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Abstract

The subject of acoustic radiation pressure on a gas bubble is important in many applications

because it controls how bubbles are moved by acoustic fields to target locations, and often how

they act upon the target. Previous theoretical treatments assume a spherical bubble undergoing

linear pulsations, but some (such as cleaning using Faraday waves on the bubble wall) require

that the bubble be aspherical. Therefore, this paper derives ways to calculate the variation in

the radiation pressure due to the non-spherical bubble oscillations. The magnitude and direction

of the radiation force are determined by two factors: the amplitude of volume oscillations, Vm,

and the phase relationship between those oscillations and the acoustic field which drives them.

There are two key findings that correct for the predictions of a model accounting for only linear

pulsations. First, the growth of the radiation force slows down as Vm ceases to increase linearly

with increasing amplitude of the acoustic wave above the threshold. Second, although both models

show that the direction of the force relative of the standing wave antinode can be attractive or

repulsive depending on frequency, when distortion modes are included the frequency at which this

force changes its sign is shifted.
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I. INTRODUCTION1

The acoustic radiation force exerted by a plane or a spherical wave on a compressible2

sphere in a non-viscous fluid has been extensively investigated over the last six decades. The3

effects of particle compressibility on the radiation force were initially studied by Yosioka4

et al. [1] Subsequently, Gor’kov [2] used a fluid dynamics approach to derive formulae5

for the general radiation force exerted on a particle by a plane wave and any stationary6

acoustic wave. Eller [3] was the first to calculate the radiation force on a small bubble.7

A refined version of Eller’s result has been obtained by Lee and Wang [4]. All of these8

studies were based on the model of an ideal fluid that ignores the processes of viscosity and9

thermal conductivity. In many situations, this idealization is acceptable. Calculation of the10

radiation force in a real fluid requires addressing not only the linearized equations of motion11

for momentum, density, energy and entropy, but also the so-called equations of acoustic12

streaming, which represent time-averaged equations of motion, taken up to the quadratic13

terms in the amplitude of the perturbation [5]. Since streaming can cause a bubble or14

particle to change location, it is particularly important to assess its potential to do this if15

the acoustic field is being used to move bubbles/particles by radiation forces. A complete16

solution to this problem was given by Doinikov [5–8]. Viscous and thermal effects become17

important when the size of the bubble becomes comparable to the acoustic boundary layers18

(thermal and viscous) [9].19

If a gas bubble of radius R0 in a liquid of sound speed c0 is driven by an acoustic wave20

of low circular frequency ω, (such that ωR0/c0 << 1), then at all amplitudes of that driv-21

ing wave the bubble undergoes a spherically-symmetric wall oscillation (i.e. a breathing22

mode pulsation). However, if the amplitude of the driving waves exceeds a well-defined23

threshold, then the nonlinear response of the gas bubble results in parametrically-generated24

shape oscillations, superimposed upon the pulsation. The study of the consequences of para-25

metrically excited bubble responses and associated energy and gas flow began in the 1970s26

[10, 11]. Above the critical driving pressure threshold, which is minimal at the resonance of27

the breathing mode, regular patterns of stationary surface waves are observed on the bubble28

wall [12–21]. The theory for the pattern formation on the bubble wall has been derived in29

recent studies [22–24].30

The acoustic radiation force is caused by the transference of momentum flux from an31
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imposed oscillatory pressure field (which has zero amplitude at pressure nodes; and maxi-32

mum amplitude at pressure antinodes) to a bubble (noting that the term ’bubble’ consists33

not just of the ball of gas – which provides this oscillatory system with stiffness – but also34

the surrounding liquid, which provides the vast majority of the inertia). The additional35

channel of energy absorption due to the generation of surface modes alters the transference36

of momentum flux and thus modifies the radiation force. The influence of the parametric37

response on the radiation force on a bubble was observed by Asaki & Marston [25], but this38

effect was avoided for the purpose of comparing the measured radiation force (by way of39

equilibrium location) with radiation force theory. The measured free decay of quadrupole40

oscillations of large bubbles acoustically trapped in water [26] demonstrated a standing cap-41

illary wave roughening. Asaki & Marston [26] also described the associated energy flow “out42

of” a particular bubble mode as a consequence of the roughening, and suggested that the43

observed anomalous damping might result from nonlinear coupling [27].44

Interest in Faraday waves has increased in recent years because of a range of applications,45

including ultrasonic foggers [28] and, hypothetically, in the generation of the alligator ’water46

dance’ [29]. This theoretical study was designed to support a new ultrasonic cleaning tech-47

nique, the Ultrasonically Activated Stream (UAS) [30, 31]. UAS achieves cleaning with cold48

water streams at flow rates of ∼ 1 litre min−1, generating zero-to-peak acoustic pressure at49

the surface to be cleaned of less than 100 kPa. The basic principle is that water is fed into50

a hollow horn that contains an ultrasonic transducer operating in excess of 100 kHz. UAS51

systems clean by non-inertial cavitation, whereby the ultrasound stimulates surface waves52

on the bubble wall. These in turn create shear and greatly enhance the cleaning efficiency of53

water at the interface. The ultrasound and microbubbles in the flow both travel down the54

stream of water to the target that is to be cleaned. If the bubbles are ultrasonically activated55

when they are on the target, the cleaning ability of the liquid is enhanced in three ways:56

