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Abstract

We propose and analyse a new class of Littlest Seesaw models, with two right-handed
neutrinos in their diagonal mass basis, based on preserving the first column of the
Golden Ratio mixing matrix. We perform an exhaustive analysis of all possible remnant
symmetries of the group A5 which can be used to enforce various vacuum alignments
for the flavon controlling solar mixing, for two simple cases of the atmospheric flavon
vacuum alignment. The solar and atmospheric flavon vacuum alignments are enforced
by different remnant symmetries. We examine the phenomenological viability of each
of the possible Littlest Seesaw alignments in A5, which preserve the first column of the
Golden ratio mixing matrix, using figures and extensive tables of benchmark points
and comparing our predictions to a recent global analysis of neutrino data. We also
repeat the analysis for an alternative form of Golden Ratio mixing matrix.
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1 Introduction

Massive neutrinos together with neutrino oscillations has been firmly established, and
it is unique experimental evidence for physics beyond the standard model. All the three
lepton mixing angles θ12, θ13 and θ23 and the mass squared differences δm2 ≡ m2

2 − m2
1

and ∆m2 ≡ m2
3 − (m2

1 + m2
2)/2 has been precisely measured in a large number of neutrino

oscillation experiments. At present the 3σ ranges of these mixing parameters are determined
to be [1]

0.250 ≤ sin2 θ12 ≤ 0.354, 0.0190 ≤ sin2 θ13 ≤ 0.0240, 0.381 ≤ sin2 θ23 ≤ 0.615, (1.1)

6.93× 10−5eV2 ≤ δm2 ≤ 7.96× 10−5eV2, 2.411× 10−3eV2 ≤ ∆m2 ≤ 2.646× 10−3eV2 ,

for normal ordering (NO) neutrino mass spectrum, and similar results are obtained for
inverted ordering (IO) spectrum. Non-Abelian discrete finite groups have been widely used
to explain the lepton mixing angles as well as CP violating phases, see Refs. [2–7] for reviews.

The most appealing possibility for the origin of neutrino mass seems to be the seesaw
mechanism which, in its original formulation, involves heavy right-handed Majorana neu-
trinos [8]. The most minimal version of the seesaw mechanism involves one [9] or two
right-handed neutrinos [10]. In order to reduce the number of free parameters still further to
the smallest number possible, and hence increase predictivity, various approaches to the two
right-handed neutrino seesaw model have been suggested, such as postulating one [11] or
two [12] texture zeroes, however such two texture zero models are now phenomenologically
excluded [13] for the case of a normal neutrino mass hierarchy considered here.

The minimal successful seesaw scheme with normal hierarchy is called the Littlest Seesaw
(LS) model [14–16], although in fact, it represents a class of models. The LS models may be
defined as two right-handed neutrino models with particularly simple patterns of Dirac mass
matrix elements in the basis where both the charged lepton mass matrix and the two-right-
handed neutrino mass matrix are diagonal. The Dirac mass matrix typically involves only
one texture zero, but the number of parameters is reduced dramatically since each column
of this matrix is controlled by a single parameter. In practice this is achieved by introducing
a Non-Abelian discrete family symmetry, which is spontaneously broken by flavon fields
with particular vacuum alignments governed by remnant subgroups of the family symmetry.
Unlike the direct symmetry approach, where a common residual flavour and remnant CP
symmetry is assumed in the neutrino sector, the Littlest Seesaw approach assumes a different
residual flavour symmetry is preserved by each flavon, in the diagonal mass basis of two right-
handed neutrinos, leading to a highly predictive set of possible alignments.

For example, in the original LS model [14–16], the lepton mixing matrix is predicted to be
of the TM1 form in which the first column of the tri-bimaximal mixing matrix is preserved,
but with the reactor angle and CP phases fixed by the same two parameters which fix the
neutrino masses. This leads to a highly constrained model which is remarkably consistent
with current data, but which can be tested in forthcoming neutrino experiments [17]. The
LS approach may also be incorporated into grand unified models [18]. The success of the
LS approach, raises the question of whether it is confined to TM1 mixing, or is of more
general applicability. The present paper aims to address this question by considering a
different mixing scheme within the same approach, namely the golden ratio (GR) mixing
pattern [19,20].

In this paper, we shall propose another viable class of LS models, namely the Golden
Littlest seesaw (GLS). Although the golden ratio mixing [19,20] is excluded by the measure-
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ment of largish reactor mixing angle, the first column of UGR may still be compatible with
the experimental data. Inspired by the success of the LS approach for TM1 mixing, we would
like to also preserve the first column vector of the GR mixing pattern in our GLS model.
We shall perform an exhaustive analysis of all possible remnant symmetries of the group
A5 which can be used to enforce various vacuum alignments for the flavon controlling solar
mixing, for two simple cases of the atmospheric flavon vacuum alignment, analogous to the
proceedure suggested in the LS approach based on S4. For each possibility we examine the
phenomenological viability of the alignment, using figures and extensive benchmark points,
comparing our predictions to a recent global analysis of neutrino data. We also repeat the
analysis for an alternative form of Golden Ratio mixing matrix.

The layout of this paper is as follows. In section 2 we review GR mixing and the direct
model building approach based on the group A5. In section 3 we then turn to the GLS
approach, based on two right-handed neutrinos with the Dirac mass matrix controlled by
flavon vacuum alignments which respect various remnant symmetries of A5, and examine the
phenomenological viability of each case for a discrete choice of phase parameters. In section 4
we repeat the procedure for an alternative choice of GR matrix. Section 5 concludes the
paper. We report the group theory of A5 in Appendix A, and the technique details of
diagonalizing a two dimensional symmetric matrix are shown in Appendix B.

2 Golden Ratio Mixing

2.1 Mixing matrix and Klein symmetry

Before the measurement of the reactor mixing angle, the golden ratio (GR) mixing pat-
tern [19, 20] was a good leading order approximation and it predicted a zero reactor angle
θ13 = 0, maximal atmospheric mixing angle θ23 = 45◦ and a solar mixing angle given by
cot θ12 = φ, where φ = (1 +

√
5)/2 is the golden ratio. Note that the golden ratio mixing dif-

fers from the tri-bimaximal mixing in the prediction for the solar mixing angle. The explicit
form of the golden mixing matrix is given by

UGR =


−
√

φ√
5

√
1√
5φ

0√
1

2
√
5φ

√
φ

2
√
5
− 1√

2√
1

2
√
5φ

√
φ

2
√
5

1√
2

 . (2.1)

In the flavor basis where the charged lepton mass matrixml is diagonal withml = diag(me,mµ,mτ ),
then the most general form of the neutrino matrix mν for the golden ratio mixing is

mν = UGRdiag(m1,m2,m3)U
T
GR = m1Φ1Φ

T
1 +m2Φ2Φ

T
2 +m3Φ3Φ

T
3 , (2.2)

where the light neutrino masses m1,2,3 absorbing the Majorana phases are generally complex,
and the vectors Φ1,2,3 are defined as

Φ1 =

√
1

2
√

5φ

−√2φ
1
1

 , Φ2 =

√
1

2
√

5φ

√2
φ
φ

 , Φ3 =
1√
2

 0
−1
1

 . (2.3)
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A unitary transformation νL → GννL of the left-handed Majorana neutrino fields leads to
the transformation of the neutrino mass matrix mν → GT

νmνGν . We can check that the
above golden ratio neutrino mass matrix is invariant under the following transformations

GT
νi
mνGνi = mν , i = 1, 2, 3 , (2.4)

with

Gν1 = 2Φ1Φ
†
1 − 1, Gν2 = 2Φ2Φ

†
2 − 1, Gν3 = 2Φ3Φ

†
3 − 1 (2.5)

The three flavor symmetry transformationsGν1 , Gν2 andGν3 form a Klein groupK4
∼= Z2×Z2

and they fulfill

G2
νi

= 1, GνiGνj = GνjGνi = Gνk with i 6= j 6= k . (2.6)

Furthermore, the symmetry transformation Gl of the charged lepton mass matrix is deter-
mined by the condition G†lm

†
lmlGl = m†lml, therefore Gl has to be a diagonal phase matrix.

If we choose Gl = diag(1, ρ, ρ4) with ρ = e2πi/5, the matrices Gl, Gν1 , Gν2 and Gν3 would
give rise to the group A5 in the triplet representation [21]. According to the direct model
building approach [4], if the flavor symmetry A5 is broken to a Z5 subgroup in the charged
lepton sector and to Klein subgroup in the neutrino sector, the golden ratio mixing pattern
would be obtained naturally [21].

2.2 Direct approach in A5

In both the direct approach and indirect approach, the basis principle of the flavor symmetry
model building is the same, that is the different sectors of the Lagrangian preserve different
residual subgroups of the flavor symmetry while the whole Lagrangian completely breaks
the flavor symmetry. In order to more clearly understand the idea of the GLS, we shall
briefly recapitulate the direct approach to the GR mixing from A5 flavor symmetry before
presenting our GLS within the indirect approach in the following section.

