
TRiC: Terms, RIghts and Conditions Semantic

Descriptors for Smart Contracts

Luis-Daniel Ibáñez (0000-0001-6993-0001) and Elena Simperl

(0000-0003-1722-947X)

University of Southampton

[l.d.ibanez|e.simperl]@soton.ac.uk

Abstract. Smart Contracts have emerged as a novel way to automate

the execution of contracts in a decentralised and secure environment,

minimising the risk of breach or non-compliance. However, recent research

points out that the same measures that secure Smart Contracts against

disruption with the purpose of breach makes altering the terms, rights

and conditions of contracts difficult. The same research proposes a set of

standards inspired in paper-contract law that Smart Contract platforms

should implement to enable Smart Contract Undo and Alteration. This

paper is about preliminary work on describing terms, rights, and con-

ditions of Smart Contracts as RDF documents linked to them, levering

Semantic Web tools enabling: (i) Definition and checking of complex

rights and conditions (ii) Separation of the terms of the contract from its

execution logic. (iii) Querying and Updating via SPARQL (iv) Alteration

of terms that were not initially considered as modifiable.

Keywords: Smart Contracts, Semantic Web, Smart Contract Update

1 Introduction

Distributed Ledger Technologies (DLTs) have emerged as a novel way to imple-

ment decentralised, disintermediated and tamper-free transactions of value. After

their success as a mean to implement digital currencies [9] that do not require a

bank or intermediate to secure transactions made with them, efforts were focused

to generalise such an approach to the state transitions of programs written in

Turing-Complete languages. Such generalisation would enable the secure, de-

centralised and disintermediated execution of arbitrarily complex interactions

between agents. Following the analogy of a contract between agents, programs

executed in such an environment are known as Smart Contracts. Researchers have

already started to study the applicability of Smart Contracts for online identity

and reputation [10], define interactions between IoT devices [4] and re-imagining

several types of financial services and contracts [6].

A recent work by Marino and Juels [7] highlights an important shortcoming

of Smart Contracts when used to replace paper-based contracts deposited with a

legal intermediary: the improved security and tamper-free properties obstruct

2 Authors Suppressed Due to Excessive Length

the application of desirable undoes and alterations in response to unforeseen

or changing circumstances, raising the following issue: How to undo or alter

terms of Smart Contracts? In the same paper, they propose a set of standards to

bring existing tools for paper-based contracts to the Smart Contract realm, and

show how to implement them as part of their code for the particular case of the

Ethereum platform [1] and its Solidity language [2].

We argue that metadata about the terms, rights and conditions (that we

abbreviate as TRiCs) of Smart Contracts should be separated from their logic

in the same way runtime parameters are separated from the logic of traditional

programs. We propose to encode TRiCs as RDF documents linked to Smart

Contracts that we call TRiC descriptors. Such a decoupling and the use of RDF

and related Semantic Web technologies enables the following desirable properties:

– Improve readability by avoiding boilerplate code

– Reduce the number of re-factorisation and re-deployment cycles. Re-deployment

can be expensive in some Smart Contract platforms (e.g., Ethereum)

– Reasoning capabilities that enable the definition and checking of complex

rights and conditions

– Query and Update of TRiCs via SPARQL, opening the door to mashing and

integration with other contracts, their TRiCs, and the Web of Data

In this paper we describe preliminary work towards the definition and im-

plementation of TRiC descriptors. Section 2 provides a brief overview of Smart

Contracts and the definitions we will be using throughout the paper. Section 3

gives an overview of the requirements defined by [7] for undoing and altering

Smart Contracts, and describes our running example. Section 4 details the TRiC

descriptor proposed approach. Finally, section 5 concludes the paper and provides

an overview of the research questions stemming from the future realisation of

our approach.

2 Smart Contracts Preliminaries

The first definition of Smart Contract was given by Nick Szabo in [8].

Definition 1 (Smart Contract (from [8])). Smart contracts are a combina-

tion of protocols, users interfaces, and promises expressed via those interfaces, to

formalize and secure relationships over public networks.

Smart Contracts enable better ways to formalize digital relationships than paper-

based contracts, reducing costs imposed by either principals or third parties. The

advent of Distributed Ledger Technologies made possible the development of

platforms to code and execute decentralised applications,i.e., parties wanting

to execute a program do not need to trust each other or an external partner to

execute it. Smart Contracts are a natural use case for these platforms, and many

of them were designed with them in mind. We adopt the definition of Smart

Contract given in the White Paper of the Ethereum platform [1].

