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Abstract

We propose and analyse a new class of Littlest Seesaw models, with two right-handed neutrinos in their
diagonal mass basis, based on preserving the first column of the Golden Ratio mixing matrix. We perform
an exhaustive analysis of all possible remnant symmetries of the group A5 which can be used to enforce
various vacuum alignments for the flavon controlling solar mixing, for two simple cases of the atmospheric
flavon vacuum alignment. The solar and atmospheric flavon vacuum alignments are enforced by different
remnant symmetries. We examine the phenomenological viability of each of the possible Littlest Seesaw
alignments in As, which preserve the first column of the Golden ratio mixing matrix, using figures and
extensive tables of benchmark points and comparing our predictions to a recent global analysis of neutrino
data. A benchmark model is constructed based on A5 X Zg X Z5 X Zé.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Massive neutrinos together with neutrino oscillations has been firmly established, and it
is unique experimental evidence for physics beyond the standard model. All the three lep-

ton mixing angles 612, 013 and 63 and the mass squared differences §m* = m3 — m? and
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Am? = m% - (m% + m%) /2 has been precisely measured in a large number of neutrino oscil-
lation experiments. At present the 3o ranges of these mixing parameters are determined to be [1]

0.250 <sin®0;2 < 0.354, 0.0190 < sin®0;3 < 0.0240, 0.381 < sin” 3 < 0.615,
6.93 x 107 eV2 < 8m? <7.96 x 107> eV?,
2411 x 1073 eV? < Am? <2.646 x 1073 eV?, (1.1)

for normal ordering (NO) neutrino mass spectrum, and similar results are obtained for inverted
ordering (I0) spectrum. Non-Abelian discrete finite groups have been widely used to explain the
lepton mixing angles as well as CP violating phases, see Refs. [2—7] for reviews.

The most appealing possibility for the origin of neutrino mass seems to be the seesaw mech-
anism which, in its original formulation, involves heavy right-handed Majorana neutrinos [8].
The most minimal version of the seesaw mechanism involves one [9] or two right-handed neu-
trinos [10]. In order to reduce the number of free parameters still further to the smallest number
possible, and hence increase predictivity, various approaches to the two right-handed neutrino
seesaw model have been suggested, such as postulating one [11] or two [12] texture zeroes, how-
ever such two texture zero models are now phenomenologically excluded [13] for the case of a
normal neutrino mass hierarchy considered here.

The minimal successful seesaw scheme with normal hierarchy is called the Littlest Seesaw
(LS) model [14-16], although in fact, it represents a class of models. The LS models may be
defined as two right-handed neutrino models with particularly simple patterns of Dirac mass
matrix elements in the basis where both the charged lepton mass matrix and the two-right-handed
neutrino mass matrix are diagonal. The Dirac mass matrix typically involves only one texture
zero, but the number of parameters is reduced dramatically since each column of this matrix
is controlled by a single parameter. In practice this is achieved by introducing a Non-Abelian
discrete family symmetry, which is spontaneously broken by flavon fields with particular vacuum
alignments governed by remnant subgroups of the family symmetry. Unlike the direct symmetry
approach, where a common residual flavour and remnant CP symmetry is assumed in the neutrino
sector, the Littlest Seesaw approach assumes a different residual flavour symmetry is preserved
by each flavon, in the diagonal mass basis of two right-handed neutrinos, leading to a highly
predictive set of possible alignments.

For example, in the original LS model [14—16], the lepton mixing matrix is predicted to be
of the TM1 form in which the first column of the tri-bimaximal mixing matrix is preserved, but
with the reactor angle and CP phases fixed by the same two parameters which fix the neutrino
masses. This leads to a highly constrained model which is remarkably consistent with current
data, but which can be tested in forthcoming neutrino experiments [17]. The LS approach may
also be incorporated into grand unified models [18]. The success of the LS approach, raises the
question of whether it is confined to TM1 mixing, or is of more general applicability. The present
paper aims to address this question by considering a different mixing scheme within the same
approach, namely the golden ratio (GR) mixing pattern [19,20].

In this paper, we shall propose another viable class of LS models, namely the golden Littlest
seesaw (GLS). Although the golden ratio mixing [19,20] is excluded by the measurement of
largish reactor mixing angle, the first column of Ugg may still be compatible with the experi-
mental data. Inspired by the success of the LS approach for TM1 mixing, we would like to also
preserve the first column vector of the GR mixing pattern in our GLS model. We shall perform
an exhaustive analysis of all possible remnant symmetries of the group A5 which can be used to
enforce various vacuum alignments for the flavon controlling solar mixing, for two simple cases
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of the atmospheric flavon vacuum alignment, analogous to the procedure suggested in the LS
approach based on S4. For each possibility we examine the phenomenological viability of the
alignment, using figures and extensive benchmark points, comparing our predictions to a recent
global analysis of neutrino data.

The layout of this paper is as follows. In section 2 we briefly review direct and indirect
model building approach based on the group As. In section 3 we present the golden Littlest
seesaw approach, where two right-handed neutrinos are introduced and the Dirac mass matrix
are controlled by flavon vacuum alignments which respect various remnant symmetries of As.
The phenomenological viability of each case for a discrete choice of phase parameters are ex-
amined. In section 4, we present a benchmark golden Littlest seesaw model based on the flavor
symmetry As X Zg x Zs x Zg, the discrete group As is spontaneously broken to desired residual
subgroups G;, Gam and G due to non-vanishing vacuum expectation values of some flavons.
In addition, the model fixes the parameters x = 2i¢> sin 2?” and n = 0, 7. Section | concludes
the paper. We report some details of the group theory of As along with the Clebsch—Gordan
coefficients in Appendix A. The second possible golden Littlest seesaw model and the resulting
predictions for neutrino masses and lepton mixing angles are given in Appendix B.

2. Direct and indirect approaches in As flavor symmetry

In order to understand more clearly the idea of the golden Littlest seesaw, we shall first reca-
pitulate the direct approach to the golden ratio mixing from As and the idea of Littlest seesaw.
Before the measurement of the reactor mixing angle, the golden ratio (GR) mixing pattern [19,
20] was a good leading order approximation and it predicted a zero reactor angle 6;3 = 0, max-
imal atmospheric mixing angle 6,3 = 45° and a solar mixing angle given by cotf;; = ¢, where
¢ = (1 ++/5)/2 is the golden ratio. The explicit form of the golden mixing matrix is given by

/e /L 9
NG V3¢
Usr=|,/s= J3&% -+ @2.1)
GR 2/56 PV I :
j_1 ¢ L
23/5¢ 25 V2
We shall denote the three columns of Ugr as @1 2,3,

[ V20 (V2 1 (9
LT e L D oi=— -1, 2
25\ eV AU A

The interplay between As flavor symmetry and lepton mixing has been extensively studied in the
literature [21-30]. In the direct approach of flavor symmetry model building, it has been shown
that the golden ratio mixing pattern can be naturally reproduced [21] if the flavor group As is
broken to the ZST subgroup in the charged lepton sector and to Klein subgroup K iS’T3STZST3)
in the neutrino sector. Here the superscript of a subgroup denotes its generator (or generators).
The group theory of As as well as its Clebsch—Gordan coefficients are listed in Appendix A. The
As group has two three-dimensional representations 3 and 3'. We find that the representation
matrices of the generators S and 7 in 3’ exactly coincide with those of T3ST2ST3 and T2
respectively in 3. This implies that the set of all matrices describing the representations 3 and 3’
are the same. Therefore the same results would be obtained no matter if the left-handed leptons
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transform as 3 or 3’ of As. Without loss of generality, we shall assign the three generations of
left-handed leptons to the triplet 3 in the following.

The indirect model building approach [4] is an interesting alternative to the direct approach.
In the indirect approach, the original flavor symmetry is completely broken in the neutrino sector,
and the residual symmetry Z, x Z; of the neutrino mass matrix arises accidentally. The basic
idea of the indirect approach is to effectively promote the columns of the Dirac mass matrix to
fields which transform as triplets under the flavour symmetry. We assume that the Dirac mass
matrix can be written as mp = (aPam, bPsol, cPgec) Where the columns are proportional to
triplet Higgs or flavon fields with particular vacuum alignments and a, b, c are three constants of
proportionality. It is convenient to work in the basis where the right-handed neutrino mass matrix
are diagonal with the mass eigenvalues equal to Mym, Mol and Myec. Then the light neutrino
mass matrix given by the seesaw formula is

T T T
— a2 q)atmcbatm + b2 (DSOICDSOI + 6‘2 quec(I)dec
Maim Mo Mec

my , (2.3)
where we have dropped an overall minus sign which is physically irrelevant. The lepton mixing
matrix is exactly the golden mixing pattern Ugg for the alignment @,y o @3, Pgo) x Py and
Dgec x @y [31].

