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Designing experiments on networks challenges an assumption common in classical ex-

perimental designs, which is that the response observed on a unit is unaffected by treat-

ments applied to other units. This assumption is referred to as ‘non-interference’. This

thesis aims at improving the design efficiency and validity of networked experiments

by relaxing the non-interference assumption, where efficiency stands for low variance

of the estimated quantities (precision) and validity for unbiased quantities (accuracy).

We develop flexible and effective methods for designing experiments on networks (with

a special focus on social networks) by combining the well-established methodology of

optimal design theory with the most relevant features of network theory. We provide

evidence that conventional designs such as randomised designs are inefficient compared

to a systematic approach that accounts for the connectivity structure that underlies

the experimental units.

We investigate the impact of the network structure on the efficiency and validity of the

experimental design. There is evidence that the experimental design is determined by

the small-scale properties of networks. We also develop an algorithmic approach for

finding efficient designs by utilising the network symmetry as defined by the automor-

phism group of the underlying graph. This approach reduces considerably the search

time for finding a good design in moderate-sized networks. It works by decomposing

the network into symmetric and asymmetric subgraphs and consequently decomposing

the design problem into simpler problems on these subgraphs. Moreover, we suggest

a framework for finding optimal block designs, while taking into account the interrela-

tions of groups of units within a network. In doing so, the units are initially divided

into blocks, using spectral clustering techniques and the concept of modularity, prior

to assigning the treatments. We study how the structural properties of the network

communities affect the optimal experimental design and its properties. We also make a

transition from experiments on social networks to experiments in agriculture showing

the diversity of applications this research can address. In particular, we obtain optimal

designs with two blocking factors while handling different definitions of neighbour struc-

tures related to either the distance among plots or the farmer operations. Throughout

this thesis, several optimal designs on networks are obtained using a simple exchange

algorithm, which is implemented in the R programming language.
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Chapter 1

Introduction

The main idea of planning an experiment is to compare the effects of alternative inter-

ventions (treatments) by observing the responses of a number of entities (experimental

units) to which these interventions are applied. An experiment consists of applying

one treatment to each experimental unit, keeping the treatment allocation under the

experimenter’s control, and making one (or more) observations. The statistical de-

sign of experiments ensures that the experiment produces valid and information-rich

data. Designing experiments on networks, which consist of interconnected experimental

units, raises questions about a common assumption used in classical experimental de-

signs. This assumption is commonly referred to as ‘non-interference’ and pertains to the

treatment effects, stating that the response of a unit remains unaffected by treatments

assigned to other units. Relaxing this assumption can improve the design efficiency

and the validity of the analysis of the experiment conducted on a network. However,

hitherto there is very little published work on designing experiments on networks. The

aim of this thesis is to make some progress in this novel area, by combining two major

areas of research, namely the design of experiments (DoE) and network theory (NT).

1.1 Preliminaries

It will be convenient at this point to introduce some standard terminology (more details

will be given in Chapter 2 and other chapters).

Networks of all kinds drive the modern world, and can be used to represent many

different systems: social networks, communication networks, financial networks, bio-

logical networks, geographical proximity networks. Networks, either real or virtual,

are a collection of entities that are interconnected. In social networks, for instance,

the connections can represent some form of friendship, communication, proximity or

collaboration. Examples of social networks include acquaintances or friends, networks

of colleagues by profession, Facebook friendships or the Twitter follower relationship.

These structures outline the (direct and indirect) connections between entities and

provide a framework for exploring their interactions and behaviours. Mathematically,

networks are represented by graphs, with vertices (or nodes) denoting the entities and
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edges among them indicating the links. Networks are an important source of ‘big’ data

and an area of research in many disciplines such as healthcare, economics, politics and

others. Examples of networks and experiments conducted on them will be given in the

following section.

Design of experiments (DoE) is a well-developed methodology for obtaining valid and

efficient answers to questions that the experiment is intended to answer, given the

practical, financial and ethical constraints. Validity stands for unbiased quantities (ac-

curacy) and efficiency for low variance (precision) of the estimated quantities. The

pivotal points in experimental design are the choice of experimental units, the determi-

nation of a suitable set of treatments that meet the objectives of the experiment, and

the allocation method of the treatments to the experimental units. Among others, a

standard reference on DoE theory is the book of Cox (1958).

Experimental units and treatments: A well-structured experimental design relies on the

precise definition of experimental units as well as on the treatments applied to them.

Experimental units can take the form of runs of a process, plots of land, collections of

objects or other entities on which different treatments are allocated. They correspond

to the smallest division of experimental material such that any two units may receive

different treatments in the actual experiment (Cox, 1958, Ch.1). If an experiment is set

to run over a period of time, with the observations being collected sequentially, then

the collection times of the day can be the experimental units, depending on how the

treatments are allocated. For the purpose of this thesis, the concept of ‘experimental

units’ from the design theory perspective coincides with the one of vertices from graph

theory. We will mainly refer to them for brevity by the term units. Treatments are

what is compared to answer the experimental questions. They may represent different

diets, drugs, chemicals, genotypes of crops etc. For a greater insight on the choice of

experimental units and treatments refer to Mead et al. (2012, Ch.3 and Ch.5). Both

units and treatments can possess structures, which the experimenter should consider.

The unit structure may arise from the choice of units with regard to a specific study, as

for instance units participating in ‘cross-over’ trial, or units connected in a network, or

may be related to suspected sources of variation that are accounted for by grouping of

units (blocking). In this thesis the experimental units are connected in a given network.

We will discuss the structure of treatments later.

Blocking : The experimental units can be organised into blocks, such that units be-

longing to the same block are expected to respond similarly to an external stimulus.

For example, in clinical trials the units, which may correspond to different patients,

can be grouped by gender, age, or other physical characteristics. Grouping patients in

this fashion ensures that they will be more similar with respect to all relevant features

except for the treatment they received. When the ‘natural’ variation between units is

small, it is easier to identify when a treatment has made a real difference. An example

of a blocking system which can be appropriate for experiments on networks will be

defined in Chapter 5, while accounting for the connections of units within a network.
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Cross-over designs: This type of design is used in various fields including animal sci-

ence, pharmaceutical studies and clinical trials, where different treatments are applied

successively in different time periods to subjects so that an experimental unit corre-

sponds to a subject and period combination. As an example consider a comparison of

two different drugs on a chronic condition such as asthma in different consecutive pe-

riods of time on the same patients. Thus here lies a structure of units within patients,

with different units corresponding to different time periods for the same patient. Notice

that the patients essentially act as blocks. One of the standard references on the topic

of cross-over designs is that of Jones and Kenward (2003).

Treatment structures: Treatments can be either structured or unstructured. Treatment

structures may refer to a single factor or to crossed or nested factors used to define a set

of treatments in an experiment. For instance, a factorial structure is a commonly used

treatment structure, which involves ‘treatment factors’, each having a set of possible

values called ‘levels’. The treatments correspond to different combinations of these

levels across all possible factors. Consider, for instance, an agricultural experiment

for measuring the crop yields after planting different types of seeds. Suppose that

the different seed varieties constitute the first factor and the different quantities of

the variety the second. Then the specific combination of factor levels constitutes a

treatment whose effect we want to compare with other treatments. In this thesis we

focus on the comparison of unstructured treatments, that could mean that for the

previous example we compare different types of seeds for a single given fixed quantity.

Experimental assignment and design properties: The final step of the experimental

design involves the choice of the appropriate method of allocation of treatments to

units. This can take place under a randomised or non-randomised scheme. A repeated

application of a treatment to multiple units is called replication and is important in

order to make treatment comparisons (for more details see Mead et al., 2012, Ch.6). In

addition to replication, another fundamental aspect of a good design is balance. Balance

is a valuable property of a design and is achieved when the treatments have equal

replication, so that any two treatments occur equally often in the design. Additionally,

in the case of block designs, each pair of treatments occurs within a block exactly

the same number of times over the whole experiment. A characteristic of the balance

property is that the precision of all treatment comparisons is equal. Pearce (1963) was

the first one to notice this property, by explaining that the design is said to be balanced

when the ‘sum of weighted concurrences for any two treatments’ is equal (pairwise

balance) resulting in all simple treatment comparisons being equally precise. Another

important property of block designs is orthogonality. Orthogonality of treatments and

blocks enables the effects to be considered separately, which allows for independent

interpretation of effects of treatments and of blocks (for more details refer to Mead

et al., 2012, Ch.7). Although several of the designs we provide are unbalanced, we

will give more insight into the properties and other issues of interest in the following

chapters.
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Additivity and non-interference assumption: The additivity assumption underlies the

majority of the standard designs. It implies that a response of a unit is not affected by

treatments assigned to other units (Cox, 1958, p. 19). This fundamental assumption is

also termed ‘non-interference assumption’ or ‘stable unit treatment value assumption’

(SUTVA, as named by Rubin, 1990), and is crucial for the validity and precision of

the experimental results. There are three situations where the additivity assumption

may be doubtful and unrealistic: when there is time dependence, spatial dependence or

network dependence. Time dependence, for instance, may be present when treatments

are applied in a sequence (as in cross-over designs) and therefore, there may be effects

carried over from one treatment period to the next (‘residual effects’). For instance, a

treatment applied to a subject at a given period of time may be affected by a treatment

that the subject received in the preceding period. Spatial dependence encountered in

field experiments can result in a response from one plot which receives a treatment

being affected by treatments on adjacent plots (‘neighbour effects’). Network depen-

dence, considered for instance in social networks, results in dependent responses due

to the interpersonal communication and social influence among the network members

(‘network effects’). Section 1.3 further discusses this crucial assumption together with

some critical steps made in the development of experimental design when potential

outcomes or responses are dependent.

Spillover effects (network effects): The propagation effects as a result of units’ interfer-

ence are known under the terms indirect, neighbour, residual and spillover effects, and

constitute a violation of the non-interference assumption. Spillover effects can generally

produce systematic biases, rendering the removal of those biases necessary in order to

obtain reliable comparisons among alternative treatments. Thus some particular pre-

cautions may be adopted to protect against problems caused by interference in order

to improve the precision of treatment comparisons. In general, we can distinguish two

types of spillover effects: one occurring via response interference and one occurring

via treatment interference, both of which are discussed later on. This thesis focuses

more on treatment interference effects based on a given network structure and there-

fore we shall refer to them as network effects. Another possible distinction is when

spillover effects are regarded as incoming or outgoing effects. This work perceives them

as incoming effects, resulting from treatments received by one’s immediate neighbours

(refer to Sections 3.1 and 3.2). All these issues will be considered in more detail in the

following chapters.

Example of a networked experiment : Consider a company, which is interested in con-

ducting a commercial experiment on a social networking site in order to compare the

effectiveness of different advertisements concerning a product. The responses are mea-

sured based on the purchased quantities during the week immediately following the

advertising campaign. The company’s goal is to maximise the appeal of the product,

and as a result its demand, by effectively using the advertisement as a tool to affect

the purchasing decision of potential customers. Our aim is to understand how adver-
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tisements affect directly and/or indirectly the purchasing decisions. In other words the

advertisements may have an effect not only on the recipient but also on one’s (virtual)

friends. With the advent of viral marketing, these indirect effects of the advertisements

are generally desirable by the marketing campaign and are crucial for the purchasing

demand of the product. Typically, from the experimental design point of view, such

advertisements can possess complicated treatment structures related to marketing and

design characteristics such as the portrayal of the product in the advertisement, the

colours used, the recommended price if mentioned, the style and various other features

of competitive marketing strategies aiming at making the advertisement more memo-

rable and interesting. The above can be rephrased in the context of having a number of

factors at different levels that represent different versions of comparative advertisement

structures in an attempt to gain insight to the efficiency of the marketing experiment in

a controlled environment. However, if the treatments are unstructured, this could mean

that interest lies in making comparisons between defined advertisement formulations

with some prespecified appearance characteristics.

Identifying but a few of a growing list of similar examples has given us the incentive

to begin this research. The field of experimental design is constantly challenged by the

problems that come up in science and industry. The following section discusses more

examples with the intention of highlighting the diversity of applications this thesis can

address.

1.2 Experiments on networks

A number of experiments and observational studies from various domains have been car-

ried out on networks in an attempt to unveil spillover effects and gain insight into human

behaviour, marketing analytics and the spread of diseases. Examples of such topics of

research include the spread of behaviours (Centola, 2010; Christakis and Fowler, 2013),

the transmission of political beliefs and the resulting different voting turnout (Bond

et al., 2012; Green et al., 2013), the word-of-mouth peer-influence, such as purchasing

a product or joining a community (Aral and Walker, 2011; Bapna and Umyarov, 2015)

and the transmission of diseases (Griffin and Nunn, 2012; Risau-Gusman, 2012; Danon

et al., 2012). Our interest lies either in the spillover effects themselves or in the di-

rect comparison of treatments in the presence of nuisance spillover effects. Table 1.1

additionally mentions a few examples of experiments on networks (including but not

limited to social networks), showing the diversity of applications across different fields

that can be addressed with the theory and methods developed in this thesis. These

examples of experiments are synthesised from the literature and share common design

features. There is an underlying structure governing the experimental units, resulting

in potential spillover effects.

Example (i) is similar to the example of Section 1.1. Advertisers’ main goal is to mea-

sure the effectiveness of their advertising campaigns in order to achieve product aware-
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ness. The impact of advertising on consumer behaviour can be measured through the

number of views, website visits, downloads, and shares in social networking platforms

or various other forms of conversions. The product advertisements can be allocated

to connected individuals in a social media platform. There may be viral effects of the

advertisements increasing the product awareness to connected interacting individuals.

An example of such an experiment in this context was recently conducted by Dai and

Luca (2016) on a restaurant review networking platform to assess the overall impact of

different advertisements.

Network topology can also describe spatial dependence. Example (ii) outlines an ex-

periment in agriculture, where the response on one plot may be affected by treatments,

such as different chemical pesticides, on neighbouring plots as well as by the stan-

dard effect of this treatment on the plot. The objective of the experiment is the

plant growth and the network structure can be based on the geographical proximity

of plots. Examples of such experiments are field trials in Rothamsted Experimental

Station (http://www.rothamsted.ac.uk), where neighbour effects, soil fertility trends

and competition have been studied. Kunin (1998), for instance, acknowledges the po-

tential existence of spillover effects in a well-known long term experiment, the Park

Grass experiment. That experiment has monitored the plant species diversity for well

over a century. It consists of a series of closely abutting field plots that have been

subjected continually to different fertilisation treatments. Section 1.3 mentions work

in agricultural field trials with neighbour effects being investigated in addition to the

standard effect of the treatment applied to a particular plot.

Example (iii) concerns an experimental study of a voting turnout in political science,

where social-pressure mailings can be distributed to registered voters in a congressional

district who are eligible to vote. This pressure could be exerted by interacting individ-

uals, household members and neighbours (e.g. within the same zip code), who might

also read the mailing. Based on these considerations, Sinclair et al. (2012) conducted a

multilevel experiment in political science in Chicago during the elections in 2009. They

attempted to measure spillover effects in addition to the direct effects of the treatments

applied to the voters, which correspond to voter-mobilization messages via postcards,

and studied influence on the voting behaviour. In other words they investigated the

propagation of the treatment effects within and between households in the same neigh-

bourhood. They discovered that the postcard had a direct effect on the recipient as

well as an indirect effect on his household members (at the household level). There was

no evidence, whatsoever, of an indirect effect at the neighbourhood level (i.e. friends

and acquaintances living in the same neighbourhood) as far as the voting pattern is

concerned.

Other experimental studies could involve incentives with the objective of improving

behaviours or outcomes in a specific domain such as education, health, labour market,

and pro-social behaviours (e.g recycling, charitable giving, blood donation etc.). Ex-

amples (iv), (v), and (vi) fall in this category. Consider for instance an experimental
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study which aims to incentivise the choice of healthy food for improving the habitual

decision to consume nutritious foods (Example (iv)). Angelucci et al. (2015) conducted

an experiment on this basis, which involved incentives for choosing the healthier option

between two different snack choices ‘grapes and cookies’. The field experiment took

place in school cafeterias in nine different schools during lunchtime, with the lunch

tables that peers were sharing constituting the peer networks. The pupils were given

the choice of alternative snacks based on the observations of their peers’ incentivised

choices. The study highlighted that both the direct and spillover effects of the incentives

were substantial. The website http://www.dietdetective.com is also based on this

idea of texting reminders to eat healthy via different interventions. It provides different

types of reminders at different times, which can correspond to different treatments. Fol-

lowing a similar rationale, Example (v) describes an experiment where a humanitarian

campaign aims to compare different text messages with the object of raising funds. As

such a study may be conducted at various workplaces in order to compare a number

of different candidate messages. The responses of the subjects can be measured by

means of their donations. The subjects work together and might hold discussions with

each other. Therefore, the text messages could have viral effects, as such affecting not

only the person receiving the text message but also that person’s friends. Moreover, it

is worth considering that the act of one’s donation, can be observed by others in the

contact network leading to a ‘contagion’ effect. Similarly, Example (vi) involves animal

behavioral nudging for accomplishing a task faster. Animal networks are networks of

contacts between animals. They are the animal equivalent to human social networks.

The experimental intervention in this setting is some kind of reward to encourage the

animals to act/respond faster. The proximity of the animals may be regarded as a way

to define the social network between them. The spillover effects may be based on the

observation of nearby animals receiving treatments or responding to these treatments.

The remaining examples, (vii)–(x), displayed in the table can be easily understood and

regarded in a real life context. The ‘true’ network organisational structure is sometimes

difficult to define or obtain. In this thesis, the focus lies exclusively on static networks,

i.e. networks in which units are assumed to be pre-specified and fixed during the time

of experimentation. Section 2.4 discusses this issue in more detail. It is important

to point out that in all these examples the non-interference assumption is untenable.

Therefore, more elaborate procedures are required rather than standard experimental

designs, which ignore potential interactions and by extension spillover effects. This

necessitates the development of new methodological approaches in the field of design of

experiments with connected experimental units, building upon the existing literature.

1.3 Related literature

Designing experiments for the special cases where there is time, spatial or network

dependence challenges the ‘non-interference’ assumption (briefly discussed in Section

8
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1.1). In this section, we will review the literature on investigating spillover effects

resulting from interference. The section is arranged in a thematic order. We will provide

a view of the critical steps in the development of design and analysis of experiments,

when interference is present, but also literature on interference in networks for capturing

(social) influence and network interdependencies. More technical issues and different

interference models are discussed in Chapter 3.

1.3.1 Causes of interference and design properties

Common attempts in the literature to prevent interference involve allowing for ‘guard’

areas around plots when it comes to spatial dependence or resting periods (‘wash-out’

time) in cross-over designs when it comes to time dependence. Other methods for

reducing or eliminating the spillover effects resulting from interference are related to

modifications on the treatment allocation or restrictions on randomisation procedures

(methods and examples are discussed in Mead et al., 2012, Ch.8 and Ch.11).

An important work that incorporates different developments in the analysis of field

experiments accommodating interference is that of Besag and Kempton (1986), which

investigated different causes of association between neighbouring plots and provided

appropriate models for better capturing each cause. Besides the method of widely

separated plots receiving different treatments and other systematic arrangements, they

discussed spatial techniques based on the differences of plot responses in one direction

for removing from the data local trends of soil fertility (i.e. adjustment for fertility

effects). Another cause of association they considered, arises from ‘interplot compe-

tition’, where plot responses are directly related to the values of neighbouring plots

(i.e. response interference). They suggested an autoregressive formulation of an inter-

ference model to adjust for competition between plots. They also considered the case

where plot responses are affected by the treatments applied to neighbouring plots (i.e.

treatment interference).

From the perspective of experimental designs, work on interference has mainly concen-

trated on the construction of block and neighbour-balanced designs with appropriate

randomisation schemes (David and Kempton, 1996). Neighbour-balanced designs were

introduced by Rees (1967) in serology, and these are designs where each treatment has

every other treatment as a neighbour, on either side, an equal number of times (Wilkin-

son et al., 1983). In other words, neighbour-balanced designs have the property that

for each ordered pair of treatments there is one plot that has the first chosen treatment

as a left neighbour and the second chosen treatment as a right neighbour (Azäıs et al.,

1993). In block designs, on the other hand, it is desirable that all pairs of treatments

occur in the same block an approximately equal number of times. Thus neighbour

designs take account of the concurrence of treatments in adjacent units rather than

units in the same block.

Subsequently, we discuss the literature relevant to the types of spillover effects related
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to the different causes of association among neighbouring units.

1.3.2 Adjusting for treatment interference

One of the most well known examples in the literature where, when applying a treat-

ment to one unit part of its effect spills on to the other units, is the cross-over design

with carry-over effects (or residual effects) (see Section 1.1). In such a design, the drug

the patient received in the first period may have residual effects on the second drug’s

performance during the second period. Commonly used, especially in clinical trials,

cross-over designs assume a time dependence only in one direction (influence by past

values only). Experimentation where sequences of treatments are allocated over time

can also be found in other areas of research, such as industrial research, animal feeding

trials and psychology. For more information about and practical examples of cross-over

designs see Jones and Kenward (2003) and Senn (2002) and further references therein.

The time dependence results in making further assumptions about the parameters of

the model describing adequately the experimental situation, by capturing carry-over

effects or period effects or even some interactions among them which can affect the

response. A typical model used for this situation is presented in Chapter 3 along with

further discussion.

As opposed to time dependence which extends only in one direction (forwards), spatial

dependence can be multi-directional. Cliff and Ord (1981, p.9) highlighted that space

should be treated quite differently from time as there is no natural ordering. The

development of design and inference on neighbouring experimental units was especially

motivated by applications in agricultural and horticultural research fields, e.g. spatial

field experiments. In a spatial experiment, units occupy fixed locations distributed

throughout a region, e.g. agricultural field experiments. In such an experiment, the

response on a given plot can be affected by treatments applied on neighbouring plots

as well as by the treatment applied to that plot. As an example, the effect of a chemical

pesticide applied to a plot can be potentially affected, in terms of plant growth, by its

surrounding plots’ treatments (see Example (i) of Table 1.1).

A noteworthy relevant published work is that of Pearce (1957), who mentioned the

importance of taking into account both ‘local’ (i.e. direct) and ‘remote’ (i.e. indirect)

effects. In one of his experiments on the effects of pollen on the size of apples, each

treatment had a local effect on the tree branch (experimental unit) to which it is

applied and an equal remote effect on all other branches of the same tree (block).

He suggested efficient block designs and provided estimates for treatment comparisons

within and between blocks. He also allowed for interactions between the remote effect

of a treatment on a plot and the treatment applied locally to that plot. For that

he considered an additional effect, which captures the total effect resulting from the

treatments in a block, which differs from the one applied to that specific plot. Building

upon the work of Pearce (1957), Draper and Guttman (1980) considered the neighbour
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effects to be proportional to the direct treatment effects multiplied by a coefficient

of interference, which can be positive or negative depending on the ‘aggressiveness’

of each treatment. Besag and Kempton (1986) discussed the ideas of those authors

and provided relevant applications on the use of neighbouring plot responses in the

experimental analysis.

In contrast to the approach followed by the above-mentioned work, which primarily

focused on the analysis rather than the design of experiments, Azäıs et al. (1993)

and Druilhet (1999) considered neighbour-balanced designs with one- or two- sided

neighbour effects. Azäıs et al. (1993) also provided a list of efficient circular neighbour-

balanced designs. Note that in circular designs, each one of the plots has a left and

right neighbour and the first and last plots are considered as neighbours. Research in

this field has given rise to design and model issues that are related to: (1) the presence

of guard plots (also known as border plots, which differ from the interior plots); (2) the

arrangement of plots in one or two dimensions (typically with a regular structure of

neighbours); (3) the presence of neighbour effects in one or both directions (left and/or

right); and (4) the left-neighbour effects being equal to or different from the right-

neighbour effects. Special mention has also been made of block designs where plots

are grouped into blocks with experiment-specific characteristics, which are expected

to behave similarly, e.g. geographical blocks of similarly situated plots, groves of trees

with specific morphological characteristics etc.

Based on these considerations, a wide variety of possible models has been suggested

for the case of treatment interference. Examples include the work of Druilhet (1999),

Kunert and Martin (2000), Bailey and Druilhet (2004) and Kunert and Mersmann

(2011), who provided models and efficient designs that concern experiments where units

are arranged in a circle or a line for neighbours one apart. Their suggested designs were

in their majority neighbour-balanced in the sense that all pairs of treatments occur in

adjacent plots equally often. Druilhet (1999), in particular, considered designs with

few blocks and guard plots at each end of the block, so that each interior plot has two

neighbours. Kunert and Martin (2000) relaxed the assumption of guard plots and also

proposed having different left and right neighbour effects with block sizes of three and

four extending the model postulated by Druilhet (1999) and improving the design given

that extended model. Consequently Kunert and Mersmann (2011) extended the work of

Kunert and Martin (2000) by adapting their model with different interference from two

sides to more than four plots per block. More recently, Parker et al. (2016) adopted

the conceptual approach of Pearce (1957) and introduced a model, called the linear

network effects model (LNM). The LNM bears many similarities with the model of

Kunert and Martin (2000). However, it differs by relaxing the assumption of neighbour

effects being controlled in only one way and allows for a network setting without the

inclusion of blocks. Chapter 3 discusses the LNM and provides some new analytical

results on designs for this model. Moreover we extend the LNM to experiments with

blocks in Chapters 5 and 6.
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1.3.3 Adjusting for response interference and spatial or temporal vari-

ation

As we have already pointed out, designs for correlated observations are common when

data form a series in time or space (in violation of the non-interference assumption).

Typically the nature of this heterogeneity is such that there is a significant correlation

among units that are neighbours, either in time or space. Patterns of autocorrelation

in time have been investigated in cross-over designs to gain insight into some time

dependencies analogous to time-series (Matthews, 1987). A discussion on this topic with

an extensive list of references can be also found in Hinkelmann and Kempthorne (2005,

Sec. 19.8). However, specification of modelling approaches considering autocorrelation

structures has been mostly seen in spatial experiments. Cliff and Ord (1981, p.16-9)

mentioned the need to characterise a priori the form of spatial dependence of interest

with a ‘spatial proximity matrix’ based on an appropriately defined set of weights

related to the study at hand. The weights, for instance, may depend on the length

of common boundaries between the plots or other appropriate metrics for controlling

environmental or other differences in the field. We discuss some of these issues in

Chapter 6, where we focus on a particular agricultural field experiment.

It was first suggested by Papadakis (1937) that the response from a plot is closely re-

lated to the responses from its immediate neighbours due to the spatial heterogeneity in

the responses. In his ‘nearest method’ presented for control of soil fertility, the residual

for one plot is given by both the difference between the observed yield for the variety

in that plot and the average yield for the same variety in the whole experiment. In

an early approach, accounting for spatial correlation by modelling the error structure,

Williams (1952) considered neighbour designs with correlated plot effects. In particu-

lar, he discussed a low-order autoregressive process (at distance one or two) on plots

allocated in a one-dimensional layout (line) or two dimensional layout (plane) with a

few border plots. Butcher (1956) also discussed one-dimensional neighbour-balanced

designs but extending to longer distances. The spatial analysis using the Papadakis

method was further discussed by Bartlett (1978), who proposed the traditional use of

blocks while adjusting the responses (yields) by accounting for the inherent positive

correlation between the fertility of neighbouring plots (i.e. covariance on the residu-

als of neighbouring plots). Although not strictly concerned with correlation effects,

designs with neighbour-balance in two-dimensions date back to Freeman (1979), who

considered designs balanced for nearest neighbours in the context of ‘polycross designs’

for seed production and provided possible methods of construction of one- and two-

dimensional neighbour-balance designs. In polycross designs, the neighbours are the

immediate adjacent plots positioned in a cross arrangement. Kiefer and Wynn (1981)

suggested one-dimensional block designs where the correlation occurs between imme-

diate adjacent plots only within the blocks.

A fundamental source on measures of spatial autocorrelation and on spatial regression
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models is Cliff and Ord (1981). A body of literature associated with this work grew

rapidly in the context of social networks (Leenders, 2002), as is discussed further below.

Coming back to the subject of nearest neighbour methods for spatial statistics, Wilkin-

son et al. (1983) suggested a method in which local trends are removed by considering

the second differences or partial differences. They also proposed alternative models

for the analysis of field variety trials. Street and Street (1985) discussed the construc-

tion of designs that satisfy the balance conditions in Wilkinson et al. (1983). Gill and

Shukla (1985) considered a different nearest neighbour method of analysis of block ex-

periments with no neighbour effects but with fertility trends (autoregressive correlation

model) and inter-plot correlation (moving average model). As we earlier mentioned,

Besag and Kempton (1986) also suggested a nearest neighbour model for the analysis

of soil fertility based on the first differences of plot responses. In that work, Besag and

Kempton (1986) presented two competition models: the response interference model

(for inter-plot competition) of Kempton (1982) and the treatment interference model of

Pearce (1957). The response interference model assumed observations adjusted for the

general mean and ignored the block effect, whereas the treatment interference model

assumed one can jointly model competition effects and spatial variability as part of

the treatment structure, while modelling the trend in only one dimension as part of

the structure of errors. Efficient neighbour-balanced designs were also introduced by

Kunert (1987) for positive correlated structure. Martin and Eccleston (2004) obtained

block designs under a linear variance model (with autocorrelation in errors).

All these studies suggest methods for improving the treatment contrast estimates by

removing from the data any locally linear trends, which correspond for instance to the

pattern of fertility, or by adjusting for the response interference among neighbouring

plots. In this thesis, the spillover effect depends on the treatment applied to the neigh-

bours. However, later we discuss another setting where the spillover effect depends on

the actual response from the neighbouring units. In particular, building on the autore-

gressive formulation for the responses in the work of Besag and Kempton (1986), we

present a model in the context of networks in Section 7.2.1, where units’ responses are

directly related to the responses of neighbouring connected units.

1.3.4 Recent work on spillover effects and modelling influence in net-

works

In recent years a new wave of scientific work has emerged that strives to identify and

even measure spillover effects, due to their increasing importance.

In certain studies the structure of the spillover effects can be arbitrary, either known or

unknown. Aronow and Samii (2013) and Coppock and Sircar (2013), both focused on

estimating average unit level causal effects of exposures in the presence of interference,

which has either a known or unknown structure. The average causal effect (of a binary

variable) on a study population is typically defined by a contrast of means of potential
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outcomes generated in the experiment (one for each level of that variable). Aronow

and Samii (2013) and Coppock and Sircar (2013) both suggested inferential frameworks

for carrying out analyses to run experiments when there are spillover effects (SUTVA

violation). A brief review on recently developed frameworks for statistical inference

is written by Bowers et al. (2013) which focuses on the application in networks. In

other studies, however, spillover effects are governed by a known structure. For in-

stance, Sinclair et al. (2012) and de Miguel Luken and Tranmer (2010) both conducted

experiments in multilevel settings. Other recent literature in the field of experimenta-

tion on networks in the context of estimating the average treatment effect is that of

Eckles et al. (2014) and Basse and Airoldi (2015). This work follows conceptually the

idea of treatment interference and response interference. In particular, Eckles et al.

(2014) dealt with social interference where the expected responses are a function of

the treatment assignments to the units, while Basse and Airoldi (2015) focused on the

network-correlated outcomes where the expected responses of a unit is a function of

that unit’s covariates but also those of other units.

However, most of this work follow the framework of the Rubin causal model and po-

tential outcome framework (Rubin, 1974), with the interest in measuring a quantity,

which is the difference of the effects of two treatments on the potential average out-

comes where the treatments are applied to all units each time. Thus the causal effect

of the treatment involves the comparison of the two potential outcomes one for each

treatment. A thorough book on this topic with a comprehensive presentation of these

conceptual issues is that of Imbens and Rubin (2015). Aral (2016) provided a review

of recent advances in networked experimentation, highlighting the importance of de-

veloping modern design approaches that study the propagation of network effects with

the objective of drawing causal inference. Another relevant work is that of Bowers

et al. (2016) that showed that standard designs used under non-interference schemes

are inefficient when used in networked experiments and highlighted the importance of

incorporating the potential network effects in the model. However, this potential out-

come framework is beyond the scope of the current text. This thesis mainly focuses

on the computation of optimal experimental designs on networks, where the treatment

assignment to units is governed by a deterministic rule rather than by a completely

random mechanism. Moreover, the spillover effects are governed by a known network

structure, within which the potential interactions among experimental units take place.

Apart from the above mentioned studies, there is a vast literature on modelling influence

on networks and capturing network interdependences. These include:

– network autocorrelation models (Doreian, 1980; Cliff and Ord, 1981; Anselin,

1988). These models are the most widely used in social network analysis as a

way of measuring correlation in the responses of members of a social network.

A detailed presentation of these models is given in Section 3.1 (for an extensive

review, refer to Leenders, 2002).

– Multilevel models (Sinclair, 2011; Sinclair et al., 2012; de Miguel Luken and Tran-
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mer, 2010), where the population under investigation is considered as having a

hierarchical structure, in which each lower-level unit is nested within a single

higher level unit, e.g. individuals (at level-1) within households (at level-2) nested

within municipalities (at level-3). Sinclair (2011) suggested strategies for design-

ing randomised experiments in multilevel settings. This work emphasised the

importance of accounting for the hierarchical structure, when present, as well as

considering the randomisation of assigning treatments to the population (see Ex-

ample (iii) of Table 1.1). Another study on a multilevel context was conducted

by de Miguel Luken and Tranmer (2010) who fitted a multilevel logistic regres-

sion model to investigate the personal support networks of recent immigrants to

Spain.

– Multiple membership models (Hill and Goldstein, 1998; Browne et al., 2001),

which treat sources of dependences jointly with the dependences in a social net-

work, e.g. geographical areas or groups to which an individual belongs. More

specifically, they allow for variations that occur as a result of dependences within

a social network, as well as within other groups to which an individual belongs,

to be concurrently assessed. In recent research, Tranmer et al. (2014) claim that

network autocorrelation models are quite problematic and can lead to mislead-

ing and inconsistent results since they ignore other possible underlying levels of

the population structure. They show that multiple membership models are more

suitable for estimating social network dependences on one unit’s responses in the

context of other group dependences in a multilevel framework, reflecting better

the relationships among correlated observations. For example, each individual

can belong to a number of overlapping social settings, e.g. family, neighbour-

hoods, workplace, and as a result there is a relative variation in his/her response

at the individual, network and group levels. This kind of structure is not purely

hierarchical but follows a multiple membership (i.e. crossed) structure, since the

groups may overlap at the same level. In other words multiple membership models

are, in a way, a combination of autocorrelation and multilevel models. Tranmer

et al. (2014) used such models to analyse the individual responses of academic

performance and self-assessed health status. Thus, their study was conducted by

taking into account the social network dependences together with other group

dependences, namely school and areas to which an individual belongs, based on

a subsample from the Adolescent Health dataset from the US.

– Stochastic actor-based models for analysing the dynamics of networks and/or

changing attributes of the network members over time (Snijders et al., 2010; Veen-

stra and Steglich, 2012). These models are relatively new and more complicated

than most statistical models and are useful for longitudinal network data. Dahl

and Van Zalk (2014) conducted a longitudinal study for examining the role of peer

influence on adolescents’ political behaviour, by fitting a stochastic actor-based

model.

Within the scope of this thesis, we do not assume a hierarchical structure or any
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other additional complications. Our main focus lies in accounting, to an extent, for

treatment interference among units resulting from the network dependences, using a

parsimonious and easily justifiable model for such an experimental situation. At this

introductory stage in the design field on networks we believe we first need to focus our

research on simpler models and to gain experience in their application and an in-depth

understanding of associated design issues. Nevertheless, it seems reasonable to expect

that any model that somehow gauges spillover effects will serve to produce substantial

gains in the accuracy and precision of an experiment in a network.

1.4 Contribution

A large proportion of experiments throughout the world is conducted without sophis-

ticated experimental design; this should become a practical concern in networked ex-

periments where the experimental units are connected. When the underlying network

structure is ignored this could lead to invalid inferences and unreliable conclusions.

Thus, for the sake of improving the accuracy in experiments, it is very important for

the statistician to control for the network heterogeneity by adjusting for the interference

between neighbours’ responses or neighbours’ treatments. This work makes an original

contribution by developing novel methods for designing experiments on networks with a

special focus on social networks, which can be immediately put into practice. The main

contributions in the optimal experimental design methodology are: (i) investigating the

impact of different network structures on the experimental design properties, (ii) de-

veloping and appropriately modifying algorithms in order to find optimal designs for

networked data in different experimental contexts, (iii) investigating methods of tak-

ing into account the graph structure of the network and especially its symmetries so as

to substantially reduce the computational time of finding optimal designs in complex

real-world networks (e.g. from weeks to seconds); (iv) developing flexible methods for

finding block designs with appropriately defined blocks, while taking into account the

interrelations of groups of units within the network (an application is given for a subset

of a real-world social network); (v) determining optimal row-column designs with net-

work effects for use in agriculture; and (vi) discussing a model that account for network

heterogeneity by including an autocorrelation of the responses component. Through-

out this thesis, several optimal designs are obtained, many of which are compared in

terms of efficiency to conventional and other more elaborate designs, justifying that

accounting for network effects results in increased precision of the treatment contrasts’

estimates. Various issues of interest such as design robustness to misspecification of

the model or to misspecification of the assumed network are also investigated.

1.5 Thesis outline

The thesis is organised as follows. Chapter 2 discusses fundamental principles and

technical concepts of experimental design and graph theories.
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Chapter 3 focuses on the recent work of Parker et al. (2016), which introduced the

linear network effects model (LNM) and developed optimal designs on connected units.

We extend this work and provide proof of some analytical results. Moreover, we con-

struct several optimal designs on networks where we explore how connections affect the

optimal allocation of the treatments to the network members. We also compare designs

that account for network effects to standard designs by means of efficiencies and biases.

The generic structure of the exchange algorithm used throughout this thesis for finding

optimal designs is also described here.

Chapter 4 provides a computationally fast way for designing experiments for large and

complex networks. In particular, we provide an algorithmic approach for designing

experiments efficiently while utilising the network structure and its properties (i.e.

network symmetry).

Chapter 5 considers flexible blocking structures that exploit the community structure of

a network. Particularly, it provides an adaptable framework for obtaining optimal block

designs, where blocks have been defined using spectral clustering methods and graph

techniques. We assume that network members that belong to a community may respond

similarly to an external stimulus and therefore we define the blocks of the experimental

design to correspond to these communities. Comparisons of the performance of different

efficient designs for given example networks are also provided in this chapter.

Chapter 6 makes a transition to a particular agricultural experiment where the network

structure is related to the distance among the plots or to the farm operations. There

is often great variation in the yields of plots of land, and therefore by grouping plots of

low geographical proximity in blocks we reduce the effect of this variation. This specific

idea is investigated in this chapter, where we consider a double blocking structure of

the units and construct row-column designs with network effects.

Chapter 7 concludes this thesis with a summary and further research directions. More-

over, it discusses some model diversification where the response of a particular unit is

adjusted by the responses of its connected units and it suggests the future steps for the

construction of the designs for that model.
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Chapter 2

General framework

This chapter provides some of the fundamental elements and technical notation of

experimental design theory and network theory, which are used throughout this thesis.

In particular, Sections 2.1 and 2.2 discuss respectively the optimal design theory and

models used for standard designs, whereas Section 2.4 contains the essentials of network

theory. Section 2.3 outlines some commonly used algorithmic approaches for finding

optimal designs. The chapter ends with a concluding discussion and provides insight

into the methodology of designing experiments on connected units within a network

setting. As a note, we maintain a consistent notation throughout the thesis although

at times this means deviating from some of the conventions used in the corresponding

literatures.

2.1 Preliminaries on optimal designs

Scientific experimentation (introduced by Fisher, 1935) includes the set up of a statis-

tical model to adequately describe the experimental situation at hand and the devel-

opment of the statistical design associated with that model. However, the model can

hardly ever be exact, but can only be a good approximation of the real, yet unknown,

relationship between the experimental factors and response variable(s). Let us assume

that we have a linear model, which describes a relationship between the response (out-

come) and the independent variables (factors) plus the error component (noise). The

matrix formulation of the model is

y = Xβ + ε,

where y is the n× 1 vector of responses (with n denoting the total number of units), β

is a vector of p unknown parameters corresponding to the model terms, X denotes the

n× p extended design matrix, each row consisting of the independent variables at each

data point, and each column to a parameter of the model and ε is a vector of random

variables with expectation E [ε] = 0 and variance var (ε) = σ2I (where I is the identity

matrix), which represents the random variation among experimental units.
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The design matrix is the key component in the planning process as it is linked with

inference properties. The Fisher information matrix, M , is a p × p matrix given by

XTX. This matrix is proportional to the inverse of the variance-covariance matrix for

the ordinary least squares estimators β̂ of the model’s parameters (i.e. β̂ = M−1XTy).

In other words,

var
(
β̂
)

= σ2M−1.

Our primary interest is to estimate a set of the model parameters as precisely as possi-

ble. If the rank of M is less than p, that is if the p columns of M are linearly dependent,

then the least squares equations (XTXβ̂ = XTy) cannot be solved directly unless ad-

ditional constraints are imposed. This issue will be further discussed in the following

section. In order to obtain precise parameter estimates we can minimise the variances

of estimators of a certain linear combination of the elements of β. However, depending

on the experimental objectives, different interests on aspects of the model parameters

imply different criteria for optimising the design involving evaluating different functions

of the Fisher information matrix.

Experimental designs for a chosen statistical model are defined as optimal with respect

to a specific design criterion among a set of all possible competing designs of the

same size that define the design space or study region Ξ. Design criteria are based on

an objective function (φ) and are either maximised or minimised. There are several

design criteria proposed in the literature, e.g. distance criteria, compound criteria and

other. However, the most common criteria are the information-based criteria, whose

calculation is based on a function of the information matrix (Kiefer, 1959). We present

below some of them. For a more in depth review of these and other criteria as well

as their application please refer to Pukelsheim (1993, Ch.6) and Atkinson et al. (2007,

Ch.10).

– D-optimality maximises the determinant of the information matrix. This is equiv-

alent to minimising the generalised variance of the parameter estimators.

– A-optimality minimises the trace of the inverse of the information matrix. This is

equivalent to minimising the average of the variances of the parameter estimators.

– E-optimality maximises the minimum eigenvalue of the information matrix. This

implies the minimisation of the maximum variance of all possible normalised

linear combinations of parameter estimators.

In order to determine the optimal designs in this thesis a ‘modified A-optimality’ cri-

terion is used, the L-optimality criterion (introduced by Fedorov, 1972). L-optimality

(‘linear optimality’) minimises the average variance of a pre-specified set of linear func-

tions of the estimators of the parameters β (Atkinson et al., 2007, Ch.10). Thus q

parameters or linear functions of the p parameters in the model are of interest, with

q ≤ p. Let the q linear combinations be STβ, where ST is a q × p matrix. If ξ is a de-

sign for which M(ξ) is non-singular, the variance matrix of the least squares estimator

of STβ is proportional to ST {M(ξ)}−1 S. However, if M(ξ) is singular, the variance
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matrix of the least squares estimator of STβ is proportional to ST {M(ξ)}− S, where

M− is any generalised inverse of M , that is any matrix such that MM−M = M . Thus

the minimisation of the criterion function

φ(ξ) = tr
(
ST {M(ξ)}− S

)
= tr

(
{M(ξ)}− L

)
, (2.1)

where L = SST , leads to an L-optimal design. Thus for the L-optimal design ξ∗

φ(ξ∗) = min
ξ∈Ξ

φ(ξ), (2.2)

where φ(ξ∗) = φ∗ is the optimal function value. The L-optimality criterion is an

extension of A-optimality and they are identical when L = I. Moreover, L-optimality

also includes the special case of c-optimality when q = 1, for designs with one linear

combination of the model parameters to be estimated. For a discussion of these two

special cases refer to Atkinson et al. (2007, Sec.10.5).

