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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
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Doctor of Philosophy

by Meng Tian

Domain specific code generation improves software productivity and reliability. How-
ever, these advantages are lost if the generated code needs to be manually modified
or adapted before deployment. Thus, the systematic extensibility of domain specific
code generation becomes increasingly important to ensure that these advantages are
maintained. However, the traditional extension approaches, like round-trip engineer-
ing, have their limitations in supporting certain code customization scenarios. In this
thesis, we address this problem with aspect-oriented techniques. We first show that
the meta-model and the code generator can be used to derive a domain specific aspect
language whose join points are based on domain specific elements. We then show that
a corresponding aspect weaver can be derived as well, provided a proper model tracing
facility can be made available for the code generator. We demonstrate the viability of
our approach on several concrete domain specific code generation case studies, respec-
tively with the AUTOFILTER code generator, the ANTLR parser generator, and the
CUP parser generator. We successfully construct a few Java program analysis tools as

a result of these case studies.
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Chapter 1

Introduction

Model based software engineering approaches, such as Model Driven Engineering (MDE)
[1, 2], have raised the abstraction level at which engineers develop software from code
to models in specific domains, and have brought about many advantages in productiv-
ity and reliability over traditional software development [3]. These advantages mainly
come from the use of automatic code generation techniques, which enable the systematic
and reliable transformation of models into code and provide a “correct-by-construction”
guarantee [4]. This allows domain experts to ignore implementation details and to fo-
cus on the more abstract models by automatically bridging the gap between different
abstraction levels. Different abstraction gaps lead to different applications of code gen-
eration. For instance, a code generator that maps between a code template and its
instantiated code blocks can be used as a background supporting tool for the corre-
sponding wizard of an IDE. Although code generation techniques can be utilized in a
broad range of applications, our discussion about code generation in this thesis will fo-
cus on its application in model based software engineering approaches, in particular, the

code generation from domain specific models.

Domain Specific Code Generation (DSCG), as a specialized model based code gener-
ation approach, provides an automatic mapping between domain specific models and
their corresponding implementation. Compared with models that are built in a general
purpose modelling language, domain specific models are normally more effective and less
complicated [5]. This is because they are built with the elements that are specifically
used in the target domain, which would otherwise need to be built from scratch with
more general and basic elements. With the help of DSCG, domain experts can build
models directly with domain specific concepts that they are familiar with. Therefore,
DSCG has become increasingly popular over the last decade. In DSCG, code genera-
tors encapsulate the details of the mapping between the domain specific models and the
generated code. These details are normally based on the best practice in similar code
generation scenarios. As a result, DSCG not only increases the productivity of software

developers significantly, but also further raises the quality of the generated code [3].

1



2 Chapter 1 Introduction

On the other hand, DSCG also has its limitations. In order to maintain the “correct-
by-construction” guarantee, the code that is automatically generated from DSCG is, in
general, expected to remain unchanged once it is generated. However, there might be a
multitude of different reasons to introduce modifications to the generated code to make
it work well. For instance, the exposed interface of a component needs to adjust due to
a recent change of a dependent library, or the database communication layer needs to be
modified since a database migration has just been launched on a user’s demand. These
modifications may vary greatly in the scope or the complexity of the affected code, for
example, from renaming a single variable to a complete refactoring of the framework of
the code, or even to migrating to a new implementation platform. Figure 1.1 shows a

general overview of the scenario.

Domain Specific
t Model

input

\ 4
. . Customization
Domain Specific Requirement

Code Generator _—

|

|

.
-

/) ————

generate < >
Customizatior> '
Originally Expected
Generated Code Code
Match % Match v

Code Application
Environment

FIGURE 1.1: Generated code often needs customization before deployment

However, if this kind of arbitrary modification gets directly introduced to the generated
code, no matter how trivial the modification may be, it will break the synchroniza-
tion previously maintained between the domain specific model and its generated code.

The “correct-by-construction” guarantee will disappear due to the syntactic or semantic
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alteration of the generated code. The quality of the modified code will thus be uncer-
tain, unless the modification can be somehow verified or validated. In addition, DSCG
is often used in complex system development, which could make the modification time-
consuming and error-prone. For instance, if a widely used interface of an internal library
in a complicated system gets changed, the modification to the generated code would en-
tail updates in many scattered code segments. Unfortunately, these modifications are
sometimes necessary and inevitable. We cannot simply prohibit all modifications to the

generated code.

In order to support the full software development life-cycle and to accommodate un-
foreseen feature requests or changes to the existing system, the code generation process
needs to be able to adapt systematically and efficiently. Researchers have addressed
different extension approaches [3, 6], which can be categorized into two groups: the pure
model based philosophy and model round-trip engineering approach. Unfortunately,

both of them have their limitations in supporting different DSCG extension scenarios.

In a pure model based philosophy, models are regarded as first class citizens, and code is
considered as a subsidiary artifact that can be easily generated at any point. Therefore,
the system evolution process follows a “model change = code re-generation” style as
shown in Figure 1.2. In principle, this style is elegant and well supported. In practice,
unfortunately, it does not always work well, because it requires the models to be detailed
enough to reflect the changes, while many changes (e.g. adding logging functionality or
code refactorings) can be very difficult to express in the model level. A natural remedy
for this is to enrich the domain modelling language, so that it can be more expressive
and able to describe supplementary details in models. However, this can lead to the
pollution of the model with concepts in a lower abstraction level and, eventually, to a
breakdown of the abstraction hierarchy. Moreover, a pure model based approach requires
meta-model updates, which are supported much less well than model updates, and are
sometimes even impossible. For example, updating a meta-model is not appropriate if
one cannot update the code generator to account for the meta-model updates. Besides,

such updates can lead to incompatibilities between different meta-model versions.

code generation

Model : » Code

+Ay

code generation
Model’ gf ",/ Code’

A

FIGURE 1.2: System Evolution in A Pure Model Based Philosophy.

The other approach is to directly modify the generated code via some cost effective
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solutions, and then rebuild the synchronization between the modified code and the model
after the code modification. This approach is called the Model Round Trip Engineering
(MRTE) [7, 8] approach. The basic idea is to rebuild the synchronization by enabling
a reverse engineering process that derives an evolved domain specific model from the
modified code as shown in Figure 1.3. This approach implicitly requires that it is always
possible to find or derive a reverse process of the target code generation, so that a
bidirectional (ideally bijective) mapping between domain specific models and code can
be established. Unfortunately, in practice the domain specific code generation is a

general, often non-injective, transformation of domain specific models into code.

code generation

Model ; » Code

+A.

ti
Model, <reverse g]S?era on Code,

FI1GURE 1.3: System Evolution by MRTE.

On the other hand, MRTE was originally introduced to address model update problems
in model-to-model transformations, where artifacts on each side are equally important
core products. However, our scenario is model to code. As such, using MRTE places an
important assumption on the code, i.e. considering the code as a model as well. However,
code needs to deal with implementation details, which are exactly what we try to conceal
from models. Figure 1.4 illustrates the transfer of information in DSCG process. We can
see that the information finally conveyed to the generated code comes from two sources:
the model and the code generator. When we change the code, if the information involved
comes from the model, we want to propagate the change to the model level. Otherwise, if
the information comes from the code generator, we do not pollute the model with it. The
MRTE DSCG extension approach enforces that the code change is always propagated
to the model side.

DSCG

Model Code

v

nformation

Information Information

+ from code - .
from model in code
generator
Information source 1 Information source 2 Information destination

FIGURE 1.4: Transfer of Information in DSCG.
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1.1 Problem Statement

In this section, we list the limitations and drawbacks that we observed in the existing

DSCG extension approaches and identify the problems that we are tackling.

Observation 1: It can be very difficult to describe the desired modifications

in terms of the domain specific models, if at all possible.

As mentioned before, the modification requirements are introduced in arbitrary and
unforeseen ways. It is very likely that sometimes the modification descriptions are
beyond the expressiveness of the original modelling language. This will lead to the

failure to construct a new domain specific model to reflect the modification.

Figure 1.5 illustrates a simple example where the expected modification cannot be re-
flected in the domain specific model. The domain specific model is a deterministic finite
automaton with three states: Sp, S; and Sy. Sp is the start state. Sy is the end (or
accept) state. There are three transitions among them. FEach transition fires when a
specific character is read from the input stream. Apparently, this automaton accepts
digit string in the format of “1(3)*5”.

Let us assume that the current modification requirement is to supplement a logging
method and invoke it after the self-transition of S; fires to count the number of digit
“3” in the input string. The modelling domain here is the deterministic automaton
construction and execution, where logging is generally not regarded as a domain element.
In other words, the domain specific modelling language is “too abstract” to reflect the
expected modification. In addition, this scenario also makes a solution based on MRTE
[9] quite difficult to implement, as the change to the code cannot be translated into
a corresponding exact change to the domain specific model. This kind of change is
regarded as “invalid” by Thomas et al. [8]. Even if we managed to establish a round-trip
transformation, i.e. the reverse code generation process, the new model that is rebuilt

from the modified code is very likely to be identical to the original one.

Observation 2: Crosscutting concerns in the expected changes make the mod-

ification process inefficient and error-prone.

In the expected changes to a software system, some concerns are closely coupled with
“primary functionality of the system”, or “core concerns” [10], and thus cannot be
effectively expressed in a modular way using traditional development approaches. For
example, logging or asserting functions, often have to crosscut the whole software system.
Returning to the above state machine example, let us assume the change we need is to log

every transition. If the logging function can be added directly into the model, it entails
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Generated Code
public void run() {
try {
int input;

Model currentState = 0;

while(true) {
input = System.in.read();
9 if (currentState == @ & input == 1) {
currentState = 1;

} else if (currentState == 1 && input == 3) {
1 generate currentState = 1;
> } else if (currentState == 1 && input == 5) {
e‘ currentState = 2;
} else if (currentState == endState) {
5 return;
} else {

throw new Exception("invalid state");
}

} catch (Exception e) {
e.printStackTrace();
}

evolve

Customized Code

int statel_self_transition_counter = @;
protected void log() {
statel_self_transition_counter++;

}
public void run() {
try {
MOdeI int input;
currentState = 0;
9 while(true) {
input = System.in.read();
if (currentState == @ &% input == 1) {
1 currentState = 1;
—————— } else if (currentState == 1 && input == 3) {
e& currentState = 1;
log();
5 } else if (currentState == 1 & input == 5) {
currentState = 2;
<::> } else if (currentState == endState) {
return;

} else {
throw new Exception("invalid state");
}

} catch (Exception e) {
e.printStackTrace();
}

F1cURrE 1.5: A manual DSCG extension where the change cannot be reflected in the
domain specific model.

manual update of every transition in it. If not, it requires modifying every conditional
branch inside the “while” loop (except the final exception raising branch). In both
cases, the required change leads to manual changes that are scattered in the system. It
is obvious that when the expected change involves such crosscutting concerns, no matter

whether they can be described in the model level or not, they have to be introduced
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separately in different places of the system, which often contain very similar or even
the same modification. This makes the modification process rather inefficient, and such

duplication may easily lead to errors.

Observation 3: The existing DSCG extension approaches always seek to main-

tain a direct mapping between domain specific models and code.

An obvious common point of the above solutions via existing approaches is that they
are both based on a direct mapping between model and code. Whenever a valid model
is created, there exists a version of code that could be generated from it. As for the
pure model based approach, it introduces the restriction that code can only be produced
through model based code generation. Therefore, whenever there is a version of code
generated, there is a model used as the DSCG input in the first place. In the MRTE
approach, if the code is generated through code generation, there is a corresponding
model involved to produce it. If not, there will be a corresponding model computed
by the reverse engineering. In brief, the existing approaches bind model and code with
a direct mapping, so that they would update in lock-step. No matter whether the
model model’ is directly modified with Ay in the pure model based approach, or model’
is computed from Ac in the MRTE approach, the extension is always achieved by a
concomitant update of both model and code. In other words, a change introduced from
either model or code side is always propagated to the other side. As a result, an extension

via existing approaches always leads to an update of the domain specific model.

Taking into account the observations above, we list the following problems in the existing

DSCG extension approaches.

Problem 1: The existing approaches may lead to a breakdown of the abstrac-

tion hierarchy.

In Observation 1, we show an example where the expected change cannot be reflected
in the domain specific model. But it is not a scenario where the existing approaches
cannot accomplish the extension requirement. In fact, the pure model based approach
can provide a working solution. However, there is a serious problem in this solution. As
shown in Figure 1.6, a solution following the pure model based approach first extends
the domain specific modelling language with a new domain concept, i.e. eventlog, which
is bound either before or after a certain transition. It then updates the model by adding
an instance of eventlog after the self-transition of S;. Finally, the updated model is used
to regenerate the code. The problem here is that such a solution pollutes the model
with an eventlog concept, which is commonly seen in the less abstract level (code level),

rather than in the deterministic finite automaton model level.
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Generated Code
public void run() {
try {
int input;
MOdel currentState = 0;

while(true) {
input = System.in.read();
e if (currentState == @ && input == 1) {
currentState = 1;

1 } else if (currentState == 1 && input == 3) {
currentState = 1;
generate } else if (currentState == 1 & input == 5) {

A

currentState = 2;
} else if (currentState == endState) {
5 return;
} else {

throw new Exception("invalid state");
}

} catch (Exception e) {
e.printStackTrace();
}

update

Customized Code

public void run() {

try {
currentState = 9;

while(true) {
v input = System.in.read();
’ if (currentState == @ && input == 1) {
MOdeI currentState = 1;
} else if (currentState == 1 &% input == 3) {
currentState = 1;

9 Logger logger = Logger.getInstance();
System.out.println("sl_self_transition" +
1 "logging ...");

logger.count(currentState);
logger.print_count(1);
System.out.println("sl_self_transition" +
"logging done ...");

} else if (currentState == 1 && input == 5) {
currentState = 2;

} else if (currentState == endState) {
return;

} else {
throw new Exception("invalid state");

¥

} catch (Exception e) {
e.printStackTrace();
}

FIGURE 1.6: An extended solution following the pure model based approach in the
deterministic finite automaton example.

Problem 2: The existing approaches implicitly demand that the relationship
between model and code is a surjective function. This deviates from

the original intention of model based engineering.

Apart from the risk of breaking down the abstraction hierarchy, there is even a deeper

problem in the solutions via the existing approaches. As mentioned in Observation 2,
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the existing approaches bind model and code with a direct mapping throughout the
software maintenance life-cycle. More formally, they define a function from domain
specific models to code. In other words, for each valid domain specific model, there exist
one and only one version of code, as the same model always generates the same version of
code once the code generator is specific. In particular, this function is surjective, as for
each version of code, there exists at least one domain specific model. In the pure model
based approach, this restriction is intrinsic as code can only be generated through DSCG
process. In the MRTE approach, it is also required. Because the round-trip would be cut
if there exists a certain version of code, for which a corresponding domain specific model
cannot be found. In fact, the restriction in the MRTE approach is even more strict.
If the function is non-injective, different domain specific models can generate the same
version of code, which would make it impossible to establish a reverse function from
code to model to complete the round-trip. Therefore, the function from model to code

in the MRTE approach needs to be not only surjective, but also injective, i.e. bijective.

All above restrictions on the relationship between model and code may seem inevitable.
However, they are not required by the nature of model based engineering. The defining
characteristic of model based engineering is that the primary focus and product in
traditional software development, programs, are superseded by models [11]. The models,
as core products, should not be imperatively bound with some non-core products, like
code. The relationship between model and code does not necessarily need to be a
function at all. As an example, consider a refactoring of some generated code C to C'.
A loose analogy of the relationship between model and code in model based engineering
is the relationship between code and machine code in traditional software engineering.
In model based engineering, a model can be related to multiple versions of code, just
like a version of high-level programming language code can be compiled into different
machine code on different platforms in traditional software engineering, where the code
is regarded as core product. In short, the restrictions to keep model and code in stringent

synchronization deviates from the original intention of model based engineering.

Problem 3: The existing approaches may lose track of the software when the

introduced change cannot be reflected in the model.

Version control, as Yuehua et al. [12] argued, is a vital technique towards improving
quality and maintainability in the latter stages of the model based software life-cycle.
The tracking of model based software is naturally implemented by tracking the versions
of the model. Unfortunately, the existing approaches cannot support it well in certain
scenarios. From the above discussion, we may find that both the pure model based
approach and the MRTE approach can be inadequate when the expected changes can-
not be reflected in the models. In fact, even if we somehow managed to implement a
solution to introduce such a change to the code, it might hinder the proper tracking of

the software. In the pure model based approach, the changes have to be introduced by
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extending the modelling language first, and then translating the model from the original
modelling language to the extended modelling language, and finally updating the trans-
lated model according to the expected change. Obviously, such kind of model updates
with a prerequisite of modelling language change cannot be tracked the same way as the
common model updates. A common version reversing request may fail due to the model

incompatibility problem.

1.2 Our Solution

Our primary research objective is to sustain the benefits of DSCG that may get lost
during the introduction of changes that cannot be expressed by the original mod-
elling language. To achieve this, we develop a systematic and partially automatic ap-
proach to extend the given DSCG. This research objective can be expounded as to de-
velop a new DSCG extension approach, which does not affect the use of the other tools
that conform to the modelling language of the given DSCG, to accommodate changes

that cannot be described by the same modelling language.

Inspired by the aspect-oriented software development methods [13, 14], which naturally
supports the direct manipulation of the code and the encapsulation of customization
concerns, we propose our DSCG extension approach via domain specific aspect weav-
ing. We first dynamically generate a domain specific aspect language according to the
meta-model of the target domain, and then encapsulate the changes into domain spe-
cific aspects. Finally we weave these aspects to introduce the expected changes. Our
approach allows domain experts, who have little knowledge of the generated code, to
customize the code generation process conveniently by organizing their modification con-
cerns in terms of aspects that written in the generated domain specific aspect language,
which coordinates both domain concepts and code elements to describe the expected

modifications in a flexible and concise way.

Our approach properly solves the problems we listed above respectively. First, when
the models cannot reflect the expected changes, we can describe them in aspect, where
elements of both the problem domain and the solution domain can be used, e.g. code
level depiction is allowed. Thus, unnecessary modelling language updates can be effec-
tively avoided, so that the risk of a breakdown of the abstract hierarchy can be reduced
greatly. Second, the aspects can be regarded as an intermediate abstract level between
model and code. A model can thus relate to multiple versions of code with the help
of different aspects. Last, our approach clearly distinguishes between the software up-
dates due to model change and the updates due to aspect weaving. This bidimensional
version mechanism can support version control system well. Figure 1.7 illustrates the
comparison between the existing approaches and our approach over the version control

mechanism.
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From Figure 1.7, we can observe that our DSCG extension approach is not designed as a
replacement to the existing approaches. Instead, we attempt to introduce it as a powerful
supplement to them. When the expected changes can be reflected in the models, domain
experts can still introduce the change by directly modifying the models and launching
the corresponding code regeneration. However, when the changes cannot be expressed
by the current modelling languages, our domain specific aspect based DSCG extension
approach becomes necessary. Besides, sometimes our approach can be more efficient to
introduce the changes than the existing approaches provided all of them can do the job.

The remainder of this thesis is organized as follows:

In Chapter 2, we discuss the background context related to this thesis. It mainly includes
three areas: the model based software development, the domain specific code generation,
and the aspect-oriented software development. In Chapter 3, we elaborate on our DSCG
extension approach, and use a typical scenario to demonstrate how it can solve the target
problem. In the next three chapters, we demonstrate the viability of our approach by
experimenting on several concrete DSCG case studies, where we respectively implement
an extension mechanism that allow us to introduce some common customizations in the
different domains. In Chapter 4, we start with Kalman Filter domain as our first target
domain, and extend the code generation by a specific generator called AUTOFILTER
[15] that generates the C implementations of the Kalman Filter algorithm from high-level
specifications. In Chapter 5, we move on to a more well-established parser generation
domain, and work with a very popular parser generator, ANTLR [16], which accepts
an LL(*) grammar specification of a certain language, and generates a parser of the
language implemented in Java. In Chapter 6, we work with another widely used parser
generator, CUP [17], which accepts an LALR(1) grammar specification of a certain
language, and generates a parser of the language implemented in Java. In Chapter 7,
we evaluate our approach by comparing it with the two existing approaches. Finally, we

provide concluding remarks and potential future work in Chapter 8.
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F1GURE 1.7: A comparison between the existing approaches and our approach over the
relationship between the model and code, as well as the versioning mechanism.



Chapter 2
Background

In this chapter, we discuss the background of extending domain specific code generation
and the related literature. We start with the background knowledge involved in domain
specific code generation, which mainly about model based software development, such
as domain specific modelling, etc. We then discuss the code generation techniques and
model traceability in domain specific code generation. Finally, we introduce the aspect-

oriented software development methods that directly inspires our work.

2.1 Model Based Software Development

The term Model Based Software Development (MBSD) subsumes a number of related
software development approaches such as Model Driven Engineering (MDE) [2, 18],
Model Driven Development (MDD) [19, 20], or Model Driven Architecture (MDA) [21].
These approaches are essentially much alike, but there are subtle differences between
them. For example, MDD and MDE refer to the same software development approach,
while MDA refers to a specific, architecture based implementation [22] of the approach,
as defined by the Object Management Group (OMG).

2.1.1 MDD, MDE, and MDA

There are three concepts that are often referred to in different literature related to
MBSD. Here we first provide a more detailed description of each concept, and then

clarify our terminology in this thesis.

Model Driven Development  Model Driven Development (MDD) [2, 19, 20, 23] is a
common name for a family of software development approaches that raise the abstraction

level of software development from programming language implementation to problem

13



14 Chapter 2 Background

domain modelling. According to Atkinson and Kiihne [19], MDD is an approach mod-
elling the necessary functionality and system architecture, instead of spelling out detailed
implementation in a programming language, with the aim of automating many of the
complex (but routine) programming tasks. Later on, Hailpern and Tarr [20] provided
a more detailed description of MDD. They described MDD as “a software engineering
approach consisting of the application of models and model technologies to raise the
level of abstraction at which developers create and evolve software, with the goal of
both simplifying (making easier) and formalizing (standardizing, so that automation is

possible) the various activities and tasks that comprise the software life-cycle”.

Model Driven Engineering Model Driven Engineering (MDE) [1, 18] is a software
engineering methodology that concentrates on model creation and exploitation instead
of the traditional implementation in programming languages. According to Schmidt
[18], MDE is “a promising approach to address platform complexity and the inability
of third-generation languages to alleviate this complexity and express domain concepts
effectively”, in which there are a set of technologies that combine domain specific mod-
elling languages, model transformation engines and code generators. Compared to this
long definition, Kent [1] provided a much more brief explanation of MDE as “a method-

ology combining process and analysis with the MDA”, where MDA is explained below.

From the above definitions and explanations we can see that MDD and MDE are much
alike in definition, and the terms are used interchangeably in most situations. As we
understand, the only difference between MDD and MDE is that sometimes the former
is preferred in discussing software development paradigms and the latter is preferred in

discussing software engineering methods.

Model Driven Architecture According to Mellor et al. [21], Model Driven Archi-
tecture (MDA) is a software development framework using models as descriptions of the
system to be built. These descriptions “can be expressed at various levels of abstrac-
tion, with each level emphasizing certain aspects or viewpoints of the system.” Later,
Beydeda et al. [23] defined MDA with more detailed technical concerns. According to
their definition, MDA is a software development architecture in which “we can define
rules for automating many of the steps needed to convert one model representation to
another, for tracing between model elements, and for analyzing important characteristics

of the models”.

On the other hand, the term MDA also refers to the specific standardized architecture
formulated by the Object Management Group (OMG). In 2001, MDA was adopted by
the OMG as a standard framework for model driven software development. According
to OMG’s MDA specification [22], MDA can be considered as a development process

in which models are first class artifacts and are integrated through the chain of trans-
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formation from model to code. The latest official MDA specification version number is
1.0.1 [24].

From the above introduction, we can find that the differences between these model based
approaches are very subtle in terms of the scope of our discussion. It is reasonable for us
to ignore these differences and focus instead on their much larger commonalities. Rather
than emphasizing any one of these approaches, in this thesis, we will use the neutral

term Model Based Development (MBD) to refer to such commonalities.

The main goal of MBD is to raise the abstraction level of software development from
programming language level implementation to problem domain modelling. Software
development thus starts with the creation of an abstract model of the target system,
which is then repeatedly refined and systematically transformed into a concrete imple-
mentation. Model based approaches combine a number of technologies. The models are
formulated in one or possibly multiple modelling languages that conform to an (explicit)
meta-model. The concretization is implemented via a series of model-to-model transfor-
mations, followed by a final model-to-code transformation step. Obviously, comparing
to the traditional software development approaches, the most essential change in MBD
is that models replace code as the core product to be designed, refined, and reused in

the software development processes.

2.1.2 Models and Model Transformation

According to Beydeda et al. [23], models and modelling make up the basis of model based
development. This argument conveys two fundamental ideas in MBD. First, models are
the core products. Second, models need to evolve or develop to be gradually refined to
the final software product. In this section, we will present a brief introduction of a few

related concepts, including model, modelling dimensions, and model transformation.

Models No matter what technique or architecture is adopted in practice, the princi-
pal element of MBD is models. The term model here refers to a conceptual or abstract
representation of something or some system in a specific domain. As a basis for sub-
sequent development, models are a vital part of any MBD method. As Selic indicated
[11], the defining characteristic of MDD is that programs, the primary focus and prod-
uct in traditional software development, are superseded by models. This substantial
change makes the design focus less bound to the underlying implementation and closer
to the problem domain, which turns out to be such a significant raise in abstraction level
that Selic believed that “MDD holds promise of being the first true generational leap in

software development since the introduction of the compiler”.

The major difference between model and code is that they belong to different abstract

levels. Models represent the design concerns with the elements or relationships in a
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the problem modelling domain, while code conveys detailed information about the im-
plementation. According to Kleppe et al. [25], “a model is a description of (part of) a
system written in a well-defined language. A well-defined language is a language with
well-defined form (syntax), and meaning (semantics), which is suitable for automated
interpretation by a computer.” The explanation of “well-defined language” here can be

regarded as a concise definition of “modelling language.”

Modelling Dimensions The modelling space can be structured in various dimen-
sions of concerns, for example, security or reliability. A common dimension of concern is
the abstraction level. In an MBD project, there should be one or more problem domain
models derived from the requirements analysis in the beginning, which are constructed
using only problem domain concepts. These models are transformed later into solution
domain models, which are built with solution domain concepts. The abstraction level
of these models thus forms a dimension of the modelling space. OMG’s MDA standard
defines two terms Platform Independent Models (PIMs) and Platform Specific Models
(PSMs). As their names suggest, PIMs model platform independent concerns of the
target system, while PSMs refine PIMs by including platform specific concerns in them.
Kent [1] proposed that the MDA framework group models into PIMs and PSMs by
categorizing perspectives. Laforcade et al. [26] refined this categorization by indicating
a third model class in the MDA, Computation Independent Models (CIM). Kent ad-
dressed that several other dimensions of concerns have begun to be identified in the area
of Aspect Oriented Software Development (AOSD) [27]. Kent also pointed out some
seldom considered dimensions: abstraction/concretization, in regard with managerial

and societal aspects, like authorship, version.

Model Transformation Model transformation plays a very important role in refin-
ing the models in MBD processes. According to Sendall [9], model transformation refers
to the processes that “take one or more source models as input and produce one or more
target models as output, following a set of transformation rules.” Based on a taxonomy
of the design features of model transformation approaches, Czarnecki and Helsen [28]
categorize the transformation approaches into six categories: direct-manipulation, rela-
tional, graph-transformation-based, structure-driven, hybrid, and other. According to
the definition of “well-defined language” and “model” we discussed in Section 2.1.2, we
can infer that a programming language can be considered as a “well-defined language”,
and an implementation in a certain programming language can then be regarded a model.
Hence, the model-to-code transformation, i.e. the code generation, is also a specialized
kind of model transformation. Without special explanation, “model transformantion” in
this thesisalways refers to “model-to-model” transformations. We will separately discuss

code generation in Section 2.2.1.
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2.1.3 Domain Specific Modelling

In order to describe a software system more precisely, developers often need to concen-
trate only on a specific area and its related entities, attributes, and relationships. In soft-
ware engineering, these areas are often referred to as domains, and the related entities,
attributes, and relationships are often referred to as domain elements. The increasing
complexity and variety of different domains prevent general purpose modelling languages
from building models precisely and concisely. It would be more convenient and cost ef-
fective if we could build models directly with the basic concepts in the specific domains.
This leads to the notion of domain specific modelling. In simple terms, domain specific
modelling (DSM) is a specialized modelling method based on domain specific knowledge.
From the model dimensional view, all domain specific models are problem domain mod-
els. We did not find a standardized or generally accepted definition of DSM, as different
people define it from different angles. According to Kelly and Tolvanen [3], DSM is an
approach requiring three parts to form a development environment: a domain specific
modelling language, a domain specific code generator, and a domain framework, while
Choi et al. [29] define it as design representation with terms of parameters associated
with a specific domain. As we understand, DSM is a software engineering methodology
that systematically utilizes a domain specific modelling language to describe the domain

ontology of the specific domain. Next, we explain several related concepts.

Domain  According to Simos et al. [30], the term “domain” has two different mean-
ings. First, a domain is the “real world” encapsulating the knowledge about a problem
area, which excludes any detail about its solution or the corresponding software automat-
ing. Second, a domain is a set of systems. As Czarnecki and Eisenecker [31] argued, “in
the software reuse community (and particularly in the field of Domain Engineering), the
term ‘domain’ encompasses not only the ‘real world’ knowledge in a given problem area,

but also the knowledge about how to build softwares in that area”.

Domain Ontology and Meta-Model The term ontology originally denotes the
philosophical probing of existence. To our knowledge, it was first introduced into Com-
puter Science by Gruber [32], referring to “a specification of a conceptualization.” An
ontology is “a description of the concepts and relationships that can exist.” It is now
widely used in Computer Science, especially in Artificial Intelligence and Domain Mod-
elling, to describe the knowledge within a domain. According to Musen [33], models
consist of the foundational domain concepts, and possibly the problem-solving proce-
dures that might be applied to those concepts. These enumerations of the domain
concepts and their relationships are referred to as domain ontologies. In MBD, the de-
sign models are transformed into various artifacts, all of which conceptually map to the

abstract design models that are described in terms of domain ontology. To this extent,
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the domain ontology can be considered as the reference frame through the whole MBD

procedure.

In Sergeevitch’s paper [34], the domain ontology is the mechanism of creating continu-
ous information field within the domain. It consists of two perception subjects, domain
objects and the relation between these objects. According to Griininger and Lee [35],
an ontology is generally defined as a‘“formal explicit specification of shared conceptual-
ization” or the “classifications of the existing concepts.” A domain ontology can thus
be considered as a formal representation of domain knowledge. In this thesis, we define
domain ontology as a formal representation of the existing domain knowledge of a cer-
tain application domain, which mainly includes two parts: the specific elements in the

domain, and the relations among these elements.

Simply stated, meta-model is a model of models, which conform to a specific domain
ontology. They can be regarded as concrete descriptions of how models conforming to a
certain domain ontology can be built, especially in terms of constructs and rules. From
the perspective of graph theory, a meta model can be considered as a graph, in which
nodes are classes and properties. In practice, domain specific modelling Languages often
serve as the meta-models describing the corresponding domain ontologies. Interestingly,
meta modellingitself can also be considered as a particular domain, which can be modeled
within MDA. Djuric et al. [36] presented the Ontology Definition Metamodel (ODM)
that is defined using the Meta Object Facility (MOF) [37] to promote the MDA standards

in the ontological engineering.

Domain Specific Modelling Language A Domain Specific Modelling Language
(DSML) is a formalized modelling language that is capable of specifying all parts or
certain desirable facets of the domain ontology in a particular domain. Different from
the general purpose modelling languages, like UML, DSMLs focus on a specific problem
domains, offer higher abstraction levels that enable building models directly using the

elements in the problem domains, and hence reduce design space.

Domain Specific Language Domain Specific Languages (DSLs) are sometimes iden-
tified with DSMLs. However, according to Deursen et al. [5], DSL is actually a different
concept that is defined as “a programming language or executable specification language
that offers, through appropriate notations and abstractions, expressive power focused
on, and usually restricted to, a particular problem domain.” In brief, the difference be-
tween DSML and DSL is that models built in DSML do not need to be executable while
models in DSL need to be executable. In this thesis, we will not distinguish them, and

will use them interchangeably.

To some extent, DSM can be considered as an extension of the general purpose mod-

elling approach. It pushes the design context to the problem domain, which brings
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about the highest abstraction level that can be achieved from modelling. Accord-
ing to Booch et al. [38], the full value of MBD can only be achieved when the mod-
elling concepts map directly to domain concepts rather than computer technology con-
cepts. To this extent, the foundation of MBD is automation. Without automation,
models would merely end up as documentation. Therefore, appropriate automation

techniques are required in MBD to fulfill its promise.

2.2 Code Generation and Domain Specific Modelling

In this section, we first give a general introduction to code generation and its relevant
techniques. Then we discuss how code generation works together with DSM technology

to deliver the working software product in MBD.

2.2.1 Code Generation

Code generation [3, 39-41] has become a very popular topic in computer science re-
search. However, there has been little agreement on a precise definition of the term
“code generation.” A major reason is that the meaning behind it has gradually changed
since the notion was first proposed. Initially, the notion of code generation was used to
refer to an internal program construction process in compilers for high-level program-
ming languages [42]. Hence, the “code” here refers to the intermediate code or machine
code. With the maturity of the compiler related code generation techniques and the
boom of model driven development, code generation now refers to the source code gen-
eration process in MBD in increasingly more papers [3, 41]. In terms of the way that
different code generation techniques assure the correctness of their generated code, code
generation techniques can be grouped into two main categories: deduction based code

generation and transformation based code generation.

Deduction Based Code Generation According to Stickel et al. [43], deduction
based code generation (or “deductive program synthesis” [4]) is a code generation ap-
proach in which the code is “developed from the logical form of the specification by a
deductive approach.” In this approach, the code is generated as the byproduct of the
proving process, which gives the basis of ensuring and demonstrating the correctness of
the generated code. The structure of the generated code thus “reflects the proof from
which it was extracted.” Since the foundation of this code generation approach is the
underlying theorem proving process, the code generated in this approach is guaranteed

to be “correct-by-construction”.



20 Chapter 2 Background

Transformation Based Code Generation Different from the “correct-by-construction”
guarantee provided in the deduction based code generation approach, the correctness
of the code that is generated as a direct product of certain transformation processes
depends on the tools that actually conduct the transformation, i.e. the code generator
[4]. A code generator takes in a model as input, puts it through certain transformation
processes, and finally produces a corresponding program as output.Code generators may

vary greatly in terms of the nature and strategy of the transformations they implement.

In the famous book “generative programming” by Czarnecki et al. [31], model-to-code
transformation is categorized into horizontal transformation, vertical transformation and
oblique transformation. A horizontal transformation operates on one level of abstraction
and modifies the modular structure of a model. In contrast, a vertical transformation, or
forward refinement, performs strictly hierarchical decomposition, preserves the modular
structure of the higher level representation and implements it with one or more modules
at the lower level. An oblique transformation does not only perform hierarchical de-
composition, but also changes the modular structure of the higher-level representation.

Figure 2.1 illustrates these three kinds of transformations.

horizontal
higher-level transformation
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representation
A’ 0B’
vertical vertical
transformation . transformation
oblique
(or forward . (or forward
. transformation )
refinement) refinement)
lower-level ] C 1] . U L]
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F1GURE 2.1: Transformations in code generation discussed in the book “Generative
Programming: Methods, Techniques, and Applications Tutorial Abstract” by Czar-
necki et al. [31]

Accordingly, Czarnecki et al. group code generators into two categories: compositional
generators and transformational generators. Compositional generators only implement
forward refinement, while transformational generators perform horizontal or oblique
transformation. It is worth noting the “transformation” here does not refer to the
general “model transformation”. Instead, it specifically refers to the transformation in
which the modular structure of the model at higher level of abstraction is breached. Most
generators found in practice by then have a “predominantly compositional character”
[31].

On the other hand, in terms of their implementation strategies, code generation can be
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categorized into two main kind: template based code generation, and rewrite based code

generation.

e Template Based Code Generation As its name suggests, template based code
generation is a code generation approach based on template expansion techniques.
As Crzarnecki and Helsen [28] argued, a template “usually consists of the target
text containing splices of metacode to access information from the source and to
perform code selection and iterative expansion.” A template resembles closely the
code to be generated in terms of structure, and is independent of the target lan-
guage. These features make this approach rather easy to implement. Nonetheless,
a template is essentially a container of textual patterns, which are untyped. It
inherently allows syntactic and/or semantical errors. Thus the correctness of this
code generation approach relies on the correctness of the base templates and their
expansion process. Further discussion about template based code generation can
be found in the book by Cleaveland et al. [44].

e Rewriting Based Code Generation Pfenning and Elliott [45] indicated that
Abstract Syntaz Trees (AST) have been proved very useful in contexts like effi-
cient and correct program transformation or inference rule application. AST is
the core artifact in rewriting based code generation, which generally consists of
three consecutive steps. First, the textual representation of the input model is
transformed into an AST that conforms to a regular tree grammar. Second, a se-
quence of rewriting rules are applied to the AST. A rewriting rule can be described
in the form R : T1 — T2 where C, which means on the match of term 71 when
condition C is satisfied, a rule named R rewrites 71 with new term T2. Finally,
the modified AST, which represents the transformed model, is translated to the
output programming language to complete the code generation process. Accord-
ing to the conclusion of a case study by Hemel et al. [46] on a typical rewriting
based framework Stratego/XT [47], term rewriting has several advantages over
template expansion in code generation, which include the ability to ensure syntac-
tical correctness of generated code. However, such improvement relies on a correct
grammar to construct the right AST in the first step. From this perspective, the
correctness of this approach depends on the correctness of the AST construction

and rewriting rule application.

2.2.2 Benefits of Code Generation

The benefits of code generation have been presented and discussed in many papers
and books [3, 11, 41, 48]. Here we focus on two major benefits of code generation:

productivity improvement and quality improvement.
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Productivity Improvement The productivity improvements include the following as-

pects:

Lower Learning Cost Since models hide many code level details that are often
complicated and error-prone, software developers only need to master the
domain knowledge at the model level, instead of having to understand model
level domain knowledge as well as code level details and their mappings with

domain elements.

Higher Development Efficiency With the automatic code generation process,
the cost of making design changes even in late stage of software engineering

life-cycle is greatly reduced.

Better Maintainability With code generation, developers no longer have to di-
rectly modify the code in order to introduce a design change. Instead, they
only need to change the corresponding model (though sometimes a certain
amount of coding is still needed), which is relatively simpler and less error-

prone.
Quality Improvement The quality improvements include the following aspects:

Increased Reliability Code generators often adopt existing best practice and
specialized design patterns as the basis of the generated code. The adoption
of these “built-in code templates” effectively avoids the tedious and error-
prone manual coding process and increases the reliability of the generated

code in return.

Improved Performance Besides increased reliability, raised performance of the
generated code is another benefit that is often gained from these “built-in
code templates.” It is because the templates often introduce optimized al-
gorithms and specialized programming tricks to a certain problem, which

greatly enhances the performance of the generated code.

However, the above benefits may get lost if direct manual code modifications are intro-

duced after the code generation. That is exactly the main motivation for our work.

2.2.3 Domain Specific Code Generation

Now that we have presented a general introduction about domain specific modelling and
code generation. In this section, we introduce the problem domain of our research, do-
main specific code generation. Domain specific code generation (DSCG) is a specialized
code generation technique applied in domain specific modelling. It translates the domain
specific models that are built by domain experts to the corresponding implementation of

source code. In other words, the DSCG transforms the DSL description of a system in
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the problem domain into its corresponding representation in the solution domain, e.g. a
Java implementation. Before further discussion, we need to clarify the meanings of

several relevant terms that will be used in our discussion.

The Problem Domain Despite its vagueness and volatility [5], “problem domain”
often serves as a defining term in DSM related definitions. According to Czarnecki
and Eisenecker [49], the problem domain (or problem space in Czarnecki’s terminology)
“consists of the application-oriented concepts and features that application programmers
would like to use to express their needs”. As for the coordination of the problem domain
and the solution domain, they explicitly define a concept called configuration knowledge,
which maps abstract requirements onto appropriate configurations of solution compo-
nents. According to their definition, the configuration knowledge consists of five parts:
illegal feature combinations, default settings, default dependencies, construction rules,
and optimizations. They believe such separation between the problem space and the
solution space and the configuration knowledge helps in requesting concrete systems or

components.

However, for the discussion under the context of DSCG, this separation does not often
help. In DSCG, the input problem model includes the goals that the problem owner
wishes to achieve, the context within which the problem exists, and all rules that define
essential functions or other aspects of any solution product. In other words, the problem
domain here represents the environment in which a solution will have to operate, as well
as the problem itself. In this thesis, we define “problem domain” as all information that
defines the problem and the constraints on the solution. In terms of DSCG, the problem
domain is the context where domain specific models are constructed. It can be regarded

as a meta-model of the input problems.

The Solution Domain  While the “problem domain” defines the environment in
which the solution work, the “solution domain” defines the environment where the so-
lution is developed. As Czarnecki and Eisenecker [49] put it, the solution domain (or
solution space) “consists of the implementation components with all their possible com-
binations”. Accordingly, in this thesis, we define the “solution domain” as all elements
that are used to form a solution. It is worth noting that the elements in the solution
domain may reside at more than one levels of abstraction. The higher level solution do-
main defines the abstract context in which a solution is constructed, while the lower level
solution domain includes the corresponding implementation, e.g. in the form of source
code. As there is not a consensus about the definition of the “problem domain” and
the “solution domain”, we will not introduce the ontologies of them respectively in the
case studies of our extension approach. Instead, our discussion will be around the target
domains, which refer to a general combination of the corresponding problem domain

and solution domain.
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Output Languages, Target Languages and Host Languages The terms target
languages and output languages are introduced from the perspective of DSCG code gen-
erators. They normally refer to the same concept, namely the programming languages
in which the code is generated. There is difference between them only when the model
tracing information is directly tangled with the generated code. In that case, we use the
term target languages to refer to the original programming languages without the defini-
tion of the grammatical constructs for model tracing information, e.g. the comments for
tracing an instance of a certain domain class. We use the term output languages to refer
to extended programming languages which include the definition of such model tracing
constructs. In practice, target languages are often standard versions of some mainstream
programming languages, such as C11 (ISO/IEC 9899:2011) [50]. Output languages, on
the other hand, are the extended versions of the target languages, which include the
model tracing constructs. We can see some examples in later discussion. It is worth
noting that such extensions only enrich the semantics of the target languages conforming
to the existing syntactic specifications of them, so that they do not require extended
compilers. It is because that interpreting the extra semantics for model tracing is not
the job of the target language compilers. Another relevant term is host languages. As
Hutchins [51] indicated, “DSLs are often implemented by code generation, in which do-
main specific constructs are translated to a general purpose ‘host’ language.” From this
perspective, the DSCG process is essentially the DSL compilation process. Therefore,
the host languages of DSLs are in fact the output languages in the underlying DSCGs,
provided that the DSLs are implemented by the DSCGs.

