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Abstract

We present an algebraic characterization of both o-minimal and weakly o-
minimal MV-chains by showing that a linearly ordered MV-algebra is (1)
o-minimal if and only if it is finite or divisible, and (2) weakly o-minimal if
and only if its first-order theory admits quantifier elimination in the language
(®,*,0) if and only if Rad(A) is a divisible monoid and A /Rad(A) is either
finite or divisible.
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1. Introduction

A totally ordered structure A in a signature L is called o-minimal, when-
ever every set defined on its domain A by a first-order L-formula ¢(x) is
a finite union of points and open intervals with endpoints in A [19, 20].
The study of o-minimality has led to an extensive and deep study of model-
theoretic, topological and algebraic properties of several classes of ordered
structures, such as ordered divisible Abelian groups, real closed fields, and
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their expansions [20]. The class of o-minimal ordered Abelian groups has been
completely characterized and it coincides with the class of ordered divisible
Abelian groups [19], which also are the only ordered Abelian groups having
elimination of quantifiers in the language of ordered groups (4, —, 0, <) [14].

MV-algebras are a variety of structures that provide the equivalent al-
gebraic semantics for the infinitely valued Lukasiewicz calculus [3]. One of
the most remarkable properties of MV-algebras is their tight relation with
lattice-ordered groups. In fact, the category of MV-algebras, with morphisms
corresponding to object homomorphisms, is equivalent to the category of
Abelian lattice-ordered groups with strong unit [18], with morphisms corre-
sponding to homomorphisms preserving the strong unit. In particular, each
linearly ordered MV-algebra is isomorphic to a structure definable on the
unit interval of a unique (up to isomorphism) ordered Abelian group with
strong unit [2, 3].

Given the connection between linearly ordered MV-algebras and ordered
Abelian groups, it is worth asking if a similar characterization for o-minimal
MV-chains can be given, whether it requires any form of divisibility, and
whether they enjoy quantifier elimination in the language of linearly ordered
MV-algebras Lyy = (B,*,0).

In this work, we achieve this goal and provide a complete algebraic char-
acterization of o-minimal MV-chains:

Theorem 1. Let A be any MV -chain in the language Lyy = (B,*,0). Then
the following are equivalent:

(1) A is o-minimal.
(2) A is finite or divisible.

Unlike ordered groups, however, the class of o-minimal MV-chains cannot
be characterized in terms of elimination of quantifiers in Lyry. In fact, while
each o-minimal MV-chain has a theory that admits quantifier elimination
in Lyy, the converse is not true in general (see the proof of Theorem 2).
To obtain such a characterization, we rely, instead, on the notion of weak
o-minimality.

A totally ordered structure A in a signature £ is called weakly o-minimal,
whenever every set defined on its domain A by a first-order £-formula ¢(x)
is a finite union of convex sets in A [5]. While o-minimal structures are
obviously also weakly o-minimal, the converse is not generally true (see [15]).
Still, in the case of ordered groups, both notions coincide. In particular any



ordered Abelian group G is o-minimal if and only if it is weakly o-minimal,
if and only if it is divisible, if and only if it has elimination of quantifiers in
the language (4, —, 0, <) [15].

As for MV-chains, relying on the concept of weak o-minimality makes
it possible to provide both a model-theoretic characterization in terms of
quantifier elimination and an algebraic characterization.

Theorem 2. Let A be any MV-chain, and let Th(A) be the first-order theory
of A in the language Lyrv = (®,%,0). Then the following are equivalent:

(1) A is weakly o-minimal.
(2) Th(A) has elimination of quantifiers in Lypy .
(3) Rad(A) is divisible, and A/Rad(A) is finite or divisible.

This paper is organized as follows. In the next section, we provide some
background information about MV-algebras, along with the main model-
theoretic concepts that will be used in this work. In Section 3, we prove
that certain classes of MV-chains have quantifier elimination in the language
(®,",0). In Section 4, we shed light on the connection between quantifier
elimination and weak o-minimality, and give a full algebraic characterization
of both properties, leading to a proof of Theorem 2. Finally, on the basis of
those results, we offer a characterization of o-minimality by giving a proof of
Theorem 1.

2. Background Notions

In this section, we introduce the basic background notions we will make
use of in the rest of the paper. An extensive and in-depth treatment of
MV-algebras can be found in [3, 9]', while, for a thorough and detailed
presentation of Model Theory, the reader is advised to consult [10].