Comparative measures of design performance also involve the information matrix. In

particular, we often compare the performance of two designs using their relative effi-

ciency. The relative efficiency with respect to the objective function φ (see Equation

(2.1)) of a design ξ2 compared with a design ξ1 is given as

Eff(ξ1, ξ2) =
φ(ξ1)

φ(ξ2)
. (2.3)

We can also define the L-efficiency of a design ξ as Eff(ξ) = Eff(ξ∗, ξ), where ξ∗ is L-

optimal design.

In the following chapters, we come back to these definitions when assessing the per-

formance of different optimal designs based on different models for a number of given

networks.

2.2 Standard randomised designs

In the simplest form of design the aim is to compare different treatments by randomly

assigning them to experimental units. There are n experimental units in the exper-

iment and m treatments to compare. In a Completely Randomised Design (CRD),

the m treatments are randomly applied on the experimental units. The randomisation

procedure is based on a pseudo-random number sequence that can be easily generated

via computer software and is used for the allocation of the treatments to units (see, for

example, Hinkelmann and Kempthorne, 2007, Sec. 6.2 and Mead et al., 2012, Sec. 2.5).

Randomisation ensures that any possible treatment allocation occurs equally often, re-

moving subjectivity in the allocation of treatments to units (‘selection effects’) in order

to eliminate biases. Assuming that the effect of the treatment is additive, the model

derived from the randomisation scheme is provided by the following equation

CRM : yj = µ+ τr(j) + εj , (2.4)
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where j = 1, 2, . . . , n, yj is the response from unit j, µ is the overall mean, r(j) is

a function defining the treatment applied to unit j with r(j) = s ∈ {1, 2, . . . ,m}, τs
is the deviation of the average response of the treatment s from the average value of

the response from the set of treatments (direct effect of the treatment s applied to

unit j) and εj is the deviation of unit j from the average response (error term). We

assume that the errors are independently distributed with mean value equal to 0 and

some fixed variance σ2. Additionally, we often assume normality of the error term, i.e.

εj ∼ N(0, σ2). Note that the abbreviation CRM corresponds to the model for a CRD.

If the n experimental units are arranged in κ blocks and m treatments are to be

applied on these units, the response from the unit j in block i receiving some treatment

is denoted by yij and the equation for this model is

RBM: yij = µ+ bi + τr(ij) + εij , (2.5)

where i = 1, 2, . . . , κ; j = 1, 2, . . . , n, µ, as previously mentioned, represents the general

mean (average response of all units), r(ij) is a function defining the treatment applied

to unit j in block i with r(ij) = s ∈ {1, 2, . . . ,m} and τs represents the deviation of

each treatment from the average response of the set of treatments in the experiment,

i.e. it is the (direct) effect of the treatment s applied to unit j in the i-th block. The

extra term bi corresponds to the effect of the block i, which is the average deviation of

the set of units in block i from µ, and εij is the deviation of unit j from the average

response of the units in block i (error term). As before, we assume that the errors

are independently distributed with a common variance and we can additionally make

the assumption of normality. The abbreviation RBM corresponds to the model for a

Randomised Block Design (RBD).

By re-writing models (2.4) and (2.5) in matrix notation we obtain

CRM: E [y] = µ1 +Xττ = (1 Xτ )
(
µ τT

)T
;

RBM: E [y] = µ1 +Xττ +Xbb = (1 Xτ Xb)
(
µ τT bT

)T
.

where Xτ and Xb are the incidence matrices for treatment and block effects respectively

with Xτ = (u1 . . .um) and Xb = (w1 . . .wκ). Quoting Bailey (2008, Sec. 2.7), vector us

corresponds to an n×1 vector where for each of the treatments (s = 1, 2, . . . ,m) all the

elements of the vector equal zero, except for those that correspond to the units which

receive that treatment and are equal to one. For instance u1 is the indicator vector with

ones for the unit(s) receiving treatment s = 1 and zeros elsewhere. Likewise the vector

wi corresponds to an n×1 vector where for each one of the blocks (i = 1, 2, . . . , κ), all the

elements of the vector equal zero except the j-th (which is equal to one) corresponding

to the units (j = 1, 2, . . . , n) which belong to that block.

We can write the information matrices for models (2.4) and (2.5) respectively as
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M1 =

(
1T

Xτ
T

)(
1 Xτ

)
=

(
1T1 1TXτ

Xτ
T1 Xτ

TXτ

)

=



1T1 1Tu1 1Tu2 . . . 1Tum

uT1 1 uT1 u1 uT1 u2 . . . uT1 um

uT2 1 uT2 u1 uT2 u2 . . . uT2 um
...

...
...

. . .
...

uTm1 uTmu1 uTmu2 . . . uTmum


=



n n1 n2 . . . nm

n1 n1 0 . . . 0

n2 0 n2 . . . 0
...

...
...

. . .
...

nm 0 0 . . . nm


and

M2 =

 1T

Xτ
T

Xb
T

( 1 Xτ Xb

)
=

 1T1 1TXτ 1TXb

Xτ
T1 Xτ

TXτ Xτ
TXb

Xb
T1 Xb

TXτ Xb
TXb



=



1T1 1Tu1 1Tu2 . . . 1Tum 1Tw1 1Tw2 . . . 1Twκ

uT1 1 uT1 u1 uT1 u2 . . . uT1 um uT1 w1 uT1 w2 . . . uT1 wκ

uT2 1 uT2 u1 uT2 u2 . . . uT2 um uT2 w1 uT2 w2 . . . uT2 wκ

...
...

...
. . .

...
...

...
. . .

...

uTm1 uTmu1 uTmu2 . . . uTmum uTmw1 uTmw2 . . . uTmwκ

wT
1 1 wT

1 u1 wT
1 u2 . . . wT

1 um wT
1 w1 wT

1 w2 . . . wT
1 wκ

wT
2 1 wT

2 u1 wT
2 u2 . . . wT

2 um wT
2 w1 wT

2 w2 . . . wT
2 wκ

...
...

...
. . .

...
...

...
. . .

...

wT
κ1 wT

κu1 wT
κu2 . . . wT

κum wT
κw1 wT

κw2 . . . wT
κwκ



=



n n1 n2 . . . nm n(1) n(2) . . . n(κ)

n1 n1 0 . . . 0 n(1)1 n(2)1 . . . n(κ)1

n2 0 n2 . . . 0 n(1)2 n(2)2 . . . n(κ)2
...

...
...

. . .
...

...
...

. . .
...

nm 0 0 . . . nm n(1),m n(2),m . . . n(κ),m

n(1) n(1)1 n(1)2 . . . n(1),m n(1) 0 . . . 0

n(2) n(2)1 n(2)2 . . . n(2),m 0 n(2) . . . 0
...

...
...

. . .
...

...
...

. . .
...

n(κ) n(κ)1 n(κ)2 . . . n(κ),m 0 0 . . . n(κ)



,

where ns is the number of units given treatment s ∈ {1, 2, . . . ,m}, n(i) is the number

of units in block i ∈ {1, 2, . . . , κ} and n(i)s is the number of units in block i receiving

treatment s. To conclude the definitions, we assume that every unit in the experiment

receives a treatment. Therefore, the sum of the number of units given the different

treatments amount to the total number of units, i.e.
∑m

s=1 ns = n.

Estimability and constraints. The treatment models are overparameterised. To

overcome this problem requires imposing some constraints, otherwise the normal equa-
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tions have an infinite number of solutions and our parameters will not be uniquely

estimated. In our examples, without loss of generality, we assume the set-last-to-zero

linear constraints with the m-th treatment effect τm and κ-th block effect bκ of the

binary indicators to be set equal to zero. As a result the Xτ (likewise Xb) loses the last

column so as to be of full rank. Apart from the set-to-zero constraints another com-

monly used type of linear constraints are the sum-to-zero constraints (Yandell, 1997,

Ch.7), e.g.
∑m

s=1 τs = 0 and
∑κ

i=1 bi = 0. Note that the arbitrary assumption of setting

the last effect equal to zero or other similar linear constraint does not affect the design,

as the interest lies in estimating the treatment effects’ differences under φ1 and φ2.

Linear optimality. Focusing on the L-optimal (unblocked) design the interest lies

in estimating the linear combinations of the parameters STβ with minimum variance,

where S corresponds to multiple p×1 vectors of known constants (as we define below).

In particular, the number of parameters p under this model is m+1, that is the length of

β (corresponding to the column of constants and columns of the m treatment effects).

Definition. Let s? = s?(α1, α2) with 1 ≤ α1 ≤ α2 ≤ m + 1. Let sα1 = 1, sα2 = −1

and si = 0, for i 6= α1, α2. Then s?(α1, α2) = (s1, . . . , sm+1)T . Let s(α1, α2) be the

vector, which contains elements s1 to sm of s? (to account for the constraints).

Algorithmically each vector s = s(α1, α2) is formed by considering a vector of zeroes

of length m + 1. We consider the linear function (treatment contrasts) of the model

parameters corresponding to the treatment effects. To obtain these differences we

replace the zeroes of this vector that correspond to the α1-th element and α2-th with

1 and −1 respectively (with α1 and α2 corresponding to the summation indices of v

and h respectively as shown below to obtain s?). The (m + 1)-st element from each

vector is then removed to account for the constraint τm = 0, for uniquely estimating

the treatment effects. Note that we have also removed the (m + 1)-st column/row of

the information matrix. The resulting m × 1 vectors are pre- and post-multiplied by

the m×m matrix M− and then summed up over all treatment contrasts.

The design criterion to be minimised is thus the var
(
ST β̂

)
which is proportional to

ST {M(ξ)}− S, where S = (s1, s2, . . . , sq)
T is a q × p matrix and q corresponds to the

number of pairwise differences of treatment effects. We seek to minimise the average

variance of all pairwise differences of treatment effects

2

m(m− 1)

m−1∑
s=1

m∑
s′=s+1

var( ̂τs − τs′).

This is proportional to

φ =
m∑
v=2

m+1∑
h=v+1

sT (v, h)M−s(v, h).

We are looking for a design which minimises the value of the optimality criterion, i.e.

φ∗ = minφ. For numerical examples refer to Section 3.2.
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As already mentioned in Section 1.1, if all treatment comparisons are of equal impor-

tance, and there are no restrictions on the possible replication of any of the treatments

then the precision of treatment comparisons will be optimised when each treatment

has the same replication (see Mead et al., 2012, Sec. 6.5, for a further discussion of

balance). Given ns units receiving treatment s, we can estimate τs independently with

variance σ2/ns. Thus assuming equal replication of treatments in a CRD such that

ns = n/m for all s, the variance for each pairwise treatment contrast τs − τs′ with

s 6= s′ is var (τ̂s − τ̂s′) = σ2/ns + σ2/ns′ = 2σ2/ns = 2σ2m/n.

The treatment models (2.4) and (2.5) are linear in the parameters and are governed

by the ‘non-interference’ (additivity) assumption which states that the observation on

one unit is unaffected by the treatment assignment to other units (discussed in Section

1.1). This is crucial for the validity of the statistical analysis and the precision of the

estimation of the average treatment difference of the units used in the experiment. Nor-

mality of the distribution of random errors, on the other hand, is not strictly required

but is suggested when the usual tests, such as significance testing and calculation of

confidence intervals are to be performed for making inferences about the means, and

which rely on the properties of the normal distribution. For more details on the addi-

tivity assumption see Hinkelmann and Kempthorne (2005, Sec. 1.6), who derived the

model (2.5), assuming additivity under the randomisation scheme for an incomplete

block design (without assuming normality).

The CRD and RBD are probably the simplest of all experimental designs and consti-

tute the foundation of other designs. A RBD, as an extension of a CRD, is suitable

when units have a block structure, that is when they can be grouped into blocks of

homogeneous units. In Chapter 6 we will see that if the units exhibit heterogeneity in

two directions (as perhaps in a field experiment), then a row-column design (with two

blocking factors) may be the most suitable. In the following chapters, we provide some

evidence that when dealing with connected units the standard randomised designs per-

form poorly and can result in misleading interpretations (see, for example, Chapters 5

and 6). Thus it is important to question the ‘non-interference’ assumption in settings

where a connectivity structure among units is present (implying spillover effects) and

appropriately adapt the statistical model before moving on to the treatment allocation

stage.

2.3 Search algorithms for optimal design

Finding the globally optimal design among all possible designs is difficult and most

of the time computationally infeasible since the number of possible designs increases

substantially with the number of treatments and units (due to the large size of the

design space |Ξ| = mn). This computationally challenging problem for large design

sizes falls within the class of NP-hard optimisation problems. These are the problems
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that are at least as hard as any Non-deterministic Polynomial time problem with no

known solution (Arora and Barak, 2009).

For example when there are m = 2 unstructured treatments and n = 60 experimental

units, then all the possible choices of those treatments amount to mn which is ap-

proximately 11.5 × 1017. For the simplest design type with no blocking structure, a

completely randomised configuration gives the size of the design space as

n!∏m
s=1 rs!

,

where rs indicate the replicates of the treatments. When assuming equal replication

and that m divides n, the above can be re-written as

n!

[(n/m)!]m
.

Recall that a balanced design has the property that its treatments appear an equal

number of times (see Section 1.1). By assuming a balanced design we decrease our

design space. For our example, we will have rs = 30 replicates for each treatment and

therefore all the possible combinations in the design space are approximately 1.18×1017.

If each computation of the criterion, for instance, took one micro-second, an exhaustive

search would require more than 3750 years. However, we should point out that for the

models we have assumed so far and the methods employed, the computational time

required is much less. This is due to the relative small design space of the problems we

consider for exhaustive search, but also due to significant advancements in technology

and development of fast software.

In real-life situations, we do not need the absolutely best designs, but only ones that are

adequately efficient. In the literature, there exist a number of computationally efficient

algorithms for finding near-optimal designs in a practical time frame using iterative

methods. The main steps involved in the majority of those algorithms are the follow-

ing: (i) initialisation of the search, e.g. random generation of a non-singular design (i.e.

the matrix STM−S must be non-singular to ensure that the parameters in φ are es-

timable); (ii) modification of the current solution, e.g. make exchanges/interchanges in

the treatment set/design points; (iii) assessment of new solution, e.g. design is assessed

with respect to an objective function. Steps (ii)-(iii) are repeated until no change im-

proves the design value; (iv) termination of the search process and return of the final

design (which is assumed to be optimal).

There are many widely-used algorithms for the construction of optimal designs, espe-

cially for D-optimal designs (Fedorov, 1972; Fedorov and Hackl, 1997). Comparisons

of the performance of some popular algorithms for seeking D-optimal designs is pro-

vided by Cook and Nachtsheim (1980), who also introduced a generic simple exchange

algorithm which roughly follows the steps we outlined earlier. More specifically, they

considered each design point in turn, in a random order, carrying out any beneficial
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exchange as soon as it was discovered. They named the resulting procedure ‘a modified

Fedorov exchange’. While the original Federov exchange algorithm only performs the

‘best’ exchange (Fedorov, 1972), the modified Fedorov (point exchange) algorithm con-

siders exchanges of design points with random points from a candidate list, accepting an

exchange at each iteration which leads to an improvement of the objective function. As

opposed to the point exchange algorithm, the co-ordinate exchange algorithm is based

on the idea of possible exchanges of coordinates within each design point (Meyer and

Nachtsheim, 1995). However, the algorithm of Meyer and Nachtsheim (1995) does not

require a candidate set of points, making it applicable and effective for ‘large’ designs

(large number of points and variables). Expanding the traditional modified Fedorov

and coordinate exchange algorithms, Huang (2016) proposed a new algorithm which

incorporates a continuous optimisation method and numerical integration techniques

to obtain optimal designs that decrease the computational cost required. Note that in

this thesis, we focus on comparing unstructured treatments and therefore there is no

difference between point and coordinate exchange.

There exist many other studies for improving the speed of convergence of proposed

algorithms. Among others, Nguyen and Miller (1992) suggested that the speed of

convergence of these algorithms depends on the starting (initial) designs. For an ex-

tensive discussion of different algorithms and several modifications and improvements

for speeding up the design search refer to Atkinson et al. (2007, Ch.12) and included

references. A slightly different algorithmic approach is that of simulated annealing (see,

e.g., Kirkpatrick et al., 1983 and Haines, 1987), whose search involves stochastic transi-

tions between designs. A useful review of simulated annealing is given by Spall (2003).

The optimisation scheme of the simulated annealing algorithm has been implemented

not only for the design search problem but also in various network problems. Examples

include colouring graphs (Chams et al., 1987) and community detection (Liu and Liu,

2010). Another stochastic algorithm is the particle swarm optimisation (Kennedy and

Eberhart, 2001). This algorithm is inspired by the social behaviour of bird flocking

and it searches for the best solution in a population (‘swarm’) updating a candidate

solution (‘particle’) at every iteration. There is a growing application of the particle

swarm optimisation algorithm to generate optimal designs mainly due to the ease of

implementation (only a few key tuning parameters required related to the flock size,

i.e. number of designs, and number of iterations) without requiring any assumption on

the objective function (e.g. Chen et al., 2014, Wong et al., 2015 and Liu et al., 2015).

However, the most commonly used algorithms in the design of experiments are the

exchange algorithms, mainly due to the simplicity of their implementation, adaptability

for any design criterion and computational efficiency even for large design spaces. We

develop a simple ad-hoc exchange algorithm in order to meet the purposes of this

thesis which can generate near-optimal designs for the networks at our disposal (see

Section 3.6). We seek designs that depend on a chosen statistical model and are optimal

with respect to the L-criterion for estimating the direct and indirect treatment effects
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separately. The advantage of this approach is that the resulting designs are customised

to our specific problems, thereby increasing the efficiency of estimation and, as a result,

of the inferences drawn.

Computational note. The suggested exchange algorithm is implemented in R statis-

tical computing environment (R Development Core Team, 2017). We use the package

‘igraph’ (Csárdi and Nepusz, 2006) to generate different networks (graph snapshots)

and we explore the optimal properties of designs obtained on them. igraph is an open

source C library for the analysis of large-scale complex networks, with embedding in-

terfaces for R, Python and Ruby. Moreover, we occasionally implement our exchange

algorithm in a parallel fashion, where different chains of designs will be produced re-

sulting from different starting designs. This results in significant runtime speedups in

the search space, which enable us to address larger design problems. When evaluation

of the designs becomes too computationally intensive due to the size of the design space

and algebraic operations such as matrix inversions, we make use of the supercomputing

facility Iridis 4, which is the central resource for high performance computing at the

University of Southampton (cmg.soton.ac.uk/iridis). MATLAB and Mathematica

have been also used in sections of this thesis, the former for verifying analytical results

using the Symbolic Math Toolbox, the latter for attempting to solve a constraint sat-

isfaction problem (see Section 3.4). Note that a constraint satisfaction problem relies

on a combinatorial optimisation algorithm, which assigns values to each variable from

a set of variables subject to a list of constraints, with the aim of finding a solution that

satisfies every constraint (if one exists).

2.4 Basics of graph theory

Suppose that n experimental units are available for experimentation and that they

form a network, which is represented by a graph G = (V, E). The graph G consists of

n = |V| vertices, where V = {v1, . . . , vn} and l = |E| edges, where E ⊂ V × V . The

vertices may represent individuals or organisations connected through edges which may

represent some form of connection such as friendship, collaboration, or communication.

The adjacency matrix of a graph (also known as a connectivity matrix) is an n × n
matrix A = [Ajh]j,h∈V which is a compact way to represent the collection of edges

(connections). We focus on undirected and unweighted graphs with Ajh = Ahj ∈ {0, 1}
representing the presence of an edge between the vertices j and h (mutual connections).

Thus the resulting adjacency matrix A is symmetric and binary consisting solely of

zeros and ones. However, in Chapter 6, we also consider directed networks, where the

edges have a direction and therefore Ajh 6= Ahj as well as weighted networks, where a

number (weight) is assigned to each edge. In an adjacency matrix the diagonal elements

represent the self-links, which in this thesis are redundant. By convention we set these

values to zero, i.e. Ajj = 0. We should also note that the identity of every unit in the

network has been fixed by assigning a unique label to each one (given that a labelling
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is arbitrary and every choice leads to an equivalent description of the same network).

In reality the specification of this adjacency matrix may not be straightforward and this

matrix will likely be a proxy for the actual dynamics and influences that take place be-

tween the units. The structure of the interaction network describing who is interacting

with whom, how frequently and with which intensity is quite difficult to define or obtain.

Different methods have been devised over the years including network proxies such as

neighbourhood indicators or spatial distances, historical or hypothetical interactions.

There is a large literature on the specification of the adjacency matrix: in the spatial

context (Cliff and Ord, 1981; Anselin, 1988); in the social network context (Leenders,

1995, 2002); but also in other related fields, where the adjacency matrix specification

is a consequence of a specific similarity matrix based on a similarity measure or func-

tion (Von Luxburg, 2007). The latter can prove especially helpful for multivariate and

clustering problems, which can be reformulated using a similarity graph. Since many

real networks are not static but evolving, with new nodes entering dynamically and

establishing connections to already existing nodes, there can also be time varying ad-

jacency matrices. Models for generating graphs or sequences of evolving graphs have

also been introduced, some of which we discuss in this section. In this thesis, we as-

sume that the adjacency matrix is pre-specified (non-stochastic) and corresponds to a

snapshot of observed interactions or connections which reflect the experimental setup

and experimental objectives. In the context of this thesis we occasionaly come back to

this subject when required.

Some basic notions in graph theory are walks and paths. A walk is a sequence of links

(edges) connected to a sequence of vertices, where vertices can appear more than once,

while a path is a walk without the repetition of vertices (i.e. each vertex in the sequence

is distinct). In general a walk can be a longer sequence than a path, since in the path

the vertices appear only once. The special case where a walk begins and ends at the

same vertex, is called a closed walk. If all vertices are distinct but the first vertex

coincides with the last one (end vertices are the same) then this is a ‘closed path’,

which is called a cycle. A graph that contains no cycles is called acyclic. A path length

is the number of edges on the path. The shortest path (or geodesic path) between two

vertices, as the name implies, is the shortest sequence of edges between them in the

(undirected) graph. For a more detailed description of these network concepts refer to

the books of Wasserman and Faust (1994) and Newman (2003). An undirected graph

is said to be connected if every pair of vertices in the network are connected by some

path in the network.

In an undirected network, the degree, dj , of the vertex vj ∈ V denotes the number of

vertices that the vertex vj is connected to (number of neighbours) or in other words

is the number of edges (in E) of vj . It is mathematically defined as dj =
∑n

h=1Ajh =∑n
h=1Ahj . The square of an adjacency matrix A2 has the property that each of its

elements represents the number of two-walks (i.e. walks of length two or walks with

two edges) from node j to node h. Thus
∑n

q=1AjqAqh, with one being added to the
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sum only when Ajq and Aqj are both 1. That is, when the edges vjvq and vqvk are in

G, which corresponds to the two-walk from vj to vk through vq.

Measures of network topology

Different networks have different general characteristics that define their connectivity

structure and their behaviour as a whole. According to Barabási and Albert (2002)

there are three prominent robust measures of a network’s topology: degree distribution

(or average degree), clustering coefficient, and average path length. We provide below

the basic definitions of these measures. However, further discussion will follow in the

coming chapters.

Degree distribution and average degree. A network G is characterised by its degree

distribution function P (d), which is specified by the individual degrees of its vertices.

In particular, given a graph G, we define P (d) to be the fraction of vertices vj ∈ V with

degree dj = d. Equivalently, P (d) gives the probability that a randomly selected vertex

has degree d (exactly d edges). Thus the collection {P (d)}d≥0 is called the degree

distribution of G and is simply a rescaling of the set of degree frequencies, formed from

the original degree sequence. A plot of {P (d)}d≥0 for any given network can be formed

by plotting a barchart of the degrees of vertices. We can also define the average degree

of the vertices as

δ =
1

n

n∑
j=1

dj . (2.6)

Clustering coefficient of a network. A common attribute in many graphs is that the

neighbours of a vertex are connected to each other. In social networks, for example,

there is a tendency for one’s friends to become friends with each other forming cliques.

This is captured by the clustering coefficient, proposed by Watts and Strogatz (1998),

which reflects the topological connections among a vertex’s neighbours. The clustering

coefficient, Cj of vertex vj , is the number of edges around vertex j and is calculated as

the ratio of the number Ej of edges that actually exist among the neighbours of the

same vertex vj over the total number of possible edges of these neighbours (if they are

themselves all connected). The clustering coefficient, C, of the entire network is the

average of Cj over all n vertices, that is

C =
1

n

n∑
j=1

Cj =
1

n

n∑
j=1

Ej
1
2dj(dj − 1)

, (2.7)

where dj is the degree of vertex vj . The value of C can range between C = 1 when the

network is fully connected (δ = n − 1) and C = 0 when the network is empty (δ = 0).

More details on the definition can be found in Barabási and Albert (2002, p.49) and

Caldarelli (2007, p.16), while an extensive discussion and an alternative definition is

provided by Newman et al. (2006, Ch.4).

Average path length. This is the average distance between two vertices in the network
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across all pairs of distinct vertices. The distance, `(u, v), is the length of the shortest

path connecting the vertices u and v. This path does not necessarily need to be unique.

Recall that path refers to an alternating sequence of edges over all pairs of distinct

vertices connecting any two vertices, while path length is the number of these edges

along the path. We can calculate the distance `(u, v) from the adjacency matrix A as

the smallest power p of A, such that the (u, v)-element of Ap is different from zero.

Thus in a connected graph, the average path length, denoted as `, is given as

` =
1

n(n− 1)

∑
u6=v∈V

`(u, v). (2.8)

Thus, this quantity provides the average number of required links to traverse along the

shortest path connecting two vertices, which in most real life networks increases at most

logarithmically with the number n of vertices (Garlaschelli et al., 2010). Therefore, it

describes how ‘globally connected’ a graph is. The idea of this measure was conceived by

Milgram (1967) who discovered in his study that there exist short paths through social

networks between apparently distant individuals, a discovery made by the distribution

of letters that were passed on from person to person in an attempt to reach a desired

target individual. This is also known as the ‘small-world phenomenon’ (see Watts and

Strogatz (1998) and references within).

Example 2.4.1. Figure 2.1 depicts a small network of 6 vertices and 7 edges together

with its adjacency matrix. We can calculate the average degree δ, the average path

length ` and the clustering coefficient C. The degrees are d1 = 5, d3 = 3, d2 = d4 = 2,

d5 = d6 = 1 with average degree δ = 2.3. By counting the number of vertices according

to their degree we form the degree distribution P (d). Figure 2.2 shows a barchart of

the distribution of vertex degrees of the given network.

Figure 2.1: A small social network and its adjacency matrix

A =



0 1 1 1 1 1
1 0 1 0 0 0
1 1 0 1 0 0
1 0 1 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0



The most highly connected vertex corresponds to vertex 1 in the network. The typical

separation between any two vertices in the graph (average path length) is ` = 1.53.

The clustering coefficient of the network is 0.40. To understand the calculation of this

measure we can calculate the clustering coefficient for vertex 1. That vertex has five

neighbours and the fully connected neighbourhood is composed of 10 (= 5(5 − 1)/2)

mutual pairs. Two out of ten possible pairs of these neighbours are connected with each
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Figure 2.2: Degree distribution of the network

other (i.e. vertices 2 with 3 and 3 with 4). Thus the resulting clustering coefficient for

this vertex is 0.2. Then the clustering coefficient for the entire network is the average

quantity over all six vertices.

Spectral clustering

A graph G can be represented by different connectivity matrices. Apart from the

adjacency matrix we consider Laplacian matrices, which are the basic tools for spectral

clustering. The area that makes use of those matrices is most commonly known as

spectral graph theory. Spectral clustering, as the name implies, makes use of the

graph spectrum, i.e. the the set of eigenvalues and eigenvectors, to group vertices into

κ clusters. The set of eigenvalues plays a major role in the understanding of the

structure and dynamics occurring in the network since they are linked with numerous

graph invariants (i.e. graph properties that remain unchanged under transformations).

In order to implement spectral clustering one has to calculate the first κ eigenvectors

(corresponding to the κ smallest eigenvalues) of a specific graph Laplacian that best

meets the objectives of the research (Chung, 1997).

To begin with, we define the standard Laplacian, namely the unnormalised graph Lapla-

cian (without loops and multiple edges) as L = D −A, where D is the n× n diagonal

degree matrix (where the entries are the degrees of all vertices, i.e. d1, . . . , dn on the

diagonal) and A the adjacency matrix of the same graph. In other words the (j, h)-th

entry of the symmetric unnormalised Laplacian matrix is:

L = [L]jh =

dj , j = h.

−Ajh, j 6= h.

Some important properties (as mentioned in Von Luxburg, 2007) of the unnormalised

Laplacian L are:

(i) it is a positive semi-definite matrix (∀i, the eigenvalues λi ≥ 0);
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(ii) it has non-negative and real eigenvalues 0 = λ1 ≤ ... ≤ λn, where n = |V|, (i.e.

eigenvalues are in ascending order where the smallest value is 0); and

(iii) the multiplicity of the zero eigenvalue equals the number of connected components

in the graph (in particular λ2 > 0 if and only if the graph is connected; λ2 is called

the algebraic connectivity of the network).

We focus on connected graphs. Therefore, there is only one zero eigenvalue correspond-

ing to a constant eigenvector (i.e. the second smallest eigenvalue is different from zero).

The literature also makes mention of two normalised graph Laplacians, namely

Lsym = D−1/2LD−1/2;

Lrw = D−1L.

The subscripts denote that the first normalised graph Laplacian (Lsym) is symmetric

and the second (Lrw) is a non-symmetric matrix which is related to a random walk

on G. A random walk is, as the name implies, a walk across a network created by

taking repeated random steps. Starting at some specified vertex, it chooses uniformly

at random the edges to go along in order to move on to a random neighbour attached

to the current vertex and repeats this process. It can visit vertices and go along edges

more than once. Since Lrw = D−1L = D−1(D−A) = I−D−1A, where D−1A is in fact

the transition matrix of a standard random walk on the given graph, it is often used to

study the diffusion process on that graph. Moreover, the vertices with high degree are

more likely to be visited by the random walk because there are more ways of reaching

them. It is apparent that Lrw is a weighted version of L. However, the eigenvalues of

the normalised graph Laplacian matrices are scale-independent ranging from 0 to 2.

Revisiting Example 2.4.1, we can calculate the degree matrix D and the different Lapla-

cians.

D =



5 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 2 0 0

0 0 0 0 1 0

0 0 0 0 0 1


Lrw =



1 -0.2 -0.2 -0.2 -0.2 -0.2

-0.5 1 -0.5 0 0 0

-0.33 -0.33 1 -0.33 0 0

-0.5 0 -0.5 1 0 0

-1 0 0 0 1 0

-1 0 0 0 0 1



L =



5 -1 -1 -1 -1 -1

-1 2 -1 0 0 0

-1 -1 3 -1 0 0

-1 0 -1 2 0 0

-1 0 0 0 1 0

-1 0 0 0 0 1


Lsym =



1 -0.32 -0.26 -0.32 -0.45 -0.45

-0.32 1 -0.41 0 0 0

-0.26 -0.41 1 -0.41 0 0

-0.32 0 -0.41 1 0 0

-0.45 0 0 0 1 0

-0.45 0 0 0 0 1


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Special graphs

Graphs come in all shapes and sizes but there are certain types of graphs that we

more often encounter in practice, especially as parts of bigger graphs. The connectivity

structure of these special graphs follows a common pattern (as opposed to a random

graph, which is generated by a random process or probabilistic rules). Examples of

such graphs include: linear, complete, tree, star, ring and lattice graphs (see Figure

2.3).

Figure 2.3: Special types of graphs

The linear graph is the simplest form of graph topology, where all vertices are connected

with a single line. A complete graph (or clique) is a fully connected graph, i.e. there

is an edge between every pair of vertices. The number of connections is n(n − 1)/2

corresponding to all possible choices of pairs of vertices. In a tree graph any two vertices

are connected by exactly one path and are arranged in the form of a tree, having a

branching structure leading from branch vertices (i.e. vertices of degree at least two)

to leaves (i.e. vertices of degree one). Trees can be drawn such that one vertex is at the

top, with all edges going down to subsequent vertices. Figure 2.3 illustrates a binary

tree, where each branch vertex has at most two edges. A connected graph of n vertices

is a tree if and only if it has n − 1 edges. A star graph is a special tree graph, where

every vertex is connected to a central vertex (only one branch vertex) also called the

hub. The ring graph consists of a single cycle. In a ring graph the number of vertices

equal the number of edges and every vertex has exactly two edges connected to it (i.e.

every vertex has degree two). A q-dimensional lattice is a graph in which the vertices

can be placed at the integer coordinate points of the q-dimensional Euclidean space,

and each vertex connects to vertices which are exactly one unit away from it. In the

figure the lattice is two-dimensional with length 4 along each dimension. In this type

of graph two vertices are connected if the difference of one of their coordinates is plus
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or minus one and all their other coordinates are exactly the same.

Three types of networks as generated by graph models

Graph models are mathematical rules which generate either a single graph (graph in-

stance or a graph snapshot), or an entire graph sequence. The most popular graph

models are the Erdös-Rényi (random graph) model, the Watts-Strogatz (small-world)

model and Barabási-Albert (preferential attachment) model. These models are used

as reference models in network theory, because they possess characteristic and distin-

guishable properties. Extensive introductory overviews of these networks are provided

in the papers by Barabási and Albert (2002) and Newman (2003), with many references

to research papers providing further considerations and technical details.

For illustrative purposes, we generate graphs of size n = 200 by each one of the dif-

ferent mentioned network formation models as illustrated in Figure 2.4. Additionally,

Table 2.1 indicates the number of vertices and edges, the average degree, the average

path length, and the clustering coefficient for each network. We obtain two barcharts

corresponding to the degree distribution of each graph on two scales for summarising

each graph’s behaviour (i.e. Figures 2.5, 2.7 and 2.8 corresponding to each network).

Given the nature of a distribution, sometimes it is more effective to present the degree

information on log-log scale. This is especially useful for distinguishing a scale-free

network. Figure 2.8, for instance, illustrates a linear decay in the log-frequency as a

function of log-degree, which as we will see tend to a power law form.

Figure 2.4: Popular types of networks: random, small-world and scale-free

Table 2.1: The general characteristics (number of vertices, number of edges, average
degree, clustering coefficient and average path length) of the networks of Figure 2.4

Network |V | |E| δ C `

Random 200 391 3.998 0.016 3.910
Small-world 200 800 8 0.478 3.737
Scale-free 200 199 1.990 0 5.521
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Random Erdös-Rényi graphs (Erdös and Rényi, 1959) are generated by a random pro-

cess, in which a set of edges are added at random between pairs of vertices belonging to

the network. In particular every pair of nodes is chosen randomly and independently

from n(n−1)/2 possible configurations and is connected with equal probability p. Thus

the expected number of edges under the ER random graph model is
(
n
2

)
p and the dis-

tribution of the number of edges follows a binomial distribution. The measurements

on real networks are usually compared against those on ‘random networks’. Random

graphs have short average paths and low clustering.

Figure 2.5: Degree distribution of the random network on two scales

Small-world networks (Watts and Strogatz, 1998) have a higher clustering and almost

the same average path as random networks of the same number of vertices and edges.

As their name implies, almost every unit in the network is close in proximity to almost

every other unit. This model is based on the idea of ‘rewiring’ a fraction of edges

within a regular lattice (most frequently a ring). Consider a ring where each vertex

is initially linked to its k closest neighbours. An edge is rewired when that edge is

disconnected from some of the attached vertices and then randomly connected to an

other vertex anywhere in the network. A parameter which needs to be specified is the

rewiring probability, where each edge is chosen to be rewired to the graph as a random

edge with probability p. A transition from order to randomness, i.e. regular lattice to

(an almost) random graph, is observed when we vary p from 0 to 1 (see Figure 2.6).

Figure 2.6: Transition from a ring of n = 20 units with k = 4 neighbours to a random
network via small-world network (cited from Watts and Strogatz, 1998, Figure 1, p.441)
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Figure 2.7: Degree distribution of the small-world network on two scales

Scale-free networks are characterised by a highly heterogeneous degree distribution and

they are generated by the Barabási-Albert preferential attachment model (Barabási and

Albert, 1999). In this model, an edge is most likely to attach to vertices with higher

degrees (preferential attachment). The shape of the distribution of a scale-free network,

as the name implies, is independent of the level of detail: most vertices have only a small

number of neighbours (small degree), but there are some vertices with very high degree

(hubs). This distribution function roughly follows a ‘power-law’ degree distribution,

P (d) ∝ d−γ , where the fraction of vertices of degree d is proportional to d−γ for some

exponent γ > 1 which determines the ‘fatness’ of the tail of the curve (Caldarelli, 2007).

Figure 2.8 illustrates the degree distribution of the scale-free network of Figure 2.4. The

fitted red line represents the fitted power law distribution with γ = 1.612 (Kolmogov-

Smirnov test R2 = 0.921). As we can discern the distribution is right-skewed with a

heavy-tail, which implies that the network is heterogeneous as opposed to a random

graph, where most vertices have approximately the same degree that is close to the

average degree.

Figure 2.8: Degree distribution of the scale-free network on two scales
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2.5 Discussion

Based on minimal assumptions there is an elegant general theory for balanced designs

with linear analysis that is based on an assumption of ‘non-interference’. This is the

assumption that treatment effects are additive and a randomisation scheme justifies the

validity of experimental analysis. However, randomisation methods cannot effectively

capture network heterogeneity as we will see in the following chapters. An optimal de-

sign approach can be proved more effective in generating efficient designs that account

for network effects. It is of importance to note at this point that the model, on which

the design will be based, requires some assumptions to be made about the nature of

the spillover effects and their structure. In a network setting, where there is network

interference, the response of interest measured on a particular unit may depend either

on interventions assigned on neighbouring connected units or on the neighbours’ re-

sponses. The following chapters will investigate these issues separately, by modelling

interference and optimising the design based on the corresponding model. Ideally, we

seek designs which are robust to model and network misspecifications. Careful plan-

ning of an experiment reduces the experimental burden and the required resources and

provides useful and reliable data compared to unplanned experiments.
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Chapter 3

Optimal designs with network

effects

As earlier discussed in Chapter 1 there are various approaches for accounting for the

interference among different units. Some of the early ideas have been employed in

agricultural experiments, where the potential interference effects among plots have been

taken into account in the formulation of the statistical model and in the development

of the experimental design. This chapter starts by presenting some of the models

considered in the design field with neighbouring units but also in the network field

under the presence of social influence (Section 3.1). Section 3.2 focuses on the linear

network effects model, which models interference by means of the (observed) network

structure among the units (Parker et al., 2016). Subsequently, Section 3.3 provides

the analytical expressions of the optimality criteria as a function of the information

matrix and the derivation of the design bias in the estimators of the model parameters

due to model misspecification. Some patterns of the optimally allocated treatments,

as discovered by means of different example designs, are illustrated in Section 3.4.

Additional example designs are computed by an exhaustive search in Section 3.5, while

other issues associated with the design efficiency and bias are also explored. Section

3.6 proposes a simple exchange algorithm for constructing L-optimal designs, when

exhaustive search is computationally prohibitive. Note that the notation introduced in

this chapter is used throughout this thesis, and certain elements of the methodology

are restated, or extended in subsequent chapters.

3.1 Background: modelling interference

When we suspect that interference effects may be present among the experimental units,

it may be possible to take them into account in the design and analysis by including

additional terms in the response model. In this section we provide some of the most

important interference models considered in various fields (some discussion was already

provided in Section 1.3). The model notation has been streamlined for comparative

purposes.
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In cross-over designs, commonly used in medical research, each subject enrolled in the

trial receives some treatments over consecutive periods of time. The treatments exhibit

effects beyond the period in which they are applied; these are the spillover effects which

in this setting are mostly known under the names residual or carryover effects. The

common assumption in these designs is that carryover effects last only for one period.

A simple linear model summarising this idea, as provided by Atkinson et al. (2007,

Ch. 25), is

yij = µ+ τr(i,j) + λr(i−1,j) + πi + sj + εij , (3.1)

where i = 1, 2, . . . , p; j = 1, 2, . . . , n, yij is the response from subject j in period i, µ

is the overall mean, r(i, j) is the treatment applied to subject j in period i, τr(i,j) is

the direct effect of the treatment r(i, j), λr(i−1,j) is the carry-over effect of treatment

r(i− 1, j) applied in period i− 1 for subject j with λr(0,j) = 0, πi is the effect of period

i, sj is the effect of subject j and εij are independent and identically normally dis-

tributed errors, with expectation 0 and unknown variance σ2. This model also applies

in sensory evaluation and animal experiments. Other appropriate models describing

this framework can be found in Jones and Donev (1996) and Jones and Kenward (2003).

Apart from cross-over trials, spillover effects have been extensively studied and modelled

in the agricultural field with the aim of estimating interference effects. Pearce (1957)

considered a model incorporating both the direct and neighbour effects in a block

design. The cause of interference is associated with the average treatment value of

the nearest neighbouring treatments, i.e. treatment interference. Based on Besag and

Kempton (1986), the general model formulation (in matrix form) is

y = Xbb+Xττ +WXτγ + ε, (3.2)

where b is a vector of block effects with incidence matrix Xb, τ is a vector of centred

treatment effects (about their means) with design matrix Xτ . The effects of τ can

be interpreted as centred mean responses in the absence of neighbour effects. The

‘neighbour incidence matrix’, W , is of dimension n × n composed of 0 and 1 for the

neighbours. As earlier pointed out in Section 1.3, Pearce (1957) considered all plots

from the same block to be neighbours, irrespectively of whether they are adjacent or

not. The difference from the adjacency matrix defined Section 2.4, is that W equals

one for any plot belonging to the same block as the plot under investigation. The

neighbour effects are the centred indirect treatment effects produced by neighbours and

are represented by the vector γ. Moreover, according to Pearce (1957), it is assumed

that the ‘remote’ effects (i.e. neighbour effects) do not influence other blocks and that

the remote effect is the same on all other plots of the block. The errors are denoted by

ε and in a certain setting can also have an autoregressive structure capturing potential

spatial variation. We should note that the neighbour effect is outgoing for this model,

in the sense that each treatment has an effect on the plot to which it is applied and

a neighbour effect on each neighbouring plot in the same block. In this thesis we are

mostly interested in the incoming effect, that is the total network effect from all the
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immediate connected neighbours in any direction (see following section).

Draper and Guttman (1980) explored a special case of the model postulated by Pearce

(1957), with a common coefficient of interference, ρ, for all treatments. The model as

presented by Besag and Kempton (1986) is

y = Xbb+Gτ + ε, (3.3)

where G = (I + ρW )Xτ .