We first recall that A5 is the even permutation group of five objects. Geometrically A5 is
the symmetry group of the icosahedron. The A5 group can be generated by two generators
S and T which satisfy the following multiplication rules

S2 = T 5 = (ST )3 = 1 . (2.7)

The A5 group has five irreducible representations: one single 1, two triplets 3 and 3′, one
four-dimensional representation 4 and one five-dimensional representation 5. The explicit
form of the representation matrices for the generators S and T are collected in table 1.
The interested readers can refer to Ref. [22] for detailed group theory of A5 and Clebsch-
Gordan coefficients. The interplay between A5 flavor symmetry and lepton mixing has been
extensively studied in the literature [21–28]. We find that the representation matrices of the
generators S and T in 3′ exactly coincide with those of T 3ST 2ST 3 and T 2 respectively in
3. This implies that the set of all matrices describing the representations 3 and 3′ are the
same. Therefore the same results would be obtained no matter if the left-handed leptons
transform as 3 or 3′ of A5. Without loss of generality, We shall assign the three generations
of left-handed leptons to the triplet 3 in the following.
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S T
1 1 1

3 1√
5

 1 −
√

2 −
√

2

−
√

2 − φ 1/φ

−
√

2 1/φ − φ

 1 0 0
0 ρ 0
0 0 ρ4


3′ 1√

5

−1
√

2
√

2√
2 − 1/φ φ√
2 φ − 1/φ

 1 0 0
0 ρ2 0
0 0 ρ3



4 1√
5


1 1/φ φ − 1

1/φ − 1 1 φ
φ 1 − 1 1/φ
−1 φ 1/φ 1



ρ 0 0 0
0 ρ2 0 0
0 0 ρ3 0
0 0 0 ρ4



5 1
5


−1

√
6
√

6
√

6
√

6√
6 1/φ2 − 2φ 2/φ φ2
√

6 − 2φ φ2 1/φ2 2/φ√
6 2/φ 1/φ2 φ2 − 2φ√
6 φ2 2/φ − 2φ 1/φ2




1 0 0 0 0
0 ρ 0 0 0
0 0 ρ2 0 0
0 0 0 ρ3 0
0 0 0 0 ρ4


Table 1: The representation matrices of the generators S and T for the five irreducible representations of

A5 group in the basis which is convenient for discussing the Golden ratio mixing pattern, where ρ = e2πi/5

is the fifth root of unit.

In the direct approach, the A5 flavor symmetry group is assumed to be broken to a
abelian subgroup Gl such as Gl = ZT

5 . As a consequence the charged lepton mass matrix ml

is invariant under the action of the element T , i.e.

ρ†3(T )m†lmlρ3(T ) = m†lml . (2.8)

This implies that the unitary transformation Ul which diagonalizes the charged lepton mass
matrix U †l (T )m†lmlUl = diag(m2

e,m
2
µ,m

2
τ ) has the property

U †l ρ3(T )Ul = diag(1, ei
2π
5 ,−ei

3π
5 ) . (2.9)

Since the generator T is diagonal with ρ3(T ) = diag(1, ei
2π
5 ,−ei 3π5 ) in our working basis, Ul

has to be a unit matrix,

Ul =

1 0 0
0 1 0
0 0 1

 . (2.10)

As a consequence, the lepton mixing completely arises from the neutrino mixing. The
A5 flavor symmetry is broken down to a Klein subgroup Gν in the neutrino sector in the

paradigm of direct approach. Here we choose Gν = K
(S,T 3ST 2ST 3)
4 whose representation
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matrices in the chosen basis are

ρ3(S) =
1√
5

 1 −
√

2 −
√

2

−
√

2 − φ 1/φ

−
√

2 1/φ − φ

 ,

ρ3(T 3ST 2ST 3) =
1√
5

−1
√

2
√

2√
2 − 1/φ φ√
2 φ − 1/φ


ρ3(T 3ST 2ST 3S) = −

1 0 0
0 0 1
0 1 0

 , (2.11)

Then the neutrino diagonalization matrix Uν turns out to be the golden ratio mixing pat-
tern [21–24],

UGR =


−
√

φ√
5

√
1√
5φ

0√
1

2
√
5φ

√
φ

2
√
5
− 1√

2√
1

2
√
5φ

√
φ

2
√
5

1√
2

 . (2.12)

Notice that the three column vectors Φ1,2,3 of the GR mixing preserve three different Z2

subgroups of A5,

ρ3(S)Φ1 = Φ1, ρ3(T 3ST 2ST 3)Φ2 = Φ2, ρ3(T 3ST 2ST 3S)Φ3 = Φ3 . (2.13)

We summarize that the GR mixing arises from the mismatch between the residual subgroups
Gl and Gν in the direct approach.

3 Golden Littlest Seesaw in A5

3.1 Littlest Seesaw

The indirect model building approach [4] is an interesting alternative to the direct approach.
In the indirect approach, the original flavor symmetry is completely broken in the neutrino
sector, and the residual symmetry Z2 × Z2 of the neutrino mass matrix arises accidentally.
The basic idea of the indirect approach is to effectively promote the columns of the Dirac
mass matrix to fields which transform as triplets under the flavour symmetry. We assume
that the Dirac mass matrix can be written as mD = (aΦatm, bΦsol, cΦdec) where the columns
are proportional to triplet Higgs scalar fields with particular vacuum alignments and a, b, c
are three constants of proportionality. It is convenient to work in the basis where the right-
handed neutrino mass matrix are diagonal with the mass eigenvalues equal to Matm, Msol

and Mdec. Then the light neutrino mass matrix given by the seesaw formula is

mν = a2
ΦatmΦT

atm

Matm

+ b2
ΦsolΦ

T
sol

Msol

+ c2
ΦdecΦ

T
dec

Mdec

, (3.1)

where we have dropped an overall minus sign which is physically irrelevant. In the case that
the columns of the Dirac mass matrix are proportional to the columns of the GR matrix,
Φatm ∝ Φ3, Φsol ∝ Φ2 and Φdec ∝ Φ1, the three columns of mD would be mutually orthogonal,
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F3=FatmHF3L

F 2
HF 2

=
F at

m
L

F1

Fsol

a

Figure 1: The vacuum alignment in the Littlest seesaw model. Φ1, Φ2 and Φ3 are the three columns of
the golden ratio mixing matrix. The alignment vector Φatm is either Φ2 or Φ3, and Φsol is a general vector
orthogonal to Φ1.

as illustrated in figure 1. As a consequence, the resulting effective light Majorana mass matrix
mν is form diagonalizable, and it is exactly diagonalized by the golden ratio mixing matrix.
This scenario is referred to as form dominance [29]. In the limit of Mdec �Matm,Msol, as a
good leading order approximation we could drop the last term and the model reduces to a
two right-handed neutrino model, such that the lightest neutrino is massless.

The Littlest seesaw framework assumes that there are only two right-handed neutrinos to
begin with, together with flavons which couple to them with particular vacuum alignments,
leading to the columns of the Dirac mass matrix taking the above forms. Within the Littlest
seesaw framework [15], we shall assume that both vacuum alignments Φsol and Φatm are
orthogonal to Φ1, in order to preserve the first column of the mixing matrix. Then we shall
choose Φatm to be either Φ2 or Φ3, and take Φsol to be a general vector orthogonal to Φ1, as
illustrated in figure 1. Later on we shall fix the alignment of Φsol by appealing to remnant
symmetry, according to a generalisation of the direct approach, as discussed in the next
subsection.

The Littlest seesaw is clearly a rather predictive framework which combines the two right-
handed neutrino model with the indirect approach [9]. In this framework, two right-handed
neutrinos Natm

R and N sol
R are introduced, and the third right-handed neutrino is assumed to

be almost decoupled and irrelevant. Natm
R dominantly contributes to the seesaw mechanism

and is mainly responsible for the atmospheric neutrino mass m3. N
sol
R is sub-dominant and is

mainly responsible for the solar neutrino mass m2 while the lightest neutrino mass m1 is zero
in this limit. The Littlest seesaw model generally assumes three generations of left-handed
neutrino fields νL = (νe, νµ, ντ ) transforms as a triplet of the flavor symmetry while both
Natm
R and N sol

R are singlets. In the flavor basis where the charged lepton mass matrix is
diagonal with real positive eigenvalues me, mµ, mτ and the right-handed neutrino Majorana
mass matrix is also diagonal, by introducing appropriate auxiliary abelian symmetry, the
generic Littlest seesaw Lagrangian can be written as

L = −yatmL̄.φatmNatm
R − ysolL̄.φsolN sol

R −
1

2
Matm(Natm

R )cNatm
R − 1

2
Msol(N

sol
R )cN sol

R + h.c. , (3.2)
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Gf

Gl

Gatm Gsol

Figure 2: A sketch of the indirect model building approach, where the charged lepton preserves a residual
subgroup Gl, and the neutrino vacuum alignments Φatm and Φsol are enforced by the residual symmetries
Gatm and Gsol respectively.

where the flavons φsol and φatm can be either Higgs fields transforming as triplets under
the flavour symmetry, or combinations of a single Higgs electroweak doublet together with
triplet flavons. The fields L are the electroweak lepton doublets which are unified into a
triplet representation of the flavor symmetry group. Then Φatm and Φsol in Eq. (3.1) arise
from the vacuum expectation values (VEVs) of φsol and φatm respectively.

3.2 Indirect approach in A5

The indirect approach is a further generalization of the direct approach. We assume that
the A5 group is broken to the abelian subgroup Gl = ZT

5 in the charged lepton sector,
the vacuum alignments Φatm and Φsol preserve different residual symmetries Gatm and Gsol

respectively while the A5 flavor symmetry is completely broken in the entire neutrino sector.
The indirect approach is schematically illustrated in figure 2. In our GLS model, as stated
above the alignment vector Φsol is orthogonal to Φ1, its most general form is

Φsol ∝
(√

2, φ− x, φ+ x
)T

. (3.3)

We find there are five possible values of x related to certain residual subgroups of A5,

x = 0, Gsol = ZT 3ST 2ST 3

2 ,

x = 2iφ2 sin
2π

5
, Gsol = ZT 3ST 2S

3 ,

x = −2iφ2 sin
2π

5
, Gsol = ZST 2ST 3

3 ,

x = −2i sin
π

5
, Gsol = ZT 2ST

5 ,

x = 2i sin
π

5
, Gsol = ZTST 2

5 .