Title Suppressed Due to Excessive Length 3

Definition 2 (Smart Contract (from [1])). A Smart Contract is a computer

program code that is capable of facilitating, executing, and enforcing the negotia-

tion or performance of an agreement (i.e. contract) using blockchain (Distributed

Ledger) technology.

We will also adopt the programming language of Ethereum, Solidity [2], for

our code examples. Further required definitions are below.

Definition 3 (Smart Contract Platform). A Smart Contract Platform (In

short, Platform) is the infrastructure and machinery required to store and execute

Smart Contracts.

We abstract from the particular implementation of the platform, but we assume

it implements the following affordances: (i) Has in place a system for agents to

get pseudonyms and send messages under these pseudonyms to trigger, halt or

alter contracts. Note that we allow an agent to have as many pseudonyms as

it wants (ii) Each pseudonym has an account that holds cryptocurrency that

may be transferred to contracts to trigger their functions (iii) A function (or a

Smart Contract) that allows several pseudonyms to agree in a certain action, e.g.,

invoke a function of a Smart Contract with the approval of all of them. Every

time we say that pseudonyms or agents agree, we assume they did it through this

function.

Definition 4 (Signatories). Given a Smart Contract, we call signatories to

the set of pseudonyms that have the right to alter it.

Definition 5 (Variable terms). Given a Smart Contract, we call its variable

terms to the subset of its variables agreed by all signatories that can be altered.

Definition 6 (Functional terms). Given a Smart Contract, we call its func-

tional terms to the subset of its functions agreed by all signatories that can be

altered1.

Example 1.1 shows a simplified Smart Contract for a Crowdraise2. We will

use it as a running example for the remainder of the paper. The example defines

a funding goal and two beneficiaries. The contribute function increments the

amount raised in one unit every time is called. The payable keyword enables the

handling by the platform of the transfer of msg.value (i.e., the amount specified

by the caller) units of cryptocurrency from the account of the caller of the

function to the Smart Contract. Once the contract is deployed in the platform,

agents wanting to collaborate can transfer funds to the contract by calling the

contribute function. The withdrawal function checks that the funding goal has

been achieved and that the caller is the first beneficiary, before sending half of

the raised funds to each beneficiary3. We assume that both beneficiaries are also

signatories of the Smart Contract.

1 Functional and variable terms are referred in [7] as Variable-Captured and Function-

Captured terms but not defined
2 Loosely based on the example in https://www.ethereum.org/crowdsale
3 For the sake of brevity, we omit the definition of the FundTransfer function

https://www.ethereum.org/crowdsale

4 Authors Suppressed Due to Excessive Length

Example 1.1. Simplified Smart Contract for Crowdraising

contract Crowdraise {

u int amountRaised ;

u int fundingGoal = 500;

address [] bene f s = { ben e f i c i a r y 1 , b en e f i c i a r y2 }

function con t r i bu t e () payable

{

amountRaised = amountRaised + msg . va lue ; }

function withdrawal ()

{

i f (amountRaised >= fundingGoal &&

msg . sender == ben e f i c i a r y 1) {

FundTransfer (b en e f i c i a r y 1 , amountRaised /2) ;

FundTransfer (b ene f i c i a ry2 , amountRaised /2) ;

} }

}

Note that a simplistic way4 to see a Smart Contract like our example is

as a cryptographic safe box that contains value and only unlocks it if certain

conditions are met. Note also that the Smart Contract executes a specific piece

of code (one of its functions) whenever a message or transaction invokes it.

After a Smart Contract is deployed, it might be necessary to alter or undo

some terms. Smart Contracts in platforms like Ethereum cannot be modified after

being deployed, and redeployment of contracts may incur in high cryptocurrency

fees. Based on our running example, we aim at providing a solution for the

following alterations: 1) Modify the fundingGoal variable term 2) Temporarily

stop receiving contributions or disabling the contribute function. 3) Change

who has the right to call the withdrawal function 4) Change how the funds are

transferred (e.g. 1/4th for one beneficiary and 3/4th for the other), i.e., modify

the withdrawal functional term.

3 Undo and Alteration of Smart Contracts

The work in [7] classifies undo and alteration of Smart Contracts according to

the agent that solicits it. By Right means that one or more signatories have the

right to undo or alter the Smart Contract unilaterally. By Agreement means that

all signatories agree on undo or altering the contract. By Court means that a

court mandated the undo or alteration. The implementation of all types can be

summarized as the execution of the following steps:

4 Though used in the live version of Ethereum’s white paper https://github.com/
ethereum/wiki/wiki/White-Paper#ethereum

https://github.com/ethereum/wiki/wiki/White-Paper#ethereum
https://github.com/ethereum/wiki/wiki/White-Paper#ethereum

Title Suppressed Due to Excessive Length 5

1. Check the rights of the soliciting signatory, court or that the agreement is

valid.
2. Check that further termination or alteration conditions beyond pseudonym

rights are met
3. Halt the execution of the Smart Contract
4. If altering the Smart Contract, delete/add/edit terms
5. Compensate partial performance of all terms of the Smart Contract if undoing,

if altering, compensate deleted/added/edited terms
6. If altering, start execution of modified Smart Contract

In this paper we focus on steps 1, 2 and 4, mapping to the following research

questions: How to model and check arbitrarily complex rights and termination

conditions? and How to delete/add/edit terms while avoiding re-deployment.