In the following discussion, the term code generation only refers to the code genera-
tion process in MBD, i.e. the “model-to-code” transformation. With the help of DSCG,
software designers can be relieved from worrying about tedious details in the solution do-
main, such as system portability, or adopting best practice for certain solution patterns.
Thus they can indeed work at raised abstraction level. Moreover, the higher abstraction
level also leads to significantly reduced design space, which helps in decreasing design
errors. On the other hand, the greater abstraction level gap between the original models
and the generated code makes the mapping between them more tenuous. Therefore,
model traceability becomes more important in maintaining the link between the models

and their corresponding code.

2.2.4 Model Traceability

The notion of traceability in software development was originally defined as the “degree
to which a relationship can be established between multiple products in the software de-
velopment process or the degree to which each element in a single product establishes its
reason for existing” [52]. Aizenbud et al. [53] argued that this definition was “strongly

influenced by the originators of traceability—the requirements management community”,
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and broadened it to include “any relationship between artifacts involved in the software
engineering life-cycle.” Traceability is often mandated in industrial projects, especially
in safety-critical systems [54] and is often achieved by generating human-readable docu-
ments about how requirements can be related to various artifacts involved in the whole

process [55].

In MBD, traceability is naturally gained by its transformation chain, along which each
transformation relates its source and target models to each other. The application of
repeated transformations from the original models to the finally delivered code make it
very difficult to recognize the system elements that are specified in the original models. In
details, the traceability is often achieved by maintaining extra information that conforms
to a traceability meta-model, which may be used along the transformation tool chain.
This extra information from the applied sequence of transformations can be chained
together, and so provide an argument for how the generated programs conform to the

original models.

In this thesis, with DSCG as our research problem domain, we are interested in the
traceability of the domain specific models along the DSCG process. We use the term
model traceability specifically to refer to the ability of tracing the domain specific model
in the generated code. We use the term traceability links, which is used by Czarnecki
and Helsen [28], to refer to any artifact that provides or maintains the traceability from
the generated code back to the domain specific models. As they indicated, traceability
links may be constructed in different ways, e.g. by encoding in transformation rules,
or by storing unique GUID in each model element. In practice, there are different
types of traceability links in terms of the way we keep them. For example, they can
be kept inside the model and/or the generated code, or be kept separately, e.g. as a
standalone tracing log file. In particular, we often call the traceability links intertwined
in code at the entry and exit of the generated code blocks corresponding to a specific
domain element, the sentinels (of the domain elements). In respect of the DSL and the
output languages, the traceability links may exist in different forms, such as annotations
in models, comments or function invocations in code, etc. Some examples of these
traceability link implementations are shown in Appendix A.l. It is worth noting that
traceability links are very important to model traceability, especially when the code block
corresponding to the domain specific elements are not original linguistic constructs in

the output language, such as variable modifications or function invocations.

Model traceability is often an expected property of code generators in MBD. Most
commercial code generators support it by directly adding tracing information to the
generated code in the form of comments or embeded links [56], while academic research

has worked on maintaining and recovering it [57, 58].
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2.3 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) is, as Mehmood et al. summarized, an
approach “which allows explicit identification, separation, and encapsulation of concerns
that cut across the primary modularization of a system.” [10] AOSD provides an effective
way to separate and express these cross-cutting concerns. Early research works on AOSD
are often from the perspective of programming paradigm based on such idea, which is well
known as Aspect-Oriented Programming (AOP) [13, 14]. In AOP, cross-cutting concerns
are encapsulated into a separate category of modules called aspects, which are invasively
composed with (or woven into) a base system. It allows an “aspectual” decomposition
of the system instead of (or in addition to) the traditional modular decomposition, and
also enables an easy modification of the existing systems. In the following discussion,
we follow the terminology used by Kiczales et al. [13]. We call the program of the target
system the base program, and the language in which the base program is written the
component language. We call the program of the aspect the aspect program, and the
language in which the aspect program is written the aspect language. We call the tool
that takes in aspect programs and then composes them with their corresponding base
programs the aspect weaver. Finally, we call the output program of the aspect weaver

the woven program.

2.3.1 Component Language

The above concepts by Kiczales et al. are based on the assumption that the target soft-
ware system is implemented in a Generalized Procedure (GP) language, whose key ab-
straction and composition mechanism is always rooted in a certain form of generalized
procedure [13]. The components, which are the system’s functional units, are thus en-
capsulated in these GPs in a “well-localized, easily accessed and composed as necessary”
manner. Therefore, the languages that these components are implemented in are called

component languages.

2.3.2 Aspect Languages

To give a precise definition of aspect, we first need to clarify the notion of crosscut. In
general software system design, whenever two properties have to be built up following
different composition rules and yet be coordinated, we say that they crosscut each other
[13]. From this perspective, components can be regarded as the system properties that
are built up via the major composition mechanism provided by GP languages. Aspects
can thus be considered as the system properties that crosscut the components. Or as
Kiczales et al. defined, aspects are the system properties that “affect the performance

or semantics of its components in systematic way”. The languages in which aspects



Chapter 2 Background 27

are written are called Aspect Languages (ALs). According to the different crosscutting
concerns that they focus on, ALs can be grouped into two categories: general purpose

aspect languages and domain specific aspect languages.

General Purpose Aspect Languages An aspect language is often referred to as
a General Purpose Aspect Language (GPAL), if it “is not coupled to any specific cross-
cutting concern and provides general language constructs that permit modularisation
of a broad range of concerns” [59]. It is worth noting that a GPAL is not defined as
an aspect language working with a General Purpose Programming Language (GPPL) as
its component language. The distinguishing characteristic of an aspect language is the
crosscutting concerns it focuses on, instead of the component language it works with.
GPALs are very useful in software development, as there are many crosscutting concerns

in software systems at source code level, for example, system logging, or error handling.

AspectJ [60] is a very widely used GPAL, whose component language is Java. As a simple
and practical aspect-oriented extension to Java [61], it allows its users to encapsulate
their crosscutting concerns for modification in separate aspects that are declared in
a similar form to Java classes. An aspect declaration in AspectJ may contain three
kinds of declarations: pointcut declarations, advice declarations, and all other kinds of
declarations allowed in class declarations. To show a general idea of AspectJ, here we
present an example of how it helps to modify an existing picture drawing tool. Figure 2.3

shows the current implementation of the tool.

Assume that we want to forbid any attempt to move a FigureElement to its left. We do
not need to modify the code of every class that inherits FigureElement interface. Instead,
we only need to write an aspect containing all the custom code we need to introduce, as

shown in the AspectProgram in Figure 2.2.
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Test Program

public static void printSquare(Square s) {
Point upperLeft = s.getUpperLeft();
System.out.println("Square UpperLeft: ("+
upperLeft.getX()+","+upperLeft.getY()+")");

public static void printCircle(Circle s) {
Point centre = s.getCentre();
System.out.println("Circle Centre: ("+
centre.getX()+","+centre.getY()+")");

}

public static void main(String[] args) {
Point p = new Point(1,1);

Square s = new Square(p, 1);

Circle ¢ = new Circle(p, 1);

printSquare(s);

s.moveBy(-1, 9);

printSquare(s);

printCircle(c);
c.moveBy(-1, -1);
printCircle(c);
c.moveBy(@, -1);
printCircle(c);

Aspect Program

public aspect ForbidLeftMove {

pointcut FigureElementMove(int x, int y) :
args(x,y) && execution(public void
FigureElement.moveBy(int,int));

Object around(FigureElement fe, int x, int y) :
this(fe)&&FigureElementMove(x,y) {
System.out.println(“"delta x: " + x);
System.out.println(“"delta y: " + y);
if (x < @) return null;
else return proceed(fe, x, y);

Test Program Output

Square UpperLeft: (1,1)
delta x: -1

delta y: ©

Square UpperLeft: (1,1)
Circle Centre: (1,1)
delta x: -1

delta y: -1

Circle Centre: (1,1)
delta x: @

delta y: -1

Circle Centre: (1,0)

FIGURE 2.2: An example of how AspectJ modifies the picture drawing tool.
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<interface» public class Point implements FigureElement {
i private int x = @;
FigureElement private int y = @;

+moveBy(in dx : int, in dy : int) : void

public int getX() { return x; }

T FigureElement public int getY() { return y; }

public void setX(int x) { this.x = x; }
«implementation class» public void setY(int y) { this.y =y; }
Point public Point(int x, int y) {
setX(x);
+Point(in x : int, iny : int) setY(y);
+getX() :int
+getY() :int @override
+setX(in x : int, iny : int) : void public void moveBy(int dx, int dy) {
setX(getX() + dx);
setY(getY() + dy);
}
¥
public class Square implements FigureElement {
private Point upperlLeft;
private int edgelength;
public Point getUpperLeft() {
. return new Point(upperLeft.getX(), upperLeft.getY());
T FigureElement }
«implementation class» public int getEdgeLength() {
Square return edgelength;
¥
+Square(in p : Point, in el : int) public Square(Point p, int el) {
+getUpperLeft() : Point upperLeft = new Point(p.getX(),p.getY());
o edgelength = el;
+getEdgelength() : int }
@verride

public void moveBy(int dx, int dy) {
upperLeft.setX(upperLeft.getX() + dx);
upperLeft.setY(upperLeft.getY() + dy);

public class Circle implements FigureElement {
private Point centre;
private int radiuslLength;

public Point getCentre() {

T FigureElement return new Point(centre.getX(), centre.getY());
}
«implementation class»Circle public int getRadiusLength() {
return radiuslLength;
+Circle(in p : Point, in el : int) }
+getCentre() : Point public Circle(Point p, int el) {
+getRadiusLength() : int centre = new Point(p.getX(),p.getY());
radiusLength = el;
}
@0verride

public void moveBy(int dx, int dy) {
centre.setX(centre.getX() + dx);
centre.setY(centre.getY() + dy);

F1GURE 2.3: Part of the sample picture drawing tool.
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Domain Specific Aspect Languages Apart from the general concerns that relate
to the component languages, there can be some particular concerns related to specific
domains, i.e. domain specific concerns. For example, Harbulot and Gurd [62] developed
the loop join point model that focuses on the specific semantic structures in the compo-
nent language, in particular, the loop structure in Java. Ali and Rashid proposed the
state based join point model [63] aiming for the safety critical system domain, in which

state and state transitions of the system are the particular domain specific concerns.

An aspect langauge is often referred to as a Domain Specific Aspect Language (DSAL),
if it “allows special forms of crosscutting concerns to be decomposed into modularized
constructs” [64]. As we emphasized above, whether an aspect language is a DSAL does
not depend on its component language, but on the forms of crosscutting concerns it
focuses on. The component language of a DSAL does not necessarily need to be a DSL.
An AL, whose component language is a GPPL, can still be a DSAL, as long as it focuses
on specific concerns. Interestingly, the majority of DSALs have been developed to work
with GPPLs [59].

2.3.3 Join Point Models

The general definition of the term join points is given by Kiczales et al. [13] as the “ele-
ments of the component language semantics that the aspect programs coordinate with.”
From the perspective of program execution, join points are the points (or actions) in
base programs where aspect programs interact with base programs. The models that
formalize the join points and the allowed interactions at them are referred to as the Join
Point Models (JPMs). In particular, JPMs specify at which level the join points may
crosscut the components. According to Kiczales et al. [31], the join point may crosscut
the component at either the class level, i.e. crosscutting all instances of a class, or the
instance level, i.e. crosscutting specific instance of the class. As Masuhara et al. [65] in-
dicated, JPM is both a syntactic concept and a semantic concept. From semantic side,
it defines which specific points are join points in base programs and which specific inter-
actions or operations are allowed at these join points. From syntactic side, it defines the
pointcut mechanism, i.e. how to identify join points, and the advice mechanism, i.e. how
to specify the interactions allowed at join points. The core of an aspect language is its
JPM, as it determines how it crosscuts its component language by defining its pointcut
and advice mechanisms. We will elaborate upon the pointcut mechanism in Section
2.3.4 and the advice mechanism in Section 2.3.7. The JPMs of GPALSs are often built in
accordance with their component languages. In detail, their join points are the linguistic
actions, like function invocations or variable value modifications. The basic elements we
manipulate with in the interactions at these join points are also the linguistic entities,
like variables. There are several general JPMs defined based on the different concerns

in join point definition or interactions at join points. For example, based on the concern
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about the timing of join point interactions, there are static/dynamic join point models,
in which aspect programs interact with base programs at compile-time/runtime. As-
pectdJ, for example, includes the dynamic join point model, in which join points are
specified as “principled points in the execution of the program” [61]. Returning to our
AspectJ example shown in Figure 2.2, the ForbidLeftMove aspect captures the points in
the TestProgram wherever an object whose class type implements interface FigureElement

invokes its moveBy method.

2.3.4 Pointcut Mechanism

The notion of pointcut is another basic concept in aspect languages. A pointcut is a
collection of join points that satisfy the conditions it specifies. To describe a point-
cut in an aspect, a specific syntactic construct is introduced into the corresponding
aspect language, which is called pointcut designator [61] or pointcut descriptor. Both
of them are often abbreviated as PCD. It is worth noting that people may refer to the
languages in which PCDs are defined as crosscut languages [66] or pointcut languages
[67]. A crosscut language can be considered as an embedded language or mechanism
in its “host” aspect language to describe pointcuts. Different aspect languages may
have their own terms in referring to their crosscut languages. For example, in As-
pectdJ, it is called “pointcut language” [68]. In DJ, it is called “traversal strategies”
[69]. Crosscut languages do not only formalize the syntax to describe the pointcuts, but
also reflect the underlying join point models adopted by the corresponding aspect lan-
guages. Returning to our AspectJ example shown above, we define the ForbidLeftMove
aspect containing a PCD called FigureElementMove(intx, inty). We can see clearly that
the PCD consists of three parts: the initial keyword pointcut, the declarative name

“.”  and the join point description part after “..” From the fi-

of the pointcut before
nal part args(x, y)&&execution(public void FigureElement.moveBy(int, int)), we identify all
join points where an object of a type implementing FigureElement invokes its moveBy
method with two int type parameters x and y. Moreover, it also reflects that AspectJ
includes a dynamic join point model that allows user to capture the arguments of the

execution of a method invocation as a join point.

2.3.5 Domain Specific Join Point Models

As its name suggests, Domain Specific Join Point Models (DSJPMs) are referred to
the JPMs of DSALSs, according to which domain specific elements can be used in both
join point descriptions and the operations at join points. The basis of such a special
crosscutting mechanism requires a unique perspective upon component languages; as
we indicated in Section 2.3.1, Kiczales et al. introduce the general AOP architecture
based on an assumption about the component languages of GPALs that they are GP

languages, i.e. their key abstraction and composition mechanism is always rooted in a
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certain form of generalized procedure. Similarly, when we talk about the component
languages of DSALs, we implicitly view the programs in the component languages as
organized in certain forms of specialized procedures defined in specific domains. With
respect to the consistency of the terminology used by Kiczales et al. , we call such com-
ponent languages Specialized Procedure (SP) languages. In this thesis, any discussion
about DSALs is based on the assumption that the component languages are always SP

languages.

A DSJPM defines the specialized procedures in its domain, or Domain Specific Pro-
cedures (DSPs), as their join points, which normally correspond to some elements in
the domain meta-model. There are often other domain elements involved in the DSP at
each join point, which can be classes or properties in the meta-model, e.g. from_state and
to_state in state transitions in our automata example. From the perspective of DSALs,
a DSP is represented by a pointcut. which can be defined by domain specific elements,
instead of the basic linguistic constructs in the GPPLs. Domain specific elements can

also be used in the advice code, which modifies the behavior of the captured join point.

2.3.6 Problems Related to Pointcut Designators

There are a few problems related to PCDs that we need to discuss, as they have influ-

enced our design of the pointcut designator in our aspect languages.

Coupling of Pointcut Designators to Base Programs The pointcut designators
in many aspect languages are based on pattern matching of the base program’s struc-
tures and behaviours. For instance, our previous examples in AspectJ have shown how
pointcuts are defined by certain patterns of the method declarations. This tight coupling
between pointcut designators and base programs may lead to problems in further evolu-
tions. For example, Koppen et al. address the fragile pointcut problem [70], in which the
autonomous evolution of base programs may incidentally lead to the failure of aspect
weaving. Gybels et al. indicate the arranged pattern problem [66], where the evolution of
base programs may render the aspects inoperative if the pointcuts are based on certain
conventions and patterns in programs. All these problems hinder the evolution of aspect
oriented programs, as they imply restrictions on the autonomous evolution of the base

programs.

Attempts to Decouple Pointcut Designators from Base Programs  There
are several attempts made to decouple pointcut definition mechanisms from programs.
AspectJ designers introduced abstract aspects, which contain abstract pointcuts that can
be defined by inheriting concrete aspects. However, this only decouples the pointcuts

from the aspects, instead of the base programs. The fragile pointcut problem still remains
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among the concrete aspects that implement the abstract aspects. Stoerzer et al. present
the pointcut delta analysis [71] approach to address the fragile pointcut problem. They
introduce a program analysis to both base programs and modified programs, in which
they could (partly) detect the changes in pointcut matching (which they call pointcut
delta) and finally reveal unintended code modifications that cause pointcut deltas. This
approach might be useful to partially solve the fragile pointcut problem. However, it
relies on “a good approximation of dynamic pointcut designators” [71] and requires
dedicated supporting tools, which come with considerable cost. Moreover, it is merely
treating the symptoms. It is not attacking the coupling which is the root cause of these

problems.

Ostermann et al. present expressive pointcuts [72], which improves the expressiveness
and robustness of the pointcuts by exploiting various information from the program,
such as the execution trace or the syntax tree. However, the extra information intro-
duced to increase the pointcut precision is based on static analysis of the program.
Moreover, the abstraction capability of expressive pointcuts, such as functional compo-
sition and higher-order pointcuts, allows the composition of primitive pointcuts to build
complicated pointcuts. The increased complexity of the aspects increases the possibil-
ity of aspect interaction problems. For example, the precedence of multiple aspects is
more likely to lead to different program behaviours [73]. Different from the expressive
pointcuts approach, which requires specific program analysis, the program annotations
[71] approach achieves more precision via annotations to the programs. This approach
maintains a conceptual view of the programs by adding meta-information in the form of
annotation or comment. Though it demands the extra decoration of the program, the
decoration itself does not affect the basic compilation of the program. All annotation
related functions are encapsulated by the aspect weaver, which makes this decoupling

approach the most light weight one with regard to the cost.

2.3.7 Advice Mechanism

Whenever a join point is successfully captured, the aspect needs to apply the expected
modification to the corresponding base program. A semantic rule conveying such ex-
pected modification is often referred to as advice. Advice normally consists of two parts:
header and body. A header declares the target pointcut that the current advice associates
with, or to be applied to. This can be done in two ways, either by directly describing the
target pointcut, or by referring to an existing pointcut that is defined elsewhere. A body
contains the code snippet for adapting the captured join points which are specified by
the pointcut declared in its header. In this thesis, we refer to such code snippet defined
in the body of an advice as custom code. We refer to the language in which custom code

is written as custom language.

There are mainly three concerns related to advice in an aspect language design. The
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first concern is how an advice communicates with associated pointcut, in particular,
how information is exchanged between the captured join points and the custom code
scope, i.e. context exchange [59]. For example, sometimes an advice needs to retrieve
specific information from its captured join points, such as the runtime values of the
parameters passed into a function, so that its custom code can work properly. On the
other hand, if the custom code is an independent code block to append to the captured
join points, there is no need for much context exchange. The second concern is how the
custom code is applied to the captured join points, specifically, the pattern in which the
custom code is integrated with the corresponding piece of code in the base program.
Such patterns are often referred to as advice patterns. Different aspect languages may
have their own advice patterns. Take AspectJ for instance, advice is designed to be “a
method-like mechanism used to declare that certain code should execute at each of the
join points in a pointcut” [61]. Thus the related advice patterns supported by AspectJ
include: before, after, and around. As an example, we declare a piece of around advice in
the ForbidLeftMove aspect, as shown in Figure 2.2. The third concern is in which order
multiple advice should be applied when they are associated with the same pointcut. This
may seem not important at the first glance. However, it does influence the modification
result if the custom code of these advice have logical overlap. For example, assume we
have two aspects A and B. Both are applied to pointcut P in after pattern. There is a
variable x visible in the scope of the captured join points. A tries to update the value of
x to 3. B tries to update the value of x to 5. If A is applied before B, then the modified
code would finally set the value of x to 5. Otherwise, that would be 3.

From above discussion, we can observe that advice design relates closely to both pointcut
language design and aspect weaver design. In the first concern, if we want to have
more information available in the context exchange in an advice, we have to make
the corresponding pointcut designator finer grained, so that it is able to capture more
information in the first place. In the second concern, the advice patterns exposed to the
users of an aspect language depends on how its aspect weaver can actually weave the
custom code into the base programs. In the third concern, the advice application order
known to the aspect language users must reflect in the implementation of its aspect

weaver.

2.3.8 Aspect Weaver

The semantics of aspect languages, which are mainly about join points capture and
advice application, are supported by their auxiliary tools, which accepts base programs
and aspect programs as input and emits modified (or woven) programs as output. Such
auxiliary tools are often referred to as aspect weavers, and the transformation process
is called aspect weaving. Kiczales et al. [13] argued that aspect weaving “must process

the component and aspect languages, composing them properly to produce the desired
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total system operation.” They define three distinct phases in the aspect weaving process.
The first phase is to generate a data flow graph from the base program. The second
phase is to run the aspect program to adjust the generated graph accordingly. The last
phase is to walk through the adjusted graph and generate the modified program. In this
process, they emphasized that the weaver should not be a “smart” compiler. Instead,
its job should be “integration, rather than inspiration.” That means the weaver should
work as a rewriting engine which only performs predefined primitive rewriting rules.
All the “actual smarts” should be provided in the aspect by the programmer. To this
extent, aspect weaving is essentially the compilation process of both aspects and their
base programs. Aspect weavers can thus be regarded as compilers of aspect languages.
Although the aspect weaver is often not considered as part of the aspect language, the
aspect language relies on its underlying aspect weaver to work. A weaver of a GPAL
can be referred to as a general purpose aspect weaver. Similarly, a weaver of a DSAL

can be referred to as a domain specific aspect weaver.

2.4 Aspect-Oriented Approaches for Domain Specific Code

Generation

Many aspect-oriented approaches have been proposed to work in the MDE context. Re-
search works in this area have covered diverse topics ranging from techniques focused
on specific modelling languages, like [74], to general software modelling paradigm like
Aspect-Oriented Modelling (AOM) [75, 76], which uses aspect technology for the modu-
larization and composition of crosscutting concerns during the design stage of software
development. The general idea of them is to separate concerns in several models (in-
cluding aspects) and then compose them together to derive the software system. In this

section, we briefly introduce some of these works related to our work.

2.4.1 Symmetry of Aspect-Oriented Approaches

Symmetry is an important property of aspect oriented approaches, or more precisely,
their composition paradigms. Interestingly, it was not proposed alongside the aspect-
oriented approaches. The concept is not denoted until the base (or component) and
aspects are clearly delineated as different elements involved in composition. Asymmetric
aspect-oriented approaches explicitly distinguish the base and aspects that affect the
base. Their composition is based on the join point model of the aspects, which is specified
by the corresponding aspect language. In this style of aspect-oriented approaches, the
base is the primary model with stand-alone descriptions. The aspects, on the other hand,
can be considered as decorators of the base model, which can only be described in relation

to the base. Their composition is essentially a one-way influence of aspect over the base
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through join points, e.g. the aspect application (or weaving) following the “pointcut-
advice” pattern in AspectJ. The opposite influence is impossible, i.e. there is no way
the base can affect the aspects. In contrast, symmetric aspect-oriented approaches do
not have the above distinction. There is no “base” or “aspects” at all. Instead, there
are only “partial views”, which contain separated concerns of the system. Each view
may affect every other view being composed. Their composition follows rules that are

often independent of the views themselves.

To analyze the ramifications of using symmetric and asymmetric paradigms, Harri-
son et al. [77] define three levels of symmetry: “element symmetry”, “join point symme-
try” and “relationship symmetry”, which are corresponding to the three kinds of entities
involved in a composition paradigm, “composable element”, “join points” and “compo-
sition relationship”. As its name suggests, “composable element” denotes the element
that can be composed, e.g. the base, aspect, and partial views. Each “join point”, as the
point inside the composable elements where composition can occur, can be intrinsically
asymmetric or symmetric. Asymmetric join points contain explicit references to specific
concerns, while symmetric join points allow composition of any concern. The details
of how composition happens at join points are specified by “composition relationship”.
Asymmetric composition relationship has to be binary, which refers explicitly to the base
and implicitly to the aspects that composed to the base. On the other hand, symmetric

composition relationship has a scope ranging across all concerns being composed.

In practice, most AOSD approaches follow the asymmetric paradigm, including PARC
AQOP [78] and AspectJ. Contemporary software development has, to some extent, in-
corporated asymmetric aspect orientation. However, the industry adoption still does
not fulfill the high hopes put into aspect orientation at its beginning, that it can im-
prove software modularity. With regards to this, symmetric aspect orientation becomes
promising, particularly to academia, as it shows the possibility of keeping concerns
modularized from specification to implementation/code, e.g. the “Theme” approach by
Clarke and Baniassad [79].

2.4.2 Model Composition Paradigms

The crux of aspect-oriented model-driven code generation is how to compose the base
model and the related aspects, which contains separate concerns, into the complete
software system. This process is often referred to as model composition. According to
a systematic mapping study in this area by Mehmood et al. [10], model composition

approaches can be categorized into at least two main groups.

The “Weave-Then-Generate” Approach The approaches in the first group, such

as [75] and [80], directly compose the base model and the aspect model into an enhanced
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model, and then transform the obtained model into code of a target programming lan-
guage through the DSCG process. For this reason, these approaches are also referred
to as “Weave-Then-Generate” [81] approaches. The “Weave-Then-Generate” approach
seems ideal from the MDE perspective. The outcome of composition is a composed
model, which can be considered as a modification of the original model. The composed
model can then be used to analyze or to generate new implementation/code. Thus the
composed model remains as the primary artifact in the software development, and the
typical “model change = code re-generation” evolution pattern in MDE orthodoxy can
be maintained. The weakness of this approach, on the other hand, is a potentially large
semantic gap between the composed model and code. First, it can be quite difficult to
develop the composition tool. For example, the aspects being composed may require
modification of the meta-model of the base. A trade-off has to be made between the
expressiveness of aspects and the consistency of the meta-model of the base. Second,
the traceability of code errors may be hindered. When an error is detected in code, it

could be difficult to identify if it comes from the base or a certain aspect.

The “Generate-Then-Weave” Approach The second group of model composi-
tion approaches first generate the base program from the base model, and then explore
the direct transformation of aspect model into code of a target aspect language, which
is often a GPAL, e.g. AspectJ. Finally, the obtained aspect program is applied to the
base program using the weaver of the target aspect language. These approaches are also
referred to as “Generate-Then-Weave” [81] approaches. The “Generate-Then-Weave”
paradigm is adopted by many code generation tools/frameworks, such as the Formal
Design Analysis Framework (FDAF) by Bennet et al. [82] and the “GenERTiCA” gen-
eration tool by Wehrmeister et al. [83]. Compared with the “Weave-Then-Generate”
approach, the “Generate-Then-Weave” approach produces potentially smaller semantic
gap between model and code, and it simplifies the generation of the composition tool. It
only requires translation tools from the DSALSs into some target GPALs. The translated
aspects can then be applied to the base program using the the weavers of the underlying
GPALs. Moreover, a smaller semantic gap makes it easier to relate the errors detected

in code back to the base models or certain domain specific aspects.

2.4.3 Transformation-Oriented Views of Model Composition

If we consider the code generated in DSCG as the lower-level ( i.e. code level) models
that correspond to the input domain specific models, the DSCG process can thus be
considered as a special case of model transformation. Thus the composition of the code
level models and the aspect models can be examined from the transformation-oriented
views. According to an exploration work on the relationship between model composition
and model transformation by Fleurey et al. [84], there is a spectrum of transformation-

oriented composition approaches from dedicated composition to generic composition.
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In a dedicated composition, all content that a primary model needs to incorporate is
specified by a context specific aspect model, while no knowledge about the primary
model, aspect model, composition directives, bindings and the signatures is included
in the transformation actions in a generic composition. As they argued, such generic
transformation would be “extremely difficult (if not impossible) to implement”. To
make our approach as generic as possible, we develop the approach following a pattern
of template aspect model and model-transformation-specialized framework, on which we

will elaborate in the next chapter.

2.4.4 Generic Model Composition

Although aspect-oriented approaches show a propitious prospect in dealing with sys-
tem complexity and maintainability, they rely on the ability of automatic model com-
position in various domains. This attracts research effort in a generic model compo-
sition framework that can be adapted to different domains, i.e. modelling languages.
Bézivin et al. [85] examined three different model composition frameworks, from which
they extracted a core set of common definitions in model composition, such as “match
operation”, “merge operation”. Fleurey et al. [86] proposed a generic model composition
framework, in which model composition is decomposed into two major steps: a domain-
specific “Matching” step and a domain-independent “Merging” step. The framework
defines “Signature” to identify meta-model elements, and “Mergeable” to represent any
domain element that can be merged in a generic mechanism. As the first step to adapt
the framework to a specific modelling language L, a “composition strategy” Mc needs
to be defined to specify the three things: “Mergeable” elements in the meta-model of
the given modelling language M, their “signature”, and a specific matching operator
based on these “signatures”. M can then be composed with Mc to obtain M| that has
composition capabilities. Any model that conforms to My should also conform to M;.
When the adapted framework takes two models conforming to M|, all “Mergeable” ele-
ments in the models are checked using the “signature” matching operator. All matching

elements are finally merged using generic algorithm to finish the model composition.

We gleaned two pieces of inspiration from this work. First, meta-model can be used as a
clear interface to specialize a generic model manipulation framework for a given domain
specific modelling language. In particular, the meta-model of a modelling language can
be extended through a composition with a functional model, e.g. “composition strategy”
in this work, to obtain the corresponding functionalities, i.e. the composition capability.
Second, not every element in the given meta-model is used by the framework, only a
subset of the given classes and properties is involved in its functional extension. In
real-life DSCG cases, the meta-model of a given modelling language can be large and
complex. An effective way to derive such a simplified meta model may benefit the

extension in terms of its complexity and efficiency.
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2.4.5 Meta-model Pruning

Meta-model pruning is an algorithm proposed by Sen et al. [87] to prune meta-models
by removing unnecessary elements. In detail, the algorithm takes as input a meta-model
M and a set of its classes and properties marked as required, and trims off any other
classes and properties that are determined as unnecessary based on a set of rules and
options. As a result, a potentially smaller meta-model M’ is derived, which contains
only the elements in the input set and their mandatory dependents. The derived meta-
model M’ is often referred to as an effective meta-model (of the original meta model
M). From the graph-theoretical perspective, this pruning process is to simplify a given
meta-model by cutting off all unnecessary nodes (classes or properties) from its graph.
Moreover, it preserves the names of the meta-classes and meta-properties retained from
the original meta-model in the effective meta model. From a type-theoretical perspective,
the effective meta-model can be taken as a “super-type” of the original meta-model. As
Sen et al. argued, “all models of the effective meta-model are exchangeable across tools
that use the large input meta-model as a standard.” As a conclusion, the meta-model
pruning algorithm provides us a generic method of meta-model simplification, which can

help us tailor the meta-models before any further customization.






Chapter 3

Extension in DSCG with Domain
Specific Aspects

In Section 1.2, we mentioned that the primary objective of our work is to accommodate
changes that can not be expressed by the original domain specific modelling languages,
whilst the benefits of DSCG can be maintained. The benefits here mainly refer to
the reliability, i.e. the correctness of the modified code, and the productivity, i.e. the
effectiveness of the modification. To achieve this, we develop an approach that takes
as input the meta-model of the target DSCG, and extend it with an aspect oriented
system, so that we can express such changes as domain specific aspects and compose
them systematically with the current system by weaving them into the base code. In
this chapter, we first explain some concepts and terms involved in our work, and then
raise some assumptions of our “DSCG extension approach”. We then elaborate on this
approach and demonstrate the modification process using a simple extension scenario of

the automata example in Section 1.1.

3.1 Terms and Assumptions

Before we start the detailed introduction of our approach, we first explain a few concepts
and terms that are involved in the following discussion, and raise several assumptions

to narrow the scope of the discussion.

3.1.1 Context Free Grammar

In our approach, DSAL is generated according to the target DSCG. The generated DSAL
is specified as a Context Free Grammar (CFG) [88]. As its name suggests, production

rules in its grammar can be applied regardless of the context. There is a formal definition
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of CFG given by DeRemer et al. [89]. The definition denotes a CFG by a quadruple
(V1,Vn, S, P), where

V7 is a finite set of symbols that often called terminals

V\ is a finite set of symbols distinct from Vt that often called nonterminals

e S is a unique symbol called start symbol, where S € Vi

P is a finite set of rules that often called production rules

V p € P, pis a pair (a, ), where a € Vyy and 8 € (V1 JVn)*

As « always appears on the left hand side of production rules, it is often referred to as
the Left Hand Side (LHS). Accordingly, (8 is often referred to as the Right Hand Side
(RHS). When one « appears as LHS in more than one production rule, it is common to
list all the Bs as the RHS of a “merged” production rule, where each of the original 8s

is called an alternative and separated by symbol “|”.

3.1.2 Abstract Syntax Tree and Parse Tree

To parse a program according to a given grammar, a parser normally first interprets
the program into a token string through lexical analysis, and then generates a “tree-like
intermediate representation that depicts the grammatical structure of the token stream”
[40]. There are two typical types of “tree-like” representations that can be created in

the parsing process. One is abstract syntazx tree and the other is parse tree.

Abstract Syntax Tree An Abstract Syntax Tree (AST), or sometimes shortened
as syntax tree, is a tree representation of the syntactic structure of an input string
in a given language. It is “abstract” because its nodes represent the abstract syntax
of the language, instead of the concrete tokens defined by some formal grammar that
specifies the language. In other words, an AST is a conceptual representation built
with language constructs. For example, the AST of the expression “3 + 4” in a simple

arithmetic operation language is shown in Figure 3.1.

Parse Tree Similar to an AST, a parse tree is also a tree representation of the
syntactic structure of an input string in a given language. The difference is that a
parse tree is always related to a formal grammar specifying the given language, instead
of the language itself. The nodes of a parse tree represent concrete syntax. Or more
precisely, the internal nodes of a parse tree represent the nonterminals defined in the

related grammar, whereas its leave nodes represent the terminals. To emphasize this
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expr
add
+ /I\
var pm var

3 4 3 " 4

FicUure 3.1: The AST of in- FI1GURE 3.2: The parse tree of
put “3+4” input “3+4”

contrast, a parse tree is sometimes called a Concrete Syntaz Tree (CST). Assume that
the above arithmetic operation language is specified with a simple grammar, whose
EBNF representation is shown in Listing 3.1, the parse tree of the expression “3 + 4” is

shown in Figure 3.2.

expr := add | mul ;

add := var pm var ;

pm = 42 | -2

add := var md var ;

md = k0 | /0

var := ’0° | ’1-9° {’0-9°}x

LisTING 3.1: A simple grammar specifying the arithmetic operation language

In summary, a parse tree is a representation of a program, which contains the concrete
syntax constructs defined in the given grammar. It is a record of grammar rule appli-
cations. An AST, on the other hand, is an abstract representation of a program, which

trims off the concrete syntax constructs and retains the “real content” of the program.

3.1.3 Languages in DSCG

In the context of DSCG and DSAL, concepts and terms can sometimes be quite confus-
ing, as the artifacts they refer to may have multiple appellations from different perspec-
tives or in different terminologies. For example, the programming language, in which
the code is generated, can be called the output language of the DSCG code generator in
the context of DSCG . The same language can, from the DSL perspective, be referred
to as the host language of the DSL. In this section, we clarify the definitions of some

terms commonly used in our discussion.

The terms target languages and output languages are both defined from the perspective

of DSCG. In general, they are used to refer to the same artifact, i.e. the programming
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languages in which the generated code is written. Target languages emphasize the model-
to-code transformation process, in which the modelling languages are the source and the
programming languages are the target. Output languages emphasize the code generators,
which use the programming languages to describe the output. In our approach, as the
code generator would be updated to include the traceability link in the code generation
process, we use them to distinguish the programming language before the code generator
update and after that. In detail, we use the term target languages to refer to the original
programming languages used in the target DSCG. We use the term output languages to
refer to the programming languages extended with the extra syntax and semantics for

the intertwined traceability links, e.g. the traceability links based on comments.

As an example, Listing A.1 shows a code block wrapped by a pair of comment based
traceability links in a programming language. From the perspective of the target lan-
guage, the two traceability links are merely two lines of textual comments with no
semantics. Removing the comments will not affect the generated code in terms of its
functional correctness and performance. On the other hand, from the perspective of the
output language, these comments can be parsed with finer grained syntactical rules, to
get some extra model tracing semantics. Although their removal still does not affect
the functional correctness and performance of the generated code, it will impede the
proper crosscutting behaviour of our DSAL weaver. In practice, target languages are of-
ten standard versions of some mainstream programming languages, e.g. C11 (ISO/IEC

9899:2011) [50].

3.1.4 Assumptions

In practice, there are many factors involved in the DSCG contexts that may influence
the feasibility of our approach, e.g. the implementation of the DSCG code generators.
As such, we raise several assumptions to focus on the concrete problem to be addressed

by our approach.

Assumption 1: We focus on the DSCG for only textual DSLs.

As Gronniger et al. [90] mentioned, there types of DSLs used nowadays: textual DSLs,
graphical DSLs and hybrid DSLs. The experience from practical work indicates that
there are indeed some advantages of the textual DSLs over the graphical DSLs, in terms
of the interpretation and manipulation of the DSLs. In this work, to accommodate the
modification requirements that cannot be expressed by the original DSLs, our approach
aims at extending the DSLs by generating the corresponding Domain Specific Aspect
Languages (DSALs) from them. The very first step in this process is to extract the do-
main meta-models from the DSLs. Although this is still possible with graphical DSLs,

it would be much easier to work with textual DSLs. Besides, Gronniger et al. indicated
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some other important advantages of textual DSLs, such as less dependence on the plat-

forms and tools.

Assumption 2: We only focus on the transformation based DSCG.

The basis of the DSALSs generated in our approach is the model traceability in the gen-
erated code. If the target DSCG is transformation based, the generated code would be
a direct product of certain transformation process. No matter whether the transforma-
tions are rule based rewritings or template expansions, it is still possible to maintain
the model traceability in the final transformation result, i.e. the generated code. How-
ever, if the target DSCG is deduction based, the code would be generated only as the
byproduct of the proving process, which “reflects the proof from which it was extracted”
instead of the target domain elements. As a result, there is no guarantee that model
traceability can be established in the generated code. Therefore, we only focus on only
the transformation based DSCG.

Assumption 3: The DSCG code generators must be compositional genera-

tors.

In Section 2.2.4, we mentioned that it can be very difficult to trace domain specific
elements in the code generated through multiple transformations conducted by the code
generator. If the code generator allows horizontal transformations that breach the mod-
ular boundary in their higher level representations, the potential overlapped modules
in the lower level representations would make it very difficult to trace certain domain
specific elements in the generated code. Particularly in our approach, we use sentinel
pairs at the boundary of the code block corresponding to certain domain element in-
stance. Such impediment in model traceability would severely hinder the generation of
the DSALs. Figure 3.3 shows an example of the problem when the higher level modular

structure is not preserved.
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model A B ([Fr——————=-= > A B’
A'NB’
|
I
I
I
I
I
N2
Statement 1;
A’ 1 Statement 2;
code Statement 3;
Statement 4; B’
Statement 5;

FIGURE 3.3: An example in which higher level modular structure is broken.

In this example, Action A and B in the domain specific model does not have any over-
lap at the beginning. However, as the result of an internal optimization (a horizontal
transformation), Action A and B are restructured into Action A’ and B’ which share
an overlap part A’ N B’. In the final output program, Statement 1-3 are generated from
Action A’ while Statement 3-5 are generated from Action B’. Obviously, Statement 3,
as an overlap, would cause problems when we try to trace A’ or B’. For example, if
we changed statement3 in an attempt to modify Action A/, we actually also changed
Action B’ in the meantime. Therefore, some tricks need to be developed to address such
tracing problems. As such tricks are beyond our research interest, we just forbid any
horizontal transformations in the target code generators to avoid such problems in our
discussion. Compositional code generators, as we introduced in Section 2.2.1, only allow
vertical transformations. Thus we simplify the environment by assuming that the code

generators in our discussion are always compositional.

3.2 The DSCG Extension Approach

The basic idea of our approach is to develop a generic aspect oriented framework, which
can take as input a target DSCG, the involved DSL in particular, and dynamically gener-
ate as output a DSAL and a corresponding aspect weaver from it. The generated DSAL
allows domain experts to describe the expected changes, which cannot be expressed in
the original modelling language, and automatically weave them into the base code using
the generated DSAL weaver. From the perspective of MDE, the generated DSAL can
be considered as an auxiliary of the target domain modelling language, and its weaver
as an appendage of the modelling tool chain, at the end of the code generator. They as

a whole can be regarded as an extension of the target DSCG to accommodate certain



Chapter 3 Extension in DSCG with Domain Specific Aspects 47

modification requirement in a systematic way. For this reason, we call it the “DSCG

extension approach”.

3.2.1 Overview

Figure 3.4 illustrates the general process to accommodate changes using our DSCG
extension approach, which can be divided into three main parts: Target DSCG, DSCG
extension and DSAL application.

DSCG Extension

Extension |
I requirements

Target DSCG

|
I
I meta-model (DSL) : | @ i meta-model meta-model :
I M | I \m M’ DSAL
! | - Template |
I domain I U
I experts I I - |
O I meta-mode I
! @ I | Tracing |
I | | Strategy I
| | P Instantiated DSAL
I |@ /,/ specification I
I I L/’/ meta-model |
Ct;de /J/ | @ ’ |
I <—’t —————————————————— Mtr
| generator | | |
| | - | - — -1
Output | 1 V- - - - - - = -
| language I |_ domain |
| specification I experts |
D Base I i Aspect <— DSAL ®
I code | | weaver aspect I
I ] |
________ I |
———>  involved to derive I Woven |
------- > influence | code
——>  toolinput / output - o o I
O———  conformto DSAL Application

FIGURE 3.4: An overview of our DSCG extension approach.

The target DSCG process is shown in the left rectangle with the dashed outline. Domain
experts write models conforming to the domain meta-model, i.e. the DSL, and then send

them into the DSL code generator to generate programs, or “base code”, that conform
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to the output language specification. The extension of the target DSCG is shown in the
upper right rectangle with the dashed outline. This is the core step in our approach,
to generate the modification systems. Simply stated, the extension requirements are
first interpreted to specify how domain meta-models need to be involved in the expected
change and what DSAL patterns can make it easy to describe these changes. With
regards to the interpreted specification, a traceable meta-model of the target domain
and a specification of the DSAL are then generated respectively. Finally, a corresponding
aspect weaver is created in accordance with them. We will elaborate on these generation
process in Section 3.3. The next step in our approach is to apply the generated DSAL,
in which domain experts can describe the expected change in DSAL aspects, and weave
them into the base code using the generated DSAL weaver, to finish the modification

process.