The Littlest seesaw combines two right-handed neutrinos model with the indirect ap-
proach [9]. In this framework, two right-handed neutrinos N ;‘;m and N 15?01 are introduced, and the
third right-handed neutrino is assumed to be almost decoupled (i.e. Mgec > Mam, Msol)- N;“Jm
dominantly contributes to the seesaw mechanism and is mainly responsible for the atmospheric
neutrino mass ms. N;Ol is sub-dominant and is mainly responsible for the solar neutrino mass
my while the lightest neutrino mass m is zero in this limit. In the flavor basis where both the
charged lepton mass matrix and the right-handed neutrino Majorana mass matrix are diagonal,
the generic Littlest seesaw Lagrangian can be written as

- . - ! 1 —_— 1 — .
L= _)’atmL~¢’atmN1‘$tm - YS01L~¢501N;201 - 5 atm (N}?m)‘N}?m - EMSOI(NISQOI)CN;QOI +h.c. )
(2.4)

where L denotes the electroweak lepton doublets which are unified into a triplet representation
of the flavor symmetry group, the flavons ¢, and ¢ can be either Higgs fields transforming
as triplets under the flavour symmetry, or combinations of a single Higgs electroweak doublet
together with triplet flavons. Then @,y and Py in Eq. (2.3) arise from the vacuum expectation
values (VEVs) of ¢go1 and ¢am respectively.

3. Golden Littlest seesaw

The Littlest seesaw approach [15] assumes that both vacuum alignments &g, and @4y, are or-
thogonal to @1, in order to preserve the first column of the mixing matrix. Thus we shall choose
@, to be either ®, or 3, and take D) to be a general vector orthogonal to @1, as illustrated
in Fig. 1. Furthermore we shall fix the alignment of @y, by appealing to remnant symmetry,
which is a generalisation of the direct approach. To be more specific, we assume that the As
group is broken to the abelian subgroup G; = ZST in the charged lepton sector, the vacuum align-
ments Py and Py preserve different residual symmetries Gy and Ggo respectively while
the As flavor symmetry is completely broken in the entire neutrino sector. The GLS approach is
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Fig. 1. The vacuum alignment in the Littlest seesaw model. &1, ®, and ®3 are the three columns of the golden ratio
mixing matrix. The alignment vector @ is either @, or @3, and Py is a general vector orthogonal to P .

Gy

Gam“ Gsol

Fig. 2. A sketch of the indirect model building approach, where the charged lepton preserves a residual subgroup Gy, and
the neutrino vacuum alignments ®atm and g4 are enforced by the residual symmetries Gamm and Ggg respectively.

schematically illustrated in Fig. 2. In our GLS model, as stated above the alignment vector @y
is orthogonal to @1, its most general form is

Dot o (V2. ¢+, ¢—x)T. 3.1
We find there are five possible values of x related to certain residual subgroups of As,

x=0, Gy = Z2T3ST2ST37

x =2i¢*sin 2?” Goor = 257757,

x = —2i¢2sin 2?” Gyo = 217575, (3.2)

x = —2isin %, Gsol = Z5TST2,

x=2i sin%, G501=Z5T25T,

where the generators of G are represented by
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L (-1 V2 V2
T3ST25T3=7 V2 =19 ¢ |,
S\V2 6 —l/p
| ~1 V2o V2
ST2ST? = NG V2e's %9 o Fo |,
«/5674% 674[5”¢ e%/qb
| —1 «/Zem?n \/iefm%
T3STZS= — \/E e_'T/Qﬁ e_mT”d) s
NG din in
V2 eS¢ es /¢
| 1 . «/5 -5 «/Ze%
TST>= — | V25 e3¢ 5 /p |, (3.3)
\/5 3im 2im _in
V2es e g e g
| 1 ' \/Ze_s% \/E_e%Tn
T2ST= — ﬁg_% e%d} (32’%/(1)
\/§ i _2im _im
V2es eS¢ T ¢

for the triplet 3. Accordingly the vacuum alignment of the solar flavon ¢ is:

x=0, Oy = (fz, @, qb)T,

2
x=2i¢2sin?n, D = ([ 24245 2¢2e—2m/5>
2
= —2i¢>sin ?’T G = (V2. 2677575, g7 zm/s) G
x=-=2i sin%, Dy = (f 2e~i7/5 2e”’/5)

. , T
x = 2isin % Do = (V2. 26715, 267719)

In our framework, another alignment vector @,y is assumed to be along the direction of &3
or ®,. In the following, we shall firstly discuss the case of @,y o ®3, another alignment
Dym x D5 is studied in Appendix B. For this case, the vacuum @&, reads as

Do x (0, 1, — DT, (3.5)

. .. . . 3 2¢73 . .
which is invariant under the action of the ZZT ST"ST™S subgroup. Consequently the Dirac neutrino
mass matrix Mp and the right-handed neutrino heavy Majorana mass matrix My are given by'

0 V2b
Mp=|-a @-—xb], My = (Mgtm MO ) (3.6)
a (¢+x)b ol

' The contraction of two triplets into singlet is (af) = o181 + apf3 + @3B, where @ = (1,2, @3) and 8 =
(B1, B2, B3) denote two As triplets.
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Integrating out the right-handed neutrinos, the light effective Majorana neutrino mass matrix is
approximately given by the seesaw formula

my=—MpMy'MJ

0 0 0 4 2 V2¢—-x) N2 +¢)
=ma |0 1  —1|4+me [ V20¢p—x) (—-¢)2 —x24+¢+1],@37
0 -1 1 V2 +¢) —xr+o+1  (x+¢)?

where m, = |a|2/Matm, mp = |b|2/M501, the relative phase n = arg(b2/a2), and an overall phase
of m, has been omitted. Therefore four parameters m,, mp, x and n describe both the neutrino
flavor mixing and neutrino masses. One can check that neutrino mass matrix m, of Eq. (3.7)
satisfies

¢

7

1| _
m, e | =

1

24/5¢

This implies that the column vector (— /%, /ﬁ, ﬁ)r is an eigenvector of m, with a

zero eigenvalue. As a result, the first column of the PMNS mixing matrix exactly coincides with
the GR mixing pattern, and the corresponding light neutrino mass vanishes m; = 0. In order to
diagonalize the above neutrino mass matrix, we firstly perform a golden ratio transformation and
obtain

(3.8)

(==l e> i)

00 0
m, =Ulpem,Ugr={0 y z (3.9)
0 z w
where
y=2v5¢mp e,
2=2x/¢ +2mp e,
w = |w|e'? =2(my + x> mp ') . (3.10)

The neutrino mass matrix m, in Eq. (3.9) by diagonalized through the standard procedure, as
shown in Ref. [32]. We have

U'Tm Ul = diag(0, ma, m3), (3.11)
where the unitary matrix U, can be written as
1 0 0
U,=|0 cosfelVr/2 sinf ¢! W+o)/2 | (3.12)

0 —sin@eV+P/2 cosf el (Y H0)/2

We find the light neutrino masses m> 3 are

1 lw|? — [y?
m% =5 [|)’|2 + wf* +2z* - T eos20
1 lw|? — |y[?
2 2 2 2
= - 2 _ 3.13
mj 7 |:|y| + |w|” +2|z]7 + o320 ( )



G.-J. Ding et al. / Nuclear Physics B 925 (2017) 470-499 477

The rotation angle 6 is determined to be

—2ize /|y + |w]? — 2|y||lw| cos(¢w — 1)
\/<|w|2 — [y2)2 + 42 [Iy2 + [w]2 — 2Iyl[wlcos(u — )]
lw|* —|y[?