2.1. MV-Algebras

Definition 3. An MV-algebra A is a structure (A, ®,*,0) of type (2,1,0),
such that the following axioms are satisfied for every x,y € A:

'Notice that some of the results mentioned in this section only refer to the linearly
ordered case. However, proper generalizations can be found for MV-algebras that are not
necessarily totally ordered. The interested reader can consult [3, 9] and the references
therein.
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The class of MV-algebras forms a variety MV that is is generated by the
algebra [0, 1]yy = ([0, 1], ®,*,0) over the real unit interval (see [2, 3]), where
x @y is interpreted as min(x + y, 1) and x* is interpreted as 1 — x.

On each MV-algebra A we define
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In the MV-algebra over [0, 1],
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For any two elements z,y € A, we write x < y iff x © y* = 0. It follows
that < is a partial order. Every MV-algebra where the order relation < is
linear is called an MV-chain. Over [0, 1]yry, < coincides with the usual order
over real numbers.

There exists a strong connection between MV-chains and ordered Abelian
groups. Indeed, let G = (G, +, —, 0g, <) be any ordered Abelian group, and
for some positive element u € G, let

Gu)={x|z€Gand 0g <z < u}.
Define over G(u) the operations
r @y = min(u, x + y); rFi=u— .

Then, the structure I'(G,u) = (G(u),®,",0q) can be easily seen to be an
MV-chain [2].

Conversely, for any linearly ordered MV-algebra A = (A, ®,*,0) define a
structure =(A) = (Z(A), +, —, 0z(a), <=z(a)) Where

[1]

(A) ={(n,z) [n€Z,x c A/{1}},

and OE(A) = (O, 0),
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The structure Z(A) can be easily shown to be an ordered Abelian group,
where (1,0) is a strong unit [2] (i.e. for each x € Z(A), there exists an n such
that z <g(a) n(1,0)).

Proposition 4 ([2]). If A is an MV-chain, the mapping x — (0, ), for all
x € A/{1}, and 1+ (1,0), is an isomorphism between A and I'(Z(A), (1,0)),
and the element (1,0) € Z(A) is a strong unit for =(A). Moreover, given an
ordered Abelian group G with a strong unit u, Z(T'(G,u)) is isomorphic to

G.

The above connection between MV-chains and ordered Abelian groups with
strong unit goes well beyond the linearly ordered case. In fact, Mundici
[18] proved that there exists an equivalence between the category of MV-
algebras with homomorphisms and the category of lattice-ordered Abelian
groups with strong unit, with homomorphisms preserving the strong unit.

Definition 5. An MV-chain A is called divisible when A 2 T'(G,u) and G
1s an ordered divisible Abelian group.

Given an MV-algebra A, a nonempty set I C A is called an ideal if the
following properties are satisfied for all z,y € A: (1) x <y and y € I imply
xe€l;(2)x,y €l implieszx @y € I. An ideal [ is called properif I # A.
An ideal I is maximal iff it is proper and there is no proper ideal J of A
such that I C J. An MV-algebra is simple, if {0} is the only proper ideal.
Moreover, every simple MV-chain is isomorphic to a subalgebra of [0, 1]y
(see [3]).

Definition 6. The radical of an MV-algebra A, denoted by Rad(A), is the

intersection of the maximal ideals of A.

For every MV-chain A, A/Rad(A) is a simple MV-chain isomorphic to a
subchain of [0, 1]yrv. An MV-chain A is called radical retractive iff there is a



homomorphism §: A/Rad(A) — A such that p o f is the identity map, and
p is the canonical homomorphism from A onto A/Rad(A).

Notice that (Rad(A), ®,0) is a monoid.

Definition 7. Rad(A) is called divisible when (Rad(A), ®,0) is divisible as
a monoid.

Given an element z in an MV-algebra A, ord(x), the order of x, is defined
to be the smallest integer such that na = 1, if such an n exists, and ord(z) =
oo otherwise. Every MV-chain A has only one maximal ideal that coincides
with Rad(A), which is exactly the set {x € A | 2 # 0,nx < z*}, for all

n € N.
1 -1
Snz{o,—,...," ,1}.
n n

Let
The structure S,, = (S, ®,",0), where & and * are the restrictions to S,, of
the operations defined over [0, 1]yv, is a called a finite MV-chain.

Definition 8. Let A be an MV-chain. The order of A is defined by
ord(A) =niff A =S,.

Whenever A 22 S,,, ord(A) = co.
The rank of A is defined by

rank(A) = ord(A/Rad(A)).