It is not difficult to find that meta-models are used throughout the DSCG extension
process. These meta-models are the basis in constructing the modification systems in
our approach. Thus we also refer to this approach as the meta-model based DSCG
extension approach. In practice, these meta-models can be specified using different tech-
niques, e.g. the Unified Modelling Language (UML) [91], the XML Schema Definition
(XSD) language [92], or the Kernel MetaMetaModel (KM3) [122]. The technique selec-
tion may depend on the preference of the DSCG extension implementor, e.g. UML for
graphical representation and XSD for textual representation, as well as the availability
of the tool set, e.g. Visual Paradigm [93] for UML and Visual Studio [94] for XSD.

Within the entire modification process, we can see that there are four steps annotated
with circled numbers. These steps may require human communication and decisions,
and thus affect the efficiency of introducing the expected changes. There may be trade-
offs between productivity and some property that we prefer in these steps. We will have

further discussion on this later.

3.2.2 An Example of Extension Scenario

To demonstrate how our approach works in detail, we use a hypothetical scenario about
our automata example shown in Section 1.1, in which the expected changes cannot be
described with the original DSL.

Meta-Model of Target Domain The target domain is the simulation of Determin-
istic Finite Automata (DFA), or Deterministic Finite State Machine (DFSM) [95]. The
corresponding DSL is very simple. As shown in Figure 3.5, there are only four domain
classes defined: State, Input, Transition, Automata. Each State has a name property and
may have zero or more inbound or outbound Transition objects. Each Transition has

three properties: a from_state, a to_state, and an input object. Each Automata may have



Chapter 3 Extension in DSCG with Domain Specific Aspects 49

one or more State objects, zero or more transitions, and two other properties, start_state

and accept_state.

State

-index : int Transition

1 (1411 ’ 1 1

-from_state : State
! -to_state : State
%1> -input : Input
Input 1
‘ -value : int
Automata
%1> -start_state : State
L <> -accept_state : State
Hl“*> -internal_states : State([]

-transitions : Transition(] QO*—

FI1GURE 3.5: UML diagram of DFA domain modelling language.

The DSL used in this example is called “DFA”. It is specified by a language specification
framework called ANTLR [16, 96, 97], upon which we will elaborate in Section 5.2. The
complete ANTLR specification of the DFA language is attached in Appendix A.5. The
corresponding description in Extended Backus-Naur Form (EBNF) [98, 99] is shown in
Listing 3.2.

INTLITERAL := °0° | 21°..°9 {°0°..°9°}* ;

INTLIST := ’{’> INTLITERAL (’,’ INTLITERAL)* ’}°
alphabet_declaration := ’Alphabet’ INTLIST ’;°’ ;
states_decl := ’States’ INTLIST ’;°’ ;

start_state_decl := ’StartState’ ’(’ INTLITERAL ’)’ ’;’ ;
accept_states_decl := ’AcceptStates’ INTLIST ’;’ ;
state_declaration := states_decl start_state_decl

accept_states_decl ;

transition_decl := ’Transition’ ’(’ INTLITERAL ’,°’
INTLITERAL °,’ INTLITERAL )’ ’;°’ ;

transition_declaration := (transition_decl)x* ;

program := ’DFA’ ’{’ alphabet_declaration state_declaration

transition_declaration ’}’

LisTING 3.2: The EBNF representation of the “DFA” language
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Extension Requirement Now assume that the domain experts want to trace certain
transitions in simulation, e.g. to count and log any transition from state x to state y. Ob-
viously, the current DSL cannot express this requirement, since there is no domain class
capable of counting numbers or logging transitions. According to the pure model based
approaches, the DSL needs to be extended with supplementary domain classes, e.g. a
“logger” class, and the code generator needs to be updated accordingly, so that the base
model can be rewritten in the extended DSL, and then be used to regenerate the code
with the customized code generator. However, the domain experts do not agree to ex-
tend the DSL with any counting or logging facilities. They do not want to get into any
compatibility trouble with the existing models or the MDE tool chain. Besides, there
is an existing function “log()” in the legacy library code, which implements exactly the
expected counting and logging function. The ideal way to modify the code is to insert
a line to invoke this function at the entry of each code block corresponding to a target
transition. However, such manual modification will sacrifice the reliability of the code
and the productivity based on the modelling tool chain. This is a typical scenario where
our approach can be a helpful alternative. Now consider a simple automata model that
is used to generate the code shown in Figure 1.5, its description in the “DFA” language

is shown in Listing 3.3.

DFA {
States {0,1,2};
StartState (0);
AcceptStates {2};

Transition (0,1,1);
Transition (1,3,1);

Transition (1,5,2);
LisTING 3.3: The DFA model involved in our automata example

In the next section, we will elaborate on how our approach can help domain experts to

introduce this change step by step.

3.3 Meta-Model Based DSCG Extension

In our DSCG extension approach, the generation of the DSAL is the first and funda-
mental step. It consists of four main processes. First, the extension requirements are
interpreted. Accordingly, a compact meta-model of the target domain M’ containing all
domain elements involved in the expected changes is generated, and a generic DSAL
specification is created. Second, a trace strategy model is created with insight of the

implementation of the code generator, and composed with the derived meta-model M’.
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Thus all domain elements in the composed meta-model M], obtain the tracing func-
tionalities. The code generator is then updated according to M{, to become capable of
building the traceability links in its code generation. Third, the created DSAL specifica-
tion is composed with M’ to derive a specification of the DSAL. Finally, a corresponding

aspect weaver is created with regards to both M;, and the DSAL specification.

3.3.1 Extension Requirement Analysis

In our approach, the analysis of the extension requirements aims to extract formal
specifications of the expected changes from the description by domain experts in natural
language, in particular, the answers to the following two questions. The first question is
How domain classes and properties may be involved in the expected changes?. The second
question is Which DSAL patterns would be the best to accommodate these changes? The

first answer, annotated with @, helps to derive a subset of the target domain meta-

model. The second answer, annotated with @, helps to create a template DSAL

specification.

Effective Meta-Model The first answer from domain experts specifies which classes
and properties in the original domain meta-model M would be involved in the expected
changes. In particular, the classes they want to use to crosscut the base model, i.e. the
classes to be used as join points, should be indicated explicitly. There can be one or more
class in M selected as join point classes. Each join point class normally corresponds to one
specific PCD pattern and potentially an advice pattern. Each join point class should be
specified that at which level they are supposed to crosscut the base model, e.g. the class
level or the instance level, as explained in Section2.3.3. For instance, in our UML-based
meta-model in our automata example, we can use join point interfaces like “IJoinln-
stance” as the indicators. Besides, the domain experts also need to confirm if each
property in the selected join point class is involved in the expected changes. Each join
point class will be composed later into our DSAL template, which means a corresponding
type of traceability link will need to be established, and a corresponding DSAL grammar
rule will need to be created. If we could trim off some unrelated domain elements, we
can reduce the complexity of the involved domain meta-models and potentially reduce
the complexity of the composition with the DSAL templates. For this reason, the classes
and properties selected by the domain experts can be sent as input of a pruning method.
The method will calculate a closed subset of M, according to certain interests or con-
cerns. The calculated meta-model, i.e. M’ is often referred to as effective meta-model.
In our following experiments, we always use the algorithm proposed by Sen et al. [87],
which calculates the effective meta-model through the dependencies of the given subset

of domain meta-model.

Returning to our DFA example, here we use UML to specify the domain meta-models.
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As the domain experts only want to trace certain transitions determined by their proper-
ties, i.e. from _state, input or to_state. They do not care which specific automata instance
has included these transitions. Therefore, we do not need to include class “Automata”
in the effective meta-model. To mark the “join point” class, we enforce them to imple-
ment the “IJoinlnstance” interface, which represents join points that crosscut at instance

level. The corresponding effective meta-model in UML is shown in Figure 3.6.

State oinl N
w )
oinlnstance \__/
-index : int {
1|1
Transition
1
—<> -from_state : State
Input 1

-to_state : State
-value : int -input : Input

FIGURE 3.6: Effective Meta-Model of the DFA domain.

DSAL Template Selection The second answer from domain experts specifies which
aspect oriented modification patterns can simplify and facilitate the description of the
expected changes. As domain experts may not be familiar with AOP or DSAL, we cre-
ate a number of formal language templates, or DSAL grammar templates to be precise,
which are based on different aspect oriented modification patterns, e.g. PCD patterns
and advice patterns, so that they can select the most convenient way to accommodate
the changes they expected. If no existing template can satisfy their need, we can of
course create new templates. The selected template will then be expanded according
to the derived effective meta-model M, to generate a valid DSAL that domain ex-
perts can use to describe the changes. In these DSAL templates, placeholders are used
to represent the domain specific content, such as the filtering condition in the PCDs.
When a selected template is expanded in accordance with an effective meta-model M’,
the placeholders will be expanded with the specific join point classes and their related
properties in M’. The templates we use in our experiments are defined as Context-Free
Grammars (CFGs), as there are a number of parser generation frameworks supporting
CFGs, e.g. the ANTLR framework [16], with which the generation of the DSAL weaver
might be partially automated.

Our DSAL templates follow the asymmetric aspect orientation paradigm, i.e. to take the
generated code as the primary base model, and describe the changes as aspects. There
are two reasons behind it. First, our purpose of this aspect oriented extension of the
target DSCG is to provide an auxiliary way to modify the model-based generated code,

without breaking the existing tool chain conforming to the given DSL. We still want to
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keep the existing models as the primary artifact, and to distinguish them from any arti-
fact we introduce for modification purpose, e.g. the aspects. Second, symmetric aspect
orientation paradigm does not distinguish aspects from models. This may introduce un-
desirable influence in the detailed behavior of model composition, especially when there
are multiple relevant aspects involved. For example, when there are two aspects to be
applied to the same model, the two aspects may have implicit and unwanted impact

over each other, before they are applied to the model.

The DSAL templates can be specified with any language specification formalism, such as
Syntaz Definition Formalism (SDF) or the ANTLR grammar specification language [96],
as long as the templates can be easily composed with the derived effective meta-model
M’. From the perspective of AOP, our templates follow a “pointcut-advice” pattern. In
this pattern, each pointcut describes a collection of join points that satisfy a specific
condition. The placeholders are often used in such conditional filters, which can be a
simple value check on one of the domain properties, or a compound condition involving
multiple domain elements. Domain experts need to determine which specific type of
modification they want to make at the join points. For example, if the expected changes
at a join point instance would only happen at the entry and exit of the join points, the
“before” and “after” advice pattern would suffice. On the other hand, if the join points
are supposed to be modified by replacement or rewriting, the “around” advice pattern

would become necessary.

The placeholders may also be used in advice, such as the custom code, i.e. the code block
to be woven into the join points. According to the expected changes, domain experts
sometimes only want to add a snippet of proven code at the join points, and do not
need to worry about its correctness. In this case, we can select an advice pattern that
takes the custom code block as plain text, and apply it directly. On the other hand,
if the custom code has not been proved, e.g. temporary code from the aspect writers,
we can select an advice pattern capable of checking the syntactical correctness of the
custom code, according to the grammar of the output language in the target DSCG. In
particular, if domain experts would like to use certain domain element directly in the
custom code block, we would need to select an advice pattern that uses placeholders in

the custom code block to represent the domain specific elements.

Another concern in selecting the DSAL templates is the support of generic pointcuts.
Generic pointcuts provide aspect writers an effective way to express the crosscutting
concerns. Many aspect languages, such as AspectJ [60] and AspectC++ [100], support
generic wildcards in their PCDs. Although they use different syntax, like ‘+’ and ‘%’
in AspectJ, and ‘%’ in AspectC++, these generic wildcards are used to define generic
pointcuts. For example, AspectJ allows users to define the pointcut shown in Listing
3.4.
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pointcut generic_pc() : call(public final * Foo.*(int));
LisTING 3.4: Using wildcards in the pointcuts of AspectJ

This pointcut captures the invocations of any public final method of Class Foo, which
takes in one parameter of int type. The first wildcard symbol ‘*’ stands for any return
type, and the second ‘x’ stands for any method name. In our templates, we support
generic pointcut by either allowing the absence of filters in PCD conditions or explicitly

using symbol ¢’ or ‘?” in the basic value type definitions.

Now that we have explained about the basic structure of our DSAL templates, and the
general concerns involved in their selection. Back to our automata example, the domain
experts want to insert an invocation of function “logging”, to each join point instance
corresponding to a target transition. In other words, they need to add proven code
at the beginning of captured join point. They can select a template with placeholders
for domain specific PCD to capture the target join points, i.e. the “Transition” class
instances, and the “before&after” advice pattern for the insertion of proven code. The
placeholder production rules for the conditional filter in PCD are shown in List 3.5. The
complete ANTLR specification of the selected template is shown in List A.6.

/* Placeholder: property_filter
* Use: a conditional expression of
* the properties of join point class
* Erpansion sample:
* "filter_propertyl operator wvalue_literal”
* Note:
* rule "operator" and "walue_literal”
* will be selected according to
* the type of "filter_propertyl”
*/

property_filter

/* Placeholder: filter_property

* Use: the properties of join point class
* Erpansion sample:

* "jp_classl_name COLON propertyl.l_mname"
* "jp_classl_name COLON propertyl.2_mname"

* "jp_class2_name COLON propertyl.l1_mname"

*
*/
filter_property
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3

LisTiNG 3.5: The PCD placeholders in the DSAL template selected in the automata

example

3.3.2 Generation of DSAL

As explained in Section 3.3.1, once a DSAL template is selected, it can be expanded
according to the derived effective meta-model. Due to the diverse modification require-
ments in different domains, this expansion is normally a manual process. In detail,
the template expansion process often includes two steps. First, the placeholders, e.g. for
PCD or its filter, are expanded according to the domain specific join point models, which
mainly include the join point classes and properties in the effective meta-model M’. Sec-
ond, there may be some functions or macros in the legacy code, which needs to be used
directly in the custom code, e.g. a logging function. Returning to our automata example,
the only join point class is the Transition class, with three properties from_state, input
and to_state. Accordingly, the placeholders shown in List A.6 are expanded as shown
below. In the following discussion, we call this generated DSAL “AspectDFA”. The
complete ANTLR specification of AspectDFA is attached in Listing A.7.

property_filter
filter_propertyl numerical_comparer INTLITERAL
| filter_property2 numerical_comparer INTLITERAL
| filter_property3 numerical_comparer INTLITERAL
filter_propertyl

’Transition’ COLON ’from_state’

filter_property?2
’Transition’ COLON ’to_state’

filter_propertyl
>Transition’ COLON ’input’

LisTING 3.6: Production rules created in template expansion
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3.3.3 Generation of Traceable Domain Meta-Model

The DSALSs to generate in our approach rely on the model traceability in the generated
code with regards to the domain specific join points. After generating the DSALSs from
the templates, we need to guarantee the correct generation of the traceability links in
the DSCG process. To do this, we acquire deep insight of the target code generator,
and select an appropriate model tracing strategy, which is then composed with the
effective meta-model M’; to derive a traceable meta-model M;,. The derived traceable
meta-model is used to guide the update of the code generator, so that the updated code

generator will be capable of generating traceability links in the code generation process.

Tracing Strategy Selection To select a proper tracing strategy is the first step to
generate a traceable meta-model. It is annotated with @ in Figure 3.4. In Section 2.2.4,
we introduced a few different traceability link implementations, such as standalone links
based on separate XML file and sentinels based on programming language constructs,

like comments and annotations.

By the term “tracing strategy”, we refer to the strategy to implement the traceability
links. From the perspective of DSAL, these links can be regarded as markers of the
domain elements in the generated code. The detailed implementation of these links
determines how our DSALs can crosscut the code generated from the domain specific
models, since the PCDs in the DSALs directly work with these traceability links. As
discussed in Section 2.3.6, there are many problems related to the PCDs, such as the
fragile pointcut problem [71]. In our experiments, we define the traceability links as the
profiles of the join points, which contain the static information of the corresponding join
points. Such information can be a name mapping between the domain class instances

and their corresponding variables in the generated code.

A tracing strategy is basically a definition of a set of class attributes, which often exist
as class attribute functions, containing the definition of certain traceability links. A
tracing strategy model can be composed with the join point classes in the effective meta-
model. Each tracing strategy corresponds to a specific implementation of sentinels, and
contains a set of functions defined with string templates to be used in the code generator
update. In our experiments, we use String Template [101], a textual-based template
expansion technique, to describe the templates, and if possible guide their expansion
in the corresponding update of the code generator. It is worth noting that a tracing

strategy is language-specific, depending on the output language of the target DSCG.

To decide what specific tracing strategy to use, we need to obtain deep insight of the code
generator with regard to the potential effect of the sentinels over the generated code. In
detail, there are four major concerns. The first concern is the correctness of the generated

code with sentinels inserted. Apart from the basic syntactical and semantical correctness
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requirement, there are often extra agreements upon the generated code, such as safety
certifications [4] and the conformance to predefined library interfaces. The insertion of
our sentinels must not break such agreements. The second concern is to minimize the cost
of adding the traceability links, which includes the performance impact of generating the
traceability links during the code generation process, and the complexity of modifying
the implementation of the code generator. The third concern is to minimize the effect
of the traceability links to the generated code, in terms of its functional correctness
and performance. Sometimes, the choices based on these two concerns may conflict
with each other. For example, the comment-based sentinels may generally require lower
cost in code generator customization, while the other forms of sentinels may potentially
affect the functional correctness of the generated code, as well as its performance. In
practice, we may sometimes insert function invocations as sentinels into the generated
code. Even though they are idle functions that do nothing inside, their invocation would
still change the call stack of the code, and thus result in little performance penalty. The
last concern is the limitation from the output language of the target DSCG. For instance,
if the output language does not support annotation at all, we obviously cannot choose
annotation based sentinels. Sometimes, the consideration over these concerns can lead
to a specific choice. For example, if the given DSL host language is Java, and there is
no strict time constraints on the generated code, and the performance penalty caused
by the invocations of the sentinel functions is not problematic, and a reliable AspectJ
weaver is available, it would be easy to reach a consensus on adopting sentinel functions
as traceability links. Unfortunately, these factors may be incompatible in other cases

and no choice can satisfy all of them. Trade-offs have to be made on ad hoc basis.

Returning to our DFA example, as the code generator is template based, it is not
difficult to add sentinel templates directly in its existing code template. As the output
language is Java, we can select sentinel template based on annotation, comment, or
idle function invocation. Although comment based sentinels may have no impact of
the generated code in terms of its correctness and performance, it is not an appealing
option to us, since there is, to the best of our knowledge, no existing aspect language
that supports Java comments based join point. We finally select a function invocation
based sentinel template, as the code generated here is not time sensitive software, like
embedded system, the performance hindrance due to the sentinel function invocations
will not be a big concern for us. Moreover, using function based sentinels could facilitate
the reuse of AspectJ in generating our DSAL. Besides, we can see that the members of the
join point class, i.e. Transition, are all of simple type, i.e. String. The code generator is
generating separate code blocks for join points with different transition member values.
We can thus even include value mapping in our sentinels, so that we do not need to
separately check on the member values when try to capture the target join points. The

selected tracing methods and their underlying sentinel templates are shown in List 3.7.

// public interface
Instancelevel _EntrySentinel () ::= <<
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String getInstanceEntrySentinel () {
return "<Instancelevel_BeginSentinel>";
}
>>
Instancelevel _ExitSentinel () ::= <<
String getInstanceExitSentinel () {

return "<Instancelevel_EndSentinel>";

// instance level sentinel templates

Instancelevel_BeginSentinel (className, memList) ::= <<

Begin___<className>___<memlList:{p | memberMapping(<p>)};
separator="__">

>>

InstancelLevel_EndSentinel (className, memList) ::= <<

End___<className>___<memList:{p | memberMapping(<p>)7};

separator="__">

>>

// for each join point class member, inform the code
generator to

// trace their domain element name and value

memberMapping (name) ::= <<

<name>_\<prpt_value\>

>>

LisTiNG 3.7: The tracing sentinel template selected in the automata example

Composition of Domain Meta-Model with Tracing Strategy Once the tracing
strategy is selected, it can be automatically composed with the effective meta-model M’.
Their composition is essentially a two step process. The first step is a partial expansion
of the selected sentinel templates according to the class specific information of the join
point classes in M’. The expansion is not complete here, because some information is
only available at generation-time, e.g. the variable name that correspond to a specific
domain element instance. The second step is to append the tracing attributes, which
are defined with the partially expanded templates, to the join point classes in M’. With
these tracing attributes, the target code generator can be updated to generate code that
can be traced back to the corresponding domain specific model. Therefore, we call the
composed meta-model traceable meta-model M;,. Returning to our automata example,
the implementation of the tracing methods according to the selected tracing strategy is

shown in Listing 3.8.
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// in the "Transition" class
string getInstanceEntrySentinel () {
return "Begin___Transition___from_state__<prpt_value>

__to_state__<prpt_value>__input__<prpt_value>";

string getInstanceExitSentinel () {
return "End___Transition___from_state__<prpt_value>

_to_state__<prpt_value>__input__<prpt_value>";

LisTIiNG 3.8: The tracing sentinel template selected in the automata example

It is worth noting that M’ — M, is a restricted extension. Mj, can be regarded as a
transient modelling language that enhances the original modelling language M in a sense
that models conforming to M can now be used to generate traceable code. Although
M}, only exists within the scope of our DSAL generation framework, it will influence the
domain specific code generator in its update to support model traceability, and further
affect the code generated with it. To guarantee the correctness of the generated code,
we need to ensure the sentinels do not have write access to the rest of the code. Any

sentinel implementation in the tracing strategies needs to satisfy this standard.

Code Generator Customization With the traceable meta-model M{,, we can cus-
tomize the target code generator accordingly to enable the model traceability in the
code generation process. This step is annotated with @ in Figure 3.4. Unfortunately,
as different domain specific code generators may vary greatly in terms of their system
architecture designs, implementation technologies, etc, it is very difficult to distill a gen-
eralized process or technique to customize domain specific code generators. Yet we can
define two general principles in the customization of the code generators. First, the sen-
tinel insertion should be configurable. For example, our customization of the ANTLR
parser generator (in Section 5.4.3) only generates the sentinels when the “-trace” op-
tion is selected. Ideally, when the sentinel generation option is off, the customized code
generator should output exactly the same code as the code previously generated by the
original code generator from the same model. Second, provided the sentinels themselves
are executable lines, e.g. function invocations, the sentinel code block MUST not change
the value of any variable defined outside the sentinel code blocks. This can guarantee
that the code generated by the customized code generators is functionally identical with

the code generated by the original code generator from the same model.

To make the tracing strategy, especially their underlying sentinel templates, more reusable
in code generation, we can define a unified model of syntax and semantics for the spe-

cial placeholders in our sentinel templates, e.g. <inst_name>, <prpt_value>, etc, which
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requires expansion in the code generation stage. For example, “className___<instance_-
name>" means “the name of the current instance of domain class ‘className’ . Re-
turning to our automata example, the placeholder <prpt_value> used in the template of
the entry sentinel means “the value of property ‘propertyName’ in the current instance”.
It is worth noting that some generator-specific factors may still affect the generation of
the sentinels in the code, even with the traceable domain meta-models as formal guide.
An example is the addition of “if” conditional check for the value of backtracking in the
ANTLR experiment, on which will be elaborated in Section 5.4.3.

3.3.4 Generation of DSAL Weaver

The last step in our DSCG extension process is to generate a tool that can automatically
apply the expected changes described in the DSAL aspects to the base code, which is gen-
erated from the base model using the updated code generator. In detail, the tool, i.e. the
DSAL weaver, takes as input a DSAL aspect and the target base code, and generates
as output the code customized according to the input DSAL aspect. This process can
be decomposed into two steps. The first step is the parsing of the DSAL aspect, which
includes lexical analysis, syntactical analysis. The second step is the semantic analysis
of the DSAL aspect and its application into the base code. To generate a DSAL weaver,
is basically to implement the above two functions. The first function is relatively easy to
achieve. As mentioned in Section 3.3.1, there are some frameworks capable of generating
lexers and parsers automatically from the given language specifications, like the DSAL
specifications derived in our approach. To implement the second function, the traceable
domain meta-model M’_tr is required for the detailed implementation of the sentinels
for each join point class, as the sentinels are often the “real” underlying join points the
DSAL weavers capture. There are generally two approaches to do the semantic analysis

of the DSAL aspects and weave them into the corresponding base code.

DSAL Weaver Based on Existing Aspect Weaver The first approach is to
leverage an existing aspect weaving system, e.g. AspectJ. In this approach, we can choose
another aspect language, and define translation rules from our DSAL to the target aspect
language. For any aspect written in our DSAL, it can thus be translated into the target
aspect language first, and then woven into the base code using an aspect weaver of
the target aspect language. In practice, the Syntaz-Directed Translation (SDT) [102]
technique, which binds extra semantics to the correpsonding production rules in the
language specification, can be used to translate the PCDs based on the traceability
links and their related advices, from the DSAL syntax to the corresponding syntax of
the underlying aspect language. Once the DSAL aspect has been successfully translated,
we can weave the translated aspect into the base code using its existing aspect weavers.
The major advantage of this approach is flexibility. By reusing the existing aspect

weaving system, we only need to build translators from our generated DSALS into the
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underlying aspect languages, which means the implementation of our DSAL weaver does
not need to be restricted to a specific technique or framework. As long as there is a
valid translation from our DSAL into another aspect language, we can build a translator
and reuse an existing weaver. Besides, the translators can be automatically generated
through techniques like SDT. In our automata example, we use ANTLR framework to
build a translator from our AspectDFA to AspectJ, and then use AspectJ weaver to
perform the underlying weaving work. In detail, we modify the ANTLR specification of
AspectDFA to attach extra semantics to the relevant production rules for the translation
into AspectJ. For example, production rule aspect_statement is expanded as shown in
Listing 3.9.

aspect_statement
Im=loc_modifier pd=pcd_decl ad=adv_decl
-> aspectStatement (pcdloc={$1lm.pcd}, advloc={$1lm.adv
}, pcd={$pd.st}, body={$ad.st})

3

aspectStatement (pcdloc, advloc, pcd, body) = <<
<advloc>(): <pcdloc>__<pcd>() <body>
>>
loc_modifier
’before’ {$pcd = "Begin"; $adv = "after"}

| ’after’ {$pcd = "End"; $adv = "before"}

LisTING 3.9: Production rule aspect_statement with semantic action for translation

With the above syntax-directed semantics, aspect translators from our DSAL to AspectJ
can be automatically generated. However, it is possible that there is no valid translation
from the generated DSAL into any other aspect language, or there is no existing aspect
weaving system that can work with the current output language. In that case, we have

to turn to the second approach, to build our own AST rewriter.

DSAL Weaver Built as AST Rewriter The second approach is basically to build
our DSAL aspect weavers as a rewriter working at the AST level. There are mainly two
components in such a weaver. The first component takes in the parsing results of a DSAL
aspect and interprets the corresponding semantics into an AST rewriting strategy, i.e. a
collection of rewriting rules over the input base code. With the interpreted rewriting
strategy, the second component can walk through the AST parsed from the base code
and rewrite it accordingly. We will elaborate on this approach in our case study with
the AUTOFILTER code generator discussed in Chapter 4.
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Sentinel Location Maintenance in Custom Code Weaving At last, we need
to emphasize the importance of maintaining the sentinel locations. Sentinels are the
primary model tracing infrastructure in our approach. Their locations directly convey
the model tracing information by indicating the boundaries of code block corresponding
to certain domain elements. Therefore, it is important that we maintain the proper lo-
cations of the sentinels in each custom code weaving operation, so that we can guarantee
the validity of the sentinels for the forthcoming aspect weaving request. Let us see a

piece of generated code corresponding to a certain join point, as shown in Listing 3.10.

// Location A
Begin_Sentinel ();
// Location B

<code block corresponding to target join point>

// Location C
End_Sentinel () ;
// Location D

LisTING 3.10: Problem in maintaining the sentinel locations

If there is an advice trying to insert some custom code into the location “before this join
point”, the custom code should be inserted into “Location B” instead of “Location A”.
Otherwise, Begin_Sentinel() would be left in a wrong location after the custom code is
woven, as it no longer marks the beginning of the join point related code block. Similarly,
the custom code in an after advice should go to “Location C” instead of “Location
D”. The maintenance of sentinel location is important as it ensures the correctness of
applying multiple DSAL aspects to the same base code. In particular, if we build the
DSAL weavers on top of existing aspect language weavers, we need to guarantee the

translation semantics generate the correct location modifiers.

3.4 Code Modification Through DSAL Aspect Weaving

So far we have generated a DSAL that can crosscut the base model at the domain specific
join points selected by the domain experts, and a corresponding weaver that can apply
the aspects written in the DSAL, the domain experts can now describe the changes they
want in DSAL aspects. It is not difficult for them to learn the syntax and semantics

of the generated DSAL, as they already have a general understanding about it during
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our communication about selecting the DSAL template. Returning to our automata
example, the domain experts can now extend the current DFA model to log transitions
that satisfy the given conditions. For example, to log any transition from state 1 to

state 3, the domain experts can write a DSAL aspect as shown below.

aspect sample {
after (Transition:from_state=1&&Transition:to_state=3) {
log();

LisTING 3.11: AspectDFA aspect for logging self transition over state 1

The AspectDFA weaver then translates this aspect into AspectJ. If there is any syntac-
tic issue, the weavers would stop the compilation and emit proper error messages. For
example, if we deliberately give a different property name other than the three prop-
erty names expanded during the DSAL generation step, e.g. replacing “from_state” with

“previous_state”, the translation process will stop with the following error message.

line 2:22 mismatched input ’previous_state’ expecting ’from_state’

If there is no syntax error, the aspect should be translated into an AspectJ aspect as

shown in Listing 3.12.

package antlr.DFA;
public aspect sample {
before(): call(
End Transition_

log ()

_from_state__1__to_state__1%x()) {

LisTING 3.12: Translated AspectJ aspect

It is worth noting that the translated advice location modifier is “before”, although it
was “after” in the DSAL aspect. This is because the modifier “after” in the DSAL
aspect refers to the ending of the domain specific join point, i.e. “transition”, which is
labeled by our “end sentinel”. Therefore, the correct location to insert the custom code
is “before” the “end sentinel” instead of “after” it. This is achieved by the corresponding

SDT semantics to the AspectDFA grammar, which is shown in List 3.13.

aspect_statement
Im=loc_modifier pd=pcd_decl ad=adv_decl
-> aspectStatement (pcdloc={$1lm.pcd}, advloc={$1lm.adv
}, pcd={$pd.st}, body={$ad.st})

3
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aspectStatement (pcdloc, advloc, pcd, body) = <<
<advloc>(): <pcdloc>__<pcd>() <body>
>>
loc_modifier
’before’ {$pcd = "Begin"; $adv = "after"}

| ’after’ {$pcd = "End"; $adv = "before"}
LisTiNnG 3.13: SDT semantics in AspectDFA for correct location of custom code

insertion

The translated AspectJ aspect will then be passed to a reliable AspectJ weaver, such
as the default “ajc” weaver, to finish the weaving process. As AspectJ actually weaves
custom code at Java bytecode level, which is not very easy to understand, we present
the equivalent customized Java code in Listing 3.14, to give an intuition of the effect of

this aspect weaving into the base code.

if (currentState == 0 && input == 1) {
Begin___Transition___from_state__O__to_state__1__input__1
(); // begin sentinel
currentState = 1;
End___Transition___from_state__O__to_state__1__input__10)
i // end sentinel
} else if (currentState == 1 && input == 3) {
Begin___Transition___from_state__1__to_state__1__input__3
(); // begin sentinel
currentState = 1;
log);

End Transition___from_state__1__to_state__1__input__3()

i // end sentinel

} else if (currentState == 1 && input == 5) {
Begin___Transition___from_state__1__to_state__2__input__5
(); // begin sentinel

currentState = 2;
End___Transition___from_state__1__to_state__2__input__5()
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i // end sentinel

} else if (currentState == endState) {
return;
} else {
throw new Exception("invalid state");
}

LisTING 3.14: Customized Java code in our automata example

Compared with the manual modification shown in Figure 1.5, our custom code is intro-
duced systematically by the DSAL aspect weavering process. The generated DSAL and
the aspect weaver can be reused for similar modification requirements. Besides, our ap-
proach does not break the existing MDE tool chain. The simulator program regenerated

by the customized code generator is still synchronized with the input model.

In this chapter, we have given an introduction about our meta-model based DSCG
extension approach for accommodating changes to the DSCG generated code that cannot
be described at model level. Although this approach entails considerable human effort
to implement, it provides the capability to formalize the changes and to guarantee the
correctness of the corresponding code modification. In the next three chapters, we
respectively test our approach in three different real-life DSCG extention scenarios as
concrete case studies. In Chapter 4, we extend the generation of state estimators based
on Kalman filter algorithms with the code generator AUTOFILTER. In Chapter 5, we
extend the generation of LL(*) grammar parsers with the ANTLR parser generator,. In
Chapter 6, we extend the generation of LALR(1) grammar parsers with the CUP parser

generator.






Chapter 4

DSCG Extension for
AUTOFILTER

The first concrete case study for our meta-model based DSCG extension approach is to
modify the C code generated by a domain specific code generator called AUTOFILTER
[15]. AUTOFILTER is a code generator that takes the descriptions of state estima-
tion problems as input domain specific models, and generates the implementation of
a process that computes statistically optimal estimates using the Kalman filter algo-
rithm [103, 104]. In this chapter, we first introduce the Kalman filter algorithm and the
AUTOFILTER code generator. We then extract the domain meta-model and describe
the extension scenario. Finally, we illustrate the construction of the DSCG extension

system, and demonstrate how to accommodate the expected changes with it.

4.1 The Kalman Filter and The AUTOFILTER Code Gen-

erator

4.1.1 The Kalman Filter Algorithm

The Kalman filter algorithm was first introduced by Kalman [103], as an algorithm
that provides a recursive computational solution to the discrete data linear filtering
problems. It addresses the general estimation problem in a discrete time controlled
stochastic process. The process to be estimated is influenced respectively by the process
and measurement noise. They are assumed to be independent of each other, and to be
Gaussian white noise, which means that they are serially uncorrelated and with normal

distributions. Formally, the process is governed thus:

Tht1 = Apxp + Bug + wg, (4.1)
67
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and the measurement vector is

zi = Hrpxp + vy, (4.2)

Here the subscript means “at step k”. x denotes the state vector. The length of x is often
denoted by n. A, sometimes also noted as F, denotes the n x n state transition matrix.
u denotes the control vector. The length of u is often denoted by I. B denotes the n x |
control matrix, which maps the control to the state variables. w denotes the process
noise vector, whose length is also n. z denotes the measurement vector. The length of
z is often denoted by m. H denotes an n X m matrix, which extracts the measurement
from the state variables. v denotes the measurement noise vector, whose length is also

m.

p(w) ~ N(0,Q) (4.3)

p(v) ~ N(0, R) (4.4)

Q denotes an n x n state variance matrix, which represents the estimation error. R
denotes an m X m measurement variance matrix, which represents the measurement

error.

The term “filter” comes from the signal process domain, where it is used to refer to the
process that removes some undesirable component or feature from a signal. The Kalman
filter estimates the above process as a recursive filter, which predicts the process state
at some time and then procures feedback on measurements. In each iteration of the
recursion, there are two stages: predict and update. The “predict” stage is also referred
to as the “time update” stage. In this stage, it estimates the process state according
to the process model, and then calculates an a prior:i error covariance estimate, which
is represented as an n X n matrix P, according to the process model and the process
noise model. Here we use the denotation that used by Welch and Bishop [105]. The

b

superscript “—” is used to mark the intermediate results, meaning “in between step k

and k+17.
x,;rl = Az + Buy (4.5)
Pk_—H = AkPkAg + Qk (4.6)

The “update” stage is also referred to as the “measurement update” stage. In this stage,

the Kalman filter first computes an n x m matrix K, which is introduced to minimize
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the estimation error covariance. K denotes the Kalman gain, or blending factor. It is
computed with the state error covariance matrix P, the measurement matrix H, and the

measurement error covariance matrix R, according to the following equation.

Ky = Py Hf(HyPy H + Ry,) ™" (4.7)
It then computes the measurement innovation, or the residual, to evaluate the discrep-

ancy of the predicted measurement, i.e. Hyzp, and the actual measurement z. This

innovation is used to compute the a posteriori state estimate.

xp =z, + K(z, — Hyy)) (4.8)

Finally, it computes the a posteriori error covariance estimate according to the prior:

error covariance obtained in the “predict” stage.

P, =(I- Kka)P]; (4.9)

To make the whole computation process more clear, we illustrates the corresponding

pseudo code in Figure 4.1.

(Initialization)
while((more input available)) do
input u, z // w control vector, z measurement vector
// Prediction
x = Fx+Bu // © (a priori) state estimate, F process model, B control model
P = FPF'+Q // P (apriori) estimate covariance, Q process noise covariance
// Update
y = z-—Hx // y innovation, H observation model
S = HPH' +R // S innovation covariance, R measurement noise covariance
K = PH's! // K Kalman gain
x = x+Ky // (a posteriori) state estimate
P = I-KH)P // (aposteriori) estimate covariance, I identity matrix
output x
end

FIGURE 4.1: Abstract form of the discrete Kalman filter algorithm.

The Kalman filter algorithm is the basis of mathematical models formulated to solve
the estimation problems. It is widely used in solutions estimating the internal states
of dynamic systems with a series of observation measurements. To cope with different
process models, there are a number of variants of the standard Kalman filter developed,
such as the Extended Kalman filter [106] and the Unscented Kalman filter [107] for

the nonlinear systems. Different estimation problems require different mathematical
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models that involve different variants of the Kalman filter. However, for each formulated
mathematical model, it still takes a lot of time and effort to build an associated estimator
for testing. This is the motivation behind the AUTOFILTER code generator.

4.1.2 The AUTOFILTER Code Generator

The AUTOFILTER code generator is a “knowledge-based” tool developed by Whit-
tle and Schumann [15], which takes as input the estimation problem description, and
generates as output the implementation of its estimator based on a properly selected
Kalman filter. The input description defines the physical characteristics of the problem
in terms of the process model and measurement model. The output implementation
can be configured into a number of languages, including C, C++, and Modula 2 [108].
AUTOFILTER significantly reduces the coding effort in generating the implementations
of various Kalman filter variants for different problems.It requires no low-level program-
ming skill, such as to “glue” toolkit function invocations. AUTOFILTER also facilitates
the prototyping of the estimators for the input problems. The information given in the
input specification is used to generate an corresponding simulation or testing. Thus the

iterations on the given models can be made quickly and easily.

From the perspective of DSCG, AUTOFILTER can be regarded as a domain specific
code generator. It takes as input a mathematical description of a given estimation
problem, then selects a specific Kalman filter algorithm schema as its solution, and finally
generates the corresponding implementation. Strictly speaking, the solution selection
process in AUTOFILTER is a set-valued function. For each input problem specification,
there is a specific set of solutions. However, the output can be any solution in the set. In
other words, an input description may lead to more than one output solutions. For the
sake of simplicity, we make two assumptions. The first assumption is that the C language
is only output language AUTOFILTER supports. The second one is that the same
solution is always selected for the same problem each time. Based on this assumption,
the target domain can be considered as a composition of the state estimation problem
domain and their Kalman filter based solution domain. Accordingly, we can regard the
input estimation problem and its specific Kalman filter algorithm together as the input

model, and the underlying algorithm implementation as the DSCG process.

The estimation problems for AUTOFILTER can be specified in terms of continuous or
discrete, linear or nonlinear process and measurement dynamics. The problem domain
here encompasses the state vector x, the process model, the measurement model, and
some basic controlling properties over the Kalman filter based solutions. AUTOFILTER
uses its proprietary problem specification language, i.e. the Domain Specific Language
(DSL), to describe these elements. As Whittle and Schumann [15] put it, the language
“allows the concise specification of the process model, the measurement model, and

other important design information.”
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The input language of AUTOFILTER is not only designed to provide syntax close to the
notations that are familiar to the domain experts ( i.e. vectors, matrices, and differential
equations) to describe the basics of the estimation problems, e.g. the process models and
measurement models. It also allows model designers to specify certain details about
the desired output estimator, e.g. its name and interface, or how it is initialized with
the declared elements, etc. The specification of the input language consists of two
parts: the basics of the estimation problems and the information of the desired filter(s).
The first part specifies the declarations of the basics ( i.e. scalars, vectors, or matrices)
of the estimation problems, and the dynamics of the process and measurement. The
second part specifies certain information of the estimator code, such as the interfaces

and synthesis goal.

Declarations In the declaration part, a domain element can be declared as a scalar,
vector, or matrix, with a modifier indicating its usage. const means “used as constant”;
data means “used as input data”; absent modifier means “used as variable”. The basic
data types include nat (natural number), int (integer), double (double-precision floating-
point number). For vectors and matrices, the dimensions are specified with a lower and
upper bound, which can be arbitrary expressions. The corresponding EBNF specification

is shown in Listing 4.1.

DECL := [ const | data ] TYPE VAR [ := EXPR ] [ as COMMENT 1]
| IVAR ~ gauss (EXPR, EXPR) ;

TYPE := nat | int | double ;

VAR := NAME | NAME(EXPR .. EXPR) | NAME(EXPR .. EXPR, EXPR
EXPR) ;

IVAR := NAME | NAME(IND) | NAME(IND, IND) ;

IND := °0> | 21°..797 {’07..°97}x ;

COMMENT := STRING+ ;

LisTING 4.1: Input language specification for the basic declarations of the estimation

problems

EXPR represents scalar arithmetic expressions. Vector and matrix are declared in a
FORTRAN-style: NAME(EXPR), and NAME(EXPR, EXPR), respectively. IND are all-
quantified specification variables to denote generic indices. As some variables are statis-
tical variables that have a distribution, in particular the Gaussian distribution, they are
declared as IVAR ~ gauss(EXPR, EXPR). For example, x(I) ~ gauss(0,sigma(l)) means
that each element of the vector x has a zero-mean Gaussian distribution with a standard

deviation corresponding to the vector element sigma(l).

Process Models and Measurement Models As both the process model and the

measurement models relate to the state vector x, they are specified as a set of equations
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over the state vectors. For continuous models, differential equations (& = F(z), repre-
sented as CONT_EQU) are used; a discrete model is given as a set of difference equations
(k41 = F(zk), represented as DISC_LEQU). The corresponding input language specifi-
cation is shown in Listing 4.2.

MODEL_DEF := equation_set NAME has ’[’ DISC_EQU+ | CONT_EQU+
J] b ’» 0 ;

DISC_EQU := disc NAME(EXPR) := EXPR ;

CONT_EQU := d/dt NAME(EXPR) := EXPR ;

LISTING 4.2: Input language specification for the dynamics of the estimation problems

Output Controls and Constraints This part specifies the controlling and con-
straining information over the desired output, e.g. state vectors or filters, the interface,
and additional information, e.g. on the filter initialization. The name of the output
Kalman filter is given after the estimator keyword. Then various properties of the filter

are specified. The corresponding EBNF specification is shown in Listing 4.3.