(3.4)
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Accordingly the vacuum alignment of the solar flavon φsol is:

x = 0, Φsol =
(√

2, φ, φ
)T

,

x = 2iφ2 sin
2π

5
, Φsol =

(√
2, 2φ2e−2iπ/5, 2φ2e2iπ/5

)T
,

x = −2iφ2 sin
2π

5
, Φsol =

(√
2, 2φ2e2iπ/5, 2φ2e−2iπ/5

)T
,

x = −2i sin
π

5
, Φsol =

(√
2, 2eiπ/5, 2e−iπ/5

)T
,

x = 2i sin
π

5
, Φsol =

(√
2, 2e−iπ/5, 2eiπ/5

)T
.

(3.5)

In our framework, another alignment vector Φatm is assumed to be along the direction of Φ3

or Φ2. In the following, we shall discuss the two cases one by one.

3.2.1 Golden Littlest seesaw with Φatm ∝ Φ3

In this case, the vacuum Φatm reads as

Φatm ∝ (0, − 1, 1)T , (3.6)

which is invariant under the action of the ZT 3ST 2ST 3S
2 subgroup. Consequently the Dirac

neutrino mass matrix MD and the right-handed neutrino heavy Majorana mass matrix MN

are given by

MD =

 0
√

2b
−a (φ− x)b
a (φ+ x)b

 , MN =

(
Matm 0

0 Msol

)
(3.7)

Integrating out the right-handed neutrinos, the light effective Majorana neutrino mass matrix
is approximately given by the seesaw formula

mν =−MDM
−1
N MT

D

=ma

0 0 0
0 1 −1
0 − 1 1

+mbe
iη

 2
√

2(φ− x)
√

2(x+ φ)√
2(φ− x) (x− φ)2 −x2 + φ+ 1√
2(x+ φ) − x2 + φ+ 1 (x+ φ)2

 , (3.8)

where ma = |a|2/Matm, mb = |b|2/Msol, the relative phase η = arg(b2/a2), and an overall
phase of mν has been omitted. Therefore four parameters ma, mb, x and η describe both
the neutrino flavor mixing and neutrino masses. One can check that neutrino mass matrix
mν of Eq. (3.8) satisfies

mν


−
√

φ√
5√

1
2
√
5φ√
1

2
√
5φ

 =

0
0
0

 . (3.9)

This implies that the column vector (−
√

φ√
5
,
√

1
2
√
5φ
,
√

1
2
√
5φ

)T is an eigenvector of mν with

a zero eigenvalue. As a result, the first column of the PMNS mixing matrix exactly coincides
with the GR mixing pattern, and the corresponding light neutrino mass vanishes m1 = 0.
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In order to diagonalize the above neutrino mass matrix, we firstly perform a golden ratio
transformation and obtain

m′ν = UT
GRmνUGR =

0 0 0
0 y z
0 z w

 (3.10)

where

y = 2
√

5φmb e
iη,

z = 2x
√
φ+ 2mb e

iη,

w = |w|eiφw = 2(ma + x2mb e
iη) . (3.11)

The neutrino mass matrix mν in Eq. (3.10) by diagonalized through the standard procedure,
as shown in Ref. [30]. We have

U ′
T
νm
′
νU
′
ν = diag(0,m2,m3) , (3.12)

where the unitary matrix U ′ν can be written as

U ′ν =

1 0 0
0 cos θ ei(ψ+ρ)/2 sin θ ei(ψ+σ)/2

0 − sin θ ei(−ψ+ρ)/2 cos θ ei(−ψ+σ)/2

 . (3.13)

We find the light neutrino masses m2,3 are

m2
2 =

1

2

[
|y|2 + |w|2 + 2|z|2 − |w|

2 − |y|2

cos 2θ

]
,

m2
3 =

1

2

[
|y|2 + |w|2 + 2|z|2 +

|w|2 − |y|2

cos 2θ

]
(3.14)

The rotation angle θ is determined to be

sin 2θ =
−2iz e−iη

√
|y|2 + |w|2 − 2|y||w| cos(φw − η)√

(|w|2 − |y|2)2 + 4|z|2 [|y|2 + |w|2 − 2|y||w| cos(φw − η)]
,

cos 2θ =
|w|2 − |y|2√

(|w|2 − |y|2)2 + 4|z|2 [|y|2 + |w|2 − 2|y||w| cos(φw − η)]
. (3.15)

The phases ψ, ρ and σ are given by

sinψ =
|y| − |w| cos(φw − η)√

|y|2 + |w|2 − 2|y||w| cos(φw − η)
, cosψ =

|w| sin(φw − η)√
|y|2 + |w|2 − 2|y||w| cos(φw − η)

,

sin ρ = − (m2
2 − |z|2) cos η − |y||w| cosφw

m2

√
|y|2 + |w|2 − 2|y||w| cos(φw − η)

, cos ρ =
−(m2

2 − |z|2) sin η + |y||w| sinφw
m2

√
|y|2 + |w|2 − 2|y||w| cos(φw − η)

,

sinσ = − (m2
3 − |z|2) cos η − |y||w| cosφw

m3

√
|y|2 + |w|2 − 2|y||w| cos(φw − η)

, cosσ =
−(m2

3 − |z|2) sin η + |y||w| sinφw
m3

√
|y|2 + |w|2 − 2|y||w| cos(φw − η)

.(3.16)

Thus the lepton mixing matrix is determined to be

U = UGRU
′
ν =

√
1

2
√

5φ

−√2φ
√

2 cos θ
√

2eiψ sin θ
1 φ cos θ +

√
φ+ 2 sin θ e−iψ φ sin θ eiψ −

√
φ+ 2 cos θ

1 φ cos θ −
√
φ+ 2 sin θ e−iψ φ sin θ eiψ +

√
φ+ 2 cos θ

Pν ,

(3.17)
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with
Pν = diag(1, ei(ψ+ρ)/2, ei(−ψ+σ)/2) . (3.18)

The most general leptonic mixing matrix in the two right-handed neutrino model can be
parameterized as

U =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23eiδCP c12c23 − s12s13s23eiδCP c13s23
s12s23 − c12s13c23eiδCP −c12s23 − s12s13c23eiδCP c13c23

 diag(1, ei
β
2 , 1) , (3.19)

where cij ≡ cos θij, sij ≡ sin θij, δCP is the Dirac CP violation phase and β is the Majorana
CP phase. Note that a second Majorana phase is needed if the lightest neutrino is not
massless. Then we can extract the expressions for the lepton mixing angles as follows

sin2 θ13 =
sin2 θ√

5φ
, sin2 θ12 =

cos2 θ√
5φ− sin2 θ

,

sin2 θ23 =
1

2
−
√

3 + 4φ sin 2θ cosψ

2(
√

5φ− sin2 θ)
. (3.20)

Eliminating the free parameter θ, we see that a sum rule between the solar mixing angle θ12
and the reactor mixing angle θ13 is satisfied,

cos2 θ12 cos2 θ13 =
φ√
5
. (3.21)

Using the best fit value of sin2 θ13 = 0.0215, we find for the solar mixing angle

sin2 θ12 ' 0.261 , (3.22)

which is within the 3σ region [1]. As regards the CP violation, two weak basis invariants
JCP [31] and I1 [32] associated with the CP phases δCP and β respectively can be defined,

JCP = =(U11U33U
∗
13U

∗
31) =

1

8
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 sin δCP ,

I1 = =(U2
12U

∗ 2
13 ) =

1

4
sin2 θ12 sin2 2θ13 sin(β + 2δCP ) . (3.23)

For the mixing pattern in Eq. (3.19), these CP invariants turn out to be

JCP =
sin 2θ sinψ

4
√

5(φ+ 2)
, I1 =

1

20φ2
sin2 2θ sin(ρ− σ) . (3.24)

Since JCP and all the three mixing angles depend on only two parameters θ and ψ, we can
derive the following sum rule among the Dirac CP phase δCP and mixing angles

cos δCP =
(φ+ 2)(1 + sin2 θ13)− 5 cos2 θ13

2
√

(φ+ 2)(5 cos2 θ13 − φ− 2)
csc θ13 cot 2θ23 . (3.25)

For maximal atmospheric mixing angle θ23 = π/4, this sum rule predicts cos δCP = 0 which
corresponds to maximal CP violation δCP = ±π/2. The mixing angles, CP phases and
mass ratio m2/m3 depend on the x, η and r ≡ mb/ma while m2 and m3 depend on all the
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four input parameters x, η, ma and mb. By comprehensively scanning over the parameter
space of η and r, we find that the experimental data on the mixing angles and mass squared
splittings can be accommodated only for the values of x = ±2iφ2 sin 2π

5
. In table 2 we

present the predictions for the mixing angles and CP violation phases for some benchmark
values of the parameters η and r. It is remarkable that both atmospheric mixing angle and
Dirac phase are maximal for η = 0, all the mixing angles and mass ratio m2

2/m
2
3 lie in the

experimentally preferred 3σ ranges except that the reactor angle θ13 is a bit smaller. This
tiny discrepancy is expected to be easily resolved in an explicit model with small corrections
or by the renormalization group corrections [33]. Notice that the same predictions for the
mixing angles and maximal δCP can be obtained from the approach of combining A5 flavor
symmetry with generalized CP [22,27,28], but we have additional prediction for the neutrino
masses here even if the CP symmetry is not introduced in the present context. We can check
that the neutrino mass matrix mν in Eq. (3.8) has the following symmetry properties

mν(η, x = ±2iφ2 sin 2π/5) = P T
23mν(η, x = ∓2iφ2 sin 2π/5)P23,

mν(η, x = ±2iφ2 sin 2π/5) = m∗ν(−η, x = ∓2iφ2 sin 2π/5) , (3.26)

with

P23 =

1 0 0
0 0 1
0 1 0

 . (3.27)

As a consequence, the same reactor and solar mixing angles are obtained for x = 2iφ2 sin 2π
5

and x = −2iφ2 sin 2π
5

, while the atmospheric angle changes from θ23 to π/2 − θ23 and the
Dirac phase changes from δCP to π + δCP . Moreover, all the lepton mixing angles are kept
intact and the signs of all CP violation phases are reversed under the transformation x→ −x
and η → −η. For the fixed value of x = ±2iφ2 sin 2π

5
, all the mixing angles, CP phases and

mass ratio m2
2/m

2
3 are fully determined by r and η, and the correct neutrino mass m2 can be

achieved for certain values of mb. We show how these mixing parameters vary in the plane
η versus r in figure 3. It can be seen that the measured values of the mixing angles and the
neutrino masses can be accommodated for certain choices of η and r.