MV-chains of finite rank were characterized by Komori in [12] (see also
[3]), distinguishing between simple and non-simple structures. Simple MV-
chains of finite rank are exactly finite MV-chains.

Proposition 9 ([12]). Let A be a simple MV -chain of rankn. Then A = S,,.

Let ZXG be the lexicographic product of the group of integers Z and an
ordered Abelian group G. It is easily seen that A = I'(ZxG, (n, g)), where
g € G, is an MV-chain [3]. Moreover,

Rad(A) = {(0,2) [0 <z € G} #{(0,0)},

and A is a non-simple MV-chain of rank n. All non-simple MV-chains of
finite rank are exactly of this form:



Proposition 10 ([12]). A is a non-simple MV-chain of rank n iff A =
[(ZXG,(n,g)), for some ordered Abelian group G.

Non-simple radical retractive MV-chains of finite rank play a special role. In
fact we have:

Proposition 11 ([6, 12]). Let A be a non-simple MV-chain of rank n. A
is radical retractive iff A = T'(ZXG, (n,0)), for some ordered Abelian group
G. Moreover, every non-simple MV -chain of rank n is embeddable into a
non-simple radical retractive MV -chain of the same rank.

For a non-simple chain I'(ZX G, (n, g)), the embedding into its related radical
retractive structure I'(ZX G, (n,0)) is given by the map

h(z,y) = (z,ny - zg)

(see [6]). Notice that when G is an ordered divisible Abelian group, the
mapping h actually is an isomorphism.

Proposition 12. Let A = I'(ZXG, (n,g)) be any non-simple MV-chain of
rank n, where G is an ordered divisible Abelian group. Then, A is isomorphic
to the radical retractive MV -chain B = I'(ZxG, (n,0)).

Proof. We know that h(z,y) = (x,ny — zg) is an embedding from A into B.
It is easy to see that the mapping f(z,y) = (x, (y + xg)/n) is an embedding
from B into A, and, moreover, the composition f o b coincides with the
identity mapping. O

As shown by Komori in [12], every proper subvariety of MV-algebras is
generated by a finite set of MV-chains of finite rank:

Theorem 13 ([12]). IfV is a proper subvariety of MV, then there exists two
finite sets X andY of integers > 1, such that X UY is non-empty and

V=V({S,m|me XYU{T(ZXZ, (n,0)) | necY}).
2.2. Model-Theoretic Notions

Definition 14. Let Th be a first-order theory in some language L. Then:

(1) We say that Th admits elimination of quantifiers (QE) in L if for every
formula ¢(T) there is a quantifier-free formula (T) that is provably
equivalent to ¢(T) in Th.



(2) Th s said to be model-complete if every embedding between models of
Th is elementary, i.e.: for any A,B |= Th, every embedding f : A — B,
every L-formula ¢(x1,...,Ty), and aq,. .., ay € A,

A Edlay,...,an) iff BE o(f(ar),. .. flan)).
(3) Two L-structures A, B are said to be elementarily equivalent if, for
every L-sentence ¢, A = ¢ iff B = ¢.
(4) Given a structure A in a signature L, a set X C A is said to be

(parametrically) definable in A, if there exists a formula ¢(z) in L,
with parameters from A, such that X ={a | A = ¢(a)}.

Proposition 15 (Corollary 3.1.6, [17]). Let Th be a theory in a given lan-
guage L. Th has quantifier elimination if and only if for all quantifier-free
formulas ¢(v,w), if M,N = Th, A is a common substructure of M and N,
a € A, and there is b € M such that M = ¢(a,b), then there is c € N such
that N = ¢(a, ¢).

Definition 16 (O-Minimality [20, 19]). A linearly ordered structure A =
(A, <,...) is said to be o-minimal if every parametrically definable subset
of A is a finite union of points and open intervals in A, with endpoints in
AU {—00,4+00}. A first-order theory Th is said to be o-minimal if every
model of Th is o-minimal.

Definition 17 (Weak O-Minimality [5, 15]). A linearly ordered structure
A = (A <, ...) is said to be weakly o-minimal if every parametrically defin-
able subset of A is a finite union of convex sets in A. A first-order theory Th
1s said to be weakly o-minimal if every model of Th is weakly o-minimal.