In [7], these are implemented into the code of the Smart Contract using Solidity

constructs available at their time. Based on their work, we rewrote them currently

available Solidity constructs. Example 1.2 shows the final result.

To implement rights checking, we use a special function called modifier5,

that can be used to check conditions before executing other functions. In our

example, we use the rightscheck modifier to check if beneficiary1 is the pseudonym

calling the function, stopping the execution otherwise. To modify the fundingGoal

variable, we use the setFundingGoal function (a simple setter method), together

with the rightscheck modifier. For disabling/enabling the contribute function, we

use a combination of a halt boolean variable that is switched through the fliphalt

function, and the haltcheck modifier, that simply aborts execution if halt is set to

true. Note that with this pattern, the deletion of a function term is implemented

as "disabling forever". Finally, for altering the withdrawal, we declare the address

of a so-called satellite contract that can be set like any other variable term, the

withdrawal function in the master contract is simply a wrapper to the function in

the satellite contract. Note that the Satellite contract pattern naturally induces

a link between both Smart Contracts.

We note several drawbacks of this approach: (i) It requires prognostication

of which terms will be altered to place the appropriate modifier calls or setter

methods. What if we need to add a new beneficiary? Or disable the withdrawal

function following a court mandate? If the setter method was omitted before

deploying, refactorization and redeployment is the only solution. (ii) It increases

the number of lines of code not related to the logic of the contract. This becomes

more evident if the contract requires complex rules, in our running example, what

happens if each function needs to be called by a different beneficiary? What if

there are other raising campaigns running in parallel and the right to withdraw

funds from this campaign depends on the results of the others? (iii) It is not

straight forward to alter the rights and conditions themselves. In our example,

what happens if after a certain time both beneficiaries agree that both need to

approve withdrawal of funds?

We argue that terms, rights and conditions in Smart Contracts are similar to

runtime parameters in traditional programming. As such, we propose to separate

5 https://solidity.readthedocs.io/en/develop/contracts.html#function-modifiers

https://solidity.readthedocs.io/en/develop/contracts.html#function-modifiers

6 Authors Suppressed Due to Excessive Length

Example 1.2. CrowdFunding Smart Contract with in-place code for alteration man-

agement

contract Crowdraise {

u int amountRaised ;

u int fundingGoal = 500;

address [] bene f s = { ben e f i c i a r y 1 , b en e f i c i a r y2 }

bool ha l t = fa l se ;

address s a t e l l i t eC on t r a c t ;

modifier r i gh t s che ck (){

i f (msg . sender != b e n e f i c i a r y 1) throw ;

_; }

modifier ha l t check (){

i f (ha l t) throw ;

_; }

function setFundingGoal () {

r i gh t s che ck

amountRaised = msg . va lue ; }

function f l i pH a l t () {

r i gh t s che ck

ha l t = ! ha l t ; }

function s e t S a t e l l i t e (){

r i gh t s che ck

s a t e l l i t eC on t r a c t = msg . va lue ; }

function con t r i bu t e () payable {

ha l t check

amountRaised = amountRaised + msg . va lue ; }

function withdrawal (){

S a t e l l i t e sa t = S a t e l l i t e (s a t e l l i t eAdd r e s s) ;

sa t . withdrawal () ; }

/∗ This f unc t i on g e t s moved to a s a t e l l i t e con t rac t

f un c t i on wi thdrawa l (){

i f (amountRaised >= fundingGoal) {

FundTransfer (b e n e f i c i a r y 1 , amountRaised /2) ;

FundTransfer (b ene f i c i a r y 2 , amountRaised /2) ; }

}

∗/

}

Title Suppressed Due to Excessive Length 7

them from their logic, in a similar way to configuration files. We propose to

use RDF to encode these configuration files, in order to leverage the power of

Semantic Web tools like inferencing and linking to external sources for enabling

complex rights and conditions.