3.2.2 Golden Littlest seesaw with Φatm ∝ Φ2

Similar to previous case, the most general from of the solar vacuum Φsol is given by Eq. (4.8),
and the atmospheric alignment vector takes the form

Φatm ∝
(√

2, φ, φ
)T

, (3.28)

which preserves the residual symmetry Gatm = ZT 3ST 2ST 3

2 . Subsequently we can read out
the Dirac neutrino mass matrix MD and the right-handed neutrino mass matrix MN as

MD =

√2a
√

2b
φa (φ− x)b
φa (φ+ x)b

 , MN =

(
Matm 0

0 Msol

)
, (3.29)

which leads to the following low energy effective Majorana neutrino mass matrix

mν = ma

 2
√

2φ
√

2φ√
2φ φ+ 1 φ+ 1√
2φ φ+ 1 φ+ 1

+mb e
iη

 2
√

2(φ− x)
√

2(x+ φ)√
2(φ− x) (x− φ)2 −x2 + φ+ 1√
2(x+ φ) − x2 + φ+ 1 (x+ φ)2

 , (3.30)
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η r x sin2 θ13 sin2 θ12 sin2 θ23 δCP/π β/π m2
2/m

2
3

0 0.0177 ±2iφ2 sin 2π
5

0.0164 0.264 0.5 ∓0.5 0 0.0309

± π
11

0.0185 ±2iφ2 sin 2π
5

0.0174 0.264 0.614 ∓0.331 ∓0.210 0.0302

± π
11

0.0185 ∓2iφ2 sin 2π
5

0.0175 0.264 0.385 ±0.670 ∓0.211 0.0304

± π
12

0.0183 ±2iφ2 sin 2π
5

0.0172 0.264 0.605 ∓0.345 ∓0.192 0.0303

± π
12

0.0184 ∓2iφ2 sin 2π
5

0.0173 0.264 0.394 ±0.655 ∓0.192 0.0305

± π
13

0.0182 ±2iφ2 sin 2π
5

0.0171 0.264 0.597 ∓0.357 ∓0.176 0.0304

± π
13

0.0183 ∓2iφ2 sin 2π
5

0.0172 0.264 0.402 ±0.643 ∓0.177 0.0306

± π
14

0.0182 ±2iφ2 sin 2π
5

0.0170 0.264 0.591 ∓0.368 ∓0.163 0.0304

± π
14

0.0182 ∓2iφ2 sin 2π
5

0.0171 0.264 0.409 ±0.632 ∓0.164 0.0307

± π
15

0.0181 ±2iφ2 sin 2π
5

0.0169 0.264 0.585 ∓0.377 ∓0.152 0.0305

± π
15

0.0181 ∓2iφ2 sin 2π
5

0.0170 0.264 0.415 ±0.623 ∓0.152 0.0307

± π
16

0.0180 ±2iφ2 sin 2π
5

0.0168 0.264 0.580 ∓0.385 ∓0.142 0.0305

± π
16

0.0181 ∓2iφ2 sin 2π
5

0.0169 0.264 0.420 ±0.616 ∓0.142 0.0308

± π
17

0.0180 ±2iφ2 sin 2π
5

0.0168 0.264 0.575 ∓0.391 ∓0.134 0.0306

± π
17

0.0180 ∓2iφ2 sin 2π
5

0.0169 0.264 0.425 ±0.609 ∓0.134 0.0308

± π
18

0.0180 ±2iφ2 sin 2π
5

0.0167 0.264 0.571 ∓0.398 ∓0.126 0.0306

± π
18

0.0180 ∓2iφ2 sin 2π
5

0.0168 0.264 0.429 ±0.603 ∓0.126 0.0308

± π
19

0.0179 ±2iφ2 sin 2π
5

0.0167 0.264 0.567 ∓0.403 ∓0.119 0.0306

± π
19

0.0180 ∓2iφ2 sin 2π
5

0.0168 0.264 0.432 ±0.597 ∓0.119 0.0308

± π
20

0.0179 ±2iφ2 sin 2π
5

0.0167 0.264 0.564 ∓0.408 ∓0.113 0.0306

± π
20

0.0179 ∓2iφ2 sin 2π
5

0.0167 0.264 0.436 ±0.592 ∓0.113 0.0308

± π
21

0.0179 ±2iφ2 sin 2π
5

0.0166 0.264 0.561 ∓0.412 ∓0.108 0.0306

± π
21

0.0179 ∓2iφ2 sin 2π
5

0.0167 0.264 0.439 ±0.588 ∓0.108 0.0308

± π
22

0.0179 ±2iφ2 sin 2π
5

0.0166 0.264 0.558 ∓0.416 ∓0.103 0.0307

± π
22

0.0179 ∓2iφ2 sin 2π
5

0.0167 0.264 0.442 ±0.584 ∓0.103 0.0309

± π
23

0.0179 ±2iφ2 sin 2π
5

0.0166 0.264 0.556 ∓0.420 ∓0.0982 0.0307

± π
23

0.0179 ∓2iφ2 sin 2π
5

0.0167 0.264 0.444 ±0.580 ∓0.0983 0.0309

±2π
23

0.0184 ±2iφ2 sin 2π
5

0.0173 0.264 0.610 ∓0.338 ∓0.201 0.0302

±2π
23

0.0184 ∓2iφ2 sin 2π
5

0.0174 0.264 0.390 ±0.662 ∓0.201 0.0305

Table 2: Predictions for all the lepton mixing angles, CP violation phases and m2
2/m

2
3 in the golden Littlest

seesaw with Φatm ∝ Φ3. Here we choose many benchmark values for the parameters η and r.
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Figure 3: Contour plots of sin2 θ13, sin2 θ23 and m2/m3 in the η − r plane for the golden Littlest seesaw
with Φatm ∝ Φ3. Here we take x = 2iφ2 sin(2π/5) and x = −2iφ2 sin(2π/5) for which the solar vacuum

alignment Φsol preserves the residual symmetry Gsol = ZT
3ST 2S

3 and Gsol = ZST
2ST 3

3 respectively. The 3σ
upper (lower) bounds of the lepton mixing angles are labelled with thick (thin) solid curves, and the dashed
contour lines represent the corresponding best fit values. The 3σ ranges as well as the best fit values of the
mixing angles are adapted from [1]. The black contour line refers to maximal atmospheric mixing angle with
sin2 θ23 = 0.5.

with ma = |a|2/Matm, mb = |b|2/Msol and η = arg(b2/a2). This model is rather predictive
since only four parameters ma, mb, x and η can describe the entire neutrino sector. The
symmetry relations in Eq. (3.26) are also satisfied in this case. The neutrino mass matrix in
Eq. (3.30) can be block diagonalized by the GR mixing matrix,

m′ν = UT
GRmνUGR =

0 0 0
0 y z
0 z w

 , (3.31)

where

y = |y|eiφy = 2
√

5φ
(
ma +mb e

iη
)
,

z = 2x
√
φ+ 2mb e

iη,

w = 2x2mb e
iη . (3.32)

Furthermore, m′ν can be put into diagonal form by performing another unitary transforma-
tion

U ′
T
m′νU

′ = diag(0,m2,m3) , (3.33)

with

U ′ =

1 0 0
0 cos θ ei(ψ+ρ)/2 sin θ ei(ψ+σ)/2

0 − sin θ ei(−ψ+ρ)/2 cos θ ei(−ψ+σ)/2

 , (3.34)
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where the parameters θ, ψ, ρ and σ are determined in terms of x, y, z defined in Eq. (3.32),

sin 2θ =
−2iz e−iη

√
|y|2 + |w|2 − 2|y||w| cos(φy − η)√

(|w|2 − |y|2)2 + 4|z|2 [|y|2 + |w|2 − 2|y||w| cos(φy − η)]
,

cos 2θ =
|w|2 − |y|2√

(|w|2 − |y|2)2 + 4|z|2 [|y|2 + |w|2 − 2|y||w| cos(φy − η)]
,

sinψ =
|y| cos(φy − η)− |w|√

|y|2 + |w|2 − 2|y||w| cos(φy − η)
,

cosψ =
|y| sin(φy − η)√

|y|2 + |w|2 − 2|y||w| cos(φy − η)
,

sin ρ = − (m2
2 − |z|2) cos η − |y||w| cosφy

m2

√
|y|2 + |w|2 − 2|y||w| cos(φy − η)

,

cos ρ =
−(m2

2 − |z|2) sin η + |y||w| sinφy
m2

√
|y|2 + |w|2 − 2|y||w| cos(φy − η)

,

sinσ = − (m2
3 − |z|2) cos η − |y||w| cosφy

m3

√
|y|2 + |w|2 − 2|y||w| cos(φy − η)