Another model also mentioned in the paper of Besag and Kempton (1986) is that of

Kempton (1982), where the cause of interference in an array of plots is attributed to

the responses of the two neighbouring plots (left and right).

y = Xbb+Xττ + ρWy + ε, (3.4)

where W is a weight matrix that has off-diagonal elements 1/2 (j, j ± 1) or otherwise

0. Similarly to the previous model, ρ is the nearest-neighbour ‘competition’ coefficient,

which is common to all treatments. Thus, the product Wy corresponds to the mean of

the observed responses of the two neighbouring plots considered. The model assumes

observations adjusted for the general mean. We can re-write this model as

yij = bi + τr(ij) +
1

2
ρ
(
yr(i,j−1) + yr(i,j+1)

)
+ εij , (3.5)

where i = 1, 2, . . . , κ; j = 1, 2, . . . , n(i), yij is the response from unit j in block i and

r(ij) indicates the treatment applied to subject j in block i, τr(ij) is the centred direct

effect of treatment r(ij).

This model can be extended to include effects from q > 2 neighbouring plots by av-

eraging across all the observed responses of the neighbouring plots considered, i.e.∑q
j′=1 yr(ij′)/q where yr(ij′) is the observed value given the treatment r(ij′) assigned to

plot j′ (neighbour to plot j) belonging to block i and q is the number of neighbouring

plots considered. For instance, when q corresponds to the number of plots in the same

block i as plot j this will be similar to the idea of Pearce’s model but focusing on the

neighbouring responses rather than the neighouring effects.

A model used for designing experiments with interfering units is that of Kunert and

Martin (2000),

yij = µ+ bi + τr(i,j) + λr(i,j−1) + θr(i,j+1) + εij , (3.6)

where i = 1, 2, . . . , κ; j = 1, 2, . . . , n, yij is the response from plot (i, j) in the j-th

position of block i, µ is the overall mean, bi is the effect of block i, r(i, j) ∈ {1, . . . ,m}
is the treatment applied to the plot (i, j), τr(i,j) is the direct effect of the treatment

r(i, j), and λr(i,j−1) and θr(i,j+1) are the left and right neighbour effects of the treatments

assigned to the left (i, j − 1) and right (i, j + 1) adjacent plots respectively and εij

is the random error, which is assumed to be independent and identically normally

distributed (i.i.d) with expectation 0 and constant variance, i.e. εij ∼ N(0, σ2). The
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set of neighbours is restricted, since there are no border plots, and therefore the terms

λr(i,j−1) and θr(i,j+1) should appear if and only if j 6= 1 and j 6= κ. Thus λr(i,0) =

θr(i,κ+1) = 0, where κ is the block size.

The interference in the model postulated by Kunert and Martin (2000) is restricted

to two-directional adjacent plots. Recent work which extends this setting is by Parker

et al. (2016), who considered the linear network effects model (LNM). Their modelling

approach adopts the viewpoint of Pearce (1957) as presented in the paper of Besag

and Kempton (1986) (see model (3.2)), but in a multi-directional setting without the

inclusion of blocks and with incoming neighbour effects. In particular, the LNM is a

simplified representation of the propagation of treatment effects in connected units that

form a network structure, where the response is a function of the effect of the treatment

a unit receives and the effects of the treatments that its (connected) neighbours receive.

The detailed mathematical description is presented in Section 3.2 along with further

discussion.

Interference has also been modelled in the context of social networks. Network auto-

correlation models (Doreian, 1980; Cliff and Ord, 1981; Anselin, 1988) are considered

as the predominant models in networks of interdependencies and can be divided into

two wide classes: the network effects model (NEM) (also known as spatial effects model

or regressive-autoregressive model); and the network disturbance model (NDM) (also

known as spatial disturbances or spatial moving average model). These classes con-

sider the autocorrelation of the response or of the error term separately, reflecting the

different mechanisms governing social influence (see the relevant literature presented in

Section 1.3). An extensive review on this wide class of models is provided by Leenders

(2002). These classes of models are formulated (in matrix notation) as:

NEM: y = ρWy +Xβ + ε, ε ∼ N
(
0, σ2

ε I
)
, (3.7)

NDM: y = Xβ + ε, ε = ρWε+ ν, ν ∼ N
(
0, σ2

νI
)
, (3.8)

where y is a n × 1 vector of responses and W is a predefined n × n weight matrix

representing the influence structure among the n individuals (occurring either by means

of the autocorrelation of the responses or of the errors/disturbances), whilst ρ is a scalar

describing the strength of association between a unit’s response and its neighbours’

responses. Moreover, X is the n×p extended design matrix and ε and ν are the vectors

of error terms, which are assumed to be normally distributed with zero means and

constant variances. The matrix of weights, W , is highly important in the study of the

estimated social influence model since it incorporates the structure of the network with

its influence patterns (Leenders, 2002). In both models what is referred to as ‘intrinsic

opinion’ (Leenders, 1995) is measured by the term Xβ. The difference between the two

models is that the response of a unit in the case of the NEM is given as an aggregate of

both its intrinsic opinion and the opinion of its neighbours, while for NDM it is adapted

to the change of the responses of its neighbours from their innate opinion.
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More specifically, for the NEM, the response of an individual is given by the weighted

combination of the responses of its neighbours, where the strength of the influence of

each one on that individual is denoted by the specific element of the weighted matrix

W (i.e. yj = ρwj1y1 + ρwj2y2 + . . . + ρwjnyn + εj), plus the ‘local’ (direct) effects. In

other words the response of an individual is a weighted function of the responses of its

neighbours, represented by the autocorrelation term ρWy, plus the local effects as given

by the term Xβ. For instance, an individual’s behaviour may be influenced by social

interaction with its neighbours, but may also be influenced by local effects related to

that intrinsic individual behaviour (e.g. income, education or other structural factors

which could determine one’s behaviour). From the design perspective this response

may be caused by the treatment applied. Note that when ρ = 0 then the NEM reduces

to the standard regression model while when β = 0 it reduces to a standard spatial

model. Section 7.2.1 further investigates this topic, with special focus on the NEM,

similar to the viewpoint of Kempton (1982) and the model (3.4).

On the other hand, the NDM is a spatial autoregressive model. The response of a unit

depends both on the local effects (Xβ) and on the deviation of its neighbours’ responses

from their supposed innate responses, represented by the autocorrelation residuals, i.e.

ε = ρWε+ν. Thus one’s response does not depend on its neighbours’ responses but on

the change of one’s neighbours’ responses from their intrinsic opinions. For instance,

an individual’s behaviour may be adapted to one’s neighbours’ actions by imitation

frequently occurring in situations involving insecurity or risk (Leenders, 2002).

3.2 Designs with linear network effects model (LNM)

An ideal model should account for the relationships between the subjects and be par-

simonious at the same time. The linear network effects model (LNM) (Parker et al.,

2016) differs from the CRM (2.4) by accounting for network effects from the application

of treatments to the connected units. It is defined as

LNM: yj = µ+ τr(j) +
n∑
h=1

Ajhγr(h) + εj , (3.9)

where j = 1, 2, . . . , n, yj is the response from unit j, µ is the average response for

the whole set of units (overall mean), r(j) = s ∈ {1, 2, . . . ,m} indicates the treatment

applied to subject j, τr(j) is the direct effect of treatment r(j) applied to unit j, Ajh is

the adjacency (or connectivity) matrix indicating the presence of mutual connections

(in a network structure) between units j and h (see Section 2.4), γr(h) is the network

effect of the treatment applied to the connected subject h when there is a connection

between units j and h (neighbouring or indirect effect) and εj are the error terms,

which are assumed to be independent with mean 0 and constant variance σ2. For

uniquely estimating the treatment effects we assume that τm = 0 (see Section 2.2 for

more details). The spillover effects or network effects correspond to the (incoming)
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effect from the total number of immediate neighbours who receive some treatment.

This capacity of the model to measure, to a certain extent, the spillover effects, renders

it a useful mathematical tool for experiments, where ‘the non-interference assumption’

does not hold. The main assumptions underlying this model are the following:

– the response of a unit is dependent on the treatment applied to that unit and

on the treatments applied to the immediate neighbouring units, when there is a

relationship between the two units.

– the structure among units is known and is captured by the connectivity matrix;

– the model does not account for any influence from external (out-of-network) units;

– all units receive (only) one treatment (note that a treatment could also mean the

absence of a treatment).

The generic matrix formation of the linear model is E(y) = Xβ, where y is the n× 1

column vector of responses, X is the extended design matrix comprising n rows and

p columns (including the column of ones corresponding to the constant) and β is a

column that contains p unknown regression parameters (see Sections 2.1 and 2.2). By

expanding the model (2.4), the expectation of the linear model (3.9), for the case of m

treatments, has the following form

E(y) = (1 Xτ
? AXτ ) (µ τ γ)T

= (1 u1 . . .um−1 Au1 . . . Aum) (µ τ1 . . . τm−1 γ1 . . . γm)T ,

where β = (µ τT γT )
T

= (µ τ1 . . . τm−1 γ1 . . . γm)T is the vector parameter.

There is no column corresponding to the m-th treatment effect τm, since we assumed

it to be zero. We can write the Fisher information matrix for LNM (3.9) as

M = XTX =

 n 1TXτ
? 1TAXτ

Xτ
?T1 Xτ

?TXτ
? Xτ

?TAXτ

XT
τ A1 XT

τ AXτ
? XT

τ A
2Xτ

 .

The information matrix M is a symmetric (2m) × (2m) matrix. The first column

(or row) corresponds to the mean µ, the following m − 1 columns (or rows) to the

(direct) treatment effects and the final m columns (or rows) to the network effects. By

expanding the information matrix, we obtain

M =



11T 1uT1 1uT2 . . . 1uTm−1 1AuT1 1AuT2 . . . 1AuTm
u11

T u1u
T
1 u1u

T
2 . . . u1u

T
m−1 u1AuT1 u1AuT2 . . . u1AuTm

u21
T u2u

T
1 u2u

T
2 . . . u2u

T
m−1 u2AuT1 u2AuT2 . . . u2AuTm

...
...

...
. . .

...
...

...
. . .

...

um−11
T um−1u

T
1 um−1u

T
2 . . . um−1u

T
m−1 um−1AuT1 um−1AuT2 . . . um−1AuTm

u1A1T u1AuT1 u1AuT2 . . . u1AuTm−1 u1A
2uT1 u1A

2uT2 . . . u1A
2uTm

u2A1T u2AuT1 u2AuT2 . . . u2AuTm−1 u2A
2uT1 u2A

2uT2 . . . u2A
2uTm

...
...

...
. . .

...
...

...
. . .

...

um−1A1T um−1AuT1 um−1AuT2 . . . um−1AuTm−1 um−1A
2uT1 um−1A

2uT2 . . . um−1A
2uTm


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=



n n1 n2 . . . nm−1 l1 l2 . . . lm

n1 n1 0 . . . 0 l11 l12 . . . l1m

n2 0 n2 . . . 0 l21 l22 . . . l2m
...

...
...

. . .
...

...
...

. . .
...

nm−1 0 0 . . . nm−1 l{m−1,1} l{m−1,2} . . . l{m−1,m}

l1 l11 l12 . . . l{1,m−1} l
〈2〉
11 l

〈2〉
12 . . . l

〈2〉
1m

l2 l21 l22 . . . l{2,m−1} l
〈2〉
21 l

〈2〉
22 . . . l

〈2〉
2m

...
...

...
. . .

...
...

...
. . .

...

lm lm1 lm2 . . . l{m,m−1} l
〈2〉
m1 l

〈2〉
m2 . . . l

〈2〉
mm



,

where ns is the number of units given treatment s (= 1, 2, . . . ,m), ls is the number of

links of units given treatment s, lss′ is the number of links between units given treatment

s and those given treatment s′ with s, s′ ∈ {1, 2, . . .m}, and lss′
〈2〉 the number of links

between units given treatment s and those given treatment s′ with a walk of length

2 (including closed walks - see Section 2.4 for more details). Recall at this point that

A2 is the squared adjacency matrix, which represents the number of two-walks (walks

with two edges).

Recall that L-optimality (Section 2.1) is used for seeking designs that minimise the

variance of linear combinations of the model parameters. The main interest here lies

in minimising the variance of two different functions of the parameter estimates in the

model (3.9) for estimating the treatment and network effects respectively. For any

possible design ξ in our design space Ξ{n,m,A} it is reasonable to minimise the average

variance of

– all pairwise differences of (direct) treatment effects,

φ1 =
m∑
v=2

m+1∑
h=v+1

sT (v, h)M−1s(v, h);

– all pairwise differences of network effects (indirect treatment effects),

φ2 =

2m∑
v=m+2

2m+1∑
h=v+1

sT (v, h)M−1s(v, h),

where s(α1, α2) is a vector of length 2m. This is a vector of zeroes of length 2m + 1

(corresponding to the column of constants, m treatment effects and m network effects),

except the α1 and α2 elements which are 1 and −1 respectively, before removing the

(m+ 1)-th element (to account for the constraint τm = 0). We want to find that design

which minimises the value of the optimality criterion φ1 or φ2, i.e. φ1
∗ = min

ξ∈Ξ
φ1 and

φ2
∗ = min

ξ∈Ξ
φ2.

For seeking optimal designs in the following examples, we use an exhaustive search. It is
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worth noting that the experimental design which is optimal for a particular criterion is

not necessarily optimal for a different criterion. As we will see in the following sections

the second optimality criterion is highly influenced by the network at hand and its

specific network features (e.g. small-world effect, clustering, degree distribution etc.)

as opposed to the first criterion. If the experimenter is interested in finding an optimal

design for estimating the total effect then a weighted sum of the two above mentioned

criteria may be appropriate.

Special cases of the optimality criteria formulae for the cases of two and three treatments

respectively are given below. Recall that the information matrix is symmetric.

Treatment case: m = 2

φ1 = sT (2, 3)M−1s(2, 3) = (0 1 0 0)M−1(0 1 0 0)T

φ2 = sT (4, 5)M−1s(4, 5) = (0 0 1 − 1)M−1(0 0 1 − 1)T ,

where

M =


n n1 l1 l2

n1 n1 l11 l12

l1 l11 l
〈2〉
11 l

〈2〉
12

l2 l12 l
〈2〉
12 l

〈2〉
22

 .

Treatment case: m = 3

φ1 = sT (2, 3)M−1s(2, 3) + sT (2, 4)M−1s(2, 4) + sT (3, 4)M−1s(3, 4)

= (0 1 − 1 0 0 0)M−1


0

1

−1

0

0

0

+ (0 1 0 0 0 0)M−1


0

1

0

0

0

0

+ (0 0 1 0 0 0)M−1


0

0

1

0

0

0



φ2 = sT (5, 6)M−1s(5, 6) + sT (5, 7)M−1s(5, 7) + sT (6, 7)M−1s(6, 7)

= (0 0 0 1 − 1 0)M−1


0

0

0

1

−1

0

+ (0 0 0 1 0 − 1)M−1


0

0

0

1

0

−1

+ (0 0 0 0 1 − 1)M−1


0

0

0

0

1

−1

,
where

M =



n n1 n2 l1 l2 l3

n1 n1 0 l11 l12 l13

n2 0 n2 l12 l22 l23

l1 l11 l12 l
〈2〉
11 l

〈2〉
12 l

〈2〉
13

l2 l12 l22 l
〈2〉
12 l

〈2〉
22 l

〈2〉
23

l3 l13 l23 l
〈2〉
13 l

〈2〉
23 l

〈2〉
33


.
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Example 3.2.1. Suppose we have a small social network of twelve subjects connected

by friendship relationships represented by the graph G as displayed in Figure 3.1, with

|V| = 12 and |E| = 21. For example, subject 1 is connected to subjects 5 and 10 and

subject 2 is connected to subjects 3, 7, 9 and 10.

Figure 3.1: An example social network of 12 subjects and 21 links

By exhaustive search over all possible designs, we find that the optimal design for the

m = 2 treatment case is {1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2} for optimally estimating τ1 via

criterion φ1 (i.e. we give treatment 1 to subjects 1, 2, 3, 7, 9 and 11 and treatment 2 to

the other subjects). The design {1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2} is L-optimal for estimating

the difference in the network effects γ1 − γ2 via criterion φ2. The optimal designs on

the given network are illustrated in Figure 3.2, with φ1
∗ = 0.3359 and φ2

∗ = 0.0866.

We can observe that the first design is balanced; i.e. treatments 1 and 2 are applied to

an equal number of subjects. However, the design for estimating the network effects

(φ2) is not. This is an unusual property in optimal design. Another observation is that

the designs that are optimal for φ1 and φ2 differ.

Figure 3.2: Network of Figure 3.1 (m = 2); different colours indicate the optimal
designs for estimating τ1 and γ1 − γ2 for two treatments respectively
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The information matrices for the different optimal designs are

M1 =


12 6 21 21

6 6 10 11

21 10 53 34

21 11 34 59

 M2 =


12 7 26 16

7 7 16 10

26 16 80 31

16 10 31 38

 .

From M1, we can see that the design is balanced for the number of units receiving

the different treatments (n1 = n2 = 6) who have also a balanced number of first

order connections (l1 = l2 = 21). The features of the design for φ2 are a bit more

complicated to decipher from M2. Section 3.4 explores this idea by identifying patterns

of the optimally allocated treatments under the two optimality criteria.

We also obtain the optimal designs for comparing three distinct treatments for this

network. By exhaustive search over all possible designs, we find the L-optimal design for

the m = 3 treatment case: {2, 1, 3, 3, 2, 3, 2, 3, 2, 1, 1, 1} and {2, 3, 3, 2, 3, 1, 1, 2, 1, 3, 2, 1}
for φ1 and φ2, respectively. The designs are illustrated in Figure 3.3, with φ1

∗ = 1.5361

and φ2
∗ = 0.4925 respectively. As for the case of two treatments, the designs that are

optimal for φ1 and φ2 are different. Both designs are balanced; i.e. treatments 1, 2 and

3 are applied to an equal number of subjects.

Figure 3.3: Network of Figure 3.1 (m = 3); different colours indicate different treat-
ments

The corresponding information matrices for the different designs are

M1 =



12 4 4 16 13 13

4 4 0 6 5 5

4 0 4 5 4 4

16 6 5 28 17 21

13 5 4 17 25 15

13 5 4 21 15 21


M2 =



12 4 4 13 13 16

4 4 0 2 5 6

4 0 4 5 2 6

13 2 5 29 16 15

13 5 2 16 27 13

16 6 6 15 13 36


.

3.3 Some analytical results

Building upon the work of Parker et al. (2016), we derive analytical expressions for

the case of two treatments for the optimality criterion functions and the bias under
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model misspecification. We study the implications of these results and we investigate

their interpretation in some common network structures. However, before doing so, we

should note that for any given social network, comprising n units and l connections,

there are some underlying constraints that apply to all experiments on networks:

(i) All units receive a treatment. The sum of the number of units receiving different

treatments amount to the total number of units in the network, i.e.
∑m

s=1 ns = n.

(ii) The sum of the degrees of all nodes equals the total number of links multiplied by

two, i.e.
∑n

j=1 dj(G) = 2 |E| = 2l = c1. This is equivalent to the sum of degrees

of units receiving treatments, i.e.
∑m

s=1 ls = c1, where ls is the number of links

between units one of which is receiving treatment s. Note if Ajh is the (j, h)-th

element of A then

c1 = 2l =
n∑
j=1

n∑
h=1,
h6=j

Ajh.

(iii) The term lss′ denotes the number of links between units receiving treatment s

and those receiving treatment s′ with s, s′ ∈ {1, 2, . . . ,m}. By adding the links

between units receiving a specific treatment s and all their neighbours, indepen-

dently of the treatments they receive, we obtain the degree of units receiving

treatment s, i.e.
∑m

s′=1 lss′ = ls.

(iv) The sum of the squared degrees of all nodes is
∑n

j=1 d
2
j = c2. An upper bound

based on de Caen (1998) is c2 ≤ l
(

2l
n−1 + n− 2

)
. As l

〈2〉
s is the number of links

between units one of which is receiving treatment s with a walk of length 2, then∑
s l
〈2〉
s = c2. Work is continuing in discrete mathematics to find stricter upper

bounds of c2, see for example Das (2004). However, for the purposes of our work

the presented upper bound is adequate. Note that

c2 =

n∑
j=1

n∑
h=1,
h6=j

A2
jh.

(v) The term l
〈2〉
ss′ denotes the number of links between units receiving treatment s and

those receiving treatment s′ with s, s′ ∈ {1, 2, . . . ,m} and walk of length 2. By

adding the second order connections (links of length 2) between a unit receiving

a specific treatment s and all its neighbours, independently of the treatments

they receive, we obtain the second degree of units receiving treatment s, i.e.∑m
s′=1 l

〈2〉
ss′ = l

〈2〉
s .

For the case of two treatments the above constraints can be re-written as

n1 + n2 = n (i)

l1 + l2 = c1 = 2l (ii)

l11 + l12 = l1 (iii)

l22 + l21 = l2 (iv)
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l
〈2〉
1 + l

〈2〉
2 = c2, with c2 ≤ l

(
2l

n− 1
+ n− 2

)
(v)

l
〈2〉
11 + l

〈2〉
12 = l

〈2〉
1 (vi)

l
〈2〉
22 + l

〈2〉
21 = l

〈2〉
2 (vii)

Optimality criteria

We obtain the analytical formulae of the optimality criteria, which can be useful for

the construction of efficient designs and can also be beneficial for speeding up the opti-

misation algorithm when dealing with irregular and complicated neighbour structures

(e.g. by avoiding the inversion of the information matrix).

Lemma 1. The analytical expressions of the optimality criteria for the m = 2 treat-

ment case are

φ1 =
l21l
〈2〉
2 + l22l

〈2〉
1 − l

〈2〉
12

(
c2

1 − nc2

)
− nl〈2〉1 l

〈2〉
2

D
(3.10)

and

φ2 =
n2l

2
1 + n1l

2
2 − n1n2c2

D
(3.11)

where

D = l
〈2〉
1 n1l2(l2 − 2l12) + l

〈2〉
2 n2l1(l1 − 2l12)− l〈2〉12

(
n1l

2
2 + n2l

2
1 − n1n2c2

)
− n1n2l

〈2〉
1 l
〈2〉
2 − l

2
12

(
c2

1 − nc2

)
− l1l2 (l1l2 − 2c1l12) .

Most of the calculations of the proof of Lemma 1 can be found in Appendix A. We

provide here an overview of the proof. The information matrix, M , and its inverse,

M−1, are

M =


n n1 l1 l2

n1 n1 l11 l12

l1 l11 l
〈2〉
11 l

〈2〉
12

l2 l12 l
〈2〉
12 l

〈2〉
22

 M−1 =
1

D


M11 M12 M13 M14

M12 M22 M23 M24

M13 M23 M33 M34

M14 M24 M34 M44


where

M11 = l
〈2〉
22 l

2
11 − 2l11l12l

〈2〉
12 + l

〈2〉
11 l

2
12 + n1

(
l
〈2〉
12

)2
− l〈2〉11 l

〈2〉
22 n1

M12 = −
(
l
〈2〉
12

)2
n1 + l2l12l

〈2〉
11 − l1l12l

〈2〉
12 − l2l11l

〈2〉
12 + l1l11l

〈2〉
22 − l

〈2〉
11 l
〈2〉
22 n1

M13 = −l1l212 − l2l11l12 + l2l
〈2〉
12 n1 − l12l

〈2〉
12 n1 − l1l〈2〉22 n1 + l11l

〈2〉
22 n1

M14 = −l2l211 − l1l11l12 − l2l〈2〉11 n1 + l1l
〈2〉
12 n1 + l12l

〈2〉
11 n1 − l11l

〈2〉
12 n1

M22 = l
〈2〉
22 l

2
1 − 2l1l2l

〈2〉
12 + l

〈2〉
11 l

2
2 + n

(
l
〈2〉
12

)2
− l〈2〉11 l

〈2〉
22 n

M23 = −l22l11 − l1l2l12 − l2l〈2〉12 n1 + l12l
〈2〉
12 n+ l1l

〈2〉
22 n1 − l11l

〈2〉
22 n

M24 = −l21l12 − l1l2l11 + l2l
〈2〉
11 n1 − l1l〈2〉12 n1 − l12l

〈2〉
11 n+ l11l

〈2〉
12 n
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M33 = l22n1 − 2l2l12n1 + nl212 + l
〈2〉
22 n

2
1 − l

〈2〉
22 nn1

M34 = −l〈2〉12 n
2
1 + l1l2n1 − l1l12n1 − l2l11n1 + l11l12n− l〈2〉12 nn1

M44 = l21n1 − 2l1l11n1 + nl211 + l
〈2〉
11 n

2
1 − l

〈2〉
11 nn1

and

D = −l21l212 + l
〈2〉
22 l

2
1n1 + 2l1l2l11l12 − 2l1l2l

〈2〉
12 n1 − 2l

〈2〉
22 l1l11n1 + 2l1l12l

〈2〉
12 n1 − l22l211

+ l
〈2〉
11 l

2
2n1 + 2l2l11l

〈2〉
12 n1 − 2l

〈2〉
11 l2l12n1 + l

〈2〉
22 nl

2
11 − 2nl11l12l

〈2〉
12 + l

〈2〉
11 nl

2
12

−
(
l
〈2〉
12

)2
n2

1 + n
(
l
〈2〉
12

)2
n1 + l

〈2〉
11 l
〈2〉
22 n

2
1 − l

〈2〉
11 l
〈2〉
22 nn1.

Aggregating the expression of the determinant of the information matrix, D, and im-

plementing some of the above-mentioned constraints, it can be re-written either as a

function of the first (immediate) and second order neighbouring relationships or as a

function of the first and second order degrees of units receiving one of the different

treatments. In particular

D = l
〈2〉
11

(
n1l

2
22 + n2l

2
12

)
+ l
〈2〉
22

(
n2l

2
11 + n1l

2
12

)
− 2l12l

〈2〉
12 (n1l22 + n2l11)

+ n1n2

[(
l
〈2〉
12

)2
− l〈2〉11 l

〈2〉
22

]
−
(
l12

2 − l11l22

)2
(3.12)

= l
〈2〉
1 n1l2(l2 − 2l12) + l

〈2〉
2 n2l1(l1 − 2l12)− l〈2〉12

(
n1l

2
2 + n2l

2
1 − n1n2c2

)
− n1n2l

〈2〉
1 l
〈2〉
2 − l

2
12

(
c2

1 − nc2

)
− l1l2 (l1l2 − 2c1l12) . (3.13)

The derivation of the D for the two different ways is presented in Appendix A. Having

calculated the inverse of the information matrix, we proceed by pre- and post- multi-

plying it by the appropriate vectors for obtaining the functions of the parameters we

want to estimate (corresponding to the treatment and network effects), i.e.

φ1 = sT (2, 3)M−1s(2, 3) = (0 1 0 0)M−1(0 1 0 0)T =
M22

D
,

φ2 = sT (4, 5)M−1s(4, 5) = (0 0 1 − 1)M−1(0 0 1 − 1)T =
M33 −M34 −M43 +M44

D

=
M33 − 2M34 +M44

D
.

After simple manipulations, provided in Appendix A, we can write the expressions of

the optimality criteria as

φ1 =
l21l
〈2〉
2 + l22l

〈2〉
1 − l

〈2〉
12

(
c2

1 − nc2

)
− nl〈2〉1 l

〈2〉
2

D
(3.14)

φ2 =
n2l

2
1 + n1l

2
2 − n1n2c2

D
(3.15)

where D is of the form of Equation (3.13).
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The denominator comprises both first and second order quantities. Since the numerator

of φ1 also comprises second order quantities by division their effects are reduced and

as such this criterion is less dominated by them. The opposite holds for φ2. As already

mentioned l
〈2〉
s denotes the second degree given a specific treatment (i.e. number of

links of units given treatment s with a walk of length two). It is formed as a sum

of the number of links of length two connected to units receiving treatment s, which

incorporates the sum of the degrees of those units. The sum of those second degrees,

indicated by c2, is present in both expressions (3.14) and (3.15). A logical corollary

is that c2 increases with the number of connections of a unit. One can deduce that

both expressions depend on the number of first and second order pathways and that

the experimental design is partially determined by the specific structure of the network

(c1 and c2 subject to the constraints mentioned above).

Conditions of the lower bound for φ1

When the units are not connected in a network as in the case of a CRD, the optimal

design is an equi-replicate design. For instance when there are two unstructured treat-

ments this means that φ1 = 4σ2/n. Thus under the non interference assumption we

achieve that lowest bound of φ1. When units are connected in a network this bound

helps us to identify an efficient design and also helps us with the algorithms of the design

(see Section 3.6). In particular, for n1 = n2 = n/2, l1 = l2 = c1/2 = l, l12 = c1/4 = l/2

and by implementing the constraint l
〈2〉
2 = c2 − l

〈2〉
1 in Equation (3.14) we obtain

φ1 = 4/n, which is the same as the minimum average variance possible for the un-

restricted case when having independent units (with σ2 = 1 without loss of generality).

This topic will be further discussed in Section 3.4 together with the features of the

properties of a good design in order to estimate the direct treatment effects.

Special graphs

Lemma 2. No optimal design exists with respect to the LNM for complete, star and

ring networks.

For complete, star and ring graphs (presented in Section 2.4), the LNM cannot be

implemented due to the fact that the expressions related to the first and second order

connections are multiples of each other leading to a singular information matrix. It is

quite straightforward to notice that the denominator of the expressions of the optimality

criteria is zero. This means that both φ1 and φ2 are incalculable (i.e. they cannot

be defined). In other words the designs on these networks lead to the LNM being

inestimable. More specifically:

– For the complete network:

l1/n1 = l2/n2 = l
〈2〉
1 /l1 = l

〈2〉
2 /l2 = n− 1, l12

〈2〉/l12 = n− 2, n1n2 = l12.

– For the star network:

n1 = l1 = l12, l11 = 0, l12
〈2〉/l12 = n2 − 1 or
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n2 = l2 = l12, l22 = 0, l12
〈2〉/l12 = n1 − 1

– For the ring network:

l
〈2〉
1 = 2l1 = 2 (2n1) , l

〈2〉
2 = 2l2 = 2 (2n2).

The proof of Lemma 2 follows directly from the application using the constraints in

the Equations (3.14) and (3.15). For instance, focusing on the denominator of the

expressions of the criteria we can see that, for the star and ring cases,

l
〈2〉
1 n1l2(l2 − 2l12)2 + l

〈2〉
2 n2l1(l1 − 2l12)2 = −n1n2l

〈2〉
1 l
〈2〉
2 − l1l2(l1l2 − 2c1l12)

n1l
2
2 + n2l

2
1 = n1n2c2

c2
1 = nc2.

At this point we will focus on a tree network in its simplest form. This is a network

comprising an even number of vertices, where each vertex has an even number of

branch vertices (which is constant across the tree). For the case where the number of

treatments is a multiple of the number of leaves, the best design under φ1 is balanced.

For instance for the m = 2−treatment case we have that n1 = n2 = n/2, l1 = l2,

but also l11 = l22. Notice that the tree-network is symmetric. Thus when we have a

balanced treatment allocation on the vertices in each branch, we anticipate that the

design will be optimal. We further examine this result in Section 3.4.

Those topologies are commonplace in large complex networks. In Chapter 4 we see

how we can benefit from identifying these structures for substantially reducing the

search time for finding efficient designs. In the same chapter we also formulate the

conjecture under which we claim that LNM is not appropriate for modelling these types

of special graphs. In particular, we notice that if a given network can be partitioned

into a maximum of two sets of structurally equivalent vertices (i.e. vertex orbits- see

Definition 5 in Section 4.1), then the LNM cannot be implemented due to the singular

information matrix. More details will be provided in the relevant chapter.

Design bias due to model misspecification

The statistical properties of the parameters depend on how well the model describes the

true process under study. Serious misspecifications may give biased and/or inefficient

parameter estimators. Work that discuss the potential impact of model misspecification

are that of Larson and Bancroft (1963) on the parameter estimators and Box and Draper

(1959) on the choice of optimal design. Box and Draper (1959) suggested a design search

strategy for precisely estimating the terms of the reduced fitted model while considering

some lack of fit components of the suitable complete model. Note that a complete model

is the assumed true model with the extended design matrix, while the reduced model is a

sub-model obtained by deleting some of the model parameters. The bias of an estimator

β̂ is defined as the deviation of the expectation from the true value, i.e. E
[
β̂
]
− β. All

else being equal, the estimator with the smaller bias is preferable. Note that the bias

has not been taken into account in the design optimality criterion used in this thesis.
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Work that explore methods of incorporating the possibility of model misspecification in

compound criteria are those of Goos et al. (2005), Gilmour and Trinca (2012), Egorova

(2017) and others. However, we evaluate the bias in the treatment effects’ estimates

due to model misspecification via simulations. Some numerical examples will follow in

Section 3.5. Moreover, in Section 5.4 we obtain optimal designs under different models

and the corresponding design biases with respect to the unknown parameters for each

model.

We consider performing an experiment on a network, where the adjacency matrix, A,

is given. We assume that the true model is the LNM (3.9). However, the postulated

model for the experiment is the CRM (2.4), which ignores network effects (i.e. γ = 0).

We want to obtain the bias in the parameter estimates due to the model misspecification

as a function of the unknown model parameters. This will be accomplished by using

generalised inverse matrices (Harville, 1997, Ch.9). Let Xτ
? be the n× (m−1) optimal

design matrix for the true model (implementing the standard constraints discussed in

Section 3.2, so Xτ loses its last column). The extended design matrices under the LNM

(3.9) and CRM (2.4) are then of the form XR = (1 Xτ
? 0n×m) and XC = (1 Xτ

? AXτ )

each column of which contains the intercept, the treatment effects and the network

effects (R and C denote the ‘reduced’ and ‘complete’ respectively). Note that E [ε] = 0,

therefore E
[
XC

T ε
]

= 0 and E
[
XR

T ε
]

= 0, i.e. the observed values of XC and XR

respectively are uncorrelated with the corresponding residuals (XC and XR are fixed).

Note that β̂C is the best linear unbiased estimator for β so that E
[
β̂C

]
= β. With

the necessary algebraic calculations on generalised inverse matrices, it follows that the

bias of the design, W, under the assumption that there are network effects but we do

not take them into account, is

W = E
[
β̂R − β̂C

]
= E

[(
XR

TXR

)−
XR

Ty −
(
XC

TXC

)−
XC

Ty
]

=
((
XR

TXR

)−
XR

T −
(
XC

TXC

)−
XC

T
)
E [y]

=
((
XR

TXR

)−
XR

T −
(
XC

TXC

)−
XC

T
)
XCβ

=
((
XR

TXR

)−
XR

TXC −
(
XC

TXC

)−
XC

TXC

)
β

=
((
XR

TXR

)−
XR

TXC − I2m

)
β

=


(1 Xτ

? 0n×m)T

 1

Xτ
?

0n×m



−

(1 Xτ
? 0n×m)T

 1

Xτ
?

AXτ

− I2m

β

=


 1T1 1TXτ

? 0

Xτ
?T1 Xτ

?TXτ
? 0

0 0 0


− 1T1 1TXτ

? 1TAXτ

Xτ
?T1 Xτ

?TXτ
? Xτ

?TXτ
?

0 0 0

− I2m

β,
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where I2m is the 2m× 2m identity matrix. Let B and Γ represent the m×m matrices

B =

(
1T1 1TXτ

?

Xτ
?T1 Xτ

?TXτ
?

)
and Γ =

(
1TAXτ

Xτ
?TAXτ

)
.

Then for the 2m× 2m block-diagonal matrix

A =

(
B 0

0 0

)
,

we have that B is a non-singular m×m matrix (has full rank), and defining a 2m×2m

matrix

G =

(
G11 G12

G21 G22

)

(where G11 is of dimension m×m), we obtain

AGA =

(
BG11B 0

0 0

)
,

implying that G is a generalised inverse of A if and only if BG11B = B, or if and only

if G11 = B−1. Hence, we have

W =

((
B−1 0

0 0

)(
B Γ

0 0

)
− I2m

)
β =

((
B−1B B−1Γ

0 0

)
− I2m

)
β

=

((
I B−1Γ

0 0

)
− I2m

)
β =

(
0 B−1Γ

0 −Im

)
β.

Thus the bias introduced in the estimates of the parameters, β̂R, under the false as-

sumption that there are no network effects is given by the quantity B−1Γ. This quantity

is the result of ignoring the network effects, which is represented by an adjustment of

the intercept and the treatment effect estimates. Observe that E
[
β̂R

]
6= E

[
β̂C

]
unless

B−1Γ = 0, which results from Γ = 0 or γ = 0.

We can easily obtain the analytical expression of the bias in the treatment effect esti-

mates as a function of the unknown parameters, for the case of two treatments (under

the constraint τ2 = 0). We have

B =

(
1T1 1Tu1

u1
T1 uT1 u1

)
=

(
n n1

n1 n1

)
with B−1 =

1

nn1 − n2
1

(
n1 −n1

−n1 n

)

and

Γ =

(
1Au1 1Au2

u1Au1 u1Au2

)
=

(
l1 l2

l11 l12

)
.
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Recall that nn1 − n2
1 = n1(n− n1) = n1n2. Therefore, we have

B−1Γ =
1

n1n2


n1l1 − n1l11 n1l2 − n1l12

−n1l1 + nl11 −n1l2 + nl12

 =


l1 − l11

n2

l2 − l12

n2

−n1l1 − nl11

n1n2
−n1l2 − nl12

n1n2

 ,

which comes down to the expression of bias when we attempt to fit a model which

ignores the network effects although they exist, of

W =



0 0
l1 − l11

n2

l2 − l12

n2

0 0 − l1n1 − l11n

n1n2
− l2n1 − l12n

n1n2

0 0 −1 0

0 0 0 −1





µ

τ1

γ1

γ2


.

Thus the bias in the treatment effects as a function of the unknown parameters β for

m = 2 is

Bias(τ̂1) = βγ1γ1 + βγ2γ2 (3.16)

= − l1n1 − l11n

n1n2
γ1 −

l2n1 − l12n

n1n2
γ2, (3.17)

or by implementing the constraints (i), (iii) and (iv) we have

Bias(τ̂1) =

(
l11

n1
− l12

n2

)
γ1 −

(
l22

n2
− l12

n1

)
γ2. (3.18)

3.4 Patterns of optimally allocated treatments

This section will serve as a rough guide for obtaining efficient designs for estimating

the direct treatment effects or the network effects. This will be achieved by exploring,

by means of explicit examples, the optimally allocated treatments’ patterns. These

patterns can enable us to find efficient designs rapidly when dealing with large sized

networks comprising hundreds of vertices and edges without the need of a computer

software. We will then draw some general guidelines which can be used by practitioners

when designing experiments on networks. We have gathered evidence which suggests

that designs that present certain patterns are more efficient for the majority of cases.

To this end, we provide additional example networks, which consist of some of the

most commonly found network topologies, and we verify some of the observed general
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patterns. Another aim of this section is to discuss elements related to the search

for the optimal design. When the optimal design cannot be found by an exhaustive

search, we resort to approximate methods as in the case of our exchange algorithm that

will be introduced in Section 3.6. By incorporating the general treatment allocation

patterns that will be discussed in the current section, we can efficiently speed up our

algorithmic approach for finding efficient designs. More computational details of this

issue will follow in Chapter 4.

Expanding the analytical results presented in the previous section, we initially at-

tempted to optimise analytically the criteria of Equations (3.14) and (3.15). To achieve

this optimisation, we implemented a search algorithm to solve the constraint satisfac-

tion problem under the linear constraints (i) − (vii) (see Sections 2.3 and 3.3). Our

approach was based on notions considered in the work of Brailsford et al. (1999). How-

ever, the bound constraints were not sufficient to obtain optimal solutions. Subject to

those constraints we cannot choose freely our quantities, as they are all partially deter-

mined by the specific structure of the network. Following another unsuccessful attempt

we focused on elements that dominate these expressions, i.e. the second order degrees.

As a way to limit the range of the possible values, which stem mostly from the network

sizes and shapes, we attempted to assign specific values to some of the fixed quantities

such as the total number of units and connections. The desired solution of a given

optimal interval could not be attained. Thus implementing a local search we end up

in a few small-sized networks, where trials of different values in the criteria expressions

enabled us to compare a number of candidate sub-optimal designs with respect to the

optimal design. Exploring this issue by means of tables and graphs helps us investigate

what network properties induce particular designs and to identify those features that

make a design good enough.

Revisiting Example 3.2.1, let us first investigate how the different treatment allocations

affect the efficiency for estimating the treatment and network effects. Tables 3.1 and

3.2 show properties of the optimal design obtained from an exhaustive search (first

line) and ten sub-optimal designs as obtained by increasing or decreasing some of the

values in the criteria expressions. Each row corresponds to a design, and breaks down

the information matrix for each design into its components.

From a first inspection of Table 3.1 the optimal design for φ1 is balanced on the number

of units receiving the different treatments (n1 = n2 = n/2) and also balanced on the

number of first and second order connections (l1 = l2 = l and l
〈2〉
1 ≈ l

〈2〉
2 ). We should

note that the number of treatments is not divisible by the number of connections.

Moreover the links connecting same or different treatments are approximately the same

(l11 ≈ l12 ≈ l22), which tends to be true also for the second order links connecting the

same treatments (l
〈2〉
11 ≈ l

〈2〉
22 ). The first few rows of Table 3.1 show balanced designs

with equal numbers of treatments allocated to units of similar numbers of connections,

but with different second order connections. On the other hand, looking at Table 3.2

the optimal design for φ2 is neither balanced for the number of units receiving the
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Table 3.1: List of designs with the corresponding calculated quantities of the informa-
tion matrix. Top row optimal design for φ1

φ1 φ2 n1 n2 l1 l2 l11 l12 l22 l
〈2〉
11 l

〈2〉
12 l

〈2〉
22 l

〈2〉
1 l

〈2〉
2

0.33594 0.09395 6 6 21 21 10 11 10 53 34 59 87 93

0.33902 0.20465 6 6 21 21 10 11 10 49 40 51 89 91
0.34143 0.29139 6 6 21 21 10 11 10 53 41 45 94 86
0.38182 0.21382 6 6 22 20 10 12 8 50 39 52 89 91
0.40805 0.12010 6 6 25 17 14 11 6 71 35 39 106 74
0.45374 0.27298 3 9 10 32 2 8 24 14 29 108 43 137
0.54063 0.24911 7 5 23 19 10 13 6 63 38 41 101 79
0.71764 0.16259 8 4 29 13 16 13 0 89 28 35 117 63
0.87558 0.17093 6 6 22 20 6 16 4 58 28 66 86 94
1.57150 0.52174 6 6 25 17 10 15 2 63 35 47 98 82
2.00000 0.46875 6 6 24 18 8 16 2 64 32 52 96 84

Table 3.2: List of designs with the corresponding calculated quantities of the informa-
tion matrix. Top row optimal design for φ2

φ1 φ2 n1 n2 l1 l2 l11 l12 l22 l
〈2〉
11 l

〈2〉
12 l

〈2〉
22 l

〈2〉
1 l

〈2〉
2

0.35112 0.08662 7 5 26 16 16 10 6 80 31 38 111 69

0.38566 0.08721 6 6 24 18 12 12 6 66 32 50 98 82
0.36401 0.10909 6 6 22 20 10 12 8 58 35 52 93 87
0.33740 0.14650 6 6 21 21 10 11 10 59 37 47 96 84
0.59482 0.21336 5 7 23 19 10 13 6 53 38 51 91 89
0.39301 0.27511 4 8 16 26 6 10 16 28 38 76 66 114
0.40989 0.37643 7 5 27 15 16 11 4 71 39 31 110 70
0.73141 0.46323 6 6 23 19 10 13 6 59 40 41 99 81
0.83333 0.50000 2 10 6 36 2 4 32 6 18 138 24 156
0.84055 0.66970 6 6 20 22 12 8 14 48 41 50 89 91
1.84211 1.57895 6 6 18 24 10 8 16 40 41 58 81 99

different treatments nor for the number of first and second order connections. As we

will see in the following example the optimality of the design is greatly affected by

the shape of the network. Figure 3.4 highlights all the pairwise combinations of the

components of the information matrix in scatterplots (e.g. φ1, φ2, l1, l2, l11 etc.). The

first two rows (or columns) show scatterplots between each of the two optimality criteria

related to each one of the the information matrix quantities, indicating that there are

no apparent patterns (this result is a corollary of the non-linear expressions (3.14) and

(3.15)). The remaining rows show the relationships among each of the elements of the

information matrix, which arise as the result of constraints in the experiment on the

network (discussed in Section 3.3). As an example when l1 is increasing we expect l2

to decrease. Similar correlations also can be inferred from the other rows.