J(|w|2— V22 + 4z [Iy12 + [w]2 = 2|y|lw| cos(¢w — )]

The phases ¥, p and o are given by

sin26 =

cos26 = (3.14)

Iyl = lw[cos(dw — 1)

siny = s

VIV + w2 = 2[y[lw|cos(dy — 1)
lw] sin(gw — 1)

cosyr = )
Iy + w2 = 2[y|lw|cos(¢y — 1)

sinp = — (m3 = z*) cos n — | yllw| cos ¢
may/ |y 2 + [w|? = 2|y||w| cos(¢w — 1)
—(m3 — |z|*)siny + |y||w|sin ¢y,

CosS p = s
may/ |y + [w|? — 2|yl |lw| cos(¢y — 1)

. (m3 — |z*) cosn — |yl|w| cos ¢

SINc = —

m3y/|y1? + [w|? = 2|yl|w|cos(¢y, — 1)
—(m3; — |z sinn + w| s
cosg = —m3—lzP)sing + yllwlsing, G.15)
m3y/|y12 + [w|? = 2|y||w| cos(¢w — 1)

Thus the lepton mixing matrix is determined to be

U=UgrU,
—2¢ V2cos8 V26V sin6
_ L 1 ¢cost +/p+2sinfe ™V psinfeV —/p+2cos | Py,
259 1 pcos — /P +2sinfe” ™V psinbde’V + /P + 2cosh
(3.16)
with
P, =diag(l, ! VP2 iV H0)/2y (3.17)
The most general leptonic mixing matrix in the two right-handed neutrino model can be param-
eterized as
ci2c13 S12€13 sizeiocr
U= | —si2c23 — c12513523€'°CP c1pe3 — s12s13503€'°¢P ci3s23 | diag(l, Eig, D,

idcp

is
$12523 — C12813C23¢€ —C12823 — $12513¢23€'°CP C13€23

(3.18)

where c;j = cos6;;, s;j = sinb;;, §cp is the Dirac CP violation phase and g is the Majorana CP
phase. Note that a second Majorana phase is needed if the lightest neutrino is not massless. Then
we can extract the expressions for the lepton mixing angles as follows
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Gin20 sin 0 Gin20 cos? o
13 = s 2= —F= "F5 >
V5¢ V5¢ —sin®6
1 /3+4¢ sin26
ingpy = L _ Y3 T Ao sin2fcosy (3.19)

2 2(+v/5¢ — sin®6)
Eliminating the free parameter 6, we see that a sum rule between the solar mixing angle 61, and
the reactor mixing angle 613 is satisfied,

2 2 ¢
cos“fipcos“ O3 = —. (3.20)
V5
Using the best fit value of sin® 013 = 0.0215, we find for the solar mixing angle
sin? 01, ~ 0.261, (3.21)

which is within the 30 region [1]. As regards the CP violation, two weak basis invariants
Jcop [33] and I; [34] associated with the CP phases ¢ p and B respectively can be defined,

1
Jep =3(UnU3URUS) = 3 sin 201, sin 2013 sin 26,3 cos 813 sindcp ,

2 *2 1 2 2 .
1 =3(WURHUT) = ; sin® B sin® 26013 sin(8 +25cp) (3.22)

For the mixing pattern in Eq. (3.18), these CP invariants turn out to be
sin 20 sin Y 1
JCP =, [1 = 2
45612 20¢

Since Jc p and all the three mixing angles depend on only two parameters 6 and i, we can derive
the following sum rule among the Dirac CP phase §¢p and mixing angles

2)(1 + sin®613) — 5cos2 0
cossep = P TDUFSINTOB) Z5¢05013 o - cot26ss. (3.24)

2J/(¢+2)(5c0s26013— ¢ —2)

For maximal atmospheric mixing angle 8,3 = 7 /4, this sum rule predicts cosécp = 0 which
corresponds to maximal CP violation écp = m /2. The mixing angles, CP phases and mass
ratio mp/m3 depend on the x, n and r = mj/m, while m, and m3 depend on all the four input
parameters x, n, m, and mj. By comprehensively scanning over the parameter space of 1 and r,
we find that the experimental data on the mixing angles and mass squared splittings can be
accommodated only for the values of x = 2i¢? sin 2?” In Table 1 we present the predictions for
the mixing angles and CP violation phases for some benchmark values of the parameters n and r.
It is remarkable that both atmospheric mixing angle and Dirac phase are maximal for n = 0, all
the mixing angles and mass ratio m% / m% lie in the experimentally preferred 30 ranges except
that the reactor angle 613 is a bit smaller. This tiny discrepancy is expected to be easily resolved
in an explicit model with small corrections or by the renormalization group corrections [35].
Notice that the same predictions for the mixing angles and maximal §cp can be obtained from
the approach of combining As flavor symmetry with generalized CP [22,29,30], but we have
additional prediction for the neutrino masses here even if the CP symmetry is not introduced in
the present context. We can check that the neutrino mass matrix m,, in Eq. (3.7) has the following
symmetry properties

sin? 20 sin(p — o). (3.23)

my(n, x = £2i¢*sin 27 /5) = Plym,(, x = F2i$? sin27/5) Pa3,
my, (1, x = +2i¢? sin27/5) = m*(—n, x = F2i¢? sin27/5) (3.25)
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Fig. 3. Contour plots of sin? 013, sin? 03 and mo/m3 in the n — r plane for the golden Littlest seesaw with @y o< O3.
Here we take x = 21'(}52 sin(2rr/5) and x = —2i¢>2 sin(2mr/5) for which the solar vacuum alignment @, preserves the
2973 3g72
residual symmetry Ggo) = zS5T7ST" and Gyl = Z3T STS respectively. The 30 upper (lower) bounds of the lepton
mixing angles are labelled with thick (thin) solid curves, and the dashed contour lines represent the corresponding best
fit values. The 30 ranges as well as the best fit values of the mixing angles are adapted from [1]. The black contour line

refers to maximal atmospheric mixing angle with sin? 623 =0.5.

with

— o O

1 0
P3=|0 1]. (3.26)
0 0

As a consequence, the same reactor and solar mixing angles are obtained for x = 2i¢?sin 2?”

and x = —2i¢? sin ZT”, while the atmospheric angle changes from 6,3 to /2 — 6>3 and the Dirac
phase changes from §cp to w + 6¢cp. Moreover, all the lepton mixing angles are kept intact and
the signs of all CP violation phases are reversed under the transformation x - —x and n — —n.
For the fixed value of x = £2i¢?sin 2?” , all the mixing angles, CP phases and mass ratio m% / m%
are fully determined by r and 7, and the correct neutrino mass m; can be achieved for certain
values of mj;. We show how these mixing parameters vary in the plane n versus r in Fig. 3.
It can be seen that the measured values of the mixing angles and the neutrino masses can be
accommodated for certain choices of  and r.

4. A benchmark model for the golden Littlest seesaw

We have tabulated many simple admissible values of n in Table 1. It is remarkable that the
trivial value n = 0 leads to exactly maximal atmospheric mixing angle and maximal Dirac CP
phase which is preferred by the present experimental data from T2K [36] and NOvVA [37], the
experimental data on solar and reactor angles and neutrino masses can be accommodated as well.
In this section, we shall present a supersymmetric A5 model which can realize the above golden
Littlest seesaw scheme. In order to understand the origin of the phase n = 0 we shall also impose
a CP symmetry compatible with As at high energy scale. The CP transformations can not be
defined arbitrarily in the presence of a flavor symmetry, and certain consistency conditions have
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Table 1
Predictions for all the lepton mixing angles, CP violation phases and m% / m% in the golden Littlest seesaw with
®atm x @3. Here we choose many benchmark values for the parameters n and r.