the bubbles are attracted to the surface to be cleaned by Bjerknes radiation forces, and are57

not as rapidly washed away by the flow as they would be in the absence of ultrasound; the58

bubbles are particularly attracted into crevices by secondary Bjerknes radiation forces; such59

crevices are traditionally more difficult to clean by wiping or brushing; surface waves on the60

walls of the bubble, excited by the ultrasound, produce enhanced convection in the liquid61

and enhanced shear in the contaminant, causing its removal.62

It is important to quantify the radiation forces that steer the bubbles towards the surface63
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to be cleaned, and into crevices and other structures which are traditionally difficult to clean64

using brushes or wipes (which fail to penetrate crevices), or chemical methods (where the65

penetration of the chemical into the crevice is diffusion controlled). This not only because the66

action of these radiation forces place the surface waves and the local shear they cause in the67

proximity of the contaminant in the crevice, so that the surface waves can physically remove68

them. It is also because the translation of bubbles (with convection-inducing surface waves69

from the bulk liquid into the crevice) can enhance any chemical cleaning or disinfectant70

effects. If chemicals are added to the bulk liquid, then motion of the bubbles convects71

chemicals into the crevice, causing greater concentrations there than would be generated by72

diffusion alone [30, 32]. In this way, the same cleaning can be achieved in crevices using73

lower concentrations of chemicals in the bulk liquid, which have environmental, cost and74

safety implications. In this way UAS has successful achieved, using cold water,75

• the cleaning of brain tissue and prions from surgical steel, the removal of contaminating76

material from bone transplants [33];77

• the removal of biofilms of dental bacteria [33, 34];78

• the cleaning of human skin [30, 32] and skin models [33, 35];79

• the cleaning of marine biofoulant [36];80

• the cleaning of railway track [37];81

• the cleaning of hands, kitchen surfaces, tools, glue from jar labels, contaminated tubes,82

grease, salad and components of railway locomotives [30, 32, 38].83

Clearly, the ability of radiation forces to resist buoyancy and turbulence and so move84

the bubble to the surface that is to be cleaned, and to enable it to penetrate crevices, is85

key to the ability of UAS to clean. To design the device with the ability to do this, it is86

important to be able to quantify the effect of surface waves on the radiation forces in order87

to calculate the parameters (frequency, bubble size, acoustic amplitude etc.) that will allow88

the radiation forces to overcome buoyancy, flow and turbulence. In this paper, we have made89

a step in the description of the physical processes that underlie this method. We have gained90

an understanding of how the presence of surface waves modifies the radiation pressure. The91

answer to the question of whether this change in the radiation force might be optimized, if92

at all, to enhance the cleaning results when a bubble hosting surface waves is located close93

to target surface to be cleaned is a topic for future research.94
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II. PHYSICAL MODEL95

Assume that the size of the bubble is much smaller than the wavelength of sound, and96

then within this long wavelength limit, consider the case of weak dissipation. Dissipation is97

considered to be low if the bubble radiusR0 is large compared with the viscous δv and thermal98

δth wavelengths. The bubble is assumed to be centered in the origin of the coordinate system.99

We will consider only time-harmonic acoustic waves with an angular frequency ω, whose po-100

tential ϕ are of the form ϕ(r) exp (−iωt), ϕ(r) = ϕin(r)+ϕsc(r), where subindexes “in” and101

“sc” denote the contribution of the incident and scattered waves. The space-time dependence102

of the velocities u of the incident and scattered waves are uin,sc = Re [∇ϕin,sc exp (−iωt)].103

As regards the externally imposed oscillatory pressure field wave, we shall consider a plane104

standing wave with the velocity potential given by ϕin = ϕm cos [i (k · r + kd)] exp (−iωt),105

where k is the wave vector, r is the position vector, and d is the shortest distance between106

the equilibrium center of the bubble and the nearest plane of the velocity node (or pressure107

antinode).108

Acoustic waves give rise to a radiation-stress tensor [2]:109

Sij = − (P − P∞) δij − ρ0uiuj, (1)

where P is the pressure in the presence of the sound and P∞ is the constant static pressure110

that would, if the bubble was not present, exist in the liquid at the location currently111

occupied by the center of the bubble, and where ρ0 is the constant mean density of the112

liquid. The integral of −Sijnj over the bubble surface Σb is the force Fi, acting on the113

inclusion (here n is the normal). The static acoustic radiation force on a bubble could be114

simply calculated from the far-field integral over any spherical surface Σ enclosing the bubble115

[4]:116

Fi = −
∫

Σ

[〈P − P∞〉ni + ρ0 〈uiuj〉nj] dΣ, (2)

where n = −er on Σ and n = er on Σb; the time averaging over a wave cycle is denoted117

by 〈...〉. The mean momentum change in the surrounding fluid vanishes, since an ideal fluid118

cannot absorb momentum (no dissipation). The size of the bubble is assumed to be smaller119120

than the acoustic wavelength, thus, there is, effectively, an “inner” region around the bubble,121

which may be regarded as incompressible. Far from the bubble, where nonlinear terms are122
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FIG. 1. (Color online) Schematic of a parametrically distorted bubble in the field of a standing

acoustical wave ϕin of the frequency ω with d being the distance between the equilibrium center

of the bubble and the nearest plane of the velocity nodes (or pressure antinodes). The size of the

bubble is assumed to be smaller than the acoustic wavelength λ, thus, there is a region around the

bubble, which may be regarded as incompressible.

