0, 0)|v′(0, 1, 0)] 6= 0. (4.50)

It occurs always in situations with two triplets where the VEVs have the geometrical

phase of zero (i.e. the VEVs are real), in pairs that simultaneously violate CP23 and the

cyclic permutations of CP23 (which we may refer to as CP31 and CP12) that are also CP

symmetries of the potential when CP23 is imposed, due to the flavour symmetries we are

considering. Indeed, it is understandable why there is no SGCPV of this type for the

respective one triplet potentials, as a real single triplet VEV cannot violate all 3 of those

CP symmetries. We note though that the real VEV pairs that SGCPV in these cases would

have preserved CP0, which is not however a symmetry of the potentials (otherwise there

wouldn’t be SCPV).

In the cases where CP0 is imposed, which include also the original SGCPV cases with

one triplet of ∆(27) (or ∆(54)), we note also that the VEVs with geometrical phases that

have SGCPV would have preserved some other geometrical CP symmetry8 that is not a

symmetry of the potential. In the one triplet case, take:

J (3,2)
CP0

[v(ω, 1, 1)] =
3

2
d(d− s)(d+ 2s)(ω − ω2)v4 (4.51)

this VEV would have preserved a variant of the X2, X3 CP transformations (which is

consistent):

X ′2 =

ω 0 0

0 1 0

0 0 1

 . (4.52)

8By extension of the definition of “calculable” phases [37], which we refer to as geometrical phases heres,

we refer to a geometrical CP symmetry as one that is independent of the parameters of the potential.
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The SGCPV VEVs in ∆(3n2):

J (3,2)
CP0

[v(1, 1, 0)|v′(1, i, 0)] =
1

8
ir̃2s̃2(3r̃2 − 4s+ 2s̃1 − s̃2 − 4s′)v2v′

2
(4.53)

J (3,2)
CP0

[v(1, 1, 0)|v′(1, i, 1)] =
1

8
ir̃2s̃2(3r̃2 − 4s+ 2s̃1 − s̃2 − 4s′)v2v′

2
(4.54)

would have preserved a CP with diagonal matrix diag(1, 1, 1, 1,−1, 1),9 and

J (3,2)
CP0

[v(1, 1, 1)|v′(1, ω, ω2)] = − 3

16
r̃2s̃2(3r̃2 − 4s+ 2s̃1 − s̃2 − 4s′)(ω − ω2)v2v′

2
(4.55)

would have preserved CP23. CP23 would also be preserved by the first of the SGCPV pair

of VEVs in A4:

J (3,2)
CP0

[v(1, 1, 1)|v′(1, ω, ω2)] = 3CA4(ω − ω2)v2v′
2

(4.56)

J (3,2)
CP0

[v(1, 1, 1)|v′(1, ω,−ω2)] = CA4(ω − ω2)v2v′
2

(4.57)

The second pair, due to the minus sign, would have preserved the CP symmetry with a

block matrix with the regular X23 for the first triplet and for the second triplet:

X(−23) =

1 0 0

0 0 −1

0 −1 0

 . (4.58)

The new SGCPV VEVs we find in ∆(54) (and ∆(27)) are essentially two triplet versions

of the one triplet case:

J (3,2)
CP0

[v(1, 0, 0)|v′(1, 1, ω)] 6= 0 (4.59)

J (3,2)
CP0

[v(1, 1, ω)|v′(1, ω, ω2)] 6= 0 (4.60)

J (3,2)
CP0

[v(1, 1, ω)|v′(1, 1, ω2)] 6= 0 (4.61)

and for each case one can find X matrices of the geometrical CP symmetries that would

have been preserved. With one triplet the other case with SGCPV that we presented is

J (3,2)
X4

[v(1, 0, 0)] =
1

4
(d∗3 − d3)v4 (4.62)

and this VEV would have preserved CP0. Finally, the other CP symmetry we studied for

two triplets of ∆(3n2) with n > 3 led to the following cases of SGCPV:

J (3,2)
CPϕϕ′

[v(1, 1, 0)|v′(1, e−iπ/6, 0)] 6= 0 (4.63)

J (3,2)
CPϕϕ′

[v(1, 1, 0)|v′(1, e−iπ/6, 1)] 6= 0 (4.64)

J (3,2)
CPϕϕ′

[v(1, 1, 1)|v′(1, 1, 1)] 6= 0. (4.65)

Of these, the last VEV pair would clearly have preserved CP0, and the other VEVs pre-

serve a CP with diagonal matrix diag(1, 1, 1, 1, eiπ/3, 1) featuring only geometrical phases

(0 and π/3).