n r x sin2 63 sin2 012 sin? 63 Scp/m B/ m3/m3
0 0.0177 +2i¢? sin 2 0.0164 0.264 0.5 F0.5 0 0.0309
+ 0.0185 £2i¢? sin 22 0.0174 0.264 0.614 F0.331 F0.210 0.0302
+ 0.0185 F2i¢? sin 2 0.0175 0.264 0.385 +0.670  F0.211 0.0304
+ 0.0183 £2i¢? sin 2 0.0172 0.264 0.605 F0.345 0.192 0.0303
+ 0.0184  F2i¢?sin Z 0.0173 0.264 0.394 +0.655 F0.192 0.0305
+ 00182  +2i¢?sin 2 0.0171 0.264 0.597 F0.357 F0.176 0.0304
+ 0.0183 F2i¢? sin 2 0.0172 0.264 0.402 +0.643 F0.177 0.0306
+ 00182 +2i¢?sin 2 0.0170 0.264 0.591 0.368 F0.163 0.0304
+L 00182 F2i¢?sin 2 0.0171 0.264 0.409 +0.632 F0.164 0.0307
+ 0.0181 £2i¢? sin 2 0.0169 0.264 0.585 F0.377 F0.152 0.0305
+ 0.0181 F2i¢? sin 2 0.0170 0.264 0.415 +0.623 F0.152 0.0307
+ 00180  +2i¢?sin 2 0.0168 0.264 0.580 F0.385 F0.142 0.0305
+ 0.0181 F2i¢? sin 2 0.0169 0.264 0.420 +0.616 F0.142 0.0308
+ 0.0180  +2i¢?sin 2 0.0168 0.264 0.575 F0.391 F0.134 0.0306
+ 0.0180  F2i¢?sin 2 0.0169 0.264 0.425 +0.609 F0.134 0.0308
+ 00180  +2i¢?sin 2 0.0167 0.264 0.571 F0.398 F0.126 0.0306
+ 00180 F2ig?sinZ 0.0168 0.264 0.429 +0.603 F0.126 0.0308
+ 0.0179 £2i¢? sin 2 0.0167 0.264 0.567 F0.403 F0.119 0.0306
+5 00180  F2i¢?sinZ 0.0168 0.264 0.432 +0.597 F0.119 0.0308
+% 0.0179 +£2i¢? sin 2 0.0167 0.264 0.564 F0.408 F0.113 0.0306
=% 0.0179 F2i¢? sin & 0.0167 0.264 0.436 +0.592 F0.113 0.0308
+ 0.0179 +2i¢? sin & 0.0166 0.264 0.561 F0.412 F0.108 0.0306
% 0.0179 F2i¢? sin & 0.0167 0.264 0.439 +0.588 +0.108 0.0308
% 0.0179 +2i¢? sin & 0.0166 0.264 0.558 F0.416 F0.103 0.0307
+% 0.0179 F2i¢? sin & 0.0167 0.264 0.442 +0.584  ¥0.103 0.0309
+Z 0.0179 +2i¢? sin 2 0.0166 0.264 0.556 F0.420  ¥0.0982  0.0307
+X 0.0179 F2i¢? sin ZZ 0.0167 0.264 0.444 +0.580  ¥0.0983  0.0309
+3 0.0184  +2ip?sin 2Z 0.0173 0.264 0.610 F0.338 F0.201 0.0302
£ 0.0184  F2i¢?sin 2 0.0174 0.264 0.390 +0.662 F0.201 0.0305

to be satisfied [38—41]. It turns out that the viable CP transformations which can be consistently
combined with As flavor symmetry are of the same form as the flavor symmetry transformations
in our working basis [22]. The model employs an auxiliary symmetry Zs x Zs x Z; which
are necessary to eliminate unwanted couplings, to ensure the needed vacuum alignment and to
reproduce the observed charged lepton mass hierarchies. The three families of the electroweak
lepton doublets L are unified into a triplet of As while the right-handed charged leptons ¢, ©©,

¢, the right-handed neutrinos vy, v, and the two Higgs doublets H,,, Hy are all singlets of As.
The relevant flavon fields and how they transform under the flavor symmetry As x Zg x Zs X Zj
are collected in Table 2. We shall consider three different sets of flavons, one responsible for the
breaking to Gy, one for the breaking to G, and one for the breaking to G,1. Now we proceed to
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Table 2

The lepton, Higgs and flavon superfields and their transformation properties under the flavor symmetry As x Zg x Zs x
Z;, where w5 = e27i/5 and we = ¢¥71/6 In addition, we assume a standard U (1) R symmetry under which all lepton
fields carry a unit charge while the Higgs and flavons have zero charge.

L e uc ot Vgtm U§01 Hu,d D1 2] Yy Aam  Yatm Patm  Satm  Psol  Xsol  Esol
As| 3 1 1 1 1 1 1 3 3y 5 4 3 3 1 3 5 1
Zg| 1 wg o} o) 1 1 1 we wf o 1 1 1 1 1 1 1
Zs| 1 1 w§ w5 w5 1 1 wg wg a)g a)g wé a)‘j‘ a)g 1 1 1
zZelro1o1 11 wes [ R R 1 1 1 ot ol ol

Table 3
The driving fields and their transformation properties under the flavor symmetry

As X Zg x Z5 x Zg, where o5 = e21/5 and wg = 2710,
O’O ],’0 wO AO A/O ¢2[m XO X/O
As | 1 4 5 4 4 3 5 5
z 4 3 4 1 1 1 1 1
S T T
Zs w5 5 w5 wgl wg wg 1 1
zl 1 1 1 1 1 1 w? w?

. . T
show that the desired vacua @ o (0, —1, 1)7 and &g o (\/5, 292 27/3, 2¢262‘”/5) can
be really accomplished.

4.1. Vacuum alignment

We shall exploit the supersymmetric F-term alignment mechanism to generate the appropriate
vacuum alignments of the flavor symmetry breaking flavons. The necessary driving fields and
their transformation properties under As x Zg x Zs x Zj are given in Table 3. The driving fields
are indicated with the superscript “0” and they carry two unit U (1) charge. The assignments
of the flavon and driving fields are properly chosen such that the vacua of the charged lepton
flavons, atmospheric neutrino flavons and solar neutrino flavons are aligned separately at the
renormalizable level.

We can read out the most general renormalizable driving superpotential invariant under As x
Zg x Zs x Zj as follows,

wg = wh + wi™ 4w, (4.1)
with
I _ 0 0 0 0 0
w,; = My (w 1#1) + /i <lﬂ ¢1¢1) + /2 (U ¢1¢1> + /3 (7) ¢z<,01) + fa (7) ¢11ﬁ1> ,
U)Ztm =41 (AOAathatm> + &2 (AOAatm> Eam + Ma (A/OAatm> + &3 (A/0¢atm(patm)
+ g4 (¢gtm¢atm) Earm + 85 <¢gthatm(Patm) s
w[siol = M)( <X0Xsol) + h (X0¢sol¢sol) +hy (X/OXsol) &l + 13 (X/O (Xsoleol)sl)

+hy (XIO (Xsoleol)Sz) ) 4.2)
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where we indicate with (...) the contraction into a trivial singlet 1 and (...)r a contraction
into the As irreducible representation R. Notice that the mass parameters My, M, M, and
all coupling constants f;, g;, h; are real because we impose CP as a symmetry of the model.
The vacuum configuration of the charged lepton flavons ¢;, ¢; and ; is determined by the
superpotential wé, and the corresponding F-term conditions are

awfl 2
950 = 12 (¢1,1 + 2¢1,2¢1,3> =0,
% =My 1 +2f (¢2 —¢12¢13) =0
aw? » 1,1 , ,
Bwé
—o =Myiis - 2V3fidrignz =0
0,
Bwé 5
—() = MI/!WI,4 + \/gfl(plﬁ = 0
81,03
Bwfl )
—4 = My 3+ V6 17, =0
oYy
Bwé
—0 =My¥i2— 2V3fidrigia=0
0vrs
aw!
8—;73 = f3 (\/§¢l,3§0l,1 + ¢1,2<p1,3) + fa (—2~/§¢>z,1¢1,5 —P12V14+ \/&m,gwl’l) =0,
1
ow!
a—ng =f3 (—«/5¢1,1<p1,3 - ¢z,2<ﬂ1,2) + fa <\/§¢1,11ﬁ1,4 + 3o — 245,’31/,,’5) =0,
2
aw!
a—ng =f3 (—«/§¢1,1¢1,2 - ¢1,3<p1‘3) + fa (—x/iqbl,um,g +2¢1 210 — 3¢,,3w4) =0,
3
ow!
3—’73 =f3 (\/5451,2(#1,1 + ¢1,3<ﬂl,2) + f4 (2\/5451,11//1,2 — 61211 + ¢1,31/f1,3> =0.
4
“4.3)
The solution to these equations is
(1) = (0, Ve s O), <(p1) = (O, U(pl,O), <1ﬁl> = (O’ 0, U‘//I’O’ O) , (44)
where
_ 3V6 /1 f4vé, B V6 fi vél
Vo =T W T T (4.5)
f3M¢ Mw

with vy, undetermined. We notice that the alignments of ¢;, ¢; and v; don’t change their direc-
tions under the transformation of the generator T, they pick up a phase factor ws, a)g and a)g
respectively. However, these three directions preserve the symmetry ZSD which is the diagonal
subgroup of Z ST C As and the auxiliary Zs symmetry. As we shall see below, this residual sub-
group Z5D is responsible for guaranteeing a diagonal charged lepton mass matrix. In a similar
way, the F-terms of the driving field A° are given by
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8watm
8A0 =81 ( am,2 T 2Aatm, 1 Aatm, 3) + g28atm Aatm,4 =0,
8wdtm
8A0 =481 (Aatm 4 T 2A4m,1 Aatm, 2) + g286atm Aam,3 =0,
8watm (4.6)
8A0 =81 ( atm, 1 + 2Aatm,3Aatm,4) + g26atm Aatm,2 =0,
awatm Az 5 B
0 — 81 atm,3 + 2Aatm,2 Aatm,4 ) + gZEathatm,l =0,
3A4
which lead to the vacuum alignments of A and &, as follow
82
<Aatm) = (UAatm’ vAatm’ UAatm’ vAalm) ’ <‘$;:atm> = véatm’ vAalm = _Evfmm : (47)