CONTROL := ESTIMATOR_DECL SET_ATTR+ SYNTH_GOAL ;
ESTIMATOR_DECL := estimator NAME °’.°’ ;
SET_ATTR := ’attribute(’ NAME ’,’ ’steps’ ’)’ ’::=’ EXPR

% number of filter execution steps
| ’attribute(’ NAME ’,’ ’process_eqs’ ’)’ ’::=’ NAME
% name of process equation set
| ’attribute(’ NAME ’,’ ’measurement_eqs’ ’)’ ’::=’ NAME
% name of measurement equation set
| ’attribute(’ NAME ’,’ ’initials’ ’)’ ’::=’ NAME(IND)
% initial values state vector
| >attribute(’ NAME ’,’ ’initial_covariance’ )’ ’::=’
EXPR
% initial covariance matrix
SYNTH_GOAL := DECL* output_filter FNAME ;
FNAME := NAME | NAME ’par’ FNAME ;

LisTING 4.3: Input language specification for the output code control

This part of the specification mainly defines how to link the problem domain, i.e. the
estimation problem domain, and the solution domain, i.e. the Kalman filter domain. The
expected output may be a single filter or a number of Kalman filters running in parallel
(defined by par). Each output filter is given a name NAME. We can specify the output
parameters as part of the synthesis goal. For example, the following input description
specifies that we want to generate a Kalman filter named test, along with an output

matrix named xhat of type double.
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double xhat(0..n_statevars-1, 0..n_steps-1).
output_filter test.

LISTING 4.4: Example of the output code control

For the convenience of the model builders, it also defines how to control the basics of
the output code. In fact, the language also supports the definition of operating modes
in which different filters run in each mode. However, that is beyond our interest. So we

will not cover here.

4.1.3 The Target Domain Meta-Model

The target domain includes the estimation problem domain, as well as the solution
domain, i.e. the Kalman filter domain. Accordingly, we define the target domain meta-
model as two parts respectively from the given DSL specification and the AUTOFILTER
code generator. From the above DSL specification, we can derive the first part of the
target domain meta-model in the form of XML schema. Accordingly, the estimation
problem domain meta-model consists of the basic types such as “scalar” and “vector”,
components classes, e.g. the process model and measurement model, and the controls and
constraints on a certain Kalman filter. For example, the problem domain class “scalar”
in the meta-model is shown in Listing 4.5. The complete meta-model is attached in
Appendix B.1.

<xs:simpleType name="expr_string_type">
<xs:restriction base="xs:normalizedString"/>

</xs:simpleType>

<xs:simpleType name="name_string_type">
<xs:restriction base="xs:string">
<xs:pattern value="([A-Za-z_])+"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="basic_data_ref_type">
<xs:restriction base="xs:string">
<xs:enumeration value="mnat"/>
<xs:enumeration value="int"/>
<xs:enumeration value="double"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="role_type">
<xs:restriction base="xs:string">

<xs:enumeration value="const"/>
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<xs:enumeration value="variable"/>
<xs:enumeration value="data"/>
</xs:restriction>
</xs:simpleType>
<xs:complexType name="scalar_type">
<xs:sequence>
<xs:element name="role" type="role_type"/>
<xs:element name="name" type="name_string_type"/>
<xs:element name="element_type" type="
basic_data_ref_type"/>
<xs:element name="init_value" type="expr_string_type"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>

LisTING 4.5: The “scalar” class in the estimation problem domain meta-model

Unlike the problem domain meta-model that is explicitly defined in the DSL specifi-
cation, the rest of the target domain meta-model, i.e. the solution domain meta-model,
is formed implicitly in the AUTOFILTER code generator. It includes all participants
involved in the Kalman filter construction and the estimations based on them. More
specifically, it consists of the calculations of the state estimate vector x and its error co-
variance P respectively in the “predict” and “update” stage. In detail, the calculations
are comprised by several finer grained sub calculations, such as the calculation of the
Kalman gain K. There are two points worth noting here. First, as mentioned in Section
4.1.1, the Kalman filters use a two-stage model, i.e. a priori state and a posteriori state,
in the process state estimation. This is reflected in the representation of both the state
vector and its estimation error covariance. For instance, the solution domain respec-
tively defines the priori state estimate £, whose value is calculated in the “predict”
stage, and the posteriori state estimate &, whose value is calculated in the “update”
stage. Similarly, it defines the prior process covariance P~, and the posterior process
covariance PT. Second, the solution domain here spans two levels of abstraction. The
higher level solution domain defines the abstract elements in the Kalman filter domain,
such as £~ and P~, whereas the lower level solution domain specifies the corresponding
implementation in the form of C code. The solution domain meta-model in XSD schema

is attached in Appendix B.2.

4.2 Extension Scenario

In this section, we first introduce a specific estimation problem, and the correspond-
ing Kalman filter algorithm selected by AUTOFILTER. We then describe the expected
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changes to the selected Kalman filter algorithm, which cannot be expressed by the target
domain modelling language. This scenario will be used as a driving example to demon-

strate how we can accommodate such changes using our DSCG extension approach.

4.2.1 The Cruiser Estimation Problem

The input description in our driving example specifies a problem about a craft cruising
at constant attitude in a 2D coordinates with random perturbations. We call it “the
cruiser problem”. The state vector in the cruiser problem is declared as “x”, where
x[0] represent the “angle to X axis of trajectory”, x[1] represents the “X coordinate of
craft”, x[2] represents the “Y coordinate of the craft”. The state vector is the major
concern in the estimation problem, and the key variable in the corresponding Kalman
filter algorithm. Apart from the state vector, the problem description also specify a

number of related scalars and vectors as shown in Listing 4.6.

const nat n_statevars := 3 as ’Number of state variables’.
double x(0..n_statevars-1) as ’state variables vector’.
double w(0..n_statevars-1) as ’process noise vector’.
const double sigma(0..n_statevars-1) := [0.1,0.1,0.1] as ’
standard deviation of process noise’.
where 0 =< sigma(_).

w(I) ~ gauss(0,sigma(I)).

double xinit (0..n_statevars-1) as ’initial values of state

variables’.

data double x_init_noise(0..n_statevars-1) as ’initial state

noise’.

data double xinit_mean(0..n_statevars-1) as ’initial value

means’.
xinit(I) ~ gauss(xinit_mean(I), x_init_noise(I)).

const double s:=10.0 as ’Constant speed’.

const double ts:= 1.0 as ’Time step in seconds’.

LI1STING 4.6: Declaration of scalars and vectors in the cruiser problem description
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The process model and the measurement model of the cruiser problem is shown in Listing
4.7.

/*
Process model.
*/
equation_set cruising_model has
[
disc x(0) := x(0) + w(0),
disc x(1) := x(1) + ts * s * cos(x(0)) + w(l),
disc x(2) := x(2) + ts * s * sin(x(0)) + w(2)
1.
equation_set measurement_model has
[
z(0,tvar) := x(1) + v(0),
z(1l,tvar) := x(2) + v(1)
1.

LisTING 4.7: The process model and the measurement model in the cruiser problem

description

The description finally specifies several controlling properties and constraints over the
solution, i.e. the Kalman filter. For example, the “constant speed” s, the “time step in
seconds” ts, and “sampling interval” t, etc. Besides, the solution controlling information

indicates details such as the name and the initialization of the estimator, etc.

estimator test.

attribute (test, update_interval) ::= t.

attribute (test, steps) ::= 100. % note has to be a known
constant integer , cannot be a symbolic constant. This 1is

a deficiency.

attribute (test, process_eqs) ::= cruising_model.
attribute(test, measurement_eqs) ::= measurement_model.
attribute (test, initials) ::= xinit(I).

attribute (test, timevar) ::= tvar.

attribute(test, initial_covariance) ::=
mx (idx (pvar (990), 0, 2), idx(pvar(991), 0, 2),
[[x_init_noise(0),0,0],[0,x_init_noise (1) ,0],[0,0,

x_init_noise (2)1]1]).

double xhat (0..n_statevars-1, 0..n_steps-1).
output_filter test.

LisTING 4.8: The controlling and constraining information in the cruiser problem

description



Chapter 4 DSCG Extension for AUTOFILTER 77

4.2.2 Extension Requirements

From the abstract form of the Kalman filter shown in Figure 4.1, we can see the code
generated by AUTOFILTER is based on matrix computations. However, due to the
variety of the Kalman filter algorithm family, the exact number of the involved matrices,
as well as the form and order of the matrix computations may vary greatly from one
model to another. Worse still, there are some anti-patterns in the code generated by
AUTOFILTER. For example, it keeps a bad naming convention of array variables, which
constructs array names by adding a positive number to a common prefix “pv”’. Besides,
magic numbers [109] are used as matrix sizes and indexes throughout the generated code
without much explanation about their meanings. All these factors make it difficult to
understand the code generated by AUTOFILTER, despite it being well documented.
Simply stated, manual changes to the generated code can be rather difficult and error-

prone.

The expected extension is to allow domain experts to monitor the updates of the variables
involved in the Kalman filter algorithm, in particular, the state vector x, the estimate
error covariance P, and the Kalman gain K, respectively in the “init”, “predict” and
“update” stages. For monitoring purpose, they require the ability to modify these join
points with simple functions in terms of output language statements, e.g. printing and
logging. Sometimes, they may also want to check some rare runtime status by tampering
with certain join points, e.g. skipping their normal execution. These changes cannot be
expressed in terms of the elements in either the estimation problem domain, or the
Kalman filter domain. This is a good scenario to test our meta-model based DSCG
extension approach. First, the modelling language, i.e. the problem description cannot
describe certain details in the solution domain, such as the “predict” and “update”
stages. Besides, neither the estimation problem domain elements or the Kalman filter
domain elements are capable of supporting the simple functions needed by the domain
experts. Second, due to the difficulty in understanding the generated code, manual
modification can be quite difficult or even impractical. Third, we cannot directly access
the source code of AUTOFILTER. We have to use some formal descriptions, i.e. the
meta-models in our approach, to guide the code generator maintainers to modify it for
us. This helps to verify that our meta-model based approach is truly independent from

the specific domains.

4.3 The Extension of AUTOFILTER DSCG

Following our approach, we first need to analyze the extension requirement to derive
the effective meta-model for crosscutting the Kalman filter model and to select a DSAL

template for the expected modification.
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4.3.1 The Kalman Filter Domain Effective Meta-Model

In this example, the join points involved in the extension requirements are the variables
involved in the Kalman filter algorithm, including scalars, vectors and matrices, and
the three algorithm stages, i.e. “init”, “predict” and “update”. Accordingly, the join
point classes are the “AlgorithmicParticipant” class and the “AlgorithmicStage” class.
To specify the corresponding meta-model, we use the XML Schema Definition (XSD)
language, which can be easily reused later in the generation of the DSAL. In XSD,
the meta-model classes are defined as “<xs:simpleType>" or “<xs:complexType>",
and the properties are defined as “<xs:element>". In particular, the join point classes
are annotated with the “IJoinInstance” annotation. The complete specification of the

effective meta-model is shown in Appendix B.3.

4.3.2 DSAL Template in SDF

As domain experts are concerned about the correctness of the C code snippet inserted
into the base programs through the advice in the generated DSAL. We want to select a
DSAL template, in which the custom code in advice can be syntactically checked at the
aspect weaving time. In this experiment, we use syntax definition formalism to specify
the DSAL template, as there is a reusable specification module of the C programming

language.

Syntax Definition Formalism  Syntaz Definition Formalism (SDF) is a formalism
for the definition of both lexical and context-free syntax [110]. It is a declarative language
that allows a concise and natural expression of the syntax of a context-free language.
It is modular, and richer than the traditional formalisms, such as BNF and Yacc. It is
less restrictive than Yacc, which can generate a parser only if the input grammar falls
within the LALR subclass [111]. Besides, it supports disambiguation by applying special

purpose facilities in SDF, such as priorities and reject productions.

In this example, the simple functions we need to support in custom code, can be imple-
mented directly as C statements. For example, the printing function can be implemented
by calling C function “printf()”. By including the C grammar module, we can have finer-
grained definition for the custom code in the advice of our DSAL specification. Another
benefit of the SDF modularity is that we can encapsulate all syntax placeholders cor-
responding to the domain elements in a dedicated, “domain specific” module. We can
thus define the rest part of the DSAL template as an independent module, which will
include the expanded “domain specific” module later to complete the generation of the
DSAL.
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Pointcut and Advice Patterns As mentioned in Section 4.2.2, sometimes an ex-
pected change may entail thorough modification of a join point, e.g. removing or replac-
ing its corresponding code block in the generated code. Therefore, we need to select a
template that supports the “around” advice pattern. This pattern allows the custom
code to overwrite the join point code block, or to insert extra code around it. In the
latter case, the original code block is normally represented by some predefined syntax
in the custom code, e.g. the “proceed();” in AspectJ. As shown in Listing 4.9, the cor-
responding syntax in our DSAL template is “Base;”, which will be parsed as a normal

C statement. The complete DSAL template we select is shown in Appendix B.4.

"Base;" -> Statement {cons("
BasecodePlaceholderStatement")}
LISTING 4.9: The SDF module of our DSAL template

4.3.3 Traceable Domain Meta-Model

Now that we produced the effective meta-model of the target domain, we can now select
a tracing strategy and compose it into the effective meta-model to derive the traceable

domain meta-model.

Tracing Strategy As mentioned in Section 4.2.2, we have no direct access the source
code of AUTOFILTER. But we know that the generated code is time-critical C program.
We are thus inclined to use the sentinel pairs based on C style comments. A sentinel pair
includes a beginning sentinel that resides at the beginning of the join point code block
and an ending sentinel that resides at the end of it. Each sentinel comment consists
of three parts, prefir, body, and suffiz. Only prefix part differs between the beginning
sentinel and the ending sentinel in the same pair. All sentinels share the same suffix.

More details of the sentinel template are shown in Listing 4.10.

"/*<JoinPoint -Begin" ->
JoinPointSentinelBeginTagPrefix {cons("
JoinPointSentinelBeginTagPrefix")}

"/*<JoinPoint -End" ->
JoinPointSentinelEndTagPrefix {cons ("
JoinPointSentinelEndTagPrefix")}

"/*<Declaration" ->
DeclarationSentinelPrefix {cons ("
DeclarationSentinelPrefix")}

n/>k/ " ->
SentinelCommonSuffix {cons("SentinelCommonSuffix")}

LisTING 4.10: Sentinel string in tracing strategy
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The body of each sentinel records the stage in which the value of an AlgorithmicParticipant
instance is updated and a name mapping of all involved AlgorithmicParticipant instances
and their corresponding variables in the generated code. Sometimes, an instance is
updated with its old value. For example, x = Fx + Bu in the predict stage. As the
AUTOFILTER generate two different variables to represent the previous and current
value of x, we keep different entries in the name mapping for them respectively. The
entry name for the variable storing the latest value is KeyRole, and the variable storing

the old value is ForeRole.

AlgorithmicParticipant ":" Identifier ->

Participant {cons("Participant")}

"Stage=\"" AlgorithmicStage "\"" -> StageDescription
{cons("StageDescription")}

"KeyRole=\"" Participant "\"" ->
KeyRoleDescription {cons("KeyRoleDescription")}

"ForeRole=\"" Participant "\"" ->
ForeRoleDescription {cons("ForeRoleDescription")}

StageDescription "," KeyRoleDescription

-> JoinPointDescription {cons("

CommonJoinPointDescription")}

StageDescription "," KeyRoleDescription ","
ForeRoleDescription -> JoinPointDescription {cons("

UpdateJoinPointDescription")}?

JoinPointSentinelBeginTagPrefix JoinPointDescription
SentinelCommonSuffix -> JoinPointSentinelBeginTag {cons
("JoinPointSentinelBeginTag")}
JoinPointSentinelEndTagPrefix JoinPointDescription
SentinelCommonSuffix -> JoinPointSentinelEndTag {cons
("JoinPointSentinelEndTag")}

LisTING 4.11: SDF definition of the body of sentinels

4.3.4 Generation of Kalman Filter Aspect Language

We call the DSAL to generate here the Kalman Filter Aspect Language (KFAL). The
generation process is basically an expansion of the produced DSAL template in accor-
dance with the above domain effective meta-model. In detail, we transform the above
effective meta-model into an SDF module called KalmanFilterAlgorithm, in which the
root elements are AlgorithmicParticipant and AlgorithmicStage that respectively corre-

spond to the two join point classes in the effective meta-model with the same names.
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The complete SDF specification of KalmanFilterAlgorithm module is shown in Ap-
pendix B.5.

The general structure of a KFAL aspect is similar to that of an AspectJ aspect. The
aspect declaration is followed by a list of PCD and advice, which are wrapped by a pair
of braces. The keyword for aspect declaration is “customization” instead of “aspect”
in AspectJ. KFAL supports both specific pointcuts and generic pointcuts. A specific
pointcut captures the update of a specific AlgorithmicParticipant in a specific stage. In
contrast, a generic pointcut captures the update of any AlgorithmicParticipant in a spe-
cific stage. Technically, we can easily support an even “more generic” pointcut, which
captures the update of any AlgorithmicParticipant in any stage. As domain experts do
not think it necessary, we do not support this kind of PCD in KFAL. The SDF definition
of KFAL PCD is shown in Listing 4.12.

"$" AlgorithmicParticipant -> APIdentifier {
cons ("APIdentifier")}
APIdentifier -> Identifier {cons(

"APApplication")}

Identifier ->
PointcutDescriptorName {cons("PointcutDescriptorName")}
AlgorithmicStage ->

PointcutDescriptorName {reject}

AlgorithmicStage ->
GenericPointcutDescriptor {cons("
GenericPointcutDescriptor")}

AlgorithmicStage "$" AlgorithmicParticipant ->
SpecificPointcutDescriptor {cons ("

SpecificPointcutDescriptor")}

"pointcut" PointcutDescriptorName ":"
GenericPointcutDescriptor ->
PointcutDescriptorDeclaration {cons ("
GenericPointcutDescriptorDeclaration")}

"pointcut" PointcutDescriptorName ":"
SpecificPointcutDescriptor ->
PointcutDescriptorDeclaration {cons ("
SpecificPointcutDescriptorDeclaration")}

LisTING 4.12: SDF definition of pointcut in KFAL

Here, GenericPointcutDescriptor and SpecificPointcutDescriptor specify the PCD for generic
pointcuts and specific pointcuts respectively. AlgorithmicParticipant and AlgorithmicStage
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are imported from module KalmanFilterAlgorithm.

pointcut spc_update_x : update $x
pointcut gpc_predict_any : predict
LisTING 4.13: Pointcut examples of KFAL

Listing 4.13 shows two PCD examples in KFAL. The first pointcut, whose name is
prefixed by “spc” (Specific PointCut), is a specific pointcut that captures the join points
updating the state estimate vector x in the update stage. Note that we use a special
character $ before the name of any AlgorithmicParticipant in KFAL, to indicate it as a
domain element instead of a common variable in the generated C code. This helps to
avoid ambiguity caused by name conflicts. The second pointcut, whose name is prefixed
by “gpc” (Generic PointCut), is a general pointcut that captures the join points updating
any traced domain element, i.e. the state estimate vector x and the estimate covariance

matrix P, in the predict stage.

Similar to AspectJ, KFAL supports three advice patterns, before, after and around,
which allows aspect writers to insert custom code either before a specific join point or
after it, or simply to replace the whole join point with the given custom code. Specifically,
around advice can also insert custom code to both the start and the end of a specific
join point, without removing the original code block. In that case, the original code
block is denoted by keyword Base in advice code. The corresponding SDF definition is
shown in Listing 4.14.

"before" ->
CrosscutPatternModifier {cons("before")}

"after" ->
CrosscutPatternModifier {cons("after")}

"around" ->
CrosscutPatternModifier {cons("around")}

CrosscutPatternModifier -> Keyword {cons ("

CrosscutPatternModifier")}

Keyword -> Identifier {
reject}

"Base" -> Keyword {comns("
BasecodePlaceholder")}

CrosscutPatternModifier PointcutDescriptorName " ()" "{"
Statement "};" -> AdviceBlock {cons ("

PointcutNameBasedAdvice")}
CrosscutPatternModifier GenericPointcutDescriptor "()" "

{" Statement "};" -> AdviceBlock {cons("GenericAdvice")
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}
CrosscutPatternModifier SpecificPointcutDescriptor "()"
"{" Statement "};" -> AdviceBlock {cons("SpecificAdvice"
)}
"Base;" -> Statement {cons ("

BasecodePlaceholderStatement")}
Li1sTING 4.14: SDF definition of advice in KFAL

From the above SDF definition, we can see that Base; is recognized as a Statement, which
is imported from module Default-C. The term represents a common C statement. On
this matching, a node called “BasecodePlaceholderStatement” will be created in the
parsed syntax tree, whereas the nodes created by the other “normal” C statements all
have different names. This is defined by syntax cons(“BasecodePlaceholderStatement”).
Based on this difference, our rewriting rule can distinguish this placeholder from normal
C statements, so that we can replace it with the original code block. For the sake of the
simplicity, KFAL does not support logic combination of multiple crosscutting conditions.
As for advice declaration, KFAL supports referencing a defined pointcut by its name,
as well as directly embedding a pointcut definition. For example, both of the two code

blocks shown in Listing 4.15 insert some custom code before initializing the process
model F.

before pcdl () A{
};

};
LisTING 4.15: Two ways to link advice with pointcut in KFAL

Two pieces of advice examples are shown in Listing 4.16.

after predict $x (O {
log_current_var ($x);
log_current_var ($P);
}s
around init $H () {
before_init_H();
Base;
after_init_HQ);
};
LISTING 4.16: Advice examples of KFAL

The first piece of advice logs both the state estimate vector x and the covariance matrix P

after each prediction of x. The second piece of advice reuses two functions before_init_H()



84 Chapter 4 DSCG Extension for AUTOFILTER

and after_init_H() from the legacy code around the join points initializing the observation
model H.

4.3.5 KFAL Weaver Generation with Stratego/XT

To the best of our knowledge, there is no existing aspect weaver that supports crosscut-
ting C programs by C style comments. Therefore, we build KFAL aspect weaver as an
AST rewriter which accepts the base code and the KFAL aspects as input, and generates
the customized code according to the rewriting strategies specified in the KFAL aspects.
More specifically, the KFAL weaver first parses the input base code into corresponding
ASTs, then traverses them and applies the detailed rewriting strategies interpreted from
the advice in the input KFAL aspects, it finally restores the rewritten ASTs back into

customized code.

The Stratego/XT framework provides a complete tool chain to generate parsers accord-
ing to given SDF specifications, and generate AST rewriters with Stratego rewriting
rules. Simply stated, parse tables are generated for built-in generic parsers, so that any
program written in the languages defined by the given SDF specifications can be parsed
into corresponding tree structures, i.e. AST or CST. The parsed tree structures are then
rewritten according to the given Stratego rewriting strategies, and finally pretty-printted

back to programs to finish the modification, i.e. aspect weaving process.

SDF to Parse Table First, we use tool sdf2table to automatically generate parse
table KFOL.tbl from the SDF definition of the updated output language, i.e. KFOL. sdf
and parse table KFAL.tbl from KFAL.sdf. The generated parse tables can then be used
as input to a generalized LR parser sglri, which checks the syntactic correctness of
the input base code and KFAL aspects by parsing them into structured ASTs. Further
discussion about LR parsing can be found in Section 6.1.2. Strictly speaking, parsing
via sglri is a two-step process. It first invokes the base parser sglr to parse the input
programs into concrete syntax trees or parse trees. It then implodes the parse trees
into the corresponding ASTs represented in ATerm, or more precisely, AsFix, by tool
implode-asfix. Annotated Term (ATerm) format [112, 113] is a format for exchanging
structured data in Stratego/XT. The ATerm format is a generic internal and external
representation of data by means of simple prefix terms. AsFix [114], namely “ASF+SDF
fixed format”, is a format for representing parse trees in the ATerm format. In detail,
there are two kinds of AsFix: AsFiz2MFE, a compact version with lists, layout and
literals flattened, and AsFiz2, a very verbose version with a structured representation
of its content. Specifically, the ASTs generated by sglri is by default in the format of
AsFix2.
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Stratego Rewriting Rules Construction The seamless support of SDF in the
Stratego/XT framework is reflected in the convenient transformation from SDF defini-
tion to Stratego signature. As the basis of the rewriting transformation, the rewriting
rules derived from KFAL aspects need to recognize the comment sentinel structures, as
well as the traced Kalman filter domain elements. The Stratego/XT framework provides
the tool sdf2rtg to generate abstract Regular Tree Grammar (RTG) from SDF defini-
tions, and the tool rtg2sig to generate the corresponding Stratego signatures from the
generated RTGs. As for KFAL, we generate the Stratego signature module (KFAL.str)
from the SDF module (KFAL.sdf), we then import it as the basis of the AST rewriting
module. The second step of KFAL weaver generation is to construct Stratego rewriting
rules to interpret the input KFAL aspects into a series of rewriting rules that can be
applied during a traversal of the ASTs generated from the input base code. In general,
Stratego rewriting strategies follow a “first match, and then apply” pattern. There-
fore, we define a number of Stratego rewriting rules to translate different kinds of KFAL
pointcuts and advice into the corresponding Stratego rewriting rules. In detail, we define
a series of fundamental rewriting strategies for each advice pattern we support. Back
to our cruise filter example, as our advice model supports before, after and around pat-
terns, we define the corresponding Stratego rewriting strategies as shown in Appendix
B.6.

The SpecificAdviceApplication strategy shown above is a combination of Stratego built-in
rewriting strategies, such as oncebu, which applies its parameter strategy at one posi-
tion in an AST, and our customized strategies, such as SpecificAdviceApplicationBefore,
which merges the custom code block represented by parameter customcode and the code
block wrapped by comment sentinels matching both stage information represented by
algostage and involved domain elements information represented by algoparticipant and
participantlist into a new AST branch, and replace the branch of the original code block
with it. There are three points worth noting here. First, during this merging process,
any domain element name will be replaced with the name of its corresponding variable
in base code. For example, the observation model H will be replaced with variable name
h_text. Second, only the domain elements originally involved in a certain join point are
visible in extension. Any other domain elements are regarded as “undefined”, and their
names cannot be properly replaced with the corresponding variable names. For example,
only the observation model H is visible in the scope of the join point initializing it. If we
try to modify the innovation vector y, it will not be replaced with the proper variable
name, so that a compilation error will be thrown when we compile the customized code.
This design is to prevent potential tampering with irrelevant domain elements in certain
join points. Third, the advice application strategies apply to the advice defining the
PCDs directly instead of referencing by their names. The relevant rewriting strategies

are shown in Appendix B.7.

In short, the SpecificAdviceApplicationBefore rewriting strategy modifies the custom code



86 Chapter 4 DSCG Extension for AUTOFILTER

by proper name replacements of the domain elements involved, and then inserts it into
the AST branch of the target join points at its beginning. Similarly, we define the
strategies for around and after patterns, as well as the strategies for general advice. On
top of these strategies for advice application, we define strategies traversing the ASTs
of the input KFAL aspects and translating the “pointcut-advice” pairs into Stratego
rewriting strategies against the ASTs of the input base code, which match the join point
conditions specified in the pointcuts and then apply the corresponding advice application
strategies. The Stratego rewriting rules that translate the KFAL pointcut-advice pairs

are shown in Listing 4.17.

PointcutReplacer
([1,1ist) -> 1list

PointcutReplacer

([pt | pts],listl) -> 1list3

where 1list2 := <PointcutReplacer> (pt,listl);
list3 := <PointcutReplacer> (pts,list2)

PointcutReplacer

(SpecificPointcutDescriptorDeclaration(
PointcutDescriptorName (pdn), spd), advlistl) -> advlist2
where advlist2 := <map(try(SpecificPointcutReplacer (|pdn,
spd)))> advlistl

PointcutReplacer

(GeneralPointcutDescriptorDeclaration (
PointcutDescriptorName (pdn), gpd), advlistl) -> advlist2
where advlist2 := <map(try(GeneralPointcutReplacer (|pdn,
gpd)))> advlistl

SpecificPointcutReplacer (|pdn, spd)
PointcutNameBasedAdvice (wp,PointcutDescriptorName (name) ,cc

) -> SpecificAdvice (wp,spd,cc) where equal (|name,pdn)

GeneralPointcutReplacer (|pdn, gpd)
PointcutNameBasedAdvice (wp,PointcutDescriptorName (name) ,cc

) -> GeneralAdvice(wp,gpd,cc) where equal (|name,pdn)

LIsTING 4.17: Stratego rewriting rules translating KFAL pointcut-advice pairs

The above strategies traverse the ASTs of the input KFAL aspects for the advice list,

and replace every pointcut name involved in advice with its definition, so that the advice
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application strategies like SpecificAdviceApplication can be applied. The strategies shown
in Listing 4.18 distribute the proper advice application strategies to each advice in the
list.

CustomizationApplier

([1, pl, code) -> code

CustomizationApplier
([task | tasks], pl, codel) -> code3
where code2 := <CustomizationApplier>(task, pl, codel);

code3 := <CustomizationApplier>(tasks, pl, code2)

CustomizationApplier
(SpecificAdvice (wp,SpecificPointcutDescriptor (as,ap),cc),
pl, codel) -> code2 where code2 := <

SpecificAdviceApplication(|wp,as,ap,cc,pl)> codel

CustomizationApplier

(GeneralAdvice (wp,GeneralPointcutDescriptor(as),cc), pl,
codel) -> code2 where code2 := <GeneralAdviceApplication
(lwp,as,cc,pl)> codel

LisTING 4.18: Stratego rewriting rules applying proper advice application strategies

All above Stratego rewriting rules implement two major functions. The first one is to
traverse the ASTs of the input KFAL aspects to load the appropriate advice application
strategies. The second one is to traverse the ASTs of the input base code to apply
each loaded advice application strategy. It is worth noting that the advice in KFAL
aspects will be parsed and applied to base code ASTs in the order they appear. This
is important as it avoids the ambiguity in applying multiple advice to the same join
point. We will show a detailed example later in Section 4.4. Now that we have finished
the construction of all needed rewriting rules. With tool strc, we compile them into a
single executable, which we call KFRewriter. It is worth noting that the KFRewriter
can recognize and manipulate ASTs derived from both base code in KFOL and aspects
in KFAL, as the imported Stratego signature module KFAL. str contains all the language
construct definition of KFOL in it.

Pretty Printing in XT In Stratego/XT, the process unparsing ASTs back to code
text is often referred to as Pretty Printing. The XT tool set contains a GPP package,
which is a tool suite for generic pretty printing. GPP supports pretty printing of ASTs
in AsFix format into text in a number of output formats, including plain text, LaTeX
and HTML. Similar to the two-step code-to-AST parsing process, the pretty printing

process also consists of two step process. In the first step, the ASTs in AsFix format are
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unparsed by tool ast2abox into intermediate representation in an internal format called
the Box language [115]. The unparsing step requires pretty print tables to specify how
the target language constructs need to be pretty printed. The Stratego/XT framework
shows its hospitality again to SDF language definition. It provides the tool ppgen to
generates pretty print tables directly from SDF definitions. We use it to generate the
unparse table of KFOL, KFOL. pp, from KFOL.sdf. In the second step, the unparsed box

representations are further translated into code text by tool abox2text.

KFAL Aspect Weaving So far we have explained the generation of all the compo-
nents required in the KFAL aspect weaving process. The final step of the KFAL aspect
weaver generation is to get these components to work together. We write a bash script
we call KFALWeaver. sh to integrate the whole weaver system. The KFAL aspect weaving
process consists of three steps. First, the input base code is parsed into AST in AsFix
format with the help of the corresponding parse table KFOL.tbl. The XT command to
parse the base code into ASTs is shown in Listing 4.19.

sglri -i Input/Aspect.akf -p Utility/KFAL.tbl -o tmp/Aspect.

trm

LisTING 4.19: XT command parsing base code into ASTs

Similarly, the input KFAL aspects are also parsed into ASTs. A little trick here is to
concatenate the ASTs of both base code and KFAL aspects into the intermediate file
storing the base code ASTs, so that our core rewriter KFRewriter can handle them from
a single file. Second, the underlying rewriter takes the merged ASTs and launches the
traversal for a two-step rewriting, i.e. loading required advice application strategies from
KFAL aspect ASTs and then applying them to base code ASTs. The XT command to
rewrite the base code AST's is shown in Listing 4.20.

Utility/KFRewriter -i tmp/BaseCode.trm -o tmp/CustomizedCode

.trm

LisTING 4.20: XT command rewriting base code ASTs

Finally, the rewritten ASTs go through a two-step pretty printing process to be unparsed
into code text with the woven custom code. The XT command to pretty print the
rewritten ASTs in Listing 4.21.

ast2abox -p Utility/KFOL.pp -i tmp/CustomizedCode.trm -o tmp
/CustomizedCode.abox
abox2text -i tmp/CustomizedCode.abox -o Output/

CustomizedCode.c

LisTING 4.21: XT command pretty printing rewritten ASTs
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4.4 KFAL Aspect Application in Cruise Filter

So far we have generated the DSAL for Kalman filter domain, i.e. KFAL and its AST
rewriting based aspect weaver. To complete our case study, we write a testing aspect in
KFAL and apply it to the Kalman filter implementation generated by AUTOFILTER in
the cruise filter example described in Section 4.1.3, and then check the modified program
for the weaving result. We basically include five testing purposes in this aspect. The
first purpose is to verify that both ways of referencing PCDs in advice work. The second
purpose is to ensure both specific pointcut and generic pointcut work. The third purpose
is to check whether multiple advice are applied to the same join point in the same order
as they are defined in the example KFAL aspects. The fourth purpose is to verify that
the model element names are properly replaced with the corresponding variable names
in the custom code. The fifth purpose is to verify that the around advice can completely
replace the captured join points with custom code. The testing KFAL aspect is shown
in Listing 4.22.

customization sample {
pointcut spt_predict_P : predict $P
pointcut spt_predict_x : predict $x
pointcut spt_update_P : update $P
pointcut gpt_predict : predict

before spt_predict_P () A
SET_ZERO($P); // A macro to set all elements of the
input parameter as "0".

};

// A generic advice, which %s to append a time logging
after any "predict"” process.
before predict () {
log_current_var ($H) ;
+s
// A generic advice, which <s to append a time logging
after any "predict” process.
after gpt_predict () {
log_current_var ($x);
log_current_var ($P);

};

around init $H () {
before_init_H();

Base;



90 Chapter 4 DSCG Extension for AUTOFILTER

after_init_H();
};

after spt_update_P () {
printf ("estimation error: %f", norm($P));

};

around init $Q () {
SET_ZERO ($Q) ;
};

LisTING 4.22: KFAL aspect to extend the cruise filter example

As we can see, the first piece of advice references a specific pointcut by its name
spt_predict_P, whereas the second piece of advice directly declares a general pointcut.
Besides, the first two pieces of advice are applied to the same join point, i.e. predicting
the estimate covariance matrix P. In the third advice, we deliberately use the irrele-
vant domain element x in the join points predicting P. For this, we define the last and
third-to-last advice to test these two different applications respectively. Besides, the
SET_ZERO macro from legacy code is to set all elements of its parameter to 0. The
norm method is also from legacy code, which returns the estimation error according
to the given covariance matrix. Our aspect example diversifies as much as possible in
the extension requirements that KFAL supports. It covers both specific and general

pointcuts, and all three patterns of advice.

4.4.1 Aspect Weaving Result

The test environment of our KFAL weaver is Ubuntu 12.04.3 LTS, with three core pack-
ages installed for Stratego/XT: aterm-2.5, sdf2-bundle-2.4 and strategoxt-0.17.
We apply the example aspect shown above to the base code generated by AUTOFILTER
in the cruise filter example, and then verify the weaving result by manually checking and
compiling the customized code generated by the KFAL weaver script. The customized
code gives positive answers to all our test concerns. Take the code block predicting P
for example, as all the first three pieces of advice is applied to it. The corresponding

base code is shown in Listing 4.23.

/*¥<JoinPoint -Begin Stage="predict",KeyRole="P:
pminus_test",ForeRole="P:pplus_test"/>*/

// Calculation of matriz transpose

pv92[0 ][ 0] = phi_test[0 ][ 0];
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prinus_test[2 J[ 2] = gq_test[2 ][ 2] + pvoo[2 ][ 2];
/*¥<JoinPoint -End Stage="predict",KeyRole="P:pminus_test
",ForeRole="P:pplus_test"/>*/

LisTING 4.23: Base code of join point predicting P

There are two points to explain. First, any comment in the base code, except for our
comment sentinels, is discarded in the aspect weaving process according to our grammar
KFOL.sdf. Second, there are many extra white spaces inserted in the customized code,
which are introduced in the pretty printing process due to the default Box language
translation rules. As they do not affect the compilation of the customized code, we

simply leave it untouched. The customized code is shown in Listing 4.24.

/*¥<JoinPoint -Begin Stage=" predict " , KeyRole=" P
pminus_test " , ForeRole=" P : pplus_test " />*/

log_current_var ( h_test ) ;

SET_ZERO ( phi_test ) ;

pv92 [ 01 [ 0] = phi_test [ 0] [ 01 ;

pminus_test [ 2 ] [ 2 ] = q_test [ 21 [ 2 1 + pvoo [
21 021

log_current_var ( $ x ) ;

log_current_var ( pminus_test ) ;

/*¥<JoinPoint-End Stage=" predict " , KeyRole=" P
pminus_test " , ForeRole=" P : pplus_test " />*/

L1sTING 4.24: Customized code of join point predicting P

The first piece of advice inserts the SET_ZERO macro at the beginning of the code block,
and then the second piece of advice inserts a statement logging H also at the beginning
of it. Therefore, it comes before the inserted macro. This result proves that multiple
pieces of advice are actually applied in the order they are defined in KFAL aspects.
The third advice applied here defines custom code involves both x and P. As this join
point predicts only estimate covariance P, its name is replaced with the corresponding
variable name pminus_test, whereas x remains the same in the woven code, which would
lead to a compilation error indicating x is undefined. In summary, the KFAL aspect
weaving system successfully extends the DSCG of AUTOFILTER for a model, i.e. the

cruise filter, as we expected.

In this chapter, we illustrate that our DSCG extension approach can successfully ac-
commodate modifications that previously cannot be described by the target DSL to
AUTOFILTER generated code. With the help of the Stratego/XT framework, we im-

plement a complete system to establish proper tracing mechanism on certain elements in
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the Kalman filter domain, and to generate a DSAL called KFAL and its aspect weaver
on top of the meta-model tracing system. We then test the whole KFAL based exten-
sion system with the cruise filter example by writing a test KFAL aspect with diversified
pointcuts and advice and then verifying the customized code generated by the aspect
weaving process. The test result shows the feasibility of our meta-model based DSCG
extension approach, in a circumstance where we aim at a very specific target domain

and build our aspect weaver as an AST rewriter.



Chapter 5

DSCG Extension for ANTLR

As a second case study, we test our approach within a well-established domain, the
parsing of Context Free Grammar (CFG) languages.There are a number of different
parsing algorithms involved in this domain. According to the order of grammar rule
application, they can be mainly categorized into Left-to-right Leftmost (LL) parsing
algorithms and Left-to-right Rightmost parsing algorithms, on which we will elaborate
in Section 5.2. There are many parser generators developed with different techniques for
each kind of parsing algorithm. In this case study, we focus on one of the most widely
used parser generators, ANTLR [16, 96, 97].

5.1 Context Free Language Parsing

A language, as conceived by Chomsky [116], is “a set (finite or infinite) of sentences,
each finite in length and constructed out of a finite set of elements”, which have “a
finite number of phonemes (or letters in its alphabet) and each sentence is representable
as a finite sequence of these phonemes (or letters)”. Instead of the loose concept of
general languages, the term “language” in our discussion refers to the formal languages,
in particular, those involved in the computer science domain, which may include pro-
gramming languages, modelling languages, representation languages, etc. According to
Earley [88], a formal language is “a set of strings over a finite set of symbols”. A gram-
mar of a language can be considered as a formal device that specifies the symbol sets
that are allowed in the language. According to Aho et al. [117], a grammar defines a lan-
guage by imposing a structure on each sentence in the language. In computer science,
formal grammars can be categorized into two types according to whether their rules
can be applied regardless of context. In Section 3.1.1, we have introduced Context Free
Grammar (CFG), which is widely used to specify formal languages. A formal languages
specified by CFG is often referred to as Context Free Language (CFL). In this case study,

the target DSCG is exactly the generation of the parsers for context free grammars. On
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the other hand, a production rule of a formal grammar can be constrained to a specific
context, e.g. after matching another production rule, such a grammar is a Context Sen-
sitive Grammar (CSG). In practice, CSG is seldom used as there is no efficient context
sensitive recognition algorithm, whereas CFGs describe formal languages in a way that
their sentences are built recursively from smaller terms. This allows the construction
of efficient parsing algorithms, and CFG parsing becomes popular and arouses much
research effort in computer science. The reason we choose CFG parsing as the target
domain is because this is a well-established domain, and many parsing algorithms have
been invented and improved. Moreover, a number of mature parser generation tools are

available to us as potential code generators in our experiments.

5.1.1 CFG Parsing Algorithms

According to Aho et al. [40], the compilation process comprises seven phases. The first
phase is called lexical analysis, which transforms the given input text into a string
of tokens, i.e. terminals, defined in the formal grammar. The second phase is called
syntactic analysis or parsing, which analyze the transformed token string. Note that all

formal grammars involved in our discussion are CFGs unless specifically indicated.

A common problem encountered in CFG parsing is ambiguity. Given the fact that a
sentence of a language specified by CFG can be constructed by applying a sequence
of production rules to the start symbol, a CFG is regarded to be ambiguous if we can
find more than one sequence for a specific sentence. In other words, in an unambiguous
grammar, a syntactically correct sentence can be derived from the start symbol by
applying only one specific sequence of production rules. A rule application sequence is
called a derivation. In each step of a derivation, the start symbol is rewritten into an
updated string, which may include both terminals and nonterminals. Such a string is
often called a sentential form. Obviously, a sentence is a sentential form containing only

terminals.

From this perspective, the purpose of parsing is exactly to identify the specific derivation
of an input sentence, e.g. a program, according to the given grammar, and to return the
reverse of the identified derivation, which is often called a parse. Obviously, the basis of
a successful parsing is that the grammar must be unambiguous. Note that all grammars

involved in our discussion are unambiguous unless specifically indicated.

The goal of a parsing algorithm is thus to construct a parsing system according to a given
grammar, and find out which production rules are applied in building the input string
and the application order. There are many parsing algorithms developed for CFGs,
among which two groups of parsing algorithms have become entrenched, i.e. LL parsing
and LR parsing. In this chapter, we focus on LL parsing algorithms. We will elaborate
on LR parsing algorithms in Section 6.1.2.
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LL Parsing FEach LL parsing algorithm is a top-down, recursive descent parsing
algorithm. The first L in its name means that an LL parser scans the input string
from “Left to right”. The second L indicates an LL parser’s preference for “Leftmost
derivation”. “Top-down” is a conceptual description of the parsing process, in which
parse trees are constructed in a “top-down” pattern, i.e. from roots (start symbols) to
leaves (terminals). “Recursive descent” describes two features of the parsing process.
“Recursive” stands for the recursive applications of CFG production rules in the parsing
process. “Descent” indicates that the parsing is actually based on Depth First Search
(DFS) on derivation trees. Obviously, the parsing will be in infinite loop if a production
rule of the given grammar is “left recursive”. Therefore, LL parsers normally do not
support left recursive grammars by default. In the parsing process of an LL parser, it
scans one token from the input string at each time, and then applies an appropriate

production rule according to the scanned token based on some selection strategy.