,

cosσ =
−(m2

3 − |z|2) sin η + |y||w| sinφy
m3

√
|y|2 + |w|2 − 2|y||w| cos(φy − η)

. (3.35)

The exact expressions for the neutrino masses are given by

m2
1 = 0 ,

m2
2 =

1

2

[
|y|2 + |w|2 + 2|z|2 − |w|

2 − |y|2

cos 2θ

]
,

m2
3 =

1

2

[
|y|2 + |w|2 + 2|z|2 +

|w|2 − |y|2

cos 2θ

]
(3.36)

Given that the charged lepton mass matrix is diagonal due to the ZT
5 residual symmetry,

the PMNS mixing matrix is of the form

U = UGRU
′ =

√
φ− 1

2
√

5

−√2φ
√

2 cos θ
√

2eiψ sin θ
1 φ cos θ +

√
φ+ 2 sin θ e−iψ φ sin θ eiψ −

√
φ+ 2 cos θ

1 φ cos θ −
√
φ+ 2 sin θ e−iψ φ sin θ eiψ +

√
φ+ 2 cos θ

Pν ,

(3.37)
with

Pν = diag(1, ei(ψ+ρ)/2, ei(−ψ+σ)/2) . (3.38)

Obviously the first column of the mixing matrix is fixed to be that of the GR mixing matrix.
The lepton mixing matrix U is identical with the one in Eq. (3.17). Hence all the mixing
angles and CP invariants are predicted to have the same form as those of Eq. (3.20) and
Eq. (3.24) respectively, but their dependence on the input parameters ma, mb, η and x
are different. The sum rules in Eq. (3.21) and Eq. (3.25) are satisfied as well. Detailed
numerical analyses show that accordance with experimental data can be achieved for certain
values of r = mb/ma and η in the case of x = ±2iφ2 sin 2π

5
, and the corresponding benchmark

numerical results are listed in table 3. The most interesting point is η = π which predicts
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Figure 4: Contour plots of sin2 θ13, sin2 θ23 and m2/m3 in the η − r plane for the golden Littlest seesaw
with Φatm ∝ Φ2. Here we take x = 2iφ2 sin(2π/5) and x = −2iφ2 sin(2π/5) for which the solar vacuum

alignment Φsol preserves the residual symmetry Gsol = ZT
3ST 2S

3 and Gsol = ZST
2ST 3

3 respectively. The 3σ
upper (lower) bounds of the lepton mixing angles are labelled with thick (thin) solid curves, and the dashed
contour lines represent the corresponding best fit values. The 3σ ranges as well as the best fit values of the
mixing angles are adapted from [1]. The black contour line refers to maximal atmospheric mixing angle with
sin2 θ23 = 0.5.

maximal atmospheric mixing and a maximal Dirac phase. The realistic values of sin2 θ12
and m2

2/m
2
3 can be obtained for r = 1.486 while the reactor angle is slightly a bit larger.

This mixing pattern for η = π can also be obtained from A5 flavor symmetry and CP in the
semidirect approach [22, 27, 28], the additional bonus in GLS is the predcition for neutrino
masses. As discussed in above, all the mixing parameters as well as mass ratio m2/m3

depend only on η and r, this dependence is shown in figure 4.
If we further take into account the contribution of the third almost decoupled right-

handed neutrino of mass Mdec, for example for the case of Φdec ∝ Φ1, the last term of
Eq. (3.1) would contribute to the lightest neutrino mass m1 = c2/Mdec, while the neutrino
mixing angles, CP violating phases and the other two neutrino masses are not changed.
From figure 5, we can see that better agreement with experimental data can be achieved.
The viable regions for sin2 θ13, sin2 θ23 and m2/m3 can overlap with each other.
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η r x sin2 θ13 sin2 θ12 sin2 θ23 δCP/π β/π m2
2/m

2
3

π 0.675 ±2iφ2 sin 2π
5

0.0257 0.257 ±0.5 0.5 0 0.0294

±4π
5

0.670 ±2iφ2 sin 2π
5

0.0282 0.255 0.535 ±0.465 ∓0.203 0.0293

±4π
5

0.669 ∓2iφ2 sin 2π
5

0.0282 0.255 0.465 ∓0.536 ∓0.203 0.0294

±5π
6

0.671 ±2iφ2 sin 2π
5

0.0275 0.256 0.529 ±0.469 ∓0.169 0.0294

±5π
6

0.67 ∓2iφ2 sin 2π
5

0.0274 0.256 0.47 ∓0.531 ∓0.169 0.0295

±6π
7

0.672 ±2iφ2 sin 2π
5

0.027 0.256 0.526 ±0.473 ∓0.145 0.0294

±6π
7

0.671 ∓2iφ2 sin 2π
5

0.027 0.256 0.474 ∓0.527 ∓0.145 0.0295

±7π
8

0.673 ±2iφ2 sin 2π
5

0.0267 0.257 0.523 ±0.476 ∓0.127 0.0294

±7π
8

0.672 ∓2iφ2 sin 2π
5

0.0267 0.257 0.477 ∓0.524 ∓0.127 0.0295

±8π
9

0.674 ±2iφ2 sin 2π
5

0.0265 0.257 0.52 ±0.479 ∓0.113 0.0294

±8π
9

0.673 ∓2iφ2 sin 2π
5

0.0265 0.257 0.48 ∓0.521 ∓0.113 0.0295

±9π
10

0.674 ±2iφ2 sin 2π
5

0.0264 0.257 0.518 ±0.481 ∓0.101 0.0294

±9π
10

0.673 ∓2iφ2 sin 2π
5

0.0263 0.257 0.482 ∓0.519 ∓0.101 0.0295

±10π
11

0.674 ±2iφ2 sin 2π
5

0.0262 0.257 0.517 ±0.482 ∓0.0922 0.0294

±10π
11

0.674 ∓2iφ2 sin 2π
5

0.0262 0.257 0.483 ∓0.518 ∓0.0922 0.0294

±11π
12

0.674 ±2iφ2 sin 2π
5

0.0262 0.257 0.515 ±0.484 ∓0.0845 0.0294

±11π
12

0.674 ∓2iφ2 sin 2π
5

0.0262 0.257 0.485 ∓0.516 ∓0.0845 0.0294

±12π
13

0.675 ±2iφ2 sin 2π
5

0.0261 0.257 0.514 ±0.485 ∓0.078 0.0294

±12π
13

0.674 ∓2iφ2 sin 2π
5

0.0261 0.257 0.486 ∓0.515 ∓0.078 0.0294

±13π
14

0.675 ±2iφ2 sin 2π
5

0.0260 0.257 0.513 ±0.486 ∓0.0724 0.0294

±13π
14

0.674 ∓2iφ2 sin 2π
5

0.0260 0.257 0.487 ∓0.514 ∓0.0724 0.0294

±13π
15

0.673 ±2iφ2 sin 2π
5

0.0268 0.256 0.524 ±0.475 ∓0.135 0.0294

±13π
15

0.672 ∓2iφ2 sin 2π
5

0.0268 0.256 0.476 ∓0.525 ∓0.135 0.0295

±14π
15

0.675 ±2iφ2 sin 2π
5

0.0260 0.257 0.512 ±0.487 ∓0.0676 0.0294

±14π
15

0.674 ∓2iφ2 sin 2π
5

0.0260 0.257 0.488 ∓0.513 ∓0.0676 0.0294

Table 3: Benchmark numerical results in the golden Littlest seesaw for the case of Φatm ∝ Φ2 and x =
±2iφ2 sin(2π/5).
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Figure 5: Contour plots of sin2 θ13, sin2 θ23 and m2/m3 in the η − r plane for the golden Littlest seesaw
with Φatm ∝ Φ2. As an example, we assume that the decoupled alignment Φdec ∝ Φ1 which gives rise to
m1 = 6× 10−3eV.

4 Alternative Golden Littlest Seesaw in A5

In the direct approach, if the A5 flavor symmetry is broken down to Klein subgroups in both

the neutrino and charged lepton sectors, e.g. Gl = K
(S,T 3ST 2ST 3)
4 and Gν = K

(ST 2ST 3S,TST 4)
4 ,

the lepton mixing matrix is determined to be of the row-column (RC) symmetric form [22,23]

URC =
1

2

 φ − 1 1/φ
−1 − 1/φ φ
1/φ φ 1

 . (4.1)

The mixing angles are: sin2 θ12 = (3− φ) /5 ' 0.276, sin2 θ23 = (2 + φ) /5 ' 0.724 and
sin2 θ13 = (2− φ) /4 ' 0.0955. Although this mixing pattern is not phenomenologically
viable because of too large θ13 and θ23, the first column of URC is still compatible with
experimental data, and that is what we shall assume in the following.