Example 3.4.1. For this example the given network comprises 32 units with 36 con-

nections (the example network is taken from MacArthur et al., 2008). The optimal

function values under LNM are φ1
∗ = 0.12500 and φ2

∗ = 0.02375 with the correspond-

ing optimal allocations illustrated in Figure 3.5.
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For φ1, units with the same number of (first and second) connections receive the same

treatment, retaining balance overall (Figure 3.5(left)). Additionally, φ1 = 0.125 equals

the minimum average variance when the units are independent (with σ2 = 1 without

loss of generality). Note that there may be more than one way to equally allocate the

treatments to units of the same degree. For φ2, there is a tendency to equal allocation

among vertices of the same first and second degree (see Figure 3.5(right)). This holds

for units belonging to a tree-like structure, with leaves receiving the same treatment

which is different from that received by immediately connected vertices in each branch.

For instance units 21, 22, 24, and 25 receive treatment 1 while 23 and 20 receive treat-

ment 2 and unit 5 treatment 1. Similarly units in the star structure 12, 13, 14 and

15 receive treatment 2 while unit 2 receives treatment 1. Another observation is that

units belonging to a clique (26, 27, 28) receive the same treatment. The optimal design

under φ2 is unique (up to relabelling of treatments), making some of the patterns in

the treatment allocation easier to identify.

Figure 3.5: Optimal design for Example 3.4.1 for φ1 (left) and φ2 (right); different
colours indicate different treatments

Figure 3.6 illustrates the number of links connecting the same (blue) or different (pink)

treatments regarding different distances and different optimality criteria. In particular,

for φ1, there are 36 links connecting immediate neighbours receiving the same treat-

ments (as indicated by the ‘blue’ bar only at distance 1). Note that a mutual link

between every pair of units is counted twice. This means that half of the links in the

network connect pairs of neighbouring units receiving the same treatment. There are

108 second order connections of which 46 links connect neighbours of distance two that

receive the same treatments. Whereas for φ2 there are 38 links connecting immediate

neighbours that receive the same treatments and 80 links connecting neighbours of

distance two that receive the same treatments.

We provide guidelines for choosing designs on experiments in networks, thereby ensur-
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Figure 3.6: Pairs of units of different distances receiving the same (blue) or different
(pink) treatments for φ1 (left) and φ2 (right)

ing good quality designs that account for the network effects generated by the network

under experimentation. The intent of these guidelines is also to speed up the conver-

gence of the search algorithm introduced in Chapter 4, which is developed for finding

near-optimal designs in networks that present high degrees of symmetry.

– for φ1. The design tends to be balanced with all the treatments being equally

allocated to units (n1 ≈ n2), with similar first and second degrees receiving pro-

portionally the different treatments (l1 ≈ l2 and l11 ≈ l12 ≈ l22 and l
〈2〉
1 ≈ l〈2〉2 and

l
〈2〉
11 ≈ l

〈2〉
22 ). The optimal function values tend to be very close to the minimum av-

erage variance possible for the unstructured case when having independent units

under SUTVA (σ2/n1 + σ2/n2 = 2σ2m/n with n1 = n2 = n/2). The allocation

of the treatments to subjects with the same degree tends to be balanced (within

each block in the case of block designs, see Chapter 5). Units located at the ends

of the networks (e.g. leaves) tend to receive an equal number of the two treat-

ments. Overall there seems to be an interconnection between equal replication of

treatments and balanced number of first and/or second order connections.

– for φ2. The design is greatly affected by the degree distribution of the units

and may be nearly balanced when units have similar degrees. Recall that the

degree distribution is formed by counting the number of units by their number

of connections. Units forming a clique (complete sub graph) tend to receive
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the same treatment, whereas units located at the ends (e.g. leaves) receive the

same treatment, and that treatment is different from the one received from their

immediate neighbour who is of higher degree. A crude approximation of the

lower bound for φ2 is 1/l (where l is the total number of links of the network).

For instance for the case of two treatments we have 1/2l1 + 1/2l2 = 1/l with

l1 = l2 = l. Ideally this bound should be somehow weighted by a quantity related

to the degree distribution. One objective for future work is to determine a lower

bound on φ2 for the optimal design (if this is possible). In general a balanced

design may be near-optimal. However, the degrees of the units given each of

the different treatments differ. There also seems to be a pattern underlying the

quantities l12 and l12
〈2〉 under that criterion, where the former decreases as the

design gets worse and the latter increases.

Thus in practice, a constructive way to find φ1-optimal designs for massive networks

will be to have an equal-replication of the treatments (balanced design) and allocate

them to units with equal number of connections (balanced degrees). If additionally

m divides n and m divides l, where m, n and l are the number of treatments, units

and links respectively in the network, the above will be satisfied exactly, if allowed

by the degree distribution of the network. For instance, in the case of comparing two

treatments in a network we expect: half of all edges to go to treatment A and half to

treatment B; treatments A and B to be assigned to an equal number of units; and the

sum of degrees from treatment A to be equal to the sum of edges from treatment B.

However, φ2-optimal designs are highly dependent on the particular network structure.

Thus for obtaining such designs, we propose to focus on subgraphs of the network

identified as having special structures (e.g. complete, tree, star etc). For instance, we

would give the same treatment to units belonging to a complete subgraph. Consider the

m = 2-treatment case. If less connected units, as for instance units located at leaves

of a tree-like structure, will receive treatment A, then the hubs that these units are

connected to will receive treatment B. Synthesising the design for the whole network,

it will be prudent to try to retain an overall balance on average, in the sense that not

all cliques across the network will receive the same treatment. However, keep in mind

that with high degree heterogeneity expected in real networks, φ2-optimal designs will

tend to be unbalanced.

Example 3.4.2. In this example, we consider three different graphs depending on three

different graph models, i.e. the random graph (Erdös-Rényi) model, the small-world

(Watts-Strogatz) model and the scale-free (Barabási-Albert, preferential attachment)

model (for details and a better understanding of graph concepts see Section 2.4). We

want to investigate if our observations on the patterns of the optimally allocated treat-

ments are valid for these particular types of networks with system-specific features (see

Figure 3.7). Each of the graphs comprise 24 vertices with the number of edges being

30, 48 and 23 corresponding to the random, small-world and scale-free graphs respec-

tively. For these generated graphs, the vertices are connected with the same rewiring
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probability of 0.1. Table 3.3 provides the individual network’s structural properties for

each network. We find the optimal designs by exhaustive search for comparing two

different (unstructured) treatments for each network (see Figures 3.8 and 3.9).

Figure 3.7: Snapshots of three common types of networks; random, small-world and
scale-free graphs - n = 24

Table 3.3: The general characteristics of the networks of Figure 3.7. For each network
we have indicated the number of vertices, the number of edges, the average degree δ,
the clustering coefficient C and the average path length `

Network |V | |E| δ C `

Random (ER) 24 30 2.5 0.2 3.619
Small-world 24 48 4 0.35 2.636
Scale-free 24 23 1.9 0 2.894

Figure 3.8: Snapshots of three common types of networks, optimal designs for estimat-
ing τ1 (φ1)

By observing the resulting optimal designs for φ1 and φ2, in Figures 3.8 and 3.9 respec-

tively, we can confirm some of the patterns of the optimally allocated treatments. For

the random network (first graph) there are no apparent patterns to discern, due to the

random degree distribution of the edges (variety of degrees, no highly connected units).

The small-world network (middle graph) has high clustering coefficient while the weak

connections produce the branching structure that reaches many vertices in a few steps.

Under φ1, groups of vertices that are more densely connected to each other compared

to the rest of the network tend to receive an equal number of treatments (balanced
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Figure 3.9: Snapshots of three common types of networks,optimal designs for estimating
γ1 − γ2 (φ2)

allocation within groups), while under φ2 the groups of vertices tend to be dominated

by the same treatment. This observation is not so clear in this figure but it will become

more concrete in Chapter 5, where we investigate in detail the idea of clustering in net-

works. The scale-free graph (third graph) is characterised by a highly heterogeneous

degree distribution. By construction new vertices create connections with existing ver-

tices with probability proportional to their degree (preferential attachment rule). This

results in a tree structure (with lack of cycles), with highly connected vertices (hubs).

We can observe that some patterns already mentioned for tree structures are repeated

here. For example, under φ2, neighbours of units with few social ties tend to receive

the same treatment and their immediate neighbours of a larger degree tend to receive

a different treatment. Small-world and scale-free networks are very close structurally

to many real-life social networks. Having said that, we can benefit from these observed

patterns to find good experimental designs for use in practice given the properties of

the network topology under experimentation.

3.5 Design efficiency and bias

We aim to construct experimental designs on networks that are efficient in estimating

treatment and/or network effects and that ideally lead to a small bias of the estimated

model parameters. The desirable design properties we are seeking concern the efficiency,

i.e. to minimise average, over 1 ≤ s < s′ ≤ m, of the estimated variance of all pairwise

treatment contrasts τ̂s − τ̂s′ (that is the L-optimality defined in Section 2.1) and the

lack of bias, i.e. we want E [τ̂s] = τs for each treatment s. The experimental designs

we obtain in this thesis rely on minimising variances not biases. We obtain the bias

with respect to the model parameters and investigate its impact via simulations for

an example network. In order to make comparisons with other designs we use the φ-

efficiency, Effφ, of some arbitrary design ξ with respect to the (near-) optimal design ξ∗.

Recall that this is defined as the ratio φ(ξ∗)/φ(ξ), where φ is the optimality function.
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3.5.1 Efficiencies of randomised designs

We explore if experiments should be randomised, when there is strong evidence of net-

work structure underlying the experimental units. In doing so we compare the optimal

designs with network effects to the randomised balanced designs (equal replication),

providing evidence that when we randomise, the balanced design is typically not very

good. In the majority of cases designs that account for the network structure have

higher efficiency than the standard designs.

Revisiting Example 3.2.1 (see Figure 3.1), we obtain all the randomised balanced de-

signs of which there are 462. These are all the possible combinations of 12 subjects

comparing 2 treatments, i.e. n!/((n/m)!)m = 12!/((12/2)!)2 dividing the result by 2 to

exclude the symmetry of treatment labels in the design. For instance, we find that our

optimal design for this example is {1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2} for optimally estimating

τ1 via criterion φ1, which is equivalent to {2, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1}. Suppose that we

choose a randomised design where we wrongly assume that there is no network effect.

We calculate the efficiencies of all possible balanced designs under the LNM compared

to the optimal design (when there is a network effect). The results are shown in Figure

3.10.

Figure 3.10: Boxplots of efficiencies calculated for all balanced designs ignoring network
effects; efficiency (vertical axis) for the criteria φ1 (left) and φ2 (right)

The mean optimal function values of all balanced designs are 0.5118 and 0.2547 for φ1

and φ2 respectively. Note that the distributions of the criterion values are positively

skewed (median values are 0.4264 and 0.2136 for φ1 and φ2 respectively). The relative

efficiencies of the standard designs (i.e. randomised designs) with respect to the optimal

LND that account for network effects are 0.3359/0.5118 = 0.66 and 0.0866/0.2547 =

0.34 for φ1 and φ2 respectively. Thus the standard randomised designs do not perform

well on average under the scenario that the experimental units are connected according
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to some network structure, especially in the case of φ2. In subsequent sections we

provide further evidence that standard designs, e.g. completely randomised designs,

are inefficient when experimental units are connected in a network, regardless of the

network characteristics (see Chapter 5).

3.5.2 Bias due to model misspecification

In this section we employ the same example (Example 3.2.1) to thoroughly investigate

the potential impact of model bias on the design. Under the false assumption that

that there is no network effect (i.e. assuming CRM) we calculate the expectation of

the bias introduced in the parameter estimates for all possible balanced designs (which

are optimal when there is no network effect) in terms of the true unknown parameters

β = (µ τ1 γ1 γ2)T as 
0 0 1.91 1.45

0 0 −0.18 0.45

0 0 −1.00 0.00

0 0 0.00 −1.00




µ

τ1

γ1

γ2

 . (3.19)

As shown earlier in Section 3.3, the bias depends on the chosen design. The bias for

the direct treatment effects estimator is then given as: E [τ̂1]− τ1 = −0.18γ1 + 0.45γ2.

If the true values of the network effects are zero (so that γ1 = γ2 = 0), the balanced

design will produce unbiased estimators. In a completely randomised design there is

50% chance of any two units equally receiving treatments 1 and 2. To investigate if the

bias from treatment effects results from network effects passed on from 1s (i.e. units

receiving treatment 1) to 2s (i.e. units receiving treatment 2) or inversely, we focus

on the quantity l12 which reflects how many links connect the different treatments.

We assume that γ1 and γ2 are of similar magnitude, i.e. γ1 = γ2 = γ. The plot in

Figure 3.11 illustrates the bias in treatment effect estimates stemming from network

effects against the proportion of edges, which connect pairs of units receiving different

treatments. The locations of the plotting symbols are related to the obtained coefficients

of the network effects in the bias equation under each design and are dependent on the

size of the true γ (see Equation (3.16)). Thus they correspond to the bias of balanced

designs (CRDs) for estimating the treatment effects due to the network effects under the

assumption that the underlying parameters are both one. In other words, we assume

that γ1 and γ2 are equal, and without loss of generality are one, i.e. γ1 = γ2 = γ = 1.

It should be noted that many designs are overlapping and each location of the plotting

symbols can represent the bias due to network effects for alternative CRDs. In partic-

ular, the number of balanced designs for each proportion of edges (connecting 1s to 2s)

is given below:

0.33 0.38 0.43 0.48 0.52 0.57 0.62 0.67 0.71 0.76

4 18 41 82 100 85 67 44 12 9
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Figure 3.11: Bias in treatment effects due to network effects

The plot suggests that there is a relationship between the biases due to γ1 and γ2,

which depends on the proportion l12/l. On average across the randomisation, given

the condition γ1 and γ2 are of equal size, the bias cancels out (like for instance the

carry over effects in cross-over designs which are equal). In order to obtain the least

expected bias in the treatment effects, the number of pairs of connected units who

receive different treatments should roughly equal half the number of the total edges of

the network (see intersection point).

Table 3.4 shows the average bias introduced in treatment effects over all balanced

designs corresponding to each proportion. The highlighted row shows that for the

proportion of 0.48 the average bias across all balanced designs is the same for γ1 and

γ2, backing the aforementioned finding. Hence, in practice, an efficient design for es-

timating with minimum variance the treatment effects on a network will be achieved

by half of the mutual links connecting 1s to 2s (if this is possible). In other words,

the experimenter should aim towards imposing restrictions on the allocation of treat-

ment combinations such that the number of connected pairs of units receiving different

treatments roughly equals half of the total number of edges in the network. Restric-

tions on the randomisation in such a way enables us to protect the experimental results

against bias in treatment effects stemming from potential network effects. For more

information about restricted randomisation refer to Mead et al. (2012, Ch. 11).
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Table 3.4: Expectation of bias of balanced designs at each proportion

l12/l Bias(γ1) Bias(γ2)
0.33 1.39 -0.94
0.38 1.17 -0.50
0.43 0.83 -0.17
0.48 0.17 -0.17
0.52 0.00 0.33
0.57 -0.33 0.67
0.62 -0.83 0.83
0.67 -1.00 1.33
0.71 -1.33 1.67
0.76 -1.83 1.83

Figure 3.12 depicts the bias in the estimation of treatment effects due to the network

effects over all possible balanced CRDs under the assumption that γ1 = γ2 for ev-

ery proportion of links. The limits of the boxplots are related to the coefficients of

the network effects and are dependent on the size of the true γ. Evidently complete

randomisation is not a good idea.

Figure 3.12: Bias for treatment effects when γ1 = γ2

Additionally, Table A.1 in Appendix A provides the precise information of the coor-

dinates of Figure 3.11 for each proportion of edges (connecting 1s to 2s) as captured

by l12/l (with unique entries). By regressing βγ2 on βγ1 and l12/l in R programming

language, we obtain the bias due to γ2, βγ2 , as a function of the bias due to γ1, βγ1 ,

plus a constant multiplied by the difference in the proportions. In particular,
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βγ2 = βγ1 + 14
l12

l
− 7

= βγ1 + ψ

(
l12

l
− 0.5

)
where ψ is a constant. This relationship suggests that the biases differ by a constant

that is related to the size of the network or related to an association between the number

of units and number of connections (recall that n = 21 and l = 12). This provides us

with an interesting relationship of the biases due to network effects.

3.5.3 Misspecification of the network structure

Another important issue is whether it is possible to find designs which are robust to

misspecification of the network structure. Given that we generally assume that the

number of units is fixed under experimentation, our focus lies on the misspecification

of the edges, rather than of the vertices. Firstly, we investigate the robustness of the

network after removing some of its edges, where the network’s robustness relates to

its connectedness and specific properties. Menger (1927) was the first to consider this

issue when dealing with the propagation of effects through a network. In particular, he

showed (later proved by Harary, 1969) that the minimum number of edges in the net-

work that must be removed in order for two vertices to become disconnected is exactly

equal to the number of edge-independent paths between the two vertices (Menger’s

theorem). By the concept ‘edge-independent paths’ between two vertices we are refer-

ing to all (distinct) paths that have no edges in common. This result triggered further

research in graph theory as an attempt to evaluate the robustness of the network when

a certain fraction of edges (or vertices) are removed or added in some way (work on this

topic is well described in the book by Newman, 2010, p.424-513). Measures like the

average degree δ, the clustering coefficient C and the average path length ` (discussed

in Section 2.4) are robust performance measures of the network topology to be used

for calculating quantities relevant to the connectivity structure of the graph and its

specific structural characteristics (Barabási and Albert, 2002).

We explore the robustness of the design when observing the resilience of the network’s

topology to different changes. The robustness of the design and robustness of network

are interrelated. This is intuitively reasonable, since the network topology has a great

impact on the properties of the optimal design as we already saw in the previous sec-

tions. Thus it is interesting to investigate to what extent the network remains robust

against a random or targeted removal of edges. This issue has been especially explored

in the epidemiological setting, where there is an underlying diffusion process in the net-

work, such as the spread of a disease. A treatment such as a vaccination of the network

members can be regarded as the removal from the network under experimentation of

some particular set of edges (or vertices). Some discussion in this direction can be

69



found in the text of Newman (2003). The key question that arises is how robust the

design will be against such change.

We showed earlier that the randomised design does not perform sufficiently well in situ-

ations when units are connected independently of the exact nature of their connections.

Trials suggest that even if we slightly misspecify the network concerning some connec-

tions, it is still better to use designs that take into account some structure among units

rather than using a random balanced design that completely ignores it.

Revisiting Example 3.2.1, we obtain the degrees of the vertices (the number of edges

each has) corresponding to the vertices 1 to n as: {2, 4, 3, 6, 2, 2, 4, 2, 5, 7, 3, 2}.
For example, subject 1 has two friends, while subject 10 has seven friends. Figure 3.13

illustrates the degree distribution of this network. We compare the optimal designs

produced under a number of misspecified networks by means of their efficiencies with

respect to the optimal design under the true network structure of Figure 3.1. Recall

that the optimal function values under the true LNM (with the true network structure)

are φ1 = 0.3359 and φ2 = 0.0866. The efficiencies of optimal designs under different

misspecifications are provided in Table 3.5 (the optimal designs for each misspecified

network can be found in Appendix A).

Figure 3.13: Degree distribution of the network of Figure 3.1

The specific cases of network misspecifications we focus on concern edges between:

subjects 1 and 5 and similarly 1 and 12, who both have few friends; subjects 1 and 10

and similarly 1 and 4, one of which has many friends while the other only a few; subjects

4 and 10 and similarly 7 and 9, who both have many friends. This particular choice of

removal of edges is mainly related to the vertex degree of each unit, a quantity which

can be crucial when it comes to propagation of effects in a network. It appears that it

makes a big difference in the efficiency for φ2, when removing an edge between a hub

(i.e. one with many friends) and an isolated member. Moreover, in the case of removing

an edge between subjects both of which have few friends, φ2 tends to be more robust
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Table 3.5: Efficiencies of the optimal designs under network misspecification

Edge(s) removed between units Figure φ1 φ2 Effφ1 Effφ2
(i) 1 and 5 (A.1) 0.3490 0.0884 0.96 0.98
(ii) 1 and 10 (A.2) 0.3428 0.0986 0.98 0.88
(iii) 4 and 10 (A.3) 0.3370 0.0875 1 0.99
(iv) 1 and 5 and 1 and 10 (A.7) 0.3368 0.0994 0.99 0.87
(v) 1 and 5, 1 and 10, and 4 and 10 (A.8) 0.3478 0.1023 0.96 0.84

Edge(s) included between units

(vi) 1 and 4 (A.4) 0.3417 0.0875 0.98 0.99
(vii) 1 and 12 (A.5) 0.3406 0.0952 0.98 0.90
(viii) 7 and 9 (A.6) 0.3417 0.0866 0.98 1

than φ1. A possible reason for this is that both units have similar degrees. In general,

the efficiencies appear to be high. Moreover, the design accounting for the connections

among units performs better than the corresponding random balanced designs. Recall

that the mean of the efficiencies of all balanced designs for the two criteria φ1 and φ2

are 0.5118 and 0.2547 respectively. Thus, if we misspecify the network, the design we

obtain might no longer be optimal but it would be much better than taking a random

balanced design. Therefore, this example is helpful in informing us that we might

actually be better off by specifying the network, even if we could be slightly wrong

about some of its connections.

The next question we should ask is how much misspecification we can allow for. For

this reason, we try removing/adding more than one connection simultaneously and

observe if it makes a big difference. We start by removing two edges at the same time,

followed by three edges (see Table 3.5). We observe that the efficiencies still remain

high. Moreover, we can see that the optimal design that accounts for the network effects

is still preferable to a standard (randomised) design. An immediate question that arises

is how many edges we can remove before the design becomes worse than a randomised

one. As future work, we would like to think about a threshold of misspecification of the

network, below which the design remains better than a randomised design. However,

bear in mind that our example has only 12 subjects, so if we remove too many edges

the connectivity will be destroyed and the social network will collapse. As we pointed

out earlier in this section, by removing edges we change the shape and topology of

the network; thus the misspecified network may have different properties that define

it; for instance, the degree distribution may alter. Table 3.6 illustrates some network

measures of the different misspecifications of the network of Figure 3.1. In particular,

we obtained the the average degree δ, the clustering coefficient C and the average path

length ` for each network. We see that these measures do not substantially vary for

the different network misspecifications, which indicates that the network is robust to

these changes. In practice, if one is working with a relatively small network, one should

have confidence about the structure, as opposed to a larger scale network where we are

prone to misspecify the network structure.
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Table 3.6: Network measures of the different misspecifications of the network of Figure
3.1; average degree, the clustering coefficient and the average path length

Network δ C `

Original 3.5 0.304 1.863
(i) 3.3 0.313 1.893
(ii) 3.3 0.338 2.045
(iii) 3.3 0.206 1.893
(iv) 3.6 0.311 1.818
(v) 3.6 0.287 1.818
(vi) 3.6 0.384 1.833
(vii) 3.1 0.344 1.818
(viii) 3.0 0.235 1.836

We investigated how the network misspecification affects the optimality of the design,

when removing a targeted set of edges from the network. An alternative approach would

be to randomly remove edges, with some probability. For this reason, we simulate 100

different networks misspecifying an increasing number of edges: from 1 up to 7. Then

we calculate the efficiencies of the optimal designs for those misspecified networks when

the true network is the one shown in Figure 3.1. These efficiencies are illustrated in

Figure 3.14. An approach for examining design robustness to network misspecification

is by removing sequentially an increasing number of edges. This can be performed by

randomly selecting and removing sets of vertices. In Figure 3.15 we follow the same

approach, but with the additional constraint that the graph will remain connected. In

other words, we randomly select and remove sets of vertices in such a way that we do

not increase the number of components of the graph. The pattern of efficiencies is very

similar to that in Figure 3.14. However, by employing this check, so as to avoid ending

up with isolated members, we can discern that there is a slight tendency to reaching

higher design efficiencies in the majority of cases as compared to not employing it

at all. We see the efficiency decreases when increasing the number of edges that are

removed or in other words when we increase the network misspecification, which is

true especially for φ2. It is important to note that there is a large variation in the

efficiencies even when we misspecify the network for a few edges. Obtaining a large

number of simulated misspecified networks and choosing an ‘intermediate’ design among

the obtained designs, could serve as an approach for finding the best design which will

be quite robust to misspecification. For a discussion of this approach see Section 7.3.

In general, when we randomly alter the topology of a given a network (keeping the size

fixed), its vertex specific features are expected also to change. This can be justified

by considering that vertices have originally some topological properties associated with

them, such as degree, clustering coefficient, average path length and by reforming

the network, deliberately or not, the resulting vertices will no longer be equivalent

to the original ones (under a somewhat generalised notion of topological equivalence).

However, if we make changes to the edges attached to structurally equivalent vertices

(which are sets of vertices with the same external properties), then there may not be
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Figure 3.14: Design efficiencies for 100 simulated misspecified networks; removing 1 to
7 edges: Effφ1 (left) and Effφ2 (right)

Figure 3.15: Design efficiencies for 100 simulated misspecified networks (connected
graph); removing 1 to 7 edges: Effφ1 (left) and Effφ2 (right)

major topological changes to the network. This issue is discussed in Chapter 4 in the

context of network symmetry.

3.6 Simple exchange algorithm

When the exhaustive search to find an optimal design is not possible we implement

an approximate method (see discussion in Section 2.3). We develop a simple exchange
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algorithm for finding near-optimal designs for unstructured treatments. In the first

phase, an initial design is generated by randomly allocating a number of treatments to

units. The aim is to find the ‘best’ possible allocation. Then the problem becomes one

of optimisation. A simple way that this algorithm could evolve is by exchanging the

treatments systematically. Thus the algorithm can be summarised as follows:

Systematic Exchange Algorithm–SE

– Step 0: Enter the adjacency matrix (A) (indicating the relations in the network).

Units are labelled from 1 to n.

– Step 1: Generate a random initial design (i.e. random allocation of treatment

labels to the units).

– Step 2: Calculate the optimality criterion φ(0) (φ1, φ2 or any other defined crite-

rion) for the arbitrary design of step 1.

– Step 3: Iterate from i = 1 to n to find a better design (where i corresponds to

the i-th subject). For the i-th iteration:

(i) Exchange the treatment applied to subject i with another treatment.

(ii) Calculate the information matrix. If it is non-singular, compute the new

value of the chosen criterion. Otherwise set i← i+ 1.

(iii) If the new criterion value φ(i) ≤ φ(i − 1) exchange the treatments. This is

a provisional solution. Otherwise set i← i+ 1.

– Step 4: Repeat step 3 until no further exchange can be made on the current

design and then go to step 5.

– Step 5: Rerun all the above steps for several randomly generated initial designs

and return the design with the lowest criterion function value φmin (i.e. the best

solution Xopt). This is the L-optimal design, which will be (if not globally) the

locally optimal solution in the numerical (global) optimisation. End.

This means that the algorithm iterates by exchanging the treatments, one at each

iteration, subject to improving the design based on a chosen criterion. This criterion

is calculated as a function of the information matrix based on a pre-specified model.

Thus at each iteration, the procedure combines the provisional design with a systematic

exchange of treatments on selected units, forming a new design if this improves the

criterion function value. The algorithm terminates if a complete pass of all the vertices

yields no further exchanges. It is important to mention that the algorithm starts by

generating random designs until a nonsingular starting design is found. Moreover to

obtain an efficient final design (and address the problem of becoming stuck in a local

optimum) multiple random initialisations are used. Other future work could focus

on finding an optimal design via a different algorithm, for instance simplex methods,

simulated annealing or colouring algorithms (for further background see Section 2.3).
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For the particular problems of interest in this thesis, the demonstrated algorithm ap-

pears to be powerful enough and simple to implement. The main advantage is that it

has been appropriately adjusted to satisfy the exact needs of the particular design at

hand. However, the computational requirements increase proportionally or even more

with the size of the problem (i.e. number of units and treatments involved in the ex-

periment). Examples of the construction of near-optimal designs using the algorithm

presented here are given in the following chapters.

3.7 Discussion

In this chapter we provided the main ingredients of optimal experimental designs on

networks: the response model for a given network interference structure; the optimality

criteria appropriately chosen so as to reflect the objectives of the experimenter (either

estimating the treatment or network effects); and an iterative algorithm to search

across the design space for obtaining an efficient design when an exhaustive search

is not possible. We derived the formulae of the optimality criteria and highlighted the

impact of the first and second order connections on the optimality of the design and

how changes in their values can potentially affect the overall optimal allocation. The

expressions of the optimality criteria are generally complicated even for the m = 2

treatment case. Heuristically the design for estimating the treatment effects tends to

be balanced on the units having a similar number of connections, while for estimating

the network effects the design is greatly influenced by the network connections. A

useful rule of thumb when constructing designs on networks is to find designs that

present (near-) equal replication of the treatments allocated to units with equal first

and second order connections. It may also be sensible to consider the allocation of

treatments separately in special subgraphs that make up the graph as a whole. Further

consideration of this issue will be given in the following chapter.

Other issues we comment upon are the design bias and efficiencies due to the model

or network misspecification. After deriving the formula for bias, we give an intuitive

feel for this bias and how it ranges with the number of connected pairs of units with

different treatments. By means of an example, we explored the bias over a popula-

tion of randomisations which is non-trivial. A conclusion from that exploration is that

the least expected bias in the treatment effect estimates is achieved when we balance

the treatments so that the number of pairs of connected units who receive different

treatments is roughly half of the number of the total edges. This conclusion provides

further evidence on the effectiveness of the treatment allocation patterns and our sug-

gested general guidelines for the experimental design.

From our discussion, so far, it is clear that a statistical model should accommodate

the network dependence. We also showed that the higher the level of network misspec-

ification the bigger the loss of robustness of our optimal designs to misspecification,

especially under φ2.
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Chapter 4

Design and network symmetry

This chapter develops a novel algorithmic approach for speeding up our exploration

of the design space for finding an efficient design by understanding and utilising the

topology in a network and particularly of its symmetries. The driving force behind

this chapter is the paper of MacArthur et al. (2007). The concepts that are going

to be presented here are used in the literature but sometimes with slightly different

definition. For reasons of consistency of this thesis, the definitions have been adjusted

appropriately. Section 4.1 reviews the main concepts of network symmetry via graph au-

tomorphism groups. In Section 4.2, we sketch an example that combines some common

symmetric motifs typically found in large networks (the example is from MacArthur

et al., 2008). We detect and utilise those symmetric motifs in an attempt to avoid

exhaustive exploration in the design space and to reduce the computational burden.

In Section 4.3, we consider an algorithmic approach to obtain optimal designs on net-

works of high degrees of symmetry. Such an approach can in practice be very efficient

for finding designs in real-world networks, which are in general large-sized and highly

symmetric, as it can substantially reduce the search time while maintaining the design

efficiency at a sufficient level. Towards this direction, we discuss several synthetic and

real-world examples.

4.1 Preliminaries on graph automorphisms

In mathematics, symmetry is the invariance of an object’s properties under a set of

transformations. For instance, a rotation of a circle about its center leaves the circle

unchanged and preserves distances for any points of the circle. Symmetry in networks

entails invariance of network adjacency under permutations on a vertex set. Most def-

initions on graph automorphisms and structural equivalence are adapted from Harary

(1969). A good review of complex networks and symmetry can be found in the work

of Garlaschelli et al. (2010).

Let G = (V, E) be a graph with vertex set V and edge set E ⊂ V2, where two vertices are

said to be adjacent when there is an edge between them (see Chapter 2). Intuitively an

automorphism on a graph is a mapping that relabels the network vertices so that the
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edges among the vertices appear unchanged. This relabelling is called a permutation

and is given by a function which is a bijection from G to itself (that is V to V and E to

E). Hence, a graph automorphism is a structure-preserving permutation of the vertices

that does not affect network adjacency. This means that if two vertices v1 and v2 are

joined by an edge, so are their images η(v1) and η(v2) under the permutation η. We

can re-phrase the above using the following Definitions 1− 3.

Definition 1. A vertex permutation η, acting on a finite set V, is a bijective mapping

η : V 7→ V, v 7→ η(v).

Definition 2. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, G1 ≈ G2,

if there exists a permutation η : V1 7→ V2 such that for all vertices v, v′ ∈ V1 so that

vv′ ∈ E1 if and only if η(v)η(v′) ∈ E2. (Recall that vv′ is the edge between vertices

v and v′ and likewise η(v)η(v′) is the edge between η(v) and η(v′)). In other words,

η(G1) ≈ G2 means that G1 and G2 are topologically equivalent).

Graph isomorphism is the problem of testing whether two graphs are the same. The

graph automorphism problem is the analysis of the isomorphisms of a graph with itself

or in other words the problem of testing whether a graph has a nontrivial automorphism

(Harary, 1969). Note that every graph has a trivial symmetry (the identity) that maps

each vertex to itself.

Definition 3. An automorphism of a graph G = (V, E) is a self-isomorphism (from G
onto itself), i.e. η : G 7→ G.

Figure 4.1, for example, illustrates a graph automorphism which is obtained by swap-

ping the vertices’ labels 1 and 3 of a star graph, through a bijection η; η(1) = 3, η(2) =

2, η(3) = 1, η(4) = 4. Another simple way to write the same permutation is η = (1 3),

which is called cycle-notation where vertex 1 goes to vertex 3 and 3 goes back to 1.

Summarising the domain and image of this function η, this particular permutation can

be represented by

η =

(
1 2 3 4

3 2 1 4

)
.

Figure 4.1: Graph automorphism corresponding to the relabelling of 1 by 3, 3 by 1

This relabelling constitutes an automorphism and the adjacencies between vertices in

the two graphs are identical. For this particular network, we can interchange ver-

tex labels 1, 2 and 3 in any way and they still stay adjacent to 4. The set of all

automorphisms, including the trivial one (that moves no labels at all), is called the
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automorphism group of the graph (see Definition 4). Any automorphism of a given

graph is a permutation, since it permutes the vertices of the graph and can therefore

be represented using permutation matrices. The permutation matrix Pη corresponding

to the permutation η is

Pη =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 .

Recall that the information of a graph is contained in the adjacency matrix. Thus

we can re-write Definition 2 using the adjacency matrices of the corresponding graphs

(Definition 2*).

Definition 2*. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, G1 ≈ G2,

if there exists a permutation matrix Pη such that AG1 = PηAG2Pη
T .

For the example of the star network the corresponding adjacency matrix, where vertices

1 and 3 are structurally equivalent, is unchanged after exchanging its 1st and 3rd row,

and its 1st and 3rd column. In doing so, we are not interchanging the identity of 1 and

3, which still represents the original vertices, (for instance two particular persons in a

social network). In other words, if AG1 and AG2 correspond to the left and right graphs

of Figure 4.1 respectively, then we have that AG1 = PηAG2Pη
T .

Definition 4. The automorphism group of G, denoted by Aut(G), is the set of

all permutations of the vertex set that preserves adjacency (all automorphisms), i.e.

Aut(G) = {η : η(E) = E}.

From Definition 4, it follows that Aut(G) comprises all adjacency-preserving bijections

of V formed under composition of permutations. We can easily identify all the automor-

phisms of the previous example with the star graph. There are 6 (= 3!) automorphisms

as found by considering all possible permutations of the vertex labels 1, 2 and 3 (which

do not alter the adjacencies). Figure 4.2 illustrates all six automorphisms, Aut(G), of

the star graph.

The automorphisms also define a relationship between the vertices of the graph: two

vertices are structurally equivalent (Wasserman and Faust, 1994) if there is an auto-

morphism taking one to the other. For our example, vertices 1 and 3 are structurally

equivalent since there is an automorphism (1 3), which takes 1 onto 3. The sets of

structurally equivalent vertices are called vertex orbits; in the example there are two

(vertex) orbits {1; 2; 3} and {4}.

Definition 5. The equivalence classes of the vertices of a graph G under the action

of the automorphisms are called vertex orbits and they are defined as orbG(P,V) =

{P (v) : v ∈ V} where P (v) = {η(v) : η ∈ Aut(G)} is called the orbit of vertex v.

In simple terms, the orbit of a vertex v is the set of vertices where v can be mapped

to under some automorphism. Therefore, the automorphism partition of the vertex
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Figure 4.2: All six automorphisms of the star graph of Figure 4.1, Aut(G)

set V of a graph G is the set orbG(Aut(G),V) of the orbits of its automorphism group.

In our indicative example of the star graph, all vertices except the central one are in

the same orbit, which renders them structurally equivalent because they have the same

set of neighbours. Permutations of structurally equivalent vertices lead to exactly the

same topology and are therefore automorphisms (exact symmetries) of the graph. Note

that groups of equivalence vertices can be called symmetric motifs. In other words, a

symmetric motif is a synthesis of more than one vertex orbit (Milo et al., 2002; Alon,

2007). These symmetric subgraphs occur much more frequently than would be expected

in a similar random network. We can now define the notion of network symmetry of a

graph.

Definition 6. A network is said to be symmetric if its underlying graph has a nontrivial

automorphism group; otherwise it is said to be asymmetric.

The symmetry breaking problem concerns the decomposition of the vertices of the graph

into its collection of orbits of the automorphism group. Vertices on the same orbit may

be permuted without altering the network structure and are indistinguishable from one

another. This is a recent area of research (MacArthur et al., 2008; MacArthur and

Sánchez-Garćıa, 2009; Xiao et al., 2008) which deals with real-world networks, since

traditionally, the graph automorphism problem has only been dealt with for specific

classes of graphs generated according to deterministic rules (see, e.g., Harary, 1969).

Adopting the approach of MacArthur et al. (2007) we can quantify the degree of sym-

metry in a network by the means of structural repetition of its equivalent vertices,

calculated as

rsym(G) = 1− |orbG(Aut(G),V)| − 1

|V|
= 1− nO − 1

n
, (4.1)

where nO denote the number of vertex orbits, i.e. the vertices that play identical struc-

tural role, and n is the total number of vertices in the graph. Note that 0 < rsym ≤ 1:

the smaller the value of rsym the more the network is constructed from structurally
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unique elements; while the larger the value the more the network is constructed from

repetition of structurally identical elements and therefore the higher the degree of net-

work symmetry. This measure is a useful yardstick for the algorithmic approach we

introduce in Section 4.3.

Graph automorphisms have been used to simplify the topology of real networks by

collapsing redundant information and obtaining network quotients (MacArthur et al.,

2007; MacArthur and Sánchez-Garćıa, 2009). The network quotient is simply the

decomposition of this network’s automorphism group to its distinct symmetric mo-

tifs. The quotients of real networks are found to preserve various structural properties

(MacArthur and Sánchez-Garćıa, 2009). They are therefore a reduction or simplifica-

tion of the original network. In this thesis we focus on a part of the resulting network

quotient, which we call the skeleton, which is asymmetric and focuses on the fixed and

distinct vertices (omitting the vertex orbits).

Definition 7. The skeleton of a graph consists of vertices with vertex orbit of size one.

In the next section, we describe how the skeleton of a given graph can be taken into

account in the design process. This approach initially requires finding the vertex orbits.

In order to obtain the vertex orbits of a graph we use the graph isomorphism testing

program nauty (which is short for No AUTomorphisms, Yes?), by McKay (1981). nauty

is a set of very efficient C language procedures for determining the automorphism group

of a graph (which takes only a few seconds for networks with hundreds of vertices)

and it is one of the most powerful and best known programs (publicly available at

http://cs.anu.edu.au/~bdm/nauty/). Up to date information can be also found in

the article by McKay and Piperno (2014). The required time for decomposing the

network to its symmetric motifs and its skeleton for some thousands of vertices takes

between 2 and 6 seconds using nauty on a standard computer. However, there is an

increasing number of modifications of this algorithm, examples of which include bliss

(Darga et al., 2004) and saucy (Junttila and Kaski, 2007). For sparse and small-sized

networks considered in this chapter, nauty requires less than a second to obtain the

vertex orbits of a graph. Recall that a sparse network is one in which the density of the

edges that are actually present in the network relative to all possible edges approaches

zero as the number of total vertices approaches infinity, or simply there are many zeros

in the adjacency matrix. Note that real-world networks such as friendship networks

are usually regarded as sparse. However, for regular graphs such as a lattice network

this would not be the case. For a review of the graph automorphism problem from

the practical point of view with an extensive description of the recent advances refer to

McKay and Piperno (2014) and references therein. We focus on the operation of nauty,

which provides the orbits of the automorphism group and the size of the automorphism

group. This is performed by making use of the structural information of the graph as

defined through the degree partition. This operation is related to incrementally refining

a partition by using iteratively some degree information. The following example serves

as a guide for understanding this idea after summing up all the previous definitions.
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Revisiting Example 2.4.1, we consider the graph G as illustrated in Figure 4.3(a). The

automorphism group of G is a permutation group acting on V. If η ∈ Aut(G), then

η preserves adjacency and hence sends the neighbours of v to the neighbours of η(v).

Therefore, if η sends v to v′, then v and v′ have the same degree (the same number of

neighbours). Figure 4.3(b) shows a graph automorphism which is obtained by swapping

the vertex labels 2 with 4 and 5 with 6, through the bijection η = (24)(56). Recall that

this cycle-notation means that η maps vertices 2 to 4 and 5 to 6 as well as 4 to 2 and

6 to 5. This relabelling constitutes an automorphism as the set of edges remains the

same. Note that (24) and (56) are two automorphisms, and when combined one after

the other they also make an automorphism.

Figure 4.3: (a) Original graph; (b) a graph automorphism

Recall that the automorphisms also define an equivalence relationship on the vertices

of the graph: two vertices are equivalent if there is an automorphism taking one to

the other. The sets of equivalent vertices are called orbits; in the example there are

four orbits: {1} , {2; 4} , {3} and {5; 6} with two fixed points as shown in Figure 4.4(a).

Hence, the graph contains symmetries and we can quantify the degree of symmetry

by calculating the ratio rsym = 0.5. A degree of symmetry of 50% implies that the

graph contains a good amount of structural redundancy, which indicates that exploiting

network symmetry is beneficial for reducing combinatorial searches in the design space.

Moreover, Figures 4.4(b) and 4.4(c) illustrate the quotient and skeleton respectively of

the corresponding graph.