small, the linear wave equation for the potential should be used. It is clear that “far from123

the bubble” means at distances r ≥ c0T = λ (T = 2π/ω), whereas “near the bubble” means124

at distances on the order of 0 ≤ (r −R0)/R0 ≈ 1 or less. At distances large compared with125

R0, though still small compared with the characteristic wavelength λ, one can find a general126

form of the solution for the scattered potential ϕsc by using the fact that ϕsc must decrease127

with increasing distance [39]:128

ϕsc(r, t) = − V̇ (t)

4πr
, (3)

where V (t) is the volume of the bubble. In general, the total long-wave solution contains the129

contribution of the dipole term. For a gas bubble near the resonance, however, this dipole130

term is small [8]. At distances r >> λ, (i.e. in the “wave region”), ϕsc must represent an131

outgoing wave, i.e. must have the form [5]:132

ϕsc(r, t) = − V̇ (t− r/c0)

4πr
. (4)
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The pressure of a time-harmonic wave of angular frequency ω is given in terms of the133

potential function by P (r) = iρ0ωϕ(r). To second order, 〈P − P∞〉 in Eq. (2) is finite and134

given by [4]:135

〈P − P∞〉 =
1

2

ρ0

c2
0

〈(
∂ϕ

∂t

)2
〉
− 1

2
ρ0

〈
|∇ϕ|2

〉
, (5)

which is the minus time-average of the Lagrangian density.136

The radiation force Eq. (2) is a bi-linear combination of two components: a spherically137

symmetric component ϕsc(r), describing the scattered field [Eq. (4)] and the plane standing138

wave ϕin(r, t). The terms only associated with the incident field may be omitted since the139

radiation force vanishes in the absence of the bubble. The radiation force for an arbitrary140

sound field, in terms of momentum transport in the far field which involves the interaction141

of the incident and scattered fields and the flux associated with the scattered field, has the142

form [40]:143

F =
ρ0k

2r2

2

∫
Re

[(
i

k

∂ϕin
∂r

ϕ∗sc

)
− ϕscϕ∗sc

]
ndΩ, (6)

where dΩ is the solid angle element (dΣ = r2dΩ).144

For the plane standing wave ϕin, the interference terms between the external field and145

the scattered wave are dominant and we have:146

F = −kρ0ωϕmVm sinαV
2

sin(2kd), (7)

where Vm is the amplitude and αV is the phase of the component of the volume, oscillating147

with the frequency ω: V ≈ Vm cos (ωt+ αV ). Note that because we consider non-linear148

effects, other components will be present in the spectrum of the volume oscillations, but149

these components will have a relatively small magnitude. The expression for the radiation150

force on an air bubble Eq. (7) coincides with the commonly used form [3, 41, 42].151

In the case of standing waves, when the wavelength exceeds the size of the bubbles and152

scattering is weak, the radiation force exerted by the standing wave is larger than that for153

the plane traveling wave [2]. In this case, in the quadratic expression for the force Eq. (2)154

the interference terms between the standing and scattered waves are significant, while for155

the traveling wave the transference of momentum by the wave is determined only by the156

scattered sound.157
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III. VARIATION OF THE BUBBLE VOLUME ABOVE THE THRESHOLD FOR158

INSTABILITY OF THE DISTORTION MODES159

Within the framework of the adopted approximations, the radiation force on a bubble160

(6) depends on its volume pulsations. Above the threshold of parametric instability, volume161

pulsations and surface modes form a system of coupled oscillations. In our case, the problem162

is reduced to the analysis of the behavior of the bubble in a domain which is small compared163

with the wavelength where the liquid is incompressible and the amplitude of the imposed164

pressure field is constant.165

The surface mode parametrically excited will be the one whose own natural frequency166

ωl (where l is the order of the distortion mode) is closest to the subharmonic of the pump167

frequency, i.e. the mode for which ωl ≈ ω/2. The driving acoustic pressure which excites a168

surface mode will have a minimum (at the base of the U-shaped graph of acoustic pressure169

against frequency that maps out the threshold for the generation of surface waves [15, 43])170

at a frequency close to the breathing mode resonance ω ≈ ω0 (where ω0(R0) is the natural171

frequency of the breathing mode). The threshold conditions to excite a mode, and its form172

in steady state, have been discussed widely at the end of past century [16, 17, 44–48].173

In describing the regular patterns of surface waves which are observed on the bubble wall174

above the driving pressure threshold for shape oscillations, we follow the results of our earlier175

study [24]. We use the spherical coordinates (r, ϑ, α) where r is the radial displacement, and176

ϑ and α are the polar and azimuthal angles. The origin coincides with the center of the177

bubble. The equation of the bubble surface is r = R0 + ξ(ϑ, α, t).178

An analysis of the behavior of the unsteady potential flows of the liquid in a spatial region179

D with a free surface S can be reduced to a treatment of the surface dynamics. Within this180

formalism, the shape of the surface S and the boundary potential at this surface Φ are the181

dynamical variables determining the state of the system [49]. Transition to the canonical182

variables ξ(ϑ, α, t), Π(ϑ, α, t) = −ρ0 (R0 + ξ(ϑ, α, t)) Φ(ϑ, α, t) provides the simplest way183

to describe the nonlinear bubble dynamics [49]. Expansion of the variables in a series of184

spherical harmonics Ylm:185

ξ(ϑ, α, t) =
∞∑
l=0

l∑
m=−l

ξlm(t)Ylm(ϑ, α), Π(ϑ, α, t) =
∞∑
l=0

l∑
m=−l

Πlm(t)Ylm(ϑ, α) (8)
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can be used to diagonalize the quadratic Hamiltonian [49]:186