The minimization equations for the atmospheric neutrino flavons are given by

awatm
8A/0 = MnaAam,4 + &3 <¢atm,2fpatm,3 + ﬁd’atmj‘/’atm,l) =0,
8watm
aA/O = MaAam3 + 83 < @atm,2@atm,2 — \/_(patm 1Patm, 3) =
8watm
aA/O = MAAym,2 + &3 <_¢atm,3§0atm,3 - \/Eqbatm,l(patm )
awalm
aA,O =Mx Aatm,l + g3 <¢atm,3fpatm,2 + \/§¢atm,2(ﬂatm,l) =0,
awatm
= g4€atm¢atm,1 - \/585 (Aatm,2¢atm,3 + Aatm,3§021tm,2) =0,
8d)atm 1
8watm
= g4gatm¢atm,3 + g5 (Aatm,lfpatm,?: - Aatm,2(,0atm,2 + \/zAath@atm,l) =0,
ad’atm 2
awatm
345 = g4€atm¢atm,2 + g5 (_Aatm,3§0atm,3 + Aatm,4(/)atm,2 + \/EAatm,lfpatm,l) =0.
atm,3

4.8)

Considering the already aligned directions of A in Eq. (4.7), we find an extremum solution to the
above equations

<¢atm> = (0, Vepatm » _U¢mm) , (‘ﬂatm) = (07 Vgatm » _Ugomm) . 4.9)
The VEVs vy, Vg, and vg,,, are related through

2 84 28285
v, =— Mave,,,, Vbam = 7—— Vgt - (4.10)
am T Dgags o T 3grga
We can check that the VEVs of ¢am, @am, Aam and &y are eigenvectors of the ele-
ment T3ST2ST3S corresponding to the eigenvalue 1, therefore the vacuum of the atmo-

spheric neutrino flavon preserves the subgroup Z, ST . Moreover the ratio v i/ Veam =

—28285MA/(981 g384) is real. For the solar neutrino flavons, the F-flatness gives rise to
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awsol
= Mx Xsol,1 + 2hy (‘»bgol 1 ¢sol,2¢sol,3) =
8)(1
awsol
= My Xsol,5 — 2v/3h1¢so1, 195013 = 0
8)(2
awsol
= My Xsol,4 + \/6h1¢5201,3 =0
8)(3
8wsol
= My xsol,3 + V61192, =0
8)(4
8wsol
= My xs01,2 — 28/ 31 ¢so1, 1 Pso1,2 = 0
8)(5
awsol 5
5 = h2§soleol,l + 2h3 (Xsol,l + Xsol,2 Xsol,5 — 2Xsol,3Xsol,4)
Xl
+2hy (X5201,1 - 2Xsol,2Xsol,5 + Xsol,3Xsol,4> =0,
8wsol
9 = h2§soleol,5 +2h3 (Xsol,leol,S + “/EXSOI,ZXSOIA)
Xz
+hy <_4Xsol,1Xsol,5 + \/6)(5201,3) =0,
8wsol
5 = h2&s01 Xsol,4 + 13 (_4Xsol,1Xsol,4 + \/gXSZOLS)
X3
+2hy4 (Xsol,leol,4 + \/6X501,2X501,3) =0,
awsol
8)( = h2&s01 Xs01,3 + 113 <_4Xs0],1 Xsol,3 + \/6)(5201’2)
4
+2hy4 (Xsol,leol,S + \/ng01,4)(501,5) =0,
awsol
3)( = h2§so]Xsol,2 +2h3 (Xsol,l Xsol,2 + \/6X30],3Xs01,5)
5

+ hs (—4ts0n 1 0012 + VOX314) =0, (4.11)

from which we can extract the vacuum expectation values for ¢gol, £501 and xso1 as follow

(sot) = (V2,265,227 Y u (o) = vy

(4.12)
<Xsol ([ 2@2”1/5/(1) 26 lﬂ/s(p 2617'[/5¢ 287217T/5/¢> UXS()I

up to symmetry transformations belonging to As. Furthermore, the VEVs vy, v, and ve, are
related via

hi(hs — ha)vg
— = T la oy =262+ Vo 5) 2 i . (4.13)

=24(5+2v5 ,
Ussol ( + \/_) hZMX X
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The vacuum configuration of g0, xsol and &g shown in Eq. (4.12) is the most gen-

B . 2 3
eral one invariant under the subgroup Z2ST ST

2\/§)h2MX/ (120h1(h3 — ha)) is real in our setup with imposed CP symmetry. It is worth to
observe that since the three abelian factors in Zg x Zs x Z are complementary for the charged
lepton flavons {¢y, ¢;, ¥}, the atmospheric neutrino flavons {Aam, @atm, Patm, Eaem} and the solar
neutrino flavons {@so1, Xsol, &sol}, the interaction between these three sectors can arise only at a
relative order 1/A2. As a consequence, the vacuum alignments in Eqgs. (4.4), (4.7), (4.9), (4.12)
are independent up to 1/A2.

. Notice that the ratio vésol Jvgy = 6 —

4.2. The model

With the symmetries and superfields listed in Table 2, we can then write down the most rele-
vant operators for charged lepton masses

wy =257 (Lgn) Hy + 5w (L (wzlﬂz)s) Ha+ 22 1 (L (¥1v)3) Ha
e e ((L¢1)s (@191)s) Ha
+ 256 (L0 (pv)s) Ha + =5 ¢ ((Ln)s (@rvn)s) Ha
+ 25 (Len) (Vrvn) Ha + 25 6 ¢ ((L¢>1)3 (W1v)3) Ha
y e ((Lgn)s Wrvn)s,) Ha + = Yol o ((Lon)s (Yrv)s,) Ha (4.14)
where all the couphngs Yer Ypls Y2 and Yo (l =1,...,8) are real since we impose CP as a

symmetry on the model. After the electroweak and flavor symmetry breaking, taking into account
the alignment of ¢;, ¢; and v in Eq. (4.4), we find the charged lepton mass matrix is diagonal
and the charged lepton masses are given by

—\/§ % (3ye,2vél + (Ye,S - \/gye,ll)v(p[ Vyy + 3Ye,8vil> 0 0
m; = 0 _fyﬂ IUWU‘//I 0 v,
0 0 Yoo

(4.15)

where vg; = (Hy). The symmetry Zg x Zs imposes different powers of ¢;, ¢; and ; for the
electron, muon and tauon terms. Therefore the hierarchy of masses is naturally obtained. As
already pointed out, the Zg x Zs5 x Z charge assignments in Table 2 determine that the nontrivial
higher order corrections arise only at the relative order 1/A3 with respect to the terms already
considered in w;. Hence higher order corrections are completely negligible.