3. Quantifier Elimination

In this section, we are going to see that the structures belonging to certain
classes of MV-chains have QE in the language Lyv = (@,%,0). Notice that
the order relation < is actually definable in Lyy. In fact, in every MV-chain
A, for all z,y € A:

r <y iff =(y* @&z = 0%).

The goal is to prove that, given an MV-chain A, if Rad(A) is divisible
and A/Rad(A) is finite or divisible, then Th(A) has QE in Lyyv. We begin
by showing that any MV-chain A satisfying this property belongs to one of
the following classes:



(a) finite MV-chains;

(b) non-simple MV-chains of finite rank I'(ZXG, (n,0)), where G is a or-
dered divisible Abelian group;

(c) divisible MV-chains.

Lemma 18. Let A be an MV-chain.

(1) If Rad(A) is divisible and A/Rad(A) is finite, then either A = S,, or
A =T(Z x G, (n,0)), where G is divisible.

(2) If Rad(A) is divisible and A/Rad(A) is divisible, then A is divisible.

Proof. (1) If A/Rad(A) is finite, then, trivially, A has finite rank. In
particular, if Rad(A) is divisible, then either
(a) Rad(A) is {0} and A is simple and so, by Proposition 9, it is
isomorphic to a finite MV-chain S,,, or
(b) by Proposition 10, A 2 T(Z x G, (n, g)), with G divisible, which
in turn, by Proposition 12, is isomorphic to I'(Z x G, (n,0)).

(2) Suppose that Rad(A) is divisible and A/Rad(A) is divisible. Since
A = T'(G,u), for some ordered Abelian group G, without any loss of
generality, we treat A directly as I'(G, u), i.e. we assume A to be the
MV-chain defined over the interval [0,u] in G.?

Our aim is to prove that G is divisible. In fact, if that is the case, then

A is divisible as well.
By [3, Theorem 7.2.2], the mapping

q:1—q(/)={r € G| min(max(z, —x),u)) € I}

defines an isomorphism between the set of ideals of A and the set of
ideals of G. By [3, Lemma 7.3.2], the set

q(Rad(A)) = {z € G | max(z, —z) € Rad(A)}

is the ideal of G associated to Rad(A) under g, and is an ordered
subgroup of G. In particular, Rad(A) coincides with the set of non-
negative elements of q(Rad(A)), i.e.

Rad(A) = {z € q(Rad(A)) | z > 0}.

ZNotice that this fact is also a consequence of a more general result from [7].
3This proof makes heavy use of several results from [3]. The reader interested in the
details should consult the references mentioned above, and, in particular, [3, Chapter 7].
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Consequently, if Rad(A) is a divisible monoid, q(Rad(A)) is a divisible
subgroup of G.
By [3, Theorem 7.2.4],

A/Rad(A) = T(G/q(Rad(A)),u/q(Rad(A))).
Since, A/Rad(A) is divisible, G/q(Rad(A)) is a divisible group.

The functor I' (along with its adjoint =) defines an equivalence be-
tween the category of ordered Abelian groups with strong unit and
the category of MV-chains, both with homomorphisms (see Section 2
and [3]). So, given the canonical homomorphism p : A — A/Rad(A),
there exists a unique homomorphism v : G — G/q(Rad(A)) such that

[(v) =p:

A—" AJRad(A)

A B

G ———— G/a(Rad(A))

As shown above, G/q(Rad(A)) is divisible. Therefore, for every z € G
and for every n > 1, there exists some y € G, such that v(z) = n(v(y)).
This means that x — ny € q(Rad(A)). Since q(Rad(A)) is divisible,
there exists some z such that  — ny = nz, and so x = n(y + 2).
Consequently, G is a divisible group, which implies that A is a divisible
MV-chain.

O

3.1. Finite MV-Chains

Recall that a structure A is called ultrahomogeneous whenever every iso-

morphism between any of its subalgebras can be extended to an automor-
phism of A. A finite structure is ultrahomogeneous if and only if its first-order
theory has QE (see [10, Corollary 8.4.2]).

If A is a finite MV-chain S,,, in Lyv, then it is easy to check that A is

ultrahomogeneous. Indeed, the only isomorphism between subalgebras of S,,
is the identity mapping. Consequently, for any finite MV-chain S,,, Th(S,,)
has quantifier elimination in Lyy.

10



This result was first given by Baaz and Veith in [1]. Here we offer a
different and direct proof of the same fact.

Lemma 19. Let A be any finite MV-chain S,,. Th(A) has quantifier elimi-
nation in Lyrv.