H0 = ω0a
∗
00a00 +

1∑
m=−1

Π∗1mΠ1m

ρ0R3
0

+
∞∑
l=2

ωl

l∑
m=−l

a∗lmalm,

Πlm = − i√
2

(
ρ0R

3
0ωl

(l + 1)

)1/2

(alm − (−1)ma∗lm) ,

ξlm =
i√
2

(
ρ0R

3
0ωl

(l + 1)

)−1/2

(alm + (−1)ma∗lm) ,

Π00 = − i√
2

(
ρ0R

3
0ωl

(l + 1)

)1/2

(a00 − a∗00) ,

ξ00 =
i√
2

(
ρ0R

3
0ωl

(l + 1)

)−1/2

(a00 + a∗00) , (9)

where ω0 =
√

3γ (P∞ + 2σ/R0) (ρ0R2
0)
−1

is the frequency of the monopole pulsations187

(l = 0), γ is the polytropic exponent and σ is the surface tension. The quadratic Hamil-188

tonian (8) also demonstrates the existence of the dipole modes (l = 1) corresponding189

to the translational motions; and the shape oscillations (l ≥ 2), which have the form190

of surface capillary waves propagating over the surface of the bubble at the frequency191

ωl =
√
σ (l + 1) (l + 2) (l − 1) (ρ0R3

0)
−1

.192

The slowly varying complex amplitudes of the breathing ã00 = a00 exp (iω0t) and distor-193

tion modes ãlm = alm exp (iωlt) satisfy the equations that have the form [24]:194

dã00

dt
= [i (ω − ω0)− γ0] ã00 − iCll0

l∑
m=−l

(−1)mã∗lmãl−m +

√
πR2

0Pm

(2ρ0R3
0ω0)

1/2
,

dãlm
dt

= [i (ω/2− ωl)− γl] ãlm − 2iCll0(−1)mã00ã
∗
l−m

+2Cn′ll

n′∑
m′=−n′

(−1)m
′
Yn′m′Yl−mYlm−m′ ãn′m′ ã∗lm−m′ ,

Cll0 =
(
27π
)−1/2

(4l − 1)ωl
(
ρ0ω0R

3
0

)−1/2
R−1

0 , (10)

whereA = (4π)−1
∫
A sinϑ dϑ dα and Pm = ρ0ωϕm cos(kd) (Pin|r=0 = ρ0ωϕm cos(kd) sin(ωt)).195

The damping of the breathing mode, γ0, and of the distortion modes of order l, γl, are in-196

cluded in the current model. It is assumed that thermal and viscous lengths are smaller197

than the bubble radius which is an evident restriction for the selected model. A detailed198

study of the damping mechanisms for surface modes in the general case (accounting for the199
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presence of a viscous boundary layer) has been presented in Ref. [26], one of the few (if200

not only) places where such damping is directly measured for the l = 2 distortion mode of201

bubble oscillations.202

In this study, we consider the simplest pattern – rolls [24]. This pattern is formed by203

two waves (ll) and (l − l) (see Fig. 1) which form a sectoral harmonic. The shape of the204

surface oscillations on the sphere, described by sector harmonics, is a direct analogy of the205

roll structure observed on a parametrically distorted flat surface. This type of pattern has206

been well studied, so using a name that emphasizes the analogy with a well-known object207

seems justified. The resonant triads (l+l 
 n′) determine the type of pattern that manifests208

itself. These triads are formed by two unstable surface waves having the same frequency ωl209

interacting to generate a wave of higher frequency ωn′ ≈ 2ωl. For the selected pattern (rolls),210

resonance triads, forming this state, have a negligible effect on the standing-wave amplitude211

of the rolls [24]. For this reason, we do not present the cumbersome expression for the212

coupling coefficient in the energy of interaction of the distortion modes Cn′ll or the equation213

for the amplitude of the high-frequency partner of the unstable mode ãn′m′ in the resonant214

triad. The complete system of canonical equations for the amplitudes and the description of215

the individual terms are contained in the file entitled ’supplementary materials 1.pdf’ that216

is contained within the Electronic Supplement [50].217

The system of Eqs. (10) can be significantly simplified near the threshold of parametric218

instability which occurs when one of the eigenvalues of the linear stability analysis:219

λ± = −γl ±
{
P 2
m(4l − 1)2

162ρ2
0R

4
0∆0

− (ωl − ω/2)2

}1/2

, (11)

passes through zero at:220

Pth =
16ρ0R

2
0

(4l − 1)

√
∆0∆l, ∆0 =

[
(ω0 − ω)2 + γ2

0

]
, ∆l =

[
(ωl − ω/2)2 + γ2

l

]
. (12)

Above the threshold:221

Pm = Pth + ∆P, Pth >> ∆Pth ≥ 0,

λ+ ≈
∆P

Pth

∆l

γl
, λ− ≈ −2γl −

∆P

Pth

∆l

γl
, (13)

we can reduce the description by eliminating the “fast” variables [22, 51]. From the math-222