9This CP symmetry would not be consistent with the flavour symmetry of the potential, but if imposed

it changes the potential only by setting r̃2 = s̃3 = 0.
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5 Summary of results

In this section we summarise the results presented throughout section 4, in two tables.

Table 6 lists the potentials with one triplet of the discrete symmetries and table 7 the

potentials with two triplets. For both tables, the leftmost column notes what is the imposed

discrete symmetry and, in cases where it is also imposed, the CP symmetry. The next two

columns show the two SCPIs we calculated and distinguish whether the expression vanishes

in general (before plugging in the VEVs) — note that in some of the cases, despite the

expression not vanishing in general, it vanishes for all the VEVs. The fourth column lists

if a CP symmetry is present, listing the matrix associated with the CP symmetry of one

triplet (for two triplets, this means it is the diagonal 2 × 2 block matrix with the same

transformation for both triplets) — this column is relevant because in many cases where

there was no CP symmetry imposed, there is nevertheless a CP symmetry present for the

potential that is invariant under the imposed discrete flavour symmetry. The last column

notes whether there is Spontaneous CP Violation. In this last column we note 2 categories

when there is no imposed CP symmetry — the potential is either CP conserving, and

all of these cases have no SCPV either,10 or alternatively the potential is explicitly CP

violating and therefore we denote the SCPV column with NA for Not Applicable. The

final possibility is when a CP symmetry is imposed, and it turned out that for all the cases

analysed with these discrete symmetries, whenever there was the possibility of SCPV, there

were some (but not all) VEVs that have SGCPV, and therefore this column is marked as

“S(G)CPV”, because that potential can have regular SCPV or SGCPV depending on the

VEVs (we note though that this is probably due to the discrete symmetries we analyse

being special, as many potentials, such as the 2HDM with imposed CP symmetry, can have

SCPV but don’t have SGCPV).

In summary:

• We present new results for V∆(3n2)(H) = V∆(6n2)(H).

• Of the 1 triplet potentials we studied, only V∆(27)(H) = V∆(54)(H) has non-trivial

CP properties, which includes cases with Spontaneous Geometrical CP Violation.

• All the 2 triplet results we present are new.

• Of the 2 triplets potentials we studied, all that can have SCPV, also show explicit

CPV.

• For the potentials we studied where SCPV can be found, some VEVs exist with

SGCPV (this is a peculiarity of the symmetries we considered, as it is not true in

general).

• We have found several new cases of SGCPV beyond the few known cases up to now,

finding also the first cases of SGCPV for 6HDMs.

• We formulate a conjecture relating SGCPV with geometrical CP symmetries.

10These results support a conjecture from [40], proven for specific cases in [59].
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J (3,2) J (3,3) CP CP type SCPV

3∆(3n2)=∆(6n2) 0 0 X0, eq. (3.22); X23, eq. (3.36) Automatic No

3A4 0 * X23, eq. (3.36) Automatic No

3S4 0 * X0, eq. (3.22); X23, eq. (3.36) Automatic No

3∆(27)=∆(54) * * None NA NA

3∆(27)=∆(54), X0 * * X0, eq. (3.22) Imposed S(G)CPV

3∆(27)=∆(54), X4 * * X4, eq. (3.53) Imposed S(G)CPV

Table 6. Summary of the value of J (3,2), J (3,3), CP symmetry transformations and whether SCPV

is possible, for the 1 triplet scalar potentials analysed. The ∗ denotes that a SCPI is non-zero for

arbitrary VEVs (it may still vanish for the potential’s VEVs), NA stands for Not Applicable (SCPV

is not meaningful in cases without a CP symmetry).