The original LL parsing algorithm relies on sheer luck, and there is no production rule
selection strategy at all. The parser simply performs a DFS and backtracks whenever
hitting an unexpected sentential form due to some wrong application of production
rules. To reduce the performance penalty caused by backtracking, the concept of pre-
dictive parsing is developed to avoid backtracking. The trick is to build a parse table
according to the given CFG, assuming the parser can always look ahead to a fixed num-
ber of tokens that follow the current token that it scans, to predict the current state,
which is essentially decided by the remaining input. By convention, predictive LL pars-
ing algorithms are collectively called LL(k) (k>0), where k stands for the number of
lookahead tokens. The original LL parsing algorithm is thus denoted as LL(0). Here we
use a very simple CFG and the LL(1) parsing algorithm to give an intuition about how
a predictive parsing algorithm works. The EBNF representation of the example CFG is

shown in Listing 5.1.

Expr := ’int’ ; (* Rule 1 *)
Expr := ’(’ Expr Op Expr ’)’ ; (¥ Rule 2 x*)
Op := ’+’ ; (* Rule 3 *)
Op := ’x’ 5 (* Rule 4 *)

LisTiNG 5.1: The example grammar

The parse table of this LL(1) grammar can be constructed as shown below.

int

—+ *

Expr

Rule 1

Rule 2

Op

Rule 3

Rule 4

Each row of the parse table represents a specific LHS nonterminal in one of the pro-

duction rules.

Each column stands for the first token of a certain RHS in one of the
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production rules. The table values are calculated according to the FIRST set and the
FOLLOW set of each LHS nonterminal, which are computed with a transitive closure
algorithm (or a fized point iteration). More details of the computation of these sets
can be found in the famous book about compilers by Aho et al. [40]. These details are
outside the scope of this work and are not further discussed here. We only need to
know that we are able to generate this kind of parse tables from an unambiguous LL(1)
grammar. An LL(1) parser maintains a token stack S to record its internal states and
an index p pointing to an input string to mark the parsing progress. Before each parsing
process, the parser initializes S with the start symbol and set p pointing to the left of
the first token of the input string. The parser then performs a recursion containing the

following steps.

Step 1 If p is pointing to the end of the input string, parsing is complete.
Step 2 Look ahead to the first input token lat to the right of p.

Step 3 Check the top token t in S. If t is a terminal, go to Step 4. Otherwise, go
to Step 5.

Step 4 Match t against las. If successful, pop t from S, move p to the right of las,
and then skip the current iteration. Otherwise, report error and end the parsing

process. This step is often called a match step.

Step 5 Look for a cell in the parse table, whose row matches t and whose column
matches las. If the search is successful, the cell value r is the production rule to
apply according to the prediction. Otherwise, report error and end the parsing

process. This step is often called a predict step.

Step 6 Pop t from S and move t to the right of las. This step is in fact a simulation

of the application of production rule r.

Apparently, the more tokens a parser can look ahead, the more accurate its prediction
would be. In the extreme case, if all the remaining tokens were kept as lookahead
tokens, “prediction” would actually become “lookup” in the whole state space with
100% accuracy. However, a rising number of lookahead tokens does not necessarily
result in more effective parsing. The increase of the number of lookahead tokens will
lead to exponential increase of the cell number of parse tables and incredibly complicate
the parser, not to mention the fact that real life parsing requires arbitrary lookahead
as the length of an input string is normally unpredictable. Besides, with the increase
of k, stronger restrictions are implicitly enforced to CFGs that can be parsed by LL(k)

algorithm, which in return makes LL(k) less expressive.

In summary, LL(0) and LL(k) (k>0) are two types of conventional LL parsing algo-
rithms. By allowing backtracking, LL(0) accepts all but left recursive CFGs, while suf-

fers from performance penalty in parsing. By enforcing looking ahead to a fixed number
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i.e. k, of following tokens and disabling backtracking, LL (k) avoids performance penalty,

at the cost of accepting fewer CFGs and increased complexity of parser.

5.1.2 LL(*) Parsing

So far we have explained the advantages and disadvantages of the two types of tradi-
tional LL parsing algorithms. LL(0) is simple and expressive, but produces slow parsers;
whereas LL(k) (k>0) produces fast parsers, but is more complex and less expressive.
As an improvement, another LL parsing strategy called LL(*) [118] is proposed. It
matches the lookahead tokens with regular expressions instead of using linear search
of token sequences in prediction of production rules. When predicting an appropriate
production rule for an LHS nonterminal, LL(*) parsing relies on a Deterministic Finite
Automaton (DFA), which can be cyclic to deal with arbitrary lookahead tokens. The
design of DFA based lookahead in LL(*) does not only make specifying lookahead depth
unnecessary as in LL(k), but also improves the performance of an LL(*) parser. Com-
pared to backtracking with full parser, which entails method invocations for production
rule applications and unrolling their effects, backtracking of lookahead DFAs in LL(*)

is more lightweight, in terms of simpler implementation and better performance.

These lookahead DFAs in LL(*) are constructed by the grammar analyzer in ANTLR
in a heuristic way. A valid LL(*) DFA has the following properties.

e All states are reachable.
e All states can reach an accept state.

e At least one accept state can be reached for each alternative.

The DFA construction would be terminated when there is recursion in at least two
alternatives for a certain LHS nonterminal. On such an unsuccessful attempt, which
is rare according to empirical results [118], LL(*) would fail over to LL(1) by enabling
backtracking.

5.2 The ANTLR Parser Generation Framework

In this case study, the target DSCG is the ANTLR parser generation process, which
takes an ANTLR specification of an LL(*) grammar as input, and generates a lexer
and a parser as output. In this section, we introduce the key artifacts involved in the

ANTLR parser generation framework.
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5.2.1 ANTLR

The domain specific code generator here is called A Nother Tool for Language Recognition,
ANTLR [16, 96, 97, 118]. As the successor to the Purdue Compiler Construction Tool
Set (PCCTS) [119], it was first developed by Professor Terence J. Parr in 1989 for LL (k)
parser generation [16]. It is maintained by Parr since then and is under active develop-
ment. With the development of LL(*) parsing strategy, ANTLR becomes a dedicated
LL(*) parser generator.

Strictly speaking, ANTLR is a powerful framework, capable of constructing various tools
involved in language development, such as recognizers, interpreters, translators, etc. In
our experiment, we work with one of its recent stable release, ANTLR v3.5 [120]. It takes
as input formal grammars, i.e. ANTLR grammars, and generates as output the source
code of the corresponding parsers. In each code generation process, there are two main
output artifacts. One is a lexical analyzer called lexer or recognizer, which transforms
an input string into a token stream. The other one is a parser, which would parse
the transformed token stream into the corresponding parse tree and walk through it to
execute required actions defined in the input ANTLR grammar. By default, the output
language of ANTLR is Java. As other options, a number of mainstream languages are
available, such as C, C#. As the lexer class can be considered as a helper class of the
parser and will not be involved by the the extension requirements in our experiments,
we focus on only the parser class program generated by ANTLR in our experiments.
When we mention “base program” in the following discussion, we always refer to the

source code of the parser class.

5.2.2 ANTLR Grammar

In the ANTLR parser generation process, the input grammars are specified using YACC-
like syntax with EBNF operators and token literals in single quotes. This specification
language is called the ANTLR grammar description language. The grammars defined
in it are called ANTLR grammars. There are four kinds of ANTLR grammars: lexer,
parser, tree, and combined lexer and parser. Lexer grammars define the tokens, or lex-
emes, of input grammars, and the lexical rules. Parser grammars define the production
rules, also known as the parsing rules. Tree grammars define the tree matching rules.
Combined grammars integrate the related lexer and parser grammars together. All of

the four kinds of grammars have the same basic structure as shown in Listing 5.2.

<grammarType> grammar grammarName;
<optionsSpec>

<tokensSpec>

<attributeScopes>

<actions>
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rulet : ... | ... | ... ;

rule2 : ... | ... | ... ;

LISTING 5.2: General structure of ANTLR grammars

In the first line, grammarType indicates which specific type of grammar is defined. Its
value can be one of the four values: “lexer”, “parser”, “tree”, “lexer parser”. The
following grammar is the keyword reserved to define ANTLR grammars, which is followed
by the name of the ANTLR grammar. The optionsSpec block is used to define the general
configurations of the generated parsers. For example, the option block shown in Listing
5.3 sets the output language as C# instead of the default Java and sets the parsing

output in form of template.

options {
language = C#;
output=template;

LisTING 5.3: An example of ANTLR grammar options specification

As its name suggests, tokensSpec block is used to define the tokens, or lexemes, of
input grammars. By convention, tokens are named with uppercase letters, and can
be declared with or without initialization values. Take the grammar of the arithmetic
operation language we used in Section 3.1.2 for example, its lexer grammar is shown in
Listing 5.4.

tokens {
PM;
MD ;
VAR ;

LiSTING 5.4: An example of ANTLR grammar token specification

Generally speaking, the only way supported by ANTLR to pass information between
two production rules is to use function parameters and return values. This can be
quite inconvenient in situations like communicating with deeply nested rules. ANTLR
allows users to define their attribute scopes. All attributes defined in a certain scope are
visible to any rule declared to be in the scope. The scope shown in Listing 5.5 defines

an attribute called x of type int.

scope ScopeOne {

int x;

LIsTING 5.5: An example of ANTLR grammar attribute scopes
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ANTLR generates a method for each rules in the given ANTLR grammar. These meth-
ods are encapsulated respectively in a lexer class and a parser class in the ouput language.
ANTLR allows users to directly modify such classes in ANTLR grammars through ac-
tions called GrammarActions, which can be used to modify the members or the headers

of either class.

@lexer::header A

import some.dependent.class;

@member {

int y;

LISTING 5.6: Two examples of ANTLR grammar actions

The first grammar action imports an additional class some.dependent.class for the lexer
class. The second action adds a new member variable y of type int to the parser class.
As for the rule part, different ANTLR grammars define different kinds of rules. Lexer
grammars define lexical rules. For example, the lexical rules related to the tokens of the

arithmetic operation grammar are shown in Listing 5.7.

PM : ’ 4 | > ) ;
MD : ) %) I )/7 ;
VAR : 20’ | 21-97 {’0-9°}x

LisTING 5.7: An example of lexical rules in ANTLR grammar

Tree grammars define tree matching rules with tree pattern, which is in the form of
“(root childl child2 ... childN). For example, the tree grammar rule shown in Listing 5.8

matches an AST of an “add” operation in the arithmetic operation grammar.

add : “( ’+’ VAR VAR )
| ~C >-> VAR VAR )

LisTING 5.8: An example of tree matching rules

In ANTLR, there are two ways to rewrite input streams. One is to directly manipulate
the existing parse trees to accommodate expected changes, which can be implemented
with tree rewriting patterns. As such is not related to our extension requirements, we
will not go further about tree grammars and tree rewriting. Instead, we focus on the
other way, i.e. template rewriting, which is based on extra attributes and actions that

are defined at the production rule level in the input grammars.
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Production Rule in ANTLR Grammars Fach production rule in an ANTLR
grammar consists of an LHS nonterminal, which is also used as the name of the rule,
and one or more alternatives. Each alternative can reference other rules by their names.

The general structure of an ANTLR production rule is illustrated in Listing 5.9.

ruleName <arguments> returns <returnValues>

<throwSpec>
<optionspec>
<ruleAttributeScopes>

<ruleActions>

alternativel -> rewriteRulel

| alternative2 -> rewriteRule2

<exceptionsSpec>

LISTING 5.9: General structure of an ANTLR production rule

In ANTLR parser generation, ANTLR generates a method in output language for each
production rule of the given grammars, which will be invoked when the corresponding
rule is applied according to the current matching. The method name is the same as the
rule name. By default, such methods have no parameters or returns values. However,
when one rule reference another rule, ANTLR allows users to declare input parameters
and return values directly to pass information. Besides, ANTLR allows multiple vari-
ables to be defined within a production rule, which may be used to store information
or handle input or output parameters. These variables are called rule attributes. As
Parr [97] argued, “this is analogous to the normal programming language functionality

whereby methods communicate directly through parameters and return values”.

Apart from the basic syntax recognition of the input program, parsers often need to
provide extra functionalities during the parsing process, such as semantic computation.
ANTLR allows users to define embedded actions within production rules. In detail,
actions can be inserted before a production rule within @init block, or after it within
@after block, or simply before or after any specific alternative of the rule. Embedded
actions are written in output languages. The example shown in Listing 5.10 illustrates

a production rule named add with all these optional components.

add returns [int result]

@init { System.out.println("begin to apply add rule"); }

@after { System.out.println("add rule applied"); 1}
a=VAR ’+’ b=VAR
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{$result = Integer.parselnt($a.text)+Integer.parselnt ($b
.text) ;
System.out.println($result);}

{System.out.println("Empty alternative!");}

LisTING 5.10: An example of ANTLR production rule

5.2.3 The ANTLR Grammar Domain Meta-Model

So far we have introduced the basics of ANTLR grammars. From the perspective of
DSCG, the code generator is ANTLR, and the DSL used is the ANTLR grammar spec-
ification language. Accordingly, the target domain is the ANTLR grammar domain.
To define the meta-model, we take two documents as guide. One the official ANTLR
grammar of the ANTLR grammar specification language itself, which is published on
the ANTLR home page [96] (shown in Appendix B.8). The other is the meta-model
written by Jouault [121] in KM3 [122]. We use XSD to specify our meta-model of the
ANTLR grammar domain, in a module way. We first define all the domain classes and
properties involved in the general CFG parsing process, e.g. “terminal”, “nonterminal”,
“production_rule”, etc, in one XSD module General Parsing Domain, which is shown
in Appendix B.9. Thus the General Parsing Domain module can be reused in our next
case study. We can thus include the General Parsing Domain module and define the
LL(*) domain specific elements, such as token peeking, production rule parameters, etc,
in another XSD module LL_STAR Domain, which is shown in Appendix B.10.

In the rest of this chapter, we will elaborate on two of our experiments based on this do-
main meta-model. The experiments have different domain specific models, i.e. ANTLR
grammars, and different extension requirements, to test the feasibility of our DSCG
extension based approach. The first experiment tries to enhance the parser with some
statistic functions in parsing an ANTLR grammar called RERS. The second experiment

adds similar functions for more concerns in the parsing process of the Java programs.

5.3 Extension Scenario

ANTLR allows domain experts to insert additional functions when applying a pro-
duction rule, e.g. by defining extra rule attribute, embedded actions within the corre-
sponding production rule. This modification mechanism is rather flexible, as the addi-
tional artifacts can be defined in statements of any programming language supported

by ANTLR, e.g. Java. However, it can still be very difficult to introduce functions that
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involve multiple production rules. In ANTLR, passing information among different pro-
duction rules is achieved by either explicitly declaring specific parameters and return
values, or using dedicated scopes. If we consider the declaration of the parameters,
return values, and scope information of a certain production rule as its signature, both
ways make the signatures of ANTLR production rules vulnerable to systematic changes.
Any concern crosscutting multiple production rules may lead to a cascade of signature

updates of all relevant production rules.

5.3.1 RERS ANTLR Grammar

In our first experiment, the input model is a simple grammar specifying a tiny formal
language called RERS, which is used to define Linear Temporal Logic (LTL) [123] for-
mulae. The token part of the RERS grammar includes the basic input/output elements
and keywords for different relations between propositions in the LTL formulae, such as
“NEXT”, “EVENTUALLY”, and “GLOBALLY”. More details are as shown in Listing
5.11.

tokens {
NOT = 717
AND = &’
OR = °|7;
NEXT = ’X’;
EVENTUALLY = ’F’;
GLOBALLY = ’G’;
UNTIL = °U’;
WEAKUNTIL = °’WU’;
RELEASE = °’R’;
LPAR = *(’;
RPAR = ’)’;

}

L1sTING 5.11: Token definition in the RERS grammar

The production rule section of RERS grammar starts with the prog rule. The complete

section is shown in Appendix B.11.

5.3.2 Extension Requirements

The modification requirement is to add finer grained and more flexible monitoring func-

tions in the parsing process. For example, to monitor domain events like token matchings
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and rule attribute settings. Basically, domain experts want to monitor the events ac-
cording to their production rule application context. For example, they want to trace
all the matching of a specific token T in the application of any production rules. Ob-
viously, this demand may crosscut multiple production rules, in which T appears. If
we use ANTLR built-in support we mentioned above to implement this, the solution
would entail the signature updates of all relevant production rules, though it might still
be practicable. The real problem is that each specific tracing requirement would result
in such a cascade of signature updates, in other words, an update of the input model.
Worse still, ANTLR built-in solution would become deficient to cope with more compli-
cated tracing requirements. By “tracing”, we refer to monitoring the dynamic behavior,
not a static code insertion. For example, domain experts only want to trace the match-
ing of T in a certain context, e.g. during the application of a specific production rule p.
This requirement leaves ANTLR users to identify which production rules that involve

the matching of T may be applied during the application of p.

5.4 Extension of ANTLR Parser Generation

From the requirement analysis, we can identify three modification concerns, i.e. token
matching, rule attribute value changing, and production rule application. Accordingly,
we can tailor our domain meta-model into an effective meta-model, in which class “ter-
minalType”, “attributeType”, and “alternativeType” are defined as join point classes.
For example, the “terminalType” class is defined in the effective meta-model as shown

in listing 5.12.

<xs:complexType name="terminalType">
<xs:sequence>

<xs:element name="name" type="terminalNameConvention"/

<xs:element name="value" type="xs:string"/>
</xs:sequence>
</xs:complexType>

LisTING 5.12: The “terminalType” join point class in the meta-model

5.4.1 Generation of AspectRERS

We call the ANTLR domain specific aspect language “AspectRERS”, as it is generated
on demand of modifying the “RERS” model. In Section 5.4.2, we mentioned our in-
tension of reusing AspectJ in our DSAL generation. By “reusing” AspectJ, we refer to
reusing both its join point model and its weaver. Therefore, we select a DSAL template

close to AspectJ syntactically and semantically, so that it is easier for us to build the
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AspectRERS weaver as a translator from AspectRERS to the underlying AspectJ. Like
AspectJ, this template allows definition of local variables inside an aspect. Each PCD
is defined with a name, which can be referenced to be bound with a piece of advice. For
each PCD, there can be one or more filter conditions, which can be combined by logi-
cal “and” operator and logical “or” operator. Placeholders are used for the production
rule of PCD. Besides, we also reuse the existing ANTLR grammar blocks for the Java
grammar, so that we can syntactically check the correctness of the custom code blocks

in advice.

There is a significant difference in advice pattern between this template and AspectJ.
It does not support the around advice. This is because the modifications requiring
the around advice are essentially trying to achieve two goals. One is to change the
internal behavior of the code generator, e.g. the behavior in matching a token or setting
an attribute. This kind of modifications should be accommodated by a customization
of the code generator. The other is to alter the production rules or alternatives in the
input grammar. This kind of change should be achieved by direct modification to the
input grammar. We believe neither of them should be introduced in a “patching” way by
using aspects in the DSAL generated in our approach. Therefore, our join point model
only supports “insertion” changes, which only insert extra code in the generated code.
A major benefit of this is we can leave all statements in the base programs immutable,
as the sentinels are inserted in the “slots” between two adjacent statements in the base
program. The sentinels also decouple the PCDs from the base program, which prevents
the problems caused by the coupling between them, such as fragile pointcut [70] and

arranged pattern. More details of the template are shown in Appendix B.12.

Now we can expand the selected DSAL template with the effective meta-model. The ex-
pansion is basically to replace placeholder pointcut_filter with several ANTLR grammar
domain specific crosscutting patterns. In AspectRERS, we support two groups of point-
cuts. The first group of pointcuts locates some specific points in the parser execution,
like token matching, etc. We call such pointcuts pinpoint pointcuts. In AspectRERS,
we support four types of pinpoint pointcuts, attribute setting pointcuts, token matching

pointcuts, sub rule pointcuts, and branch pointcuts.

Attribute Setting Pointcuts relate to the setting of a rule attribute in one or more
production rule or alternative. For example, pointcut after(@Qtemporal : 2 : $esbmc) cap-
tures all “slots” just after the points in the application of the second alternative of
rule temporal where the value of attribute esbmc is changed. Note that the syntax of
AspectRERS demands @ before rule names and $ before attribute names. Besides, de-
tailed context restriction defined in the first two columns is optional. For instance,
(@Qtemporal : $esbmc) refers to the value setting of esbmc in any alternative of rule
temporal. Similarly, (:2: $esbmc) refers to the value setting of esbmc in the second

alternative of any rule, and ($esbmc) simply refers to the value setting of esbmc in
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any context. To make pointcut definitions more flexible, we also support an unary
operator ! to get the complement, which means “any ... other than”. For example,
(@Qtemporal : 2 :!1$esbmc) refers to the setting of any attribute other than esbmc in the
second alternative of rule temporal. This operator can also be applied to the first two

context columns.

Token Matching Pointcuts relate to the token matchings. They work in a very sim-
ilar way to attribute setting pointcuts. The only difference is that its syntax expects # in-
stead of § before token names. For example, the before(@temporal : 2 : #EVENTUALLY)
pointcut captures the slots just before the matching of token EVENTUALLY in the ap-
plication of the second alternative of rule temporal, while (Qtemporal :!#EVENTUALLY)
refers to the matching of any token other than EVENTUALLY in the application of rule

temporal.

Sub Rule Pointcuts relate to the application of a production under the control
flow of a production rule or one of its alternatives. They also work in a similar way to
the above two kinds of pointcuts, although there are a few differences. First, the syntax
expects @ in the third column before the names of the nonterminal involved as sub rules.
Second, the third column accepts empty sub rule name, i.e. a single @. For example,
pointcut before(@Qtemporal : 2 : @) captures the spots just before the application of any

nonterminals applied as a sub rule of rule temporal.

Branch Pointcuts relate to the application of one or more alternatives of one or
more production rules. Unlike the above pointcuts, branch pointcuts only have the first
two columns. The branch pointcuts help to pinpoint the branching spots in the control
flow of the parsing process. For example, pointcut before(@temporal : 2) captures the
spots just before the application of the second alternative of rule temporal. In branch
pointcuts, both column support the ! operator. For instance, (@Qtemporal :12) refers
to the application of any alternative of rule temporal except the second one, whereas
(!@temporal : 2) refers to the application of the second alternative of any rule except

temporal.

Strictly speaking, the second kind of pointcuts are not pointcuts, as they cannot capture
any join points by themselves. Instead, they help to define a certain range of the static
code or its dynamic execution. So that pinpoint pointcuts can combine them to introduce
more detailed range constraints. For the convenience of AspectRERS users to reuse such
constraints, we allow them to be defined independently, just like normal pointcuts. We
call such “pointcuts” range pointcuts. In detail, we support two types of range pointcuts

within pointcuts and cflow pointcuts.
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Within Pointcuts restrict a certain range of the base program, which can be either
one or all alternatives of a production rule. As the rule application process is regarded as
function invocations instead of class definition, they actually map to the “withincode”
pointcuts in AspectJ. It is worth noting that the basic ranges are the alternatives of rules,
instead of the rules themselves. For example, pointcut within(@temporal : 2) restricts the
range as the second alternative of rule temporal, whereas pointcut within(@Qtemporal) re-
stricts the range as any alternative of rule temporal. Similar to pinpoint pointcuts,
range pointcuts also support the ! operator in both columns. For instance, point-
cut within(@Qtemporal :!12) restricts the range as any but the second alternative of rule
temporal, while pointcut within(!@temporal : 2) restricts the range as the second alterna-

tive of any rule other than temporal.

Cflow Pointcuts restrict a certain range of the dynamic execution of the base pro-
gram, instead of the static code. They help to capture dynamic join points in rule
application control flow in a similar way as the “cflow” pointcuts in AspectJ. The major
difference here is that the control flows here are the applications of the production rules,
or more precisely, the alternatives of them. For example, the production rule application

control flow in parsing the RERS expression F oZ would look as follows.

temporal:2

v

conj:1

|

literal:4

'

atom:2

|

output:6

Ficure 5.1: Control flow sample of ANTLR rule applications in parsing the RERS
expression “F oZ”.

Besides, cflow pointcuts should also support the ! operator in both columns. For ex-
ample, pointcut cflow(!@temporal : 2) defines the range as the application of the second
alternative of any rule other than temporal, whereas pointcut cflow(@temporal :12) de-
fines the range as the application of any but the second alternative of rule temporal.
However, although the inserted sentinels can store the static information about the code
block, they cannot store the dynamic information at runtime about the “parsing stack”
in terms of alternative branches. To achieve this, we use a little trick by keeping a local

stack (Stack<String> in Java) for branch tracing, as shown in Listing 5.13.
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@members {
public static Stack<String> branchTrace = new Stack<
String>() ;

LisTING 5.13: The little trick for range_pointcut in expansion

This trick also entails a customization of the sentinel templates in the tracing strat-
egy, i.e. to add a Java statement to push the current production rule and alternative
information, into the local “branchTrace”, which we will explain later. The complete

expanded part is shown in Appendix B.13.

5.4.2 Traceable Domain Meta-Model

From the perspective of DSCG, the DSL in ANTLR parser generation is the ANTLR
grammar description language. By default, the output language is Java. As the gener-
ated parser programs have no strict restrictions in performance, the only restriction for
our tracing strategy selection is that the inserted sentinels cannot break the compilation
of the generated parser programs in Java. With regard to the possibility of reusing
AspectJ, we choose the sentinels based on idle function invocations. By “idle function”,
we refer to function with empty body. In particular, we specify the tracing strategy in
eXtensible Stylesheet Language Transformations (XSLT) [124], which can automatically
transform the XSD based meta-models. In the strategy, we use three specific sentinel
pairs in accordance with the join point classes in the effective meta-model. Take the

“terminal Type” class for instance, we define the following tracing strategy rule.

<xsl:template match="terminalType">
<xsl:copy>
<xsl:apply-templates select="Q@x | node()" />
<xsl:element name="xs:element">
<xsl:attribute name="name">before_match</xsl:
attribute>
<xsl:attribute name="default">Begin_Match_Token_&1lt;
instance_name&gt; () ;</xsl:attribute>
</xsl:element>
<xsl:element name="xs:element">
<xsl:attribute name="name">after_match</xsl:
attribute>
<xsl:attribute name="default">End_Match_Token_&lt;
instance_name&gt; () ;</xsl:attribute>
</xsl:element>

</xsl:copy>
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</xsl:template>

LisTING 5.14: Tracing rule for “terminal” join point class

The composition of the tracing strategy with the effective meta-model is essentially a
transformation of the XSD file representing the effective meta-model according to the
XSLT file representing the tracing strategy. For example, the “terminalType” class after

the composition is as shown in listing 5.16.

<xs:complexType name="terminalType">
<xs:sequence>

<xs:element name="name" type="terminalNameConvention"/

<xs:element name="value" type="xs:string"/>
<xs:element name="before_match" default="
Begin_Match_Token_&lt;instance_name&gt;();" type="
xs:string"/>
<xs:element name="after_match" default="
End_Match_Token_&lt;instance_name&gt;();" type="xs:string
||/>
</xs:sequence>
</xs:complexType>

LiSTING 5.15: The “terminalType” join point class in the traceable domain meta-model

The placeholder “instance_name” will be replaced at generation-time, with the specific
terminal instance name, through our customization of the code generator. It is worth
noting that the change for the trick to support the cflow pointcuts is reflected in the
declaration of the sentinel functions. Prior to the trick, the function bodies are empty.

Now a Java statement is respectively added to the function bodies.

<xs:complexType name="sentinelDeclaration">
<xs:sequence>
<xs:element name="before_match" default="public static
Begin_Match_Token_&lt;instance_name&gt; () {branchTrace.
push (&quot ;&1lt;ruleName&gt; :&quot ;+&quot;&lt;altNum&gt;&
quot;);}" type="xs:string"/>
<xs:element name="after_match" default="public static
End_Match_Token_&lt;instance_name&gt; () {branchTrace.pop
();}" type="xs:string"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

LisTING 5.16: The declaration of the sentinel functions for the “terminalType” class
in the traceable domain meta-model
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5.4.3 Code Generator Customization

Now that we have produced the traceable ANTLR domain meta-model, we can modify
the ANTLR code generator with it to enable the model traceability in the generated
code. As mentioned in Section 5.2.1, the output language of ANTLR is Java by default,
while a number of other languages are available, such as C, C#. This is achieved by the
use of StringTemplate [101] technique in ANTLR. For each target language, ANTLR
defines a dedicated template to generate output code. Such templates are defined in
String Template Group (.stg) files. This design makes our customization of the ANTLR
code generator very easy. We first back up the original template file for Java code
generation, i.e. /org/antlr/codegen/templates/Java/Java.stg in the ANTLR tool
package antlr-3.5-complete.jar, and then introduce all sentinel related Java code
change in the template. If any of our modification blocked the original DSCG, we
can easily replace the updated template with the backup file. Neither the modification
process nor the error recovery process requires a recompilation of the ANTLR tool

package.

As mentioned in Section 5.1.2, sometimes LL(*) parsing may fail over to LL(1) enabling
backtracking. In the modification requirements, the applications of production rules
to monitor obviously refer to the correct applications of production rules, instead of
the applications “rolled back” in backtracking. ANTLR generates a global variable
backtracking in the parser code, to store the current depth of backtracking. To make

)

this transparent to our DSAL users, we add an “if” conditional check for each sentinel

function invocations, to ensure the invocations occurs only if backtracking equals to O.

Besides, ANTLR parser generation supports several different modes, including basic
mode, trace mode, and verbose mode, which allows users to generate more extra in-
formation in the generated code. To ensure that our modification to the out template
will not break the basic parser generation function, we encapsulate all our modification
snippet with a conditional check <if(trace)>, so that users can still use any generation
mode other than “trace” to ensure the generated code will not be affected by our change.
Instead of showing full details of the modification, we show our modification for token
matching sentinels only. This serves to illustrate how we add the declarations of the

sentinel functions and how we add their invocation statements in the template.

<if (trace)>

/% Begin token hook function declaration block */

<rest (tokens) :{tk | <declTokenHook (tk)>}>

/* End token hook function declaration block */<\n><endif >
declTokenHook (token) ::= <<

public static void Begin_Match_Token_<token.name>() {}
public static void Begin_Match_Token_<token.type>() {}
public static void End_Match_Token_<token.type>() {}
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public static void End_Match_Token_<token.name>() {}<\n>
>>

LISTING 5.17: Declarations of token matching sentinel functions

/*¥*%¥ match a token optionally with a label 4in front */
tokenRef (token,label ,elementIndex,terminalOptions={}) ::=
<<

<if (trace)><if (!isSynpredRule)>if (state.backtracking==0)
Begin_Match_Token_<token>() ;<endif ><endif >

<if (label)><label>=(<labelType>)<endif >match(input,<token
>,FOLLOW_<token>_in_<ruleName ><elementIndex>); <
checkRuleBacktrackFailure () >

<if (trace)><if (!isSynpredRule)>if (state.backtracking==0)
End_Match_Token_<token>() ;<endif ><endif >

>>

LISTING 5.18: Invocations of token matching sentinel functions

5.4.4 Generation of AspectRERS Weaver

As mentioned in Section 5.4.1, to generate the AspectRERS weaver is to build a trans-
lator from AspectRERS into AspectJ. Now that we have an ANTLR grammar of As-
pectRERS, we can define the corresponding string templates in this grammar to rewrite
the AspectRERS aspects into the corresponding Aspectd aspects. In detail, we append
a proper string template to each production rule in AspectRERS.g, so that ANTLR
knows which string template to use when applying the rules. All relevant string tem-
plates are encapsulated in AspectRERS.stg. Except for the pinpoint and range pointcuts
which are domain specific, AspectRERS syntax can be almost directly mapped to As-
pectJ syntax with minimal change. For example, an AspectRERS aspect definition
public aspect Sample(RERS) {...} is simply translated into an AspectJ aspect definition
with exactly the same name public aspect Sample {...}. The relevant string template

appending in AspectRERS.g is shown in Listing 5.19 and Listing 5.20.

aspect_declaration
am=access_modifier ASP an=IDENTIFIER LPAREN grn=
IDENTIFIER RPAREN LBRACE asl=aspect_statement_list RBRACE
-> asptDecl (accessModifier={$am.code}, aspectName={
$an.text}, grammarName={$grn.text}, aspectBody={$asl.st})

LIsTING 5.19: String template asptDecl to translate aspect definition

asptDecl (accessModifier, aspectName, grammarName, aspectBody

) = <K<
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<accessModifier> aspect <aspectName> {

<aspectBody >

LisTING 5.20: Definition of string template asptDecl in AspectRERS. stg

The translation of pointcuts in AspectRERS is essentially a concatenation over a series of
sentinel function signatures to form valid AspectJ pointcut definitions. In detail, domain
specific information, such as rule names and alternative indices, is first extracted from
AspectRERS pointcuts. The information is then sent to different string templates to
construct the corresponding sentinel function signature strings, which are then used
to build different kinds of pointcuts. These constructed strings are finally linked with
proper logic operations to form a valid AspectJ pointcut descriptor. In particular, the

translation of pinpoint pointcuts is different from that of range pointcuts.

Pinpoint Pointcut Translation The pinpoint pointcuts capture the invocations of
our sentinel functions. So their translation is mainly straightforward mapping to some
“call” pointcuts capturing the proper sentinel function invocations. The only nontriv-
ial part is how to deal with alternatives in the pointcuts. The “call” pointcuts cannot
help us in distinguishing different alternatives in the same rule, as their corresponding
code blocks are all defined within the same function, i.e. the function correspond to the
production rule. Instead, we use our internal tracing stack, i.e. branchTrace, to translate
the alternative constraints. Assume we want to confine the range of pointcut match-
ing within the code block correspond to alternative N of rule X. At runtime, if the control
flow enters this specific alternative, our sentinel function Begin_Parse_Rule_X_Alternative_N()
must have been invoked. In the meantime, the tracing string “X: N” must have been
pushed into branchTrace. Moreover, the string “X : N” must be the top element in the
stack, as there is no further sentinel function invocation. This means that we can tell
if the target code is statically “within” alternative N of rule X, by matching string
“X: N” as the top element of branchTrace. As an example, Appendix B.14 and B.15 il-
lustrate how we implement the translation of production rule attribute_filter with string

templates.

As all our sentinel functions are declared with the same prefix string public static void,
the string templates for translating the pinpoint PCDs, such as attrFilterN, always start
with call(public static void. The first alternative of attribute_filter matches the pattern
<slotLocation>(@<ruleName> : <alternativelndex> : $<attributeName>). The slot lo-
cation information is extracted when applying rule location_modifier. If it is before, we
know that Begin should be the prefix of the sentinel function name. It is then sent to
template attrFilterl as its parameter locationModifier. Similarly, the name of the target

production rule is extracted when applying rule rule_indicator, and then sent to attrFilterl
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as parameter ruleNameValue. The name of the target attribute is extracted when ap-
plying rule attr_indicator, and then sent to attrFilterl as parameter attributeName. With
above information, string template attrFilterl can thus construct the main body of the

corresponding AspectJ as shown below.

call (public static void <grammarName >Parser.<locationModifier>
_Set_Rule_<ruleNameValue>_Attribute_<attributeName >())

However, this is not a complete translation for the input attribute setting pointcut. What
is missing here is the constraint on alternatives. As we mentioned in Section 5.4.2, we
maintain an internal stack called branchTrace to trace the control flow of production
rule applications. We match the strings stored in branchTrace against certain patterns
to construct the predicate expression representing the missing constraints. In detail, this
is achieved with string template altFilterForWithin or reverseAltFilterForWithin, depend-
ing on whether the target code range is a specific alternative or its complement. The
constructed constraint string is then sent to attrFilterl as parameter alt, and appended

to the end of the above incomplete AspectJ pointcut.

String templates involved in other alternatives of attribute_ filter work in quite simi-
lar ways. Take the second alternative for example, it deals with pointcuts in form of
(@<ruleName> : <alternativelndex> :!$<attributeName>), which aim for any attribute
except attributeName. This is reflected as two AspectJ PCD combined with “and” by
string template attrFilter2. The first PCD captures any attribute setting in the target
rule by the following AspectJ PCD.

call(public static void <grammarName >Parser.<locationModifier>
_Set_Rule_<ruleNameValue>_Attribute_x())

The second PCD filters out the matching of a specific attribute setting in the target rule
by the AspectJ PCD as shown below.

!call (public static void <grammarName>Parser.<locationModifier >
_Set_Rule_<ruleNameValue>_Attribute_<attributeName >())

This is because the second alternative is meant to match the complement of a specific

attribute setting with the same rule and alternative constraints.

Range Pointcut Translation The translation of within pointcuts in AspectRERS
is even simpler than that of the pinpoint pointcuts mentioned above. We translate
a within pointcut in AspectRERS into a withincode pointcut in AspectJ confining the
range as the parsing function generated for the target production rule, which is then
appended with the corresponding alternative constraint string. For example, pointcut
within(@<ruleName> : <alternativelndex>) is translated into withincode(public final * <grammarName>

It is then combined with the alternative constraint string as shown below.
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if (<grammarName >Parser .branchTrace.peek () .matches ("<ruleName >:<

alternativeIndex>"))

More details of the relevant string templates are shown in Listing 5.21, and their defini-

tions in Listing 5.22.

within_filter

WTN LPAREN rn=rule_indicator ai=
alt_indicator_for_within RPAREN

-> withinFilterl(rangeModifier={"withincode"},
ruleNameValue={$rn.value}, ruleNamePattern={$rn.pattern},
alt={$ai.st})
| WTN LPAREN NOT rn=rule_indicator ai=
alt_indicator_for_within RPAREN

-> withinFilter2(rangeModifier={"withincode"},
ruleNameValue={$rn.value}, ruleNamePattern={"\\\\wx"3},
alt={$ai.st})

LISTING 5.21: String templates withinFilterN to translate within pointcuts

withinFilterl (rangeModifier, ruleNameValue, ruleNamePattern,
alt) ::= <<
<rangeModifier >(public final * <grammarName >Parser.<
ruleNameValue >(..))<alt>
>>

withinFilter2(rangeModifier, ruleNameValue, ruleNamePattern,
alt) ::= <<
<rangeModifier >(public final * <grammarName>Parser.*(..))
&&!<rangeModifier >(public final * <grammarName >Parser.<
ruleNameValue>(..))<alt>
>>

LISTING 5.22: Definition of relevant string templates for within_filter in
AspectRERS.stg

The cflow pointcuts are translated in a quite similar way, with only two differences
here. First, the corresponding AspectJ pointcuts are “cflow”, instead of “withincode”.
Second, the alternative constraint strings are in a different pattern. From the perspective
of the parsing control flows, the within pointcuts focus on only the current “layer”
of the target rule application, whereas the cflow pointcuts also concern about all the
descending control flows under the target layer. In terms of our branchTrace string
matching, the alternative constraint strings for within pointcuts match the target rule

application string, i.e. “<ruleName> : <alternativelndex>", against the top element in
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branchTrace. The constraint strings for cflow pointcuts, on the other hand, only care
about whether the target string is contained by branchTrace. For example, the constraint

string for pointcut cflow(@<ruleName> : <alternativelndex>) is shown below.

if (java.util.Arrays.toString(<grammarName >Parser.branchTrace.

toArray ()) .contains ("<ruleName>:<alternativeIndex>"))

The relevant string templates are shown in Listing 5.23, and their definitions in Listing
5.24.

cflow_filter

CFW LPAREN rn=rule_indicator ai=
alt_indicator_for_cflow RPAREN

-> controlflowFilterl (rangeModifier={$CFW.text},
ruleNameValue={$rn.value}, ruleNamePattern={$rn.pattern},
ruleNameCflowPattern={$rn.pattern}, alt={$ai.st})

| CFW LPAREN NOT rn=rule_indicator ai=

alt_indicator_for_cflow RPAREN

-> controlflowFilter2(rangeModifier={$CFW.text},
ruleNameValue={$rn.value}, ruleNamePattern={"\\\\wx"},
ruleNameCflowPattern={""}, alt={$ai.st})

’

alt_indicator_for_cflow
COLON ai=INTLITERAL -> altFilterForCflow(altIndex={
$ai.text})
| COLON NOT ai=INTLITERAL -> reverseAltFilterForCflow(
altIndex={$ai.text})
| -> eptStr ()

LIsTING 5.23: String templates controlflowFilterN to translate cflow pointcuts

controlflowFilterl (rangeModifier, ruleNameValue,
ruleNamePattern, alt) ::= <<

<rangeModifier >(call (public final * <grammarName >Parser.<
ruleNameValue >(..)))<alt>

>>

controlflowFilter2 (rangeModifier, ruleNameValue,
ruleNamePattern, alt) ::= <<

<rangeModifier >(call (public final * <grammarName >Parser
.*%(..)))&&!<rangeModifier >(call (public final * <

grammarName >Parser .<ruleNameValue>(..)))<alt>



116 Chapter 5 DSCG Extension for ANTLR

>>

LISTING 5.24: Definition of relevant string templates for cflow_filter in AspectRERS.stg

With the string templates like the above ones defined in AspectRERS.g and Aspec-
tRERS.stg, an AspectRERS-to-Aspect] translator can be generated by ANTLR. We
then finish the AspectRERS weaver generation by wrapping the generated translator
and the AspectJ weaver in one single script, so that it behaves as a proper weaver for
AspectRERS.

5.5 RERS Parser Modification with Aspect RERS Aspect
Weaving

In this section, we test the above AspectRERS based modification system with a valid
input program in RERS language and concrete extension requirements. The RERS

program is shown in Listing 5.25.

(! 0oZ WU (oU & ! 0Z))
(G (! iC | (F 0Z)))
((G ' oW) | (F (oW & (F oU))))
(G (! 4E | (F oY)))
(G (r (iB & ! oU) | (! oV WU oU)))
(! oV WU oX)
((G ! oW) | (F (oW & (F oU))))
(! oU WU (oX & ! oU))
LisTING 5.25: Test program in RERS language

There are two requirements to accommodate in the parsing process. One is to count
the number of GLOBALLY temporal logic expressions in the program. The other one is
to count how many output expression other than oU are involved in those GLOBALLY
expressions. According to our DSAL extension approach, we first regenerate the base
program, i.e. RERSParser. java, using the modified ANTLR generator, so that model
tracing information is inserted as the infrastructure for AspectRERS to work. We then
describe the extension requirements within an AspectRERS aspect as shown in Listing
5.26.

package antlr.RERS;
public aspect test (RERS) {

// counting "GLOBALLY" exzpression

int GLOBALLY_ expression_counter=0;
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pointcut GLOBALLY_expression=after (@temporal:3);
after : GLOBALLY_expression() {

GLOBALLY _expression_counter++;

// counting "oU" expression in "GLOBALLY" exzpression
int oU_in_GLOBALLY_expression_counter=0;

pointcut oU_in_GLOBALLY_ expression=after (Qoutput:1)&&
cflow(@temporal:3);

after : oU_in_GLOBALLY_expression() {

oU_in_GLOBALLY_ expression_counter++;

pointcut summary=%BeforeMainExit;
after : summary () {
System.out.println("There are " +

GLOBALLY_expression_counter + " \"GLOBALLY\" expressions.