10



ematical point of view, we study the local bifurcations of vector field y = (ã00, ãll, ãl−l)223

occurring in the neighborhood of a fixed point. The stationary states (fixed points) occur224

when the right hand sides of equations (9) become zero. The dynamical system for the rolls225

is of fifth order and there are three fixed points [22]. Figure 1 of Ref. [22] demonstrates the226

characteristics of the bifurcation diagram in the plane of the control parameters (ω/2π, Pm).227

The solution to the system of equations (10) is based on the use of the master-slave228

principle known in applied mathematics as center-manifold reduction [52]. Near the point229

where the dynamical system of equations (10) loses its linear stability (in our case this230

occurs at the threshold), one can reduce the dimensionality of the system and exclude the231

stable variables (i.e. those that decay to the central manifold on timescales determined by232

the corresponding eigenvalues). Thus, if we are interested in long-time behavior, we need233

only to investigate the system restricted to the central manifold which is determined by a234

relatively simple equation.235

The breathing mode and the high-frequency (stable) distortion mode n′ are fast-phased236

in order to draw energy from the pumping and unstable modes l:237

ã00 =
2i(−1)lCll0

[i (ω − ω0)− γ0]
ãllãl−l −

√
πR2

0 (Pth + ∆P )

(2ρ0R3
0ω0)

1/2
[i (ω − ω0)− γ0]

,

dãll
dt

= [i (ω/2− ωl)− γl] ãll − 2iCll0(−1)lã00ã
∗
l−l,

dã∗l−l
dt

= [−i (ω/2− ωl)− γl] ã∗l−l + 2iCll0(−1)lã∗00ãll. (14)

We can ignore the contribution of the high-frequency distortion mode n′ for the rolls patterns238

[24]. The linear combination of ãll and ã∗l−l corresponding to the eigenvalue λ− also rapidly239

relaxes onto the central manifold, which leads to the formation of a standing wave in the240

azimuthal angle. Components, spreading in both clockwise and anti-clockwise directions,241

have equal absolute complex amplitudes:242

ã∗l∓l = −(−1)lei(φ1+φ2)ãl±l, sinφ1 = (ωl − ω/2) ∆
−1/2
l , sinφ2 = −γ0∆

−1/2
0 . (15)

Thus, near the threshold, it is possible to rewrite the system of equations (10) in terms of243
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the slowly varying standing-wave amplitude [24]:244

dBll

dt
= λ+Bll − 2Γ0 (B∗llBll)Bll,

Bll =
1

2i

[
ãlle

i(φ2−φ1)/2 − (−1)lã∗l−le
−i(φ2−φ1)/2

]
= −i

γl√
∆l

ei(φ1+φ2)/2ãll,

Γ0 =
2∆l

∆0γ3
l

C2
ll0 [γ0γl − (ω/2− ωl) (ω − ω0)] , (16)

The stationary solution, which we are interested in, has the form:245

B∗llBll =
λ+

2Γ0

=
∆P

Pth

∆0γ
2
l

4C2
ll0 [γ0γl − (ω/2− ωl) (ω − ω0)]

. (17)

The next step is to calculate the variation of the bubble volume:246

V − V0 =

∫
dΩ

[
(R0 + ξ)3

3
− R3

0

3

]
= V0

[
3
ξ

R0

+ 3
ξ2

R2
0

+
ξ3

R3
0

]

≈ 3V0

[
1

√
8π (ρ0R5

0ω0)
1/2

(a00 + a∗00) +
1

8πρ0R5
0ω0

(a00 + a∗00)2

+
(l + 1)

8πρ0R5
0ωl

l∑
m=−l

(
alm + (−1)ma∗l−m

)
(a∗lm + (−1)mal−m)

]
. (18)

The term describing the volume pulsations at the frequency ω, which contributes to the247

radiation force after averaging over time, has the following form:248

(V − V0)ω = Vm cos (ωt+ αV ) = 3V0

[
1

√
8π (ρ0R5

0ω0)
1/2

(
ã00e

−iωt + ã∗00e
iωt
)

+

+
(l + 1)(−1)l

4πρ0R5
0ωl

(
ãllãl−le

−iωt + ã∗lla
∗
l−le

iωt
)]
. (19)

Substituting in this equation the explicit form of ã00 (see Eq. (13)) and expressing ãl±l in249

terms of Bll, we obtain:250

(V − V0)ω = 3V0

[
− (Pth + ∆P )

2ρ0R2
0ω0

√
∆0

sin (ωt+ φ2)

+
(4l − 1)ωl∆lB

∗
llBll

8πρ0R5
0ω0

√
∆0γ2

l

cos (ωt+ φ1 + 2φ2)

+
(l + 1)

2πρ0R5
0ωl

∆lB
∗
llBll

γ2
l

cos (ωt+ φ1 + φ2)

]
. (20)

The expressions in the second and third lines of Eq. (19) have a similar structure, but vary251
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considerably in magnitude near the resonance size
√

∆0 << ω0. The term in the second line252

is due to the resonance coupling between the distortion and monopole modes and contains253

a large resonant factor ω0/
√

∆0 >> 1. By contrast, the term in the third line describes254

a simple quadratic effect on the amplitude of the distortion modes and can be neglected.255