J (3,2) J (3,3) CP Type of CP SCPV

2× 3∆(3n2) * * None NA NA

2× 3∆(3n2),CP0 * * Xϕϕ′

0 , eq. (3.94); Imposed S(G)CPV

2× 3∆(3n2), CP23 * * Xϕϕ′

23 , eq. (3.95); Imposed S(G)CPV

2× 3∆(3n2), CPϕϕ′ * * Xϕϕ′ , eq. (3.96) Imposed S(G)CPV

2× 3∆(6n2) 0 * Xϕϕ′

0 , eq. (3.94) Automatic No

Xϕϕ′

23 , eq. (3.95)

2× 3A4 * * None NA NA

2× 3A4 , CP0 * * Xϕϕ′

0 , eq. (3.94) Imposed S(G)CPV

2× 3A4 , CP23 * * Xϕϕ′

23 , eq. (3.95) Imposed S(G)CPV

2× 3S4 0 * Xϕϕ′

0 , Xϕϕ′

23 Automatic No

2× 3∆(27) * * None NA NA

2× 3∆(27), CP0 * * Xϕϕ′

0 , eq. (3.94) Imposed S(G)CPV

2× 3∆(54) * * None NA NA

2× 3∆(54), CP0 * * Xϕϕ′

0 , eq. (3.94) Imposed S(G)CPV

Table 7. Summary of the value of J (3,2), J (3,3), CP symmetry transformations and whether

SCPV is possible, for the 2 triplet scalar potentials analysed. The ∗ denotes the SCPI is non-zero

for arbitrary VEVs (it may still vanish for the potential’s VEVs), NA stands for Not Applicable

(SCPV is not meaningful in cases without a CP symmetry).
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6 Conclusions

We have analysed 3 and 6 Higgs scalar potentials invariant under discrete symmetries

∆(3n2) and ∆(6n2) with n = 2 (A4, S4), n = 3 (∆(27), ∆(54)) and n > 3. For these po-

tentials, we have presented their VEVs and considered whether they can have Spontaneous

CP Violation, and if so, if it can be Spontaneous Geometrical CP Violation.

Concerning the minimisation of such complicated potentials, the strategy we have

followed in this paper may be summarised as follows. We started with more symmetric

cases, which can be minimised analytically, where each of the minima of these potentials is

associated with an orbit, which is generated by the representative VEV by the symmetry

group. For the less symmetric potentials, we have analysed how these orbits are broken

up and which phases can become physical as a result of reducing the original symmetry.

We find that for potentials involving one triplet, this method reproduces perfectly the

minima found by a previous thorough analysis done by other authors. We then proceeded

to construct the orbits of potentials of two triplets, again starting from more symmetric

cases, which in this case means the potentials of two triplets without cross-terms. We then

used the conjectured minima in the subsequent analysis of CPV.

With respect to Spontaneous CP Violation, using the basis invariant formalism, we

presented two Spontaneous CP-odd Invariants and used these to confirm cases where there

is Spontaneous CP Violation. With our methods, we have confirmed several existing results

in the literature for the 3 Higgs potentials, i.e. involving one triplet under the specified

symmetries of A4, S4, ∆(27) and ∆(54). Beyond that, we present new results for the

potentials invariant under ∆(3n2) and ∆(6n2) with n > 3 and those with 6 Higgs, i.e.

involving two triplets under the above symmetries. Of the potentials considered, for those

that were automatically CP invariant we found no VEVs that spontaneously violate CP

— all the SCPIs vanish and we found for each VEV at least one preserved CP symmetry.

This is in line with what was the case for 3 Higgs [40] and the more general conjecture

proven in the particular case of rephasing symmetries in [59].

For potentials that in general have explicit CP violation, however, we considered im-

posing different CP symmetries and then checking which (if any) VEVs spontaneously

violate CP. After revisiting the well-known case for the 3 Higgs potential invariant under

both ∆(27) and trivial CP (where SGCPV was first identified) we also found SGCPV in

the 6 Higgs potentials invariant under A4, ∆(27), ∆(54) and ∆(3n2) with n > 3. These

new cases were found by finding a non-zero SCPI and checking that the VEVs in question

have geometrical phases. We have proposed the following conjecture: SGCPV appears

when there are different geometrical CP symmetries that can be imposed on a potential,

and the VEV violates the imposed geometrical CP symmetry but would have preserved a

different geometrical CP symmetry.