The general principle of the Littlest seesaw is that different sectors of the Lagrangian
preserve different residual subgroups of the flavor symmetry which is proposed in Ref. [15].
In this section, we shall consider the case that the electron, muon and tau sectors preserve
different residual symmetries while the flavor symmetry is broken in the whole charged lepton
Lagrangian, and the same holds true for the neutrino vacuum Φatm and Φsol. This scenario is
schematically depicted in figure 6. Moreover we can generally write down the Littlest seesaw
Lagrangian in the neutrino and charged lepton sectors as follows:

L=−yatmL̄.φatmN
atm
R − ysolL̄.φsolN

sol
R −

1

2
Matm(Natm

R )cNatm
R − 1

2
Msol(N sol

R )cN sol
R

+yτ L̄.ϕττR + yµL̄.ϕµµR + yeL̄.ϕeeR + h.c. , (4.2)

where ϕα (α = e, µ, τ) can be Higgs fields transforming as triplets under the flavor symmetry
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Gf

Gm

Ge Gt

Gatm Gsol

Figure 6: A sketch of the indirect model building approach, where the electron, muon and tau sectors
preserve different residual subgroups Ge, Gµ and Gτ respectively, and the neutrino vacuum alignments Φatm

and Φsol are enforced by the residual symmetries Gatm and Gsol respectively.

group, or the combination of the electroweak Higgs doublet with triplet scalar flavons. In or-
der to obtain the above terms in a concrete model, the possible additional abelian symmetries
are generically needed and they will not be specified here. It is generally more convenient
to work in the charged lepton diagonal basis in practical model building. We show such
an appropriate alternative basis in table 4. In this basis the charged lepton mass matrix is
enforced to be diagonal by the chosen residual symmetries Ge, Gµ and Gτ in Eq. (4.5). The
desired vacuum alignments in the charged lepton sector are

〈ϕe〉 = ve

1
0
0

 , 〈ϕµ〉 = vµ

0
1
0

 , 〈ϕτ 〉 = vτ

0
0
1

 . (4.3)

If we regard ϕe, ϕµ, ϕτ as each being a triplet 3 of A5, then they each correspond to a
different symmetry conserving direction of A5, with,

ρ3(S)〈ϕe〉 = 〈ϕe〉, ρ3(T 3ST 2ST 3S)〈ϕµ〉 = 〈ϕµ〉, ρ3(T 3ST 2ST 3)〈ϕτ 〉 = 〈ϕτ 〉 . (4.4)

That is to say
Ge = ZS

2 , Gµ = ZT 3ST 2ST 3S
2 , Gτ = ZT 3ST 2ST 3

2 . (4.5)

Inserting these vacuum configurations in Eq. (4.3) into Eq. (4.2), we obtain the charged
lepton mass matrix is diagonal with

mτ = yτvτ , mµ = yµvµ, me = yeve . (4.6)

The hierarchies among the three charged lepton masses are expected to be explained by
including an extra U(1) symmetry such that the effective Yukawa couplings yτ , yµ and ye
are of different order of magnitudes.
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S T
1 1 1

3

1 0 0
0 − 1 0
0 0 −1

 1
2

 φ 1 φ− 1
−1 φ− 1 φ
φ− 1 − φ 1


3′

1 0 0
0 − 1 0
0 0 −1

 1
2

1− φ φ 1
φ 1 1− φ
−1 φ− 1 −φ



4


−1 0 0 0
0 − 1 0 0
0 0 1 0
0 0 0 1

 1
4


−1 − 1 3

√
5

1 − 3 1 −
√

5

−3 1 1 −
√

5√
5
√

5
√

5 − 1



5


1 0 0 0 0
0 1 0 0 0
0 0 − 1 0 0
0 0 0 − 1 0
0 0 0 0 1

 1
8


1− 3φ 2φ2 2/φ2 − 2

√
5
√

3/φ

−2φ2 − 4 4 0 − 2
√

3/φ

−2/φ2 4 0 4 − 2
√

3φ

−2
√

5 0 − 4 4 2
√

3√
3/φ 2

√
3/φ 2

√
3φ 2

√
3 3φ− 1


Table 4: Alternative representation matrices of the generators S and T for the five irreducible representations
of A5. This basis is more suitable to discuss the Littlest seesaw model in which the first column of the mixing
matrix is in common with URC .

As regards the neutrino sector, the three columns of the URC mixing pattern read

Φ1 =

 φ
−1
1/φ

 , Φ2 =

 −1
−1/φ
φ

 , Φ3 =

1/φ
φ
1

 . (4.7)

As schematically illustrated in figure 1, the solar alignment vector Φsol is orthogonal to Φ1,
consequently its most general form is

Φsol =

 x
1 + xφ
φ

 . (4.8)

This vacuum alignment Φsol would be enforced by some residual subgroup of A5 for certain
value of x,

Gsol = ZT 2ST
5 , for x = 0,

Gsol = ZST 2ST 3S
2 , for x = −1,

Gsol = Z
T 4(ST 2)2

2 , for x = 1,

Gsol = Z
(T 2S)2T 2

3 , for x = −1/φ,

Gsol = ZST 3ST
3 , for x = −φ . (4.9)
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Furthermore the atmospheric alignment vector Φatm is along the direction of Φ2 or Φ3 which
respects the following residual symmetry

Gatm =

{
ZST 2ST 3S

2 , Φatm ∝ Φ2 ,

Z
T 4(ST 2)2

2 , Φatm ∝ Φ3 .
(4.10)

In the following we consider the case of Φatm ∝ Φ3
1, then the Dirac neutrino mass matrix

MD and the right-handed neutrino mass matrix MN are

MD =

a/φ xb
φa (1 + φx)b
a φb

 , MN =

(
Matm 0

0 Msol

)
. (4.11)

Applying the seesaw formula results in the effective light neutrino mass matrix

mν = ma

2− φ 1 φ− 1
1 φ+ 1 φ

φ− 1 φ 1

+mbe
iη

 x2 x(xφ+ 1) xφ
x(xφ+ 1) (xφ+ 1)2 φ(xφ+ 1)

xφ φ(xφ+ 1) φ+ 1

 . (4.12)

This neutrino mass matrix mν can be simplified into a quite simple form by performing a
unitary transformation URC ,

m′ν = UT
RCmνURC =

0 0 0
0 y z
0 z w

 (4.13)

with

y = mb e
iη(x− 1)2,

z = −mb e
iηφ
(
x2 − 1

)
,

w = |w|eiφw = 4ma +mb e
iη φ2 (x+ 1)2 . (4.14)

The block diagonal neutrino mass matrix m′ν of Eq. (4.13) can be easily diagonalized through
the standard procedure, as shown in the appendix B. The lepton mixing matrix is predicted
to take the form

U =
1

2

 φ (1− φ) sin θ − eiψ cos θ (φ− 1) cos θ − eiψ sin θ
−1 − φ sin θ + eiψ(1− φ) cos θ φ cos θ + eiψ(1− φ) sin θ
φ− 1 − sin θ + eiψφ cos θ cos θ + eiψφ sin θ

Pν , (4.15)

with
Pν = diag(1, ei(−ψ+ρ)/2, ei(−ψ+σ)/2) . (4.16)

If we assign the left-handed lepton fields L = (Le, Lτ , Lµ)T instead of L = (Le, Lµ, Lτ )
T to

a triplet of the A5 flavor group, and interchange the vacuum configurations 〈ϕµ〉 and 〈ϕτ 〉
in Eq. (4.3), the resulting charged lepton mass matrix would be diagonal as well and the
lepton mixing matrix can be obtained by exchanging the second and third rows of the PMNS

1The experimental data on mixing angles and neutrino masses can not be accommodated for Φatm ∝ Φ2.
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mixing matrix in Eq. (4.15). Furthermore, the exact results for the light neutrino masses
are given by

m2
1 = 0 ,

m2
2 =

1

2

[
|y|2 + |w|2 + 2|z|2 − |w|

2 − |y|2

cos 2θ

]
,

m2
3 =

1

2

[
|y|2 + |w|2 + 2|z|2 +

|w|2 − |y|2

cos 2θ

]
. (4.17)

The expressions for the sine and cosine of rotation angle θ and the phases ψ, ρ, σ are

sin 2θ =
2z e−iη

√
|y|2 + |w|2 + 2|y||w| cos(φw − η)√

(|w|2 − |y|2)2 + 4|z|2 [|y|2 + |w|2 + 2|y||w| cos(φw − η)]
,

cos 2θ =
|w|2 − |y|2√

(|w|2 − |y|2)2 + 4|z|2 [|y|2 + |w|2 + 2|y||w| cos(φw − η)]
,

sinψ =
|w| sin(φw − η)√

|y|2 + |w|2 + 2|y||w| cos(φw − η)
,

cosψ =
|y|+ |w| cos(φw − η)√

|y|2 + |w|2 + 2|y||w| cos(φw − η)
,

sin ρ = − (m2
2 − |z|2) sin η + |y||w| sinφw

m2

√
|y|2 + |w|2 + 2|y||w| cos(φw − η)

,

cos ρ =
(m2

2 − |z|2) cos η + |y||w| cosφw

m2

√
|y|2 + |w|2 + 2|y||w| cos(φw − η)

,

sinσ = − (m2
3 − |z|2) sin η + |y||w| sinφw

m3

√
|y|2 + |w|2 + 2|y||w| cos(φw − η)

,

cosσ =
(m2

3 − |z|2) cos η + |y||w| cosφw

m3

√
|y|2 + |w|2 + 2|y||w| cos(φw − η)

. (4.18)

We can straightforwardly extract the mixing angles from Eq. (4.15) and find

sin2 θ13 =
3− φ

8
+

1− φ
8

cos 2θ +
1− φ

4
sin 2θ cosψ,

sin2 θ12 =
3− φ+ (φ− 1) cos 2θ + 2(φ− 1) sin 2θ cosψ

5 + φ+ (φ− 1) cos 2θ + 2(φ− 1) sin 2θ cosψ
,

sin2 θ23 =
3 + (2φ− 1) cos 2θ − 2 sin 2θ cosψ

5 + φ+ (φ− 1) cos 2θ + 2(φ− 1) sin 2θ cosψ
, (4.19)

which fulfill the sum rule
4 cos2 θ12 cos2 θ13 = φ2 . (4.20)

If inserting the experimental best fit value sin2 θ13 = 0.0214 [1], we arrive at

sin2 θ12 ' 0.331 , (4.21)

which is in accordance with the experimental data [1]. As regards the Dirac CP phase, we
find that the Jarlskog invariant takes a rather simple form,