Substituting the explicit expression for the B∗llBll (Eq. (17)), we obtain:256

(V − V0)ω = 3V0
8
√

∆l

(4l − 1)ω0

cos

[
ωt+ φ2 + π/2− ∆P

Pth
cot (φ1 + φ2)

]
,

Vm = V0
24
√

∆l

(4l − 1)ω0

, αV = φ2 + π/2− ∆P

Pth
cot (φ1 + φ2) . (21)

Therefore it follows from this equation that, close to the threshold of the parametric insta-257

bility, the amplitude of the volume oscillation, Vm, remains constant despite increases in the258

driving pressure, and remains equal to the value it took at the threshold. The interaction259

of this mode with the parametrically unstable surface waves leads only to variations in the260

phase relationship between the bubble pulsations and the phase of the driving field.261

Such behavior is experimentally confirmed by a series of studies [13–15] in which the262

two-frequency method has been used for high-resolution bubble sizing. In this technique,263

in addition to a pumping wave the bubble is insonified by a high frequency imaging wave.264

For applications with millimeter-sized bubbles, the pumping frequency is of kilohertz order,265

whilst the imaging frequency is usually around a megahertz. Because of the great difference266

between the timescales associated with these two fields, the slow oscillations of the bubble267

wall, having frequency ω0, ωl (ω0 ≈ 2ωl), will modulate the scattering imaging wave. Ramble268

et al. [15] have discovered that there exists a significant difference in the transient times taken269

to establish steady-state subharmonic and fundamental combination frequency signals (the270

so-called “ring-up” times). The signal corresponding to the excitation of the fundamental271

combinative components remains constant during the (long) transition period during which272

the parametrically unstable surface modes grow to attain their stationary amplitudes. This273

indicates that the interaction with the surface modes does not change the amplitude of the274

radial pulsations and causes only a phase shift.275

To take a deeper view at the manifestations of the derived solution, one needs to consider276

an approach based on the use of partial wave scattering functions, sl = exp(ηl), ηl = δl + iγl277

[53, 54] in terms of which the scattering amplitude is expressed (here l denotes the index of278

the spherical harmonic in the expansion of the scattering amplitude). Consider Eq. (28b) of279
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Ref. [53], where the LHS are terms in the standard standing-wave radiation force series while280

the RHS shows that the effect of modal damping (gamma) is not limited to that specific281

mode: thus, for example, the combined damping of the l = 0 and l = 1 modes (monopole and282

dipole modes) alter the radiation force contribution of the l = 0 mode. As an illustration of283

this approach, we evaluated the s-partial wave scattering function [55]. However, since only284

the first term l = 0 of this expansion (s-scattering) is taken into account in this paper, the285

simplifications that this approach provides will be used in the subsequent development of the286

results presented: this is relevant for a more complex structure of the external field, beyond287

the resonance condition of driving field and for the bubble located close to the boundary288

where there is an effective coupling between monopole and higher multipole modes [53, 54].289

IV. DISCUSSIONS290

The influence of the bubble dynamics above the threshold of parametric instability on291

the magnitude and direction of the radiation force Eq. (7) depends on two factors: Vm and292

sinαV . As shown above, the first difference in the behavior of the radiation force above the293

threshold (compared to its behavior below the threshold) is that the amplitude of volume294

oscillations, Vm, ceases to increase linearly with increasing amplitude of the acoustic wave295

and has a constant value.296

Let us describe the impact of the second factor, sinαV , that can be presented in the297

following form:298

sinαV = sin

[
φ2 + π/2− ∆P

Pth
cot (φ1 + φ2)

]
=

1√
∆0

[
(ω0 − ω) + γ0

∆P

Pth

(ω − ω0) γl + (ω/2− ωl) γ0

γ0γl − (ω − ω0) (ω/2− ωl)

]
. (22)

Below the threshold, the direction of radiation force is towards the nearest pressure antinode,299

if the bubble is driven below the resonance ω < ω0, and towards a pressure node, if driven300

above resonance ω > ω0. In order to assess the influence of the correction term (the second301

term in Eq. (22 )) above the threshold, we note that the denominator of this expression can302

vanish at ω = ω±:303

ω± = ωl + ω0/2±
√

(ωl − ω0/2)2 + 2γ0γl. (23)

The fixed points of the dynamic system Eq. (10) are critical when the control parame-304
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ters take the values ω = ω±, P = Pth(ω±) (neglecting the interaction in resonant triads).305

Here the confluence of all fixed points of this system takes place [22]. In the vicinity of306

these states the proposed approach is not applicable, and one should take into account307

the non-linear terms of higher order. The considered approach will be valid for the fre-308

quency interval, located not too close to the critical values ω+ > ω > ω−. In this region,309

the denominator has a positive value. The numerator of the correction term vanishes at310

ω = ω∗ = (ω0γl + ωlγ0) (γl + γ0/2)−1. If ω0 = 2ωl, the reversal of the force direction (from311

attractive to repulsive and vice versa) occurs at exactly the same frequency at which it takes312

place below the threshold ω = ω0. If ω0 > 2ωl, the change in the sign of the radiation force313

occurs at greater frequency than ω0, and for ω0 < 2ωl the change occurs at lower frequency314

than ω0.315

For a fixed frequency, the variation of the radiation force when one ignores the influence316

of the surface modes can be presented in the following form F
(0)
z = F th

z [1 + (∆P/Pth)]
2 ≈317

F th
z [1 + 2 (∆P/Pth)], where F th

z is the value of the force at the threshold. Comparing this318

expression with the exact equation for the radiation force:319

Fz = F th
z

[
1 +

(
∆P

Pth

)]
sinαV
sinαthV

= F th
z

[
1 +

∆P

Pth

(
1 +

γ0

ω0 − ω
(ω − ω0)γl + (ω/2− ωl)γ0

γ0γl − (ω − ω0)(ω/2− ωl)