As for the neutrino sector, the light neutrino masses are generated via the type-I seesaw
mechanism with two right-handed neutrinos. With the charge assignments in Table 2, the lowest
dimensional operator responsible for neutrino masses are

Ysol
(Lpatm) Hy vy + jf

y atm

wy = (Lgsol) Hy vsol + xatmvatm atmgatm + xsolvsol Vsol&ol s

(4.16)

where the four coupling constants yam, Ysol, Xatm and xso are real because of CP conservation.
Inserting the vacuum alignments in Eq. (4.9) and Eq. (4.12), we obtain the Dirac and right-handed
Majorana matrices
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O ﬁysol v¢sol/A 0
; Xatm VE,
Mp = _)’atqubmm/A 2¢2€—2m/5ysolv¢501/A Uy, My = ( atmO am St ) ,
. SO1 ¥ &s0l
Yatm Vb / A 297> ™y Vot / N
(4.17)

where v, = (H,). After applying the seesaw formula, the effective light neutrino mass matrix
can be written as

2 .2
Ul% [ yatm v‘patm 0 O 0

m, =——% 0 1 -1
’ A2 Xatm v%‘atm 0 _ 1 1
y2 12 2 229267 27/5 2/2¢22im/5
IOl [ S5p2p2in/5 4pdedin/s 4% @.18)
Xsol Vg 2\/§¢262i7[/5 4¢4 4¢4e4i”/5

We see that this neutrino mass matrix is of the same form as Eq. (3.7) but with fixed value
x =2i¢?sin 2?” Furthermore we can read out the parameters m, and mpe'”,

2 .2 2 2 .2 2
o yatmv¢alm v_u mbeir) - _ y501U¢sol v_u

mg = y .
Xatm Vg A2 Xs0l Vo) A2

(4.19)
As we have shown in section 4.1, both ratios vémm / Ve and véml /vg,,, are fixed to be real in our
setup. Consequently the phase 7 is trivial, to be more specific, 1 is equal to O for the combination
83848sh1h2(h3 — hg)xamXsolMaMy < 0 and 7 for gzgagshiha(h3 — ha)xamXsoMaMy > 0.
Thus the neutrino mass matrix satisfies the pt reflection symmetry such that both atmospheric
mixing angle and Dirac CP phase are maximal [42], and the experimental data on lepton mixing
angles and neutrino masses can be accommodated, as displayed in Table 1. In summary, the
golden Littlest seesaw neutrino mass matrix is exactly reproduced in the present model.

5. Conclusion

The Littlest Seesaw approach assumes that a different residual flavour symmetry is preserved
by each flavon, in the diagonal mass basis of two right-handed neutrinos, leading to a highly
predictive set of possible flavon alignments for the charged leptons and neutrinos. The Littlest
seesaw model can thereby give a successful description of both neutrino mixing and the light
neutrino masses in terms of four input parameters. The case of S4, discussed in earlier work,
leads to the lepton mixing matrix being predicted to be of the TM1 form. The neutrino mass
spectrum is normal ordered and the lightest neutrino is massless. Moreover, CP violation in
neutrino oscillation and leptogenesis arises from a unique single phase such that they are closely
related. Therefore the Littlest seesaw model is quite predictive and attractive.

In this work, we have investigated whether the Littlest seesaw is confined to TM1 mixing,
or is of more general applicability. We have performed a comprehensive analysis of possible
lepton mixing which can be derived from the As flavor symmetry group within the paradigm
of the Littlest seesaw. The general principle of the Littlest seesaw is that different sectors of
the Lagrangian preserve different residual subgroups of the flavor symmetry [15]. This idea is
illustrated in Fig. 2. If the residual symmetry of the charged lepton sector is G; = Z5T which
enforces the diagonality of the charged lepton mass matrix in the 7 generator diagonal basis,
_ ZZT3ST2ST3S or G = Z2T3ST2ST3

the subgroup Gy is preserved by the atmospheric flavon,
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and solar flavon ¢, breaks the flavor group As into Ggo = Z3STZST3 or Gy = Z3T iST?S , the
first column of the golden ratio mixing matrix is preserved. The experimental data on the lep-
ton mixing angles and neutrino masses can be accommodated for certain values of the input
parameters m,, m; and 1 except that the reactor angle 613 is predicted to rather close to its 3o
boundary. This could be easily reconciled with the experimental results in an explicit model with
small subleading corrections or by considering the third almost decoupled right-handed neutrino.
Moreover, many numerical benchmark examples are found. The most remarkable point is n =0
for Gam = Z2T3STZST3S and n =7 for Gym = ZZT3STZST3, then both Dirac CP phase dcp and
the atmospheric mixing angle 6,3 would be exactly maximal. This mixing pattern is previously
predicted in the semidirect approach of combining As flavor symmetry with generalized CP [22,
29,30], but here we have additional prediction for the neutrino masses. Furthermore, we mention
that the most simple scenario to obtain maximal 6,3 and §cp is imposing a ut reflection sym-
metry which permutes a muon neutrino (antineutrino) and a tau antineutrino (neutrino) in the
charged lepton diagonal basis [42]. However, the neutrino mixing angles 612 and 613 as well as
neutrino masses are not subject to any constraint from the pt reflection symmetry. In the con-
text of golden Littlest seesaw, the As flavor symmetry enforces the first column of the mixing

T
matrix to be ﬁ (—«/Ed), 1, 1) , such that the sum rule of Eq. (3.20) between 61, and 613 is

predicted.

Inspired by the model independent analysis, we have constructed a benchmark golden Littlest
seesaw model based on the discrete group As x Zg X Zs x Zg. The necessary vacuum align-
ments needed to achieve the remnant symmetries is dynamically realized via the supersymmetric
F-term alignment mechanism. The charged lepton mass hierarchy is correctly reproduced in
our model, because the electron, muon and tau masses arise from operators with one, two and
three flavons respectively. The model fixes the parameter x = 2i¢? sin 2?” , and the relative phase
n =0, 7 is determined by spontaneous CP violation. As a consequence, both atmospheric mix-
ing angle and Dirac CP phase are predicted to be maximal, the other mixing angles as well as
neutrino masses are compatible with experimental data. Moreover, the predictions are protected
from higher order corrections by the full symmetry of the model.

In conclusion, the Littlest seesaw is a general and predictive framework of explaining neu-
trino masses and lepton mixing. All the results of this paper only depend on the assumed residual
symmetries and they are independent of the underlying mechanism which dynamically realizes
the required vacuum alignments. Since all CP violation phases are completely fixed in the golden
Littlest seesaw model, another interesting question is whether the observed baryon asymmetry
of the universe can be generated through leptogenesis and the resulting constraints on the right-
handed neutrino masses. The relevant work will appear elsewhere.
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Appendix A. Group theory of As

As is the group of even permutations of five objects, and it has 5!/2 = 60 elements. Geo-
metrically it is the symmetry group of a regular icosahedron. As group can be generated by two
generators S and 7" which satisfy the multiplication rules [21]:

S2=T>=(ST)’=1. (A.1)

The As group has five irreducible representations: one singlet representation 1, two three-
dimensional representations 3 and 3', one four-dimensional representation 4 and one five-
dimensional representation 5. In this paper we shall work in the generator T diagonal basis.
The generators S and 7 in the five different irreducible representations are chosen as follows,

1: S=1, T=1,
1 V2 =2 1 0 0
3: Szjg-wﬁ - 1/¢ |, T=|0 ws 0],
—V2 /¢ —¢ 0 0
-1 2 V2 1 0 O
3. s=L V2 -1 ¢ |, T=|0 w2 0],
P\VE e e 00 o
1 1/¢ ¢ -1 ws o2 0 0
e =11 ¢ 0 w 0 0
40 S=5 o 1 -1 1/9 | =1y o w: 0|
-1 ¢ 1/ 1 0 0 0 o
-1 V6 V6 V6 6 1 0 0 0 0
V6 1/¢7 =29 2/¢p  ¢? 0 ws 0 0 O
5: S=1i|v6 20 ¢ 1/¢* 2/9|. T=]0 0 wi 0 O [,
V6 2/ 1/¢? ¢F -2 0 0 0 wi O
V6ot 26 29 1/¢7 0.0 0 0 o
(A.2)

where ws = ¢271/5 is the fifth root of unit. Then we can easily obtain the character table of As

group which is reported in Table 4. When performing explicit calculations of As invariant in
model building, we need the Kronecker products and Clebsch—Gordan coefficients. The Kro-
necker products between various representations are of the following form:

19R=R®1=R, 3®3=10305, I3 =10305 3x3I =405,
34=3 0405, 3IR4=30405, 35=303 045,

IR5=303 0405 404=10303 0405, 4R5=303 0405105,
55=10303 04194 D51 D52, (A.3)

where R represents any irreducible representation of As, and 41, 42, 51 and 5, stand for the two
4 and two 5 representations that appear in the Kronecker products. In the following we list the
Clebsch—Gordan coefficients in our basis. We shall use «; to indicate the elements of the first
representation of the product and §; to indicate those of the second representation. The subscript
“S” (“A”) refers to symmetric (antisymmetric) combinations.
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Table 4
The character table of the A5 group, where ¢ represents the golden ratio
6= M
2