JCP =
1

16
sin 2θ sinψ , (4.22)
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Figure 7: Contour plots of sin2 θ13, sin2 θ23 and m2/m3 in the η − r plane for the Littlest seesaw model
studied in section 4. Here we take x = 0 for which the solar vacuum alignment Φsol preserves the residual
symmetry Gsol = ZT

2ST
5 . The 3σ upper (lower) bounds of the lepton mixing angles are labelled with thick

(thin) solid curves, and the dashed contour lines represent the corresponding best fit values. The 3σ ranges
as well as the best fit values of the mixing angles are adapted from [1]. The black contour line refers to
maximal atmospheric mixing angle with sin2 θ23 = 0.5.

and an exact relation for cos δCP in terms of the lepton mixing angles is satisfied,

cos δCP =
(φ− 1) cos2 θ13 +

[
(5 + φ) sin2 θ13 − 3 + φ

]
cos 2θ23

2φ
√

3− φ− 4 sin2 θ13 sin 2θ23 sin θ13
. (4.23)

For the Majorana invariant I1, we get

I1 =
2− φ

64

{
4 cos(ρ− σ) [cos 2θ sin 2ψ − sin 2θ sinψ]

+ sin(ρ− σ)
[
(cos 4θ + 3) cos 2ψ − 2 sin 4θ cosψ − sin2 2θ

] }
. (4.24)

If x is treated as a free parameter, the experimental data on lepton mixing can be described
very well for certain values of x, η and r = mb/ma. On the other hand, if we require the
solar vacuum alignment is associated with certain residual symmetry, as shown in Eq. (4.9),
only x = 0 is phenomenologically viable. We show how the observables sin2 θ13, sin2 θ23 and
m2/m3 vary in the r − η plane in figure 7. In order to show concrete examples, we list
the predictions for mixing parameters for some benchmark values of r and η in table 5 and
table 6. Note that the atmospheric angle θ23 is outside of 3σ interval but quite close to 3σ
bounds. We expect this discrepancy could be resolved by considering the contribution of
the third almost decoupled right-handed neutrino of mass Mdec. Moreover, corrections to
the leading order results are generally presented in an explicit model, and therefore it is not
difficult to achieve good agreement with experimental data.
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η r x sin2 θ13 sin2 θ12 sin2 θ23 δCP/π β/π m2
2/m

2
3

±2π
3

2.053 0 0.0223 0.331 0.304 ∓0.424 ±0.282 0.0289

±3π
5

1.826 0 0.0249 0.329 0.355 ∓0.351 ±0.200 0.0245

±5π
8

1.904 0 0.0241 0.329 0.337 ∓0.376 ±0.228 0.0263

±7π
11

1.942 0 0.0236 0.330 0.328 ∓0.388 ±0.242 0.0271

±9π
14

1.965 0 0.0234 0.330 0.323 ∓0.396 ±0.250 0.0275

±11π
17

1.980 0 0.0232 0.330 0.320 ∓0.400 ±0.256 0.0278

±12π
19

1.926 0 0.0238 0.330 0.332 ∓0.383 ±0.236 0.0268

±13π
20

1.991 0 0.0231 0.330 0.317 ∓0.404 ±0.259 0.0280

±15π
23

1.999 0 0.0230 0.330 0.316 ∓0.406 ±0.262 0.0281

±16π
25

1.955 0 0.0235 0.330 0.325 ∓0.392 ±0.246 0.0273

±17π
26

2.005 0 0.0229 0.330 0.314 ∓0.408 ±0.265 0.0282

±17π
27

1.920 0 0.0239 0.329 0.333 ∓0.381 ±0.234 0.0266

±19π
29

2.010 0 0.0228 0.330 0.313 ∓0.41 ±0.266 0.0283

±19π
30

1.932 0 0.0238 0.330 0.330 ∓0.385 0.238 0.0269

Table 5: Benchmark numerical results for the alternative Littlest seesaw model discussed in section 4.

η r x sin2 θ13 sin2 θ12 sin2 θ23 δCP/π β/π m2
2/m

2
3

±2π
3

2.050 0 0.0224 0.331 0.696 ±0.577 ±0.282 0.029

±3π
5

1.816 0 0.0251 0.329 0.644 ±0.65 ±0.199 0.0246

±5π
8

1.897 0 0.0243 0.329 0.662 ±0.625 ±0.227 0.0264

±7π
11

1.936 0 0.0238 0.33 0.671 ±0.612 ±0.241 0.0272

±9π
14

1.959 0 0.0235 0.33 0.676 ±0.605 ±0.249 0.0276

±11π
17

1.975 0 0.0233 0.33 0.68 ±0.6 ±0.255 0.0279

±12π
19

1.919 0 0.0240 0.329 0.668 ±0.618 ±0.235 0.0269

±13π
20

1.986 0 0.0232 0.33 0.682 ±0.597 ±0.259 0.0281

±15π
23

1.994 0 0.0231 0.33 0.684 ±0.594 ±0.262 0.0282

±16π
25

1.949 0 0.0236 0.33 0.674 ±0.608 ±0.245 0.0275

±17π
26

2.000 0 0.0230 0.33 0.685 ±0.592 ±0.264 0.0283

±17π
27

1.912 0 0.0241 0.329 0.666 ±0.62 ±0.232 0.0268

±19π
29

2.005 0 0.0229 0.33 0.686 ±0.591 ±0.266 0.0284

±19π
30

1.925 0 0.0239 0.329 0.669 ±0.616 ±0.237 0.027

Table 6: Benchmark numerical results for the alternative Littlest seesaw model discussed in section 4, where
the second and third rows of the mixing matrix in Eq. (4.15) are exchanged.
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5 Conclusion

The Littlest Seesaw approach assumes that a different residual flavour symmetry is pre-
served by each flavon, in the diagonal mass basis of two right-handed neutrinos, leading to
a highly predictive set of possible flavon alignments for the charged leptons and neutrinos.
The Littlest seesaw model can thereby give a successful description of both neutrino mixing
and the light neutrino masses in terms of four input parameters. The case of S4, discussed in
earlier work, leads to the lepton mixing matrix being predicted to be of the TM1 form. The
neutrino mass spectrum is normal ordered and the lightest neutrino is massless. Moreover,
CP violation in neutrino oscillation and leptogenesis arises from a unique single phase such
that they are closely related. Therefore the Littlest seesaw model is quite predictive and
attractive.

In this work, we have investigated whether the Littlest seesaw is confined to TM1 mixing,
or is of more general applicability. We have performed a comprehensive analysis of possible
lepton mixing which can be derived from the A5 flavor symmetry group within the paradigm
of the Littlest seesaw. The general principle of the Littlest seesaw is that different sectors of
the Lagrangian preserve different residual subgroups of the flavor symmetry [15]. This idea
is illustrated in figure 2 and figure 6. If the residual symmetry of the charged lepton sector is
Gl = ZT

5 which enforces the diagonality of the charged lepton mass matrix in the T generator
diagonal basis, the subgroup Gatm = ZT 3ST 2ST 3S

2 or Gatm = ZT 3ST 2ST 3

2 is preserved by the
atmospheric flavon, and solar flavon φsol breaks the flavor group A5 into Gsol = ZT3ST 2S

3

or Gsol = ZST 2ST 3

3 , the first column of the golden ratio mixing matrix is preserved. The
experimental data on the lepton mixing angles and neutrino masses can be accommodated
for certain values of the input parameters ma, mb and η except that the reactor angle θ13
is predicted to rather close to its 3σ boundary. This could be easily reconciled with the
experimental results in an explicit model with small subleading corrections or by considering
the third almost decoupled right-handed neutrino. Moreover, many numerical benchmark
examples are found. The most remarkable point is η = 0 for Gatm = ZT 3ST 2ST 3S

2 and η = π
for Gatm = ZT 3ST 2ST 3

2 , then both Dirac CP phase δCP and the atmospheric mixing angle θ23
would be exactly maximal. This mixing pattern is previously predicted in the semidirect
approach of combining A5 flavor symmetry with generalized CP [22, 27, 28], but here we
have additional prediction for the neutrino masses and the generalized CP symmetry is not
introduced at all.

In the same fashion we find a third golden Littlest seesaw model which preserves the
first column of the URC mixing matrix in Eq. (4.1). Accordingly the residual subgroups

in different sectors are Ge = ZS
2 , Gµ = ZT 3ST 2ST 3S

2 , Gτ = ZT 3ST 2ST 3

2 , Gatm = Z
T 4(ST 2)2

2

and Gsol = ZT 2ST
5 . This case fits the experimental data well to a certain extent. The

atmospheric angle θ23 is determined to lie outside the 3σ region although rather close to 3σ
bounds. Generally corrections to the leading order results are expected to exist in an explicit
model such that it is not difficult to achieve agreement with the data. Hence this golden
Littlest seesaw model can be regarded as a good leading order approximation from the view
of model building.