Proof. We are going to see that, in every finite MV-chain S,,, each single

element of ) )
S, = {o,—,...,”_ ,1}
n n

is definable by a quantifier-free formula.
We show that for each 0 < i < n, where ¢ and n are coprime, there exists
an MV-term p; ,(x) such that

r=2<
n

if and only if pin(z) =0.

If + and n are not coprime, then

x=1= if and only if pim(x) =0,

where j and m are coprime and + = L.
n m

Let ¢, and r;, denote the quotient and the remainder, respectively, of
the Euclidean division of n by .
For i = 0, trivially,
Pon(r) = 2.
When ¢ =1,
pia(z) =d(((n —1)z)", z).
It is easy to check that

r=1
n

if and only if d(((n —1)z)*, z) = 0.
For i« > 2, the proof proceeds by induction. For ¢ and n coprime, let
Pin(®) = P((ri)m) ((@in) 7))

Notice that r;,, <.
So, if i = 2, then

P2n(®) = pra((@in)”) = d(((n = 1)((¢in)"))"; (gin2)")-

For ¢ > 2, the result follows by induction.

11



Finally, since every set X defined over S, by a formula ¢(Z) in Lypy
includes only finitely many elements, the above shows that ¢(Z) is equivalent
to a finite union of equations p; ,(x) = 0 each defining an element of X. This
concludes the proof. n

3.2. Non-Simple MV-Chains of Finite Rank

Quantifier elimination also holds for all those MV-chains A of finite rank
that are isomorphic to some MV-chain I'(ZX G, (n,0)) of an ordered Abelian
group ZxG, where G is divisible. Any such A 2 T'(ZxG, (n,0)) belongs to
the variety V generated by I'(ZxZ, (n,0)) (see, [6, Theorem 7.2]). The theory
Th(A) of ['(ZXG, (n,0)) is axiomatizable in Ly by taking the universal
closure of the equations defining V, the sentence defining the linearity of the
order relation <, the sentence

dr |z -drx=1 ﬂ(m@---@x<1>,
f ————
n+

n

(where M denotes the classical conjunction), and the sentences

Vady (n+ Dz < 1) — (z = my),

for all m > 1, which state that the set of elements {(0,z) | = € G} is
m-divisible.

To show quantifier elimination for Th(A), we are going to see that it is
possible to interpret Th(A) into the theory of the ordered Abelian groups
7.XG, where G is an ordered divisible Abelian group. Komori [11] showed
that the theory Th(ZXG) of any such group has QE in the language of
Presburger Arithmetic (see [17])

<+7 - < 07 17 {m|}m€N>7

where each m| is a unary predicate denoting the elements divisible by m, and
1 is interpreted as the element (1,0).4

We introduce an appropriate notion of interpretation, and show that
Th(A) can be translated into Th(ZxG). This will make it possible to prove
that Th(A) inherits QE from Th(ZxXG).

4The same result was obtained by Weispfenning in [21, 22] as a consequence of a general
characterization of quantifier eliminable ordered Abelian groups.

12



Let £ be a signature of the form (<, fi,..., fu,c1,...,cn), where each f;
is a function symbol and each ¢; is a constant symbol. £ will be assumed to
include no relation symbol but <. By an unnested atomic formula in £ we
mean one of the following formulas:

(i) z=y,  (z<y)
(i1) zx=c¢, (x < ), for some constant symbol ¢ € L;
(tii) f(T)=vy, (f(T)<y), forsome function symbol f € L.

A formula is called unnested if all its atomic subformulas are unnested. Then
it is an easy exercise to see ([10]):

Lemma 20. For a first-order language £ = (<, f1,..., [, C1y .-+, Cm), €vETY
formula is equivalent to an unnested formula.

The following definition sets what it means for a theory Th; in the lan-
guage L; to be interpretable in a theory Thy in the language Ls.

Definition 21. Let Thy and Thy be two theories in the languages L1 and Lo,
respectively. Thy is interpretable in Thy if

(1) there exists an Lo-formula x(z),

(11) there exists a map § from the set of unnested atomic L-formulas into
the set of Lo formulas,

(7i1) there exists a map x from the set of models of Thy into the set of models
of Thay,

such that, for every M |= Thy, there exists a bijection
bv: M — {a [ M" = x(a)}

from the domain of M into the set defined by x(z) over the domain of M,
and, for allb € M and each unnested atomic L,-formula ¢,

ME¢(b) iff M= ¢ (hu(D)).