)]
. (24)

one can see that, for ω0 = 2ωl, accounting for the influence of the surface modes leads to320

a decrease in the magnitude of the force Fz = F th
z

{
1 + (∆P/Pth)

[
1− γ0 (γl + γ0/2)

[
γ0γl −321

(ω − ω0)(ω/2 − ωl)
]−1]}

in the entire frequency interval ω− < ω < ω+. For ω0 < 2ωl (or322

ω0 > 2ωl), the change in the sign of the force occurs at frequencies that do not coincide with323

ω0. In the vicinity of these frequencies, the force can be less than in the hypothetical case,324

but the comparison itself does not make sense in these frequency domains.325

Unfortunately there is currently no complete understanding of the implementation of326

various structures on the surface of the bubble. Only a few types of possible patterns have327

been observed at the specific values of the defining parameters [17, 56–58]. The rolls patterns328

were observed by Birkin et al. [57] at the pressure amplitude 24 Pa (zero-to-peak). The329

mean radius of the bubble was approximately 2.1 mm and the driving field had frequency of330

1.500 kHz. The bubble was not in an infinite body of liquid, as the above theory assumes,331

but held under and against the end of a 6 mm diameter glass rod, which contained a332
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small concave dimple to keep the bubble in place, which can in principle affect the bubble333

dynamics [24]. For this case, the characteristics of the bubble dynamics can be evaluated334

for the following values of the determining parameters: γ = 1.4 (polytropic exponent: air),335

σ = 7.2× 102 N m−1 (surface tension: clean aqueous solution of salts in air, 20◦C), P0 = 105
336

Pa (ambient pressure), ρ0 = 988 kg m−3 (equilibrium density liquid: water), c = 1484 m s−1
337

(speed of sound in the liquid: water), ν = 10−6m2s−1 (kinematic viscosity liquid: water),338

D = 2× 10−5m2s−1 (thermal diffusion coefficient liquid: water).339

The frequency of monopole pulsations ω0 =
√

3γ (P∞ + 2σ/R0) (ρ0R2
0)
−1

is set to340

ω0/2π = f0 = 1563 Hz. The condition of the parametric resonance ω0 ≈ 2ωl is satis-341

fied for l = 14 mode: ωl =
√
σ (l + 1) (l + 2) (l − 1) (ρ0R3

0)
−1

, ω14/2π = f14 = 789 Hz. For342

comparison, the natural frequency of the nearest mode equals ω13/2π = 709 Hz. The damp-343

ing factor for the breathing mode γ0 = ω2R0/2c + (2ν/R2
0) + 3(γ − 1) (ω0/2R0) (D/2ω)1/2

344

is the sum of radiation damping, viscous damping and damping owing to thermal diffusion,345

as estimated by a linear analysis. This factor is set to γ0 = (94.27 + 0.45 + 91.39) = 186.11346

s−1. The viscous damping of the l-th distortion mode, as estimated by a linear analysis,347

γl = (l + 2)(2l + 1)ν/R2
0, is set to γ14 = 105.21 s−1.348

Figure 2 illustrates the excitation threshold for the generation of the l = 14 surface mode349

on the bubble wall and the location of the characteristic frequencies: f−, f0, 2f14, and f+.350

The most likely candidate explanation for the discrepancy between this and the results of a351

laboratory experiment [57] (rolls pattern observed under driving with frequency of 1500 Hz352

and an amplitude of the acoustic signal 24 Pa) is the fact that the bubble was not free in the353

discussed experiment – the glass rod prevented its buoyant rise. The natural frequency of354

the tethered bubble is lower than that of a free bubble [59]. Moreover, the acoustic pressure355

near the rigid wall (glass) is higher than that measured by a hydrophone in the volume of356

liquid before insertion of the glass rod.357358359

The behavior of the normalized volume amplitude, Vm/V0, and sinαV versus frequency,360

f = ω/2π, and pressure acting at the place of location of the bubble, Pm = ρ0ωϕm cos(kd) are361

illustrated in FIG. 3 (a,b). The presence of the threshold appears as a break (a discontinuity362

in gradient indicated by a white line) on the surfaces shown in FIG. 3 (a, b). The dashed363

line at the panel (b) shows the contour where sinαV vanishes. The radiation force changes364

its sign at the corresponding values of the determining parameters f = ω/2π and Pm. Since365

for the case considered here we know that ω0 < 2ω14 (1563 < 2 × 789), the frequency at366
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FIG. 2. (Color online) The control space for the acoustic pressure amplitude (Pm) and frequency

(f = ω/2π) of the pump field, as relating to an air bubble of equilibrium radius 2.1 mm in water

under 1 atmosphere. The threshold curve for parametrically driven shape oscillations (l = 14,

dashed curve) is shown. A horizontal line indicates a minimum of the threshold (minPth = 26.2

Pa). Location of the characteristic frequencies illustrates the closeness of parametric resonance

f0 ≈ 2f14 and the range of applicability of the current approach f− < f < f+.

