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Abstract

We propose and analyse a new class of Littlest Seesaw models, with two right-handed
neutrinos in their diagonal mass basis, based on preserving the first column of the
Golden Ratio mixing matrix. We perform an exhaustive analysis of all possible remnant
symmetries of the group As which can be used to enforce various vacuum alignments
for the flavon controlling solar mixing, for two simple cases of the atmospheric flavon
vacuum alignment. The solar and atmospheric flavon vacuum alignments are enforced
by different remnant symmetries. We examine the phenomenological viability of each
of the possible Littlest Seesaw alignments in A5, which preserve the first column of the
Golden ratio mixing matrix, using figures and extensive tables of benchmark points
and comparing our predictions to a recent global analysis of neutrino data. We also
repeat the analysis for an alternative form of Golden Ratio mixing matrix.

*E-mail: dinggj@ustc.edu.cn
tE-mail: king@soton.ac.uk
tE-mail: 1cc0915@mail.ustc.edu.cn



1 Introduction

Massive neutrinos together with neutrino oscillations has been firmly established, and
it is unique experimental evidence for physics beyond the standard model. All the three
lepton mixing angles 612, 013 and 63 and the mass squared differences dm? = m3 — m3
and Am? = m32 — (m? + m3)/2 has been precisely measured in a large number of neutrino
oscillation experiments. At present the 3o ranges of these mixing parameters are determined
to be [1]

0.250 < sin?#15 < 0.354, 0.0190 < sin® ;3 < 0.0240, 0.381 < sin? fy3 < 0.615, (1.1)
6.93 x 107°eV% < dm? < 7.96 x 107°eV?, 2.411 x 1073eV? < Am? < 2.646 x 10 %eV?,

for normal ordering (NO) neutrino mass spectrum, and similar results are obtained for
inverted ordering (IO) spectrum. Non-Abelian discrete finite groups have been widely used
to explain the lepton mixing angles as well as CP violating phases, see Refs. [2—7] for reviews.

The most appealing possibility for the origin of neutrino mass seems to be the seesaw
mechanism which, in its original formulation, involves heavy right-handed Majorana neu-
trinos [¢]. The most minimal version of the seesaw mechanism involves one [J] or two
right-handed neutrinos [10]. In order to reduce the number of free parameters still further to
the smallest number possible, and hence increase predictivity, various approaches to the two
right-handed neutrino seesaw model have been suggested, such as postulating one [11] or
two [12] texture zeroes, however such two texture zero models are now phenomenologically
excluded [13] for the case of a normal neutrino mass hierarchy considered here.

The minimal successful seesaw scheme with normal hierarchy is called the Littlest Seesaw
(LS) model [11-16], although in fact, it represents a class of models. The LS models may be
defined as two right-handed neutrino models with particularly simple patterns of Dirac mass
matrix elements in the basis where both the charged lepton mass matrix and the two-right-
handed neutrino mass matrix are diagonal. The Dirac mass matrix typically involves only
one texture zero, but the number of parameters is reduced dramatically since each column
of this matrix is controlled by a single parameter. In practice this is achieved by introducing
a Non-Abelian discrete family symmetry, which is spontaneously broken by flavon fields
with particular vacuum alignments governed by remnant subgroups of the family symmetry.
Unlike the direct symmetry approach, where a common residual flavour and remnant CP
symmetry is assumed in the neutrino sector, the Littlest Seesaw approach assumes a different
residual flavour symmetry is preserved by each flavon, in the diagonal mass basis of two right-
handed neutrinos, leading to a highly predictive set of possible alignments.

For example, in the original LS model [11-16], the lepton mixing matrix is predicted to be
of the TM1 form in which the first column of the tri-bimaximal mixing matrix is preserved,
but with the reactor angle and CP phases fixed by the same two parameters which fix the
neutrino masses. This leads to a highly constrained model which is remarkably consistent
with current data, but which can be tested in forthcoming neutrino experiments [17]. The
LS approach may also be incorporated into grand unified models [18]. The success of the
LS approach, raises the question of whether it is confined to TM1 mixing, or is of more
general applicability. The present paper aims to address this question by considering a
different mixing scheme within the same approach, namely the golden ratio (GR) mixing
pattern [19,20].

In this paper, we shall propose another viable class of LS models, namely the Golden
Littlest seesaw (GLS). Although the golden ratio mixing [19,20] is excluded by the measure-
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ment of largish reactor mixing angle, the first column of Uggr may still be compatible with
the experimental data. Inspired by the success of the LS approach for TM1 mixing, we would
like to also preserve the first column vector of the GR mixing pattern in our GLS model.
We shall perform an exhaustive analysis of all possible remnant symmetries of the group
As which can be used to enforce various vacuum alignments for the flavon controlling solar
mixing, for two simple cases of the atmospheric flavon vacuum alignment, analogous to the
proceedure suggested in the LS approach based on S;. For each possibility we examine the
phenomenological viability of the alignment, using figures and extensive benchmark points,
comparing our predictions to a recent global analysis of neutrino data. We also repeat the
analysis for an alternative form of Golden Ratio mixing matrix.

The layout of this paper is as follows. In section 2 we review GR mixing and the direct
model building approach based on the group As. In section 3 we then turn to the GLS
approach, based on two right-handed neutrinos with the Dirac mass matrix controlled by
flavon vacuum alignments which respect various remnant symmetries of A5, and examine the
phenomenological viability of each case for a discrete choice of phase parameters. In section 4
we repeat the procedure for an alternative choice of GR matrix. Section 5 concludes the
paper. We report the group theory of As in Appendix A, and the technique details of
diagonalizing a two dimensional symmetric matrix are shown in Appendix B.

2 Golden Ratio Mixing

2.1 Mixing matrix and Klein symmetry

Before the measurement of the reactor mixing angle, the golden ratio (GR) mixing pat-
tern [19,20] was a good leading order approximation and it predicted a zero reactor angle
013 = 0, maximal atmospheric mixing angle 63 = 45° and a solar mixing angle given by
cot 015 = ¢, where ¢ = (1++/5)/2 is the golden ratio. Note that the golden ratio mixing dif-
fers from the tri-bimaximal mixing in the prediction for the solar mixing angle. The explicit
form of the golden mixing matrix is given by

-/ /L 9
V5 V5¢
_ _1 o 1
Uacr = ,/2\£¢ N (2.1)
_1 ¢ 1
2v/5¢ 2v6 V2

In the flavor basis where the charged lepton mass matrix m is diagonal with m; = diag(m., m,, m,),
then the most general form of the neutrino matrix m, for the golden ratio mixing is

m, = UGRdiag(ml, ma, m;;)Ug;R = mlq)l@f + m2<I>2(I>§ + mgq)gq)g y (22)

where the light neutrino masses m 5 3 absorbing the Majorana phases are generally complex,
and the vectors ®; 53 are defined as

1 [~V 1 (V2 (Y
(I)l - m 1 5 (I)Q = 2—\/% g 3 cbg = E —11 . (23)



A unitary transformation v;, — G,vp of the left-handed Majorana neutrino fields leads to
the transformation of the neutrino mass matrix m, — GZm,G,. We can check that the
above golden ratio neutrino mass matrix is invariant under the following transformations

GIm,G,, =m,, i=123, (2.4)
with
G, =200 —1, G, =20,8) —1, G, =230 — 1 (2.5)

The three flavor symmetry transformations GG, , G, and G, form a Klein group K, = Z;x 7,
and they fulfill

Gy =1, G,,G,, =G,,Gy, =G, with i#j#k. (2.6)

Furthermore, the symmetry transformation G; of the charged lepton mass matrix is deter-
mined by the condition G;m}mlGl = m;rml, therefore (G; has to be a diagonal phase matrix.
If we choose G = diag(1, p, p?) with p = €*™/° the matrices G, G,,, G,, and G, would
give rise to the group As in the triplet representation [21]. According to the direct model
building approach [1], if the flavor symmetry As is broken to a Zs subgroup in the charged
lepton sector and to Klein subgroup in the neutrino sector, the golden ratio mixing pattern

would be obtained naturally [21].

2.2  Direct approach in Aj;

In both the direct approach and indirect approach, the basis principle of the flavor symmetry
model building is the same, that is the different sectors of the Lagrangian preserve different
residual subgroups of the flavor symmetry while the whole Lagrangian completely breaks
the flavor symmetry. In order to more clearly understand the idea of the GLS, we shall
briefly recapitulate the direct approach to the GR mixing from As flavor symmetry before
presenting our GLS within the indirect approach in the following section.