")

System.out.println("There are " +
oU_in_GLOBALLY_expression_counter + " \"oU\" expressions
found in these \"GLOBALLY\" expressions.");
¥

LisTING 5.26: The AspectRERS aspect to accommodate the extension requirements

This aspect is rather logically straightforward. In the first block, we define a counter
and a pointcut to capture all applications of the third alternative of rule temporal, which
represents the GLOBALLY expression. The corresponding advice increases the counter.
Similarly, the pointcut in the second block for the second counting requirement is defined
to capture the occurrence of non-“oU” expression in the application, or under the control
flow, of the third alternative of rule temporal. Finally, before the parser program exits,
it prints out the counting results. We then compile this aspect with our AspectRERS
weaver, which first translates it into the AspectJ aspect shown in Listing 5.27, and then

invokes the AspectJ weaver to complete the “actual” weaving process.

package antlr.RERS;
public aspect test {
int GLOBALLY_expression_counter=0;
private pointcut GLOBALLY_expression() : within(
RERSParser)&&((call (public static void RERSParser.
End_Parse_Rule_temporal_Alternative_3())));
after () : GLOBALLY_expression()
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{

GLOBALLY expression_counter++;

}

int oU_in_GLOBALLY_ expression_counter=0;

private pointcut oU_in_GLOBALLY_ expression() : within(
RERSParser) &&((call (public static void RERSParser.
End_Parse_Rule_output_Alternative_1()))&&(cflow(call(
public final * RERSParser.temporal(..)))&&if (java.util.
Arrays.toString (RERSParser.branchTrace.toArray()).
contains ("temporal:3"))));

after(): oU_in_GLOBALLY_expression ()

{

oU_in_GLOBALLY_expression_counter++;

}

private pointcut summary() : execution(public static

void main(Stringl[]));
after () : summary ()
{
System.out.println("There are "+
GLOBALLY _expression_counter+" \"GLOBALLY\" expressions.")
System.out.println("There are "+
oU_in_GLOBALLY_expression_counter+" \"oU\" expressions
found in these \"GLOBALLY\" expressions.");
}

LisTING 5.27: The translated AspectJ aspect to accommodate the extension

requirements

We finally use the woven parser to parse the above RERS program. The output of the

counting result is shown in Listing 5.28.

There are 5 "GLOBALLY" expressions.
There are 2 non-"oU" expressions involved in these "GLOBALLY

expressions.

LisTING 5.28: The counting result from the parser

Without difficulty, the results can be verified manually. This experiment shows that
the DSCG extension approach can be used to build practical modification system for
generated code. Given the fact that ANTLR provides the grammars of many mainstream
programming languages, our approach also shows its potential capability of generating

generic program synthesis tools for these languages. In order to test this position, we
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performed a number of additional experiment to generate Java program analysis tools

through DSAL aspect weaving.

5.6 Further Experiments to Build Java Program Analysis
Tools

In this experiment, we still use our approach to customize the Java parser generated
by ANTLR. Precisely, we aim to generate Java program analysis tools with different
functionalities by weaving the corresponding DSAL aspects into the generated Java
parser. The term “program analysis” mainly refers to syntax-directed searching tasks

for code statistics and inspections, such as the detection of code smells [125].

The whole DSCG scenario remains the same except that the input model is now the
ANTLR grammar for Java, i.e. Java.g, instead of the RERS grammar, and the base
program is JavaParser.java. The ANTLR grammar of Java is downloaded from the
ANTLR homepage [126]. As Java is a quite widely used programming language, we do

not introduce its grammar here.

5.6.1 Extension Requirements Analysis

The key feature of the Java analysis tools generated in our approach is that they are,
to some extent, “programmable”. The programming language is exactly our DSAL. We
can generate Java analysis tools with different functionalities on the fly, by weaving the
proper DSAL aspects into the generated Java parser. More precisely, we use the DSAL
pointcuts to describe the points in which we are interested with descriptions in terms
of Java syntax, and we use the DSAL advice to describe the expected modification to
these points. In this experiment, our DSAL aspects need to be “powerful” enough to

supplement some really useful functionalities to the generated Java parser.

In detail, we generate two Java program analysis tools with two DSAL aspects. The
first aspect enables the woven Java parser to count the “simple ‘if’ statements” [127],
or the “if-only” statements, i.e. the “if” statements without defining their corresponding
“else” parts. This function is useful, as the “if-only” statements leave the “else” branch
uncovered during the program execution, which may lead to potential bugs. Besides,
the aspect also helps to count and locate the expressions for “equality checks” in the
predicates in the “if” statements. The involved comparison operators include “=="
and “!=". The second aspect enables the woven Java parser to count the Line Of
Code (LOC), which is a common code metric, of the parsed programs according to the

counting rules that are defined in the given aspects.
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These functionalities can be interpreted as one or more queries to our model tracing
system. From the perspective of model traceability, the domain elements to be traced
remain unchanged since our AspectRERS experiment, i.e. the matching of Java syntac-
tical tokens under static / dynamic range constraints in terms of the applications of
production rules and their alternatives, as well as the value settings of the involved
attributes. As a result, we can reuse the traceable domain meta-model derived in our
AspectRERS experiment, which means we can also reuse the ANTLR code generator
we customized accordingly. This reuse shows the meta-model based reusability of our
approach. On the other hand, such reuse does not necessarily guarantee the reuse of the
DSALSs generated in our approach, as the modification requirements may have different
prospectives and concerns of the same effective meta-model, which can be reflected in
the join point model of the DSALs.

5.6.2 Generation of AspectJava

Although we can reuse meta-models in the AspectRERS experiment, the new modifica-
tion requirements entail more expressive DSAL to support more complex crosscutting
patterns and finer grained access to the join points. We call the new DSAL AspectJava.
Compared with the ANTLR grammar of RERS, the ANTLR grammar of Java has much
more production rules, which leads to more complicated patterns in the control flows
of the rule applications, e.g. larger loops in rule application stack. Therefore, to inter-
pret the above Java program analysis concerns in terms of domain crosscutting queries
demands a more precise and effective way to describe the expected join points, as well
as finer grained access and manipulation of the captured join points. As a result, we

introduce a new PCD and four macros that can be used in custom code block in advice.

CflowPattern Pointcuts This is a more precise PCD than the ¢flow PCD we use in
AspectRERS. For example, assume we need to capture the matching of token T in the
control flow of the second alternative of rule R1, which should be under the control flow
of the third alternative of another rule R2. With only “cflow” pattern, the PCD will look
like cflow(R1 : 2)&&cflow(R2 : 3). But this is actually not correct, as it will also capture
the matching of token T under the control flow of “R2:3”, which is under the control
flow of “R1:2”. Obviously, this is not expected. With our cflowPattern pattern, we can
distinguish these two scenarios with different expressions: cflowPattern(R1:2,R2: 3)
and cflowPattern(R2 : 3,R1: 2).

It is worth noting that the length of control flow patterns we need to express is not
necessarily constrained to two. For example, the target control flow pattern may be
“R1:ALT1” — “R2:ALT2” — “R3:ALT3” — .... To support this, we introduce a new
crosscutting pattern cflowpattern. The above control flow pattern can be expressed sim-
ply as cflowpattern(@R1 : ALT1,R2 : ALT2,R3: ALT3,...). The rule name column here
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cflow(R1:2)&&cflow(R1:2)

Call stack top Call stack top
unexpected
—> | target range <
range

R1:2 R2:3

R2:3 R1:2

‘— cflowPattern(R1:2,R2:3) cflowPattern(R2:3,R1:2) —

Fi1GURE 5.2: Different control flow patterns that “cflow” fails to distinguish.

can be left empty, which captures any rule. It is similar for the alternative index column.
For example, “R1:*” — “*:ALT2” captures the control flow where the “ALT2” alterna-
tive of any rule is under any alternative of rule “R1”. The corresponding specification

snippet for the “cflowpattern” is shown in Listing 5.33.

cflowPattern_filter
CFP LPAREN b=branch_element_list RPAREN

branch_element_list

branch_element (’,’ branch_element)*

branch_element

rule_indicator alt_indicator_for_cflowPattern

alt_indicator_for_cflowPattern
COLON INTLITERAL
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LISTING 5.29: Specification snippet for the “cflowpattern” pointcut

Four DSESs In the custom code block of DSAL advice, we introduce four finer
grained operations, to facilitate the modifications at the captured join points. We call
these operations the Domain Specific Extension Statements (DSESs). The syntax of
these DSESs are much alike that of the normal Java function invocations. To distinguish
these DSESs from the normal Java statements, each DSES starts with a % symbol. The
first DSES is GetToken. It takes in an int parameter as the index of the lookahead
token, and returns a String containing the corresponding lookahead token.The indices
here are 1-based. For example, %GetToken(1) returns the first lookahead token. The
second DSES is GetParsedText. It has no parameter and returns a String containing
the text that has been successfully parsed so far. It has an overloaded version, which
takes in an int parameter as the index of the ending token according to their order being
parsed. The indices are 0-based, but count in a descending order. %GetParsed Text(k)
returns the parsed text ending at the last but k token. For example, % GetParsed Text(—1)
returns a String containing the parsed text that ends at the last but one token. From
this perspective, the non-parameterized GetParsedText can be considered as a special
form of the parameterized GetParsedText, i.e. %GetParsedText(0). The third DSES is
GetParsingStackTrace. It has no parameter and returns a String representing the control
flow information stored in our branchTrace from bottom to top. It is helpful to identify
the specific point in the parsing process. The last DSES is GetBacktrackLevel has no

parameter and returns an int value that indicates the current backtrack level.

5.6.3 Generation of AspectJava Weaver

Similar to the weaver generation for AspectRERS, we still use string templates to gener-
ate the translator from AspectJava to AspectJ. Here we only need to add the templates

for translating the cflowPattern pointcut and the four DSESs.

We have briefly explained how cflowPattern pointcut works in Section 5.6.2. In detail,
we concatenate a regular expression according to the given control flow pattern, and
then use it to launch a matching against the string converted from the content of our
branchTrace. As shown in Listing 5.30, three templates are involved, cflowPatternFilter,

branchElementList, and branchElement, to generate the corresponding AspectJ code.

cflowPattern_filter
CFP LPAREN b=branch_element_list RPAREN
-> cflowPatternFilter (pc={current_cflowpattern}, fc

={$b.st})

3
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branch_element_list
@init {
current_cflowpattern="\\\\[CI\\\\w: \\\\sI*)";
}
bO=branch_element (’,’ b+=branch_element)*
{current_cflowpattern+="\\\\1";}
-> branchElementList (fb={$b0.st}, bl={$b})

branch_element
r=rule_indicator a=alt_indicator_for_cflowPattern
{current_cflowpattern=current_cflowpattern+$r.
pattern+":"+$a.altIndex+" ([\\\\w: ,\\\\slx*x)";}
-> branchElement (rulePattern={$r.valuel})

alt_indicator_for_cflowPattern returns [String altIndex]
COLON INTLITERAL
{$altIndex=$INTLITERAL.text;}
| {$altIndex="\\\\d*";}
LisTING 5.30: Specification snippet for the cflowpattern pointcut with the string
templates

The definitions of these templates are shown in Listing 5.33.

cflowPatternFilter (pc, fc) ::= <<
<fc>&&if (java.util.Arrays.toString(<grammarName >Parser.

branchTrace.toArray ()) .matches ("<pc>"))

>>

branchElementList (fb, bl) ::= <<
<fb>&&<bl:{b | <b>}; separator="&&">
>>

branchElement (rulePattern) ::= <<

cflow(call(public final * <grammarName>Parser.<rulePattern
>(..)))

>>

LisTING 5.31: Definitions of the string templates for the cflowpattern pointcut
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As for the DSESs, our implementation relies on a special reference variable thisJoinPoint
in AspectJ. It helps to reference the generated parser class, i.e. class JavaParser. The
class exposes a field called input of type TokenStream, which stores the information of
the input token stream. From this object, we can access both the parsed tokens and
lookahead tokens. In detail, we get the index of the last parsed token in the stream
by calling intJavaParser.input.index(). We can thus access part of the parsed text by
calling StringJavaParser.input.toString(start TokenIndex, end TokenIndex. We can access the
lookahead tokens by calling GetToken(k), where k is the index of the expected lookahead
token. As for the DSES GetBacktrackLevel, we can get the value of the current backtrack
level by calling JavaParser.getBacktrackinglLevel().

5.6.4 Build Java Program Analysis Tools By Aspect Weaving

As mentioned in Section 5.6.1, the extended functionalities we want for the parser are
first interpreted in one or more model tracing and modification queries. We then express
these queries as AspectJava aspects, and respectively weave them into the generated
parser to equip it to be the expected Java program analysis tool. In this section, we

briefly explain the two AspectJava aspects and test the generated analysis tools.

If Predicate Checker As its name suggests, the first aspect helps to analyze the
predicates in the “if” statements in Java programs. In particular, it counts the “if-only”
statements that do not have a corresponding “else” part and counts the equality checking

[13

expressions in the “if” predicates.

In the input model, i.e. the ANTLR grammar of Java, the definition of the basic Java

statement is shown in Listing 5.32. We can see that the “if” statement is defined in the

fourth alternative of the statement production rule.

statement
block

| (’assert”’

expression (’:’ expression)? ’;°
’assert’ expression (’:’ expression)? ’;°

’if’ parExpression statement (’else’ statement)?

forstatement

|
|
|
| ’while’ parExpression statement
| ’do’ statement ’while’ parExpression ’;’
| trystatement

| ’switch’ parExpression ’{’

switchBlockStatementGroups ’}’
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’synchronized’ parExpression block
’return’ (expression )7 ’;°

’throw’ expression ’;°

’break’
(IDENTIFIER
)? J;;

’continue’

(IDENTIFIER
)? ) ; )
| expression ’;°

| IDENTIFIER ’:’ statement

| 7;)

LISTING 5.32: Definition of basic “statement” in Java ANTLR grammar

For the first task, the straightforward solution is to count the application of the fourth
alternative of rule statement, where the statement following the else token is resolved as
empty string. However, this condition is not easy to describe in AspectJava. Instead,

we can count all “if”

statements, i.e. with and without the “else” parts, and save the
result in cl. We then count the “if-else” statements, and save the result in c2. Their
difference is exactly what we want. In terms of the DSL here, to parse an “if” statement
is to apply the fourth alternative of the statement production rule. Given the fact that
we can parse an “if-else” statement if and only if we can match an “else” token, we can

WM

simply count the instances of the “else” token. The number of “if-only” statements thus

equals to c1 — c2. In AspectJava, these DSESs can be expressed as shown in Listing
5.33.

pointcut summary=}BeforeMainExit;

//===== begin: count if-only statement =====

pointcut ifStatement=after (@statement:4);
pointcut ifElseStatement=after (#ELSE);

after : ifStatement () {

cl++;

after : ifElseStatement () {
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C2++;
}
after : summary () {
System.out.println("there are " + (cl-c2) + " if-

only if-statements.");

//===== end: count tf-only statement =====

LisTING 5.33: AspectJava code to count the “if-only” statement

For the second task, to locate the expressions in the “if” predicates entails that the
application of parExpression is under the control flow of the application of the fourth
alternative of statement. As for the application of parExpression, the involved production

rules are shown in Appendix B.16.

In terms of the DSL, an “equality check” in expressions implies an application of
instanceOfExpression under the control flow of the application of equalityExpression, where
the first lookahead token is either == or parExpression. Besides, the whole context has
to be under the control flow of “Q@statement : 4,@parExpression : x”. We can use the
cflowPattern pointcut to locate such an “equality check”. Apart from counting these
“equality checks”, we also want to reflect the location of them. So we print the first
lookahead token and the parsed text when we meet any “if-only” statement. In Aspec-

tJava, these DSESs can be expressed as shown in Listing 5.34.

//===== begin: count equality checks =====
int c3=0;

pointcut ifPredicateEqualityCheck=after(
@instanceO0fExpression:)&&cflowpattern(@statement :4,

@parExpression,@equalityExpression) ;

after : ifPredicateEqualityCheck () {
if (%GetToken (1) .equals("==") || %GetToken (1) .equals
(mr=")) A
c3++;
System.out.println(%GetToken (1)) ;
System.out.println(%GetParsedText (1));

X
+
after : summary () {
System.out.println("there are " + c3 + " equality

checks involved in if-predicates.");
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//===== end: count equality checks =====

LISTING 5.34: AspectJava code to count and locate the “equality checks” in “if”

predicates

Now that we have written an AspectJava aspect with the expected “if” statement
analysis functionalities, we weave it to the base code, i.e. the Java parser generated
by ANTLR, to finish our first Java program analysis tool. Finally, we test the tool
with a simple Java program, which is contrived to have as many different grammatical

structures as we can think of. The test Java program is shown in Appendix B.17.

Our test environment, in which the translated AspectJ aspect gets woven and executed,
is “Eclipse Java EE IDE for Web Developers (version:Juno SR2)” [128] + AJDT
2.1.2[129]. The parsing result shows that each “if-only” statement is captured, as well
as each “equality check”. A snapshot of the detailed output is shown in Figure 5.3.

& Console 52 X% &EEE ~2-rfv= 0
<terminated> Aspectava_CodeMetrics [Java Application] C:\Program Files\Java\jre6\bin\javaw.exe (26 Aug 2014 16:58:18)

1=

importjava.util.Random; importjava.util.HashMap;publicclasstestJavaProg{publicstaticintal=0;publicbooleanflag=true;privatestaticHashMap<String, Integer>
map=newHashMap<String,Integer>();publicstaticvoids_test(intx,charcc){doubley=(1>8)21.5:08.5;intdec_only;dec_only=1;intz=1@;charno_init;if(y<=1){System.
out.println(y-1); Jelseif(y!=2

importjava.util.Random; importjava.util.HashMap;publicclasstestJavaProg{publicstaticintal=@;publicbooleanflag=true;privatestaticHashMap<String,Integer>
map=newHashMap<String,Integer>();publicstaticvoids_test(intx,charcc){doubley=(1>8)21.5:08.5;intdec_only;dec_only=1;intz=1@;charno_init;if(y<=1){System.
out.println(y-1);}elseif(y!=28&z<=1){System.out.println(y);}else{System.out.println(y++);}for(;true;z--){if(z>3)continue;elsebreak;}System.out.println
(x);}publicintml(){synchronized(this){System.out.println("sync block");}Randomran=newRandom();intx=0;while(x<7){x=ran.nextInt(6)+3; }do{x=ran.nextInt(6
)+3; }while(x<7);switch(x){casel:System.out.println(1);break;caseS:System.out.println(x+1);break;default:System.out.println("default”);}returnx;}public | _
staticints_m2(){testJdavaProgtjp=null;try{if(tjp.flag==true L

importjava.util.Random; importjava.util.HashMap;publicclasstestJavaProg{publicstaticintal=0;publicbooleanflag=true;privatestaticHashMap<String, Integer>
map=newHashMap<String,Integer>();publicstaticvoids_test(intx,charcc){doubley=(1>8)21.5:08.5;intdec_only;dec_only=1;intz=1@;charno_init;if(y<=1){System.
out.println(y-1);}elseif(y!=288z<=1){System.out.println(y);}else{System.out.println(y++);}for(;true;z--){if(z>3)continue;elsebreak;}System.out.println
(x); }publicintml(){synchronized(this){System.out.println("sync block");}Randomran=newRandom();intx=08;while(x<7){x=ran.nextInt(6)+3;}do{x=ran.nextInt(6
)+3; }while(x<7);switch(x){casel:System.out.println(1);break;caseS:System.out.println(x+1);break;default:System.out.println("default”™);}returnx;}public
staticints_m2(){testJdavaProgtjp=null;try{if(tjp.flag==true)tjp=newtestlavaProg();if(true)tjp.flag=false;if(tjp.mi()==2

there are 3 if-only if-statements.

there are 3 equality checks involved in if-predicates.

< »
[4) testlavaProg,java 53 A CodeMetrics.aj 52 = 8
7 5 public class testJavaProg { - . 1 ckage antlr.Java; -
public static int a1=0; 2 blic aspect CodeMetrics {
public boolean flag=true; 3= private pointcut summary() : execution(public static void main(String[]))
private static HashMap<String,Integer> map = 4 int c1=0;
5 int c2=0;
public static void s_test(int x, char cc) 6 private pointcut ifStatement() : within(JavaParser)&((call(public static void Jav
double y=(1>8)?1.5:0.5; 7 private pointcut ifElseStatement() : within(JavaParser)&&((withincode(public final
int dec_only; ¥ 38 after(): ifStatement()
dec_only=1; = 9
int z=10; ] cl++;
char no_init; }
if (y<=1) { after(): ifElseStatement()

System.out.println(y-1);
} else if (y!=288z<=1) {
System.out.println(y);
} else {
System.out.println(y++);

C2++;

after(): summary()

m

System.out.println("there are "+(cl-c2)+" if-only if-statements.”);

for (;true;z--) {
if (z>3) continue;
else break;

int c3=0;

private pointcut ifPredicateEqualityCheck() : within(JavaParser)&&((call(public st
after(): ifPredicateEqualityCheck()

System.out.println(x); {

if (((JavaParser)thisJoinPoint.getThis()).input.LT(1).getText().equals("==")||((Ja
C3++;
System.out.println(((JavaParser)thisJoinPoint.getThis()).input.LT(1).getText());
System.out.println(((JavaParser)thisJoinPoint.getThis()).input.toString(e, ((JavaPa

}

public int mi() {
synchronized(this) {
System.out.println("sync block");

}
Random ran = new Random(); after(): summary()
int x = @;

System.out.println("there are "+c3+" equality checks involved in if-predicates.”);

while (x<7) { 3
.......... eTassEN 1 3. 2n
< " » « m »

F1GURE 5.3: The output of weaving aspect IfPredicateChecker in Eclipse.
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LOC Counter Lines Of Code (LOC), also known as Source Lines Of Code (SLOC),
is an important software metric, which measures the size of a program by counting the
number of lines in the text of its source code. It is commonly used in the prediction
of development effort, the estimation of the software quality, etc. However, the LOC
number of the same program may vary if we follow different counting principles. For
example, we can simply count any nonempty line in the program. However, the LOC
number we get may be misleading, as programmers may write big block of comments,
or break a long single statement into multiple lines for better appearance of the text,
etc. Therefore, we need finer grained counting principles to describe which kinds of
grammatical structure should be counted. For instance, we can specify whether to
count the Java “import” statement or not. In our aspect, we count the following Java

grammatical structures as valid lines.

1. Primitive statements including “assert” statements, “return” statements, “throw”
statements, and normal statements. Here normal statements refers to the state-

ments represented by the fifteenth alternative of the statement rule.
2. The declarations of local variables
3. The declarations of class variables
4. The declarations of class methods.

5. The declarations of classes.

99

6. Sub statements including “if” predicates, “for” conditions, “while” conditions,

“do-while” conditions, “catch” clauses, “switch” conditions, and “sync” resources.

To organize the above DSES in a modular way, we first specify all the primitive state-
ments according to the statement rule. The corresponding AspectJava code snippet is
shown in Appendix B.18. With the pointcuts that represent primitive statements, we
can easily change the counting principles. We then specify the declarations to count as
shown in Appendix B.19. We then specify which sub statements to count as shown in
Appendix B.20.

So far we have specified all the grammatical structures that we want to count as “lines”.
We then describe the grammatical structures that we do not count. Strictly speaking,
we do not this part in the aspect, as we do not have much to do with these structures
under our current goal. We list them here just for the clarification of the whole aspect

structure. The corresponding AspectJava code snippet is shown in Listing 5.35.

/* <begin: uncountable statement> */
/* <begin: import statement> */
pointcut import_stmt=after (@importDeclaration:);

after : import_stmt () {
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System.out.println("end of an import statement\n");

}

/* <end: import statement> */

pointcut uncountable_stmt=import_stmt () ||
uncountable_primitive_stmt ();
/* <end: uncountable statement> */

LisTING 5.35: AspectJava code for the grammatical structures that we do not count

The final part of the aspect simply defines the common advice for the “lines” we
count, i.e. increasing the counter by one and print the parsed text at the point. The

corresponding AspectJava code snippet is shown in Listing 5.36.

/* <begin: code metrics - line of code> */

pointcut print_result=%BeforeMainExit;

int idx = 0;

int counter = 0;

public void count (){

counter++;

after : print_result() {

System.out.println("Current loc: "+counter);

pointcut countable=countable_stmt () ||countable_sub_stmt
O3
before : countable() {
count () ;
String currentStr=JGetParsedText (-1);
System.out.println(counter+": "+currentStr.substring
(idx));
idx=currentStr.length();

pointcut uncountable=uncountable_stmt () ;

before : uncountable () {
String currentStr=YGetParsedText (-1);
System.out.println(currentStr.substring(idx));

idx=currentStr.length ();
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}

/* <end: code metrics - line of code> */

LisTING 5.36: Final part of the LOCCounter aspect

In the same test environment for the last aspect, we test the LOC counter aspect with
two Java programs. The first one is our contrived test program in the test of the last
aspect, as it is short enough that we can manually verify its result. Figure 5.4 shows
the test result in Eclipse, that the LOC of the input program is 51.
B Console 52 X% GEEE =28 5= 0
Aspectave_CodeMetrics[ave Application] CAProgram Fies\Java\jeé\bin\jvw:exe (27 Aug 2014 1728:40)

importjava.util.Random;
end of an import statement

m »

importjava.util.HashMap;
end of an import statement

1: publicclasstestlavaProg
start of a class declaration

2: {publicstaticintal=0;
end of a class field declaration

3: publicbooleanflag=true;
end of a class field declaration

4: privatestaticHashMap<String,Integer>map=newHashMap<String,Integer>();
end of a class field declaration|

5: publicstaticvoids_test(intx,charcc)
start of a method declaration

<« »

[4) testlavaProgjava 52 A CodeMetrics.aj 52 =
5 public class testlavaProg { - 1 package antlr.Java; -
Be public static int a1=0; 2 public aspect CodeMetrics {
public boolean flag=true; 3 private pointcut assert_stmt() : within(JavaParser)&&((call(public static void JavaPz
8 private static HashMap<String,Integer> ? 4 after(): assert_stmt() L
9 5 E
public static void s_test(int x, char 6 System.out.println("end of an assert statement\n");
double y=(1>0)?1.5:0.5; 7
int dec_only; 8 private pointcut branch_stmt() : within(JavaParser)&&((call(public static void JavaPe
dec_only=1; = 9 after(): branch_stmt()
int z=10; .
char no_init; System.out.println("end of an if-else statement\n");
16 if (y<=1) { 12
17 System.out.println(y-1); 13 private pointcut for_stmt() : within(JavaParser)&&((call(public static void JavaParse
18 } else if (y!=288z<=1) { @ 14 after(): for_stmt()
19 System.out.println(y); 15 {
} else { 16 System.out.println("end of a for statement\n");
21 System.out.println(y++); 17

private pointcut while_stmt() : within(JavaParser)&&((call(public static void JavaPar
for (;true;z--) { after(): while_stmt()
if (z>3) continue;
else break;

System.out.println("end of a while statement\n");

private pointcut do_stmt() : within(JavaParser)8&((call(public static void JavaParser
after(): do_stmt()

System.out.println(x);

public int m1() { System.out.println(“end of a do statement\n");
synchronized(this) {
System.out.println("sync block"); private pointcut try_stmt() : within(JavaParser)&&((call(public static void JavaParse

after(): try_stmt()
{

Random ran = new Random();

int x = 0; System.out.println("end of a try-catch statement\n");

while (x<7) { private pointcut switch stmt() : within(JavaParser)i&((call(public static void JavaP: _
aftari\e cuitrh ctm

< m » < m »

FI1GURE 5.4: The output of parsing testJavaProg. java with the LOCCounter-woven
JavaParser.

The second test program is the generated JavaParser class itself, which has 19438 lines
of text in it, including comments and blank lines. The result the LOC of the input
program is 13431 in accordance with our counting rules. The test result in Eclipse is

shown in Figure 5.5.

In this chapter, we elaborated on our experiments to modify the ANTLR generated
parsers with our DSCG extension approach. In particular, we use the AspectRERS
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Bl Console 2 "X %| #EB~-r§~v= 08
d> Aspectlava_CodeMetrics [Java Application] C:\Program Files\Java\jre6\bin\javaw.exe (28 Sep 2014 12:56:34)

d declaration -

13427: publicstaticfinalBitSetFOLLOW_RBRACKET_in_synpred24@_lava7252=newBitSet(newlong[]{! s })iend of a ¢

d declaration
13428: publicstaticfinalBitSetFOLLOW_arrayInitializer_in_synpred24@_Java7273=newBitSet(newlong[]{@x2000000000000002L});end of a class field d

n
13429: publicstaticfinalBitSetFOLLOW_LBRACKET_in_synpred241_Java7322=newBitSet(newlong[]{@x2840(80300614200L,0x008A91B0200A1870L});end of a c
d declaration

13430: publicstaticfinalBitSetFOLLOW_expression_in_synpred241_Java7324=newBitSet(newlong[]{ » })send of a
eld declaration

13431: publicstaticfinalBitSetFOLLOW_RBRACKET_in_synpred241_Java7338=newBitSet(newlong[]{0x2200000000000002L});end of a class field declarati

Current loc: 13431 |
<« mn »
=8
J) Javalexerjava [J) JavaParserjava 2 A CodeMetrics.aj 52
public static final BitSet FOLLOW_IDENTI ~ Il 1 package antlr.Java; -
public static final BitSet FOLLOW COLON_ 2 public aspect CodeMetrics { |7|:
public static final BitSet FOLLOW expres 3 private pointcut assert_stmt() : within(JavaParser)&&((call(public | |,
public static final BitSet FOLLOW RPAREN = ¢ 4 after(): assert_stmt() I
public static final BitSet FOLLOW staten 5 i .
public static final BitSet FOLLOW locall 6 output+="end of an assert statement\n"; 3
public static final BitSet FOLLOW castEx 7 -
public static final BitSet FOLLOW_LPAREA 8o private pointcut branch_stmt() : within(JavaParser)&&((call(public { |~
public static final BitSet FOLLOW primit ¥ 9 after(): branch_stmt() | -
public static final BitSet FOLLOW RPAREN = 1e -
public static final BitSet FOLLOW unaryt E 1 output+="end of an if-else statement\n"; =
public static final BitSet FOLLOW DOT_ir w 12 } -
public static final BitSet FOLLOW IDENTI 130 private pointcut for_stmt() : within(JavaParser)&&((call(public sta ©
public static final BitSet FOLLOW identi ¥ 14 after(): for_stmt() =
public static final BitSet FOLLOW DOT_ir 15 o
public static final BitSet FOLLOW_IDENT1 16 output+="end of a for statement\n"; o
public static final BitSet FOLLOW identi 17 } -
public static final BitSet FOLLOW_LBRACK 18< private pointcut while_stmt() : within(JavaParser)&&((call(public s°
public static final BitSet FOLLOW expres ¥ 19 after(): while_stmt()
public static final BitSet FOLLOW_RBRACK 20
public static final BitSet FOLLOW NEW_ir E 21 output+="end of a while statement\n"; =
public static final BitSet FOLLOW nonWil 22 } —
public static final BitSet FOLLOW classC = 23 private pointcut do_stmt() : within(JavaParser)&&((call(public stat:
public static final BitSet FOLLOW class( o 24 after(): do_stmt() I
public static final BitSet FOLLOW_NEW_ir 25 =
public static final BitSet FOLLOW classC 26 output+="end of a do statement\n"; I
public static final BitSet FOLLOW class( 27 -
public static final BitSet FOLLOW NEW_ir 28 private pointcut try_stmt() : within(JavaParser)&((call(public sta= “
public static final BitSet FOLLOW create o 29 after(): try_stmt() o
public static final BitSet FOLLOW_LBRACK 30 =)
public static final BitSet FOLLOW_RBRACK 31 output+="end of a try-catch statement\n"; —
public static final BitSet FOLLOW_LBRACK 32 }
public static final BitSet FOLLOW_RBRACK 33 private pointcut switch_stmt() : within(JavaParser)&&((call(public :
public static final BitSet FOLLOW arrayl o 34 after(): switch_stmt()
public static final BitSet FOLLOW_LBRACK 35 { =)
public static final BitSet FOLLOW expres 36 output+="end of a switch statement\n";
public static final BitSet FOLLOW RBRACK _ 37 } =
} ( 38¢ private pointcut sync_stmt() : within(JavaParser)&&((call(public sti
< o 39 after(): sync_stmt() <
<= » < n »

F1GURE 5.5: The output of parsing JavaParser. java with the LOCCounter-woven
JavaParser.

experiment to discuss the implementation details. Besides, we did two additional ex-
periments with ANTLR generated Java parser to further explore the reusability of our
approach. In the next chapter, we continue our experiments with a quite similar domain

but different code generator.






Chapter 6

DSCG Extension for CUP

As a third case study, we test our approach within another CFG parsing domain,
LALR(1) parsing. On one hand, it shares much common ground with the LL(*) parsing
domain, such as the concepts of terminals/nonterminals, prediction based production
rule applications, etc. On the other hand, they have significant difference in the pars-
ing process, such as the reverse production rule applications, etc. In this case study,
we select CUP as the target code generator, which is a Java version of its well-known
predecessor YACC.

6.1 CUP Parser Generator and LALR Parsing

In this section, we first introduce the CUP Parser Generator. We then discuss the
LR and LALR parsing algorithms, in particular their difference from the LL parsing
algorithms. Finally, we illustrate the meta-model of the LALR(1) parsing domain.

6.1.1 YACC and CUP

In 1970, Stephen C. Johnson developed a LALR parser generator, named Yet Another
Compiler Compiler (YACC) [130, 131]. It works on the Unix operating system and
generates an LALR parser on the input of an LALR grammar. YACC becomes so
popular that there are so many variants of it with additional features and for various
languages, such as Berkeley Yace (BYACC) [132] and GNU Bison (commonly known as
Bison) [133]. Among these variants, we choose Constructor of Useful Parsers (CUP)
[17, 134] as our target DSCG code generator, because it shares two points in common
with ANTLR. First, unlike BYACC and Bison that are both implemented in C, the CUP
parser generator is implemented in Java, the same implementation language as ANTLR.
This could help us collate the way we instrument different code generators to produce

sentinels so we may discover a generative method. Second, as the output language in

133
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our ANTLR case study is Java, the fact that CUP also generates parsers in Java makes
it more convenient to compare the tracing strategies to use, which is coupled closely

with the output language.

Unlike ANTLR generating lexer and parser at the same time, CUP and many YACC
variant tools only generate parsers. Thus they always have to work together with exter-
nal lexer tools. For example, YACC has to work with Lex [135], Bison with Flex [136],
CUP with JFlex [137]. They are functionally identical, to scan the input string and
translate it into a stream of recognized tokens. There is only subtle difference among
them, due to the different implementation of their partner LALR parser generators.
Again, we only focus on the parser generation process in our discussion. Besides, al-
though the current CUP maintainers (Technical University of Munich) are working on
CUP2, it is still not ready according to their development page [138]. Thus we still use

the last stable release of the original CUP, i.e. “cup-11a” in our experiment.

6.1.2 LR Parsing and LALR Parsing

The parsers generated by CUP are LALR parsers. To explain the LALR parsing al-
gorithm, we first need to introduce the LR parsing algorithm, since the LALR parsing

algorithm is an enhanced variant of the original LR parsing algorithm.

LR Parsing is a bottom-up parsing algorithm. The L here still refers to “Left to
right” scanning, while the R stands for “Rightmost derivation”. As mentioned in Section
5.1.1, CFG parsing algorithms mainly include LL parsing and LR parsing. In contrast
to LL parsing, LR parsing constructs parse trees in a “bottom-up” pattern, i.e. from
leaves to roots. As an LR parser scans the input token stream from left to right, it tries
to recognize the Right Hand Side (RHS) of the proper production rule, so that it can
apply it in a reverse way, i.e. to reduce its RHS to the nonterminal in its LHS. This step
is often called reduce. If the currently parsed token stream cannot match the RHS of
any production rule, the parser simply takes in the next token to see if any luck. This

step is often called a shift.

Similar to the original LL parsing algorithm, the original LR parsing algorithm also
lacks an effective strategy to “smartly” choose the proper production to apply according
to the currently parsed tokens. Therefore, the lookahead strategy is used again to allow
predictions in LR parsing. But a primary difference here is that at any point in an LL
parsing process, each token in the string to the left of the next token has already found its
proper position on the parse tree, while in LR parsing, these tokens often still wait aside
to be put on the parse tree after the current reduction, or “handle pruning” by D. Knuth
[139]. Handle here is defined as “the leftmost set of adjacent leaves forming a complete

branch”. Thus the major problem in LR parsing becomes how to iteratively search for
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the current handle. Similar to LL(k) parsing, a table-driven method is involved to solve
the searching problem. However, the uncertainty caused by the “unstructured” token
string on the left of the current handle makes the parse table here more complicated.
The keys of the parse table are two-dimensional pairs of the tokens and states within
the state space of the deterministic finite automatons (DFAs) built from the grammar,
instead of one-dimensional tokens. The values in the table cells are actions over the

production rules, such as “shift”, “accept”, or “reduce”.

More details about the table/DFA constructions are beyond the scope of our research.
We only need to understand that we are able to somehow build the tables to tell us
what action we should do in a certain state on the recognition of a specific token.
Besides, like LL parsing, LR(0) parsing can be enhanced with predicting ability, which
are collectively called LR (k) (k>0) parsing algorithms. However, as a grammar getting
more complicated, the state space of the DFA derived from it grows very fast, which
will finally lead to a steep increase of the LR(k) look-up table size. To reduce the size
of parse table, several variations of LR(0) parsing are developed. For example, Simple

LR (SLR) is introduced by identifying the current handle more strictly.

LALR Parsing is a commonly used variant of LR parsing, which merges the states
in the LR(k) DFAs that are identical except for their lookahead sets. The LookAhead LR
(LALR) is defined by DeRemer [140, 141] to enhance the LR parsing algorithms with
the token peeking ability, and keeps the size growth of the LR DFAs internal state space
under control. In other words, LALR parsing sacrifices a finer grained parser internal
state description so we can create DFAs with realistic size. In our case study, we partic-
ularly focus on an LALR parsing variant with only one lookahead token, i.e. LALR(1)

parsing.

6.1.3 LALR(1) Specific Domain Meta-Model

In Section 5.1, we have discussed the general parsing domain, which includes the common
concepts shared by LL(*) parsing domain and the LALR(1) parsing domain, e.g. terminal,
nonterminal, parse rule, alternative, etc. In this section, we focus on the classes and

properties in the domain meta-model that are uniquely related to the LALR(1) parsing.

Shifting and Reducing In both LL(*) parsing and LALR(1) parsing, the parser
keeps a cursor that tracking the parsing progress, which divides the input token string
into two substrings: the left parsed part and the right unparsed part. The major differ-
ence is the way to move the cursor. The LL(*) parser tries to parse in a “predict/match”
pattern, i.e. try to parse the following token with a certain production rule that is pre-

dicted according to the current lookahead token, until an error might occur and then
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backtrack. In other words, the cursor may shift either to the left (when backtracking)
or to the right, but it will finally reach the right end to finish the parsing process.

The LALR(1) parser, on the other hand, treats the left string as its work area, where
all handles get reduced at the right end of it. Its cursor only shift to the right, as each
symbol in the left string is part of a handle. Therefore, in LALR(1) parsing, there are no
longer steps like “predicting” or “matching”. Instead, the basic parsing operations are
“shifting” and “reducing”. “Shifting” refers to moving a token across the cursor from
the right to the left for reduction. It is similar to the notion “matching a token” in LL(*)
parsing. The difference is that when a LALR(1) parser shifts, it is moves the very first
unparsed token to the end of the left string, which means it is “ready for reduction”.
“Reducing” refers to reducing the current handle to the proper nonterminal, i.e. the
application of reverse production rule. In detail, it consists of three logical steps. First,
the parser pops out all the terminals and/or nonterminals of the current handle. It then
replaces the handle into a single nonterminal. Finally, it pushes the reduced nonterminal

back to the parse stack.

Handle Detecting and Pruning As a bottom-up parsing algorithm, LALR(1) tries
to reduce the predicted parse tree by always trimming the left most subtree from leaf
level. As the detecting of each handle has been encoded in the states of the pre-built
DFA, it does not reflect directly in the parse table. On detecting a handle, the instruction
indicated by the parse table may be either to shift or to reduce. Therefore, the parser
cannot tell the inception of the parsing of a certain parse rule on recognizing a specific
terminal. In other words, we cannot pinpoint the specific time point when the parser
starts parsing a specific production rule during parsing. The pruning of handle, on the
contrary, is much easier to detect, as it is the major step in the “reducing” action. It
transforms a group of symbols (either terminal or nonterminal) into one nonterminal

according to a specific parse rule alternative.

Parse Stack In LALR(1) parsing process, the parsed input is stored in a stack
structure, which is often referred to as Parse Stack. It serves the detecting and pruning
of handles. More precisely, if the action according to the parse table is to “shift”, the
parser simply pushes the current token into the stack. If the action is to “reduce”, the
stack pops out the symbols (either terminal or nonterminal), so that the parser can
reduce them into a single nonterminal and then push it back to the stack. Obviously,

the elements in the stack can be either terminals or nonterminals.

Embedded Action In LL(*) parsing, the “predict/match” pattern allows the parser
to be aware of both the commencement and completion of parsing a certain parse rule.
Therefore, LL(*) grammar allows the users to include customized code to these loca-

tion. The code are called embedded action. In LALR(1) parsing, however, the users can
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only insert their code on finishing the parsing of a certain production rule. In other
words, embedded actions are allowed only at the very end of the second step of “reduc-
ing”, i.e. handle pruning. Another limitation due to the invisibility of handle detection
is that there is no tracking on parse rule scale. For example, the users cannot set a flag
at the beginning of a rule parsing process, which may get modified through the parsing,
and check it on finishing the parsing process. Thus the LALR(1) grammar does not

support parse rule attribute in embedded action.

By including the XSD module we created in Section 5.2.3, we define the LALR(1)
grammar domain meta-model in another XSD module called LALR_1 Domain, which is

shown in Appendix B.21.

6.2 Extending CUP Parser Generation

As an comparative experiment, we start our case study by modifying the “RERS” parser
generated by CUP. We write an LALR(1) grammar for the “RERS” language that we
used with in our ANTLR experiment in Section 5.3.1. Strictly speaking, the grammar
consists of two separate files: RERS.flex for terminal definition only and RERS. cup for
the rest of the grammar. The output are three separate files: the lexer MyScanner. java
generated by JFlex from RERS.flex, the parser Parser. java generated by CUP from
RERS. cup, and an auxiliary class sym. java. As we only focus on the parser generation

process, we refer to the generated Parser. java by “base code”.

The specifications of the CUP grammars are easy to understand. The general struc-
ture look similar to that of the ANTLR grammars, except that they require explicit
declarations of nonterminals and allow the definitions of precedences and associativity
of the operators. The input model, i.e. the RERS. cup, is shown in Appendix B.22. As
for the production rules, CUP grammars do not support rule parameters or attributes.
Instead, they only support a built-in return value for each rule, which can be referred
to as RESULT in the embedded actions.

6.2.1 Extension Requirements Analysis

The extension requirement in this experiment is quite similar to that we mentioned
in Section 5.3.2, to develop a finer grained and more flexible monitoring functions to
the generated parsers, e.g. to monitor the token matching events. However, due to the
different parsing mechanisms of the LL(*) grammars and the LALR grammars, we can
identify the following differences. First, as the applications of production rules can only
be detected when they are finished, we can only monitor the exiting of a production rule,
just like the embedded actions allowed in CUP. Second, as CUP does not support rule

attribute, we no longer need to monitor the attribute setting events. Third, we want to
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monitor the “shift” action. Fourth, we want to monitor the handle reduction, in terms

of the handle detection and the handle pruning.