Figure 4.4: (a) Orbits are indicated by different colours; (b) quotient graph; (c) skeleton

To better understand the partition refinement as implemented by nauty, consider the

slightly altered graph of Figure 4.3(a), by removing the edge between vertices v1 and v3.
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The vertex orbits are again {1} , {2; 4} , {3} and {5; 6}, which are found with a two-stage

degree partition between the vertices. In particular, we have that the initial partition,

P0, consists of the vertices of the entire graph, i.e. P0 = 〈{v1, v2, v3, v4, v5, v6}〉. Then

ordering the vertices by degree, we compute partition P1 = 〈{v2, v3, v4} , {v1} , {v5, v6}〉
(with first degrees 〈d1, d2, d3〉 = 〈2, 4, 1〉). In other words vertices 2, 3 and 4 have

each two edges, while vertex 4 has 4 edges and 5 and 6 have each one edge. Figure

4.5(a) illustrates this degree partition with different colours indicating the different

degrees. Then the vertices are further distinguished into more restricted cells based

on the degrees of those within each partition. In our example, this partial ordering of

the vertices by degree will take the form P2 = 〈{v1} , {v2, v4} , {v3} , {v5, v6}〉. This is

because the degree of vertex v3 within the partition P1 differs from v2 and v4. We can

calculate deg(v, P ) = 〈d〉 where d = |{u ∈ P |(u, v) ∈ E}|, ∀d ∈ d, where d is a vector of

degrees that correspond to partition P . Thus deg(v3, P1) = 〈2, 0, 0〉 which is different

from deg(v2, P1)) = deg(v4, P1) = 〈1, 1, 0〉. In other words vertex 3 is separated from

vertices 2 and 4. Partition P2 is illustrated in Figure 4.5(b).

Figure 4.5: (a) Partition P1; (b) Partition P2

4.2 Symmetry breaking and design

As recent research has revealed, real-world networks are richly symmetric (MacArthur

and Anderson, 2006; MacArthur et al., 2007). Their inherent complexity can be sim-

plified to an extent by understanding the structural features in some quantitative way

and/or by excluding structural redundancy as captured by the structural repetition of

symmetric motifs. Detecting and utilising network symmetry proves to be very useful

in accelerating the search for the optimal design in the design space. We make some

conjectures based on several examples that provide a fruitful road-map for our future

work in this area. Conjecture 1 is related to the linear network effects model (LNM)

and the circumstances under which it cannot be implemented. Conjecture 2 is related

to the symmetry breaking and design problem.

Conjecture 1. Let G be a graph and Aut(G) be the set of its automorphisms. If the

vertices of the graph can be partitioned into two or fewer vertex orbits under the group
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of automorphism, then the LNM cannot be fitted (due to the singular information

matrix).

Conjecture 1 summarises what is already demonstrated in Section 3.3. For the special

graphs, i.e. complete, star and ring networks (described in Section 2.4), the vertices

of the corresponding graph can be partitioned into two, one and two vertex orbits

respectively. Thus the LNM cannot be applied in these cases due to the singular

information matrix. For instance, a k-star network has two orbits, k vertices of degree

one that fall in one orbit of size k and the central one of degree k that falls in another

orbit of size one. Similarly the complete and ring networks have one orbit each (because

given any pair of vertices u and v, we can find an automorphism sending u to v).

Another interesting observation is that the information matrix tends to be singular in

network with a high degree of symmetry.

Conjecture 2. Let A be the adjacency matrix of a given network and let ξ∗skeleton be

the optimal design under φ1 corresponding to the skeleton. Then, there is an optimal

design of the original network under φ1, which contains ξ∗skeleton.

Thus we conjecture that the optimal design for the case of φ1 includes the optimal design

on the skeleton, where φ1 corresponds to the L-optimality criterion for minimising the

average variance of all pairwise differences of treatment effects (see Chapter 2). The

useful aspect of this conjecture is that we can obtain an (near-) optimal design to

the original graph by decomposing it to subgraphs resulting in a reduction of the

computational burden to find a good design. Recall that the skeleton is defined as

the maximum asymmetric subgraph of the original network and can be considerably

smaller than the original network. This finding is only a conjecture based on a large

number of trial networks of different shapes and sizes. However, we could not prove

this claim but we provide supportive evidence via some illustrative examples. From

our experience, there is no counterexample to discredit this. We explore the benefits

of this conjecture algorithmically and leave its proof for future work.

For the case of φ2 the introduction of a skeleton is not adequate and a different definition

of the skeleton may be more appropriate potentially related to a weighted quotient

graph. However, we can still get highly or moderately efficient designs in one tenth of

the normal time when utilising the symmetries of a graph. There seems to be a close

connection between the first design criterion and the graph automorphism, which leads

us to the point of calling them φ1-automorphisms. In the future, more research should

be devoted to defining φ2-automorphisms, taking into account that φ2 is especially

influenced by the second order connections (see Section 3.4).

Revisiting Example 3.4.1, we illustrate the symmetry breaking problem and how it is

considered in the design process. Our interest here lies in designs for the comparison of

two unstructured treatments. Figure 4.6 depicts a network presenting some common

symmetric motifs (star, complete graph, tree-structure etc.). The example network was

taken from the paper of MacArthur et al. (2008). The different colours of the vertices
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in this figure indicate the different vertex orbits. The white vertices correspond to the

fixed vertices for which the orbit is of size one. The skeleton comprises these white nodes

and therefore is asymmetric, which means that any exchange on its labels will alter the

connectivity structure. Quantifying the degree of symmetry, as defined in Equation

(4.1), we have that rsym = 0.4375 (nO = 19), and therefore the degree of network

symmetry is approximately 44%. Moreover, |Aut(G)| = 4608. We find the (globally)

optimal designs by an exhaustive search within the design space Ξ{n,m} = Ξ{32,2},

where |Ξ| = mn. The computational time required to find the optimal design for this

32-subject network was estimated to exceed 20 days with a conventional computer

(Intel Core i5 processor running 64 bits Windows 7 operating system at 1.90 GHz).

For this reason Iridis 4 was used and the optimal designs for φ1 and φ2 were found

(with running time being approximately 135 hours). For more details about Iridis 4

refer to the computational note in Section 2.3.

Figure 4.6: Network of size n = 32. Different colours indicate different orbits, with
white corresponding to the skeleton

The exhaustive search for the optimal designs was achieved with a complete enumera-

tion using the binary number system. More specifically given n (number of units) we

obtain the i-th allocation (corresponding to the i-th row of a 2n × n matrix of all pos-

sible combinations of zeros and ones of length n), which is the binary representation

of the integer i. Therefore, the algorithm generates step-by-step the binary repre-

sentations of the sequence 1 : 2n. Comparisons are made to the consecutive designs

(evaluation of each row separately) and then the algorithm returns the best. Recall

that the treatments are equivalent with respect to relabelling, in the sense that one
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sequence of treatment labels can be obtained from the other one by relabelling. Thus,

this symmetry of labels reduces the search time in the design space and as a result the

algorithm concludes at 2(n−1).

The optimal designs under LNM are found and illustrated in Figure 4.7, with op-

timal function values φ1
∗ = 0.1250 and φ2

∗ = 0.0237 respectively. Note that the

optimal design for φ1 is not unique as opposed to that of φ2. There can be more

than one φ1-optimal design in relation to the graph automorphisms. More discus-

sion on this issue will be given later in this chapter. The optimal allocations for φ1

and φ2 are {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} and

{0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1} respectively.

Figure 4.7: Optimal designs φ1 (left) and φ2 (right); different colours indicate different
treatments

Our aim is to find the optimal design (or a near-optimal design) on this network of high

degree of symmetry faster. For this reason we find the optimal designs on the skeleton of

the graph, which corresponds to the white vertices (omitting all the symmetric motifs of

the graph) in Figure 4.6. The processing time (or CPU time) in seconds (secs) required

to solve both optimisation problems (corresponding to the two different criteria) is less

than 2 seconds. Figure 4.8 illustrates the optimal designs for this subnetwork under

each design criterion. The optimal function values for the skeleton are φ1
∗
sk = 0.3668

and φ2
∗
sk = 0.1265 respectively. Notice that there are four optimal design for φ1 (see

Figure 4.9), whilst in the case of φ2 there is only one.

Considering the optimal design on the whole network and extracting the design on

the skeleton, a key questions is how good this sub-design is compared to the optimal

design obtained on that skeleton. To make this comparison, we put our focus on the

treatment allocation on the vertices of the skeleton of the 32-subject network of Figure

4.7. The values of the criteria for the skeleton are φ1 = 0.6843 and φ2 = 0.3944 as

opposed to optimal function values, which were previously found to be φ1
∗
sk = 0.3668

and φ2
∗
sk = 0.1265 respectively as illustrated in Figure 4.8. The design efficiencies with
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Figure 4.8: Optimal designs for φ1 (left) and φ2 (right) for the asymmetric network
skeleton

Figure 4.9: All optimal designs for φ1 for the asymmetric network skeleton

respect to the optimal designs on the skeleton, under φ1 and φ2, are

Effφ1 =
0.3668

0.6843
= 0.5360 and

Effφ2 =
0.1265

0.3944
= 0.3207.

The resulting efficiencies are quite low, indicating that the optimal design on the whole

network is not necessarily optimal for the skeleton of that network. However, it is

important to note at this point that the optimal design under φ1 is not unique. This

brings us to the second key question, that is if we can find the optimal design on the

32-subject network of the original network conditional on fixing the optimal skeleton

design, i.e. the optimal design on the particular subgraph consisting of 11 subjects.

The answer is affirmative and led us to Conjecture 2.
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The computational (CPU) time in seconds (secs) required to solve this optimisation

problem of finding an optimal design on the whole network having fixed the allocation

on the skeleton is less than 3 seconds. The optimal function values are φ1
∗ = 0.1250

and φ2
∗ = 0.0261. The efficiencies compared to the corresponding designs under φ1

and φ2 are 100% and 91% respectively. The designs obtained following this approach

are shown in Figure 4.10. This result is in agreement with Conjecture 2 which states

that we can find the optimal design for φ1 on a network by fixing the optimal allocation

to its skeleton. The consequence of the results is that we can reduce considerably the

size of the search region, given a restriction on the number of runs by considering the

symmetries of the graph, and by finding the optimal design or at least a near-optimal

design on its skeleton. This conjecture implies that for any network there is at least one

optimal design which is also optimal for the skeleton. However, it is worth noting that

even if this conjecture does not hold, it can still be very useful for finding near-optimal

designs for large-sized networks within a small time frame. It should be noted that

when m does not divide n or l some deviation occurs from the optimal function value.

Figure 4.10: Optimal design for φ1 (left) and φ2 (right) (given fixed allocation for the
skeleton)

Let us now revisit Example 3.4.2. We investigate the degree of symmetry for each

one of the different common types of snapshot networks of size 24 illustrated in Figure

3.7. Implementing nauty for these networks we have, as anticipated, that the random

network is asymmetric, the small-world network has just two equivalent vertices (i.e. 9

and 10) and the scale-free network has 14 orbits. Bear in mind that locally tree-like

structures are commonly present in real-world networks, which makes this example

an interesting one to consider. Thus focusing on the scale-free network we obtain the

optimal designs for the two optimality criteria. The CPU time required was calculated

to be 2563.62 seconds for φ1 and 2564.64 seconds for φ2. The resulting vertex orbits

for that network are {1}, {2}, {3; 6; 10; 21; 22; 23},{4; 12},{5}, {7; 15; 16; }, {8}, {9},
{11; 19}, {13}, {14}, {17}, {18; 24}, {20}. The run time required for obtaining the
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orbits was less than 0.01 seconds. Note that the |Aut(G)| = 17280. The original graph

has 24 vertices and 23 edges, whilst the skeleton of the graph consist of 10 vertices and

9 edges (see Figure 4.11).

Figure 4.11: (a) Original graph-scale-free network of Figure 3.7(c) (n = 24, l = 23); (b)
Graph skeleton (n = 10, l = 9)

Next we obtain the optimal designs on the skeleton. Having fixed these treatment

allocations to the vertices of the skeleton we obtain the optimal designs for the orig-

inal network for each criterion (time required less than 0.04 seconds). Figure 4.12

illustrates those optimal designs. More specifically, the optimal treatment alloca-

tions are {1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1} with φ1 = 0.1672 and

{0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1} with φ2 = 0.0505. The design

efficiencies are 100% and 80.2% respectively. The optimal designs found by exhaus-

tive search for this network have φ1
∗ = 0.1672 and φ2

∗ = 0.0405, corresponding

to the optimal allocations {0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0} and

{0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0} respectively (see Figure 4.13).

It is important to highlight some key points of our research in symmetries. Firstly, when

designing experiments on real-world networks, which are in generally richly symmetric

then we strongly believe that partitioning the graph into its symmetric subgraphs

(symmetric motifs) and then into its orbits proves to be an efficient way to proceed.

This can save us considerable time and can help us potentially design experiments on

moderate or large networks. Table 4.1 summarises the relevant computational time

required to find the optimal designs on the two considered networks when utilising

(or not) the symmetries of the network (supporting Conjecture 2 and illustrating its

potential power).

Secondly, another point of interest is the ‘fork’ structure, which corresponds to identical

branches of vertices of a tree-like structure (see, for example, vertices 29− 32 in Figure

4.6). The automorphism group of a tree is more complicated conceptually due to the

presence of these ‘fork’ structures. In general, the automorphism group of a graph
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Figure 4.12: Optimal designs for φ1 (left) and φ2 (right) (given fixed allocation for the
skeleton)

Figure 4.13: Optimal design for φ1 (left) and φ2 (right) (without restrictions); different
colours indicate different treatments

Table 4.1: Approximate time in seconds required to find the optimal designs

Network Time Time Design efficiency
(ignoring symmetries) (utilising symmetries) φ1 φ2

Ex. 3.4.1 1728000 6 100% 91%
Ex. 3.4.2c 5128.26 0.05 100% 80%

can typically be decomposed into direct and wreath products of symmetric groups, the

latter is a mild generalization of direct products (see, for instance, Kerber, 1971 or

Rotman, 1994 for representation of wreath problems and examples). To understand

what a wreath product is consider the binary tree illustrated in Figure 4.14. The tree

automorphism group acts transitively on each branch of the tree. For instance, we

can consider the sets of automorphisms switching the nodes 4 and 5 or 6 and 7 at the

lowest branch (Branch 3 vertices). However, the vertices labelled 2 and 3 (Branch 2
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vertices) can be switched in addition to the permutations on the leaves (Branch 3 ver-

tices). This is represented by the wreath product of permutations of groups (which can

be considered as ‘dependent permutations’ of the nesting branch structure). This has

implications when treatments are allocated to units belonging to a tree like structure.

When permuting the treatments assigned to units in a branch among the units in that

branch this should be considered in addition to the treatment permutations associated

with units at the lower branch (if that exists). In the research presented in this chap-

ter we consider the vertices of the same branch to belong to the same vertex orbit,

allowing freely for permutations among them without considering making restrictions

based on the connected branches. Thus we anticipate the permutations on the corre-

sponding vertex orbits comprising the symmetries of tree structures to impact on the

φ1-automorphism group and therefore on the optimality of the designs. Future work

should better accommodate tree-structures when breaking down the design problem,

by either assigning weights or altering the skeleton definition, which can lead to an

improvement on the design efficiency.

Figure 4.14: Binary tree

It is clear that there is much to be done in this area. The close association between

the network symmetry and the design of experiments stands out as very promising

for future research and needs to be elaborated further. In this chapter we deal only

with a limited part of this combined area of the two different fields, displaying the

computational benefits for large complex networks. The following section recommends

a basic algorithmic approach which can be readily used by researchers and practitioners

for obtaining efficient designs on large networks with high degrees of symmetry, in one

tenth of a second without substantial losses in the design efficiency.

4.3 Algorithmic approach

In this section we describe the algorithmic approach in the search for an optimal design

in a network with a high degree of symmetry. We discuss some modification of this

algorithm by an illustrative example and make comparisons by means of computational

time as well as design performance for a given real-world social network. Recall from

Section 3.4, the optimal designs on (symmetric) special graphs are balanced under φ1,

whilst under φ2 optimal designs tend to be dominated by the same treatment for units
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of the same degree. We incorporate these patterns in our approach and we explore the

results. Below we sketch the algorithmic approach (NSYM) for finding optimal designs

while accounting for network symmetry. Before implementing NSYM, we calculate the

preliminary measure rs, that quantifies the degree of network symmetry by counting the

frequency of the symmetric motifs in the entire graph. If the rs measure is relatively

low (rs → 0) then NSYM requires equivalent computational time as the systematic

exchange (SE) algorithm suggested in Section 3.6, for finding an optimal design for

the original network. However, large values of rs indicate that utilising the network

symmetries for finding the optimal design reduces significantly the search time leading

to valuable gain in computational time. We assume arbitrarily that when rs ≥ 0.4 then

taking into account the graph automorphism in our search for the optimal design can be

very beneficial. This holds especially when dealing with a large number of treatments

and a large number of experimental units that reflect the size of the network.

Algorithm that accounts for network symmetry (NSYM)

(I) (Skeleton). In order to obtain the skeleton, we employ the graph isomorphism

program nauty, which makes use of the structural information of the graph de-

rived from the degrees of the vertices and partitions the vertices into symmetric

subgraphs.

– Step 0: Input non empty graph by entering the adjacency matrix (A) (indi-

cating the connectivity structure). Units are labelled from 1 to n.

– Step 1: Obtain the graph skeleton (i.e. asymmetric subgraph omitting the

vertex orbits).

– Step 2: Find an (near-) optimal design on the graph skeleton using the

systematic exchange algorithm.

(II) (Vertex orbits). Different allocation of the treatments under φ1 and φ2.

– φ1: Have a balanced allocation of the treatments within each vertex orbit,

and ultimately achieve an overall balance along all orbits (if possible);

– φ2: Have the same treatment (which will be randomly selected among the

different treatments) allocated to all the units within the same vertex orbit.

(III) (Original network). The design is constructed by fixing the allocation on the

skeleton (Step I) as well as on the vertex orbits (Step II). The resulting design

is expected to be good enough (optimal or near-optimal). (Additional systematic

exchanges can be allowed, leading to a further improvement of the overall design.)

An alternative to the algorithm in Steps I or II is to consider a random exchange

algorithm, by relaxing the constraint of systematically exchanging the treatments on

the ordered units, but instead exchanging the treatments on randomly selected units

(iterating for a specified number of times). Other alterations could be related to the

occurrences of pairs of same or different treatments in a vertex orbit or in the skeleton.
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We can also consider a quotient graph in Step I, as an extension of the skeleton for

better capturing the network information. Recall that in a quotient graph, vertices

represent groups and edges are induced by connectivity between groups. This can

serve as a very interesting topic for experimentation. The following example illustrates

the proposed approach.

Example 4.3.1. This is an example of a social network consisting of 1025 vertices

and 1043 edges and is illustrated in Figure 4.15. The edges indicate the ties among

PhD students and their advisors in theoretical computer science (Johnson, 1984). This

network has been obtained from http://vlado.fmf.uni-lj.si/pub/networks/Data/

esna/CSPhD.htm. Calculating some network measures we conclude that the average

degree is approximately δ = 2.035, the clustering coefficient C = 0.002 and the average

path length ` = 11.748. The degree distribution of the network is illustrated on two

scales in Figure 4.16. The figure shows that the distribution follows power-law vertex

degree distribution (scale-free) as indicated by the fitted red line, which represents the

fitted power law distribution with γ = 1.924 (Kolmogov-Smirnov test R2 = 0.897). We

want to find the optimal designs for estimating with minimum variance the treatment

effects and network effects for the m = 2 treatment case.

Figure 4.15: PhD social network

We obtain the orbits of the graph, of which there are 511 (CPU time = 0.45 seconds).

Figure 4.17 illustrates the original graph and its skeleton. We can then quantify the

degree of network symmetry as:

rs = 1− 511− 1

1025
= 0.4976.

This value indicates that 50% of the vertices of the graph play the same structural

role as at least one other vertex (structural repetition of the vertices). Recall that the
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Figure 4.16: Degree distribution of the PhD network. Original (left); log-log (right)

larger the value of rs the more the network is constructed from repetition of structurally

identical elements, and therefore the higher its degree of symmetry.

Figure 4.17: (a) Original graph (n = 1025, l = 1043); (b) Graph skeleton (n = 358, l =
374)

Consequently, we investigate different algorithmic update scenarios, which correspond

to the components that compose the suggested algorithm. On the grounds of compar-

ison among those strategies we set as the starting design the same random balanced

design (one random start). The algorithms make exchanges to the treatment arrange-

ments on the skeleton and/or vertex orbits, if those improve the overall design. Figures

4.18 and 4.19 illustrate all the considered algorithms in an attempt to compare them.

The vertical axis represents the design efficiency under each criterion and the horizon-
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tal axis the number of iterations corresponding to the consecutive design evaluations

required for the algorithms to converge. The efficiencies were calculated with reference

to the best design achieved among all those algorithms (this design may or may not

coincide with the optimal design). The different lines correspond to the five different

algorithmic scenarios: random exchange (‘RE’), systematic exchange (‘SE’), fixing the

allocation only on the skeleton (‘fix.sk’) or only on the vertex orbits (‘fix.orb’), while

allowing for systematic exchanges to the remaining vertices and fixing the allocation on

both skeleton and vertex orbits (‘NSYM’). The RE algorithm makes a specified number

of exchanges at random as opposed to the SE algorithm (first ascent). In order for the

two to be comparable, the number of iterations specified for the RE algorithm are on

average as many as the SE needed to converge. We would expect that by increasing the

number of iterations for RE, given the available computational time, the probability of

finding a design that is close to the (globally) optimal would increase. In general those

two alternative exchange algorithms perform equally well.

Figure 4.18: Relative design efficiency versus the number of iterations under φ1

For NSYM in Figures 4.18 and 4.19, we allowed for a few complete passes through all

the vertices for potential exchanges. Another observation is that φ2 requires a larger

number of iterations as opposed to φ1 under all algorithms. This larger number of

iterations for φ2 is needed to account for the complexity and the absence of balance in

the design (see Section 3.4).

The optimal designs were found to have φ∗1 = 3.902 ×10−3 and φ∗2 = 0.350 ×10−3. For
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Figure 4.19: Relative design efficiency versus the number of iterations under φ2

the case of φ1, we can observe that all algorithmic scenarios converge to the optimal

design. The starting balanced design is approximately 87% efficient (φ1 = 4.474 ×10−3)

and a few iterations seem to be sufficient for achieving a good design for this example

(less than n design evaluations). When we fix the allocations on the skeleton and the

vertex orbits (NSYM), the resulting designs are 100% (φ1 = 3.917 × 10−3) efficient for

φ1 and 70% (φ2 = 0.497 × 10−3) efficient for φ2 (without exchanges). If we decide to

allow for some additional design evaluations (desirable for φ2) then it converges to the

best design. NSYM seems to require significantly fewer successful iterations compared

to all other algorithms for reaching the best design under both criteria. When we

fix the allocation in either the skeleton or vertex orbits, allowing for iterations on

the remaining experimental units, the algorithms under φ2 produce relatively efficient

designs (skeleton: φ2 = 0.523 × 10−3 and orbits: φ2 = 0.454 × 10−3). It is worth

mentioning that the best found φ1-optimal design contains the optimal design found in

the skeleton (Conjecture 2). Reproducing these figures having different initial designs,

we obtain qualitatively similar results, with NSYM outperforming on average the other

approaches in finding the optimal design while running fewer iterations. Allowing for

multiple random initialisations, all different strategies produce better designs in terms

of efficiency.

To illustrate this, Figure 4.20 shows boxplots of design efficiencies with respect to the

best found design having 100 random starts (both balanced and unbalanced), corre-
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sponding to the n-th iteration for φ1 and to the 2n-th iteration for φ2 (where n = 1025

is the total number of units). The number of iterations is not the same for the two

criteria and is dependent on the required quality of the design (see Figure 4.20). This

allows us to get an idea of how well the different algorithms perform when we have mul-

tiple starting designs, having fixed the number of runs (total number of evaluations).

Whilst for φ1 all approaches obtain the best designs, for φ2 only SE and NSYM achieve

the optimal design, with the latter obtaining it more frequently. In addition, Figure

4.21 presents the boxplots of design efficiencies for φ1 and φ2 corresponding to NSYM

without any iterations. The median efficiencies are 100% and around 60% respectively,

indicating that for φ2 it is sensible to allow for extra exchanges overall.

Figure 4.20: Boxplots of design efficiencies (100 random starts)

A key observation here is that NSYM performs consistently better than the other al-

gorithms for this particular example. When fixing the allocation on either the skeleton

or orbits we have a significant improvement in the computational time required, due

to the simpler algebraic computations (requiring smaller sized matrix inversion). SE

requires more time than the other approaches, but is likely to find good designs. How-

ever, there is a limitation in this comparison of the algorithms due to the variability of

the results stemming from the choice of sub-design on the skeleton or orbits. Consider,

for instance, that the ‘fork’ structure previously discussed has not being accounted for

appropriately when allocating the treatments in the sense that immediately connected

vertices that belong in different orbits (e.g. branches of a tree-like structure) may receive

the same treatment. Moreover, it could be fruitful particularly to consider the same

type of symmetric motifs and treatment allocation on them in turn, e.g. all star struc-
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Figure 4.21: Boxplots of efficiencies for NSYM without iterations; φ1 (left) and φ2

(right)

tures together etc. Overall, the NSYM approach greatly increases the computational

efficiency of the design search without sacrificing any appreciable design efficiency.

4.4 Discussion

This chapter investigates how the network symmetry affects the properties of the design

and particular its optimality and how we can utilise it to our benefit in the design

search in an effective way. Decomposition of the graph based on its symmetries can be

regarded as an essential step in the search for an optimal design on experimental units

that are connected in a network formation. We provided evidence of the beneficial

effects of symmetry breaking on the experimental design, decreasing the computational

complexity and size of the design space for speeding up the search for an efficient

design. We presented an example of a scale-free network, which is a common type of

real-world network. We believe that in order to understand the allocation of the design

as a whole, on the original network, we should first decompose the network and try to

understand the allocation of the design to its network constituents. To the best of our

knowledge, this study is the first to provide a strategy for finding experimental designs

on networks while accounting for its symmetries. The main advantage of our approach is

that it relies on building up sequentially the design on the subgraphs, reducing repeated

evaluations of equivalent designs on the original graph and alleviating limitations due

to memory shortage of a computer when dealing with large networks. Thus it can

reduce computational burden of the optimality criterion calculation substantially (due

to small network and design sizes), enabling us to obtain good designs within a practical

time frame (due to the small number of evaluations required). This flexible approach

could be implemented irrespective of the main algorithm for finding particular optimal

design.
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It is worth noting that the graph isomorphism problem, that is the determination if two

graphs (of different targets and domains) are isomorphic or not, belongs to the class of

NP computational complexity (see Köbler et al., 1993 for an extended discussion). The

graph isomorphism problem is computationally equivalent to the problem of computing

the automorphism group of a graph. However, Babai (2015) claims that the graph

isomorphism problem and thereby also the graph automorphism problem can be solved

in quasipolynomial time (i.e. quantity is exponential in some power of a logarithm).

This finding suggests the existence of efficient deterministic algorithms for this problem.

Our approach points to the right direction for future research, with possible develop-

ments involving the identification of φ2-automorphisms. Experimental units are in-

terwoven with their defining network characteristics and therefore imposing additional

restrictions on the randomisation process related to the units on the quotient graph

may be more appropriate. An algorithmic improvement could relate to determining

occurrences for particular types of network motif. Accounting for the different motif

frequencies can further enable the design search to be carried out effectively in prac-

tice for large sized networks. Investigating alternative connectivity matrices such as a

Laplacian or the squared adjacency matrix could also be a way to move forward.
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Chapter 5

Optimal block designs with

network effects

In this chapter we develop a methodology for finding optimal block designs with network

effects. We incorporate a blocking structure, based on the underlying connectivity

structure, as an attempt to reduce unexplained variation. In Section 5.1 we introduce

the basic elements of spectral graph theory with graph Laplacians (most of which is

given in Section 2.4). In Section 5.2, we provide the SM (Shi and Malik, 2000) spectral

clustering algorithm used to define the blocks of the experimental design. Subsequently,

in Section 5.3, we extend the LNM (Parker et al., 2016) incorporating the notion of

blocks. We then provide a working example following the recommended step-by-step

methodology for the special case of two unstructured treatments. Issues associated with

the design efficiency and bias underlying the analysis of dependent data are explored in

Sections 5.4–5.6, where we also compose some optimal designs under different models.

We also touch upon some practical concerns emerging from the suggested methodology

such as the choice of graph Laplacian and further issues of interest.

5.1 Spectral clustering and block definition

Spectral clustering techniques play a major role in determining data clusters (also

termed communities or partitions), when there are weak connections between clusters

and strong connections within them. To detect the community structure in a network,

a clustering algorithm will be employed, which basically partitions the corresponding

graph into different groups of subgraphs, with dense connections within groups and

only sparser connections between them. From the design point of view, we expect

the densely clustered units of strong connections to exhibit similar response patterns

within the same communities and dissimilar ones from units of different communities

irrespective of the presence or absence of viral effects of specific treatments. Consider

for instance the advertisement example described in Section 1.1, clusters may contain

cliques of close friends who engage in similar behaviours, e.g. following a similar decision

pattern as of what quantity of product to purchase. In this thesis, we try to discover
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existing clusters which we use to define blocking structures. It could be of interest

to use another covariate on the basis of non-structural information, e.g. males versus

females in the case of social networks, or different age groups. However, this is outside

the scope of this thesis.

Suppose that n units are available for experimentation and they form a network which

is represented by means of a graph G = (V, E), with vertex set V (of size n) and edge

set E (of size l) (see Section 2.4). These units are divided into κ clusters (communities)

which have been obtained using spectral clustering techniques (more techinical details

will be given in Section 5.2). We assume that units within the same cluster are expected

to behave similarly to an external stimulus because of shared unobserved characteristics

and attributes. For this reason, we define the blocks to be the dense clusters found

by exploiting the units’ network connections. There is a group effect separately from

the individual network effect, and irrespective of the applied treatments. In other

words, the purchasing decisions might be similar for units belonging to the same blocks

independently of the particular treatment allocation or network connections (i.e. block

effects). In that way we establish more precise comparisons of treatment effects within

blocks than when making comparisons between blocks. Motivated by this natural

definition of blocking we suggest the network effects block model (NBM) with fixed

effects for blocks for design purposes in Section 5.3.

In Chapter 2 we described the main tools used for spectral clustering, i.e. the graph

Laplacian matrices, and provided their detailed mathematical formulae. The main dif-

ferences between spectral clustering techniques lie in the choice of the Laplacian matrix.

There are several arguments in favour of using normalised rather than unnormalised

spectral clustering (e.g. see Von Luxburg and Bousquet, 2004 and Cheng and Shen,

2010). The objective function employed to optimise graph clustering in the normalised

case is based on the degree of a cluster instead of its size as in the unnormalised case,

which is preferable when dealing with irregular graphs of different degree distributions.

Another argument against unnormalised graph clustering is that it is inclined to pro-

duce partitions containing only one vertex. We refer to Von Luxburg (2007) for a more

detailed justification of why normalised spectral clustering performs better than the

unormalised one, but also specifically for the normalised case why Lrw is more fitting

than Lsym. The defence for using the eigenvectors of Lrw is that they are cluster in-

dicator vectors 1Ci as opposed to those of Lsym which are additionally multiplied by

D1/2 (see Section 2.4). We chose to obtain our results using the normalised Laplacian

graph Lrw, which is related to a random walk rendering it a useful tool for capturing a

diffusion process, as is the treatment propagation effects, in a network (see Section 2.4).

Recall that the normalised random walk Laplacian is given as Lrw = I−D−1A. For an

in-depth coverage of these issues related to graph Laplacians and principles of spectral

clustering refer to Von Luxburg (2007) as well as Chung (1997), who both provide

extensive introductory overviews, with many references to research papers providing

further technical details.
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5.2 Clustering algorithm

We implement a spectral clustering algorithm for detecting communities in a (social)

network. We justify our choice due to the simplicity of its implementation (standard lin-

ear algebra), without requiring any explicit model of the data distribution and without

making any kind of assumption on the formation of the clusters. There is a growing lit-

erature of clustering algorithms that are based on optimisation methods such as greedy

algorithms, simulated annealing, or spectral optimisation, with different approaches

offering different tradeoffs between speed and accuracy (for a comparison see Danon

et al., 2005). An interesting critique on a number of different applications of clustering,

their ‘usefulness’ and corresponding evaluation procedures was made by Guyon et al.

(2009). Our suggested methodological approach performs satisfactorily.

Consequently, we provide the normalised spectral clustering algorithm, namely the Shi

and Malik (SM) algorithm (Shi and Malik, 2000) as based on Von Luxburg (2007) with

appropriate adjustments for the purposes of this thesis:

1. Compute the normalised graph Laplacian Lrw and its spectrum (as based

on the known adjacency matrix of the network).

2. Dimensionality reduction: using the κ first eigenvectors υ1, . . . ,υκ of the

graph Laplacian that correspond to the first κ eigenvalues sorted in ascending

order, let U ∈ Rn×κ be the matrix containing υ1, . . . ,υκ as columns. (Note that

the eigenvector-space varies based on the chosen dimensionality κ.)

3. Clustering step: treating each row of U as a data point, (yi)i=1,...,n ∈ Rκ,

group them via the (standard) k-means algorithm into κ (dimensionality of the

eigenvector space) clusters, C1, . . . , Cκ. Therefore, the vertices of the network are

projected into a κ-dimensional space, where κ is the number of the first nontrivial

eigenvectors of the Lrw. As a result, each unit is allocated to one of the produced

clusters.

We perform the clustering step for various numbers of clusters κ, κ = 2, . . . , n/2, the

choice of which is specified in order to limit the numerical search given that there should

be at least two units within a cluster for achieving treatment comparisons. Note that

the partition method can rely on a different clustering step rather than k-means if

required. However, we used this standard one, which is the most used partitioning

method. Spectral clustering is derived as an approximation to a graph partitioning

problem. Without going into detailed technicalities, it is based on the objective function

Ncut (Shi and Malik, 2000), defined as

Ncut(C1, . . . , Cκ) =
1

2

κ∑
i=1

A(Ci, C̄i)

vol(Ci)
,

where A is the adjacency matrix of the graph, with A(Ci, C̄i) =
∑

j∈Ci,h∈C̄i
Ajh, de-

noting the edges in the cut (i.e. edges between highly connected subgraphs). Note at
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this point that given a subset of vertices C ⊂ V, we denote its complement V − C by

C̄ and therefore C̄i is the complement of Ci. vol(C) measures the size of C, calculated

by summing up the edges attached to the vertices belonging to C, which is equivalent

to the summation of the degrees of the vertices in C, i.e. vol(C) =
∑

j∈C dj . The ob-

jective function takes a small value if the clusters are too small; therefore the obtained

clusters are ‘reasonably large’ (Von Luxburg, 2007). The factor 1/2 is introduced for

consistency reasons, otherwise we would count each edge twice since we are dealing

with undirected graphs.

However, this clustering algorithm gives no hint about the choice of the number of

clusters or ‘goodness’ of each partition. Various methods have been suggested to address

these practical concerns (see, e.g., Von Luxburg, 2007). For instance, the eigengap

heuristic is a common way to choose the number of clusters such that all eigenvalues

λ1, . . . , λκ are very small but λκ+1 is relatively large. As a result the |λκ+1 − λκ| gap

indicates that the dataset contains κ clusters. While this heuristic works well if the

clusters are well pronounced, its effectiveness decreases the more noisy or overlapping

the clusters become. In this thesis, in order to quantify the quality of partitions and

to choose the number of communities based on the ‘best’ partition, we use the concept

of modularity (Newman and Girvan, 2004).

Modularity is a measure which quantifies the strength (degree) of the obtained commu-

nity structure in a network by comparing it with a possible arrangement of the edges

in an equivalent network (of the same size and same degree sequence), where the edges

are placed at random (Newman, 2006). Hence by this comparison, and bearing in

mind that the random network is not expected to have a cluster structure, the possible

presence of clusters is revealed. The mathematical formation of this measure is

Q =
1

2l

∑
jh

∑
i

(
Ajh −

djdh
2l

)
sjishi,

where l is the total number of edges in the network, Ajh has value 1 if vertices j and h

are connected and 0 otherwise, and sji and shi are binary indicators of whether vertices

j and h belong to group i or not (membership vectors). dj is the degree of vertex j and

2l =
∑

jhAjh =
∑

j dj is the total degree of all the vertices. In other words, modularity

is defined as the difference between the fraction of the edges that fall within clusters

and the fraction of the edges that would be expected to fall within the communities if

the edges were assigned randomly but keeping the degrees of the vertices unchanged.

Looking at the terms in more detail:

– The observed fraction of edges in each community; that is the total number of

edges that run between the vertices in the same cluster i,

1

2

∑
jh

Ajhsjishi.

– The expected fraction of edges in each community; that is the expected number
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of edges between all pairs of vertices j and h in the same cluster if edges are

placed at random,
1

2

∑
jh

djdh
2l

sjishi.

To better understand this expression consider that the chances of a particular

edge in one of the dj being attached to vertex j is dj/2l where 2l denotes the

number of the edges in the entire network. Counting all dj edges attached to j,

the probability that the vertices j and h, with degrees dj and dh respectively, are

connected is given by (djdh)/(2l), since edges are placed independently of each

other. Thus the expected degree distribution coincides with that of the graph,

which is equivalent to the configuration model that is the model of a random

graph (Molloy and Reed, 1995).

Note that the factor of 1/2 in both expressions accounts for the fact that every vertex

pair j, h is counted twice. Taking the difference of the above mentioned expressions,

summing over all communities and taking the fraction of such edges (i.e. dividing by

l) we obtain the expression for Q. The value of modularity lies in the range [−1/2, 1]

and high (positive) values indicate that more actual edges are within a cluster than

what one would expect to have by chance, indicating possible presence of community

structure (Newman, 2006). When the communities are not better than the random par-

tition or when the network does not exhibit any community structure, Q is negative or

zero. The upper limit can be reached if the communities have been perfectly detected.

The maximisation of modularity has been proposed as a possible method for detecting

communities (Newman and Girvan, 2004); however, in this thesis, modularity measure-

ments are simply used to find the best partition among all the possible partitions of

the network produced using the suggested spectral clustering algorithm. We identify

the best densely connected cluster with κ = arg maxQ. As such κ is regarded as the

appropriate candidate for indicating the number of intrinsic communities which will

define the blocks to be used in the design process, if the κ-th is the highest modularity

score over all produced partitions.

Prior to implementing the clustering algorithm on a real-life network in the following

section, we revisit the simple Example 2.4.1, which serves to better understand the gen-

eral concepts provided in this section. Its blocking structure obtained by implementing

the suggested spectral clustering algorithm with optimal modularity is illustrated in

Figure 5.1. To detect this clustering, we firstly calculate the spectrum of Lrw (see

p.31). The eigenvalues sorted in an ascending order are: 0, 0.68, 1, 1, 1.54, 1.78. Em-

ploying modularity for evaluating the quality of clusters of 2 and 3 units, we choose

κ = 2 where the modularity reaches its maximum. In particular, we have Q = 0.07 for

κ = 2 and Q = 0.03 for κ = 3. For example, the calculation of the modularity score for

the given configuration of two clusters is

Q =
1

14

[
A11 −

25

14
+A22 −

4

14
+A33 −

9

14
+A44 −

4

14
+A55 −

1

14
+A66 −

1

14
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+ 2

(
A23 −

6

14
+A34 −

6

14
+A24 −

4

14
+A15 −

5

14
+A16 −

5

14
+A56 −

1

14

)]

=
1

14

[
−1.79− 0.29− 0.64− 0.28− 0.07− 0.07 + 2(0.57 + 0.57− 0.28 + 0.64

+ 0.64− 0.07)

]
= 0.07 .

The matrix Un×κ is therefore

U =



0.408 0.188

0.408 −0.264

0.408 −0.356

0.408 −0.264

0.408 0.591

0.408 0.591


.

The cluster means, from the k-means clustering step, are(
0.408 −0.294

0.408 0.457

)
.

Figure 5.1: Blocking structure of Example 2.4.1

However, we should note that the values of Q are relatively low indicating that fewer

actual edges are within a cluster than what one would expect to have by chance. In

other words, there is no strong evidence of community structure and therefore it is not

sensible to have clusters for this small network.

5.3 Designs with network effects block model (NBM)

In this section we review the main ingredients of optimal block designs on networks

with network effects, which are the response model and the optimality criteria. We

introduce the network effects block model (NBM), which will form the primary tool
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for finding optimal block designs for various observed social networks. The NBM is an

extension of LNM (see Equation (3.9)) and is described by the equation

NBM: yij = µ+ τr(ij) + bi +

κ∑
g=1

n(g)∑
h=1

A{ij,gh}γr(gh) + εij (5.1)

where i = 1, 2, . . . , κ; j = 1, 2, . . . , n(i), yij is the response from unit j in i-th block

receiving the treatment s = r(ij) ∈ {1, . . . ,m}, µ is the average response for the whole

set of units (overall mean), bi is the effect of block i, τr(ij) is the (direct) treatment

effect, A{ij,gh} is the adjacency matrix indicating the edge between units j and h be-

longing to blocks i and g respectively, γr(gh) is the network effect (neighbour or indirect

treatment effect) and εij are the errors, which we assume to be independent and iden-

tically distributed with mean 0 and constant variance σ2. This model is a simplified

representation of the propagation of treatment effects in clustered units within a net-

work. Note that the neighbour effects can affect units in other blocks (as opposed to

what is considered in the work of Pearce, 1957).

The expectation of this model in matrix formation is

E [y] = (1 u1 . . .um−1 w1 . . .wκ−1 Au1 . . . Aum) (µ τ1 . . . τm−1 b1 . . . bκ−1 γ1 . . . γm)T ,

where β = (µ τT bT γT )
T

= (µ τ1 . . . τm−1 b1 . . . bκ−1 γ1 . . . γm)T is the vec-

tor parameter. There are no columns corresponding to the m-th treatment effect, τm,

and κ-th block effect, bκ, since we assume them to be zero (see Section 2.2). The

symmetric information matrix M is

M =


n 1TXτ

? 1TXb
? 1TAXτ

Xτ
?T1 Xτ

?TXτ
? Xτ

?TXb
? Xτ

?TAXτ

Xb
?T1 Xb

?TXτ
? Xb

?TXb
? Xb

?TAXτ

Xτ
TA1 Xτ

TAXτ
? Xτ

TAXb
? Xτ

TA2Xτ



=



n

n1 n1

...
...

. . .

nm−1 0 . . . nm−1

n(1) n(1)1 . . . n(1),m−1 n(1)
...

...
...

...
...

. . .

n(κ−1) n(κ−1)1 . . . n(κ−1),m−1 0 . . . n(κ−1)

l1 l11 . . . l1,m−1 l(1)1 . . . l(κ−1)1 l11
〈2〉

...
...

...
...

...
...

...
...

. . .

lm lm1 . . . lm,m−1 l(1)m . . . l(κ−1)m lm1
〈2〉 . . . lmm

〈2〉



,

where n(i)s is the number of units given treatment s (= 1, 2, . . . ,m) belonging to block
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i (= 1, 2, . . . , κ), l(i)s is the number of links of units given treatment s belonging to block

i, lss′ and lss′
〈2〉 correspond to the number of links between units given treatment s and

those given treatment s′ of walks of length one and two respectively (including closed

walks, see Section 2.4). It holds that
∑κ

i=1

∑m
s=1 n(i)s =

∑κ
i=1 n(i) =

∑m
s=1 ns = n .