which the sign changes decreases as the driving pressure increases above the threshold.367

In the current study we have restricted ourselves to consideration of the simplest pattern368

which can be generated on the bubble wall (rolls). Extrapolation from these findings to369

the circumstances in which other patterns occur requires cumbersome calculations. The370
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FIG. 3. (Color online) A surface plot of the normalized amplitude of the volume oscillations, Vm/V0,

(a). The two horizontal axes represent frequency, f , and the zero-to-peak amplitude of the external

pressure field, Pm, acting in the place of bubble location. The variation of the sinαV determining

the direction of the radiation force is shown at the panel (b). The dashed line illustrates the

location of the contour where radiation force changes its direction.

form of the surface wave is important for a number of areas (e.g. the changes made during371

electrodeposition when bubbles with acoustically-activated surface waves are present on the372

electrode [57]). However this paper also focuses on the effect these surface waves have on373

the radiation force that determines the bubble’s location. Acoustic fields have been used to374

levitate bubbles for decades [3, 60–63]. However the empirical observation that the bubble375

can ’dance’ and ’shimmer’ [64, 65] can be approached by understanding the effect that376

surface waves have on the radiation force. Because of this, and the applications that are377

facilitated by being able to use radiation forces to direct a bubble to a target area where the378

surface waves can perform a useful task (such as cleaning in crevices [66]), it is important to379

evaluate the static acoustic radiation torque [67, 68] on a parametrically distorted bubble.380

A review of existing experiments (see supplement materials 3.pdf [69]) has not identified381

any experimental set-up from the past when observations were taken under conditions,382

where variations in the strength of the radiation pressure above the threshold for parametric383

instability could occur. From our point of view, it is most easy to check the existence of384

these variations in determining the levitation position of the bubble in the conditions of385

the experiment described by Crum and Prosperetti [70], but using plain water instead of386

glycerol solution.387

In an acoustic standing wave, bubbles can be levitated against the gravitation force of388
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buoyancy by Bjerknes forces. Measurements of the pulsation amplitude of an individual gas389

bubble were made by acoustically levitating the air bubble near an antinode of an acoustic390

stationary wave [61, 70]. A bubble can be stably levitated if the Bjerknes and average391

buoyancy forces are equal. Thus:392

ρ0g

T

∫ T

0

V (t)dt ≈ ρ0gV0 = (1/2)kPmVm sinαV sin(2kd). (25)

A simple expression for the equilibrium levitation position of the bubble can be obtained393

provided one assumes the bubble is near the pressure antinode which usually implies that394

the size of the bubble is smaller than resonance. Under such circumstances, sin(kd) ≈ kd395

and:396

d =
2ρ0gV0

k2PmVm sinαV
. (26)

For small driving pressures, the equilibrium position of the bubble is nearly inversely related397

to the square of drive pressure. However, as the driving pressures increased above the398

threshold for instability of the first distortion mode, the slope of the curve d(Pm) will be399

changed according results presented in the current paper. Moreover, as soon as the amplitude400

of the external oscillating pressure exceeds the threshold for the excitation of the surface401

mode that has a driving pressure threshold that is higher than, but closest to, that of the402

Faraday wave mode (this is usually the one that has a mode number that is one integer403

higher than the mode number of the Faraday wave), it will become difficult to determine404

the levitation position since the bubbles demonstrate the erratic “dancing” motion. This405

translation instability is caused by shape oscillations.406

V. CONCLUSION407

The variations in the acoustic radiation pressure exerted by a standing sound wave on408

a gas bubble above the threshold for generation of surface modes have been studied the-409

oretically. In the framework of a simple model, we were able to reveal how the nonlinear410

interactions between breathing and distortion modes affect the magnitude and direction of411

the radiation force. It has been shown that the growth of the radiation force with increasing412

amplitude of the acoustic wave above the threshold slows down and the frequency at which413

this force changes its sign is shifted.414
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FIGURE CAPTIONS613

Fig. 1 (Color online) Schematic of a parametrically distorted bubble in the field of a614

standing acoustical wave ϕin of the frequency ω with d being the distance between615

the equilibrium center of the bubble and the nearest plane of the velocity nodes (or616

potential antinodes). The size of the bubble is assumed to be smaller than the acoustic617

wavelength λ, thus, there is a region around the bubble, which may be regarded as618

incompressible.619

Fig. 2 (Color online) The control space for the acoustic pressure amplitude (Pm) and620

frequency (f = ω/2π) of the pump field, as relating to an air bubble of equilibrium621

radius 2.1 mm in water under 1 atmosphere. The threshold curve for parametrically622

driven shape oscillations (l = 14, dashed curve) is shown. A horizontal line indicates623

a minimum of the threshold (minPth = 26.2 Pa). Location of the characteristic fre-624

quencies illustrates the closeness of parametric resonance f0 ≈ 2f14 and the range of625

applicability of the current approach f− < f < f+.626

Fig. 3 (Color online) A surface plot of the normalized amplitude of the volume oscilla-627

tions, Vm/V0, (a). The two horizontal axes represent frequency, f , and the amplitude628

of the external pressure field, Pm, acting in the place of bubble location. The variation629

of the sinαV determining the direction of the radiation force is shown at the panel (b).630

The dashed line illustrates the location of the contour where radiation force changes631

its direction.632
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