The Effective Meta-Model According to the four events to monitor in the above
extension requirement, which include “token matching”, “invoking rule embedded ac-
tion”, “shift action”, “handle reduction”, we can identify four join point classes in the
LALR(1) domain meta-model, i.e. class “terminalType”, class “embeddedAction”, class
“shiftAction”, and class “reduceAction”. The first two classes are instance level join
point classes. The last two classes have no properties, and are class level join point
classes. This difference will affect the expansion of the corresponding PCD production

rules in the DSAL template, which will be explained in Section 6.2.2.

The DSAL Template Selection Given the fact that the differences between the
modification requirements in the AspectRERS ANTLR experiment and that in the As-
pectRERS CUP experiment are all domain specific, we can simply reuse the DSAL

template we used in Section 5.4.1.

6.2.2 Generation of AspectRERS

In this experiment, we still call the DSAL to generate AspectRERS. The generation of
AspectRERS is essentially an expansion of the selected DSAL template in accordance
with the effective meta-model, especially the creation of the four domain specific PCD

definitions corresponding to the four join point classes.

Token Matching Pointcuts describe the join points focusing on the points tokens
are matched, i.e. before or after them. In LR parsing, the beginning of applying a
production rule is difficult to detect. In other words, it is difficult to tell whether a
token is matched within the application of a specific production rule. Therefore, we no
longer trace the token matching events within the rule application frames. Instead, we
regard them as standalone events. For example, pointcut after(#9) captures all “slots”
just after matching a token with internal index value 9. Besides, we also support an
unary operator ! to get the complement, which means “any ... other than”. For example,
pointcut before(!#9) refers to the “slots” just before matching any token, except for the
one with internal index value 9. The ANTLR grammar definition of the token matching

pointcuts is shown in Listing 6.1.

token_filter
BEF LPAREN tn=token_indicator RPAREN
-> beforeTokenFilterl (locationModifier={"Begin"},
tokenIdx={$tn.codel})
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| BEF LPAREN NOT tn=token_indicator RPAREN
-> beforeTokenFilter2(locationModifier={"Begin"},
tokenIdx={$tn.codel})
| AFT LPAREN tn=token_indicator RPAREN
-> afterTokenFilterl(locationModifier={"End"},
tokenIdx={$tn.codel})
| AFT LPAREN NOT tn=token_indicator RPAREN
-> afterTokenFilter2(locationModifier={"End"},
tokenIdx={$tn.codel})

3

location_modifier returns [String codel
BEF {$code = "Begin";?}
| AFT {$code = "End";}

token_indicator returns [String code]
TKN INTLITERAL {$code=$INTLITERAL.text;}
| TKN {$code="-1";}%}

LisTING 6.1: ANTLR definition of the token matching pointcuts

Embedded Action Pointcuts describe the join points before or after an embedded
action that is executed after a certain production rule is applied. For example, pointcut
before(@Qtemporal : 2) captures the “slots” just before executing the embedded action
that follows the application of the second alternative of rule @temporal. Similar to the
branch pointcuts we described in Section 5.4.1, both columns of the embedded action
pointcuts support the ! operator. For instance, (Qtemporal :!12) refers to the application
of any alternative of rule temporal except the second one, whereas (!@Qtemporal : 2) refers
to the application of the second alternative of any rule except temporal. The ANTLR

grammar definition of the embedded action pointcuts is shown in Listing 6.2.

reduction_action_filter
Im=location_modifier LPAREN rn=rule_indicator COLON
bi=branch_indicator RPAREN
-> reductionActionFilterl1(locationModifier={$1lm.code
}, ruleNameValue={$rn.value}, altIndex={$bi.codel})
| Im=location_modifier LPAREN rn=rule_indicator COLON
NOT bi=branch_indicator RPAREN
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-> reductionActionFilter2(locationModifier={$1lm.code
}, ruleNameValue={$rn.value}, altIndex={$bi.codel})
| Im=location_modifier LPAREN NOT rn=rule_indicator
COLON bi=branch_indicator RPAREN
-> reductionActionFilter3(locationModifier={$1lm.code
}, ruleNameValue={$rn.value}, altIndex={$bi.codel})
| Im=location_modifier LPAREN NOT rn=rule_indicator
COLON NOT bi=branch_indicator RPAREN
-> reductionActionFilter4(locationModifier={$1lm.code

}, ruleNameValue={$rn.value}, altIndex={$bi.codel})

3

branch_indicator returns [String code]
INTLITERAL {$code=$INTLITERAL.text;}
| {$Code="*“;}

rule_indicator returns [String value]
RUL IDENTIFIER
{$value=$IDENTIFIER. text;}
| {$value="%";}

LisTING 6.2: ANTLR definition of the embedded action pointcuts

Shift Action Pointcuts describe the join points before or after the “shift” action,
which is an internal state transition of the parser. As the corresponding join point
class “shiftAction” is a class level join point class, which means join point instances
do not relate to any domain element, such as token or production rule, we define two
special pointcuts, BeforeShift and AfterShift, which respectively capture the beginning
and ending slots of ANY shift action. The corresponding ANTLR definition is shown
in Listing 6.5.

BEFORE_SHIFT = ’BeforeShift’;
AFTER_SHIFT = ’AfterShift’;
shift_filter
BEFORE_SHIFT
-> shiftFilter1 ()
| AFTER_SHIFT
-> shiftFilter2()

LisTING 6.3: ANTLR definition of the shift action pointcuts
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To distinguish the pointcut corresponding to the class level join points, we define a
percent character before the PCD names. The corresponding ANTLR definition is shown
in Listing 6.4.

macro_filter
PERCENT m=macro_filter_expression

-> copyStr (f={$m.st})

macro_filter_expression
bme=before_main_exit
-> copyStr (f={$bme.st})
| hf=handle_filter
-> copyStr (£f={$hf.st})
| sf=shift_filter
-> copyStr(f={$sf.st})

Li1sTING 6.4: ANTLR definition of the class level pointcuts

Handle Reduction Pointcuts describe the join points before or after the operations
related to the “reduce” action, i.e. handle detection and handle pruning, which are also
internal actions of the LR parser. Similar to the shift action pointcuts, it also correspond
to a class level join point class “reduceAction”. Similarly, we define two special point-
cuts FoundHandle and PrunedHandle. The corresponding ANTLR. definition is shown in
Listing 6.5.

FOUND_HANDLE = ’FoundHandle’;
PRUNED_HANDLE = ’PrunedHandle’;
handle_filter
FOUND_HANDLE
-> handleFilter1 ()
| PRUNED_HANDLE
-> handleFilter2()

LISTING 6.5: ANTLR definition of the handle reduction pointcuts

We can see that all above pointcuts are pinpoint pointcuts. The LR parsers focus on
exploring handles in the parse stack, instead of explicitly tracing the applications of
production rules. Concepts, like the control flow of rule application, are thus of little
interest in the extension. Therefore, we do not define any “range” pointcuts, such as cflow
in our AspectRERS. The AspectRERS here supports the same advice patterns, i.e. before

and after advice, while it still does not support any parameter or return values bound
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to a certain pointcut. Similar to the four DSESs defined in Section 5.6.2, we define six

DSESs as shown below, which will be syntactically taken as normal Java statements.

o GetParsedText takes in no parameter and returns a java.lang.String typed object

containing the parsed token string.

e GetStackToken takes in an int typed parameter representing the index of the
target token in the parse stack, and returns a java_cup.runtime.Symbol typed object

containing the target token. The indices are 0 based.

e GetCurrentToken takes in no parameter and returns a java_cup.runtime.Symbol

typed object containing the current token.

e GetCurrentBranch takes in no parameter and returns a java.lang.String typed

object representing the production rule and its alternative indices, e.g. literal f : 1.

e GetCurrentBranchText takes in no parameter and returns a java.lang.String
typed object representing the full text of the production rule and its alternative
indices, e.g. literal f ::= LPAR temporal RPAR.

e PrintHandleTokens takes in no parameter and use standard output stream to
print out a java.lang.String typed object for each token that comprises the current
handle.

6.2.3 Traceable Domain Meta-Model

Due to the similar model traceability requirements as that in Section 5.4.2, we reuse
most part of the tracing strategy used in the previous experiment. For example, Figure
6.1 illustrates a sentinel for the beginning of the embedded actions of applying rule

temporal.
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4] parser.Begin_Rule_temporal_Alternative_2();
Object RESULT =null;

int dleft = ((java_cup.runtime.Symbol)CUP$parser$stack.peek()).left;

int dright = ((java_cup.runtime.Symbol)CUP$parser$stack.peek()).right;
Object d = (Object)((java_cup.runtime.Symbol) CUP$parser$stack.peek()).value;
RESULT = "EVENTUALLY" + (String)d;

CUP$parser$result = parser.getSymbolFactory().newSymbol("temporal”,1,
((java_cup.runtime.Symbol)CUP$parser$stack.elementAt(CUP$parser$top-1)),
((java_cup.runtime.Symbol)CUP$parser$stack.peek()), RESULT);

parser.End_Rule_temporal_Alternative_2();

return CUP$parser$result;

parser.Begin_Rule_temporal_Alternative_2();

| | | | |
@ ® @ ® ®

The CUP generated parser is always named “parser”, within
which we declare our sentinels as its public static methods.

This keyword indicates whether the join point happens
before or after the rule reduction.

Built-in keyword “_Rule_".

The string between @ and @ is the name of the current
grammar rule.

”

Built-in keyword “_Alternative_".

The string between @ and “()” is the index number of the
current alternative of the current grammar rule.

® @ ® ® ® © ©

FIGURE 6.1: The beginning sentinel marking the embedded actions of rule temporal.

It is worth noting that our sentinels are marking the beginnings and endings of the
embedded actions after applying a rule, not the beginnings and endings of a rule appli-

cation.

Code Generator Customization With the generated traceable domain meta-model
as formal guide, we start the customization of the latest CUP package cup-11a.jar, in
which the parser generation function is mainly implemented in two classes: emit. java
and lr_parser.java. The lr_parser.java class is the base class of the generated
Parser. java class, which contains the core functionalities of LR parsing, such as token
matching, “shift” and “reduce” actions. The related sentinels can thus be inserted by

directly modifying this class. For example, the sentinels for token matchings and “shift”
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actions are inserted as shown in Figure 6.2.

/* decode the action —— > 0 encodes shift */
if (act > 0)
{
/* Sentinel insertion: shift&reduction */
Begin Shift ()

/* shift to the encoded state by pushing it on the stack */

cur_ token.parse state = act-1;

cur_ token.used by parser = true;
stack.push (cur token);

tos++;

/* Sentinel insertion: token matching */

Begin Match Token();

/* advance to the next Symbol */

cur_ token = scan();

/* Sentinel insertion: token matching */
End Match Token():;

/* Sentinel insertion: shift&reduction */
End Shift () ;
}

/* if its less than zero, then it encodes a reduce action */
else if (act < 0)

FIGURE 6.2: Part of the modified code in 1r_parser. java to generate sentinels for the
token matchings and “shift” actions.

The emit. java class is responsible to assemble the text string of the source code of the
Parser. java class and get it printed. We modify this class mainly for generating the
sentinels of the rule embedded actions. For example, we use a Hashtable<String, Integer>
object to maintain the mapping between each alternative of a given production rule and
its index, so that we can fetch the correct alternative index information whenever we

need to concatenate the sentinel strings. More details are shown in Figure 6.3.

It is worth noting that we add a comment starting with “/* Sentinel insertion:” before
each piece of code that we modify to generate the sentinels. After the modification for
all the sentinels in the CUP package, we recompile the whole package and create a new

CUP parser generator, CUPS. jar which stands for “CUP customized for Sentinels”.
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// TUM 20060327 added SymbolFactory aware constructor
out.println () ;

out.println (™ /** Constructor which sets the default scanner. */");
out.println(" public " + parser_class_name +
"(java_cup.runtime.Scanner s, java_cup.runtime.SymbolFactory sf) {super(s,sf)
}
/* Sentinel insertion: for calc alternative index */
for (Enumeration p = production.all(); p.hasMoreElements(); ) {
production prod = (production)p.nextElement ():;

String label = prod. lhs. the symbol.name();
if (alternatives.containsEey(label)) {
alternatives.put (label, alternatives.get (label) + 1);
} else {
alternatives.put (label, 1);
}
}

/* Sentinel insertion: sentinel declaration insertion here */
out.println(" /** sentinel declaration */");
for (Enumeration<String>» r = alternatives.keys(); r.hasMoreElements(); )} {
String rule lhs = r.nextElement ()’
for (int i=1; i <= alternmatives.get(rule_lhs); it++) {
out.println(" public static void Begin Rule " + rule lhs + " Alternative "
+ i 4+ "() {ruleTrace.push(\""+rule lhs+"\"); branchTrace.push(\""+rule lhs
$5 CRARTL T 2R a a
out.println(" public static void End Rule "™ + rule lhs + " Alternative ™
+ i + "() {branchTrace.pop(); ruleTrace.pop();}"):
}
}
/* Sentinel insertion: rulesbranch tracking stack declaration insertion here */
out.println(" /** rule tracking stack declaration */");
out.println(" public static Stack<String> ruleTrace = new Stack<String>():;"):;
out.println(™ /** branch tracking stack declaration */");
out.println("” public static Stack<String> branchTrace = new Stack<String>():;");

/* emit the wvarious tables */

emit production table(out);

do_action table(out, action_ table, compact reduces);
do_reduce_ table(out, reduce_ table);

/* instance of the action encapsulation class */
out.println(" /** Instance of action encapsulation class. */");
out.println(" protected " + pre("actions"™) + " action obj;");

out.println();

FIGURE 6.3: Part of the modified code in emit. java to declare the sentinel functions

of the rule embedded actions.

6.2.4 Generation of AspectRERS Weaver

In this experiment, we still build the AspectRERS aspect weaver as a translator from
AspectRERS into AspectJ. With the above ANTLR grammar of AspectRERS, we define
the corresponding string templates to rewrite the recognized AspectRERS aspects into
the corresponding AspectJ aspects. All these string template definitions are encapsu-
lated in AspectRERS.stg, as in the AspectRERS in the ANTLR extension experiment.
However, there are some difference in details. First, our aspects no longer need the names
of the input grammar as parameters, as parser class generated by CUP are always named
Parser. java. For example, an AspectRERS aspect definition public aspect Sample {...}
simply remains the same in its translation. Second, different pointcuts and underlying

sentinels require different ways of constructing the translated AspectJ strings.
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Token Matching Pointcut Translation Because of the implementation of the CUP
code generation process, we can only insert general token matching sentinels, i.e.

call(public void java_cup.runtime.lr_parser.[Begin/End]_Match_Token(). This means we can
no longer generate a simple “call” pointcut for the matching of a specific token, as the
sentinels for all tokens are the same. Therefore, we use an extra “if” pointcut in Aspect
to indicate the target token. For example, if we want to capture the beginning of the

matchings of token OV (index value 20), we define a pointcut as shown below.

pointcut bef_0V=before (#20);

The AspectJ translation of the above pointcut is as follows.

private pointcut bef_0V() : (call(public void java_cup.
runtime.lr_parser.Begin_Match_Token())&&if (java_cup.

runtime.lr_parser.getCurToken () .sym==20));

Listing 6.6 shows the definitions of the string templates behind the above translation.

beforeTokenFilterl (locationModifier, tokenIdx) ::= <<

call (public void java_cup.runtime.lr_parser.<
locationModifier >_Match_Token ())&&if (java_cup.runtime.
lr_parser.getCurToken () .sym==<tokenIdx>)

>>

beforeTokenFilter2(locationModifier, tokenIdx) ::= <<

call (public void java_cup.runtime.lr_parser.<
locationModifier >_Match_Token ())&&if (java_cup.runtime.
lr_parser.getCurToken () .sym!=<tokenIdx>)

>>

afterTokenFilterl (locationModifier, tokenIdx) ::= <<

call (public void java_cup.runtime.lr_parser.<
locationModifier >_Match_Token ())&&if (java_cup.runtime.
lr_parser.getPrevToken () .sym==<tokenIdx>)

>>

afterTokenFilter2(locationModifier, tokenIdx) ::= <<

call (public void java_cup.runtime.lr_parser.<
locationModifier >_Match_Token ())&&if (java_cup.runtime.
lr_parser.getPrevToken () .sym!=<tokenIdx>)

>>

LISTING 6.6: String template definitions behind the translation of the token matching

pointcuts
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Embedded Action Pointcut Translation As we still generate alternative specific
sentinels for the embedded action join points, we can reuse our translation strategy in
our ANTLR experiment. For specific pointcuts, we simply construct the declarations of

the corresponding sentinels. For example,

pointcut bef_act=before(@literal_f:1);

is translated into

private pointcut bef_act() : (call(public void Parser.

Begin_Action_Rule_literal_f_Alternative_1(String)));

For generic pointcuts, we use * to replace the specific alternative index in the translated

string. For example,

pointcut aft_act=after (@input:);

is translated into

private pointcut aft_act() : (call(public void Parser.

End_Action_Rule_input_Alternative_x*(String)));

The definitions of the string templates behind the above translation are shown in Ap-
pendix B.23.

Special Pointcut Translation The last two kinds of pointcuts, i.e. the shift action
pointcuts and the handle reduction pointcuts, are all special pointcuts. They are trans-
lated directly into predefined AspectJ pointcuts. The definitions of the string templates

involved here are shown in Appendix B.24.

DSES Translation Similar to the translation of the special pointcuts, we directly
translate the DSESs into predefined strings. The related string template definitions are

shown in Listing 6.7.

getParsedText () ::= <<

java_cup.runtime.lr_parser.getParsedText ()
>>

getStackSymbol (index) ::= <<
((Parser)thisJoinPoint.getTarget ()).getStackSymbol (<index>)
>>

getCurrentSymbol () ::= <<

java_cup.runtime.lr_parser.getCurToken ()
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>>

getCurrentBranch () ::= <<

((Parser)thisJoinPoint.getTarget ()) .branchTrace.peek () [0]
>>

getCurrentBranchText () ::= <<

((Parser)thisJoinPoint.getTarget ()).branchTrace.peek () [1]
>>

printHandleSymbols () ::= <<

for (int i = ((Parser)thisJoinPoint.getTarget ()).
getStackSize () -((Parser)thisJoinPoint.getTarget ()).
currentHandleSize; i \< ((Parser)thisJoinPoint.getTarget
()) .getStackSize(); i++) { System.out.print (((Parser)
thisJoinPoint.getTarget ()).getStackSymbol (i) .toString());
} System.out.println()

>>

LISTING 6.7: String template definitions behind the translation of the advice macros

6.2.5 Customization of CUP Parser with Aspect RERS Aspect Weav-

ing

Now that we have implemented a complete parser generation extension system based on
AspectRERS, we test it with the same RERS program shown in Listing 5.25, which we

used in our ANTLR test. For the sake of convenience, it is also shown below.

(! 0Z WU (oU & ! 0Z))

(G (1 iCc | (F o0Z)))

((G ' oW) | (F (oW & (F oU))))

(G (! iE | (F oY)))

(G (Y (iB & ! oU) | (! oV WU oU)))
(! oV WU oX)

(G ' oW) | (F (oW & (F 0oU))))

(! oU WU (oX & ! oU))

As mentioned in Section 6.2.1, our extension purpose is to provide a finer grained and
more flexible monitoring system over the parsing process. In our AspectRERS aspect,
we define four pairs of pointcuts to respectively capture the beginnings and endings of
the four types of parsing events that we are interested in, as well as their corresponding

advice for proper operations.
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To test the monitoring of the token matching events, we capture the beginning of match-
ing token OV (index value 20) and the ending of matching token IB (index value 14).
We then print the parsed text, the third token from the top of the parse stack, and the
current token. The corresponding code block in our test aspect is shown in Appendix
B.25.

To test the monitoring of the embedded actions, we capture the beginning of the action
after a specific rule alternative, i.e. literal_f : 1, and the ending of the action after any
alternative of rule input. Apart from the above advice operations, we also print the
current branch index and its full text, as well as the handle that has just been reduced.

More details are shown in Appendix B.26.

We then test the capturing of the beginning and ending of the “shift” action, as well as
the “reduce” action, where we respectively print the parsed text, and the top token in

the parse stack, plus the current handle. More details are shown in Appendix B.27.

With regard to the test aspect in our previous AspectRERS ANTLR experiment, we
also import its first pointcut to count the occurrence of the “GLOBALLY” expression.
Unfortunately, since it is difficult to detect the beginning of the rule application in LR
parsing, we cannot support the range pointcuts. Therefore we cannot import its second

pointcut here. The detailed aspect code block is shown in Listing 6.8.

// counting "GLOBALLY" ezpression

int GLOBALLY_expression_counter=0;

pointcut GLOBALLY_expression=after (@temporal:3);
after : GLOBALLY_ expression() {

GLOBALLY _expression_counter++;

pointcut summary=j%BeforeMainExit;
after : summary () {
System.out.println("There are " +
GLOBALLY expression_counter + " \"GLOBALLY\" expressions.
")
}

LisTING 6.8: The code block of counting the “GLOBALLY” expression in the test

aspect

The result of parsing the RERS program is shown in Listing 5.25. According to it, there
5 “GLOBALLY” expressions in the above program, which agrees with the test result of
the AspectRER ANTLR experiment, which is shown in Section 5.5.
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6.3 Extending Java Parser Generation

For the purpose of comparison, we aim to equip the Java parser generated by CUP
the same functions as in our ANTLR AspectJava experiment. Unfortunately, due to
the limitation on the range pointcuts in LR parsing, we have to abandon the functions
requiring the ability to trace the parsing control flow. In other words, we lack the ability
to capture the rule application under a specific context in terms of the previously applied
rules. For example, we cannot capture the “equality check” in the expressions in the
“if” predicates, although we can still count the “if-only” statements. As for the LOC
counting function, the sub statement counting involved in it still requires the ability
to trace the parsing control flow. Although we can change the counting rules to skip
those situations in counting, it would not be a proper comparison any more. As a result,
we continue our Java parser extension experiment with only one requirement. Such
extension requirement can be fulfilled by the AspectRERS we generated in the above
experiment. Therefore, in this experiment we simple reuse the entire extension of the

CUP parser generation, except that we rename the DSAL as AspectJava.

The way we count the “if-only” statements is different here. In the ANTLR experiment,
we respectively capturing all the “if” statements and all the “else” tokens, and then get
the count by calculating their difference, as it is not easy to directly capture the “if-
only” statements. In the CUP experiment, we download a Java grammar from the CUP
official home page [134]. It explicitly defines a if_then_statement rule, which is shown in

Listing 6.9.

statement ::= statement _without_trailing_substatement
labeled_statement

if_then_statement

|
|
| if_then_else_statement
| while_statement

| for_statement

|

foreach_statement
if_then_statement ::=
IF LPAREN expression RPAREN statement

LisTING 6.9: The CUP grammar of the “if-only” statement in Java

This enables us to get the count by defining a pointcut that directly captures the ending
of the application of this rule, i.e. an embedded action pointcut. The corresponding

AspectJava aspect code is shown in Listing 6.10.

package cup.Java;

import cup.Java.Parse.x*;
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public aspect CodeMetrics {
int ifonly_statement_count=0;
pointcut ifonly_statement_counter=after (
@if_then_statement:);
before : ifonly_statement_counter () {

ifonly_statement_count++;

pointcut summary=%BeforeMainExit;
after : summary () {
System.out.println("ifonly_statement_count: "+

ifonly_statement_count) ;

}

LisTING 6.10: The AspectJava code of counting the “if-only” statement

We run the test against two input Java programs. The first program is the artificial
program testJavaProg. java we used in Section 5.6.4. The translated AspectJ aspect
and the test result is shown in Figure 6.4. The result agrees with our previous test result

shown in Figure 5.3, which has been verified manually.

B Console 2 %% BEE) =~ D9
<terminated> CUP _Java ParserTest [Java Application] C:\Program Files\Java\jre6\bin\javaw.exe (28 Sep 2014 16:31:04)
ifonly_statement_count: 3 -

A CodeMetrics.aj &3
package cup.Jlava;
import cup.Jlava.Parse.*;
public aspect CodeMetrics {
int ifonly_ statement_count=9;
private pointcut ifonly_statement_counter() : (call(public void Parser.End_Action_Rule_if_then_statement_Alternative_*(String)));
n before(): ifonly_statement_counter()
ifonly_statement_count++;
}
private pointcut summary() : execution(public static void main(String(]));
o after(): susmary()
{

System.out.println("ifonly_statement_count: “"+ifonly_statement_count);

Ficure 6.4: The CUP output of parsing testJavaProg.java with the
IfPredicateChecker-woven JavaParser.

The second test program is the JavaParser. java generated in the previous LOCCounter
experiment in Section 5.6.4, which has 19438 lines of text. The test result is that there

are 3175 “if-only” statements in the program JavaParser. java, as shown in Figure 6.5.
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& Console 2 X% REEE 2E-rs-=0
<terminated> CUP_Java_ParserTest [Java Application] C:\Program Files\Java\jre6\bin\javaw.exe (28 Sep 2014 16:18:30)
ifonly_statement_count: 3175 -

A CodeMetrics.aj 52

package cup.Jlava; -

__ 2 import cup.Jlava.Parse.*;
3 public aspect CodeMetrics {
4 int ifonly_statement_count=0;
5 private pointcut ifonly_statement_counter() : (call(public void Parser.tEnd_Action_Rule_if_then_statement_Alternative_*(String)));
3 before(): ifonly_statement_counter()
7
8 ifonly_statement_count++; £
9
10 private pointcut summary() : execution(public static void main(String[]));
K351 after(): summary()
12
13 System.out.println("ifonly_statement_count: "+ifonly_statement_count);
14 —
ghis ) =
< )
[J) JavaParserjava 52 = 0

PUDLLIC SLALIC TiNAL DILIEL MULLUW_PI UNLLLVE I YPE_LH_SYNpreuso/_Juvuodd0 = New DILIEL(NEW 10ng| |y
public static final BitSet FOLLOW RPAREN_in_synpred207_Java6558 = new BitSet(new long[]{@x2840(80300614200L, 0x608A9180260A1878L
public static final BitSet FOLLOW unaryExpression_in_synpred207_Java6560 = new BitSet(new long[]{0x0200000000000002L});
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FIGURE 6.5: The CUP output of parsing JavaParser.java with the

IfPredicateChecker-woven JavaParser.

As the above result is difficult to be verified manually, we weave the previous IfPredi-
cateChecker aspect into the ANTLR generated Java parser, and then parse the program
JavaParser. java. The test result is exactly the same as the above number we got. The

Eclipse output is shown in Figure 6.6.

We have not found a reliable tool with the function to count “if-only” statements in Java.
Thus we try to verify the result “manually”. In detail, we replace certain strings with
themselves to get the count of them in the program. We first count the “if” keyword
as the number of all “if” statement. To avoid counting in the “if” strings in the plain
text in the program, we respectively count two strings, “if(” and “if (7. Similarly, we
count the “else” token by counting string “else ” in JavaParser.java. According to
the results, there are 1868 “if(”, 1631 “if (7, and 324 “else 7. With these middle results,
we can calculate that the number of the “if-only” statements in JavaParser.java is
1868 + 1631 — 324 = 3175. Although we still cannot guarantee that 3175 is the correct

answer, the fact that all three results of the two tests and our “manual” counting are



Chapter 6 DSCG Extension for CUP 153

& Console 52 x % xz‘;:g‘ #EB-rf-=08
<terminated> Aspectava_CodeMetrics [Java Application] C:\Program Files\Java\jre6\bin\javaw.exe (28 Sep 2014 16:23:46)
there are 3175 if-only if-statements. -

there are 2650 equality checks involved in if-predicates.

JavaParserjava &3 A, CodeMetrics.aj &2

public static final BitSet FOLLOW COLON_in_synj * L. 1 package antlr.Java; -
public static final BitSet FOLLOW statement_in public aspect CodeMetrics {
public static final BitSet FOLLOW catches_i = private pointcut summary() : execution(public static void mair
public static final BitSet FOLLOW FINALLY in_s int cl=0;
public static final BitSet FOLLOW block_in_syn) int c2=0;
public static final BitSet FOLLOW catches_in_s; private pointcut ifStatement() : within(JavaParser)&&((call(pu
public static final BitSet FOLLOW_FOR_in_synpr: private pointcut ifElseStatement() : within(JavaParser)&&((wit
public static final BitSet FOLLOW LPAREN in_syi after(): ifstatement()
public static final BitSet FOLLOW variableModi; {
public static final BitSet FOLLOW type_in_synpi Cli+;
public static final BitSet FOLLOW IDENTIFIER 1ii
public static final BitSet FOLLOW COLON_in_syn)
public static final BitSet FOLLOW expression_ii
public static final BitSet FOLLOW_RPAREN_in_syi
public static final BitSet FOLLOW statement_in
public static final BitSet FOLLOW LocalVariabl:
public static final BitSet FOLLOW castExpressii
public static final BitSet FOLLOW_LPAREN_in_syi
public static final BitSet FOLLOW primitiveTyp:
public static final BitSet FOLLOW RPAREN_in_syi
public static final BitSet FOLLOW unaryExpress
public static final BitSet FOLLOW DOT_in_synpr:
public static final BitSet FOLLOW IDENTIFIER ii
public static final BitSet FOLLOW identifierSu.
public static final BitSet FOLLOW DOT_in_synpri .,
public static final BitSet FOLLOW IDENTIFIER ii
public static final BitSet FOLLOW identifierSu:
public static final BitSet FOLLOW_LBRACKET_in_.
public static final BitSet FOLLOW expression_ii
public static final BitSet FOLLOW RBRACKET_in_.
public static final BitSet FOLLOW NEW_in_synpri
public static final BitSet FOLLOW nonWildcardT;
public static final BitSet FOLLOW classOrInter:
public static final BitSet FOLLOW classCreator:
public static final BitSet FOLLOW NEW_in_synpri
public static final BitSet FOLLOW classOrInter:
public static final BitSet FOLLOW classCreator:
public static final BitSet FOLLOW NEW_in_synpri
public static final BitSet FOLLOW createdName_
public static final BitSet FOLLOW_LBRACKET_ in_.
public static final BitSet FOLLOW RBRACKET_
public static final BitSet FOLLOW LBRACKET_
public static final BitSet FOLLOW RBRACKET_in_:
public static final BitSet FOLLOW arrayInitial
public static final BitSet FOLLOW_LBRACKET_in_.
public static final BitSet FOLLOW expression_ii
public static final BitSet FOLLOW RBRACKET_in_| |

} 3 .z

<« |m » <« | 1 | »

2
4
5
6
7
8
9

}

after(): ifElseStatement()

C2++;

after(): summary()

System.out.println("there are "+(c1l-c2)+" if-only if-statement
int c3=0;

private pointcut ifPredicateEqualityCheck() : within(JavaParse
after(): ifPredicateEqualityCheck()

{

if (((JavaParser)thisJoinPoint.getThis()).input.LT(1).getText(
C3++;

}

after(): summary()

System.out.println("there are "+c3+" equality checks involved

FIGURE 6.6: The ANTLR output of parsing JavaParser.java with the
IfPredicateChecker-woven JavaParser.

the same makes us more confident about the correctness of this counting functionality

that derived from our AspectJava aspect weaving.

6.4 Exploring The Reusability of DSAL Aspects in Our
Approach

The AspectRERS and AspectJava implemented in the CUP experiments are in fact
the same DSAL. This gives us a chance to explore the possibility of reusing the same
DSAL aspects to different models conforming to the same domain meta-model. In
our experiments, we use two “model specific’” DSAL aspects and two “general” DSAL
aspects, and apply each of them respectively to the CUP parser generated from the
RERS model and the Java model. By “model specific aspects”, we refer to the aspects

that aiming at model specific elements, in particular, not shared by the other models
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tested by the same aspects. The “general” aspects only include content shared by all

tested models.

Theoretically, if a DSAL aspect is applied to both the target models and unrelated
models, we expect its application should work properly with the related join points in
the target models. In the unrelated models, since the join points expected by the DSAL
aspect do not exist, the application of the aspects should either fail, or capture no join
point, and thus have no effect on the unrelated models. For example, the CUP grammar
of RERS shares nothing with the CUP grammar of Java but few terminals. This makes
it easy to define “model specific” aspects. In Section 6.2.5, we test the DSAL aspect
counting the “GLOBALLY” expressions in an RERS program. Obviously, this aspect
only involves one production rule temporal : 3, which is not defined in the CUP grammar
of Java. We then reuse it and apply it to the CUP grammar of Java. The compilation
and weaving works normally, and the test results in parsing the testJavaProg. java and
the JavaParser.java are both zero counts as expected. On the other hand, to apply
a Java aspect to the CUP grammar of RERS, we reuse the “if only” statement counter
aspect in Section 6.3. The compilation and weaving works well. The test of parsing
the RERS program shown in Section 5.5 still returns zero count result as expected. In
these two experiments, we apply irrelevant DSAL aspects to the models, i.e. the Java
elements related aspect applied to the RERS grammar and the RERS elements related
aspect applied to the Java grammar, without any compilation or weaving error. These
two experiments show the potential of safely reusing the DSAL aspects to any model

(of the target domain).

The above experiments are just preliminary exploration that the aspect reusing attempts
will not bring side effect to the unrelated models. The following test applies the aspects
with only the elements shared by all models. In detail, we prepare two aspects for the
RERS and Java models. The first aspect is to count the “shift” actions in parsing a
given program. The second aspect is to count the tokens in a given program. Since for
each “shift” action by the CUP generated parser, there must be a token that has been
parsed. Theoretically, the results of these two counting aspect should always be identical
in the application to each model. This also helps to verify the aspect application results.

The “shift” action counter aspect is shown in Listing 6.11.

package cup.Java;

public aspect CodeMetrics {
int shift_action_count=0;
pointcut shift_action_counter=}AfterShift;
before : shift_action_counter () {

shift_action_count++;



Chapter 6 DSCG Extension for CUP 155

pointcut summary=YBeforeMainExit;
after : summary () {
System.out.println("shift_action_count: "+
shift_action_count) ;

¥

LisTING 6.11: The DSAL aspect of counting the “shift” actions in the parsing process

We apply this aspect to the RERS model and parse the sample RERS program shown in
Listing 5.25. The counting works fine and the result shows there are 110 “shift” actions

occurred in parsing the program. The token counter aspect is as shown in Listing 6.12.

package cup.Java;

public aspect CodeMetrics {
int token_count=0;
pointcut token_counter=after (#);
before : token_counter () {

token_count ++;

pointcut summary=%BeforeMainExit;
after : summary () {

System.out.println("token_count: "+token_count) ;

LISTING 6.12: The DSAL aspect of counting tokens in the parsing process

As expected, the result of token counting in the sample RERS program is also 110, which
agrees with the “shift” action counting result. We then apply the “shift” action counter
aspect to the Java model and parse the testJavaProg. java. The counting works well
as well, and shows that there are 480 “shift” actions in parsing the testJavaProg. java.

Again, we use the token counter aspect to verify the result. The result is also 480.

In the above experiments, although the models contain different elements, they are
defined in the same DSL, i.e. they share the same domain meta-model, which gives the

common ground of reusing the aspects written in the DSAL generated in our approach.






Chapter 7

Evaluation

So far we have demonstrated our DSCG extension approach with three different case
studies based on real-world DSCG scenarios. From these case studies, we can see that
this approach allows dynamic generation of DSALSs, according to the target DSCG and
the modification requirements. With the DSALs, domain experts can write domain
specific aspect to describe the changes they want, in which they can use both the do-
main specific elements and the output language statements. These aspects can then
be automatically woven into the code generated from the base models to complete the
modification process. In this chapter, we evaluate our approach through its comparison
with three alternative approaches, including the direct manual modification approach,
the model round-trip engineering approach, and the pure model based approach. In our

evaluation, we focus on four criteria, applicability, reliability, productivity, and reusabil-

ity.

7.1 Applicability

To evaluate a code modification approach, a criteria that naturally springs to mind may
be its applicability, i.e. its usefulness in accommodating different changes. In particu-
lar, we are interested in two questions, what kind of changes can be introduced to the

generated code? and how are they described?.

7.1.1 The Direct Manual Modification Approach

The Direct Manual Modification (DMM) approach might be the most expressive ap-
proach, with regard to the possible changes it can introduce to the generated code.
Since the changes can be made directly in certain programming languages, i.e. the out-
put languages of the domain specific code generators, this approach theoretically allows

any change to be introduced to the base code, as long as the change does not break its
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compilation or interpretation. In other words, the only constraint of introducing changes

in this approach is the syntactical and semantical rules of the output languages.

On the other hand, this approach often lacks high-level formal descriptions of the code
changes it accommodates, in respect of their purposes and impacts. Such succinct de-
scriptions are particularly important given the context of DSCG, where the high-level
models are considered as primary products and the generated code is taken as the low-
level representation of the models. Having to understand changes through their low-level
descriptions is a hindrance to the MDE development. Since the manual changes are de-
scribed directly in certain programming languages, it can be rather difficult for domain
experts, or even programmers other than the code changers themselves, to understand
the changes or to evaluate their influence. Although the changes are sometimes supple-
mented with extra descriptions for better understanding, like comments or documents,
such additional information normally does not coheres well with the changes themselves.
For example, the adjust in code changes cannot automatically update their correspond-

ing documents, or vice verse.

7.1.2 The Model Round-Trip Engineering Approach

In the Model Round-Trip Engineering (MRTE) approach, an MRTE system is built to
reverse the DSCG process. In detail, an MRTE system mainly consists of a detector
to detect any inconsistency between the models and the code, and a model restorer,
that can generate models from the modified code. This reverse transformation and the
target DSCG transformation constitute the complete transformation “round-trip”. In
this round-trip, the changes can be made either at the model level using the target
Domain Specific Languages (DSLs), or at the code level using the output languages of
the domain specific code generators. However, any change that can be made in this
approach must be reflexible in the base models. No matter what technique enables the
round-trip, if the change made at the code level cannot be reflected at the model level, the
round-trip will break. Even if the inconsistency between model and code can somehow
be detected, the base models would remain unchanged. As a result, the changes that
can be introduced to the base code in this approach are actually restricted by the target
domain DSLs. In this approach, since the changes are introduced through an incremental
round-trip process, there are always two descriptions for a single modification, a high-

level description at the model level, and a low-level description at the code level.

7.1.3 The Pure Model Based Approach

In this approach, the changes need to be made directly to the base models, and then
get reflected in the code through a regeneration from the modified models. The code

changes that can be made in this approach are restricted by both the target DSLs
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and the internal implementation of the DSCG code generators, e.g. the string templates
used in the ANTLR parser generator. In other words, this approach does not allow any
change that cannot be expressed by the target DSL, or cannot be generated by the target
code generator. Although we can extend the DSLs and/or the code generators to make
them more expressive, the allowed changes are still restricted by the extended DSLs
and/or the extended code generators. Despite the restrictions from the DSLs and the
code generators, the pure model based approach guarantees that all changes that can be

introduced to the base code have formal description at higher level of abstraction, i.e. in
DSLs.

7.1.4 The DSCG Extension Approach

In our DSCG extension approach, the changes are described in DSALSs and automatically
woven into the base code by the corresponding aspect weavers. The changes that can
be introduced in this approach are restricted by the DSALs and their underlying aspect
weavers. This seems to be the same level of restrictions that applied in the pure model
based approach. But in fact, our approach is much more flexible in describing the

changes, and thus is capable of accommodating more potential changes.

First, the DSALs generated in this approach allow the expected modifications to be de-
scribed with the elements from both high-level, i.e. the model level, and low-level, i.e. the
code level, at the same time. For example, the DSAL generated in our “AUTOFILTER”
case study allows the variables of the base models to be directly used in the statements
of the output C programming language (as shown in Listing 4.22). It is worth noting
that this is different from the case in the MRTE approach, where a modification can be
described either completely at the model level or completely at the code level. Being
capable of using the elements from both the model level and the code level at the same

time makes it possible to describe the expected modifications in a more natural way.

Second, as the DSALs and their aspect weavers used in our approach are dynamically
generated according to the change requirements, our approach has the potential of cus-
tomizing them before they are used to describe and accommodate the expected modifi-
cations. Although the “acceptable” modifications in this approach are restricted by the
DSALSs and their weavers, such restrictions can potentially be removed on demand. This
is different from the restrictions caused by the fixed DSLs used in the pure model based
approach. Take our “AspectRERS” experiment in the ANTLR case study for example,
if there is a need to monitor the complicated LTL formula based on complex “cflow_pat-
tern” patterns, our approach allows adjust of the DSAL generation to include this new
pattern, so that the newly generated “AspectRERS” will support the “cflowPattern”

pointcut. Thus the same change can now be introduced with the new “AspectRERS”.

In short, the modifications that can be accommodated in this approach are restricted
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by the dynamically generated DSALs and their weavers. For each modification in this

approach, there is a formal description conforming to the generated DSAL.

7.2 Reliability

Our major research objective is that our approach should maintain the benefits of DSCG,
which basically include the reliability and productivity. The reliability of DSCG mainly
refers to the correctness of the generated code, which largely comes from the “correct-
by-construction” guarantee provided by the domain specific code generator. In our
evaluation, we look into the general steps involved in the code modification process
following each approach, and analyze their effect on the correctness of the modified code.
The correctness here does not only refer to the syntactical and the semantical correctness
that are generally expected in the generated code, but also include the conformance with

the original domain meta-models.

7.2.1 The Direct Manual Modification Approach

In DSCG, there is often great abstraction gap between the DSLs and the output pro-
gramming languages. A fragile synchronization between the models and the code is
maintained by the DSCG process, to guarantee the correctness of the code. A direct
manual modification would break such synchronization and leave the modified code with
no correctness guarantee, not to mention the fact that a manual modification itself is
often tedious and error-prone. For example, the generated code may contain a lot of
code-generator-specific details that cannot be easily understood, such as the magic num-
bers we see in the variable names in the code generated by AUTOFILTER. In short,
there is no guarantee of the correctness of the code that updated through a direct manual

modification.

7.2.2 The Model Round-Trip Engineering Approach

The changes can be introduced in two ways in the MRTE approach. The first way is to
modify the base model directly, which would be automatically detected by the round-
trip engineering framework and then re-trigger the DSCG process to keep the code
consistent, or synchronized, with the modified model. We can take this modification
process as “reliable”, provided the DSCG code generators remain unchanged. If the
code generators have been modified, e.g. to generate model traceability links during the
DSCG process, the correctness of the modified code would depend on the effect of the

code generator customization over the DSCG process.
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The second way is to modify the generated code, which would also be detected by the
round-trip engineering framework and then compute a corresponding model by the model
restorer. Unfortunately, the development of the model restorers or the detectors of mode-
code inconsistency is usually on ad hoc basis. There lacks the general or standardized
criteria to detect or maintain the inconsistency between the domain specific models and
the generated code. In brief, the reliability of this approach depends on the MRTE

systems built on ad hoc basis.

7.2.3 The Pure Model Based Approach

In the pure model based approach, if the expected modifications do not require an
update of the DSLs or the code generators, the “correct-by-construction” guarantee
will be maintained, which ensures the correctness of the modified code. However, if an
update of the DSLs or the code generators is required, the correctness of the modified

code relies on the effect of the code generator customization over the DSCG process.

7.2.4 The DSCG Extension Approach

Through the generation of DSALs and their aspect weavers, the DSCG extension ap-
proach essentially extends the original DSLs at both the domain meta-model level (by
the DSALs) and the code level (by the DSAL weavers). The correctness of the code
modified in this approach relies on the correctness of the DSAL aspects, and that of the
generated DSALs and their aspect weavers. In our evaluation, we simply assume the
DSAL aspects are always written correctly, and thus only focus on the correctness of
the generated DSALs and their weavers. In the previous case studies, we can see that
both the DSALSs and their weavers are generated based on the domain meta-models from

mainly five aspects.