The above definition together with Lemma 20 yields that the interpretation
of Thy into Thy can be extended to arbitrary formulas.

13



Lemma 22. Let Thy and Thy be two theories in the languages L1 and L,
respectively. Suppose that Thy is interpretable in Thy. Then, for each L-
formula ¢(T) there exists an Lo-formula ¢*(T) so that, for every M = Thy
and allb e M,

ME¢(b) iff M| ¢ (hm(D)).
Then, we can easily show:

Lemma 23. Let A be an MV-chain of finite rank such that A = T(ZX G, (n,0))
where G is an ordered divisible Abelian group. Th(A) is interpretable into
Th(ZXG).

Proof. We know that every B = Th(A) is (up to isomorphism) an MV-
chain of the form I'(ZxH, (n,0)) where H is an ordered divisible Abelian
group. Moreover, by [12], ZxH is a model of Th(ZxG). The domain of B
is definable in (+, —, <, 0,1, {m|}men) over ZXH, with the formula

X(@):=((x=0)V(xr=nl)V((0<x)A (z <nl)),
and hg corresponds to the isomorphism between B and I'(ZXH, (n,0)).
It is trivial to see that unnested formulas in Ly can be translated into

formulas in (+,—,<,0,1,{m|}men). Consequently, Th(A) is interpretable
into Th(ZXG). O

Now, we can prove:

Lemma 24. Let A be an MV-chain of finite rank such that A = T'(ZX G, (n,0))
where G is an ordered divisible Abelian group. Th(A) has quantifier elimi-
nation in Lyv.

Proof. Let C,D |= Th(A) and B be a common substructure of C and D.
Suppose that for all quantifier-free formulas ¢(v,w), b € B, there is ¢ € C
such that C = ¢ (1_7, c). By Proposition 15, we just need to show that there
is d € D such that D |= ¢ (b, d).

Now, C = I'(ZxH, (n,0)) and D = I'(ZxI, (n,0)), where H and I are
ordered divisible Abelian groups. Since B C C, D, then B is isomorphic to
the MV-chain I'(J, (n,0)) of an ordered subgroup J of ZXH and ZX1I, with
the same strong unit (see [3]).

By Lemma 23,

C = ¢(b, ) iff ZxXH = ¢*(b, c).

14



Th(ZXG) admits elimination of quantifiers in (4, —, <, 0, L {m|}men), and
so by Proposition 15 there is d € ZXI such that ZxI |= ¢*(b,d). By Lemma
23,

D |- 6(b,d) iff Z51 = (b, d),
and consequently, by Proposition 15, Th(A) has QE. ]

3.3. Divisible MV-Chains

Finally, we deal with the theory of divisible MV-chains, i.e. those struc-
tures ['(G, u), where G is an ordered divisible Abelian group and u a strong
unit (see Definition 5). Divisible MV-chains are the models of the the-
ory obtained by adding to the first-order theory of MV-chains the sentence
VaVy(x <y Vy < z) plus the sentences

Vedy x = py, Jz (p— 1a = z*.

for each prime number p°. Note that these two sentences may be replaced
by a single one: Vz3y((p — 1)y = = © y), again for every prime number p.
The fact that for any divisible MV-chain A, Th(A) has QE in Ly is

well-known and different proofs can be found in [1, 4, 16].

Lemma 25. Let A be any divisible MV -chain. Then Th(A) has quantifier
elimination i Ly .

We now prove that certain algebraic conditions are sufficient to guarantee
quantifier elimination in Ly for an MV-chain A.

Theorem 26. Let A be an MV-chain, and suppose that one of the following
conditions holds:

(1) Rad(A) is divisible and A/Rad(A) is finite.
(2) Rad(A) is divisible and A/Rad(A) is divisible.

Then Th(A) has quantifier elimination in Lyry .

5This axiomatization of the theory of divisible MV-chains was first given by Lacava
and Saeli in [13].
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Proof. By Lemma 18, we know that: (a) if Rad(A) is divisible and A /Rad(A)
is finite, then either A is isomorphic to a finite MV-chain S,,, or A = T'(Z x
G, (n,g)), where G is divisible; (b) if Rad(A) is divisible and A/Rad(A) is
divisible, then A is divisible as well.

Lemma 19, Lemma 24 and Lemma 25 show that in all the above cases
Th(A) has QE in Lyy. O

In the next section, we will see that the above conditions are not only
sufficient, but also necessary for QE in Lypv.