We first recall that As is the even permutation group of five objects. Geometrically Aj is
the symmetry group of the icosahedron. The As group can be generated by two generators
S and T which satisfy the following multiplication rules

S?=T5=(ST)*=1. (2.7)

The As group has five irreducible representations: one single 1, two triplets 3 and 3’, one
four-dimensional representation 4 and one five-dimensional representation 5. The explicit
form of the representation matrices for the generators S and T' are collected in table 1.

The interested readers can refer to Ref. [22] for detailed group theory of A; and Clebsch-
Gordan coefficients. The interplay between Aj flavor symmetry and lepton mixing has been
extensively studied in the literature [21-28]. We find that the representation matrices of the

generators S and 7 in 3’ exactly coincide with those of T3ST2ST? and T? respectively in
3. This implies that the set of all matrices describing the representations 3 and 3’ are the
same. Therefore the same results would be obtained no matter if the left-handed leptons
transform as 3 or 3’ of A5. Without loss of generality, We shall assign the three generations
of left-handed leptons to the triplet 3 in the following.



S T
1 1 1
1 -2 -2 100
3 %5 V2 —9¢ 1/¢ 0p 04
V2 1/¢ —¢ 00p
-1 V2 V2 100
3 %g V2 —1/¢ ¢ 0p* 0
V2 ¢ -1/ 00 p°
1 1/ ¢ -1 p 00 0
4 G| -1 1 ¢ 0p>0 0
Vil ¢ 1 —11/¢ 00 p0
-1 ¢ 1/¢ 1 00 0 p
-1 V6 V6 V6 V6 1000 0
V6 1/¢* —2¢ 2/¢p ¢ 0p 0 00
5 $1V6 =20 ¢ 1/¢* 2/¢ 00p*0 0
V6 2/¢ 1/¢* ¢* -2 000 p°0
V6 ¢ 2/ —2¢ 1/¢? 000 0 p
Table 1: The representation matrices of the generators S and T for the five irreducible representations of

Ajs group in the basis which is convenient for discussing the Golden ratio mixing pattern, where p = ¢>7%/5

is the fifth root of unit.

In the direct approach, the As flavor symmetry group is assumed to be broken to a
abelian subgroup G such as G; = ZI. As a consequence the charged lepton mass matrix m
is invariant under the action of the element 7', i.e.

T

oL (T)mfmups(T) = mim, (2.8)

This implies that the unitary transformation U; which diagonalizes the charged lepton mass
matrix U (T)m}m,U; = diag(m?, mz,,m?) has the property
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Ul ps(T)U; = diag(1, e's —e'5 ). (2.9)

Since the generator T is diagonal with ps(T)) = diag(1, €5, —¢'s') in our working basis, U,
has to be a unit matrix,

10

U=101

0 0

As a consequence, the lepton mixing completely arises from the neutrino mixing. The

As flavor symmetry is broken down to a Klein subgroup G, in the neutrino sector in the
. K(S,TSST2ST3)
= By

0
0] . (2.10)
1

paradigm of direct approach. Here we choose G, whose representation



matrices in the chosen basis are

) 1 —V2 =2
3(5):— —\/5 —Cb 1/¢ )
' VE\VE 1 o
L[l V2R
ps(T*ST?ST?) = — (V2 — 1/ ¢
Vi\vz o —1/e

ps(T?ST?ST?S) = — (2.11)

OO =

0
0
1

S = O

Then the neutrino diagonalization matrix U, turns out to be the golden ratio mixing pat-

tern [21-24],
_. /e /L
Vs Vs O

— 1 ¢ _ L
Usr = | \/35 Vavs ~va (2.12)

_1 ¢ 1

2V/5¢ 2v5 V2

Notice that the three column vectors ®;,3 of the GR mixing preserve three different Z
subgroups of As,

p3(S)®y = @1, p3(T°ST?*ST?) Dy = By, ps(T?ST*ST?S) P53 = 3. (2.13)

We summarize that the GR mixing arises from the mismatch between the residual subgroups
G; and G, in the direct approach.

3 (Golden Littlest Seesaw in As

3.1 Littlest Seesaw

The indirect model building approach [1] is an interesting alternative to the direct approach.
In the indirect approach, the original flavor symmetry is completely broken in the neutrino
sector, and the residual symmetry Zs x Z, of the neutrino mass matrix arises accidentally.
The basic idea of the indirect approach is to effectively promote the columns of the Dirac
mass matrix to fields which transform as triplets under the flavour symmetry. We assume
that the Dirac mass matrix can be written as mp = (a®apm, bPso1, ¢Paec) Where the columns
are proportional to triplet Higgs scalar fields with particular vacuum alignments and a, b, ¢
are three constants of proportionality. It is convenient to work in the basis where the right-
handed neutrino mass matrix are diagonal with the mass eigenvalues equal to Matm, Msol
and Mge.. Then the light neutrino mass matrix given by the seesaw formula is

D DL b, DT D o PL
2 Fatm = atm 2 *'sol ¥go] 2 *dec*dec
, = b n , 3.1
L V. My 7 My (3.1)

where we have dropped an overall minus sign which is physically irrelevant. In the case that
the columns of the Dirac mass matrix are proportional to the columns of the GR matrix,
Dot X P3, Dy x Py and Pye. x Py, the three columns of mp would be mutually orthogonal,
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Figure 1: The vacuum alignment in the Littlest seesaw model. ®;, ®5 and ®3 are the three columns of
the golden ratio mixing matrix. The alignment vector ®,,, is either &5 or @3, and Py, is a general vector
orthogonal to ®;.

as illustrated in figure 1. As a consequence, the resulting effective light Majorana mass matrix
m,, is form diagonalizable, and it is exactly diagonalized by the golden ratio mixing matrix.
This scenario is referred to as form dominance [29]. In the limit of Maee > Matm, Msol, as a
good leading order approximation we could drop the last term and the model reduces to a
two right-handed neutrino model, such that the lightest neutrino is massless.

The Littlest seesaw framework assumes that there are only two right-handed neutrinos to
begin with, together with flavons which couple to them with particular vacuum alignments,
leading to the columns of the Dirac mass matrix taking the above forms. Within the Littlest
seesaw framework [15], we shall assume that both vacuum alignments ®y, and P, are
orthogonal to @4, in order to preserve the first column of the mixing matrix. Then we shall
choose P, to be either 5 or 3, and take Py, to be a general vector orthogonal to @4, as
illustrated in figure 1. Later on we shall fix the alignment of ®4, by appealing to remnant
symmetry, according to a generalisation of the direct approach, as discussed in the next
subsection.

The Littlest seesaw is clearly a rather predictive framework which combines the two right-
handed neutrino model with the indirect approach [9]. In this framework, two right-handed
neutrinos Na™ and N5 are introduced, and the third right-handed neutrino is assumed to
be almost decoupled and irrelevant. N&™ dominantly contributes to the seesaw mechanism
and is mainly responsible for the atmospheric neutrino mass ms. N35! is sub-dominant and is
mainly responsible for the solar neutrino mass ms while the lightest neutrino mass m; is zero
in this limit. The Littlest seesaw model generally assumes three generations of left-handed
neutrino fields vy, = (v, v, v;) transforms as a triplet of the flavor symmetry while both
Nam and N35! are singlets. In the flavor basis where the charged lepton mass matrix is
diagonal with real positive eigenvalues m., m,, m, and the right-handed neutrino Majorana
mass matrix is also diagonal, by introducing appropriate auxiliary abelian symmetry, the
generic Littlest seesaw Lagrangian can be written as

_ _ 1 —_— 1
L= _yatmL-QsatmN]%tm - ysolL-gbsolN?{Ol - iMatm(N]a%tm)cNEtm - §MSOI(N%01)CNJS%OI + h.c. ) (32)



Figure 2: A sketch of the indirect model building approach, where the charged lepton preserves a residual
subgroup G, and the neutrino vacuum alignments ®,;,, and ®g, are enforced by the residual symmetries
Gatm and Gy respectively.

where the flavons ¢g, and ¢, can be either Higgs fields transforming as triplets under

the flavour symmetry, or combinations of a single Higgs electroweak doublet together with
triplet flavons. The fields L are the electroweak lepton doublets which are unified into a
triplet representation of the flavor symmetry group. Then @, and Py, in Eq. (3.1) arise
from the vacuum expectation values (VEVs) of ¢go and ¢aim respectively.