4 TRiC Descriptors

In this section, we describe our approach of Terms, RIghts and Conditions

(TRiC) descriptors. A TRiC descriptor is an RDF document that encodes that

describes the terms, rights and conditions of a Smart Contract. We assume that

the platform is extended with the following capabilities: (i) A domain name

and an URI minting machine under bespoke domain name. Each pseudonym

and each Smart Contract in the platform have an IRI under the platform’s

domain name. We also assign an IRI to each variable and each function of each

deployed Smart Contract (ii) Storage of RDF-Documents in a Distributed Ledger.

Updates in these documents are treated as transactions in a Distributed Ledger,

therefore, guaranteeing that they are tamper-free. (iii) A Graph Store to load

RDF-Documents and execute SPARQL queries

Definition 7 (TRiC descriptor). Given a Smart Contract 𝑆, its TRiC de-

scriptor is an RDF document that contains data about its signatories, functional

and variable terms, and rights and conditions

A minimal TRiC descriptor contains one RDF triple stating a single signatory.

A TRiC descriptor can be arbitrarily large, depending on the complexity of the

rights and conditions that it encodes. The only modification that our approach

requires to the Smart Contract code in example 1.1 is the addition of a link to a

TRiC descriptor. This should be done in a way that guarantees it can be changed

afterwards, for example, with a special variable that has a default setter that can

be triggered upon agreement of all signatories. Compare this with the amount of

code that had to be introduced in example 1.2.

It is out of the scope of this paper to discuss the most appropriate vocabularies

to describe Smart Contracts and model rights. For the latter, we expect that work

on general ontology-based access control like [3] could be adapted for this purpose.

For the former, [5] presents MiniBlockVoc, a minimal vocabulary for Distributed

Ledgers, including a Smart Contract class and property for declaring signatories.

Following the requirements of our running example, we extend MiniBlockVoc

with the following properties:

– A class Term and a property hasTerm with domain Smart Contract and

range 𝑇𝑒𝑟𝑚
– A Class variableTerm, having the property value, that represents the value

of a variable term

– A Class functional term, having the properties enabled, with range xsd:boolean,

representing if the function is enabled or not; authorizedCaller with range

Member, representing Members with the right to call the function; and

8 Authors Suppressed Due to Excessive Length

replacedBy, with range functionalTerm that represents when a functional

term has been replaced by other term

Figure 1 shows a diagram of our extension to MiniBlockVoc.

Fig. 1. Extension of the MiniBlockVoc vocabulary [5] for including terms and authorized

callers

Example 1.3 shows the TRiC descriptor corresponding to our running example.

Lines 4-5 state that beneficiary1 and beneficiary2 (here shortened to b1 and b2)

are the signatories of the contract linked to this descriptor. Lines 7-9 state that

fundingGoal is a variable term and sets its value (600) different from declaration.

Lines 11-13 declare contribute as a function, the active property set to false

indicates that it has been disabled. Lines 15-18 state that withdrawal is an active

function and that its authorized caller is the agent identified with the pseudonym

b1 of this platform. Finally, line 20 states that the withdrawal function has been

replaced by the new-withdrawal function on the alt-contract contract.

When a function of the Smart Contract is invoked, the platform executes the

following algorithm:

1. Dereference the descriptor and load it into its Graph Store
2. Ask if the function is active or not. If so, continue, else, return.
3. Ask if the caller of the function has the right to do so according to the

descriptor. If so, continue, else, return.
4. Override the values of all variables with new values according to the descriptor.
5. Ask if the function has been replaced by another one. If so, delegate the call

to it. If not, execute the function as described in the contract.

To modify any term, right or condition, signatories agree6 on a SPARQL

Update query to be applied to the TRiC descriptor. In our running example, if

signatories want to re-enable the contribute function, they agree in executing the

SPARQL Update shown in listing 1.4.