4. Weak O-Minimality and O-Minimality: A Full Characterization

In this section, we make the link between QE and weak o-minimality clear,
and give a full characterization of the latter for MV-chains. The characteri-
zation of o-minimal MV-chains will be built upon those results.

The next lemma shows that all MV-chains whose theory in Ly has QE
must be weakly o-minimal.

Theorem 27. Let A be an MV-chain. If Th(A) has quantifier elimination
mn Ly, then A is weakly o-minimal.

Proof. We begin by showing that every one-variable quantifier-free formula
¢(z) in Lyy defines a finite union of convex sets.

Indeed, every ordered Abelian group can be embedded into a divisible
one (i.e. its divisible hull), consequently, every MV-chain a A is embeddable
into a divisible MV-chain B. Let f : A — B be such an embedding. Since
an ordered Abelian group is divisible if and only if it is weakly o-minimal
[15], B is trivially weakly o-minimal as well. Consequently, {(z) defines over
B a finite union of convex sets. Embeddings between structures preserve
quantifier-free formulas (see [10, Theorem 2.4.1}), and so, for all a € A:

A |=&(a) iff B = ¢(F(a)).

Therefore, (x) defines over A a finite union of convex sets.

Now, if Th(A) has QE in Ly, then ¢(z) is equivalent to a quantifier-
free formula ¢ (x), which, by the above, defines a finite union of convex sets.
Consequently, A is weakly o-minimal. m
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From Lemma 26 and Theorem 27, we obtain that whenever Rad(A) is
divisible and either A/Rad(A) is finite or divisible, then A is weakly o-
minimal. We now proceed to proving the converse. The proof requires,
again, some preliminary lemmas.

Lemma 28. Let A be an MV -chain. If A is weakly o-minimal, then Rad(A)
15 divisible.

Proof. Suppose that Rad(A) is not n-divisible for some n, and let = be a
positive element not divisible by n. Then, the sequence

(1) 0<z<nr<(n+l)z<2nzr<n+lz<...<knr<(knt+l)z<...

is an infinite alternating sequence of n-divisible and non-n-divisible elements
of Rad(A). Let ¢,(y) be the formula Jw y = nw defining over A the set of
n-divisible elements. If A were weakly o-minimal, ¢, (y) would define on A
a finite union of convex sets J; X;. So there would be a set X, containing
infinitely many n-divisible elements of the sequence (). If that was the case,
then X; would contain also elements that are not n-divisible. Therefore, A
cannot be weakly o-minimal. O]

Lemma 29. Let A be an MV-chain. If A is weakly o-minimal, then A /Rad(A)
is finite or divisible.

Proof. Suppose that A/Rad(A) is infinite and not n-divisible for some n.
Recall that, up to isomorphism, A /Rad(A) is a dense subalgebra of [0, 1]yy
(see [3, Proposition 3.5.3]). We show that both n-divisible elements and
non-n-divisible elements are dense in A/Rad(A).

Notice that there exist arbitrarily small, non-zero n-divisible elements of

A/Rad(A): in fact, for every k there is an element y € A/Rad(A) with

0<y< #, so 0 < ny < % and ny is n-divisible. Then, since n-divisible

elements are closed under multiples, the n-divisible elements of A/Rad(A)
are dense in A/Rad(A).

Similarly, we have arbitrarily small non-n-divisible elements. In fact, we
prove that for every k > 1, there is a non n-divisible element smaller than
=. Indeed, let z be a non n-divisible element of A/Rad(A). If z < 7, there
is nothing to prove. Suppose then that z > % By density we have an n-
divisible d such that z@% <d<zs500<20d< %andz6dis not

k
n-divisible.
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Therefore, non-n-divisible elements are also dense in A/Rad(A): given
b € A/Rad(A) and given k, we can take a non-n-divisible e < 5 and an
n-divisible d with b@i <d< b@ﬁ, hence b@% <d®de< b@%7 and d®e
is not n-divisible.

The next claim will enable us to prove that A cannot be weakly o-
minimal.

Claim 1. Let A be an MV-chain and p be the canonical homomorphism
from A onto A/Rad(A). If A is weakly o-minimal, then, for all x € A, x is
n-divisible if and only if p(z) € A/Rad(A) is n-divisible as well.

Proof of Claim 1. Let ¢,(y) be the formula Jw y = nw defining the set of
n-divisible elements. Recall that in first-order structures positive formulas
(i.e. formulas that do not contain any negated subformula) are preserved
under surjective homomorphisms (see [10, Theorem 2.4.3]). Consequently,
for all a € A,

if A E ¢n(a) then A/Rad(A) = én(p(a)).