3.2 Indirect approach in Aj

The indirect approach is a further generalization of the direct approach. We assume that
the As group is broken to the abelian subgroup G; = ZI in the charged lepton sector,
the vacuum alignments @, and @, preserve different residual symmetries G and Gy
respectively while the A5 flavor symmetry is completely broken in the entire neutrino sector.
The indirect approach is schematically illustrated in figure 2. In our GLS model, as stated
above the alignment vector ®y, is orthogonal to @4, its most general form is

D, X <\/§, O—x, ¢+ x)T ) (3.3)
We find there are five possible values of z related to certain residual subgroups of As,
z =0, Gool = ZQT?’ST%*T?’7
x = 2i¢?sin %ﬂ Got = 2175775,
r = —2i¢? sin 2%, Gyot = Z5T5T° (3.4)
x = —2isin g, Gsol = ZE,TQST,
£ = 2isin g G = 2757



Accordingly the vacuum alignment of the solar flavon ¢g is:

T
xr = 07 ¢SOI = (\/5’ ¢’ ¢> ,
6% sin 27 2 2in/5 o2 2im/5) "
T = 219" sin R DPso1 = <\/§, 297 , 2¢°% ) ,
2 ; . T
, , T
T = —2isin%, b, = <\/§’ 26%#/5’ 26—z7r/5> ’
. . T
x =2 Sing, ®Sol — <\/§7 26—17T/57 2617r/5) ‘

In our framework, another alignment vector ®,;,, is assumed to be along the direction of ®3
or ®,. In the following, we shall discuss the two cases one by one.
3.2.1 Golden Littlest seesaw with &, x &3

In this case, the vacuum ®,;,,, reads as

Do o< (0, —1, )", (3.6)
which is invariant under the action of the ZZ 57*57*S gubgroup. Consequently the Dirac
neutrino mass matrix Mp and the right-handed neutrino heavy Majorana mass matrix My
are given by

0 V/2b
Mp=|-a (p—2)|, My = (Mgtm]\; ) (3.7)
a (¢p+x)b sol

Integrating out the right-handed neutrinos, the light effective Majorana neutrino mass matrix
is approximately given by the seesaw formula

m, =—MpMy' M},
00 0 2 V2o —x) V2 + )

=me [0 1 =1 +mpe | V2(p—2) (z—¢)° —2>+0o+1], (3.8)
0 —1 1 V2@ +¢) —22+9o+1  (z+¢)?
where m, = |a|*/Maum, my = [b|*/ My, the relative phase n = arg(b?/a?), and an overall

phase of m, has been omitted. Therefore four parameters m,, m;,  and n describe both
the neutrino flavor mixing and neutrino masses. One can check that neutrino mass matrix
m,, of Eq. (3.8) satisfies

K
V5

|
Mu 1 \[avse | =
1
\V 2v5¢

This implies that the column vector (—, /\%, \ /ﬁ, \ /#M)T is an eigenvector of m, with

a zero eigenvalue. As a result, the first column of the PMNS mixing matrix exactly coincides
with the GR mixing pattern, and the corresponding light neutrino mass vanishes m; = 0.

(3.9)

o O O
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In order to diagonalize the above neutrino mass matrix, we firstly perform a golden ratio

transformation and obtain
000
ml, = Ulrm,Usr= |0y 2
0z w

(3.10)

where
Yy = 2\/6 gbmb eina

2 =2x\/+ 2my e,
(3.11)

w = |w|e” = 2(m, + x> mye™).
The neutrino mass matrix m, in Eq. (3.10) by diagonalized through the standard procedure,

as shown in Ref. [30]. We have

U'Tm! U’ = diag(0, ma, ms3) (3.12)
where the unitary matrix U], can be written as
1 0 0
U = [0 cosfel®tr)/2  sinfelvtal/z | (3.13)

0 —sinfe=¥+tr)/2  (ogf i(—¢+0)/2

We find the light neutrino masses mg 3 are
1 el
2 2 2 2
— 202 — =L U1
md = o o 21 - L]

1 jw|* — |y|*
m2 == ||yl 2490122+ —— 2L 3.14
; 2@m-+mr+ 2+ (3.14)

The rotation angle 6 is determined to be
e —2ize R Tuf = 2yelcos(dn — 1)
V(W = [y)? + 4z [ly[? + [w]? — 2Jy[lw] cos(dw — n)]
2 _ 1,12
cos 20 = ol = Iyl . (3.15)
V(W = [y?)? + 4= [ly[* + [w]? — 2[y[[w] cos(dw — n)]

Y

The phases ¥, p and o are given by
ly| — w| cos(¢pw — 1)
VYR + [w]? = 2Jy[Jw] cos(dw — n)
(m3 — |2]?) cosn — |y|Jw] cos ¢,

costh = : |w2| sin(¢y — 1)
VI + [w? = 2Jy|[w]| cos(dw — 1)
o _ —(m3 —|z*) sinn + |y||w| sin ¢y,
sinp = — > = , COSp = > = ,
mav/|y? + [w]? = 2[y[[w] cos(¢w — ) mav/|y[? + [w]?> = 2Jy|[w] cos(¢w — 1)
(m3 — |2|?) cosn — |yl|w] cos ¢, s — —(m§ — |2[*) sinn + |y[|w| sin ¢y, 16)

sinoc = — , = 3
m3/|yl? + [w]? = 2Jy||w| cos(¢w — 1) ma/[y[? + [w]? = 2Jy||w| cos(dw — 1)

)

siny =

Thus the lepton mixing matrix is determined to be

—V2¢ V2 cos @ V/2e™ sin 6

PI/7

1 . /
U=UgrU = | — 1 ¢cost++/d+2sinfe ™ ¢sinfhe™ —\/p+ 2cosb
2v/5¢ 1 ¢cosh —+/o+2sinfe ™ ¢psinfe™” 4+ /¢ + 2cosb

(3.17)
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with
P, = diag(1, 'V Fr)/2 cilzvta)/2) (3.18)

The most general leptonic mixing matrix in the two right-handed neutrino model can be
parameterized as

C12€13 $12€13 s1ge”ocr ,
_ i i . il
U= —S812C23 — 01281352361 cp C12C23 — 81281382362 cp C135923 dlag(l, ez, 1) s (319)
i i
512823 — €12513C23€"°F  —C12823 — $12513C23€" Y C13C23

where ¢;; = cos0;;, s;j = sinb;;, dcp is the Dirac CP violation phase and 3 is the Majorana
CP phase. Note that a second Majorana phase is needed if the lightest neutrino is not
massless. Then we can extract the expressions for the lepton mixing angles as follows

) 2

. 9 sin” 0 .9 cos” 0

sin 3 = ——, sin“fp = ———-—,
13 NG 12 V50— sin? 0

1 3+ 4¢ sin26cosvy (3.20)
2 2(vV/5¢ —sin?0) '
Eliminating the free parameter 6, we see that a sum rule between the solar mixing angle 61,
and the reactor mixing angle 0,3 is satisfied,

SiIl2 623 =

¢

cos? 015 cos? O3 = — . (3.21)

V5
Using the best fit value of sin? 6,5 = 0.0215, we find for the solar mixing angle
sin® 015 ~ 0.261, (3.22)

which is within the 30 region [l]. As regards the CP violation, two weak basis invariants
Jop [31] and Iy [32] associated with the CP phases dcp and § respectively can be defined,

1
JCP = %(UHUgg TBUC;:I) = g sin 2912 sin 2013 sin 2023 COS 013 sin 6CP y

1
I = S(ULUY) = 1 sin? 0} sin? 2013 sin (8 + 26¢p) - (3.23)

For the mixing pattern in Eq. (3.19), these CP invariants turn out to be

_ sin26siny
44/5(p +2)

cp = 1 sin 20 sin(p — o). (3.24)

"~ 2002

Since Jop and all the three mixing angles depend on only two parameters 6 and 1, we can
derive the following sum rule among the Dirac CP phase d¢cp and mixing angles

<¢ -+ 2)(1 + sin2 913) -5 COS2 913
24/ (¢ +2)(5cos2 013 — ¢ — 2)
For maximal atmospheric mixing angle 63 = 7/4, this sum rule predicts cos dcp = 0 which

corresponds to maximal CP violation dcp = £m/2. The mixing angles, CP phases and
mass ratio my/ms depend on the z, n and r = my/m, while my and m3 depend on all the

cosdcp = csc 013 cot 2093 . (3.25)
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four input parameters x, n, m, and m;. By comprehensively scanning over the parameter
space of n and r, we find that the experimental data on the mixing angles and mass squared
splittings can be accommodated only for the values of z = £2i¢?sin %’T In table 2 we
present the predictions for the mixing angles and CP violation phases for some benchmark
values of the parameters n and r. It is remarkable that both atmospheric mixing angle and
Dirac phase are maximal for n = 0, all the mixing angles and mass ratio m3/m3 lie in the
experimentally preferred 3o ranges except that the reactor angle 63 is a bit smaller. This
tiny discrepancy is expected to be easily resolved in an explicit model with small corrections
or by the renormalization group corrections [33]. Notice that the same predictions for the
mixing angles and maximal dcp can be obtained from the approach of combining A5 flavor
symmetry with generalized CP [22,27,28], but we have additional prediction for the neutrino
masses here even if the CP symmetry is not introduced in the present context. We can check
that the neutrino mass matrix m, in Eq. (3.8) has the following symmetry properties

my,(n, x = £2i¢*sin 27 /5) = Piym, (1, x = F2i¢? sin 27 /5) Py,

my,(n, x = £2i¢*sin 27/5) = m*(—n, x = F2i¢*sin 27/5), (3.26)
with
100
010
As a consequence, the same reactor and solar mixing angles are obtained for = 2i¢? sin 2{
and ¥ = —2i¢?sin %”, while the atmospheric angle changes from a3 to /2 — 653 and the