6 except if the alteration is by court

Title Suppressed Due to Excessive Length 9

Example 1.3. TRiC descriptor corresponding to our running example

1 PREFIX p la t : <http :// platform−domain . org/>

2 PREFIX mbv : <https : // github . com/ ld ibanyez /minib lockvoc /MinimalBlockChain . owl>

3

4 p la t : Crowdraise mbv : s i gna to ry plat form/pseudonym/b1

5 p l a t : Crowdraise mbv : s i gna to ry plat form/pseudonym/b2

6

7 p la t : Crowdraise mbv : hasTerm p la t : fundingGoal

8 p l a t : fundingGoal rd f : type mbv : variableTerm

9 p la t : fundingGoal mbv : va lue 600

10

11 p l a t : Crowdraise mbv : func t i on p l a t : c on t r i bu t e

12 p l a t : Crowdraise / con t r i bu t e rd f : type mbv : funct ionalTerm

13 p la t : Crowdraise / con t r i bu t e mbv : enabled ’ False ’^ xsd : boolean

14

15 p l a t : Crowdraise mbv : func t i on p l a t : withdrawal

16 p l a t : withdrawal rd f : type func t i on

17 p l a t : withdrawal mbv : a c t i v e ’True ’^ xsd : boolean

18 p l a t : withdrawal mbv : au tho r i z edCa l l e r p l a t : pseudo/b1

19

20 p la t : Crowdraise /withdrawal mbv : replacedBy

21 p l a t : a l t−cont rac t /new−withdrawal

5 Conclusion and Outlook

In this paper we presented preliminary work on TRiC descriptors, RDF documents

describing Terms, RIghts and Conditions linked to Smart Contracts. TRiC

descriptors enable a subset of the conditions proposed by Marino and Juels [7] for

undo and alteration of Smart Contracts. The advantages of using TRiC descriptors

over expressing TRiCs into Smart Contracts are numerous: (i) Separates the

definition of rights and conditions from the Smart Contract logic, improving

readability. (ii) Enables the querying, inference and update of terms, rights and

conditions (via SPARQL) (iii) Allows the alteration of terms that were not

identified as modifiable at deployment time

Our next steps are to develop an ontology for expressing the alteration

requirements that could be shared among several Smart Contract platforms, and

to implement TRiC descriptors into an existing Smart Contract platform to test

their feasibility and performance. We believe that in this endeavour there are

several challenges that need to be tackled:

– How to integrate a Graph Store into a Smart Contract Platform? Is it

relevant for the TRiC descriptor context to execute SPARQL queries in a

Smart Contract Platform as if they were code? If so, how to do it?

– How to efficiently store TRiC descriptors? Note that our approach implies

replacing re-factorisation and re-deployment with data updates, therefore, op-

10 Authors Suppressed Due to Excessive Length

Example 1.4. SPARQL Update over TRiC descriptor

PREFIX p la t : <http :// platform−domain . org/>

PREFIX mbv : <https : // github . com/ ld ibanyez /minib lockvoc /MinimalBlockChain . owl>

DELETE { p la t : Crowdraise / con t r i bu t e mbv : enabled " f a l s e "^ xsd : boolean }

INSERT { p la t : Crowdraise / con t r i bu t e mbv : enabled " t rue "^ xsd : boolean }

WHERE

{ p la t : Crowdraise / con t r i bu t e mbv : enabled " f a l s e "^ xsd : boolean }

timisation of said updates in a Distributed Ledger Environments environment

is crucial

– How to check the validity of alterations made via TRiC descriptors from an

execution and legal point of view? The question becomes more challenging in

the presence of dependencies to other contracts.

– In our current definition, one TRiC descriptor is associated with one Smart

Contract, is it possible to improve the approach to enable the re-use of

descriptors (or parts of them) across several contracts?

References

1. A next-generation smart contract and decentralized application platform, https:
//github.com/ethereum/wiki/wiki/White-Paper

2. Solidity 0.4.10 documentation, https://solidity.readthedocs.io/en/develop/
contracts.html

3. Buffa, M., Faron-Zucker, C.: Ontology-based access rights management. In: Advances

in Knowledge Discovery and Management, vol. 2, pp. 49–61 (2012)

4. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet

of things. IEEE Access 4, 2292–2303 (2016)

5. Ibáñez, L.D., Simperl, E., Gandon, F., Story, H.: Redecentralising the web with

distributed ledgers. IEEE Intelligent Systems 32(1), 92–95 (2017)

6. MacDonald, T.J., Allen, D.W., Potts, J.: Blockchains and the boundaries of self-

organized economies: Predictions for the future of banking. In: Banking Beyond

Banks and Money, pp. 279–296. Springer (2016)

7. Marino, B., Juels, A.: Setting Standards for Altering and Undoing Smart Contracts.

In: Rule Technologies: Research, Tools, and Applications. vol. 9718, pp. 151–166

(2016)

8. Szabo, N.: Formalizing and securing relationships on public networks. First Monday

2(9) (1997)

9. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: A technical survey on de-

centralized digital currencies. IEEE Communications Surveys & Tutorials 18(3),

2084–2123 (2015)

10. Yasin, A., Liu, L.: An online identity and smart contract management system. In:

40th Annual Computer Software and Applications Conference (COMPSAC). vol. 2,

pp. 192–198. IEEE (2016)

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://solidity.readthedocs.io/en/develop/contracts.html
https://solidity.readthedocs.io/en/develop/contracts.html

	TRiC: Terms, RIghts and Conditions Semantic Descriptors for Smart Contracts