As in Section 3.2, the L-optimality criteria (φ1 and φ2 respectively) are

φ1 =
m∑
v=2

m+1∑
h=v+1

sT (v, h)M−1s(v, h)

and

φ2 =
w+2m∑

v=w+m+2

w+2m+1∑
h=v+1

sT (v, h)M−1s(v, h),

where s(α1, α2) is a vector of zeroes of length 2m+ w, with w = κ− 1. This vector is

formed by considering a vector of zeroes with length 2m+w+ 1 (corresponding to the

column of constants, columns of the m treatment effects, columns of the κ − 1 block

effects, columns of the m network effects) except the α1 and α2 elements which are 1

and −1 respectively (for more details refer to Section 3.2). The (m+1)-st element from

each vector is removed before it is pre- and post-multiplied by the matrix M−1. This

accounts for the constraint τm = 0, for uniquely estimating the treatment effects. For

instance, for the case of two treatments and two blocks the criteria become

φ1 = sT (2, 3) M−1 s(2, 3)

φ2 = sT (5, 6) M−1 s(5, 6),

where s (2, 3) = (0 1 0 0 0)T and s (5, 6) = (0 0 0 1 − 1)T .

For finding the near-optimal block designs based on the NBM and network at our

disposal we implement the algorithm (presented in Section 3.6) with the appropriate

adjustments. As a result we are in search for L-optimal block designs for explicitly

estimating the direct and indirect treatment effects.

Example 5.3.1. The dataset was obtained from the large Stanford network dataset

collection (snap.stanford.edu/data/egonets-Facebook.html) and consists of 4039

vertices and 88234 edges. The vertices denote the Facebook-members and the edges

the virtual friendships between them. Based on recent Facebook analytics (http:

//newsroom.fb.com), there are approximately two billion active monthly users on av-

erage who seek interpersonal connectivity but also many entrepreneurs and marketing

professionals who opt to promote their products or business (as of March 2017). The

dataset was collected by McAuley and Leskovec (2012) as part of their research on

testing the efficiency of a novel model for identifying users’ social circles on several net-

working sites, including Facebook. The dataset is freely distributed for both academic

and commercial use. In this thesis, however, a small subset was used containing 324

108

snap.stanford.edu/data/egonets-Facebook.html
http://newsroom.fb.com
http://newsroom.fb.com


vertices and 2514 undirected edges (mutual ties) forming an ego-network, which is a

subgraph of the original network (see Figure 5.2). In particular, the ‘centre’ vertex of

an ego-network (the ‘ego’) is not included in graph G, but G rather consists of only

ego’s friends (its neighbouring contacts). Note that we are interested in the connected

part and therefore twenty isolated members have been omitted.

Figure 5.2: A Facebook ego-network

Step one: Blocking Structure. Expressing the topology of the above network of 324

vertices through the normalised Laplacian matrix Lrw, we produce a number of possible

partitions of the network for different values of κ (dimensionality of the eigenvector

space) using the spectral clustering algorithm SM presented in Section 5.2. Then we

assess all these produced partitions using the quality function of modularity and choose

the number of communities (fixed κ) to be used for the block design, which maximises

the value of modularity. For the social network at hand the maximum modularity value

over all possible partitions is found for κ = 24 clusters. The vertical and horizontal

axes represent the modularity score and number of clusters respectively. Figure 5.3

illustrates the modularity scores for different number of communities obtained via graph

partition. This screening stage helps us to choose the number of communities, where

the modularity score takes its maximum value. The resulting clustering is illustrated

in Figure 5.4.

Step two: Optimal design with block and network effects. We wish to compare two

unstructured treatments, which could correspond, for instance, to advertisements as

discussed in the Example of Section 1.1. The allocation of the treatments to units is

achieved by implementing our simple exchange algorithm for finding L-optimal designs.

Depending on the objectives of the experiment we may be interested in one of the two

criteria for either estimating the direct treatment effects (φ1) or the indirect treatment

effects (φ2). Initially, the two different treatments will be randomly allocated to the

clustered units belonging to the social network of Figure 5.2. In doing so, and by
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Figure 5.3: Modularity values for partitions of κ = 2, . . . , n/2

Figure 5.4: Spectral Clustering

removing all restrictions, the algorithm generates random numbers of ones and twos

corresponding to the two treatments from a uniform distribution. Then it computes

the information matrix which summarises this arbitrary design and calculates the de-

sign criteria. The search continues by systematically exchanging treatments, if the

new treatment, which will replace the existing one, improves the design. The optimal
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function values resulting from this search (allowing for multiple initial designs) were

found to be φ1
∗ = 0.0124 and φ2

∗ = 0.0002. Similar to the results presented in Section

3.4, φ1
∗ is approximately equal to the estimated variance of the difference of the two

treatments when the units are independent and the model does not contain network

effect or blocking (i.e. 2σ2m/n = 0.0123σ2). Whilst the optimal design for estimat-

ing τ1 is approximately balanced (with 161 and 163 units receiving treatment 1 and 2

respectively), the optimal design for estimating the difference in network effects is far

from balanced (with 117 and 207 units receiving treatment 1 and 2 respectively). The

optimal allocations are provided in Table B.1 in Appendix B.

5.4 Comparison of optimal designs under different models

In this section we provide comparisons of optimal designs for estimating the direct and

network effects under different models. In doing so we obtain the optimal function

values of the near-optimal designs, each one corresponding to one of the two optimality

criteria, on a number of different networks considering different models. Recall that

the models considered in this thesis so far are

CRM: yj = µ+ τr(j) + εj

RBM: yij = µ+ τr(ij) + bi + εij

LNM: yj = µ+ τr(j) +
n∑
h=1

Ajhγr(h) + εj

NBM: yij = µ+ τr(ij) + bi +
κ∑
g=1

n(g)∑
h=1

A{ij,gh}γr(gh) + εij .

In all cases, we assume that the errors are independent and random with zero mean and

constant variance. The CRM and RBM are the standard treatment models discussed in

Section 2.2. The LNM (see Section 3.2) and NBM (see Section 5.3) are the extensions

of CRM and RBM respectively, including a network term for capturing the connections

among units. Figure 5.5 illustrates the hierarchy among the models by means of a

Hasse diagram. The Hasse diagrams, named after the German mathematician Hasse,

are graphic representations of ordered sets. The use of Hasse diagrams for visualising

the structure in experiments in order to determine the analysis strategy were described

by Taylor and Hilton (1981). Bailey (2008, Ch.10.4) and Goos and Gilmour (2012) use

Hasse diagrams from a rather different perspective explaining the relationships between

factors in a designed experiment and calculating the corresponding degrees of freedom.

Here, we use the Hasse diagram to describe the collection of the considered models. In

particular, the diagram of Figure 5.5 is a simple graph with dots representing models

and lines representing nested relationships between models. If the true model is a sub-

model of the assumed model, the bias in estimating treatment effects will be zero. This

will be further explained in following design examples.
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Figure 5.5: Hasse diagram for the collection of models

Prior to moving to the design examples, we can obtain the analytical form of the bias

for the treatment effect estimates, under the false assumption that there are no network

effects. Let us assume that we perform an experiment where we wrongly assume that

there are either no network effects or no blocking effects, while the true model is of

the form NBM. The reduced model is either RBM or LNM respectively and the design

matrices are of the form XRBM = (1 Xτ
? Xb

?) and XLNM = (1 Xτ
? AXτ ) with

Xτ
? and Xb

? being the treatment and block design matrices respectively imposing

the standard constraints. The true (extended) design matrix is that of the NBM, i.e.

XC = (1 Xτ
? Xb

? AXτ ). The least squares estimator for β (mean, treatment and

network effects) under NBM is β̂C = (XC
TXC)

−1
XC

Ty , with E
[
β̂C

]
= β. β̂R is

an estimator of β fitted by OLS for either RBM (without network effects) or LNM

(without block effects), i.e. β̂R =
[
(XR

TXR)
−1
XR

Ty 0m

]
, where

XR =

(1 Xτ
? Xb

? 0n×m) under the RBM,

(1 Xτ
? 0n×(κ−1) AXτ ) under the LNM.

The difference between the estimators under the wrong assumption is

E
[
β̂R − β̂C

]
= E

[(
XR

TXR

)−
XR

Ty −
(
XC

TXC

)−
XC

Ty
]

=
((
XR

TXR

)−
XR

T −
(
XC

TXC

)−
XC

T
)
E [y]

=
((
XR

TXR

)−
XR

T −
(
XC

TXC

)−
XC

T
)
XCβ

=
((
XR

TXR

)−
XR

TXC − I
)
β.

For the special case of m = 2 treatments and κ = 3 blocks, for instance, we can

easily write the bias in treatment effects, under the assumption that network effects

are present although we do not account for them (i.e. RBM). For the derivation of this

result refer to Appendix B, where we also provide the bias in treatment effects for κ

blocks and two treatments as a function of the network effects. We have

Bias(τ̂1) = βγ1γ1 + βγ2γ2 =
Γ1

D
γ1 +

Γ2

D
γ2, (5.2)

where
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Γ1 = l(1)1n(1)1n(2)

(
n− n(2)

)
+ l(2)1n(2)1n(1)

(
n− n(1)

)
+ n(1)n(2)

[
l1n1 − l11n

− l1n(1)1 − l1n(2)1 + l11(n(1) + n(2))− n1

(
l(1)1 + l(2)1

)
+ l(1)1n(2)1 + l(2)1n(1)1

]
,

Γ2 = l(1)2n(1)1n(2)

(
n− n(2)

)
+ l(2)2n(2)1n(1)

(
n− n(1)

)
+ n(1)n(2)

[
l2n1 − l12n

− l2n(1)1 − l2n(2)1 + l12(n(1) + n(2))− n1(l(1)2 + l(2)2) + l(1)2n(2)1 + l(2)2n(1)1

]
and

D = n(1)n(2)

(
n2

1 − 2n1n(1)1 − 2n1n(2)1 + n1n(1) + n1n(2) − nn1 + 2n(1)1n(2)1

)
+ n2

(1)1n(2)

(
n− n(2)

)
+ n2

(2)1n(1)

(
n− n(1)

)
.

Revisiting Example 5.3.1 (the working example of this chapter), we obtain optimal

designs assuming each of the earlier mentioned models for the social network of Figure

5.2. Designs for these models are labelled as CRD, RBD, LND and NBD. We will then

compare the optimal properties of each design based on the underlying model. Under

the assumption of independent errors that have a common variance σ2, the variance-

covariance matrix of the least squares estimator β̂ is var(β̂) = σ2(XTX)
−1

. Given

that interest lies in the comparisons of the designs, the value σ2 is not relevant since

the value is the same if the model is identical for all proposed designs for a particular

experiment. The comparisons of the (near-) optimal designs under φ1 (for estimating

the direct treatment effect) and under φ2 (for estimating the indirect treatment effect

or network effect) are given in Tables 5.1 and 5.2. We are able to estimate the network

effects only under the LNM and NBM. Moreover, the values for CRD and RBD are the

mean values over a large number of possible randomisations (we have taken into account

50000 balanced designs out of a total number n!/((n/m)!)m = 324!/((324/2)!)2). The

values for LND and NBD are unique.

Table 5.1: Comparisons of the designs for φ1 under different models

Models Optimal designs for φ1(×102)
CRD RBD LND NBD

CRM 1.2346 1.2347 1.2346 1.2346
RBM 1.3298 1.2432 1.3042 1.2432
LNM 1.2481 1.2747 1.2346 1.2348
NBM 1.3749 1.2907 1.3177 1.2432

Table 5.2: Comparisons of the designs for φ2 under different models

Models Optimal designs for φ2(×102)
CRD RBD LND NBD

LNM 0.1121 0.1474 0.0119 0.0149
NBM 0.1553 0.1647 0.0312 0.0230

Tables 5.1 and 5.2 illustrate the optimality function values for each design (first row)

under the different models (first column). We can obtain the efficiencies of the designs

with respect to the optimal designs. The criterion values of the optimal designs are

on the diagonal of the matrix. Recall that the smaller the criterion value the better
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the design is. A key observation derived from these tables is that a randomised design

which ignores the network effects is on average highly inefficient, at least with respect

to φ2. We can observe that when assuming LNM to be true, the NBD, which is

completely balanced within blocks, is almost as efficient as the LND (with efficiency

0.012346/0.012348 = 99.9%). Under NBM the LND, which is balanced overall but

unbalanced with respect to blocks, is 93.9% efficient. Moreover, under NBM, a random

balanced RBD which is balanced within blocks performs better than LND on average,

with the latter being as efficient as a random balanced CRD on average. In Table

5.2 the random balanced designs CRD and RBD perform poorly under both models

with their efficiencies ranging on average between 10.6% and 14.8% respectively when

ignoring blocks and 8.1% and 13.9% respectively when accounting for blocks. These

low efficiencies can be justified given that these standard designs ignore the spillover

effects resulting from the network structure among units.

Figure 5.6: Boxplots of efficiencies for φ1

The boxplots in Figure 5.6 depict the efficiencies under L-optimality of the design

based on φ1 for a number of possible balanced designs (as chosen at random) for CRD

and RBD which do not take into account network effects, although they exist. The

outliers are detected by setting the upper/lower ends of the whiskers at three standard

deviations. For φ1 CRD and RBD have median efficiencies 0.92 and 0.97 respectively,

with minimum efficiencies 0.68 and 0.76 respectively. On the other hand for φ2 in

Figure 5.7, CRD and RBD perform similarly with median efficiencies between 0.10 and

0.25, lower quartiles between 0.15 and 0.17 and upper quartiles between 0.27 and 0.29.

This results from not taking into account the network effects. For φ1 LND performs

on average better than most of the balanced CRDs, but worse than the majority of

balanced RBDs, whilst for φ2 LND is approximately 70% as efficient as NBD. On

closer inspection of the values of Tables 5.1 and 5.2 under NBM together with the

corresponding boxplots, we can make the following observations:
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Figure 5.7: Boxplots of efficiencies for φ2

– On average the randomisation process leads to fairly poor designs, i.e. high vari-

ance (this is especially true under the second optimality criterion).

– When ignoring both blocking and network effects, the design can perform poorly.

– When taking into account the network effects but not the blocking effects, the

design performs satisfactorily well.

– By using blocks and ignoring network effects, with a 25% chance (upper quartile)

one can do just as well as when taking into account the network effects, but on

average one does worse.

– Evidence suggests that we will be better off by using blocks instead of ignoring

them independently of whether we are taking into account network effects.

Similarly to the findings presented in Section 3.4, the optimal designs under the second

optimality criterion are generally unbalanced. Therefore, it is not surprising that the

standard designs perform poorly with median local efficiencies lower than 30%. Thus

in practice, when there is a strong belief that the units are governed by a network

structure and/or when community structure is detected, then it is of importance to

account for those in order to obtain an efficient design.

Example 5.4.1. The social network in Figure 5.8(a) is a co-authorship network, com-

prising 22 subjects (PhD students, supervisors and co-authors) and 27 edges, which

indicate the ties between individuals with common publications or ties between PhD

students and their supervisors in University of Southampton in the field of experimental

design during a certain period in year 2015. The three blocks have been defined using

spectral clustering techniques (at the maximum modularity value of 0.51). We also cal-

culate some network measures; the average degree δ = 2.45, the clustering coefficient

C = 0.10 and the average path length ` = 2.87. The degree distribution is illustrated
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in Figure 5.8(b). We want to conduct an experiment on this network to compare two

distinct treatments.

Figure 5.8: (a) Social network with 3 clusters; different colours indicate different clus-
ters; (b) degree distribution

Design efficiency

Similarly to the previous example, we obtain the L-optimal designs assuming the earlier

mentioned models for this network. The optimal values for CRD and RBD are the mean

values (mean variances) over all possible balanced randomisations (i.e. the number of

CRD and RBD are 1
2

(
22
11

)
= 352716 and 1

2

(
10
5

)(
8
4

)(
4
2

)
= 52920 respectively) while the

values for LND and NBD are unique. Notice at this point that there are 16 optimal

treatment arrangements for LND and 26 for NBD under φ1. These are related to the

φ1- automorphisms we discussed in Chapter 4, e.g. there are
(

4
1

)(
4
1

)
combinations for

swapping the vertices in the star subgraph without altering its adjacencies resulting in

16 global designs for LND. Likewise one can observe that there are 27
(
=
(

4
1

)(
3
1

)(
2
1

)
+ 3
)

combinations for NBD (see Appendix B). Whilst in the case of φ2 there is only one

optimal design.

Figure 5.9 illustrates the optimal designs for the two criteria, providing supportive

evidence about the patterns of the optimally allocated treatments discussed in Section

3.4. In particular, overall the design for φ1 is balanced with all treatments being equally

allocated to the subjects (n1 = n2), i.e. 11 subjects receiving each of the two treatments,

who have similar degree (l1 ≈ l2 and l11 ≈ l12 ≈ l22) (equality does not hold here

because the number of treatments is not divisible by the number of connections). The

optimal design for φ1, is also balanced within each block. Moreover the optimal function

values, which are 0.1822 (under LNM) and 0.1828 (under NBM) are very close to the
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minimum average variance possible for the unstructured case when having independent

subjects under SUTVA (that is 0.1818σ2). Note that in the case that the number of

subjects within each block is not divisible by the number of treatments, then the design

is not perfectly balanced. For φ2, the subjects located at the ends (leaves) receive the

same treatment that is opposite to the treatments of their immediate neighbours of

higher degree.

Figure 5.9: Optimal designs (under NBM), φ1 (left) and φ2 (right); different colours
indicate different blocks and different vertex’ shapes different treatments

Tables 5.3 and 5.4 illustrate the optimal function values for each design under the

different models. Similar to the results of the previous example, the values highlight

that, when we randomise, our designs on average perform worse. When assuming LNM

to be true, the NBD is only just slightly worse than optimal with 99.7% efficiency. On

the contrary when assuming NBM to be true, LND is only 50.5% efficient (see also

Figure 5.10). Recall that NBD for φ1 is balanced overall but also balanced within

blocks. The situation is similar to the design efficiencies under φ2, meaning that under

NBM, LND has a low efficiency of 38.9% as a result of ignoring the blocks, while

under LNM, NBD is 64.8% efficient. As we will show later, the optimisation process

for LNM drives the balance property away from having an equal treatment allocation

within blocks. This means that, if we account for the blocks, we almost certainly do

better. Figures 5.10 and 5.11 depict the efficiencies under φ1 and φ2 respectively, for

CRD, RBD and LND where the first two do not take into account the network effects,

although we assume that they exist and act according to the NBM.

Table 5.3: Comparisons of the designs for φ1 under different models

Models Optimal designs
CRD RBD LND NBD

CRM 0.1818 0.1818 0.1818 0.1818
RBM 0.2034 0.1818 0.2685 0.1818
LNM 0.2126 0.2191 0.1822 0.1827
NBM 0.2500 0.2270 0.3621 0.1828
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Figure 5.10: Boxplots of efficiencies for φ1 (assuming NBM)

Table 5.4: Comparisons of the designs for φ2 under different models

Models Optimal designs
CRD RBD LND NBD

LNM 0.1447 0.1927 0.0237 0.0366
NBM 0.2354 0.2503 0.0998 0.0388

Figure 5.11: Boxplots of efficiencies for φ2 (assuming NBM)

The poor design performance of LND relatively to NBD under NBM results from hav-

ing a completely different structure and different allocation to clusters (which define

the blocks). However, we want to explore further this low efficiency. For this reason,

we investigate the occurrences of treatments between neighbours. As a first attempt to

explore this, we obtain Figure 5.12 which illustrates how the distance between neigh-

bours affects the design. It provides the distances among units receiving the same (blue

colour) or different (pink colour) treatments. For example, for φ1 there are as many
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pairs of immediate neighbours receiving the same treatment as those receiving differ-

ent treatments, whilst for φ2 there are twice as many pairs of immediate neighbours

receiving the same treatment as those receiving different treatments. In other words,

immediate neighbours tend to receive the same treatment in the case of φ1, which

does not hold in general for φ2. A similar pattern holds for the pairs of neighbours of

distance two (note that the model takes into account distances up to two).

Figure 5.12: Pairs of units of different distances receiving the same (blue) or different
(pink) treatments for φ1 (left) and φ2 (right)

Tables 5.5 and 5.6 reveal the distribution of these patterns within blocks and for every

distance. In particular, these tables provide a better insight into the patterns of neigh-

bours sharing a treatment when increasing the order of the mutual distance from one

to two. Distance 0 represents replication of the treatments. The advantage of NBD

is not in terms of replication of treatments or first order connections. The benefit of

NBD over LND may be related to the second order connections. Table 5.5 explores the

optimal pattern of the allocated treatments when ignoring or accounting for blocks.

A key observation under φ1 for distance 2 is that for the LND the number of pairs

of neighbours receiving the same treatment is almost equal to the number of pairs of

units receiving different treatments, whilst for NBD there are twice as many pairs of

neighbours receiving different treatments compared to the pairs of neighbours receiving

the same treatment. It is important to note that the blocks are not equally-sized and

are relative small. Thus, because we have relatively small blocks and given that for

NBD we have balanced treatment allocation within blocks, there are more vertices in

the close neighbourhood that receive the opposite treatment. In other words, under

NBD there is an equal number of the two different treatments in the neighbourhood,

which forces more paths (of length two) connecting units receiving treatment one to

units receiving treatment two. This does not hold for LND, since the balance is re-

tained overall but not in close neighbourhoods and therefore many paths of length two
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actually connect units receiving the same treatment. Hence, one of the main reasons

for the poor performance of LND is the unequal and relatively small-sized blocks.

Table 5.5: Pairs of neighbouring subjects receiving the same/different treatment

LND NBD
φ1 φ2 φ1 φ2

◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ?
Distance 0 11 11 13 9 11 11 10 12
Distance 1 7 13 7 13 13 1 7 13 7 5 17 5
Distance 2 30 31 26 55 8 24 22 42 23 20 23 44

Table 5.6: Table 5.5 with the distribution within blocks

LND NBD
φ1 φ2 φ1 φ2

◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ?
D. 0 Block 1 3 1 1 3 2 2 3 1

Block 2 1 7 2 6 4 4 5 3
Block 3 7 3 10 0 5 5 2 8

D. 1 Block 1 0 1 2 0 3 0 0 2 1 0 2 1
Block 2 0 3 4 1 5 1 2 3 2 3 3 1
Block 3 7 6 0 10 3 0 4 7 2 1 11 1
btw blocks 0 3 1 2 2 0 1 1 2 1 1 2

D. 2 Block 1 0 2 1 2 1 0 2 1 0 1 2 0
Block 2 5 7 5 9 1 7 6 9 2 6 5 6
Block 3 12 16 11 28 1 10 5 19 15 7 11 21
btw blocks 13 6 9 16 5 7 9 13 6 6 5 17

Design bias

We obtain the biases under the different models with respect to the model parameters in

Tables 5.7 and 5.8. We can discern that if the network effects are substantial compared

to the (direct) treatment effects, then ignoring them can potentially lead to over-/under-

estimated treatment effects. Thus by not taking into account network effects in our

design, we produce an experiment which can have higher variance than necessary and

biased estimates.

Consider the following example in order to understand how we can interpret these

quantities. We can extract the bias related to the treatment effects (second line in each

matrix). Assuming that we wrongly ignore network effects, we have the following two

cases

CRD | LNM: E [τ̂1] = −0.48γ1 − 0.24γ2, (5.3)

RBD | NBM: E [τ̂1] = −0.72γ1 − 0.05γ2. (5.4)

Two situations can occur in the network. One is the interference among neighbours

(network effects) and the other relates to grouping of responses according to the clus-
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tering of units. The connections among units affect the interference among them, which

implies that the network effects are the same for units irrespective of falling within the

same block. The treatment allocation affects the bias of the estimated (direct) treat-

ment effects due to the network effects. We should note that the network effects are not

in general of the same size. However, for our investigation we assume that the network

effects are of the same magnitude (γ1 = γ2 = γ) and without loss of generality we set

γ = 1 (see Section 3.5.2).

For the case of Equations (5.3) and (5.4), if we average out the coefficients corresponding

to the network effects the bias in (5.4) is slightly larger than the corresponding one in

(5.3), i.e. |0.39| > |0.36|. Note that the biases of the estimated treatment effects are

unequal, which may be attributed to the block sizes. We would expect the opposite to

hold, that is the bias for the case of (5.4) (which is the same to that of RBD | LNM) to

be much less than for the case of (5.3), since we still take account of the clustering as

specified by the network structure and therefore we protect against bias from losing the

network effects. A large difference in bias for the case of (5.4) compared to that of (5.3)

would suggest that we lose more in the presence of the blocks than in their absence.

A conclusion drawn from this example is that if we use a model that ignores network

effects there is no obvious benefit in terms of bias from including blocks. Thus having

blocks does not insure us against the bias introduced by wrongly excluding network

effects.

Figure 5.13 illustrates the bias (when assuming an optimal RBD under the true NBM) in

the treatment effect estimates introduced from network effects against the proportion of

edges, which connect pairs of subjects receiving different treatments (when we assume

that the underlying parameters are one). The expectation of bias over all possible

balanced designs (RBDs) for the intersection point, which corresponds to approximately

half for the proportion of links, is equal to zero. Moreover, the boxplots in Figure 5.14

depict the bias in the estimation of treatment effects due to the network effects over all

possible balanced RBDs in the case that we assume that γ1 = γ2 for every proportion

of links. The limits of the boxplots are relative to the size of the true network effect.

This plot suggests that in general the complete randomisation does not perform well.

In combination with the previous observation, we can conclude that the least expected

bias in the treatment effects is achieved when the number of pairs of connected units

who receive different treatments equals approximately half of the total number edges

of the network (see the boxplot at the proportion 0.56 in Figure 5.14). The number of

balanced designs for each proportion of edges (connecting units receiving treatment 1

to units receiving treatment 2) is given below:

0.37 0.41 0.44 0.48 0.52 0.56 0.59 0.63 0.67 0.7 0.74

38 322 1532 4710 9460 12742 11838 7674 3540 952 112

Table B.2 in Appendix B provides the precise information of the coordinates of Figure

5.13 for each proportion of edges (connecting 1s to 2s) as captured by l12/l. Similarly
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Figure 5.13: Bias in treatment effects due to network effects

Figure 5.14: Bias for treatment effects when γ1 = γ2

124



to Section 3.5.2, the bias due to γ2 equals

βγ2 = βγ1 + ψ

(
l12

l
− 0.5

)

where ψ is a constant related to the given network.

Example 5.4.2. In this example, we generate a small-world network using the Watts-

Strogatz model. The network is of equal size to the one in the previous example

comprising 22 nodes and 44 edges. This example serves to illustrate that the efficiencies

and biases are of the same scale depending on the size of the network rather than the

connections, but also there is an interesting observation associated with this type of

network. The typical features underlying such network are the small average shortest

path length and a clustering coefficient significantly larger than expected by random

chance (δ = 4, C = 0.37 and ` = 2.64). The latter implies that the graph is highly

clustered around a few vertices which result in well-defined blocks rendering block

designs with network effects preferable.

Figure 5.15: Social network with 5 clusters; different colours indicate different clusters

We obtain the L-optimal designs based on the different models respectively for the

social network of Figure 5.15 (modularity value 0.45). The values for CRD and RBD are

the mean values (mean variances) over all possible randomisations, where the number

of CRDs and RBDs are 1
2

(
22
11

)
= 352716 and 1

2

(
4
2

)4(6
3

)
= 2160 respectively. Figure

5.16 illustrates the optimal designs for the two criteria, providing supportive evidence

about the patterns of the allocated treatments discussed in Section 3.4. We obtain the

optimal function values for the different designs when assuming different models, which
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are provided in Tables 5.9 and 5.10. The criterion values in the diagonal correspond to

the optimal values computed under the true model. Moreover, Figures 5.17 and 5.18

show boxplots of the L-efficiencies based on φ1 and φ2 for CRD, RBD and LND with

respect to the NBM (which is assumed to be the true model).

Figure 5.16: Optimal designs (under NBM), φ1 (left) and φ2 (right); different colours
indicate different blocks, and different vertex’ shapes the different treatments

Table 5.9: Comparisons of the designs for φ1 under different models

Models Optimal designs
CRD RBD LND NBD

CRM 0.1818 0.1818 0.1818 0.1818
RBM 0.2311 0.1818 0.2791 0.1818
LNM 0.2212 0.2980 0.1818 0.1818
NBM 0.3890 0.3346 0.4224 0.1818

Table 5.10: Comparisons of the designs for φ2 under different models

Models Optimal designs
CRD RBD LND NBD

LNM 0.0715 0.1214 0.0234 0.0326
NBM 0.1597 0.1625 0.1022 0.0517

An interesting observation from Table 5.9 is that under LNM, φ1 for NBD is (almost)

the same as the optimal function value for LND (rounded), which is mainly due to the

second order distances and specific network structure. As an attempt to disentangle

the influence of the blocking structure, in addition to the network structure among

units, on the optimal allocations of LND and NBD we provide Tables 5.11 and 5.12.

At first glance, it seems that the number of pairs of units receiving different treatments

is roughly the same as the number of pairs of units receiving the same treatments for

both optimal designs (for distances 0 and 1) (see Table 5.11). This renders NBD fairly

good compared to the LND. Since for NBD we have balanced treatment allocation

within blocks, there are more vertices in the close neighbourhood that receive the
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Figure 5.17: Boxplots of efficiencies for φ1 (under NBM)

Figure 5.18: Boxplots of efficiencies for φ2 (under NBM)

opposite treatment (which result in LND performing poorly under NBM). Similarly to

the results discussed in the previous examples of this section, we can see that LND

performs on average better than most standard designs for φ2, which is not surprising

if we consider that the LNM is ‘more correct’ in that it accounts for the network

structure. However, LND is not as adequate as NBD (see both Figures 5.17 and 5.18).

In practice, for networks that have high clustering coefficient, such as the small-world

networks, the optimal NBD that accounts for both blocking and network effects is

expected to have higher design efficiency compared to any standard design. This is

because a high clustering coefficient implies a large number of clusters in the network,
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which lead to more vertices in the close neighbourhood receiving different treatments.

As a result an LND that is balanced overall (but not balanced in neighbourhoods)

performs poorly, since many paths lead to the same treatment.

Table 5.11: Pairs of neighbouring subjects receiving the same/different treatment

LND NBD
φ1 φ2 φ1 φ2

◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ?
Distance 0 11 11 13 9 11 11 12 10
Distance 1 11 22 11 15 20 9 11 22 11 13 23 8
Distance 2 17 35 16 27 26 15 15 42 11 22 38 8

Table 5.12: Table 5.11 with the distribution within blocks

LND NBD
φ1 φ2 φ1 φ2

◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ? ◦ ◦ ◦ ? ? ?
D. 0 Block 1 4 2 2 4 3 3 3 3

Block 2 1 3 4 0 2 2 1 3
Block 3 1 3 3 1 2 2 2 2
Block 4 4 0 3 1 2 2 3 1
Block 5 1 3 1 3 2 2 3 1

D. 1 Block 1 4 4 1 0 6 3 3 5 1 1 8 0
Block 2 0 3 2 5 0 0 1 3 1 0 2 3
Block 3 0 3 2 3 2 0 1 3 1 1 3 1
Block 4 5 0 0 2 3 0 0 4 1 2 3 0
Block 5 0 2 3 0 3 2 1 3 1 3 2 0
btw blocks 2 10 3 5 6 4 5 4 6 6 5 4

D. 2 Block 1 2 1 1 0 3 1 1 3 0 0 4 0
Block 2 0 1 2 3 0 0 1 2 0 0 2 1
Block 3 0 1 1 1 1 0 0 2 0 0 2 0
Block 4 4 0 0 2 2 0 0 4 0 2 2 0
Block 5 0 1 2 0 1 2 0 2 1 1 2 0
btw blocks 11 31 10 21 19 12 13 29 10 19 26 7

Tables 5.13 and 5.14 provide the expected bias with respect to the parameters under

the true model for each design, after multiplying these matrices by the correspond-

ing vector of parameters, which: under RBM is (µ τ1 b1 b2 b3)T ; under LNM is

(µ τ1 γ1 γ2)T ; and under NBM is (µ τ1 b1 b2 b3 γ1 γ2)T . For instance, if

we assume LNM to be the true model, the expected bias introduced in the treatment

effects of all the corresponding balanced designs CRD and RBD are positively weighted

by the network effect due to the second treatment, i.e.

CRD | LNM: E [τ̂1]− τ1 = −0.14γ1 + 0.24γ2; (5.5)

RBD | LNM: E [τ̂1]− τ1 = −0.71γ1 + 0.83γ2. (5.6)

We emphasise at this point that similar to Example 5.4.1 there are more than one

optimal treatment arrangements for LND and for NBD under φ1. In particular there

are 16695 LNDs and 86 NBDs that return the same optimal function value. On the
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other hand, the optimal treatment arrangements under φ2 are unique. For this example,

these treatment arrangements return different values under the block models RBM and

NBM. The mean criterion values for LND under RBM and NBM are respectively 0.2371

(that is lower than 0.2791) and 0.3237 (that is lower than 0.4224). We also recomputed

the boxplot of LNDs under NBM for φ1, which is illustrated in Figure 5.19. The

outliers are detected by setting the upper/lower ends of the whiskers at three standard

deviations. The median efficiency for LND is 0.624, with minimum and maximum

efficiencies 0.088 and 1 respectively.

Figure 5.19: Boxplots of efficiencies for φ1 (under NBM) (accounting for all LNDs)

Moreover, the bias of the average of all LNDs under NBM is reformulated as
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.

Suppose we perform an experiment where we wrongly assume at the design stage that

there are no blocking effects. We can investigate how LND performs with respect

to NBD for different clustering coefficient values in a number of simulated small-world

networks. Figure 5.20 illustrates this idea. Recall that the clustering coefficient can take

the extreme values of 0 and 1 for the random and complete network respectively. This

explains the high efficiencies of LND for the boxplots around those values. However,

for the 3rd, 4th and 5th boxplots where it is preferable to account for blocking (as

implied from the high modularity scores in Figure 5.21) LND performs poorly. In

particular, the median efficiencies under φ1 range from 65% to 70% while under φ2

they range from 50% to 65%. This descending pattern of efficiencies when ignoring the
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blocking effects, although there is a strong evidence of community structure underlying

the connected units, is also verified for larger small-world networks. In particular, we

obtain the relative efficiencies of the optimal LND compared to the optimal NBD when

we assumed that the true treatment model is described by the NBM, for 100 simulated

small-world networks of size n = 100 vertices. Figure 5.22 shows the results. We

observe a slightly different behaviour for larger clustering coefficients with a significant

decrease of the efficiencies. This is probably due to the fewer simulated networks that

fall in that last category.

Figure 5.20: Boxplots of relative efficiencies (LND to NBD) for φ1 (left) and φ2 (right)
for 1000 simulated SW networks (with n = 22) versus different clustering coefficients

Figure 5.21: Boxplots of modularity scores corresponding to the 1000 simulated net-
works for the different clustering coefficients
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Figure 5.22: Boxplots of relative efficiencies (LND to NBD) for φ1 (left) and φ2 (right)
for 100 simulated SW networks (with n = 100) versus different clustering coefficients

5.5 Misspecification of cross-blocking connections

In this section, we focus on the case where we misspecify the network structure and

the impact of such misspecification on the design efficiency (this subject matter was

also discussed in Chapter 3 when misspecifying the connections of a network for an un-

blocked design). Let us consider two different cases of misspecification for the particular

network of Figure 5.8(a) of Example 5.4.1 and obtain their corresponding efficiencies.

The cases we consider are illustrated in Figure 5.23.

Figure 5.23: Removing (left) or adding (right) a connection

When we remove an edge connecting units 6 and 12, which are located in different

blocks the design efficiencies are 0.99 and 0.92 for φ1 and φ2 respectively. The optimal

treatment allocations are illustrated for this case in Figure 5.24. We are also interested

in the network measures of the misspecified network; the average degree δ = 2.36, the

clustering coefficient C = 0.11 and the average path length ` = 3.19. By removing this
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edge the average path length increases by approximately 10%.

Figure 5.24: Optimal designs for φ1 (left) and φ2 (right), removing connection between
units 6 and 12

When we add an edge among the highly connected units 1 and 5, the design efficiencies

are 0.99 and 0.99 for φ1 and φ2 respectively. The optimal treatment allocations are

illustrated in Figure 5.25. We compute the network measures of this misspecified net-

work; the average degree δ = 2.54, the clustering coefficient C = 0.08 and the average

path length ` = 2.42.

Figure 5.25: Optimal designs for φ1 (left) and φ2 (right), adding connection between
units 1 and 5

An approach for examining design robustness to network misspecification is by removing

sequentially an increasing number of edges. This is done by randomly selecting and

removing sets of a specified number of edges. In particular, we simulate 100 different

networks misspecifying an increasing number of edges, removing from 1 edge up to

6 edges simultaneously. Then we calculate the efficiencies of the optimal designs for

those misspecified networks when the true network is the one shown in Figure 5.8

(see Figure 5.26). For φ1 the efficiencies relative to the optimal design are greater

that 90% on average. However, for φ2 the efficiencies decrease substantially when the

network is misspecified, especially for large number of connections. In reality we should

be cautious when dealing with relatively small networks and large degree of network
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misspecification, since the network can collapse after the removal of a large number of

edges.

Figure 5.26: Network misspecification; removing 1 to 6 edges, 100 simulated networks.
Boxplots of efficiencies for φ1 (left) and φ2 (right)

5.6 Robustness due to misspecified blocking

In this section, we revisit Example 5.4.1 and we investigate the design robustness to the

different choice of blocking for two types of misspecification: (I) number of blocks and

(II) number of units within blocks. Recall that designs for which the loss of information

is ‘small’ may be considered as robust. We consider two different scenarios: we design

the experiment with NBM, and we either (a) carry out the analysis with the same model

or (b) switch to RBM, which ignores network effects. We investigate the variability and

bias introduced to treatment effects due to the different misspecifications.

We choose different values for the parameters in order to examine a number of different

possible cases that can be true in practice. We generally expect the network effects to

be less than or equal to the direct treatment effects, e.g. τ1 ≥ γ1. The different cases

we investigated occur when τr(ij) ≥ γr(ij) ≥ bi or τr(ij) ≥ bi ≥ γr(ij) for j = 1, 2, . . . , n

and i = 1, 2, . . . , κ, including some zeros to differentiate inactive effects from the active

effects. Note that the size of the block effects is not related to the size of the treatment

or the network effects. For example, there could be no treatment or network effects

but large block effects. However, we introduce these restrictions to consider only a

subset, since the results will be similar. The various sets of fixed parameters β we

have considered correspond to the seventeen different rows of Table 5.15. To put these

values into context, consider the advertising example of Section 1.1. Let the network

of Figure 5.27 (left) be the social network under experimentation, where the different
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blocks correspond to three different cliques of friends. If subject 1 is given advert 1

on purchasing a product, it will have an effect τ1 and an individual network effect γ1

on all connected friends (including subject 4, which belongs to a different block), to

which subject 1 may show the advert causing them potentially to buy larger quantities

of the product. Separately to those individual network effects and irrespective of the

advertisements applied, subject 1 tends to buy a similar amount of product to subjects

belonging to the same clique due to the block effect b1 (‘blue’ block). The different

parameter values may indicate that the block effect is stronger or weaker than the

network effect.

For our simulation study we assumed the errors follow a N(0, 1) distribution. Note that

µ was set equal to 1. These cases have been chosen quite arbitrarily in an attempt to

include possible experimental conditions. For example, the block effects in some cases

are larger or smaller than the network effects, indicating that the blocks play a major

or minor role in the formation of the responses respectively. For each case we generated

3000 datasets. For the first case we assume that all effects are equal to 1. This special

case enables us to quantify the increase of the variance when neglecting the effect of

the third block. Bear in mind that due to the small size of clusters and the network

as a whole, we would expect any misspecification to cause a significant change to both

the design and analysis of the experiment compared to a misspecification occurring in

a larger-sized network.

Table 5.15: Sets of fixed parameters β

No. µ τ b1 b2 γ1 γ2

1 1 1 1 1 1 1
2 1 3 0 1 1 1
3 1 3 1 0 1 1
4 1 3 1 1 0 1
5 1 3 1 1 1 0
6 1 3 1 2 1 2
7 1 3 -1 0 -3 2
8 1 3 1 2 3 -3
9 1 3 1 1 0 0
10 1 10 6 3 8 9
11 1 10 -5 1 6 1
12 1 10 8 5 2 2
13 1 10 3 6 5 2
14 1 10 3 2 10 8
15 1 10 0 -3 -4 5
16 1 10 6 1 -9 10
17 1 10 3 3 2 0

I. Misspecifying the number of blocks

We begin by investigating the design robustness when varying the number of blocks.

The actual blocking structure is illustrated in Figure 5.27 (left), with blue corresponding

to the first block, red to the second and green to the third respectively. If we design
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the experiment according to a different blocking structure, e.g. Figure 5.27 (right),

then the between-block variance will remain almost the same. However, the within-

block variance will be higher than before, since in the case of two blocks part of the

between-block variation will be contained in the residual variation, instead of block

effects. We investigate through Monte Carlo simulations the design robustness if the

assumed model is wrong (adopting the wrong blocking structure) and compare it in

terms of the variances and biases to the design under the true model (adopting the true

blocking structure). Thus if the true within-block variance is hugely inflated then the

impact of misspecifying the number of blocks will be large.

Figure 5.27: Blocking misspecification; true (left), test (right)

The optimal designs for φ1 are provided in Figure 5.28. The individual variances of

the simulated treatment effect estimates under the correct (with three blocks) and

wrong (with two blocks) design are presented in Table 5.16. This table also shows the

case when we analyse the experiment assuming a wrong (with two blocks) randomised

balanced design, without having network effects.

The variance increase for the ‘test’ blocking structure (second column) is consistently

higher in Table 5.16 for both test(a) and test(b) compared to the ‘true’ blocking struc-

ture (first column). From Table 5.16, we can calculate the average of the variances.

The variance increases are E [var(τ̂true)] /E [var(τ̂test)] = 0.1814/0.2395 = 0.76 and

E [var(τ̂true)] /E [var(τ̂test)] = 0.1805/0.2099 = 0.86 on average for test(a) and test(b)

respectively. The larger variance increase can mainly be attributed to the small size

of the network and/or blocks, or to the absence of the network effects. Looking at the

ratios between the two cases (ratio of test variance to true variance of each row) of the

individual variances, we can see that they do not vary much. Moreover, compared to

the magnitude of the variances the biases are negligible. The main effect of fitting the

wrong model is the variance increase, whereas the biases are less important. However,

for the second scenario the bias is larger. This happens because the largest part of

the bias results from ignoring network effects. Ignoring block effects, just like in the

standard cases inflates the variance, but it does not introduce bias. Therefore, block
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and network effects play different roles, such that the experimenter cannot use the one

to compensate for the other, i.e. they are not interchangeable.

Table 5.16: Analysis with (a) NBD or (b) RBD (3000 simulations, type (I) of misspec-
ification)

true test(a) test(b)

No. var(τ̂true) var(τ̂test) B̂ias var(τ̂test) B̂ias
1 0.1862 0.2356 -0.0009 0.2075 -0.0016
2 0.1857 0.2369 0.0038 0.2067 0.0021
3 0.1839 0.2432 -0.0020 0.2123 -0.0008
4 0.1801 0.2340 0.0090 0.2069 0.0067
5 0.1824 0.2398 -0.0007 0.2108 -0.0029
6 0.1817 0.2383 -0.0167 0.2107 -0.0141
7 0.1815 0.2381 0.0143 0.2049 0.0124
8 0.1723 0.2271 0.0112 0.1984 0.0041
9 0.1801 0.2467 0.0026 0.2222 0.0044
10 0.1780 0.2381 0.0141 0.2136 0.0124
11 0.1685 0.2427 0.0071 0.2087 0.0060
12 0.1836 0.2486 -0.0114 0.2169 -0.0114
13 0.1820 0.2360 -0.0105 0.2099 -0.0106
14 0.1782 0.2453 0.0167 0.2129 0.0093
15 0.1843 0.2408 0.0161 0.2097 0.0146
16 0.1884 0.2446 -0.0121 0.2110 -0.0121
17 0.1865 0.2364 -0.0103 0.2055 -0.0059

We conclude that when misspecifying the number of blocks the variance increase is

approximately of the same order of magnitude, indicating that the problem of block

misspecification is not network specific. The mean variances across the simulations

of these estimates support this conclusion. Thus in practice, misspecifying the blocks

makes the properties of a good design worse but up to approximately the same extent

as the standard designs without network effects. Additionally, the results also show

that we cannot fix the situation with post blocking. Thus, we need to know the correct

block structure at the time we design the experiment, as we cannot rectify it at a later

stage by analysing it by using blocks indirectly.