In conclusion, the Littlest seesaw is a general and predictive framework of explaining
neutrino masses and lepton mixing. All the results of this paper only depend on the as-
sumed residual symmetries and they are independent of the underlying mechanism which
dynamically realizes the required vacuum alignments. It would be interesting to construct at
least one of the above three golden Littlest seesaw models. Since all CP violation phases are
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completely fixed in the golden Littlest seesaw model, another interesting question is whether
the observed baryon asymmetry of the universe can be generated through leptogenesis and
the resulting constraints on the right-handed neutrino masses.
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Appendix

A Group Theory of A5

A5 is the group of even permutations of five objects, and it has 5!/2 = 60 elements. Geo-
metrically it is the symmetry group of a regular icosahedron. A5 group can be generated by
two generators S and T which satisfy the multiplication rules [21]:

S2 = T 5 = (ST )3 = 1 . (A.1)

The 60 element of A5 group are divided into 5 conjugacy classes:

1C1 : 1

15C2 : ST 2ST 3S, TST 4, T 4(ST 2)2, T 2ST 3, (T 2S)2T 3S, ST 2ST, S, T 3ST 2ST 3,

T 3ST 2ST 3S, T 3ST 2, T 4ST 2ST 3S, TST 2S, ST 3ST 2S, T 4ST, (T 2S)2T 4

20C3 : ST, TS, ST 4, T 4S, TST 3, T 2ST 2, T 2ST 4, T 3ST, T 3ST 3, T 4ST 2, TST 3S, T 2ST 3S,

T 3ST 2S, ST 2ST 3, ST 3ST, ST 3ST 2, (T 2S)2T 2, T 2(T 2S)2, (ST 2)2S, (ST 2)2T 2

12C5 : T, T 4, ST 2, T 2S, ST 3, T 3S, STS, TST, TST 2, T 2ST, T 3ST 4, T 4ST 3

12C ′5 : T 2, T 3, ST 2S, ST 3S, (ST 2)2, (T 2S)2, (ST 3)2, (T 3S)2, (T 2S)2T 3,

T 3(ST 2)2, T 3ST 2ST 4, T 4ST 2ST 3 , (A.2)

where nCk denotes a class with n elements which have order k. The group structure of
A5 has been exhaustively analyzed in Ref. [21]. Following the convention of Ref. [21], we
find that A5 group has thirty-six abelian subgroups in total: fifteen Z2 subgroups, ten Z3

subgroups, five K4 subgroups and six Z5 subgroups. In terms of the generators S and T ,
the concrete forms of these abelian subgroups are as follows:

• Z2 subgroups

ZST 2ST 3S
2 = {1, ST 2ST 3S}, ZTST 4

2 = {1, TST 4}, Z
T 4(ST 2)2

2 = {1, T 4(ST 2)2},
ZT 2ST 3

2 = {1, T 2ST 3}, Z
(T 2S)2T 3S
2 = {1, (T 2S)2T 3S}, ZST 2ST

2 = {1, ST 2ST},
ZS

2 = {1, S}, ZT 3ST 2ST 3

2 = {1, T 3ST 2ST 3}, ZT 3ST 2ST 3S
2 = {1, T 3ST 2ST 3S},

ZT 3ST 2

2 = {1, T 3ST 2}, ZT 4ST 2ST 3S
2 = {1, T 4ST 2ST 3S}, ZTST 2S

2 = {1, TST 2S},
ZST 3ST 2S

2 = {1, ST 3ST 2S}, ZT 4ST
2 = {1, T 4ST}, Z

(T 2S)2T 4

2 = {1, (T 2S)2T 4}.

All the above fifteen Z2 subgroups are conjugate to each other.

• Z3 subgroups

ZT 3ST 2S
3 = {1, T 3ST 2S, ST 3ST 2}, ZTST 3S

3 = {1, TST 3S, (ST 2)2T 2},
ZT 3ST

3 = {1, T 3ST, T 4ST 2}, ZST
3 = {1, ST, T 4S},

Z
(T 2S)2T 2

3 = {1, (T 2S)2T 2, (ST 2)2S}, ZTST 3

3 = {1, TST 3, T 2ST 4},
ZT 2ST 2

3 = {1, T 2ST 2, T 3ST 3}, ZTS
3 = {1, TS, ST 4},

ZST 3ST
3 = {1, ST 3ST, T 2(T 2S)2}, ZST 2ST 3

3 = {1, ST 2ST 3, T 2ST 3S}.

The ten Z3 subgroups are related with each other by group conjugation.
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R
Conjugacy Classes

1C1 15C2 20C3 12C5 12C ′5
1 1 1 1 1 1
3 3 −1 0 φ 1− φ
3′ 3 −1 0 1− φ φ
4 4 0 1 −1 −1
5 5 1 −1 0 0

Table 7: The character table of the A5 group, where φ = 1+
√
5

2 .

• K4 subgroups

K
(ST 2ST 3S,TST 4)
4 ≡ ZST 2ST 3S

2 × ZTST 4

2 = {1, ST 2ST 3S, TST 4, T 4(ST 2)2},
K

(T 2ST 3,ST 2ST )
4 ≡ ZT 2ST 3

2 × ZST 2ST
2 = {1, T 2ST 3, (T 2S)2T 3S, ST 2ST},

K
(S,T 3ST 2ST 3)
4 ≡ ZS

2 × ZT 3ST 2ST 3

2 = {1, S, T 3ST 2ST 3, T 3ST 2ST 3S},
K

(T 3ST 2,TST 2S)
4 ≡ ZT 3ST 2

2 × ZTST 2S
2 = {1, T 3ST 2, T 4ST 2ST 3S, TST 2S},

K
(ST 3ST 2S,T 4ST )
4 ≡ ZST 3ST 2S

2 × ZT 4ST
2 = {1, ST 3ST 2S, T 4ST, (T 2S)2T 4}.

All the five K4 subgroups are conjugate as well.

• Z5 subgroups

ZSTS
5 = {1, STS, ST 2S, ST 3S, TST}, ZST 3

5 = {1, ST 3, T 2S, (ST 3)2, (T 2S)2},
ZT 2ST

5 = {1, T 2ST, T 4ST 3, T 3(ST 2)2, T 4ST 2ST 3}, ZT
5 = {1, T, T 2, T 3, T 4},

ZTST 2

5 = {1, TST 2, T 3ST 4, (T 2S)2T 3, T 3ST 2ST 4}, ZST 2

5 = {1, ST 2, T 3S, (ST 2)2, (T 3S)2}.

All the six Z5 subgroups are related to each other under group conjugation.

Here the superscript of a subgroup denotes its generator (or generators). The A5 group
has five irreducible representations: one singlet representation 1, two three-dimensional
representations 3 and 3′, one four-dimensional representation 4 and one five-dimensional
representation 5.

The character table of A5 group is reported in Table 7. We can straightforwardly obtain
the Kronecker products between various representations:

1⊗R = R⊗ 1 = R, 3⊗ 3 = 1⊕ 3⊕ 5, 3′ ⊗ 3′ = 1⊕ 3′ ⊕ 5, 3× 3′ = 4⊕ 5,

3⊗ 4 = 3′ ⊕ 4⊕ 5, 3′ ⊗ 4 = 3⊕ 4⊕ 5, 3⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5,

3′ ⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5, 4⊗ 4 = 1⊕ 3⊕ 3′ ⊕ 4⊕ 5, 4⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 51 ⊕ 52,

5⊗ 5 = 1⊕ 3⊕ 3′ ⊕ 41 ⊕ 42 ⊕ 51 ⊕ 52. (A.3)

where R represents any irreducible representation of A5, and 41, 42, 51 and 52 stand for the
two 4 and two 5 representations that appear in the Kronecker products.
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B Diagonalization of a 2×2 symmetric complex matrix

If neutrinos are Majorana particles, their mass matrix is symmetric and generally complex.
In the following, we present the result for the diagonalisation of a general 2 × 2 symmetric
complex matrix, which is of the form

M =

(
a11e

iφ11 a12e
iφ12

a12e
iφ12 a22e

iφ22

)
, (B.1)

where aij and φij (i, j =, 1, 2) are real. It can be diagonalised by a unitary matrix U via

UTMU = diag(λ1, λ2) , (B.2)

where the unitary matrix U can be written as

U =

(
cos θei(φ+%)/2 sin θei(φ+σ)/2

− sin θei(−φ+%)/2 cos θei(−φ+σ)/2

)
, (B.3)

with the rotation angle θ satisfying

tan 2θ =
2a12

√
a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)

a222 − a211
. (B.4)

The eigenvalues λ1 and λ2 can always set to be positive with

λ21 =
1

2

{
a211 + a222 + 2a212 − S

√
(a222 − a211)2 + 4a212 [a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)]

}
,

λ22 =
1

2

{
a211 + a222 + 2a212 + S

√
(a222 − a211)2 + 4a212 [a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)]

}
,

where S = sign
(

(a222 − a211) cos 2θ
)
. In the case of λ2 > λ1, i.e. S = 1, the values of sin 2θ

and cos 2θ are given by

sin 2θ=
2a12

√
a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)√

(a222 − a211)2 + 4a212[a
2
11 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)]

,

cos 2θ=
a222 − a211√

(a222 − a211)2 + 4a212[a
2
11 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)]

. (B.5)

Finally the phases φ, % and σ are given by

sinφ =
−a11 sin(φ11 − φ12) + a22 sin(φ22 − φ12)√
a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)

=
Im (M∗

11M12 +M22M∗
12)

|M∗
11M12 +M22M∗

12|
,

cosφ =
a11 cos(φ11 − φ12) + a22 cos(φ22 − φ12)√
a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)

=
Re (M∗

11M12 +M22M∗
12)

|M∗
11M12 +M22M∗

12|
,

sin % = −(λ21 − a212) sinφ12 + a11a22 sin(φ11 + φ22 − φ12)

λ1
√
a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)

,

cos % =
(λ21 − a212) cosφ12 + a11a22 cos(φ11 + φ22 − φ12)

λ1
√
a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)

,

sinσ = −(λ22 − a212) sinφ12 + a11a22 sin(φ11 + φ22 − φ12)

λ2
√
a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)

,

cosσ =
(λ22 − a212) cosφ12 + a11a22 cos(φ11 + φ22 − φ12)

λ2
√
a211 + a222 + 2a11a22 cos(φ11 + φ22 − 2φ12)

. (B.6)
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