Dirac phase changes from dcp to ™ + dcp. Moreover, all the lepton mixing angles are kept
intact and the signs of all CP violation phases are reversed under the transformation xr — —x
and n — —n. For the fixed value of x = £2i¢?sin %’T, all the mixing angles, CP phases and
mass ratio m3/m2 are fully determined by 7 and 7, and the correct neutrino mass my can be
achieved for certain values of my;. We show how these mixing parameters vary in the plane
1 versus 7 in figure 3. It can be seen that the measured values of the mixing angles and the
neutrino masses can be accommodated for certain choices of n and r.

3.2.2 Golden Littlest seesaw with &, o< ®,

Similar to previous case, the most general from of the solar vacuum ®g, is given by Eq. (4.8),
and the atmospheric alignment vector takes the form

Dumox (V2 6, 0) (3.25)

which preserves the residual symmetry Gum = Z2 57°57°. Subsequently we can read out

the Dirac neutrino mass matrix Mp and the right-handed neutrino mass matrix My as

V2a V2b
MD = ¢a (¢ - l’)b ) MN = (Mgtm]\; 1) )

da  (¢+x)b
which leads to the following low energy effective Majorana neutrino mass matrix
2 V20 V2¢ 2 V2(p—x) V2 +9)

my=ma | V20 ¢+1 ¢p+1 | +mpe | V20¢p—2) (2—0¢)2 —a22+¢+1], (3.30)
V20 o+ 1 ¢+1 V2@ +¢) —*+o+1  (z+9¢)

(3.29)
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n r x sin?f3 sin?6yy sin®fy;  dop/T B/m m3/m3

0.0177 £2i¢?sin3F | 0.0164 0264 0.5  F0.5 0 0.0309
+% 0.0185 +£2i¢*sin2* | 0.0174 0.264 0.614 F0.331 F0.210 0.0302
£ 0.0185 F2i¢?sin 3 | 0.0175 0.264 0385 +0.670 F0.211 0.0304
+75 0.0183 £2i¢?sin 3 | 0.0172  0.264 0.605 F0.345 F0.192 0.0303
+75 0.0184 F2i¢?sin2 | 0.0173 0264  0.394 +0.655 F0.192 0.0305
£ 0.0182 £2i¢’sin2 | 0.0171  0.264  0.597 F0.357 F0.176 0.0304
+7% 0.0183 F2i¢?sin3 | 0.0172 0264 0402 +0.643 F0.177 0.0306
£ 0.0182 £2i¢?sin 2 | 0.0170  0.264 0.591 F0.368 F0.163 0.0304
+75 0.0182 F2i¢?sin 2 | 0.0171  0.264 0409 £0.632 F0.164 0.0307
£ 0.0181 =£2i¢?sin 3 | 0.0169 0.264  0.585 F0.377 F0.152  0.0305
£ 0.0181 F2i¢?sin2* | 0.0170 0.264 0.415 £0.623 F0.152  0.0307
+7 0.0180 £2i¢?sin 3 | 0.0168 0.264  0.580 F0.385 F0.142 0.0305
+7 0.0181 F2i¢?sin2* | 0.0169 0.264 0.420 =£0.616 F0.142 0.0308
£ 0.0180 =£2i¢?sin 3 | 0.0168 0.264 0575 F0.391 F0.134  0.0306
+7% 0.0180 F2i¢?sin2* | 0.0169 0.264 0.425 £0.609 F0.134 0.0308
+7 0.0180 =£2i¢?sin 3 | 0.0167 0.264 0571 F0.398 F0.126 0.0306
+7 0.0180 F2i¢?sin 3 | 0.0168 0.264 0429 £0.603 F0.126 0.0308
+7%5 0.0179 £2i¢?sin 3 | 0.0167 0.264  0.567 F0.403 F0.119 0.0306
+75 0.0180 F2i¢?sin 3 | 0.0168 0.264 0432 £0.597 F0.119 0.0308
+25 0.0179 £2i¢?sin 2 | 0.0167 0.264 0.564 F0.408 F0.113  0.0306
+25 0.0179 F2i¢?sin 2 | 0.0167 0.264 0436 +0.592 F0.113  0.0308
£ 0.0179 £2i¢?sin 2 | 0.0166 0.264 0.561 F0.412 F0.108 0.0306
£ 0.0179 F2i¢?sin 2 | 0.0167 0.264 0439 +0.588 F0.108 0.0308
+25 0.0179 £2i¢?sin 2 | 0.0166 0.264 0.558 F0.416 F0.103 0.0307
+25 0.0179 F2i¢?sin 2 | 0.0167 0.264 0.442 £0.584 F0.103  0.0309
+2 0.0179 £2i¢?sin3F | 0.0166  0.264  0.556 F0.420 F0.0982 0.0307
+2 0.0179 F2i¢?sin 3 | 0.0167  0.264 0444  £0.580 F0.0983 0.0309
+2 0.0184 £2i¢*sin 3 | 0.0173  0.264  0.610 F0.338 F0.201 0.0302
+22 0.0184 TF2ig*sin 3 | 0.0174 0.264  0.390 +0.662 F0.201 0.0305

Table 2: Predictions for all the lepton mixing angles, CP violation phases and m3/m3 in the golden Littlest
seesaw with @, o« @3. Here we choose many benchmark values for the parameters 1 and 7.
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Figure 3: Contour plots of sin® 63, sin® A3 and ma/mg in the n — r plane for the golden Littlest seesaw
with @4, oc @3. Here we take z = 2i¢?sin(27/5) and x = —2i¢? sin(27/5) for which the solar vacuum
alignment @, preserves the residual symmetry Geop = 27 5775 and Gyo = Z57°5T° respectively. The 30
upper (lower) bounds of the lepton mixing angles are labelled with thick (thin) solid curves, and the dashed
contour lines represent the corresponding best fit values. The 30 ranges as well as the best fit values of the
mixing angles are adapted from [1]. The black contour line refers to maximal atmospheric mixing angle with
Sin2 923 = 0.5.

with m, = |a|*/Magm, mp = |b]*/Myq and n = arg(b?/a?). This model is rather predictive
since only four parameters m,, my, © and n can describe the entire neutrino sector. The
symmetry relations in Eq. (3.26) are also satisfied in this case. The neutrino mass matrix in
Eq. (3.30) can be block diagonalized by the GR mixing matrix,

000
m!, =Utym,Usr= |0y 2|, (3.31)
0zw

where

y = |yle’ = 2V5¢ (m, +mye™),

2z =2x\/¢ + 2my e,

w = 2% my e . (3.32)

Furthermore, m!, can be put into diagonal form by performing another unitary transforma-
tion

UTm/ U’ = diag(0, mo, m3) , (3.33)
with
1 0 0
U=10 cosfe@tn/2  sinfe+o/2 | (3.34)
0 —sin@e"¥+r)/2 cosfil-v+o)/2
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where the parameters 6, ¢, p and o are determined in terms of x, y, z defined in Eq. (3.32),

—2ize "\ /[y|2 + [w[? — 2[y||w| cos(d, — n)

sin 20 = ,
V(w2 = [y[2)? + 4]z [Jy]? + [w]? — 2[yl|w] cos(¢, — n)]
2 1,2
0520 — jw]* —y] |
V(w2 = Ty[%)? + 4]z [Jy]? + [w]? — 2[y[|w] cos(¢, — n)]
PR L e L
V1P + [w? = 2[yllw] cos(¢, —n)
costp = |yl sin(¢y —n) ’
VI + [w? = 2[yllw] cos(é, —n)
sy 3= P cosn — lylulcosd,
ma/[y|? + [w]? = 2[y[w] cos(¢, —n)
_ 2 _ 2 . .
cos p (m3 — |2|%) sinn + |y||w] sin ¢, |
may/[y? + [w]? — 2[yllw]| cos(d, —n)
2 .12 _
o — (m3 — |2|?) cosn — |y||w| cos ¢,