Figure 5.28: Optimal designs for φ1; true (left), test (right)
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II. Misspecifying units within blocks

Here, we assume that we have three blocks, but subject 13 is misspecified to be in

the ‘green’ block instead of the ‘red’ as shown in Figure 5.29 (right). Recall that the

implemented clustering algorithm, which was defined on the basis of graph structure,

ensures that clusters are not too small. By implementing a different community detec-

tion method, this intermediate subject, which is loosely connected to the two clusters,

is likely to be clustered in a different way, which justifies our choice of investigating

that particular subject. Using the same set of parameters β as before, we investigate

the two previously discussed scenarios. In particular we design the experiment wrongly,

having misclassified the subject labelled 13 and analysing it either correctly or wrongly

by assuming the NBM or RBM respectively. Our results after running 3000 simulations

are presented in Table 5.17. In addition, the optimal designs for φ1 are provided in

Figure 5.30.

Figure 5.29: Misspecification of unit labelled 13 belonging in a different block: true
(left), test (right)

Figure 5.30: Optimal designs for φ1; true (left), test (right)

Focusing on the cases where the effect of the second block (i.e. ‘red’ block) is zero

(rows No. 3 and 7), we can observe that the variance increase is relatively small for

both cases (assuming either NBM or RBM). Thus this type of misspecification leads

to an increase of the variances but up to a similar order of magnitude under both

scenarios, when analysing the experiment by either accounting for or ignoring network
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Table 5.17: Analysis with (a) NBD or (b) RBD (3000 simulations, type (II) of misspec-
ification)

true test(a) test(b)

No. var(τ̂true) var(τ̂test) B̂ias var(τ̂test) B̂ias
1 0.1862 0.1992 -0.0035 0.1991 -0.0034
2 0.1857 0.2023 -0.0111 0.2022 -0.0109
3 0.1839 0.1980 -0.0094 0.1980 -0.0092
4 0.1801 0.1982 -0.0059 0.1979 -0.0063
5 0.1824 0.1859 -0.0110 0.1855 -0.0112
6 0.1817 0.1961 -0.0106 0.1955 -0.0105
7 0.1815 0.1984 0.0016 0.1982 0.0018
8 0.1723 0.2017 0.0008 0.2015 0.0008
9 0.1801 0.1952 -0.0054 0.1952 -0.0054
10 0.1780 0.1981 0.0052 0.1978 0.0048
11 0.1685 0.2004 -0.0005 0.2001 -0.0003
12 0.1836 0.2009 0.0067 0.2004 0.0068
13 0.1820 0.1962 -0.0076 0.1961 -0.0075
14 0.1782 0.1958 0.0007 0.1959 0.0007
15 0.1843 0.2036 -0.0020 0.2033 -0.0020
16 0.1884 0.2021 0.0076 0.2019 0.0074
17 0.1865 0.1970 0.0098 0.1966 0.0096

effects, which implies that the problem of misspecifying units in different blocks is not

network specific. From Table 5.17, we can calculate the average of the variances. The

average variance increases are E [var(τ̂true)] /E [var(τ̂test)] = 0.1814/0.1982 = 0.91 and

E [var(τ̂true)] /E [var(τ̂test)] = 0.1805/0.1979 = 0.91 for test(a) and test(b) respectively.

Thus in practice, similarly to the misspecification of number of block, allocating a unit

to a different block causes problems to the analysis but approximately to the same

extent as of misspecifying units in standard designs without the inclusion of network

effects. Moreover, the bias induced in the treatment effects resulting from this type

of misspecification is larger than in the case of misspecifying the number of blocks,

especially when we assume RBM to be true. This increase in bias results from not

accounting for network effects, when they are actually important.

5.7 Discussion

To sum up, the design-based methodological framework proposed in the current chap-

ter consists of three main components: (i) we use spectral clustering techniques of the

given, or discovered, social network (its topology is expressed through the Laplacian

matrix) to project the vertices of the network onto an eigenvector-space of change-

able dimensionality (where κ is the number of first nontrivial eigenvectors of the Lrw).

(ii) Subsequently, we choose the ‘best’ partition of the network over all produced par-

titions (given the dimension κ of eigenvector-space at each time), which reveals the

densely connected group of vertices with only sparse connections between groups. This
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is obtained by using the quality function of modularity. In particular we choose that

partition, over all possible partitions for every considered dimension κ, where the mod-

ularity takes its maximum value. (iii) Finally we find the near-optimal block designs,

for that number of blocks, which will provide the optimally allocated treatments to

the groups of subjects within the social network. The designs obtained will enable the

researcher to make comparisons between the different (unstructured) treatments both

directly and indirectly.

An issue of concern with the suggested methodology is that when misspecifying the

number of blocks, the true blocks may not be partitions of the assumed blocks. The

spectral clustering algorithm, implemented in this chapter, differs from other com-

munity detection algorithms to the point that the whole network is not recursively

partitioned. The difference lies in the sense that other divisive approaches iteratively

cut the edges, dividing the network progressively into smaller and smaller disconnected

subnetworks identified as the communities. However, the clusters obtained using the

spectral clustering algorithm are preferable because the process iterates independently

for different numbers of clusters. For instance, for κ = 2 and κ = 3, we have two and

three clusters respectively, where the three clusters are not sub-partitions of the two

clusters in the sense that they may contain units from the two clusters of the previously

produced two clusters. Moreover, given that the different blocking structures are pro-

duced by a stochastic clustering algorithm and the optimal block designs are obtained

by means of a non-exhaustive search, the results initially presented a certain variabil-

ity. To correct for that, we allowed 2000 multiple initial configurations for the k-means

clustering step and 100 starting designs for the exchange algorithm in order to avoid

getting stuck in local optima. The former action stabilises the partition obtained by

enhancing the convergence of the k-means algorithm to the optimal solution (if there

is no automatic convergence), while the latter action increases the chance of conver-

gence to an efficient design for the given community structure. This also enhances the

reproducibility of the results.

Some of the comparisons of optimal designs were obtained in an ego-network, part of

Facebook. Ego-networks, either traditional or virtual ones, will become increasingly

important for estimating network effects and network properties due to the simplicity

of data collection, and the cost effectiveness compared to the collection of full network

data.

In the vast majority of cases, using blocks does not incur a negative effect on the

design. Non orthogonality in block effects inflates variance, but this was not an issue of

concern for this thesis due to the relatively large-sized blocks we considered compared

to the number of treatments which amounted to only two. Moreover, we show that

misspecifying the blocks or units within blocks compromises the properties of a good

design up to roughly the same extent as the randomised designs.
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Chapter 6

Optimal row-column designs with

network effects

This chapter makes a transition from experiments in social networks to agricultural

experiments. The idea is to view the potential interference among plots as a network

structure. Recall that the network structure is defined by means of the connectivity

matrix, which can pertain to two main categories of specifications: capturing the spatial

structure to reflect distances across space and controlling for farmer operations. To

this end we consider a field trial running at Rothamsted Experimental Station (http:

//www.rothamsted.ac.uk) and we obtain different row-column designs accounting for

the neighbour effects with different pre-specified network structures implementing a

simple interchange algorithm. A comparison of various optimal designs under different

models, including the commonly used designs in such situations, is provided.

6.1 Introduction

Row-column designs (RCDs) are commonly used in agricultural field experiments where

the experimental units are arranged in two-dimensional space. A RCD may be required

to allow for possible differences between both rows and columns and such a crossed

block structure is likely to be much more efficient than the one-dimensional block-

ing structure for agricultural experiments (John and Williams, 1995, Ch.5-6). In this

chapter we consider an agricultural experiment which aims to assess the natural cereal

aphid colonisation of selected lines from the Watkins collection compared to three elite

hexaploid wheat lines. There are two other factors associated with the farm operations

which can influence the design structure related to the drilling and spraying of the

field. Addressing these farm constraints and considering a few complete replicates of

the treatments, a conventional design will be a two-dimensional arrangement of rows

and columns nested within each superblock. The most common nested row-column

designs in use are the resolvable row-column designs (R-RCD), where treatments are

arranged in complete superblocks and occur in each one of them exactly once (John

and Williams, 1995, Ch.4-6). A R-RCD is usually specified as (m,κ, κ1, κ2), where
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m denotes the number of treatments, κ the number of superblocks, each consisting

of κ1 rows and κ2 columns (with each superblock containing a complete replicate of

m = κ1κ2 treatments). Thus all treatments occur κ times, where κ is the number of

superblocks and m divides n, because n/m is the number of plots per superblock.

Several authors have given resolvable row-column designs for comparing different treat-

ments for example Bose (1947), Singh and Dey (1979), Ipinyomi and John (1985) and

Bailey (1993). In general, R-RCD are preferred when dealing with a large number of

treatments (e.g. a large number of varieties) and small number of replications. These

designs allow for adjustment of field trend and constraints in two directions. Other

such designs are α-designs (introduced by Patterson and Williams, 1976), which are

resolvable block designs with respect to the column component (see, for instance, John

and Eccleston, 1986, who gave a class of orthogonal row-column designs based on the

α-designs). The software package CycDesigN (Whitaker et al., 1997) is a practical

tool for constructing efficient resolvable row-column designs and is frequently used in

Rothamsted Experimental Station. A detailed discussion of R-RCD and methods of

construction can be found in John and Williams (1995, Ch.6).

For the case of our reference example, the R-RCD will be (m,κ, κ1, κ2) = (21, 4, 7, 3),

where the 21 different treatments (wheat lines) will be allocated to 1m×1m (see Figure

6.1) plots. The blocking structures are related to the physical location (e.g. similar type

of soil) and farmer operations; the drilling of long lines of plots (along the columns)

and spraying which can accommodate six plots in a row (along the rows). The different

colours denote the 4/(7×3) crossed block structure as used in Rothamsted (where each

treatment appears once in every superblock). Thus each replication is accommodated

by a compact superblock consisting of a 7×3 array of plots: the use of a row-and-column

arrangement within each superblock allows the variations of the aphid colonizations to

be eliminated in two directions. Given that for the current experiment the complete

superblocks are already defined, we call the design resolved rather than resolvable.

By convention, the m treatments are specified in the form of {1, 2, . . . ,m} like in the

previous chapters. We then assign treatment labels to the m treatments such that there

is a one-to-one correspondence between the numbers and the names as shown in Figure

6.1. The resulting design of this type is a resolved nested row-column design.

The adjacent plots are assumed to be more alike due to e.g. the similar type of soil

and by accommodating the underlying neighbour structure among them we can effec-

tively eliminate sources of variation which could influence the treatment comparisons.

An efficient experimental design will ultimately maximise the separation of treatment

information from field variation. In agricultural experiments, the response on a given

plot is often affected by the treatments applied to the neighbouring plots (see e.g. Besag

and Kempton, 1986). For instance, considering treatments such as fertiliser, irrigation,

or pesticide applied to one plot may cause spillover effects to its adjacent plots (for

more details see Chapter 1). The underlying structure can be accounted for by means

of a network. Thus we aim to improve the accuracy of the experiment by controlling
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Figure 6.1: Field layout of the motivating agricultural experiment and treatments

for the network heterogeneity by adjusting for the interference between neighbouring

treatments or between neighbours’ responses. In this chapter, we focus on the former

and we construct optimal resolved row-column designs accounting for the treatment

interference between neighbouring units. Section 6.2 provides the model on which the

optimal designs will be based, incorporating the network effects. The formulation of L-

optimality for estimating the treatment effects’ differences in this case is also discussed

in this section. Consequently, Section 6.3 develops an interchange algorithm for the

construction of optimal resolved row-column designs with network effects. The speci-

fication of the adjacency matrix is considered in Section 6.4. Several optimal designs

are provided in Section 6.5 with a detailed comparison among them. Finally, Section

6.6 discusses relevant practical issues and extensions.

6.2 Designs with row-column network effects block model

(RCNBM)

The determination of the optimal resolved row-column designs with network effects (R-

RCND) will be based on an extension of the LNM (3.9). Note that we are designing the

networked experiment with respect to fixed effects for blocks. There will be a general

row-column set up and then we group rows into big rows and columns into big columns.
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In other words, we have (big rows | rows)∗(big columns | columns), where big rows and

big columns correspond to set of rows and set of columns respectively. Let yikgh denote

the expected response from the experimental unit in the g-th row and h-th column

within the i-th big row and k-th big column. Thus, the quadruple (i, k, g, h) identifies

the experimental units which correspond to the vertices v ∈ {1, . . . , n} and s = r(ikgh)

corresponds to the the set of treatments applied on these units with s ∈ {1, . . . ,m}.
The model is

yikgh = µ+ τr(ikgh) +Ri + Ck + (RC)ik + rig + ckh + (rC)ikg + (Rc)ikh

+

b1∑
i′=1

b2∑
k′=1

κ1∑
g′=1

κ2∑
h′=1

A{ikgh,i′k′g′h′}γr(i′k′g′h′) + εikgh, (6.1)

⇒ yv = µ+ τs +Ri + Ck + (RC)ik + rig + ckh + (rC)ikg + (Rc)ikh +
∑
v′ 6=v

A{v,v′}γs′ + εv,

where i = 1, 2, . . . , b1; k = 1, 2, . . . , b2; g = 1, 2, . . . , κ1;h = 1, 2, . . . , κ2, µ denotes the

overall mean effect, s = r(ijkl) indicates the treatment applied to unit v = (i, k, g, h), τs

is the (direct) effect of treatment s applied to unit v, Ri and Cj denote the i-th and j-th

big row and big column effects respectively, while rig and ckh denote the row and column

effects nested within the big rows and big columns respectively, (RC)ik denotes the

interaction effects of big rows and big columns adjusting for big rows and big columns,

(rC)ikg denotes the interaction effects of rows and the big columns adjusting for rows

and big columns, and similarly (Rc)ikh denotes the interaction effects of columns and the

big rows, adjusting for columns and big rows. Note that (big row)+(big column)+(big

row∗big column) correspond to the (complete) superblocks (where κ = b1b2). Moreover,

A{v,v′} is the adjacency (neighbour) matrix indicating the weighted connections between

the units v and v′ and γs′ is the network effect of the treatment s′ = r(i′k′g′h′) applied

to the connected unit v′ = (i′, k′, g′, h′) when there is connection between v and v′

(neighbour effect) (see Section 6.4 for more details). Notice that
∑

v′ 6=v corresponds to

the multiple summations
∑

i′k′g′h′ =
∑b1

i′=1

∑b2
k′=1

∑κ1
g′=1

∑κ2
h′=1. The εikgh are assumed

to be independent random variables (i.i.d), each with E(εv) = 0 and E(εv
2) = σ2.

The model in matrix notation can be written as

E [y] = µ1+Xττ+XRR+XCC+XRC(RC)+Xrr+Xcc+XrC(rC)+XRc(Rc)+AXγγ,

where τ , R, C, (RC), r, c, (rC), (Rc) and γ denote the vector of treatment, big

row, big column, (big row)∗(big column) interaction, row, column, two crossed blocking

interactions and network effects respectively.

Similarly to the previous chapters, the extended information matrix (including the

column of ones corresponding to the constant) for RCNBM (6.1) is M = XTX, where

X = (1 Xτ XR XC XRC Xr Xc XrC XRc AXγ) with the corresponding

incidence matrices for the treatments, big rows, big columns, (big row)∗(big column)

interactions, rows, columns, the two crossed blocking interactions and network effects

respectively.
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Returning to our motivating example, the entire experiment is broken down into big

rows and big columns of lengths b1 = b2 = 2. The big rows by big columns combinations

are equal to the κ = 4 superblocks, which are also broken down to κ1 = 14 rows and

κ2 = 6 columns. From the crossing of the two combinations of rows and big columns and

big rows and columns we obtain the n = 84 experimental units. Following Bailey (2008,

Ch.10.4) and Goos and Gilmour (2012), we construct a Hasse diagram to visualise the

structure in the units. The Hasse diagram in Figure 6.2 describes this experimental

setup with the corresponding degrees of freedom in each stratum (not considering the

network effects in this figure). Recall that according to the management of the trial,

spraying and drilling processes are done row by row and column by column respectively.

Note that the effects of these processes might be confounded with the positional effects

(i.e. the row, column, big row and big column effects).

Figure 6.2: Hasse diagram of the model structure (without network effects)

The design will be obtained following the optimisation algorithm described in the next

section, by generating an initial treatment arrangement with some particular properties

(e.g. resolved row-column design) and by making random pairwise interchanges within

the superblocks (restricting randomisation to retain the resolvability property). The

optimality criterion employed for this optimisation problem is the L-optimality criterion

(see Section 2.1), which minimises the average variance of the pairwise differences of

treatment comparisons. In particular, we have

φ =

m∑
v=2

m+1∑
h=v+1

sT (v, h)M−1s(v, h), (6.2)

where s(α1;α2) is a vector of zeroes of length b1 +b2 +κ+κ1 +κ2 +b1κ2 +b2κ1 +2m−7,

except the α1 and α2 elements which are 1 and −1 respectively, following the removal

of the (m+1)-st element (for more details refer to Section 5.3). This vector will be pre-
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multiplied and post-multiplied by the information matrix for obtaining the treatment

effects’ contrasts of which there are 210 in total in this experiment. Note at this point

that the various effects of the RCNM (6.1) are assumed to satisfy some necessary

standard constraints to make the treatment contrasts estimable.

6.3 Optimisation algorithm

Some early algorithmic attempts in search for optimal RCD were discussed in detail

by Eccleston and Jones (1980) and Jones and Eccleston (1980). Their optimal designs

were based on an evaluation of designs using the L-optimality criterion for minimising

the sum of the weighted variances of a set of treatment contrasts of interest. The po-

tential weights and the particular set of contrasts were specified by the experimenter to

reflect his perception of the distances among plots. Moreover, a number of computer

algorithms have also been suggested for obtaining RCD, for instance, the design gen-

eration package ALPHA+ for obtaining α-designs developed by Williams and Talbot

(1993), described in detail by Nguyen and Williams (1993) and nested simulated an-

nealing algorithm developed by John and Whitaker (1993). They all use some form of

interchange procedure where pairs of treatments are interchanged in the design, subject

to an iterative improvement procedure with respect to a chosen optimality criterion.

To address the problem of the procedure getting stuck at a local optimum, Nguyen

and Williams (1993) suggested repeated runs of the algorithm using different starting

designs, and then choosing the best design over all runs. John and Whitaker (1993)

also addressed this problem by accepting with low probability some randomly chosen

interchanges that do not result in an improvement in the chosen optimality criterion.

For the objectives of the working example, we implement a simple interchange algo-

rithm. We have a design with a crossed block structure with fixed number and sizes

of blocks. Given that we restrict the design to be resolved, the swaps take place only

within superblocks. The algorithm begins with the choice of a starting R-RCD. The

L-optimality criterion introduced in the previous section determines the decision rule

of either allowing the interchange to occur or leaving the design unchanged. In order to

preserve resolvability the pairwise exchanges between units are made within the same

superblock, accepting those interchanges that improve the criterion value for the overall

design. The interchanges of pairs of treatments are chosen at random. An alternative

approach would be to identify the pair of treatments that lead to the biggest improve-

ment of the optimal function value. Thus the algorithm focuses on each superblock

in turn, keeping the treatment allocation fixed in the remaining superblocks. It visits

each superblock until a pass yields no changes to the design. The optimisation of the

design is based on the network model of Equation (6.1) for minimising the variance of

treatment comparisons by using interchanges rather than exchanges. The steps in the

algorithm are as follows:
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Simple interchange algorithm (SIA)

– Step 0: Enter the number of replicates, rows, columns, big rows, big columns,

treatments and the adjacency matrix.

– Step 1: Generate a random (resolved if exists) row-column design and calculate

the optimality criterion φ(0) for the starting design.

– Step 2: Make a pairwise interchange of treatments within the current superblock

keeping the arrangement of the treatment combinations fixed for the remaining

superblocks. Calculate the optimality criterion φ(i) for the current design that

corresponds to that specific interchange (in run i). If an interchange improves

the criterion value of the overall design, accept it and continue; otherwise, undo

the interchange and continue.

– Step 3: Repeat Step 2 until no further interchanges in the current design result

in an improvement (or if the above holds for at least a large number of iterations)

then move on to the next superblock.

– Step 4: Repeat Steps 2 and 3 until a pass through all superblocks yields no

changes or for a specific number of times.

– Step 5: Repeat Steps 1–4 for several randomly generated initial designs.

For Step 2 we choose a unit following the ascending order of units and swap its treatment

to that of another randomly chosen unit belonging to the same superblock. Thus

the candidate treatment swaps are made at random subject to constraints such as

resolvability, where interchanges are restricted to be within the superblocks. Step

5 is required, as different starting designs may lead to different local optima. The

final selected design is the best from all the trials. Moreover, if interchanges between

units result in a singular information matrix it will be rejected. In Section 6.5, we

provide different optimal designs adjusting this algorithm appropriately. For instance,

we can relax the constraint of having a resolved design with the treatment interchanges

occurring between cross-blocked plots nested within replicates, and let them occur

across the whole field (non-resolved but equally replicated), or the algorithm allows

for exchanges rather than interchanges allowing for non-equireplicate designs. For the

exchanges the algorithm moves along all the units and exchanges a treatment with one

of the competitive ones at random if this results in an improvement of the criterion

(similar to the systematic exchange algorithm presented in Section 3.6).

6.4 Adjacency matrix: practical issues and extensions

The aim of the experiment is to compare the number of selected wheat lines on the

basis of their responses to natural cereal aphid colonisation. The n experimental units

correspond to plots (pieces of land), which form a network structure pre-specified by the

experimenter, so as to address the particular needs of the field trial. Different causes
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of association among neighbouring units can result in different specification of the ad-

jacency matrix and appropriate models. Examples can be related to a non-directional

or directional neighbouring matrix (e.g. considering the shade or wind), unweighted or

weighted (e.g. capturing geographical distances or importance of upward neighbours,

steep gradients in the spatial surface etc.). When dealing with spatial data there are

several methods to specify the neighbour structure. For example, polygons that form

square or rectangular lattices can be used to construct the spatial adjacency. We

should note that we do not have spatial contiguity among the plots but they are rather

separated with small spatial distances. These adjoining boundaries define the spatial

relationships among the square plots. The adjacency-based spatial relationships can

correspond to very different ranges of spatial similarity and the verification of the meth-

ods to construct the spatial adjacency is related to the threshold distance and number

of neighbours. These methods, however, mainly depend on the rules used to define the

notions of spatial neighbour: neighbourhood distance-based or border-based sharing

common boundaries as neighbours. There is a considerable amount of literature on

this issue, with many proposed methods for defining the spatial weight matrix (see, for

instance, Cliff and Ord, 1981 and Anselin, 1988). For the current experiment the plots

constitute the vertices of the network instead, for instance, of plot centroids (i.e. focus-

ing on their geometric centre). Different cases could include an appropriate definition

of geometrical contiguity among polygonal plots based on some distance rule (e.g. Eu-

clidean distance). It is important to note that the adjacency matrix can appropriately

be defined for capturing the spatial patterns even of an irregular arrangement of plots.

Our primary tool for describing the relationships among the plots in this chapter is

an appropriately chosen adjacency matrix, where its edges are defined following an

approach proposed by Cliff and Ord (1981). To understand our first choice for the

adjacency matrix, one can think of the allowable moves of chess pieces and particularly

king’s moves. Recall that the king moves one space vertically, diagonally or horizontally.

The second choice for the adjacency matrix relates to the farmer operations. More

specifically, for our first specification the adjacency matrix is weighted, with weights

based on the inverse spatial distance between plots including plots that are very close

diagonally to one another (A1), while for the second specification the adjacency matrix

is constructed without imposing any weights and it is related to the farm operations

and specifically the directions of drilling and spraying methods implemented by the

farmer (A2). These adjacency specifications can be used for controlling for unwanted

geographical differences in the site and simplification of the farm operations. Figure

6.3 shows the two specifications of predetermined graph structures. Loosely speaking

and for brevity we refer to these adjacency specifications as King’s case (for G1) and

Farmer’s case (for G2) respectively.

These adjacency matrices have been specifically chosen to explore two common situ-

ations that can occur in this specific agricultural trial, serving the objectives of the

experiment and the particular interests of the experimenter. We might expect the
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Figure 6.3: Different connectivity graphs: G1 (left) and G2 (right)

spillover effects to stem from the adjacent neighbouring plots or from the particular

farm operations. This led us to define a weighted and undirected network, with the

weights being the reciprocals of the distances between plots, and a directed but un-

weighted network, where the directions indicate the order of the particular spraying

and drilling operations that are expected to happen. The following section explores

the optimality of the designs for the two alternative scenarios of treatment interference

among neighbouring plots.

6.5 Comparison of optimal designs

In this section we provide comparisons of optimal designs for estimating the treatment

effects under different models for the two different pre-specified adjacency matrices. We

consider resolved and non-resolved designs allowing for unequal and equal replication.

This will allow us to measure the efficiency loss by imposing additional restrictions on

the randomisation process so as to quantify more accurately the efficiency of choosing

for instance a resolved RCNBD with equal replication compared to that of RCND, which

is non-resolved and without equal replication. In doing so we obtain the optimality

function values of the designs with respect to the different models as

CRM: yj = µ+ τr(j) + εj ,

(j = 1, 2, . . . , 84)

RBM: yikj = µ+ τr(ikj) +Rk + Cl + (RC)ik + εikj ,

(i = 1, 2; k = 1, 2; j = 1, 2, . . . , 21)

RCM: yik = µ+ τr(ik) + ri + ck + εik,

(i = 1, 2, . . . , 14; k = 1, 2, . . . , 6)
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RCBM: yikgh = µ+ τr(ikgh) +Ri + Ck + (RC)ik + rig + ckh + (rC)kig + (Rc)ikh + εikgh,

(i = 1, 2; k = 1, 2; g = 1, 2, . . . , 7;h = 1, 2, 3)

LNM: yj = µ+ τr(j) +

84∑
j′=1

Ajj′γr(j′) + εj ,

(j = 1, 2, . . . , 84)

NBM: yikj = µ+ τr(ikj) +Ri + Ck + (RC)ik +
2∑

i′=1

2∑
k′=1

21∑
j′=1

A{ikj,i′k′j′}γr(i′k′j′) + εikj ,

(i = 1, 2; k = 1, 2; j = 1, 2, . . . , 21)

RCNM: yik = µ+ τr(ik) + ri + ck +
14∑
i′=1

6∑
k′=1

A{ik,i′k′}γr(i′k′) + εik,

(i = 1, 2, . . . , 14; k = 1, 2, . . . , 6)

RCNBM: yikgh = µ+ τr(ikgh) +Ri + Ck + (RC)ik + rig + ckh + (rC)ijk + (Rc)ijl

+
2∑

i′=1

2∑
k′=1

7∑
g′=1

3∑
h′=1

A{ikgh,i′k′g′h′}γr(i′k′g′h′) + εr(ikgh),

(i = 1, 2; k = 1, 2; g = 1, 2, . . . , 7;h = 1, 2, 3) .

These models are functions of the treatment factors plus the error terms. We assume

that, in all cases, the errors are independent and random with zero mean and constant

variance. Similarly to comparisons of previous chapters, our interest lies in the com-

parisons of designs under the same model, making σ2 redundant as it is the same for

all proposed designs under the same experiment. Designs for these models are labelled

CRD, RBD, CRD, RCBD, LND, NBD, RCND, RCBD.

We follow three steps in constructing the optimal designs under the above models. In

the fist step we relax the restriction of having a resolved design and allow for unequal

replication of the treatments. In the next step we allow for non-resolvability but restrict

to equal replication. In the final step we restrict the optimal designs to be resolved

and equally replicated. Table 6.1 provides the full list of candidate designs’ labels.

We investigate the benefits of imposing equal replication and resolvability. As will be

seen later, the arguments against equal replication and resolvability are weaker if we

include network effects, in the sense that we are not losing much in efficiency by impos-

ing further restrictions on the optimisation process. This is an important observation

given that algorithmically it is better to impose more restrictions since we reduce the

design space leading to a faster convergence to an efficient design. We should also note

that the algorithm presented in Section 6.3 has been adjusted appropriately for pro-

ducing each class of designs imposing additional restrictions. For the unrestricted case

the algorithm is an interchange-exchange algorithm running two nested computations

sequentially: allowing for a large number of exchanges of the treatments with the com-
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petitive ones on the ordered units and then interchanging the treatments until we reach

convergence. Note that the optimal designs for the first step under CRM, RBM, RCM

and RCBM always have equal replication. The detailed optimal designs can be found

in Appendix C. Note also that we always assume that competing block designs have

the same superblock partition. A key observation from our comparisons below is that

designs that account for network effects perform consistently better than the standard

designs. Thus if we believe that there exists an underlying network structure then it

is highly important to incorporate the network effects which capture that structure in

our model.

Table 6.1: Candidate classes of designs—King’s case

Class 1 Class 2 Class 3
Unrestricted Equal-replication Resolvability

CRD
RBD
RCD

RCBD1 RCBD3
LND1 LND2
NBD1 NBD2 NBD3

RCND1 RCND2
RCNBD1 RCNBD2 RCNBD3

Adjacency matrix - King’s case (G1)

We first look at the case where the adjacency matrix reflects distances across space.

Thus it has weights corresponding to the reciprocal of the distances between the plots

(accounting also for the edges at the corners). The optimality function values for all the

designs obtained are shown in Tables 6.2–6.4. The optimality criterion is φ as presented

in Equation (6.2). Recall that the smaller the criterion function value the better the

design is.

Table 6.2 shows the optimal designs for the unrestricted case, when we do not impose

either equal replication or resolvability. The optimal designs under the standard models

have been chosen arbitrarily and as we can see they are much worse compared to

the models that account for the network effects. More specifically, focusing on the

last row where the true model is assumed to be the RCNBM, we can see that all

randomised designs perform poorly with approximate relative efficiencies 35%, 40%,

44% and 45% for the optimal CRD, RBD, RCD and RCBD respectively. Moreover,

when we account for the network effects, additionally to the block effects, the design

performs slightly better than when ignoring them; efficiency increases to 51% compared

to 48%. Accounting additionally for the row and column effects the design is 53%

efficient. Thus we can see that with respect to this criterion all designs perform poorly

under RCNBM, which means that if we strongly believe that these effects are present,

we should account for them in the model. Another interesting observation from this

table is that if we do not believe that there are block effects, by including them the
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efficiency decreases by 46.7% (see φRCNBD1 under RCNM).

As we can observe from the class of designs in Table 6.3, if we impose equal replication

we lose slightly in terms of efficiency compared to not doing so. It is interesting to

note that the differences in the efficiencies for designs that account for the network

structure are relatively small. Forcing additionally resolvability we obtain the class of

optimal designs illustrated in Table 6.4. For the case of the randomised design RCBD3,

we do not do much worse by imposing resolvability. Another observation in this last

table is that NBD performs well under the RCNBM with approximately 75% efficiency,

implying that when accounting for the network and block effects, we generally obtain a

good design. Another interesting observation is that the NBD1 performs almost as well

as the LND1 (the same holds for NBD2 compared to LND2) under LNM indicating

that we do not do much worse by including block effects in the network model in terms

of the design efficiencies. This observation has been also made in Chapter 5.

Table 6.2: Comparisons of the designs under the different models-class 1

Models Optimal designs
CRD RBD RCD RCBD1 LND1 NBD1 RCND1 RCNBD1

CRM 105.0000 105.0000 105.0000 105.0000 105.6667 107.0000 107.6667 108.3333
RBM 111.1778 105.0000 108.0804 106.4626 110.3307 109.6485 111.6093 113.8296
RCM 145.6674 129.3118 125.6508 145.4067 143.8451 154.6404 136.3127 150.0122

RCBM 158.8660 141.8568 143.1771 125.7446 152.8750 153.2337 156.1715 139.7849
LNM 185.7967 217.8699 195.3904 197.8486 123.8627 128.2574 144.0940 139.8225
NBM 231.5575 234.6434 231.2569 229.1827 148.0148 134.3943 160.1571 151.2984

RCNM 627.6495 518.7476 644.0838 479.0471 404.2810 496.8882 212.8154 455.8680
RCNBM 608.5364 541.5796 494.7243 477.3583 453.5195 422.1597 405.4540 215.5461

Table 6.3: Comparisons of the designs under the different models-class 2

Models Optimal designs
LND2 NBD2 RCND2 RCNBD2

CRM 105.0000 105.0000 105.0000 105.0000
RBM 107.0332 106.0848 108.3879 107.1786
RCM 144.4564 149.7779 137.7795 141.7552

RCBM 143.0036 151.2253 151.9807 133.6267
LNM 129.0965 131.1138 147.4536 148.1472
NBM 148.5842 138.3800 164.1907 162.1072

RCNM 392.3432 462.7354 230.4923 344.0345
RCNBM 408.2686 429.5068 436.9890 240.8215

Table 6.4: Comparisons of the designs under the different models-class 3

Models Optimal designs
RCBD3 NBD3 RCNBD3

CRM 105.0000 105.0000 105.0000
RBM 105.0000 105.0000 105.0000
RCM 138.1757 145.2837 145.3975

RCBM 126.0997 142.4339 135.9004
LNM 208.3804 139.3841 165.9144
NBM 224.6607 142.2910 171.0041

RCNM 503.0577 466.4401 509.4884
RCNBM 526.0848 398.1695 298.3764

154



Adjacency matrix - Farmer’s case (G2)

At this point, we focus on the adjacency matrix related to the farmer operations. The

optimality function values for all the obtained designs are illustrated in Tables 6.6–6.7.

We note that in the first class of candidate designs where we allow for non-resolvability

and unequal replication, the obtained optimal designs are all equally replicated (includ-

ing the ones accounting for network effects). The labels of the designs are presented in

Table 6.5.

Table 6.5: Candidate classes of designs—Farmer’s case

Class 1 Class 2
Unrestricted Resolvability and

equal replication

CRD
RBD
RCD

RCBD RCBD5
LND4
NBD4 NBD5

RCND4
RCNBD4 RCNBD5

We see that the results here follow similar patterns to the results in the King’s case.

One difference stemming from the different network specification is that the optimal

function values of the standard designs are slightly better than before. Assuming,

for instance, that RCNBM is true, the randomised designs have approximate relative

efficiencies 51%, 64%, 57% and 68% for the CRD, RBD, RCD and RCBD respectively.

Accounting additionally for the network effects, the optimal designs are 65%, 78% and

78% efficient for the LND4, NBD4 and RCND4 respectively, implying that accounting

for the block effects is as good as accounting for the row and column effects. When

we additionally restrict for resolvability we lose just 1% in efficiency, but the NBD5

compared to the RCNBD5 performs very similarly in terms of efficiency under all

models.

Table 6.6: Comparisons of the designs under the different models-class 1

Models Optimal designs
CRD RBD RCD RCBD LND4 NBD4 RCND4 RCNBD4

CRM 105.0000 105.0000 105.0000 105.0000 105.0000 105.0000 105.0000 105.0000
RBM 111.1778 105.0000 108.0804 106.4626 109.9506 106.2476 108.0953 106.5304
RCM 145.6674 129.3118 125.6508 145.4067 139.9116 140.9631 130.7638 138.4211

RCBM 158.8660 141.8568 139.1012 125.7446 143.1771 144.6677 142.0032 130.6123
LNM 164.2687 159.3360 166.5983 162.9767 129.6608 130.0774 134.1759 134.1177
NBM 182.9066 161.1575 176.2992 167.2595 142.5026 131.8274 140.5860 137.6629

RCNM 305.5027 249.2212 249.0576 291.5403 222.5107 239.8034 170.4020 232.5888
RCNBM 343.4111 272.6616 305.6709 266.3991 265.5920 223.2733 222.4862 173.6894
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Table 6.7: Comparisons of the designs under the different models-class 2

Models Optimal designs
RCBD3 NBD5 RCNBD5

CRM 105.0000 105.0000 105.0000
RBM 105.8226 105.0000 105.0000
RCM 139.9143 145.6178 144.3373

RCBM 125.8301 148.1647 133.0591
LNM 161.8658 135.0065 139.0961
NBM 167.5187 135.5649 140.1965

RCNM 274.6812 237.0845 243.7944
RCNBM 254.8142 242.3752 189.0563

In general, we can infer that when we believe that there may be spillover effects due to a

structure governing the plots under experimentation, it is sensible to incorporate them

in the model. For this second network specification (of the Farmer’s case) accounting

for the network effects even when we question their true existence does not do much

harm in the design efficiencies (we are not losing more than 12% efficiency), which

means that we are better off accounting for them than ignoring them.

Experimental design implemented in Rothamsted

We obtain the optimality function values for the resolved α-RCD, which has been used

for the relevant agricultural experiment conducted in the year 2016 under the different

models (illustrated in Table 6.8). The design is provided in Figure 6.4. By wrongly

ignoring the network effects although they exist, we observe that the design efficiency,

with respect to the corresponding model which describes them which is a RCNBM,

is 298.3764/518.0070 = 57.6% for the Farmer’s case and 189.0563/281.5975 = 67.1%

for the King’s case. This implies that when we account for the network effects we

considerably increase the design efficiency when we believe in the underlying network

structure governing the plots.

Table 6.8: Optimality function values under the different models for α-RCD

Models Optimal designs
Farmer’s case King’s case

CRM 105.0000 105.0000
RBM 105.0000 105.0000
RCM 131.9278 131.9278

RCBM 136.5855 136.5855
LNM 153.4577 174.5538

LNBM 154.5439 185.9997
RCNM 258.4022 535.2381

RCNBM 281.5975 518.0070

From this agricultural trial we decide which treatments are allocated to the plots while

accounting for potential important neighbour effects that are likely to affect the plot

responses through an appropriately pre-specified adjacency matrix. In practice, the ad-

jacency matrix is tailor-made reflecting the suspected underlying interference structure
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Figure 6.4: Experimental design in Rothamsted α-RCD (year 2016)

among plots. The choice of this matrix can also address irregular regions demanding

further potential constraints. According to the specific problem at hand, the experi-

menter should appropriately choose the adjacency matrix, suggest a suitable model to

fit and optimise the design for that model for estimating the important parameters of

interest. A conclusion drawn from the comparison of the optimal designs in this section

is that unsystematic designs that ignore network effects may lead to poor results.

We present the non-resolved and resolved row column designs: RCNBD1, RCNBD3,

RCNBD4 and RCNBD5 in Figures 6.5, 6.6, 6.7 and 6.8 respectively.

Figure 6.5: Near-optimal RCNBD1
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Figure 6.6: Near-optimal RCNBD3

Figure 6.7: Near-optimal RCNBD4

In constructing designs for large numbers of treatments and when there may be treat-

ment interference due to the neighbour structure underlying the plots, it is sensible to

have each replicate of every treatment close to at least one replicate of all the other

treatments. Moreover, it is desirable that adjacent plots receive the same treatment at

least once. This observation is true also when we require resolvability. The designs of

this chapter can be found in Appendix C.
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Figure 6.8: Near-optimal RCNBD5

6.6 Discussion

In this chapter, we attempted to control for the potential variation resulting from

treatment interference or farm operations in order to improve the precision of treat-

ment comparisons. We show that optimal designs with network effects outperform con-

ventional designs in terms of efficiency as they maximise the separation of treatment

information from other sources of variation. Another remark is that including network

effects that might be important is better than ignoring them and still the resulting

optimal designs are good enough under the conventional models CRM, RBM, RCM

etc. When we account for network effects, the optimal designs presented a common

feature: each replicate of every treatment is very close to at least one replicate of each

other treatment. To verify this, refer to the optimal designs presented in Appendix

C. This is desirable and its importance has been highlighted by Freeman (1979) for

the case of row-column designs. For the construction of designs with many treatments

in networked experiments, a desirable pattern is that pairs of closely connected units

receive the same treatment. This crucial observation seems to play a major role in the

design efficiency of experiments with connected units.

We considered observations collected from connected units to be dependent, with the

degree of dependence decreasing along network distance between units. It is important

to note that various alternative specifications of the adjacency matrix could be also

investigated that will be relevant to the interest of the experimenter: including mea-

surements of neighbourhood properties among the plots to better reflect the spatial

structure or a different ‘arbitrary’ perception of the influences among plots based on

the experiment at hand. In practice, the specification of this matrix might be a result
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of the scientific knowledge of the experimenter or elicitation of information from farm-

ers on the suspected sources of spillover effects based on experience which is likely to

strongly affect the treatment effects’ differences.

In practice, there is an increasing demand for such designs (especially for use in agricul-

tural field trials) in situations where we assume an underlying structure which suggests

neighbouring treatment interference. The advantage of the suggested design approach

is that we can control for the neighbouring environment according to the causes, di-

rections and weights of the neighbouring interference. For instance, neighbour effects

may depend on the speed and direction of wind or periods in shade, which can result in

an appropriate definition of the connectivity matrix imposing suitable weights for the

left or right neighbours, etc. This highlights the importance of defining the adjacency

matrix based on requirements of the experiment at hand. If the network structure is

adequately modelled, this design procedure may be expected to cause an increase in

precision of the treatment contrasts.

The specification of modelling approaches considering autocorrelation structures has

also been of great practical importance in spatial experiments (e.g. agricultural field

experiments). Section 7.2.1 builds on fundamental approaches towards this direction

and aims to encourage future research on designing experiments on networks when

there is sufficient network correlation among neighbouring units (including, but not

limited to, spatial correlation).
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Chapter 7

Discussion and directions for

future research

7.1 Summary

Although a vast number of networked experiments has been performed over the last

decade, little light has been cast on the statistical design of experiments. Underes-

timating the importance of experimental design, could lead to invalid experimental

conclusions for the scientific questions of interest. This research contributes to filling

this gap on designing experiments in environments that comprise interacting entities

(including but not limited to social networks). Examples of experiments that can ben-

efit from the suggested design techniques are presented in Table 1.1.

A successful experimental design relies on the careful balancing of several features

including applicability, simplicity, time and cost efficiency. This thesis provided flexible

and effective methods to improve the statistical design of experiments on connected

units, considering both artificial and real-world networks of different shapes and sizes,

and investigated their impact on the properties of the design. We showed that designs

that account for network effects outperform standard designs in terms of efficiency and

design bias, while at the same time being fast to compute. One can find an efficient

design by exploiting the structural properties of the network at hand, which describes

the relationships among units. This method suggests the decomposition of the optimal

design problem into a set of nested sub problems. The novelty of this research is

justified by the very few contributions to the literature in this area as well as the lack

of methods for designing experiments on networks, for instance, when they present high

degrees of symmetry or in the presence of community structure. Many systems and

problems can be regarded from the network perspective by appropriate specification

of the connectivity matrix. Thus our approaches are easily extendable and adaptable

to a wide class of experiments with interconnected units. This research has potential

impact on how experiments on networks are set up in the future.