R Conjugacy classes

1Cy 15C, 20C3 12C5 12C§
1 1 1 1 1 1
3 3 -1 0 ¢ 1—¢
3 3 —1 0 1-¢ ¢
4 4 0 1 -1 -1
5 5 1 —1 0 0

e 3R3=1sP 34 P55

Is ~ o181 +o2f3 +a3pa,

34~

S5~

aBs —azfs
aifr—azf |,
a3f — a1 B3

20181 — 23 — a3 fr
—V3(1B2 + 21)
V6as
V60383
—V3(a183 + a3B1)

e ¥®I=1503,®55

1s ~ o181 +a2f3 +azf,

56~

B3 —azf
aifr—azf |,
azfr — a1 B3

20181 — a3 —azfo
V6a3 83
—V3(a1p2 + a2B1)
—V3(a183 + a3B)

V6028,

e 3®R3I =45

4~

V20281 + @32
—v2a1 8, — @33
—V20183 — a2

V2a3B1 + 23

)

(A4)

(A5)
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V3a1 1
B — 232
5~ | a1p2 — V2a383
a1B3 — V2282
@3B — 223
e 34=3 0405

—V2(@pBa + a3p)
3~ (ﬁalﬁz —oanf +a3/33) ,
V2183 + @y — azfy
a1 — V238,
—a1Br — V2B
@183 + V203 B4
—a1 B4+ V20283
V6(a2Bs — a3pr)
23201 B1 + 20382
5~ | —V2a1 82 + 2B + 303 p3
V201 B3 — 30282 — a3Ba
—2v2a1 B4 — 20283
e 3 R4=30405

—V2(e2 3 + a3 p2) )

3~ | V2a1B1 + @2fs — o3P

V2184 — a2y + a3

@1B1 + /2033

a1 B2 — V2034

—a183 4+ V2B

—a1Bs — 2022

V6(a2B3 — a3 )

V211 — 30284 — o33

5~ 23201 By + 2034
—2v/2a1 83 — 2w

—V2a1Bs + a2 + 303

e 3R5=303 ®4d5

—201B1 4+ V3a2B5 + /3382

3~ ( V3aiBs +azpi — /6033
V3a1Bs — /624 + a3

(A.6)

(A7)

(A.8)
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V3181 + a2fs + a3 B2
3~ | a1B3 — V20282 — v 2a3P4
a1 s — 20283 — 2035

2V201 82 — V602 B1 + @383
—V 20183 + 20280 — 30384
V2a1 B4 + 3283 — 2a3Ps
—23/2a1 Bs — a2 4 + V603 By

V3(a2Bs — a3pa)
—a1B2 = V3axf1 — V233
S5~ 20183 — V202

201 B4+ V20385
a1Bs + V2284 + V33 i

e 3 R5=303 P45

V3a1B1 + a2fa + a3 ps
3~ | a1f2 — V2285 — V20384
a1fs — V223 — V2038,

—201B1 + /3281 + /3383
3~ | V3o +api — V6035
V3ai1Bs — V62 + a3 pi

V20182 + 30285 — 20384
23201 B3 — /6021 + 3 s
—23/201 B4 — 22 + V6381
—V 20185 + 20283 — 30382

V3(@2Bs — a3B3)

201 B2 + V20384

5~ | —a1B3 — 3oz — V2a3Ps

a1 B4+ 2282 + Va3 pi
—2a1B5 — v/2023

¢ 4R4=103,03, 045D 5s

Is ~a1fa+oafs +a3fr +aspr,
—a1fs+oafz —a3fr+ aspi
34~ V2(2Bs — aaBa)
V2183 — a3pr)

491

(A9)

(A.10)
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a1B4+a2f3 —azfr —aupi
3~ V2(a3Bs — s 3) ,
V2(a1 82 — a21)

24+ a3f3 + aspo

1B+ azfa+ asapfs

a1B2 + 2B+ aspfa

a1B3 +azf2 +a3pi

V31 Bs — B3 — a3Ba + aaP)
—2a2 B4 + 2420383 — V2042

55~ | —2v201 81 + V20384 + V204p3 | - (A.11)
V21 By + V2281 — 24/ 204 B4

—201 B3 + 2320082 — V20381

e 4R5=303F 405,05,

2V2a1 85 — V202 B4 + V2033 — 282042
3~ —/601 B1 + 200285 + 30384 — 04 B3 ;
a1Bs — 30283 — 203 + /604 By
V201 5 + 24/ 2024 — 2420383 — V204 82
3~ 31 B2 — V62 B1 — a3 B + 2004 Ba ,
—201 B3 + a2 2 + V603 81 — 3o Bs
V3a1B1 — V2285 + 2034 — 24/ 204 83
—2a1 82 — 3aa i 4 27203 85 + 24 By
V2183 + 2320280 — N3z pi — N20ups |
—2/2a1 By + V20283 — V203 82 + /3aa B
V20185 — V20284 — V20383 + V204
—V2a1B1 — 334 — V3P
Si~ V3ai1By + V2021 + V33 s )
V3a282 + 20381 + /3 s
—/3a1Bs — V33 — V24
20185 + 4azfa + 4a3 B3 + 2042
4oy B1 + 2+/602 B5

45~

5~ | =601 82 + 20281 — V6035 + 2460 s | (A.12)
23601 B3 — /6022 + 20381 — /604 s
2360382 + 4aa iy

e 5R5=15®3,D03, Pds,1D442D 55,1 D552
1s~a1B1 +a2Bs +a3fs +aafs +asp,
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a2B5 + 20384 — 20483 — 582
34~ | =VBaiBr + V321 + V2385 — 2as5p3 |,
V3aiBs + V2284 — V2042 — V3aspi

20085 — a3 B4 + a3 — 2058
3, ~ VBai Bz — 3a3Bi + V2a4Bs — N 2asBs |,
—/3a1 Bs + V20283 — V2382 + Vs fi

33201 B2 + 3320281 — /33 5 + 4/3aa By — v/3as B

de o~ | 3V200183 + 430y + 320381 — V3o s — V3aspa
51 3V2a1 By — V33 — V33 + 38 2a4 B1 4 4v3asBs |
33201 Bs — /302 fa + 4333 3 — v/3aapa + 32058
V2a1 B2 — V2021 + V33 Bs — /3as B3
4, ~ —201 B3 + V20381 + v3auPs — 3as
A2 —V201 B4 — 30283 + 30z B + 204 By

V2a1Bs — V3az s + V3aaBr — V2as5B

20181 + a2fs — 2384 — 20483 + a5 2
a1B2 + i + /603 Bs + +/6asBs
Ss.1~ —201 B3 + /60282 — 20381 ,
—2a1 By — 2041 + /605 s
a1Bs + V6a2 s + 604 + as B
2a181 — 20285 + a3 fa + a3 — 20582
—2a1 B2 — 20281 + V604 Ba
Sso~ | 1B +azfi+V6aufs +Voasps | . (A.13)
a1Bs + V62 B3 + V603 + i
—2a1Bs + /633 — 205 By

Appendix B. Golden Littlest seesaw with ®,¢;, < ®;

In this Appendix, we shall consider a second possible golden Littlest seesaw model which
corresponds to @, ox @o. Similar to section 3, the most general from of the solar vacuum @
is given by Eq. (3.1), and the atmospheric alignment vector takes the form

B ¢ (fz, o ¢)T , (B.1)

. . 3 2 3
which preserves the residual symmetry Gy = ZzT ST*ST” | Subsequently we can read out the