)

ms/|y|? + [w]? — 2y||w] cos(¢, — n)

coso = _(mg B ’Z|2) Sinn + |yHU)’ Sin¢y . (335)

ms+/|y]? + [w]? — 2|y|Jw] cos(¢, — n)

The exact expressions for the neutrino masses are given by

mi =0,
1 w|* — |yl
ms =3 {IyP ol + 202 = ==
1 w|* — [yl
2 2 2 2
= - 2 _— 3.36
3 2 []y| el + 20z + cos 20 ( )

Given that the charged lepton mass matrix is diagonal due to the ZI residual symmetry,
the PMNS mixing matrix is of the form

61 —V2¢ V2 cos 6 V2e™ sin 0
U=UgrU = | ——= 1 ¢cosh++/d+2sinfe ™ ¢psinfe¥ —\/d+2cosb | P,,
2v/5 1 ¢cosh — /¢ +2sinfe ™ ¢sinfe¥ + /¢ +2cosb
(3.37)
with
P, = diag(1, 'V Fr)/2 oil=v+a)/2) (3.38)

Obviously the first column of the mixing matrix is fixed to be that of the GR mixing matrix.

The lepton mixing matrix U is identical with the one in Eq. (3.17). Hence all the mixing

angles and CP invariants are predicted to have the same form as those of Eq. (3.20) and

Eq. (3.24) respectively, but their dependence on the input parameters m,, my, n and z

are different. The sum rules in Eq. (3.21) and Eq. (3.25) are satisfied as well. Detailed

numerical analyses show that accordance with experimental data can be achieved for certain
2

values of r = my/m, and 7 in the case of z = +2i¢*sin <, and the corresponding benchmark

numerical results are listed in table 3. The most interesting point is 7 = 7 which predicts
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Figure 4: Contour plots of sin® 63, sin® A3 and ma/mg in the n — r plane for the golden Littlest seesaw
with @4, oc ®o. Here we take z = 2i¢?sin(27/5) and x = —2i¢? sin(27/5) for which the solar vacuum
alignment @, preserves the residual symmetry Geop = 27 5775 and Gyo = Z57°5T° respectively. The 30
upper (lower) bounds of the lepton mixing angles are labelled with thick (thin) solid curves, and the dashed
contour lines represent the corresponding best fit values. The 30 ranges as well as the best fit values of the
mixing angles are adapted from [1]. The black contour line refers to maximal atmospheric mixing angle with
Sin2 923 = 0.5.

maximal atmospheric mixing and a maximal Dirac phase. The realistic values of sin®#;,
and m3/m3 can be obtained for r = 1.486 while the reactor angle is slightly a bit larger.
This mixing pattern for n = 7 can also be obtained from Aj flavor symmetry and CP in the
semidirect approach [22,27, 28], the additional bonus in GLS is the predcition for neutrino
masses. As discussed in above, all the mixing parameters as well as mass ratio my/ms
depend only on n and r, this dependence is shown in figure 4.

If we further take into account the contribution of the third almost decoupled right-
handed neutrino of mass Mjge., for example for the case of ®4.. ox ®;, the last term of
Eq. (3.1) would contribute to the lightest neutrino mass m; = ¢?/Mge., while the neutrino
mixing angles, CP violating phases and the other two neutrino masses are not changed.
From figure 5, we can see that better agreement with experimental data can be achieved.
The viable regions for sin? 0,3, sin® a3 and my/ms can overlap with each other.
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n r x sin?fi3 sin®6yy sin®fy;  Sop/T B/m m3/m3
™ 0675 £2i¢?sin? | 0.0257 0257 £05 0.5 0 0.0294
+4 0.670 +2i¢?sin2* | 0.0282 0.255 0.535 +£0.465 TF0.203 0.0293
+245 0.669 F2i¢?sin2® | 0.0282 0.255 0.465 F0.536 F0.203 0.0294
£33 0.671 £2i¢?sin2* | 0.0275 0.256  0.529 £0.469 F0.169 0.0294
£33 0.67 F2¢?sinZE | 0.0274 0256 047 F0.531 TF0.169 0.0295
+% 0.672 £2i¢?sin2F | 0.027 0.256 0.526 +0.473 F0.145 0.0294
+% 0.671 F2i¢?sin2E | 0.027 0256 0474 F0.527 F0.145 0.0295
+T 0.673 £2i¢?sin 2 | 0.0267 0.257  0.523 +0.476 F0.127 0.0294
+7 0.672 F2i¢?sin 3 | 0.0267 0.257  0.477 F0.524 TF0.127 0.0295
+5 0.674 £2i¢?sin 2" | 0.0265 0.257  0.52  £0.479 F0.113 0.0294
+5 0.673 F2i¢?sin2* | 0.0265 0.257 048 F0.521 TF0.113 0.0295
+9% 0.674 £2i¢?sin 2% | 0.0264 0.257 0.518 £0.481 F0.101 0.0294
+9% 0.673 F2i¢?sin2* | 0.0263 0.257 0482 F0.519 TF0.101 0.0295
£ 0.674 £2i¢”sin 2 | 0.0262  0.257  0.517 £0.482 F0.0922 0.0294
+1% 0.674 F2i¢*sin 2 | 0.0262 0.257  0.483 F0.518 F0.0922 0.0294
+HT0.674 £2i¢?sin 2T | 0.0262  0.257  0.515 +0.484 F0.0845 0.0294
+HT0.674 F2i¢?sin 2 | 0.0262  0.257  0.485 F0.516 F0.0845 0.0294
+250.675 £2i¢*sin 2 | 0.0261  0.257  0.514 +0.485 F0.078 0.0294
+250.674 F2i¢?sin 2 | 0.0261 0.257  0.486 F0.515 F0.078 0.0294
+850.675 £2i¢?sin 2 | 0.0260 0.257  0.513 +0.486 F0.0724 0.0294
+850.674 F2i¢*sin 2 | 0.0260 0.257  0.487 F0.514 F0.0724 0.0294
+850.673 £2i¢?sin 2 | 0.0268 0.256  0.524 +0.475 F0.135 0.0294
+850.672 F2ig*sin 2 | 0.0268 0.256  0.476  F0.525 F0.135 0.0295
+HE0.675 £2i¢sin 2 | 0.0260 0.257  0.512  +0.487 F0.0676 0.0294
+550.674 F2ig?sin 2 | 0.0260 0.257 0.488 F0.513 F0.0676 0.0294

Table 3: Benchmark numerical results in the golden Littlest seesaw for the case of ®,pn ox P9 and = =
+2i¢? sin(27/5).
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Figure 5: Contour plots of sin? ;3 sin®fa3 and my /mg in the n — r plane for the golden Littlest seesaw
with @, < @5, As an example, we assume that the decoupled alignment ®go. o< ®; which gives rise to
mi =6 x 1073eV.

4 Alternative Golden Littlest Seesaw in A;

In the direct approach, if the A; flavor symmetry is broken down to Klein subgroups in both

the neutrino and charged lepton sectors, e.g. G; = K iS’TBSTZSTS) and G, = K ZESTQSTSS’TSTAL),

the lepton mixing matrix is determined to be of the row-column (RC') symmetric form [22,23]

Une=35 (-1 =1/6 o | (4.1)
/¢ ¢ 1

The mixing angles are: sin?f;, = (3 — ¢) /5 ~ 0.276, sin®fy3 = (2+ ¢) /5 ~ 0.724 and
sin?f3 = (2 —¢) /4 ~ 0.0955. Although this mixing pattern is not phenomenologically
viable because of too large 613 and 6,3, the first column of Ugc is still compatible with
experimental data, and that is what we shall assume in the following.