So, if a is an n-divisible element of A, p(a) must be n-divisible in A/Rad(A).

To prove the converse, we follow the proof of Lemma 18(2). We know
that there exists a unique homomorphism v : G — G/q(Rad(A)) such that
I'(b) = p. Suppose then that p(z) € A/Rad(A) is n-divisible. Clearly,
this means v(z) is n-divisible as an element of G/q(Rad(A)). Therefore,
v(z) = n(v(y)), and z — ny € q(Rad(A)). Since A is weakly o-minimal, by
Lemma 28, Rad(A) is divisible, which implies, following again Lemma 18(2),
that q(Rad(A)) is a divisible subgroup of G. Then, there exists some z such
that  — ny = nz, and so * = n(y + z). Consequently, z is n-divisible as
an element of G. It is easily seen that x = n(y @ z), and, therefore, x is
n-divisible in A. 0

To conclude the proof of Lemma 29, recall that we are assuming that
A /Rad(A) is infinite and not n-divisible for some n. We show that A cannot
be weakly o-minimal. In fact, if A was weakly o-minimal, ¢,,(y) would define
a finite union of convex sets [ J;*, X;, and, similarly, its negation =¢, (y) would
define a finite union of convex sets |J;*%, ¥;.

Since A/Rad(A) is infinite, p is a surjective homomorphism, and

ol
i=1 j=1
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there must be a set J either from {Xj,..., X,,, } or from {Yy,....Y,,,} con-
taining infinitely many elements, whose image p(J) is a set also containing
infinitely many elements.

Therefore, if A was weakly o-minimal, by Claim 1, p(J) would contain
only elements that are either all n-divisible or all non-n-divisible. This clearly
contradicts the fact that both the set of n-divisible and the set non-n-divisible
elements are dense in A/Rad(A). Hence, A cannot be weakly o-minimal. [

Therefore, we are now able to prove:

Theorem 2. Let A be any MV -chain, and let Th(A) be the first-order theory
of A in the language Lyry = (B,",0). Then the following are equivalent:

(1) A is weakly o-minimal.
(2) Th(A) has elimination of quantifiers in Ly .
(3) Rad(A) is divisible, and A/Rad(A) is finite or divisible.

Proof. Lemma 26 shows that if Rad(A) is divisible and A/Rad(A) is finite
or divisible, then Th(A) has QE in Lyy. Theorem 27 proves that whenever
Th(A) has QE in Lyy, A is weakly o-minimal. Finally, Lemma 28 and

Lemma 29 show that whenever A is weakly o-minimal, Rad(A) is divisible
and A/Rad(A) is finite or divisible. O

We can now proceed to present a characterization of o-minimal MV-
chains. Notice that since every o-minimal structure is also weakly o-minimal,
by Theorem 2, every o-minimal MV-chain A has a theory Th(A) with elim-
ination of quantifiers in Lyy, and is such that Rad(A) is divisible, and
A /Rad(A) is finite or divisible. However, the converse is not true. In fact,
as shown in the proof of Theorem 1, every non-simple MV-chain of finite
rank is not o-minimal, in spite of having QE in Lyry.

Theorem 1. Let A be any MV-chain in the language Lyy = (B,*,0). Then
the following are equivalent:

(1) A is o-minimal.
(2) A is finite or divisible.

Proof. Suppose that A is o-minimal. Then, trivially, A is weakly o-minimal,
and, by Lemma 28 and Lemma 29, this means that Rad(A) is divisible and
A/Rad(A) is finite or divisible. Consequently, by Lemma 18, A is either
divisible, or finite, or is a non-simple MV-chain of finite rank. The latter,
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however, is not possible. In fact, suppose that A = I'(ZXG, (n,g)). The
formula
(n+ 1)z <1

defines a set that exactly coincides with Rad(A), which obviously is a convex
set but does not have an endpoint in A. Therefore, every non-simple MV-
chain of finite rank cannot be o-minimal. Consequently, if A is o-minimal,
it is either finite or divisible.

Conversely, if A is finite then it trivially is o-minimal. Moreover, if A
is divisible then o-minimality immediately follows from the fact that A is
isomorphic to the MV-chain I'(G, u) for some ordered divisible Abelian group
G (with strong unit), which is o-minimal.

This concludes the proof of the theorem. O
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