Dirac neutrino mass matrix Mp and the right-handed neutrino mass matrix My as

V2a  V2b " .
Mp=| ¢a (p—x)b|. My = ( Stm Msol) , (B.2)
pa (p+x)b A

which leads to the following low energy effective Majorana neutrino mass matrix
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Table 5
Benchmark numerical results in the golden Littlest seesaw for the case of ®,tm o< o and x = :|:2i¢2 sin(27/5).
n r X sin? 013 sin? 012 sin? 63 dcp/m B/ m%/m%
b4 0.675 +2i¢? sin 2 = 0.0257 0.257 0.5 +0.5 0 0.0294
+ 4?” 0.670 +2i¢p? sin 2 = 0.0282 0.255 0.535 +0.465 F0.203 0.0293
+ 4?” 0.669 F2i¢p? sin 2 = 0.0282 0.255 0.465 F0.536 F0.203 0.0294
+ 57” 0.671 +2i¢? sin 2 = 0.0275 0.256 0.529 +0.469 F0.169 0.0294
+ 57” 0.67 F2ip? sin 2 = 0.0274 0.256 0.47 F0.531 F0.169 0.0295
+ 67” 0.672 +2i¢? sin 2 = 0.027 0.256 0.526 +0.473 F0.145 0.0294
+ 67” 0.671 F2ip? sin 2% 0.027 0.256 0.474 F0.527 F0.145 0.0295
+ %” 0.673 +2i¢? sin 2 0.0267 0.257 0.523 +0.476 F0.127 0.0294
+ %” 0.672 F2ip? sin 2Z 0.0267 0.257 0.477 F0.524 F0.127 0.0295
+ %” 0.674 +2i¢? sin 2Z 0.0265 0.257 0.52 +0.479 F0.113 0.0294
+ %” 0.673 F2ip? sin X 0.0265 0.257 0.48 F0.521 F0.113 0.0295
+ 91—76 0.674 +2i¢? sin X 0.0264 0.257 0.518 +0.481 F0.101 0.0294
+ 91—76 0.673 F2ip? sin 2 0.0263 0.257 0.482 F0.519 F0.101 0.0295
+ ]P—{T 0.674 +2i¢? sin X 0.0262 0.257 0.517 +0.482 F0.0922 0.0294
+ 1?—{7 0.674 F2i¢? sin X 0.0262 0.257 0.483 F0.518 F0.0922 0.0294
+ 111—2” 0.674 +2i¢p? sin 2 = 0.0262 0.257 0.515 +0.484 F0.0845 0.0294
+ 111_51 0.674 F2i¢? sin 2 = 0.0262 0.257 0.485 F0.516 F0.0845 0.0294
+ llz—f 0.675 +2i¢p? sin 2 = 0.0261 0.257 0.514 +0.485 F0.078 0.0294
+ llz—f 0.674 F2i¢? sin 2 = 0.0261 0.257 0.486 F0.515 F0.078 0.0294
+ 1]3% 0.675 +2i¢p? sin 2 = 0.0260 0.257 0.513 +0.486 F0.0724 0.0294
+ 1]3% 0.674 F2i¢? sin 2 = 0.0260 0.257 0.487 F0.514 F0.0724 0.0294
+ 113—§T 0.673 +2i¢? sin 2 = 0.0268 0.256 0.524 +0.475 F0.135 0.0294
+ 113—? 0.672 F2i¢? sin 2 = 0.0268 0.256 0.476 F0.525 F0.135 0.0295
+ lf—g’ 0.675 +2i¢? sin 2 = 0.0260 0.257 0.512 +0.487 F0.0676 0.0294
+ 1;‘—;’ 0.674 F2i¢? sin 2 = 0.0260 0.257 0.488 F0.513 F0.0676 0.0294
2 V2 V29
my=my | V2¢ ¢+1 ¢+1
V2 p+1 p+1
2 V2@ 1) V2x+¢)
+mpe | V2p—x)  x—9)?  —xP4o+1]|, (B.3)

V20c+¢) —x*+o+1  (x+¢)°

with m, = |a|2/Matm, mp = |b|2/Msol and n = arg(bz/az). This model is rather predictive since
only four parameters m,, mp, x and n can describe the entire neutrino sector. The symmetry
relations in Eq. (3.25) are also satisfied in this case. The neutrino mass matrix in Eq. (B.3) can
be block diagonalized by the GR mixing matrix,

0 0 O

m@:UngUUGRz 0oy z1], (B.4)
0 z w
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Fig. 4. Contour plots of sin? 013, sin? 63 and my/m3 in the n — r plane for the golden Littlest seesaw with ®a¢m ox $5.
Here we take x = 2i¢? sin(2m /5) and x = —2i¢?sin(2m /5) for which the solar vacuum alignment @) preserves the

residual symmetry Ggo = Z3T IsT8 and Gyo) = Zg r2sT3 respectively. The 30 upper (lower) bounds of the lepton
mixing angles are labelled with thick (thin) solid curves, and the dashed contour lines represent the corresponding best
fit values. The 30 ranges as well as the best fit values of the mixing angles are adapted from [1]. The black contour line
refers to maximal atmospheric mixing angle with sin? 623 =0.5.

where
y=Iyle'® =25 (mq +mpe),

2=2x\/¢p +2mpe",

w=2x>mpe'". (B.5)
Furthermore, m/, can be put into diagonal form by performing another unitary transformation
U'"m U = diag(0, my, m3) (B.6)
with
1 0 0
U=|0 cosfeWtr/2 sinf ! W+o)/2 | (B.7)

0 —sin@elC¥+r/2  (ogf el (—¥+0)/2

where the parameters 0, ¥, p and o are determined in terms of x, y, z defined in Eq. (B.5),

~2ize™ Iy P+ [wl? = 2lyllw|cos(d, — )

sin20 = ,
(wl> = [y1)2 4+ 4lz]2[Iy1> + [w]? = 2|y|lw| cos(¢py — n)]
2 v
0826 — [w|®— |yl ,
\/(lez =y + 41z [1y1> + lw]? = 2]yl lw| cos(¢py — n)]
iy — [yl cos(@y —n) — [w]

3

IR+ w2 =2y ||wl cos@y —n)
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Fig. 5. Contour plots of sin2 013, sin2 653 and my/m3 in the n — r plane for the golden Littlest seesaw with ®y¢m o Pg.
As an example, we assume that the decoupled alignment ®ge. o ©1 which gives rise to m; =6 x 1073 eV.

sin(¢py —
cosys — [yl sin(gy — 1) ’
IR+ w2 = 2lyllw]cos(y —n)
. (m3 — z[*) cos 5 — |y||w| cos ¢y
sinp = — ,
ma /Iy + w2 = 21yllw| cos(gy — )
—(m3 —|z[*) sinn + |y||w] sin ¢,
cosp = ,
ma Jly 2 + w]2 = 2]yl Jwl cos(dy — 1)
. (m3 — |z*) cos n — | y||w| cos ¢y
sinc = — ,
ma /Iy + 1wl = 21yllw| cos(@y — )
—(m3 — [z[*) sinn + |y[[w]sin ¢,
CoOSo

ma Iy R+ [l = 21yllw| cos(gy — 1)

The exact expressions for the neutrino masses are given by

m%:O,
1 lwl? —1yI?
2 2 2 2
= — 2 R —
m5 2|:|y| + Jw]” + 2|z] o520
1 lw|? =1y
2 2 2 2
= — 2 _— .
m3 2[Iyl + |lw|* + 2|27 + o520

(B.8)

(B.9)

Furthermore, the charged lepton mass matrix is diagonal due to the Z 5T residual symmetry. There-
fore the lepton mixing matrix U is identical with the one of Eq. (3.16), whose first column is fixed
to be that of the GR mixing matrix. Hence all the mixing angles and CP invariants are predicted
to have the same form as those of Eq. (3.19) and Eq. (3.23) respectively, but their dependence on
the input parameters m,, mp, n and x are different. The sum rules in Eq. (3.20) and Eq. (3.24)
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are satisfied as well. Detailed numerical analyses show that accordance with experimental data

can be achieved for certain values of r = mp/m, and n in the case of x = +2i ¢2 sin %”, and

the corresponding benchmark numerical results are listed in Table 5. The most interesting point
is n = which predicts maximal atmospheric mixing and a maximal Dirac phase. The realistic
values of sin® 6y, and m% / m% can be obtained for r = 1.486 while the reactor angle is slightly a
bit larger. This mixing pattern for n = 7 can also be obtained from As flavor symmetry and CP
in the semidirect approach [22,29,30], the additional bonus in GLS is the prediction for neutrino
masses. As discussed in above, all the mixing parameters as well as mass ratio my/ms3 depend
only on n and r, this dependence is shown in Fig. 4.

If we further take into account the contribution of the third almost decoupled right-handed
neutrino of mass Mgec, for example for the case of ®ge. x @1, the last term of Eq. (2.3) would
contribute to the lightest neutrino mass m| = c? /Mgec, while the neutrino mixing angles, CP
violating phases and the other two neutrino masses are not changed. From Fig. 5, we can see that
better agreement with experimental data can be achieved. The viable regions for sin” 63, sin” 623
and m;/m3 can overlap with each other.
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