The general principle of the Littlest seesaw is that different sectors of the Lagrangian
preserve different residual subgroups of the flavor symmetry which is proposed in Ref. [15].
In this section, we shall consider the case that the electron, muon and tau sectors preserve
different residual symmetries while the flavor symmetry is broken in the whole charged lepton
Lagrangian, and the same holds true for the neutrino vacuum ®,,,, and ®4,;. This scenario is
schematically depicted in figure 6. Moreover we can generally write down the Littlest seesaw
Lagrangian in the neutrino and charged lepton sectors as follows:

T T 1 7 ATatm\c 1 7 ATsol\c ATSO
L = _yatmL'¢atmN]%tm - ysolL-(Zﬁsol]\[]s%o1 - §Matm<N?ztm)cNgtm - §MSOI(N;{01)CNR1

+y, Lo TR + yufz.@uﬂ,R + ye L.l + h.c., (4.2)

where ¢, (o = e, i, 7) can be Higgs fields transforming as triplets under the flavor symmetry
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Gatm Gsol

Figure 6: A sketch of the indirect model building approach, where the electron, muon and tau sectors
preserve different residual subgroups G, G, and G, respectively, and the neutrino vacuum alignments ®,,
and Py, are enforced by the residual symmetries Gapm and Ggo respectively.

group, or the combination of the electroweak Higgs doublet with triplet scalar flavons. In or-
der to obtain the above terms in a concrete model, the possible additional abelian symmetries
are generically needed and they will not be specified here. It is generally more convenient
to work in the charged lepton diagonal basis in practical model building. We show such
an appropriate alternative basis in table 4. In this basis the charged lepton mass matrix is
enforced to be diagonal by the chosen residual symmetries G, G, and G, in Eq. (4.5). The
desired vacuum alignments in the charged lepton sector are

1 0 0
(e) =ve [ O], <90u> =v, 1], (o) =v- (0] . (4.3)
0 0 1

If we regard ¢., ¢,, ¢, as each being a triplet 3 of Aj, then they each correspond to a
different symmetry conserving direction of As, with,

p3(S)(@e) = (), p3(T°ST2ST?S)(pu) = (pp),  ps(T°ST*ST?)(pr) = (pr) . (4.4)

That is to sa
Yo q o gsrers, g grsests (4.5)

Inserting these vacuum configurations in Eq. (4.3) into Eq. (4.2), we obtain the charged
lepton mass matrix is diagonal with

My =YV, My = YUy, Me = Yele - (46)

The hierarchies among the three charged lepton masses are expected to be explained by
including an extra U(1) symmetry such that the effective Yukawa couplings y., y, and v,
are of different order of magnitudes.
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S T
1 1 1
1 0 0 ) 1 ¢—1
3 0 —10 -1 o e-1 ¢
0 0 -1 p—1 —¢ 1
1 0 0 1—¢ ¢ 1
3’ 0 —10 B 1 1—9¢
0 0 -1 -1 ¢—1 —¢
-1 0 00 -1 -1 3 5
4 0 —100 1 =31 =5
0 0 10 1123 1 1 -5
0 0 01 V5 V5 VB —1
10 0 0 0 1-3¢ 20 2/¢* —2v5 V3/¢
01 0 0 0 —2¢* —4 4 0 —2V3/¢
51100 -1 0 0f|%]-2/¢* 4 0 4 —-2V3¢
00 0 —10 25 0 —4 4 24/3
00 0 0 1 V3/o 2V3/p 2v/3¢ 2v/3 3¢ —1

Table 4: Alternative representation matrices of the generators S and T for the five irreducible representations
of As. This basis is more suitable to discuss the Littlest seesaw model in which the first column of the mixing

matrix is in common with Ugrc.

As regards the neutrino sector, the three columns of the Ugc mixing pattern read

¢
~1

1/

O = L Dy =

—1
_1/¢ )

¢

Dy =

1/
¢
1

(4.7)

As schematically illustrated in figure 1, the solar alignment vector ®, is orthogonal to &,

consequently its most general form is

(4.8)

x
D= 11+20
¢
This vacuum alignment &, would be enforced by some residual subgroup of As for certain
value of z,
Geol = Zg2ST, for =0,
Geol = ZfTQSTsS, for x=-1,
Gsol = Z2T4(ST2)2, for =z =1,
Gsol = Z§T25)2T2, for x=-1/¢,
Ggol = Zg‘?TBST, for v=—-¢.
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Furthermore the atmospheric alignment vector ®,;,, is along the direction of ®5 or &3 which
respects the following residual symmetry

ZSTQST3S Doin )
Gatmz{ ; o T (4.10)

Z2T4(ST2)27 (I)atm X @3 .

In the following we consider the case of @, o< ®3 b, then the Dirac neutrino mass matrix
Mp and the right-handed neutrino mass matrix My are

a/¢ xb
Mp=| ¢a (1+¢x)b]|, My = <M8tmjwo ) . (4.11)
a ¢b sol

Applying the seesaw formula results in the effective light neutrino mass matrix

2—¢p 1 o¢—1 x? z(xp+1) x
m,=mg [ 1 ¢+1 ¢ | +mpe” |z(xd+1) (x¢+1)? dlag+1)| . (4.12)
p—1 ¢ 1 rp  Pplrp+1) d+1

This neutrino mass matrix m, can be simplified into a quite simple form by performing a
unitary transformation Ugq,

000
m!, = Upem,Ugc = [0y 2 (4.13)
0z w
with
y =mye(z—1)%
2= —myeo (xQ — 1) ,
w = |w|e® = dmg +my e ¢ (x4 1)° . (4.14)

The block diagonal neutrino mass matrix m/, of Eq. (4.13) can be easily diagonalized through
the standard procedure, as shown in the appendix B. The lepton mixing matrix is predicted
to take the form

o) (1—¢)sind —e¥cos (¢ —1)cosf — e sin 6

1 ; .
U:§ -1 —¢sinf+ e (1 —¢)cosf ¢cosh+ eV (1 —@)sinb | P,, (4.15)
¢ —1 —sinf + e¢cos b cosf + e¥psind
with ' ‘
P, = diag(1, e'-¥FP)/2 pil=vta)/2) (4.16)

If we assign the left-handed lepton fields L = (L., L., LM)T instead of L = (L., L, LT)T to
a triplet of the As flavor group, and interchange the vacuum configurations (y,) and (@)
in Eq. (4.3), the resulting charged lepton mass matrix would be diagonal as well and the
lepton mixing matrix can be obtained by exchanging the second and third rows of the PMNS

IThe experimental data on mixing angles and neutrino masses can not be accommodated for ® ., o< Po.
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mixing matrix in Eq. (4.15). Furthermore, the exact results for the light neutrino masses
are given by

m? =0
1 jwf? — [y
md = g [0+ fol 4 2 = L
1 juf? — [y
2 2 2 2
== 2 _ . 4.17
md = [P ol 21 2L (4.17)

The expressions for the sine and cosine of rotation angle # and the phases v, p, o are

22 =1 /[yP + [w] + 2yl[wl cos(dw — 1)

sin 26 = ,
VWE = P+ AR [ + o + 2ol cos(om — )
2 1,02
cos 20 = 2|w|2 Y] - ,
V(w2 = [y2)? + 4|22 [Jy[? + [w]? + 2[yl|w]| cos(¢w, — )]
in g — [w|sin(¢, — 1) |
VIR + [w]? + 2ly||w] cos(¢w — 1)
ooyl Fluleostou =)
VIR + [w]? + 2y[|w| cos(¢w — 1)
- (m3 — |2|*) sinn + |y||w| sin ¢,
sinp = — ,
ma/|yl? + [w]? + 2Jyl[w| cos(dw — 1)
sy 312 cosn -+ plfulcos g,
ma/[yl? + [w]? + 2Jyllw| cos(pw — 1)
- (m3 — |2]?) sinn + |y|Jw] sin ¢,
sinoc = —

Y

ma/[y[? + [w]? + 2[y|[w] cos(¢w —n)
cose — ms —|2[*) cosn +[yllw|cosdy (4.18)
may/ [yl + [w]? + 2[y||w] cos(¢w — 1)
We can straightforwardly extract the mixing angles from Eq. (4.15) and find

3-¢ 1-9¢ l1-¢

sin’ 013 = . + 3 cos 260 + sin 260 cos 1,
.y 3— ¢+ (¢p—1)cos20 +2(¢ — 1)sin26 cosp
sin =
2T 540+ (0 — 1) cos 260 + 2(¢ — 1) sin 20 cos )’
— — 2sin 26
Sin? Oy — 3+ (2¢ — 1) cos26 — 2sin ?OSQ/J | (4.19)
5+ ¢+ (¢p—1)cos20 +2(¢ — 1) sin260 cosp
which fulfill the sum rule
4 cos? Oy cos® b5 = ¢*. (4.20)
If inserting the experimental best fit value sin® 633 = 0.0214 [1], we arrive at
sin? 05 ~ 0.331, (4.21)

which is in accordance with the experimental data [1]. As regards the Dirac CP phase, we
find that the Jarlskog invariant takes a rather simple form,

1
JCP = E sin 260 sinw s (422)
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Figure 7:  Contour plots of sin®;3, sin® fa3 and my/ms in the n — r plane for the Littlest seesaw model
studied in section 4. Here we take x = 0 for which the solar vacuum alignment ®, preserves the residual
symmetry Ggo = 22 ST The 30 upper (lower) bounds of the lepton mixing angles are labelled with thick
(thin) solid curves, and the dashed contour lines represent the corresponding best fit values. The 3¢ ranges
as well as the best fit values of the mixing angles are adapted from [I]. The black contour line refers to
maximal atmospheric mixing angle with sin? 63 = 0.5.