Finally we remark that the results in this paper may be applied to physical CP violating

processes involving three and six-Higgs doublet potentials controlled by classes of non-

Abelian discrete symmetries.
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A Technical details from section 2

In this appendix, first the argument leading to eq. (2.14) is given. After that, additionally a

related relation between VEVs is derived. From each allowed CP transformation, conditions

on Y and Z follow,

Y a
b = Y b′

a′Xb′bX
∗a′a (A.1)

and

Zabcd = Zc
′d′
a′b′Xc′cXd′dX

∗a′aX∗b
′b. (A.2)

When the potential “acquires” a VEV, i.e. when the parameters of the potential are chosen

such that the energy is classically minimized at a value of the field different from zero,

〈φ〉 = v 6= 0, (A.3)

then first the fields and with them the potential can be expanded around this VEV:

ϕ 7→ v + ϕ (A.4)

and

V (φ) ≡ V (v, ϕ) = Y a
b (v + ϕ)a(v + ϕ)∗b + Zabcd (v + ϕ)a(v + ϕ)b(v + ϕ)∗c(v + ϕ)∗d. (A.5)
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This potential can be reordered by the number of fields ϕ, i.e.

V (v, ϕ) = Y a
b vav

∗b + Y a
b vaϕ

∗b + Y a
b ϕav

∗b + Y a
b ϕaϕ

∗b

+ Zabcdvavbv
∗cv∗d + . . .+ Zabcdϕaϕbϕ

∗cϕ∗d

= Y a
b vav

∗b + Zabcdvavbv
∗cv∗d

+ (Y a
b v
∗b + . . .+ Zabcdvbv

∗cv∗d)ϕa

+ . . .

+ Zabcdϕaϕbϕ
∗cϕ∗d. (A.6)

The coefficients of this potential are now combinations of Y , Z, and v. This potential is

CP-conserving in the new degrees of freedom, ϕ, if a CP trafo

ϕ 7→ X̃ϕ∗ (A.7)

exists, such that the minimized potential is invariant,

V (v, ϕ) = V (v, X̃ϕ∗). (A.8)

From this, conditions on the coefficients of the expanded potential follow. For the coefficient

quartic in ϕ, this happens to be the original condition, only with X replaced with X̃,

Zabcd X̃
a′
a X̃

b′
b X̃

∗c
c′ X̃

∗d
d′ = Z∗a

′b′

c′d′ , (A.9)

while for the trilinear coefficient in ϕ, a new condition arises,

ZabcdvaX̃
b′
b X̃

∗c
c′ X̃

∗d
d′ = Z∗eb

′

c′d′ve (A.10)

together with the CP-conjugate of this condition. (Similarly for lower powers of ϕ, only

with more complicated conditions that involve combinations of Y and Zvv.)

Can there be X̃ that are not in X = {X}? First, as the condition for CP-conservation

in the quartic terms in φ and ϕ are identical, and all CP transformations of φ were assumed

to be known, there cannot be any more general CP transformations under which the

whole potential is invariant than these known ones. In other words, all candidates for CP

transformations of ϕ, X̃ are in X = {X}.
Using the invariance of Z on the l.h.s. of eq. (A.10) leads to

Z∗a
′b′

c′d′X
†a
a′va = Z∗a

′b′

c′d′va′ (A.11)

from which with X†
a
a′va = (va′)

∗ follows that the potential conserves CP if for at least one

of the original X matrices holds that

va = Xaa′v
∗a′ . (A.12)

Which conditions follow on VEVs or on relations between VEVs from an existing CP

symmetry with unitary matrix X at high energy? Transform the potential with said CP

transformation to obtain

V = Y a
b Xaa′X

∗bb′φ∗a
′
φb′ + ZabcdXaa′Xbb′X

∗cc′X∗dd
′
φ∗a

′
φ∗b
′
φc′φd′ . (A.13)
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From this potential, minimisation conditions can be derived, and from

∂V

∂φi
= 0 (A.14)

follows

0 = Y a
i Xaa′v

∗a′ + 2ZabidXaa′v
∗a′Xbb′v

∗b′X∗dd
′
vd′ . (A.15)

Comparing this with the CP-conjugate of the untransformed minimisation condition, i.e.

the condition obtained by taking the derivative of V by φ∗i,

0 = Y a
i v

a + 2Zabid vavbv
∗d, (A.16)

one finds that va and ua := Xaa′v
∗a′ fulfill exactly the same sets of equations. This means

that the solution sets, {va} and {Xaa′v
∗a′} are identical:

{va} = {Xaa′v
∗a′} =: V. (A.17)

Note that this does not mean that for every va holds that va = Xaa′v
a′ , but instead, as X

is unitary, the only thing that can be said is that for symmetric X for every va ∈ V exactly

one ua ∈ V exists, such that

va = Xaa′u
∗a′ (A.18)

and longer chains for non-symmetric X matrices.
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