After we provided the necessary framework in Chapter 2, we built on the work of
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Parker et al. (2016) in Chapter 3, deriving some analytical results and investigating

how different topologies influence the patters of the optimally allocated treatments on

the network members for the case of two unstructured treatments. Heuristically the

experimental design for estimating the treatment effects tends to be balanced on the

units having a similar number of connections, while for estimating the network effects

the design is greatly influenced by the network’s first and second order connections.

To this end we provided key observations that facilitate the construction of optimal

designs in real-networks. Moreover, analytical formulae of the optimality criteria were

also obtained, which can be beneficial for speeding up the optimisation algorithm when

dealing with irregular and complicated neighbour structures, by avoiding the inversion

of the information matrix. Issues related to design efficiency and bias were also ex-

plored, showing that designs that account for network effects are fairly robust to some

misspecification of the model or network under experimentation. However, since the

micro-structure of the network has a significant impact on the design, changing the

structure of the network radically (and consequently its properties), by either adding

or removing a large number of edges, will affect the optimality of the designs.

Chapter 4 described a practical algorithmic approach in the search for an optimal design

in a network having a high degree of symmetry. We saw that an automorphism of a

graph is a form of symmetry in which the graph is mapped onto itself while preserving

the edge-vertex connectivity. This automorphism can also be called a φ1-automorphism,

which means that the connectivity structure will be invariant to the automorphisms

under φ1. We showed that permutations of structurally equivalent vertices are exact

symmetries of the graph (i.e. automorphisms), and by utilising those symmetries we

can speed up the search for optimal designs for moderate network sizes. This is based

on the idea of breaking down the networks into symmetric and asymmetric components

and by obtaining simultaneously sub-designs for each one of them (taking into account

observed patterns of the optimally allocated treatments on the symmetric motifs). By

using the nauty program, we can find all the automorphism of large graphs rapidly (sub

second processing time). Subsequently these sub-designs make up the overall design

for the original network. If the degree of symmetry is high in the network then the

skeleton can be significantly smaller than the original network from which it is derived,

resulting in a faster design optimisation process. We encourage future researchers to

further investigate the impact of network symmetries on the design of experiments,

for instance by embedding additionally network information related to its topological

properties (e.g. degree distribution, shortest paths etc.) into its network components.

Considering social networks, people have a strong tendency to associate with others

whom they perceive as being similar to themselves by means of traits and this ten-

dency is called homophily (or assortative mixing) (Newman, 2010, Ch. 7.13). This

led us to the natural definition of blocking, with experimental units that are highly

associated with each other and we anticipate them to behave similarly to an external

stimulus. Following this idea, in Chapter 5 we constructed optimal block designs with
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network effects, where blocks were defined using spectral clustering techniques achiev-

ing optimal modularity. Spectral clustering has proven to be a useful tool in designing

an experiment and determining, if it exists, a natural division of its vertices into non-

overlapping groups (these groups may be of any size). By detecting communities one

can get a further insight into the inherent structure of the network population under

investigation as it is equivalent to investigating statistical properties of a graph, ignor-

ing the roles played by specific subgraphs, and hence identifying substructures which

could influence important functions. We showed that designs are robust to network

misspecifications to the extent that the network retains its characteristic properties.

Moreover, simulations have shown that when we misspecify the number of blocks or

units in blocks, the properties of the design become worse but only up to the same

extent of the standard designs without network effects. Another important finding

from Chapter 5 is that when the clustering coefficient is large, such as in small-world

networks, then the model ignoring the block effects leads to highly inefficient designs.

In Chapter 6, we showed that the methods considered can be easily adapted to agri-

cultural field experiments with regular or even irregular layouts. When plots of land

are close to each other, this can result in treatment interference. A comparison of

several optimal designs showed that designs that control for more sources of potential

variation, such as transmission of treatment effects due to the topological properties

or farmer operations, perform consistently better that the conventional designs used in

such experiments.

Another methodological approach for adjusting for response interference rather than

treatment interference is explored in the next section, where we account for potential

interference among units by modelling the autocorrelation structure of the responses.

Thus the responses of the units are correlated and this correlation is attributed to

neighbouring connected units on a multidirectional network. The optimal designs will

be based on conditional criteria of the asymptotic variance covariance structure of the

treatment effects.

7.2 Current work: Autoregressive network effects model

In this section we assume that the ‘nearer’ the units are the more correlated their re-

sponses are. Previously we assumed the existence of neighbour effects, captured by

the network term in the model, where each unit is influenced not only by the actual

treatment received, but also by treatments present on neighbouring units. A different

approach in a regression context, as we discussed in Chapters 1 and 3 (see autoregres-

sive models NEM and NDM), is when influence occurs through the autocorrelation

of the responses or through the autocorrelation of the errors (either in the form of

non-constant error variances in a regression model or in the form of variable regres-

sion coefficients). Focusing on the former, Section 7.2.1 introduces the Autoregressive

Network effects Model (ANM) which directly accounts for the network heterogeneity,
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and incorporates both a regression component for the mean and an autoregressive com-

ponent in the responses to reflect the network structure. After estimating the model

parameters by maximum likelihood in Section 7.2.2, we derive the large sample asymp-

totic approximation for the variance-covariance matrix of the MLE of the regression

coefficients of that extended model in Section 7.2.3. We finish with a discussion of the

ongoing research in the field of experimental design and network autoregressive models.

7.2.1 Autoregressive network effects model (ANM)

The model considered here incorporates both a regression component for the mean and

an autoregressive component for the responses to reflect the network structure. Hence,

we can write

ANM: yj = µ+ τr(j) + ρ
n∑
k=1

Ajkyk + εj (7.1)

for j = 1, 2, . . . , n, where yj is the resulting response from unit j receiving treatment

r(j) = s ∈ {1, 2, . . . ,m}, µ is the overall mean, τr(j) is the (direct) effect of treatment

r(j) applied to unit j, the scalar ρ is the autocorrelation parameter, Ajk is the adjacency

matrix indicating the presence of connections between units j and k (see Section 2.4),

yk is the response of the neighbouring unit k when there is a connection between units

j and k. The error terms, denoted by εj , are assumed to be independent and identically

distributed (i.i.d.) with mean 0 and constant variance σ2. Note that when ρ = 0, the

expression (7.1) reduces to the CRM (2.4).

Assuming normality of the errors we can re-write the model (7.1) in matrix notation

y = ρAy +Xβ + ε, ε ∼ Nn
(
0, σ2

ε I
)
, (7.2)

where β =
(
µ τ ∗T

)T
= (µ τ1 . . . τm−1)T is the vector of parameters and X =

(1 Xτ
?) is the extended design matrix. There are no columns corresponding to the

m-th treatment effect τm, since we assumed that to be zero (for more details on the

notation refer to Chapter 3.2). Letting G = I − ρA, we have that Gy ∼ N
(
Xβ, σ2

ε I
)
.

Assuming that |ρ| is less than one, and that the matrix elements are such that (I − ρA)

is non singular, we have that E [y|X] = G−1Xβ and var (y|β) = G−1σ2
ε I
(
G−1

)T
=

σ2
εG
−2. Note that G is symmetric for non-directed graphs (as A is symmetric) and

therefore GT = G. Thus y ∼ Nn
(
G−1Xβ, σ2

εG
−2
)
.

Theorem 7.1 (Harville, 1997, Th. 18.2.16.): Let Mn×n be a square matrix. Then

I +M +M2 + · · · converges if and only if limk→∞M
k = 0, in which case I −M is non

singular and (I −M)−1 = I +M +M2 + · · · (where M0 = I).

Therefore, we can take M = ρA where |ρ| < 1 and since 0 ≤ Akjk ≤ 1, ∀j, k then |M |<1

which results in limq→∞M
q = 0. For more details on the relevant matrix algebra refer

to Harville (1997, Ch.18). Thus we have
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y = (I − ρA)−1Xβ + (I − ρA)−1ε (7.3)

in which each inverse can be expanded into an infinite series, including both the ex-

planatory variables and the error terms. In the following section we see that the method

of ordinary least squares proves to be biased and inconsistent in this setting. This is

because OLS ignores the term log|I − ρA| resulting from the nature of the spatial

dependence. For this reason we employ maximum likelihood methods.

7.2.2 Maximum likelihood estimation

For the estimation of the parameters of the ANM (7.2) we perform maximum likelihood

(ML) estimation. Maximum likelihood estimation of (spatial) autoregressive models

was first outlined by Ord (1975). The joint loglikelihood for the ANM does not equal the

sum of the loglikelihoods associated with the individual observations. This is due to the

multi-directional nature of the network dependence, which results in a Jacobian term

that is the determinant of a full n× n matrix, i.e. |I − ρA|. This makes ML estimators

the preferred estimators in such setting. In particular, for the ANM, the loglikelihood

is based on the multivariate normal case. Since ε ∼ N
(
0, σ2I

)
where ε = Gy − Xβ

and G = I − ρA it follows that Gy ∼ N
(
Xβ, σ2

)
or y ∼ N

(
G−1Xβ, σ2G−2

)
. Note

that |σ2G−2| = σ2n|G−2|. The likelihood function for ρ, σ2 and β is

L = (2π)−n/2
(
σ2n
)−1/2|G| exp

(
− 1

2σ2
(Gy −Xβ)T (Gy −Xβ)

)
.

Thus the log-likelihood ` = logL is given as

`
(
σ2,β, ρ

)
= −n

2
log (2π)− n

2
log
(
σ2
)

+ log |G| − 1

2σ2
(Gy −Xβ)T (Gy −Xβ)

= −n
2

log (2π)− n

2
log (ω) + log |G| − 1

2ω
(Gy −Xβ)T (Gy −Xβ) , (7.4)

where σ2 = ω for ease of notation. We calculate the first order derivatives

∂`

∂ω
= −n

2

1

ω
+

1

2ω2
(Gy −Xβ)T (Gy −Xβ) .

It follows that the maximum likelihood estimate of ω will be given by setting the above

expression equal to zero:

∂`

∂ω
= 0⇒ nω̂ =

(
Gy −Xβ̂

)T (
Gy −Xβ̂

)
. (7.5)

Moreover, we have that
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εT ε = (Gy −Xβ)T (Gy −Xβ)

= (Gy)TGy − (Gy)TXβ − (Xβ)TGy + (Xβ)TXβ

= (Gy)TGy − 2(Xβ)TGy + βTXTXβ, (7.6)

where the transpose of the scalar is the scalar, i.e. (Gy)TXβ = (Xβ)TGy. Also

∂`

∂β
= − 1

2ω

(
−2XTGy + 2XTXβ

)
=

1

ω

(
XTGy −XTXβ

)
.

Setting this equal to zero gives the ML estimators

∂`

∂β
= 0⇒ β̂ =

(
XTX

)−
XTGy. (7.7)

For a known ρ, the GLS or ML is determined from the usual first-order conditions:

β̂ =
(
XTX

)−
XTGy

σ̂2 =

(
Gy −Xβ̂

)T (
Gy −Xβ̂

)
n

with var
(
β̂
)

= σ̂2
(
XTX

)−
. However, ρ is generally unknown and may be estimated

by ML. Following Besag and Kempton (1986, p.243-4), from an iterative estimation

of β, ω and ρ, we compute ρ̂ by a search on the function const − n
2 log (ω̂) + log |G|

(maximisation) and then substitute to the log-likelihood ` and to the expressions of

the ML estimators (7.7) and (7.5) (see the computational method employed by Mead,

1967, p.192). For additional discussion on existing suggested iterative procedures to

obtain the estimators refer to Cliff and Ord (1981, p.232) and references therein.

The partial derivative of ` with respect to ρ is

∂`

∂ρ
= −A|G|−1 − 1

2ω
2 (Gy −Xβ)TyA. (7.8)

7.2.3 Asymptotic variance of the maximum likelihood estimators

According to Kendall and Stuart (1979, p.59-60) and Cliff and Ord (1981, p.241-2), the

large sample variance-covariance matrix (denoted by V ) is given by

V −1 = −E
[

∂2`

∂ϑr∂ϑs

]
or V = −E

[
∂2`

∂ϑr∂ϑs

]−1

where ϑr and ϑs are the typical parameters.

Calculating the second order derivatives, we obtain
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∂2`

∂ω2
=

n

2ω2
− 2ω

2ω4
nω̂,

∂2`

∂β2
= − 1

ω
XTX,

∂2`

∂ρ2
= A2|G|−2 − 1

ω
yTyA2,

∂2`

∂β∂ω
=
XTGy

ω2
− XTXβ

ω2
=
−XT (Gy −Xβ)

ω2
,

∂2`

∂β∂ρ
= −X

TAy

ω
and

∂2`

∂ω∂ρ
=

1

ω2
(Gy −Xβ)TyA.

Letting B = AG−1 and yL = Ay we have

E [yL] = BXβ,

E
[
εTyL

]
= ω tr (B) and

E
[
yTLy

]
= ω tr

(
BTB

)
+ E [yL]T E [yL] = ω tr

(
BTB

)
+ (BXβ)T (BXβ) .

Note that E [ω̂] = ω asymptotically. Implementing the above equations we have

E
[
− ∂

2`

∂ω2

]
= −E

[
n

2ω2
− 2ω

2ω4
nω̂

]
= −E

[
nω − 2nω

2ω3

]
=

n

2ω2
,

E
[
− ∂

2`

∂β2

]
=

1

ω
XTX,

E
[
− ∂

2`

∂ρ2

]
= E

[
−
(
A|G|−1

)2
+

1

ω
yTLyL

]
= − tr

(
A|G|−1

)2
+

1

ω
E
[
yTLyL

]
= tr (B)2 + tr

(
BTB

)
+

1

ω
(BXβ)T (BXβ) ,

E
[
− ∂2`

∂β∂ω

]
= 0,

E
[
− ∂2`

∂β∂ρ

]
=

1

ω
XTE [yL] =

1

ω
XTBXβ and

E
[
− ∂2`

∂ω∂ρ

]
= E

[
1

ω2
εTyL

]
=

1

ω
tr (B) .
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Writing the parameters in order ω,β, ρ the asymptotic variance is

Asymptotic V (ω,β, ρ) =



E
[
− ∂2`
∂ω2

]
E
[
− ∂2`
∂ω∂β

]
E
[
− ∂2`
∂ω∂ρ

]
E
[
− ∂2`
∂β2

]
E
[
− ∂2`
∂β∂ρ

]
E
[
− ∂2`
∂ρ2

]



−1

=



n
2ω2 0 tr(B)

ω

XTX
ω

XTBXβ
ω

tr (B)2 + tr
(
BTB

)
+ (BXβ)T (BXβ)

ω



−1

=
1

α



2ω2
(

tr (B)2 + tr
(
BTB

))
2 tr (B)2BXβωX− −2 tr (B)2 ω

Z
(
XTX

)− −n(BXβ)T
(
XT
)−

n


,

where Z = tr
(
BTB

)
nω − 2 tr (B)2 ω + n(BXβ)T (BXβ) + tr (B)2 nω and α =

tr
(
BTB

)
n + tr (B)2 (n− 2). The lower half is filled by symmetry. Note also that

while the covariance between β and ω is 0 in the standard regression model, this is not

the case for ρ and ω. Moreover, |I − ρA| =
∏n
i=1(1− λi) where λ1 ≥ λ2 ≥ . . . ≥ λn are

the eigenvalues of A and therefore tr (B) =
∑n

i=1
λi

1−λi (Ord, 1975, p.121).

The autocorrelation structure leads to an information matrix that is a function of ρ,

a generally unknown parameter (see Matthews, 1987, for an explicit expression for

the joint information matrix for direct and residual effects discussed in the context of

correlated errors). As a consequence it becomes much more difficult to obtain general

results for optimality of designs. Typically optimal designs are chosen to optimise

(either minimise or maximise) the value of a given function of the expected information

matrix associated with the estimation problem (see Section 2.1). The importance of

the information matrix stems from its role in maximum likelihood estimation, where

it is proportional to the inverse of the asymptotic variance matrix of the parameter

estimators (Davison, 2003, p.118). It can thus be thought of as a measure of the likely

precision of the estimators resulting from the experiment. A locally L-optimal design

minimises the trace of the asymptotic variance-covariance matrix of the MLE at a
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specified value of β, which is

V (β̂) =
tr
(
BTB

)
nω − 2 tr (B)2 ω + n(BXβ)T (BXβ) + tr (B)2 nω

tr (BTB)n+ tr (B)2 (n− 2)

(
XTX

)−
. (7.9)

The optimal designs will rely on the asymptotic variance of the ML estimators (Equa-

tion (7.9)). Ongoing work concerns the construction of such locally optimal designs

evaluated with local criteria or pseudo-Bayesian criteria. The optimality criteria will be

defined conditional on a set of parameters β. In particular, we can define φ1 (X;β, ω, ρ)

as the average variance of differences between direct treatment effects and φ2 (X;β, ω, ρ)

as the variance of ρ (or some function of ρ). These ‘conditional criteria’ depend on the

unknown parameters, so cannot be used to compare designs. However, we can use them

to define some unconditional criteria. The simplest are the local optimality criteria,

which can take some point prior estimates for the unknown parameters, in order to

obtain in this way locally L-optimal designs on given networks. Thus we substitute

β = β0, ω = ω0 and ρ = ρ0 to get φ1
(0)(X) and φ2

(0)(X) for some point prior esti-

mates (or guesses). Alternatively, we can consider more robust criteria, such as the

expectation of φ1 (X; f (β, ω, ρ)) over a prior distribution of β, ω and ρ.

7.3 Future work

There is great scope for future research in various fields such as: the specification of the

connectivity matrix (discussed in Section 2.4); the choice of an appropriate model cap-

turing the network dependencies (e.g. autoregresive model briefly discussed earlier); the

inclusion of more complicated treatment structures (e.g. factorial designs with network

effects); additional types of algorithmic approaches (some of which are discussed in

Sections 2.3, 3.6, 4.3 and 6.3); tracking additional properties of the network structure;

compound criteria that take into account possible misspecification of the model when

designing an experiment on networks; capturing the dynamics of the networks; devel-

oping techniques to handle complicated random effect structures and others. Some of

the possibilities for future work and improvements have been highlighted in different

parts of this thesis. There are also various levels of sophistication one can add. With-

out going into much detail we discuss some of them and provide some hints to future

research directions.

Criterion for estimating the total treatment effects: The experimenter might be in-

terested in finding an optimal design for estimating the total treatment effect by a

weighted sum of the two criteria mentioned in this thesis. Following Bailey and Druil-

het (2004), another suggestion of an (unweighted) optimality criterion for estimating

the total effects is: φ3 = sTM−s where s = (0 n1 . . . nm−1
∑m

s=1 ls1 . . .
∑m

s=1 lsm)T .

This criterion can be derived using the formula 1/m
∑m

s=1 varβs, where the total treat-

ment effect of a particular treatment s is given by βs, where βs = nsτs+γs(
∑m

s′=1 lss′).
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Recall that ns is the number of units given treatment s, τs is the treatment effect, γs

is the network effect, lss′ is the number of connections between units given treatment

s and those given treatment s′.

A/B or multivariate testing : In the comparative experiment discussed in the first sec-

tion of this thesis, Section 1.1, the effectiveness of the advertisements can be quantified

by the quantity of products purchased the week following the advertising or the profit

generated due to the advertisements. Another measurement of the responses could be

related to the clicks of the advertisement in a test period time. Thus the model could

be a logistic or a log-linear one.

Experiments on stochastic networks: Networks in real life evolve over time, with ver-

tices or edges either appearing or disappearing. Consider a network with connections

changing over time. Let A = A(t), where Aij(t) > 0 denotes the particular weight

corresponding to the element (i, j) at time t. Organising the weights at each given time

we get a stochastic adjacency matrix A(t). This has many dynamical and structural

implications. The connections targeted for the experiment can correspond for instance

to frequent interactions. Note that the degree of contact between neighbouring units

has also been investigated in spatial applications. Thus we can consider the neigh-

bouring contacts which have ‘active ties’ between them (i.e. frequency of interactions

over a long period of time). Thus a researcher should consider methodologies from

artificial intelligence and computer science such as machine learning and data mining,

for describing the structure of social network and contagion pathways and as such to

better understand treatment propagation or spread of behaviour along the shortest

paths. A possible approach could be to consider a model for designing an experiment

on a network, conditional on a graph model which generates that network.

Experiments in multilayer networks: Real-world networks are becoming more compli-

cated. An individual may belong to several networks at the same time, for instance in

two social networking platforms. In that case we can consider the two ego-networks

as two different connectivity structures independently from one another (incorporat-

ing them in the model), or merging them to one single network adopting the methods

we have already considered, or the two networks can correspond to different layers of

connectivity. One can distinguish different types of multilayer networks depending on

the interaction between the different layers. This poses a challenge to the current ex-

perimental design theory. A possible way to regard this problem is by considering a

multistage experiment with blocking.

Most methods discussed in this thesis can be adapted to a Bayesian framework. For

instance, consider that for a particular experiment there may exist different possible

adjacency matrices that can explain the various scenarios of interference instead of

an assumed fixed adjacency matrix. Time may also be accounted for in the design

of an experiment resulting in an association of the responses during the course of the

experiment. For example, extending the framework to a time series analysis might
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be appropriate. Moreover, revisiting Section 3.5, a pseudo-Bayesian approach can be

applied for constructing robust designs when there is a level of misspecification of the

network. A possible way to proceed involves the construction of an ‘intermediate design

among an adequate number of designs obtained on simulated misspecified networks.

This ‘median’ design is robust by definition to a number of different misspecifications

of the network and therefore performs well in situations in which there is an uncertainty

about the network connections. This uncertainty about the network connections could

be described with appropriate ‘priors’. The execution of this suggested computational

method is time efficient and easily adaptable to any experiment.

Future research could involve exploring a wider classes of models, extending also to

non-linear models, e.g. where time is incorporated in a quadratic term, or involving

complicated variance structures. Another possible research question is how the design

will be affected when choosing a subset of units in a network. Designing experiments

in sampled networks is a broad area of research since it can substantially reduce the

required time and cost. It is important to capture appropriately the statistical proper-

ties of the sampled population while sustaining the properties of the sampled network.

In this thesis, we discussed issues related to the robustness of the design to network

misspecification but also issues related to the impact of the network symmetries on the

design efficiency. Some of these ideas and techniques might be useful when perform-

ing experiments on sampled networks. Moreover, on sampled networks clustering and

symmetry-breaking techniques, such as determining the frequency of network motifs

compared to their frequency in a random ensemble of networks with similar proper-

ties to the original, might be useful. Practical aspects on sampling methodologies are

discussed in the work of Aral (2016), suggesting that typically preserving the graph

properties (e.g. degree distribution) is preferable to ignoring it. Some of those im-

portant considerations are covered by Lee et al. (2006). When conducting large-scale

experiments, it is essential to advance the statistical design of experiments to the era

of Big Data. The topology based sampling or representation of the graph by its quo-

tient point to the right future direction in order to maintain the representative graph

properties and structures when designing experiments on them.

Our computational methods for the construction of optimal designs can be imple-

mented, improved and extended by researchers and practitioners in any field that in-

volves networks. It is worth mentioning that our on-going work aims at incorporating

some of our methods into a practical package for the R statistical environment so as

to aid practitioners in designing networked experiments. By further exploring and ex-

ploiting the network topology, we can better understand how the connections between

experimental units affect the design of experiments. Designing experiments on net-

works is a complex area of research but at the same time a very promising one for

dealing with practical problems. Therefore more attention should be given as many of

the possibilities have yet to be explored in depth.
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Appendix

A Results for Chapter 3

The determinant D of Equations (3.12) and (3.13) are obtained respectively as

D = l
〈2〉
11

(
n1l

2
2 − 2l2l12n1 + nl212

)
+ l

〈2〉
22

(
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2
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)
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The optimality criterion on function values of Equations (3.14) and (3.15) respectively

are
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Table of proportions of edges (connecting 1s to 2s) connecting different treatments. The

columns two and three give the coordinates for the locations of the plotting symbols of

Figure 3.11.

Table A.1: Table for Figure 3.11 (with unique entries)

l12/l βγ1 βγ2 l12/l βγ1 βγ2 l12/l βγ1 βγ2

0.33 0.83 -1.50 0.48 -1.00 -1.33 0.62 -1.50 0.17

0.33 1.50 -0.83 0.48 -0.33 -0.67 0.62 0.17 1.83

0.33 1.83 -0.50 0.48 1.33 1.00 0.62 -0.17 1.50

0.38 1.33 -0.33 0.52 -0.17 0.17 0.62 -1.83 -0.17

0.38 1.00 -0.67 0.52 -1.17 -0.83 0.67 -1.67 0.67

0.38 1.67 0.00 0.52 0.83 1.17 0.67 -1.00 1.33

0.38 0.33 -1.33 0.52 0.50 0.83 0.67 -1.33 1.00

0.38 0.67 -1.00 0.52 -0.50 -0.17 0.67 -0.67 1.67

0.38 2.00 0.33 0.52 0.17 0.50 0.67 -0.33 2.00

0.43 1.17 0.17 0.52 -0.83 -0.50 0.71 -1.17 1.83

0.43 0.50 -0.50 0.52 1.17 1.50 0.71 -1.50 1.50

0.43 -0.17 -1.17 0.57 -0.67 0.33 0.71 -0.83 2.17

0.43 0.17 -0.83 0.57 -1.00 0.00 0.71 -1.83 1.17

0.43 0.83 -0.17 0.57 -1.33 -0.33 0.76 -2.00 1.67

0.43 1.50 0.50 0.57 -0.33 0.67 0.76 -2.33 1.33

0.43 1.83 0.83 0.57 0.00 1.00 0.76 -1.33 2.33

0.48 0.00 -0.33 0.57 0.33 1.33 0.76 -1.67 2.00

0.48 1.00 0.67 0.57 0.67 1.67

0.48 0.67 0.33 0.62 -0.50 1.17

0.48 0.33 0.00 0.62 -0.83 0.83

0.48 -0.67 -1.00 0.62 -1.17 0.50
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The optimal designs for φ1 and φ2 for the example of Figure 3.1 under different mis-

specifications are provided below.

Table A.2: Efficiencies of the optimal designs under network misspecification

Edge(s) removed between units Figure Effφ1 Effφ2

1 and 5 (A.1) 0.96 (= 0.3359/0.3490) 0.98 (= 0.0866/0.0876)

1 and 10 (A.2) 0.98 (= 0.3359/0.3406) 0.88 (= 0.0866/0.0984)

4 and 10 (A.3) 1 (= 0.3359/0.3370) 0.99 (= 0.0866/0.0875)

1 and 5 and 1 and 10 (A.7) 0.99 (= 0.3359/0.3368) 0.87 (= 0.0866/0.0994)

1 and 5, 1 and 10 and 4 and 10 (A.8) 0.96 (= 0.3359/0.3478) 0.84 (= 0.0866/0.1023)

Edge(s) included between units

1 and 4 (A.4) 0.98 (= 0.3359/0.3417) 0.99 (= 0.0866/0.0875)

1 and 12 (A.5) 0.98 (= 0.3359/0.3406) 0.90 (= 0.0866/0.0952)

7 and 9 (A.6) 0.98 (= 0.3359/0.3417) 1 (= 0.0866/0.0866)

Figure A.1: Optimal designs when removing an edge between units 1 and 5; for φ1

(left) and φ2 (right)

Figure A.2: Optimal designs when removing an edge between units 1 and 10; for φ1

(left) and φ2 (right)
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Figure A.3: Optimal designs when removing an edge between units 4 and 10; for φ1

(left) and φ2 (right)

Figure A.4: Optimal designs when adding an edge between units 1 and 4; for φ1 (left)
and φ2 (right)

Figure A.5: Optimal designs when adding an edge between units 1 and 12; for φ1 (left)
and φ2 (right)
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Figure A.6: Optimal designs when adding an edge between units 7 and 9; for φ1 (left)
and φ2 (right)

Figure A.7: Optimal designs when removing edges between units 1 and 5 and 1 and
10; for φ1 (left) and φ2 (right)

Figure A.8: Optimal designs when removing edges between units 1 and 5, 1 and 10 and
4 and 10; for φ1 (left) and φ2 (right)
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B Results for Chapter 5

For the optimal block designs for Example 5.3.1 we have 161 and 163 units receiving

treatments 1 and 2 respectively for φ1 units, and 117 and 207 units receiving treatments

1 and 2 respectively for φ2 units. The optimal allocations are provided in Table B.1.

Table B.1: Near-optimal designs under NBM

Optimal allocation for φ1 Optimal allocation for φ2

2 2 1 2 2 1 1 1 1 1 2 2 2 1 2 2 2 2 2 2 1 2

1 2 1 1 2 2 1 1 1 1 2 2 2 2 2 1 2 2 1 1 2 2

2 2 1 2 2 1 1 1 1 1 1 1 2 2 1 1 1 2 2 2 1 1

2 1 1 1 2 1 2 2 2 2 2 1 2 1 1 1 1 2 2 2 2 2

1 1 1 1 2 1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 1 2

2 2 2 2 2 2 2 2 1 1 2 2 2 1 2 2 2 1 2 1 1 2

1 2 2 2 2 1 2 1 2 2 2 2 1 2 2 1 1 1 1 2 2 2

2 2 2 1 2 1 1 2 2 2 2 1 2 1 1 1 1 2 2 2 2 2

2 2 1 2 1 1 2 1 1 1 2 2 1 2 1 2 2 2 2 1 2 1

2 2 2 1 1 2 1 2 1 1 2 2 2 1 2 1 1 1 2 2 2 2

2 1 2 2 2 2 1 1 1 1 1 1 1 2 2 1 2 2 1 2 2 2

2 2 1 2 1 1 2 1 1 2 1 2 2 2 1 1 1 1 1 1 1 1

2 1 2 1 1 2 1 1 2 2 2 1 2 1 1 2 2 2 2 2 2 2

1 2 2 1 1 1 2 1 1 2 2 2 1 2 2 2 1 2 2 2 2 2

2 1 2 2 1 1 1 2 1 2 1 2 2 1 2 2 2 2 2 1 1 1

1 1 1 2 2 1 1 2 1 1 2 2 2 1 2 1 2 1 2 1 2 2

1 1 2 2 2 1 2 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2

2 2 1 2 2 2 1 1 1 2 2 2 1 2 1 2 1 2 2 1 1 1

2 2 1 1 1 2 1 1 2 1 1 1 2 2 2 2 1 2 2 2 1 1

1 1 1 2 2 2 1 1 1 2 1 2 2 1 2 2 2 2 2 2 1 2

1 1 2 1 2 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 1 1

2 1 1 1 1 2 1 2 1 2 1 1 2 2 1 1 2 2 1 2 1 2

1 1 1 1 2 1 2 2 1 1 2 2 2 2 2 2 1 2 2 2 2 1

2 2 1 2 1 1 2 2 1 2 2 2 1 2 2 1 2 2 1 2 2 2

2 1 2 2 2 1 2 2 2 1 1 1 2 2 1 2 2 2 1 2

2 1 1 1 2 1 1 1 2 2 2 2 2 2 1 2 1 2 1 1

2 2 1 1 2 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1

1 2 2 1 2 1 1 1 2 1 2 1 1 2 2 2 2 2 2 2

2 1 2 2 2 1 1 2 1 1 2 1 2 2 1 2 2 1 1 2

1 2 2 1 1 2 2 1 2 1 2 2 2 2 2 2 2 1 2 2

179



For the m = 2 treatment case and κ = 3 we can write the bias in terms of unknown

parameters β, under the assumption there are network effects and we do not account

for them (i.e. RBM), as

0 0 0 0 I1 I2

0 0 0 0 I3 I4

0 0 0 0 I5 I6

0 0 0 0 I7 I8

0 0 0 0 −1 0

0 0 0 0 0 −1





µ

τ1

b1

b2

γ1

γ2


where

I1 = D(n2(2)1n(1)(l1 − l(1)1) + n2(1)1n(2)(l1 − l(2)1) + n(1)n(2)
[
n1(l11 − l1)− (n(1)1 + n(2)1)l11

+ n1(l(1)1 + l(2)1)
]

+ n(1)1(n(2)1 − n1)n(2)l(1)1 + n(2)1n(1)(n(1)1 − n1)l(2)1)

I2 = D(n2(2)1n(1)(l2 − l(1)2) + n2(1)1n(2)(l2 − l(2)2) + n(1)n(2)
[
n1(l12 − l2)− (n(1)1 + n(2)1)l12

+ n1(l(1)2 + l(2)2)
]

+ n(1)1(n(2)1 − n1)n(2)l(1)2 + n(2)1n(1)(n(1)1 − n1)l(2)2)

I3 = D(n(1)n(2)(n(1) + n(2))l11 + n(1)1n(2)(n− n(2))l(1)1 + n(2)1n(1)(n− n(1))l(2)1
+ n(1)n(2)

[
n1(l1 − (l(1)1 + l(2)1)) + l(2)1n(1)1 − l1n(1)1 + l(1)1n(2)1 − l1n(2)1 − l11n

]
)

I4 = D(n(1)n(2)(n(1) + n(2))l12 + n(1)1n(2)(n− n(2))l(1)2 + n(2)1n(1)(n− n(1))l(2)2
+ n(1)n(2)

[
n1(l2 − (l(1)2 + l(2)2)) + l(2)2n(1)1 − l2n(1)1 + l(1)2n(2)1 − l2n(2)1 − l12n

]
)

I5 = D(l(1)1n1n(2)(n(2) + n1 − n− 2n(2)1) + n(1)1n(2)(l11n+ l1n(2)1 − l1n1 − l11n(2) + l(2)1n1)

+ n(2)1l(2)1(n1n(1) − nn(1)1) + n2(2)1(l(1)1n− n(1)l1) + n(1)n(2)(l1n1 − l11n1 + l11n(2)1 − l(2)1n1))

I6 = D(l(1)2n1n(2)(n(2) + n1 − n− 2n(2)1) + n(1)1n(2)(l12n+ l2n(2)1 − l2n1 − l12n(2) + l(2)2n1)

+ n(2)1l(2)2(n1n(1) − nn(1)1) + n2(2)1(l(1)2n− n(1)l2) + n(1)n(2)(l2n1 − l12n1 + l12n(2)1 − l(2)2n1))

I7 = D(l(2)1nn
2
(1)1 − l1n

2
(1)1n(2) + n(1)n(2)(l1n1 − l11n1 + l11n(1)1 − l(1)1n1)

+ n(1)l(2)1n1(n1 + n(1) − n− 2n(1)1) + n(1)(l1n(1)1n(2)1 − l11n(2)1n(1) − l1n1n(2)1 + l11nn(2)1)

+ n(1)l(1)1n1n(2)1 + l(1)1n1n(1)1n(2) − l(1)1nn(1)1n(2)1))

I8 = D(l(2)2nn
2
(1)1 − l2n

2
(1)1n(2) + n(1)n(2)(l2n1 − l12n1 + l12n(1)1 − l(1)2n1)

+ n(1)l(2)2n1(n1 + n(1) − n− 2n(1)1) + n(1)(l2n(1)1n(2)1 − l12n(2)1n(1) − l1n1n(2)1 + l12nn(2)1)

+ n(1)l(1)2n1n(2)1 + l(1)2n1n(1)1n(2) − l(1)2nn(1)1n(2)1)

and where

D =
1

n(1)n(2)n1(n1 − 2n(1)1 − 2n(2)1 + n(1) + n(2) − n) + n(1)1n(2)(−n(1)1n(2) + nn(1)1)

+ n(2)1n(1)(−n(2)1n(1) + nn(2)1) + n(1)n(2)2n(1)1n(2)1

.
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We conjecture that for κ blocks and two treatments the bias in τ1 from γ1 will be

Bias(τ̂1) = βγ1γ1 + βγ2γ2 =
Γ1

D
γ1 +

Γ2

D
γ2,

where

Γ1 =
κ−1∑
i=1

[n− κ−1∑
q=1,q 6=i

n(q)

 l(i)1n(i)1

κ−1∏
q=1,q 6=i

n(q)

]
+
κ−1∏
i=1

n(i)

[
n1l1 − nl11

−
κ−1∑
i=1

n(i)1l1 +
κ−1∑
i=1

n(i)l11 −
κ−1∑
i=1

n1l(i)1 +
κ−1∑
i=1

n(i)1

κ−1∑
q=1,q 6=i

l(q)1

]

D =
κ−1∑
i=1

[n− κ−1∑
q=1,q 6=i

n(q)

n(i)1
2

κ−1∏
q=1,q 6=i

n(q)

]
+n1

κ−1∏
i=1

n(i)

[
n1 − 2

κ−1∑
i=1

n(i)1

−
κ−1∑
i=1

κ−1∑
q=1,q 6=i

n(i)1nq1 +
κ−1∑
i=1

n(i) − n
]
.

This holds for

κ = 2 : Γ1 = nn(1)1l(1)1 + n(1)

(
n1l1 − nl11 − n(1)1l1 + n(1)l11 − n1l(1)1

)
D = nn(1)1

2 + n1n(1)

(
n1 − 2n(1)1 + n(1) − n

)
;

κ = 3 : Γ1 =
(
n− n(2)

)
n(1)1l(1)1n(2) +

(
n− n(1)

)
n(2)1l(2)1n(1) + n(1)n(2)

[
n1l1 − nl11

−
(
n(1)1 + n(2)1

)
l1 +

(
n(1) + n(2)

)
l11 − n1

(
l(1)1 + l(2)1

)
+ l(1)1n(2)1 + l(2)1n(1)1

]
D =

(
n− n(2)

)
n(1)1

2n(2) +
(
n− n(1)

)
n(2)1

2n(1) + n1n(1)n(2)

[
n1 − 2

(
n(1)1

+ n(2)1 − n(1)1n(2)1/n1 +
(
n(1) + n(2)

)
− n

]
;

κ = 4 : Γ1 =
(
n− n(3) − n(2)

)
n(1)1l(1)1n(2)n(3) +

(
n− n(1) − n(3)

)
n(2)1l(2)1n(1)n(3)

+
(
n− n(1) − n(2)

)
n31l(3)1n(1)n(2) + n(1)n(2)n(3)

[
n1l1 − nl11

−
(
n(1)1 + n(2)1 + n31

)
l1 +

(
n(1) + n(2) + n(3)

)
l11 − n1

(
l(1)1 + l(2)1 + l(3)1

)
+
(
l(1)1 + l(3)1

)
n(2)1 +

(
l(2)1 + l(3)1

)
n(1)1 +

(
l(1)1 + l(2)1

)
n31

]
D =

(
n− n(2) − n(3)

)
n(1)1

2n(2)n(3) +
(
n− n(1) − n(3)

)
n(2)1

2n(1)n(3)

+
(
n− n(1) − n(2)

)
n31

2n(1)n(2) + n1n(1)n(2)n(3)

[
n1

− 2
(
n(1)1 + n(2)1 + n31 −

(
n(1)1n(2)1 + n(1)1n31 + n31n(2)1

)
/n1

)
+
(
n(1) + n(2) + n(3)

)
− n

]
.

Likewise, by replacing treatment 1 to 2 in the expression of βγ1 for the links, we

conjecture that the bias in τ1 from γ2 will be

Γ2 =
κ−1∑
i=1

[n− κ−1∑
q=1,q 6=i

n(q)

 l(i)2n(1)2

κ−1∏
q=1,q 6=i

n(q)

]
+
κ−1∏
i=1

n(i)

[
n1l1 − nl12

−
κ−1∑
i=1

n(i)1l2 +
κ−1∑
i=1

n(i)l11 −
κ−1∑
i=1

n1l(i)2 +
κ−1∑
i=1

n(i)1

κ−1∑
q=1,q 6=i

l(q)2
]
.
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We present all optimal LNDs and NBDs for φ1 in Figures B.1 and B.2 respectively

for the Example 5.4.1. The different optimal arrangements are related to the φ1-

automorphisms.

Figure B.1: All LNDs

Figure B.2: All NBDs
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Table of proportions of edges (connecting 1s to 2s) connecting different treatments. The

columns two and three give the coordinates for the locations of the plotting symbols of

Figure 5.13.

Table B.2: Table for Figure 5.13 (with unique entries)

l12/l βγ1 βγ2 l12/l βγ1 βγ2 l12/l βγ1 βγ2

0.37 0 -1.27 0.48 0.27 0.09 0.59 -0.55 0.36

0.37 -0.18 -1.45 0.48 0.45 0.27 0.59 -0.36 0.55

0.37 0.18 -1.09 0.52 -1.09 -0.91 0.59 -0.18 0.73

0.37 0.36 -0.91 0.52 -0.91 -0.73 0.63 -1.55 -0.27

0.41 -0.09 -1 0.52 -0.73 -0.55 0.63 -1.36 -0.09

0.41 -0.27 -1.18 0.52 -0.55 -0.36 0.63 -1 0.27

0.41 -0.45 -1.36 0.52 -0.36 -0.18 0.63 -1.18 0.09

0.41 0.09 -0.82 0.52 -0.18 0 0.63 -0.82 0.45

0.41 0.27 -0.64 0.52 0 0.18 0.63 -0.64 0.64

0.41 0.45 -0.45 0.52 0.18 0.36 0.63 -0.45 0.82

0.44 -0.73 -1.27 0.56 -1.18 -0.64 0.67 -1.64 0

0.44 -0.36 -0.91 0.56 -1.36 -0.82 0.67 -1.27 0.36

0.44 -0.55 -1.09 0.56 -1 -0.45 0.67 -1.45 0.18

0.44 -0.18 -0.73 0.56 -0.64 -0.09 0.67 -0.91 0.73

0.44 0 -0.55 0.56 -0.82 -0.27 0.67 -1.09 0.55

0.44 0.18 -0.36 0.56 -0.45 0.09 0.67 -0.73 0.91

0.44 0.36 -0.18 0.56 -0.27 0.27 0.7 -1.55 0.45

0.48 -0.82 -1 0.56 -0.09 0.45 0.7 -1.18 0.82

0.48 -1 -1.18 0.56 0.09 0.64 0.7 -1.73 0.27

0.48 -0.64 -0.82 0.59 -1.27 -0.36 0.7 -1.36 0.64

0.48 -0.45 -0.64 0.59 -1.45 -0.55 0.7 -1 1

0.48 -0.27 -0.45 0.59 -0.91 0 0.74 -1.64 0.73

0.48 -0.09 -0.27 0.59 -0.73 0.18 0.74 -1.27 1.09

0.48 0.09 -0.09 0.59 -1.09 -0.18
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C Optimal designs from Chapter 6

Figure C.1: An optimal CRD

Figure C.2: An optimal RBD
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Figure C.3: An optimal RCD

Figure C.4: An optimal RCBD
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Figure C.5: A near-optimal LND

Figure C.6: A near-optimal NBD
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Figure C.7: A near-optimal RCND1

Figure C.8: A near-optimal RCNBD1
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Figure C.9: A near-optimal LND2

Figure C.10: A near-optimal NBD2
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Figure C.11: A near-optimal RCND2

Figure C.12: A near-optimal RCNBD2
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Figure C.13: An optimal RCBD3

Figure C.14: A near-optimal NBD3
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Figure C.15: A near-optimal RCNBD3
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Figure C.16: A near-optimal LND4

Figure C.17: A near-optimal NBD4
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Figure C.18: A near-optimal RCND4

Figure C.19: A near-optimal RCNBD4
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Figure C.20: A near-optimal NBD5

Figure C.21: A near-optimal RCNBD5
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MacArthur, B. D., Sánchez-Garćıa, R. J. and Anderson, J. W. (2007) On automorphism

groups of networks. arXiv: 0705.3215v2.
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