and an exact relation for cos dcp in terms of the lepton mixing angles is satisfied,

(¢ — 1) cos? O3 + [(5 + ¢)sin? 013 — 3 + gb] cos 2093

cosder = 267/3 — & — 4sin2Org sin 20 sin b (4.23)
For the Majorana invariant I, we get
L = 26_—4¢{4 cos(p — o) [cos 20 sin 2¢) — sin 26 sin 1|
+sin(p — o) [(cos 46 + 3) cos 2t — 2sin 46 cos Y — sin® 26| } . (4.24)

If x is treated as a free parameter, the experimental data on lepton mixing can be described
very well for certain values of x, n and r = m;/m,. On the other hand, if we require the
solar vacuum alignment is associated with certain residual symmetry, as shown in Eq. (4.9),
only = 0 is phenomenologically viable. We show how the observables sin? 6,3, sin? f3 and
mg/mg vary in the r — n plane in figure 7. In order to show concrete examples, we list
the predictions for mixing parameters for some benchmark values of r and 7 in table 5 and
table 6. Note that the atmospheric angle 053 is outside of 30 interval but quite close to 3o
bounds. We expect this discrepancy could be resolved by considering the contribution of
the third almost decoupled right-handed neutrino of mass Mge.. Moreover, corrections to
the leading order results are generally presented in an explicit model, and therefore it is not
difficult to achieve good agreement with experimental data.
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n r sin?fy3 sin?60yy sin’fos dop/m  B/m m3/m3
:|:%7r 2.053 0.0223 0.331 0.304 F0.424 =+0.282 0.0289
:l:‘%7r 1.826 0.0249 0.329 0.355 F0.351 =+0.200 0.0245
:l:%7r 1.904 0.0241 0.329 0.337 F0.376 =+0.228 0.0263
:|:1—71r 1.942 0.0236  0.330  0.328 F0.388 =+0.242 0.0271
+97 1,965 0.0234 0.330 0.323 F0.396 =+0.250 0.0275

+55 1.980
+25 1.926
+251.991
+27 1999
+48% 1.955
+4T 2,005
+7 1.920
+57 2.010
+47 1.932

0.0232  0.330 0.320 F0.400 =+0.256 0.0278
0.0238 0.330 0.332 F0.383 =+0.236 0.0268
0.0231 0.330 0.317 F0.404 =+0.259 0.0280
0.0230 0.330 0.316 F0.406 =£0.262 0.0281
0.0235 0.330 0.325 F0.392 +0.246 0.0273
0.0229 0.330 0.314 F0.408 =+0.265 0.0282
0.0239 0.329 0.333 F0.381 =+0.234 0.0266
0.0228 0.330 0.313 F0.41 =0.266 0.0283
0.0238 0.330 0.330 F0.385 0.238 0.0269

=l NeolNeolNolHolNolNol ol Noll NolNol Nol No N ol S

Table 5: Benchmark numerical results for the alternative Littlest seesaw model discussed in section 4.

sin?fy3 sin?fyp sin’fos dop/m B/m m3/m3
0.0224 0.331 0.696 +0.577 =+£0.282 0.029
0.0251 0.329 0.644 +£0.65 =+£0.199 0.0246
0.0243 0.329 0.662 4+0.625 +0.227 0.0264
0.0238 0.33 0.671 +0.612 4+0.241 0.0272
:I:?—Z 1.959 0.0235 0.33 0.676 +0.605 =4+0.249 0.0276
:|:111—77r 1.975 0.0233 0.33 0.68 +0.6 40.255 0.0279

i r x
0
0
0
0
0
0
ilf—gr 1.919 0 0.0240 0.329 0.668 =+0.618 =+0.235 0.0269
0
0
0
0
0
0
0

+272.050
+30 1.816
+30 1.897
T

+7 1.936

ig—oﬂ 1.986 0.0232  0.33 0.682 £0.597 +0.259 0.0281
ilz‘r’—gr 1.994 0.0231  0.33 0.684 £0.594 +£0.262 0.0282
i126—5” 1.949 0.0236  0.33 0.674 £0.608 +£0.245 0.0275
ilg—gr 2.000 0.0230  0.33 0.685 £0.592 +£0.264 0.0283
:t127—77r 1.912 0.0241 0329 0.666 +0.62 40.232 0.0268
:|:129—gr 2.005 0.0229  0.33 0.686 £0.591 =+0.266 0.0284
il??—oﬁ 1.925 0.0239 0329 0.669 =+£0.616 =£0.237 0.027

Table 6: Benchmark numerical results for the alternative Littlest seesaw model discussed in section 4, where
the second and third rows of the mixing matrix in Eq. (4.15) are exchanged.
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5 Conclusion

The Littlest Seesaw approach assumes that a different residual flavour symmetry is pre-
served by each flavon, in the diagonal mass basis of two right-handed neutrinos, leading to
a highly predictive set of possible flavon alignments for the charged leptons and neutrinos.
The Littlest seesaw model can thereby give a successful description of both neutrino mixing
and the light neutrino masses in terms of four input parameters. The case of Sy, discussed in
earlier work, leads to the lepton mixing matrix being predicted to be of the TM1 form. The
neutrino mass spectrum is normal ordered and the lightest neutrino is massless. Moreover,
CP violation in neutrino oscillation and leptogenesis arises from a unique single phase such
that they are closely related. Therefore the Littlest seesaw model is quite predictive and
attractive.

In this work, we have investigated whether the Littlest seesaw is confined to TM1 mixing,
or is of more general applicability. We have performed a comprehensive analysis of possible
lepton mixing which can be derived from the As flavor symmetry group within the paradigm
of the Littlest seesaw. The general principle of the Littlest seesaw is that different sectors of
the Lagrangian preserve different residual subgroups of the flavor symmetry [15]. This idea
is illustrated in figure 2 and figure 6. If the residual symmetry of the charged lepton sector is
G, = ZI which enforces the diagonality of the charged lepton mass matrix in the 7' generator
diagonal basis, the subgroup G, = Z§35T25T35 or Gum = Z2T35T25T3 is preserved by the
atmospheric flavon, and solar flavon ¢, breaks the flavor group As into Gy, = Zg 35T25
or Gy = Z5T°5T° the first column of the golden ratio mixing matrix is preserved. The
experimental data on the lepton mixing angles and neutrino masses can be accommodated
for certain values of the input parameters m,, m; and n except that the reactor angle 6,3
is predicted to rather close to its 30 boundary. This could be easily reconciled with the
experimental results in an explicit model with small subleading corrections or by considering
the third almost decoupled right-handed neutrino. Moreover, many numerical benchmark
examples are found. The most remarkable point is 7 = 0 for Gapm = 22 57575 and n = 7
for Gapm = ZI°5T*5T° then both Dirac CP phase dcp and the atmospheric mixing angle fs
would be exactly maximal. This mixing pattern is previously predicted in the semidirect
approach of combining As flavor symmetry with generalized CP [22,27, 28], but here we
have additional prediction for the neutrino masses and the generalized CP symmetry is not
introduced at all.

In the same fashion we find a third golden Littlest seesaw model which preserves the
first column of the Ugc mixing matrix in Eq. (4.1). Accordingly the residual subgroups
in different sectors are G, = Z§, G, = ZIPSTSTES o — gIPSTST® o = ZQTZI(STQ)2
and Gy, = Z5T “ST " This case fits the experimental data well to a certain extent. The
atmospheric angle 93 is determined to lie outside the 30 region although rather close to 3o
bounds. Generally corrections to the leading order results are expected to exist in an explicit
model such that it is not difficult to achieve agreement with the data. Hence this golden
Littlest seesaw model can be regarded as a good leading order approximation from the view
of model building.

In conclusion, the Littlest seesaw is a general and predictive framework of explaining
neutrino masses and lepton mixing. All the results of this paper only depend on the as-
sumed residual symmetries and they are independent of the underlying mechanism which
dynamically realizes the required vacuum alignments. It would be interesting to construct at
least one of the above three golden Littlest seesaw models. Since all CP violation phases are

atm
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completely fixed in the golden Littlest seesaw model, another interesting question is whether
the observed baryon asymmetry of the universe can be generated through leptogenesis and
the resulting constraints on the right-handed neutrino masses.
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Appendix
A Group Theory of A;

As is the group of even permutations of five objects, and it has 5!/2 = 60 elements. Geo-
metrically it is the symmetry group of a regular icosahedron. As group can be generated by
two generators S and 7" which satisfy the multiplication rules [21]:

S?=T°= (ST =1. (A1)
The 60 element of A; group are divided into 5 conjugacy classes:

1Cy: 1
15Cy : ST?ST3S, TST*, T*(ST?)?, T*ST?, (T*S)*T*S, ST*ST, S, T*ST*ST?,

T3ST?*ST?S, T°ST* T*ST?*ST?S, TST?S, ST*ST*S, T*ST, (T*S)*T*

2005 : ST, TS,ST* T*S, TST? T>ST? T*ST*, T3ST, T3ST3 T*ST? TST3S, T*ST3S,

T3ST?S, ST*ST?, STST, ST*ST?, (T?S)*T*, T*(T?S)?, (ST?)S, (ST*)*T*?

12Cs : T, T*, ST?,T%S,ST3 T3S, STS, TST, TST? T*ST, T*ST* T*ST?
120 - T2, T3, ST?S, ST?S, (ST?)?, (T%S)?, (ST*)?, (T*S)?, (T%S)*T?,

T3(ST*)?, T°ST*ST*, T*ST*ST? , (A.2)
where nCj denotes a class with n elements which have order k. The group structure of
As has been exhaustively analyzed in Ref. [21]. Following the convention of Ref. [21], we
find that As group has thirty-six abelian subgroups in total: fifteen Z5 subgroups, ten Z3

subgroups, five K4 subgroups and six Z5 subgroups. In terms of the generators S and T,
the concrete forms of these abelian subgroups are as follows:

e /5 subgroups

Z5TSTS = (1, ST2STSY,  Z85T" = {1, TST"}, 2, ") = {1, T4(ST?)%),
ZIST = (1, 125T%),  Z"S = {(1,(129)*1%S),  Z57°ST = {1, ST*STY},
Z5 ={1,S}, ZI"STTY = {1, 13ST2ST?Y,  Z1 ST = {1, T3ST?ST?S},
Zy 51 = {1,138T%},  z3 57T = {1, T'ST*ST® S}, ZTST25 = {1,75T°5},
Z5TISTS = (1,8T8ST?SY,  Z8'ST = (1, 1745T}, 29" = {1,(125)*T*}.

All the above fifteen Z, subgroups are conjugate to each other.
e /3 subgroups

73518 = {1,T3ST?S, ST*ST?}, 7§75 = {1,TST*S, (ST*)*T?},
ZI°5T — {1 T3ST, T*ST?}, Z57 = {1,8T,T*S},

ZST 1 (T28)2T?, (ST?)2SY, ZFS™° = {1,TST® T2ST"},
ZI*ST* — {1, 728T? T°ST%}, 2T5 = {1,T8S, ST},

Z5TST = {1, ST3ST, TX(T%S)%},  Z5"5"" = {1, ST*ST®, T*ST*S}.

The ten Z3 subgroups are related with each other by group conjugation.
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R Conjugacy Classes

1C | 15Cy | 20C5 | 12C5 | 12C%
1 1 1 1 1 1
3| 3 -1 0 ) 1—¢
3 3| 1] 0 |1-¢]| ¢
4 4 0 1 —1 —1
5| 5 1 —1 0 0

1S

Table 7: The character table of the A5 group, where ¢ = 1+2

e [, subgroups

KSTISTSTSTD) = ZS1PST'S o ZIST! = (1, ST2STS, TST, T*(ST?)?}.
K{TSTSTSD) = ZIPST o Z5T°ST — (1, T2ST®, (T*S)*T*S, ST*ST?,
KT = 78 5 ZSTST = (1,8, T3 STST, T ST ST 5},
K{TSTHISTES) = ZINST? o ZTSTES — (1, T3ST?, T*ST?ST*S, TST?S},
K{FTSTISIISE) o g STISTES o ZIST _ (1, ST3ST2S, TST, (T2S)*T*}.

All the five K, subgroups are conjugate as well.
e /s subgroups

Z5TS = {1,8TS, ST?S,ST*S, TST}, z5™° = {1,ST?,T%S, (ST*)?, (T25)?},
ZIST — {1, T28T, T*ST?, T*(ST?)?, T*ST?ST%Y,  ZI' = {1,7, 7% 7% T*},
ZI5 = {1, TST? T3ST* (T2S)*T°, T3ST?ST*}, Z5™ = {1,572, 1°5, (ST?)?, (T*S)*}.

All the six Z5 subgroups are related to each other under group conjugation.

Here the superscript of a subgroup denotes its generator (or generators). The As group
has five irreducible representations: one singlet representation 1, two three-dimensional
representations 3 and 3’, one four-dimensional representation 4 and one five-dimensional
representation 5.

The character table of A5 group is reported in Table 7. We can straightforwardly obtain
the Kronecker products between various representations:

19 R=R®1=R, 3®3=19335, 323 =103¢5, 3x3 =45,
3R4=3 0405, 3 ®4=394®5, 35=303 ©4D5,

35=303 0495, 4R4=10303 ®405, 45=3D3 4P 5, D 5,
505=19303 ®4, B4 B 51 D 5,. (A.3)

where R represents any irreducible representation of Ay, and 44, 45, 5; and 55 stand for the
two 4 and two 5 representations that appear in the Kronecker products.
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B Diagonalization of a 2 X2 symmetric complex matrix

If neutrinos are Majorana particles, their mass matrix is symmetric and generally complex.
In the following, we present the result for the diagonalisation of a general 2 x 2 symmetric
complex matrix, which is of the form

P11 P12
[ a11€ ai12€
M - <a12€i¢12 a226i¢22) ? <B1)
where a;; and ¢;; (7, =,1,2) are real. It can be diagonalised by a unitary matrix U via
UT MU = diag(\1, \2) , (B.2)

where the unitary matrix U can be written as

cos feti(dto)/2 sin Peilé+o)/2
U= (— sin Gei(_¢+@)/2 CcoS Qei(_¢+g)/2 ) (B?))
with the rotation angle 6 satisfying
2 2 2 2 —9
tan 20 — ais \/CL11 + a3, + a211a22 (;OS(QZ511 + @22 ®12) ‘ (BA)

Ao — a7y
The eigenvalues A\; and Ay can always set to be positive with

1
A= 3 {a%l +a, + 2ai; — S\/(“%z — a}y)? +4afy [a?) + a3y + 2a11a22 co8(P11 + P2 — 2¢12)]} )

1
A5 = 3 {a%l + a3, + 2a7, + S\/(a%2 —a2))? + 4a3, [a3, + a3y + 2a11a29 cO8(P11 + Poo — 2(;512)]} ,

where § = sign( (a3, — a?,) cos 29). In the case of Ay > Ay, i.e. § = 1, the values of sin 26
and cos 20 are given by

2@12 \/(I%l + (I%Q + 20,110,22 COS(¢11 =+ ¢22 — 2¢12)
\/(agz — a3)? + 4af,la; + a3y + 2a11a9 cos(P11 + Par — 2612)] ’
2 2
A9 — A7q
V (a3, — a3))? + dady[ad, + a3y + 2a11a92 cos(Pr1 + P22 — 2¢12)]
Finally the phases ¢, p and o are given by
—ay18in(@11 — ¢12) + agasin(doe — d12)  Im (M7 Mg + Mo M7,)

sin 20 =

cos 20 =

(B.5)

Sin¢ = _ : * |
Vady + a3y + 201102 c08(d11 + 622 — 2612) | M Mg + Maa M3,|
_ag1co8(d11 — P12) + agg co8(dar — d12)  Re (MiyMyg + Mo M;y)
cos ¢ = _ ‘ : |
V@l + a3y + 2a11a93 cos(11 + daz — 2¢12) M M + Mog Moy
sinp = — (/\% - a%z) sin @19 + a11a99 Sin(gzﬁn + oy — ¢12)
)\1 \/a%l + Q%Q + 2(1,11(1,22 COS(¢11 + ¢22 — 2¢12) )
cos o = ()\% - a%2) oS P12 + a11a22 cos(gbn + ¢ — ¢12)
M/ a2, + a2y + 2a11a22 cos(P11 + o2 — 2¢12)
sinoc = — (A3 — afy) sin ¢1g + aniag sin(pur + dag — ¢12)

>‘2\/a%1 + a3, + 211022 cOS(P11 + P22 — 2¢12) 7

oo — (A2 — a?,) cos ¢1a + ajiags cos(Pr1 + Gog — P12) (B.6)

A2 \/@%1 + a3, + 2a11a22 cos(P11 + P22 — 2¢12) '
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