First, the target domain meta-models, i.e. the original DSLs, are tailored according to
the modification requirements into the effective meta-models, which can be regarded as a
transient extension of the DSLs within the modification systems built in our approach.
Second, the effective meta-models are composed with the tracing strategies to create
the traceable domain meta-models. This process can largely be automated, except that
the selection of the tracing strategies requires insight of the code generators, so that
the generation of the model tracing sentinels will not break the conformance of the
generated code with the original domain meta-models. Third, the traceable domain
meta-models serve as the formal guides to customize the code generators to enable the
model traceability in the generated code. Although this is a manual process and its
reliability is difficult to be evaluated, we can ensure that the code generated by the
customized code generators still conforms to the original DSLs, provided the compliance

with the traceable domain meta-models could be achieved in the customization process.
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Fourth, the traceable domain meta-models also serve as the guides to implement the
DSAL aspect weavers. From the perspective of the entire MDE tool chain involved in
this approach, the traceable domain meta-models can be regarded as a protocol between
the code generators and the corresponding aspect weavers. The code generators are
responsible to enable the model traceability in the generate code in compliance with the
protocol, and the aspect weavers interpret the generated code based on the compliance
of the same protocol, to weave the DSAL aspect correctly into the code to complete
the modification. Last, the compliance of the traceable domain meta-model can only
guarantee the construction and interpretation of the model tracing infrastructure. The
correctness of the DSAL aspect weaving also depends on the join point model of the
generated DSAL. In our approach, the composition of the effective meta-model and the

DSAL specification templates serves as the domain specific join point models.

In short, the reliability of our DSCG extension approach depends on the correct deriva-
tion of the target domain effective meta-models and the correct generation of the trace-
able domain meta-models, as they serve as the formal guide in the construction of the
DSAL based modification systems. Provided their correctness can be guaranteed, we

can ensure the correctness of the code modified by the DSAL aspect weaving process.

7.3 Productivity

To modify the code generated by DSCG is a very special scenario in the MDE context. A
basic principle in MDE is that the models are the core products instead of the code. The
code is supposed to be lower-level representations of the corresponding models. There
is no need to maintain an injective function between the models and the code. There-
fore, a change aiming at code level modification should be maintained independently
from the primary product in MDE, i.e. the domain specific models. In other words,
the code should be able to remain independent and to revert an applied change under
the modification system if needed. From this perspective, the productivity of a DSCG
code modification system is not only reflected in the effort required in introducing the
changes, but also reflected in the effort required in reverting them. In our evaluation,
we will take both into consideration. Besides, as the construction of the modification
system itself is the prerequisite of the modification process, we will also take the effort

it entails into consideration.

Strictly speaking, the productivity evaluation should be based on quantitative analysis
over the general steps involved in the modification process following a certain approach.
However, it is quite difficult to get accurate data in our evaluation. With regard to the
different DSCG contexts, e.g. different DSLs and output languages, it is difficult to define
a general benchmark system to assess the complexity or workload of the modification

requirements. The implementors with different knowledge bases and skill sets may also
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lead to quite different cost for the same task. Therefore, our evaluation is based on
rather loose estimation of the possible effort involved in the modification process in each

approach.

7.3.1 The Direct Manual Modification Approach

For simply changes, the DMM approach seems very cost-effective, as it does not require
any extra cost for building a modification system. Even for some experiments in our
case studies, this approach could be more productive than our DSCG extension approach
in accommodating the expected changes. However, there are three restrictions in this
approach. First, manual effort may not be trivial even for simple changes, e.g. when the
code blocks that need to be changed are scattered throughout the code. Adding code for
tracking the update of the state vector in our AUTOFILTER experiment is exactly an
example of this situation. This modification requires manual changes in the generated
code at every poin that the state vector value may be updated, to insert duplicate code
for monitoring purpose. Second, no matter how tiny the manual change is, it would break
the synchronization between the models and the code. Even if we do not consider the
maintenance of such synchronization, with more and more manual changes accumulated
in the generated code, the code would become more and more “deviated” from the base
models, thus difficult to understand, not to mention its maintenance. Third, the effort
of introducing multiple manual changes is accumulated in a linear way, even if they
are very similar to each other. Besides, this approach does not support reverting the

modifications, unless with the help of external tools for version control, such as git [142],

7.3.2 The Model Round-Trip Engineering Approach

In this approach, considerable effort is used to develop an MRTE system, so that the
code modifications can be propagated back to the base models. However, even with
such a system properly built, the effort in introducing a code level change would not be
evidently reduced. On the contrary, extra processes like the detection of the model-code
inconsistency and model restoration have to be finished before the modification is done.
These processes are introduced merely to maintain the synchronization between the
base models and the code. In short, the code level modification made in this approach
generally takes more time and effort than using the DMM approach. Similar to the DMM
approach, the MRTE approach does not support reverting the applied modifications,

unless with the help of external version control tools.
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7.3.3 The Pure Model Based Approach

In the pure model based approach, if the changes can be expressed by the original DSLs,
they can be introduced to the base code by modifying the models and automatically re-
generating the code through DSCG. With the description at more abstract level and
automated code modification, the cost of introducing a single modification in this ap-
proach is generally lower than the cost of the direct code modification, i.e. both the DMM
approach and the MRTE approach. However, if the expected modifications require ex-
tension of the DSLs and/or the customization of the domain specific code generators,
the cost would be again difficult to assess, due to the dependency of the implementors’
expertise in the target domain meta-models and the code generators. Worse still, the
extension of the DSLs and the code generators in this approach is normally introduced
on ad hoc basis. It can be very simple, like adding a new property to an existing class
in the domain meta-model, or rather complex, such as a thorough refactoring of the
domain meta-model. Therefore, the effort and cost involved in the extension in this
approach may vary greatly. Once the extension of the DSLs and the code generation is
finished, the cost of a single modification is supposed to be generally lower than that in

the above two approaches.

7.3.4 The DSCG Extension Approach

In the DSCG extension approach, the generated DSALs and their aspect weavers are
the actual tools to introduce modifications. As we elaborated in Chapter 3, their gen-
eration is based on the model traceability in the generated code, to trace the domain
elements included in the effective meta-models. To enable this model traceability, the
code generators are often required to be modified. This process can be decomposed into
four main tasks. The first task is the generation of the effective meta-models, including
the modification requirement analysis. The second task is the modification of the code
generators. The third task is the study and application of the underlying implemen-
tation technologies, e.g. to build the DSAL aspect weavers. The last task is to write
different DSAL aspects representing the expected changes, apply them to the generated
code, and test the modified code accordingly.

Here we show a table containing the time log of our DSCG extension experiments.
Although these are not experimental data, they can serve as a guide for estimating the

effort involved.

It is worth noting that we started as first-time user at the beginning of each case studies.
The tasks listed above may take much less amount of time for the developers experienced
in the specific area. For example, we spent four weeks on the implementation in the

CUP case study. Over 80% of the time was spent on learning the underlying techniques.
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AutoFilter ANTLR CUP
Effective 10 days 6 days 8 days
Meta-Model
Generation
Code Genera- | 4 days on modifica- | 6 days on modifica- | 4 days on modifica-
tor Modifica- | tion & 6 days on bug | tion & 5 days on bug | tion & 3 days on bug
tion fixing fixing fixing
Implementation| SDF & Stratego/XT | ANTLR & LL(*) & | CUP & LALR (4
Techniques (3 weeks) StringTemplate (4 | weeks)
weeks)

Aspect Tests 5 days 3 days 6 days

TABLE 7.1: The time log of our experiments

It is very likely that the implementors experienced in this area can reduce the time for

this task significantly.

In brief, there is considerable effort involved in the DSCG extension process, including
the generation of DSALs and their weavers, and the modification of the code gener-
ators. However, with regard to the possibility of requiring accommodation of further
modifications that can be expressed by the generated DSALs, the cost of introducing
a single modification can be greatly reduced by writing with the generated DSALs and
weaving the aspects automatically by the corresponding aspect weavers. In a sentence,
the considerable modification system construction effort may pay back well in the long

run, provided there will be similar changes to accommodate.

7.4 Reusability

“Reusability is a measure of the ease with which those previous concepts and objects can
be used in the new situation.” [143] There are three main artifacts involved in the modifi-
cation of the generated code, the modification systems, the modifications accommodated
with them, and the base models/code to be modified. Accordingly, we can evaluate the
reusability at three different levels. First, we can evaluate the reusability of a single mod-
ification. Some modifications may aim at the model level changes, e.g. change the value
of a specific variable in the models. This kind of changes are naturally not supposed to
be reused for other models. Some other modifications may aim at the meta-model level
changes, e.g. change the value of all variables of a specific domain class in the models.
Ideally, this kind of modifications should be able to be reused to the code generated from
other models using the same code generator. In our following discussion about modi-
fication reuse, we always refer to this kind of modifications. Second, we can evaluate
the reusability of the modification systems, i.e. more modifications can be introduced to

the code generated from more models through the same modification system. As such
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systems normally involve considerable effort to build, it is very important that their
“once-for-all” cost can be “shared” by more and more further modifications. Last, we
can evaluate the reusability of the modified models/code. Strictly speaking, it should be
the reusability of the existing MDE tool chain, as both of the modified models and code
should still be able to reuse the existing MDE tool chain. More precisely, if the code
got updated during the modification process, it should remain “synchronized” to the
base models. If the models got updated during the modification process, they should
still conform to the original DSLs after the modification. This level of reusability is
even more important than the previous two levels, as it is the basis of maintaining the
benefits of DSCG after the modifications.

7.4.1 The Direct Manual Modification Approach

The modifications introduced in this approach basically exist as code patches. It is
usually difficult to apply the same patch, even if they aimed at the domain meta-model
level changes, to the code generated from different models. As there is not a modification
system involved, this approach does not have reusability at the modification system level.
This can explain the linear growth in the time cost of introducing multiple changes in
this approach. Worse still, the modified code is no longer synchronized with the base

models. In brief, the reusability of the DMM approach is very poor.

7.4.2 The Model Round-Trip Engineering Approach

Similar to the case of the DMM approach, the modifications in the MRTE approach also
exist as patches. The difference is that for each modification in the MRTE approach,
there are two patches, a model patch and a code patch. Theoretically, their modifica-
tion effect to the base models/code should be identical. Similarly, these modifications
cannot be reused on different models. As for the modification system reuse, as long as
the expected modification can be reflected by the DSLs, they can be accommodated by
reusing the MRTE systems. After the modification, the modified code remains “syn-
chronized” with the updated base models, and the updated base models still conform
to the original domain meta-model, i.e. the DSLs. In short, this approach supports the

reuse of the modification system, and maintains the existing MDE tool chain.

7.4.3 The Pure Model Based Approach

The modifications in this approach exist as the patches of models, which are generally
written in terms of model specific descriptions. As a result, they cannot be reused to
other models in the same DSLs, even if they aim at only the domain meta-model level

changes. For example, if the modification requirement is to change the value of a specific
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property p of ALL instances of a target domain class C, and there are two instances of
class C in model My (c1,¢p), and three instances of C in model My (c3,ca,¢s5). A model
patch for M; would look like c¢1.p = new_valuel; co.p = new_value2;. Obviously, it cannot
be reused by My. As for the modification system reuse, as long as a modification can
be expressed by the current DSL, they can reuse the DSL and the corresponding code
generator. Finally, with regard to the reuse of the existing tool chain, it basically
depends on the compatibility of the DSLs. If the extended DSL is not compatible with
the original DSL, neither the modified models nor the regenerated code can reuse the

existing MDE tool chain that still in conformance of the original DSL.

7.4.4 The DSCG Extension Approach

From our case studies, we can observe the reusability in our approach at all three levels

mentioned above.

Reuse of The Aspects In Section 6.4, we illustrate that DSAL aspects can be
safely reused to different domain models, or more precisely, the code generated from
them by the customized code generators, as long as they conform to the same domain
meta-model. By “safely”, we refer to the effect of applying the aspects. When the
generated code contains the join points described by the PCDs in the aspects, the
woven code should contain the expected modifications described in the aspects. When
the generated code does not contain any join point involved in the aspects, the aspect
weaving process ought to have no effect on the generated code, either by directly failing
or resulting in no change to the generated code. In brief, our DSALSs allow reusing DSAL
aspects among different models conforming to the same domain meta-model. Take our
experiments with “AspectRERS” for example, a pointcut after(: 4) can be reused to
pinpoint the parsing exit of the fourth alternative of any production rule, to any model
written in the RERS language. It is worth noting that our DSALs simply make this
level of reusability possible, not guarantee it. In the same “AspectRERS” example, if we
write the aspect with a number of model-specific pointcuts, such as after(@Qtemporal : 4)

and after(@output : 4), the aspect still cannot be reused by other models.

Reuse of The DSALs As modification tools, the DSALs and the corresponding
weavers are generated to be reused for accommodating any modification that can be
expressed by the DSALs. We can observe many reuses of the generated DSALs in our
experiments. For example, we can reuse the AspectJava to write and apply both the “If
Predicate Checker” aspect and the “LOC Counter” aspect.

Reuse of The MDE Tool Chain Throughout the modification process in the

DSCG extension approach, the base models are regarded as the only core product and
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remain unchanged. The code generated from them is taken as a corresponding rep-
resentation of the models at the lower-level. To enable the model traceability in the
code, this approach requires modification of the code generators, so that the traceabil-
ity links, i.e. sentinels, can be properly inserted into the code by regeneration using the
modified generators. This also maintains the “synchronization” between the models and
the code. The unchanged base models and the regenerated code constitute the basis of
further modifications through the DSAL aspects. In the further modifications, for each
DSAL aspect, there will be a version of modified code, while the base code is always the
regenerated code. In other words, the modified code is in fact synchronized with the
DSAL aspect, instead of the regenerated code. This relationship is shown in the lower
half of Figure 1.7. In brief, our DSCG extension approach maintain a synchronization
parameterized by DSAL aspects between the base models and the modified code. From
this perspective, the unchanged models, the regenerated code, and the modified code

can be selectively used for reusing the existing MDE tool chain in different scenarios.

7.4.5 Summary

The results of the above comparison can be summarized into a few points as shown in

Table 7.4.5.

From the above comparison table, we can see that every modification approach, except
for the DMM approach, builds a reusable modification system on top of the target
DSCG process, although the initial purpose might be to accommodate only a single
modification of the code generated from a specific model. Without such a modification
system, e.g. as the case of the DMM approach, although a direct manual modification of
the generated code seems to be made in a prompt way, the cost is much greater than the
gain. First, it breaks the synchronization between the models and the code, which entails
the expiration of the “correct-by-construction” guarantee. Second, such modifications on
ad hoc basis lose the systematicness of the modification process. This makes the process
difficult to be standardized and automated, and finally damages the productivity of the
complete MDE tool chain. This is the reason why our DSCG extension approach still

constructs a complex DSCG extension system, despite its considerable cost.

It is not difficult to understand that these modification systems are essentially extensions
of the DSLs in the target DSCG. As the expected modifications cannot be expressed by
the DSLs in the first place, the DSLs have to be somehow extended to be able to describe
the modifications. The PMB approach adopts a direct way to update the DSLs, which
sometimes would lead to the compatibility problems. The MRTE approach implements
the DSL extension indirectly using a MRTE system based on reverse engineering. Both
approaches involve a code update and a model update in a single modification process.
Our DSCG extension approach extends the DSLs indirectly and enhance them with the

aspect-oriented perspective. Compared with the other two approaches, this extension
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The DMM Ap- | The MRTE | The PMB Ap- | The DSCG
proach Approach proach Extension

Approach
Applicability| any compilable | restricted by | restricted by | restricted by
change DSL DSL DSAL
Reliability no guarantee depend on the | depend on the | depend on: 1.
MRTE systems | extension of | the modifica-
built on ad hoc | DSLs and the | tion of the code
basis code generators | generator 2.
the generation
of the DSALs
and weavers
(both are based
on the domain
meta-models)
Productivity | low cost for | considerable uncertain cost | considerable
simple modifi- | cost in build- | in the exten- | cost in building
cation, linear | ing MRTE | sion of the | DSCG exten-
cost growth | system, gen- | DSLs and code | sion, similar
for multiple | erally  higher | generators, cost in single
modifications cost in single | generally lower | modification
modification cost in single | as the PMB
than the DMM | modification approach
approach than both
the DMM
and MRTE
approach
Reusability | poor modification modification the modifica-
not reusable not reusable, | tion, modifi-
potentially cation system,
break the exist- | and the exist-
ing MDE tool | ing MDE tool
chain chain are all
reusable
TABLE 7.2: Comparison table of alternative approaches for code modification in the

DSCG context.

seems more complicated, as it proposes a three-step modification process, which includes

a DSAL aspect creation, a regeneration of the base code using the modified code gen-

erator, and a composition of the regenerated code and the DSAL aspect. However, the

extra complexity in our approach brings about additional advantages.

First, the DSAL brings about extra expressiveness in the description of the expected

modifications, in terms of the aspect-oriented perspective and the finer-grained descrip-

tors, i.e. the statements in the lower-level output languages.

Second, the base code

regeneration makes the base code more extensible by the insertion of the traceability

links, i.e. the sentinels, while it maintains the conformance of the base code to the origi-
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nal DSLs. This regeneration step can be regarded as a trade-off between the reusability
of the target DSCG and its extensibility, and the regenerated code is the prerequisite of
the DSAL aspect weaving process. It is worth noting that the customization of the code
generators in our approach is essentially different from that in the PMB approach. The
customization of the code generators in the PMB approach aims at supporting a spe-
cific kind of modifications, while the customization of the code generators in the DSCG
extension approach aims at the extensibility of the generated code. With the sentinels
inserted in the generated code, different DSALs can be created for different kinds of

modifications.

It is worth noting that the function of these modification systems is not just to make it
possible to introduce the previously inexpressible changes to the generated code. More
importantly, they serve as an adapter to the existing MDE tool chain, so that the
modifications accommodated through them can be accepted and reused by the existing
MDE tool chains. The protocol of this adaptation is exactly the domain meta-models
of the target DSCG. In other words, both the modifications and the base models/code
have to conform to the same domain meta-model. This is the root reason why all
three approaches, including our approach, focus on the domain meta-models. In our
DSCG approach, the “protocol” meta-models are referred to as the domain effective

meta-models.

On the other hand, there are some limitations in our approach. One major limitation
is insufficient automation. In the modification process following our approach, there
are several steps may require human interactions. For instance, the composition of the
effective meta-models and the DSAL templates often need manual effort to finish the
DSAL generation process. Another limitation in our approach is the gap between the
guide of the code generator customization, i.e. the traceable domain meta-models, and
the actual customization of the code generators. We will discuss about a recent work in

Section 8.2.1 that seems promising to bridge this gap.

In summary, we can see that our meta-model based DSCG extension approach guar-
antees the reliability and reasonable productivity of the target DSCG process and the
DSAL based modification process. Despite a few restrictions, this approach basically
achieves our primary research objective in this thesis, namely to maintain the benefits
of the DSCG when introducing the code modifications.

7.5 Other Related Works

Apart from the three alternative approaches we have compared so far, there are a few

more related works that worth discussion.
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7.5.1 Composition of Model Transformations

As Tisi et al. [144] argued, model transformation technologies have reached the level of
maturity that model transformations can now be treated as objects. As a result, model
transformations become first-class elements of the model based software systems, just
like models. To address increasingly complex application that require direct manipula-
tions of model transformation as objects, the concept of Higher-Order Transformation
(HOT) is defined to refer to a model transformation whose input and/or output mod-
els are model transformation objects. As discussed in Seciont 2.4.3, both the DSCG
process and the aspect weaving process, i.e. the composition of code and aspect, can be
considered as model transformations. From this perspective, an extension of the DSCG
process with aspect oriented approaches can be considered as a HOT that composes
these two model transformation objects. Kurtev et al. [145] demonstrated the feasibility
of HOT implementations with similar transformations. Their experiments are based on
the ATLAS Model Management Architecture (AMMA) framework. It contains a mature
implementation of the ATL Transformation Language (ATL), which follows the OMG
QVT standard [146]. Within AMMA, a DSCG can be defined as an ATL transforma-
tion model, with its domain meta-models specified with the Gruber’s definition [147].
Unfortunately, this framework does not support aspect-weaving based transformation.

Thus it cannot help us to build the DSCG extension system.

7.5.2 Meta-Programming in DSAL

Although the DSALSs in our approach are dynamically generated with regard to the
given modification requirements, it is difficult to foresee all the potentially related mod-
ification requirements and take them into consideration during the generation of the
DSALs. Once the DSALs have been generated, their syntax and semantics are fixed.
If any further modification requirement is restricted by the current DSALs, the only
way to accommodate the modification is to regenerate the DSALs. Regarding the high
cost in the generation of the DSALs and their aspect weavers, it could be much easier
if the DSAL aspect writers can tailor the language semantics in a modification specific
manner. For example, when several pieces of advice need to be applied to the same join
point, different orders of application may lead to different results or even conflicts. This
is a typical issue in the aspect interaction [148], and there are several conflict resolution
approaches to specify the order of advice execution [148, 149]. Meta-Aspect Protocol
(MAP) is an extension built on top of the Groovy [150] Meta-Object Protocol, to re-
alize the aspect languages implemented by the Pluggable and OPen Aspect RunTime
(POPART) runtime. Dinkelaker et al. [151] implemented an extensible advice ordering
mechanism with the MAP, which can be adapted at runtime to resolve the aspect inter-
action problems. Although such aspect language extension system has specific technical

dependency (the POPART runtime), it shows a possible extension of our approach for



172 Chapter 7 Evaluation

better reusability of the generated DSALs. It is worth noting that MAJ is only one
potential extension of the generated DSALs. There are a lot more possible extensions
can be made to the DSALS to improve the reusability, e.g. the XML based framed aspect
technique [152].



Chapter 8

Conclusion and Future Works

In the previous chapter, we evaluate our meta-model based DSCG extension approach
through its comparison with three alternative approaches, in terms of its applicability,
reliability, productivity and reusability. In the final chapter, we conclude all our work

and list some further works that can be done to refine or extend our approach.

8.1 Conclusion

Model based software engineering approaches raise the abstraction level of software de-
velopment from code to models. In particular, the Domain Specific Code Generation
(DSCG) technique allows the domain experts to develop reliable software by directly
building the domain specific models, and bridges the big gap between domain specific
modelling level and code level, by automatically transforming domain specific models
into code with a “correct-by-construction” guarantee. Compared with the traditional
software development, it brings about many benefits in productivity and reliability. Un-
fortunately, such advantages are easily lost in the modification of the generated code.
Traditionally, three approaches are commonly used to introduce changes to the gener-
ated code, i.e. the Direct Manual Modification (DMM) approach, the Model Round-Trip
Engineering (MRTE) approach, and the Pure Model Based (PMB) approach. From

these approaches, we identified three specific problems.

1. The changes that cannot be reflected in the models require adding unnecessary
details into the modelling languages, which can lead to a breakdown of the ab-

straction hierarchy.

2. Enforcing a surjective or even bijective function between the models and the code

deviates from the nature of the model based software engineering.
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3. The existing approaches may lose track of the software when the introduced

changes cannot be reflected in the models.

The primary contribution of this thesis is to propose a meta-model based DSCG exten-
sion approach to address the primary problem of losing the benefits of DSCG in the
modification of the generated code, with regard to the above three specific problems.
Given a target DSCG and certain modification requirements, our approach extends the
DSCG by dynamically generating a Domain Specific Aspect Language (DSAL) and its
aspect weaver, based on the analysis of the modification requirements. Thus the do-
main experts can describe their expected modifications as domain specific aspects in
the generated DSAL, and use the generated aspect weaver to automatically weave the
aspects into the code generated from certain input model, to complete the modification
process. The entire DSCG extension system is constructed based on the meta-models of
the target domain. In particular, an effective meta-model is generated to describe the
domain classes and properties that are involved in the expected modifications. A trace-
able domain meta-model is generated from the effective meta-model to describe how
customize the code generator to enable the model traceability in the generated code,
which is the basis of the domain specific aspect weaving. As the modifications are in
fact accommodated by such meta-model based extension system of the target DSCG,
we call this approach as the “meta-model based DSCG extension approach”, or “DSCG

extension approach” for short.

In our approach, a modification that previous cannot be expressed by the original DSL
can now be described in the dynamically generated DSAL at both model level and code
level, and then woven into the generated code automatically. Throughout the modifi-
cation process, the input model will remain unchanged. The modification is directly
made to the generated code. The modified code does not need to be manipulated to
maintain the synchronization with the input model. Instead, it is synchronized with a
combination of the input model and the DSAL aspect applied to it, which makes more
sense in respect of the principle of MDE. Code is the lower-level representation of the
primary product, i.e. models. A change made to the representation should not affect
the models themselves. This relationship is illustrated in the lower half of Figure 1.7.
With our approach, the version controlling of the software developed with DSCG also
becomes very simple. We only need to track the versions of the models and DSAL as-
pects. The code version can always be calculated through a combination of the model
version and the aspect version. Moreover, the evaluation based on the comparison with
the alternative code modification approaches shows that the DSALs and their weavers
that systematically generated based on the domain meta-models can provide reason-
able guarantee for the reliability and the productivity of the modification process. As
a whole, the meta-model base DSCG extension approach that we propose successfully

achieves our initial research objectives.
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A secondary contribution of our work is to develop a generic approach to generate config-
urable parser enhancement tools for theoretically any programming language. The basic
idea is to apply our DSCG extension approach to the language parser generation process.
By generating DSALS of the language grammar domain, our approach allows configuring
enhancement of the language parsers by writing and applying the corresponding gram-
mar enhancement aspects. By applying such aspects to the parsers generated from the
target language grammars, we generate the parsers with configured enhancements. For
example, we build a DSAL called “AspectJava”’ to extend the ANTLR parser genera-
tion process. As shown in Section 5.6.4, we write an “IfPredicateChecker” aspect and
an “LOCCounter” aspect in “AspectJava’, and respectively weave them into the Java
parser generated from the ANTLR grammer of Java, to generate two different statistics
tools for Java programs, one for logging the “if-only” statements and involved “equality
checks”, the other for counting the Line Of Code (LOC), for any Java program. With
similar aspects, we can conveniently configure a Java parser generated by ANTLR with

many other enhancements, e.g. to measure code metrics like code coverage, etc.

8.2 Future Works

As mentioned in Section 7.4.4, there are still some limitations of our approach. In this
section, we discuss some potential refinements or extensions that can be introduced to

our work.

8.2.1 Guided Customization of Code Generators Using Symbol Table

The recent work by Nazari et al. [153] proposes an approach to manage customizations
of template-based code generators at generation-time by reusing the symbol table [40]
data structure. In particular, we are interested in its discussion about how to manage
the template replacements dynamically at generation-time for a guided customization.
The basic idea is to define some hook points in the code templates. Each hook point
has a unique identity and can be bound with one or more values, which can be either a
string or another template. Thus a template graph is formed through these hook points.
The symbol table is then used as a map of the graph of the hook points and templates.
Each table entry, i.e. a symbol, stores the name, the type, and all essential information of
a model element, which can be a hook point or a template among others. Given a name
and a type, the symbol table can find all associated information of the corresponding

element.

In our approach, we use traceable domain meta-models to guide the customization of
the DSCG code generators to insert sentinels into the corresponding locations in the

generated code, so that the generated DSAL weavers can trace the domain models in
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the code. This process can be regarded as a “guided customization” of the DSCG code
generator. Given a traceable domain meta-model, we can define a symbol table accord-
ingly, with the join point classes as the root symbol elements, and the corresponding
sentinel strings as the string values bound to the underlying hook points. During the
base code regeneration, these symbols are evaluated in the template expansions and help

to generate the corresponding sentinels in the regenerated code.

8.2.2 Generating Better Domain Specific Aspect Language

In our experiments with the ANTLR and CUP generators, we deliberately reuse AspectJ
as the underlying aspect language of the generated DSALs. This decision helps to reduce
the cost in the generation of the DSAL. But it restricts the DSALs with the limitations of
AspectJ. In fact, the DSALSs work like the general purpose aspect languages, in which the
participants are domain specific elements. However, the “real” DSALs should work more
closely with the domain meta-models. Some other “domain specific” content other than
the participated domain elements, such as the domain restrictions, should be reflected in
the DSALs as well. For example, if the value of domain element x should not be modified
in the predict stage, any attempt to update x in the advice binding the pointcuts that
capture the predict stage join points should be detected and alerted. To achieve this, the
“translator+GPAL core” pattern seems not enough. Unfortunately, our investigation
does not find many promising alternatives. The “library+notation” pattern is very
similar to our “translator+GPAL core” pattern, and it has to build its own library
for the domain semantics. The “partial evaluation+reflection” pattern demands the

reflection function, and work best with object oriented programming languages.
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Appendix A

Examples

A.1 Traceability Link Examples

/* <DomainElementTracing type="Action" name="actionl"> */
<code block generated for actionl>
/* </DomainElementTracing type="Action" name="actionl"> */

LisTING A.1: A pair of comments serve as a link to trace domain specific element

“actionl”

Begin_Tracing_actionl ();
<code block generated for actionl>
End_Tracing_actionl ();

LIsTING A.2: A pair of function invocations serve as a link to trace domain specific

element “actionl”

@DomainElementTracing (type="Action" name="actionl")
int tracingBegin;

<code block generated for actionl>
@DomainElementTracing (type="Action" name="actionl")
int tracingEnd;

LisTING A.3: A pair of annotated variable serve as a link to trace domain specific

element “actionl”

<DomainElementTracing type="Action" name="actionl">
<location>
<start_point>
<line_number>10</line_number>
<column_number>10</column_number>

</start_point>
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<end_point>
<line_number>12</line_number>
<column_number>10</column_number>
</end_point>
</location>

</DomainElementTracing>

LISTING A.4: A node inside a standalone XML log file serves as a link to trace domain

specific element “actionl”

A.2 The Automata Example

grammar DFA;

tokens {
DFA = ’DFA’;
ALP = ’Alphabet’;
STA = ’States’;
SST = ’StartState’;
AST = ’AcceptStates’;
TRSN = ’Transition’;
+
INTLITERAL
IntegerNumber
fragment

IntegerNumber

’0°
| 292 ,.,°9> (;O;__19>)*
INTLIST
>{? INTLITERAL (’,’ INTLITERAL)x* ’}’
WHITESPACE : ( >\t”> | >\n”> | > 2> | >\r’> | ’\u000C’ )+ {$

channel = HIDDEN; };

program
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DFA ’{’ alphabet_declaration state_declaration

transition_declaration ’}’ EOF

3

alphabet_declaration
ALP INTLIST ’;°

state_declaration

states_decl start_state_decl accept_states_decl

states_decl
STA INTLIST °’;°

start_state_decl
SST > (’ INTLITERAL )’ ;>

accept_states_decl
AST INTLIST ’;°

transition_declaration

(transition_decl) *

transition_decl

TRSN °(’ INTLITERAL °’,’ INTLITERAL °’,’> INTLITERAL ’)

LisTING A.5: The ANTLR grammar of the “DFA” language

grammar DSAL;

options {
backtrack=true;
memoize=true;

output=template;
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tokens {
NOT = !,
OR = ’117;
AND = ’&&’;
}
WHITESPACE
C°\t”> | ’\n> | > > | °\r’ | ’\u000C’ )+ {$channel =
HIDDEN; }
program
’aspect’ an=IDENTIFIER LBRACE (s+=aspect_statement)+
RBRACE

3

aspect_statement

loc_modifier pd=pcd_decl ad=adv_decl

loc_modifier
’before’

| ‘after’

pcd_decl
LPAREN df=disflt RPAREN

adv_decl
LBRACE cc=custom_code RBRACE

custom_code
STRINGLITERAL

disflt
c=conflt d=disflt_f
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disflt_f
OR d=disflt

conflt
1=1itflt c=conflt_f£
conflt_f
AND c=conflt
|
litflt

LPAREN d=disflt RPAREN
| af=property_filter
| NOT 1f=1itflt

/% Placeholder: property_filter
* Use: a conditional exzpression of
* the properties of join point class
* Erpansion sample:
* "felter_propertyl operator wvalue_literal”
* Note:
* rule "operator" and "value_literal”
* will be selected according to
* the type of "filter_propertyl”
*/

property_filter

/* Placeholder: filter_property
* Use: the properties of join point class
* Erpansion sample:
* "jp_classl_name COLON propertyl.l_mname"
* "jp_classl_name COLON propertyl.Z2_mname"

* "jp_class2_name COLON propertyl.l_mname"
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*
*/
filter_property

LisTING A.6: The DSAL template selected in the automata example

grammar DSAL;

options {
backtrack=true;
memoize=true;

output=template;

X
tokens {
NOT = 17,
OR = ’117;
AND = ’&&’;
X
WHITESPACE
¢ ’\t” | ’\n’
HIDDEN; }
program
’>aspect’
RBRACE

3

aspect_statement

loc_modifier pd=pcd_decl ad=adv_decl

loc_modifier
’before’

| ‘after’

pcd_decl

J

)

7\I-J

>’\u000C”

)+ {$channel =

an=IDENTIFIER LBRACE (s+=aspect_statement)+
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LPAREN df=disflt RPAREN

adv_decl
LBRACE cc=custom_code RBRACE

custom_code
STRINGLITERAL

disflt
c=conflt d=disflt_f

disflt_f
OR d=disflt

conflt
1=1itflt c=conflt_f£

conflt_f
AND c=conflt

litflt
LPAREN d=disflt RPAREN
| af=property_filter
| NOT 1f=1itflt

/% Placeholder: property_filter
* Use: a conditional exzpression of
* the properties of joinmn point class
* Expansion sample:
* "filter_propertyl operator value_literal”
* Note:
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* rule "operator" and "walue_literal”
* will be selected according to
* the type of "filter_propertyl”
*/
property_filter
filter_propertyl numerical_comparer
| filter_property2 numerical_comparer

| filter_property3 numerical_comparer

/% Placeholder: filter_property
* Use: the properties of join point class
* Expansion sample:
* "jp_classl_name COLON propertyl.l_mname"
* "jp_classl_name COLON propertyl.2_mname"

* "jp_class2_name COLON propertyl.l_mame"

*
*/
filter_propertyl

’Transition’ COLON ’from_state’

filter_property2
’Transition’ COLON ’to_state’

filter_propertyl
>Transition’ COLON ’input’

I

INTLITERAL
INTLITERAL
INTLITERAL

LisTING A.7: The ANTLR grammar of “Aspect DFA” generated by template expansion
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Case Studies

B.1 The AUTOFILTER Case Study

<?xml version="1.0" encoding="utf-8"7>
<xs:schema id="EstimationProblemDomainSchema" =xmlns:xs="
http://www.w3.0rg/2001/XMLSchema">

<l -- <helper_types> -->
<xs:simpleType name="natural_number_type">
<xs:restriction base="xs:integer">
<xs:minInclusive value="1"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="expr_string_type">
<xs:restriction base=“xs:normalizedString"/>

</xs:simpleType>

<xs:simpleType name="name_string_type">
<xs:restriction base="xs:string">

<xs:pattern value="([A-Za-z_])+"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="mean_type">
<xs:choice>
<xs:element name="mean_value" type="double"/>
<xs:element name="mean_vector_name" type="

name_string_type"/>

187
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</xs:choice>

</xs:complexType>

<l --
<xs:complexType name="basic_data_ref_type">
<xs:choice>
<xs:element name="nat_type" type="nat"/>
<xs:element name="type" type="int"/>
<xs:element name="type" type="double"/>
</xs:choice>
</xs:complexType>
-=>
<xs:simpleType name="basic_data_ref_type">
<xs:restriction base="xs:string">
<xs:enumeration value="nat"/>
<xs:enumeration value="int"/>
<xs:enumeration value="double"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="role_type">
<xs:restriction base="xs:string">
<xs:enumeration value="const"/>
<xs:enumeration value="variable"/>
<xs:enumeration value="data"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="basic_domain_element_type">
<xs:choice>
<xs:element name="scalar" type="scalar_type"/>
<xs:element name="vector" type="vector_type"/>
<xs:element name="matrix" type="matrix_type"/>
</xs:choice>
</xs:complexType>
<!-- </helper_types> -->

<xs:simpleType name="nat">
<xs:restriction base="xs:integer">
<xs:minInclusive value="0"/>

</xs:restriction>
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</xs:simpleType>

<xs:simpleType name="int">
<xs:restriction base="xs:integer"/>

</xs:simpleType>

<xs:simpleType name="double">
<xs:restriction base="xs:decimal"/>

</xs:simpleType>

<xs:complexType name="scalar_type">
<xs:sequence>
<xs:element name="role" type="role_type"/>
<xs:element name="name" type="name_string_type"/>
<xs:element name="element_type" type="
basic_data_ref_type"/>
<xs:element name="init_value" type="expr_string_type"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="vector_type">
<xs:sequence>
<xs:element name="role" type="role_type"/>
<xs:element name="name" type="name_string_type"/>
<xs:element name="element_type" type="
basic_data_ref_type"/>
<xs:element name="length" type="natural_number_type"/>
<xs:element name="init_value" type="expr_string_type"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="matrix_type">
<xXs:sequence>
<xs:element name="role" type="role_type"/>
<xs:element name="name" type="name_string_type"/>
<xs:element name="element_type" type="
basic_data_ref_type"/>
<xs:element name="size_1" type="natural_number_type"/>

<xs:element name="size_2" type="natural_number_type"/>
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<xs:element name="init_value" type="expr_string_type"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="vector_with_gaussian_distribution">
<xs:sequence>
<xs:element name="target_vector_name" type="
name_string_type"/>
<xs:element name="mean" type="mean_type"/>
<xs:element name="standard_deviation_vector_name" type
="name_string_type"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="equation_set_type">
<xs:sequence>
<xs:element name="equation" type="expr_string_type"
minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="eqs_model_type">
<xs:sequence>
<xs:element name="name" type="name_string_type"/>
<xs:element name="equation_set" type="
equation_set_type"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="problem_type">
<xs:sequence>
<xs:element name="auxiliary_element" type="
basic_domain_element_type" minOccurs="0" maxOccurs="
unbounded" />
<xs:element name="statistical_variable_declaration"
type="vector_with_gaussian_distribution" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="state_vector" type="vector_type"/>
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<xs:element name="process_noise_vector" type="
vector_type"/>

<xs:element name="process_noise_distribution" type="
vector_with_gaussian_distribution"/>

<xs:element name="process_model" type="eqs_model_type"

/>

<xs:element name="measurement_noise_vector" type="
vector_type"/>

<xs:element name="measurement_noise_distribution" type
="vector_with_gaussian_distribution"/>

<xs:element name="measurement_model" type="

eqs_model_type"/>

<xs:element name="filter" type="filter_type"/>

<xs:element name="estimator" type="estimator_type"/>

</xs:sequence>

<xs:attribute name="name" type="name_string_type" use="
required"/>

</xs:complexType>

<xs:complexType name="filter_type">
<xs:sequence>
<xs:element name="name" type="name_string_type"/>
<xs:element name="output_parameter" type="
basic_domain_element_type" minOccurs="0" maxOccurs="
unbounded" />
</xs:sequence>

</xs:complexType>

<xs:complexType name="estimator_type">
<xs:sequence>
<xs:element name="name" type="name_string_type"/>
<xs:element name="steps" type="natural_number_type"
minOccurs="0" maxOccurs="1"/>
<xs:element name="update_interval" type="double"
minOccurs="0" maxOccurs="1"/>
<xs:element name="timevar" type="name_string_type"

minOccurs="0" max0Occurs="1"/>
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<xs:element name="process_eqs" type="name_string_type"
/>

<xs:element name="measurement_eqs" type="
name_string_type"/>

<xs:element name="initials" type="expr_string_type"/>

<xs:element name="initial_covariance" type="
expr_string_type"/>

</xs:sequence>

</xs:complexType>

<!-- <xs:element name="problem" type="problem_type"/> --
>
</xs:schema>

LisTiNG B.1: The XML schema of the estimation problem domain meta-model

<?xml version="1.0" encoding="utf-8"7>
<xs:schema id="KalmanFilterDomainSchema" xmlns:xs="http://
www.w3.0rg/2001/XMLSchema" >

<xs:include schemalocation="EstimationProblem_Domain.xsd"/

>

<l -- <helper_types> -->
<xs:simpleType name="kalman_filter_type_type">
<xs:restriction base="xs:string">
<xs:enumeration value="standard"/>
<xs:enumeration value="linearized"/>
<xs:enumeration value="extended"/>
</Xs:restriction>

</xs:simpleType>

<xs:simpleType name="stage_type">
<xs:restriction base="xs:string">
<xs:enumeration value="init"/>
<xs:enumeration value="predict"/>
<xs:enumeration value="update"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="scalar_calculation_type">
<xs:sequence>

<xs:element name="scalar" type="scalar_type"/>
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<xs:element name="stage" type="stage_type"/>

<xs:element name="expr" type="expr_string_type"/>

<xs:element name="var_name" type="name_string_type"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="vector_calculation_type">
<xs:sequence>
<xs:element name="vector" type="vector_type"/>
<xs:element name="stage" type="stage_type"/>
<xs:element name="expr" type="expr_string_type"/>
<xs:element name="var_name" type="name_string_type"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="matrix_calculation_type">
<xs:sequence>
<xs:element name="matrix" type="matrix_type"/>
<xs:element name="stage" type="stage_type"/>
<xs:element name="expr" type="expr_string_type"/>
<xs:element name="var_name" type="name_string_type"/>
</xs:sequence>
</xs:complexType>
<!-- </helper_types> -->

<xs:complexType name="kalman_filter_type">
<xs:complexContent>
<xs:extension base="filter_type">
<xs:sequence>

<xs:element name="process_model" type="matrix_type
/>

<xs:element name="control_model" type="matrix_type
" minOccurs="0" maxOccurs="1"/>

<xs:element name="process_noise_covariance" type="
matrix_type"/>

<xs:element name="measurement_noise_covariance"
type="matrix_type"/>

<xs:element name="observation_model" type="
matrix_type"/>

<xs:element name="measurement_vector" type="

vector_type"/>
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<xs:element name="Identity_matrix" type="

matrix_type"/>

<xs:element name="priori_state_estimate" type="
vector_calculation_type"/>
<xs:element name="prior_process_covariance" type="
matrix_calculation_type"/>
<xs:element name="innovation" type="
vector_calculation_type"/>
<xs:element name="innovation_covariance" type="
matrix_calculation_type"/>
<xs:element name="kalman_gain" type="
matrix_calculation_type"/>
<xs:element name="posteriori_state_estimate" type=
"vector_calculation_type"/>
<xs:element name="posterior_process_covariance"
type="matrix_calculation_type"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="solution_type">
<xs:sequence>
<xs:element name="kalman_filter" type="
kalman_filter_type"/>
<xs:element name="kalman_estimator" type="
estimator_type"/>
</xs:sequence>

</xs:complexType>

<! --<xs:element name="solution" type="solution_type"/>-->
</xs:schema>

LIsTING B.2: The meta-model of the solution domain i.e. the Kalman filter domain

<?7xml version="1.0" encoding="utf-8"7>
<xs:schema id="KalmanFilterDomainSchema" xmlns:xs="http://

www.w3.0rg/2001/XMLSchema">

<!-- <helpers> -->
<xs:simpleType name="natural_number">

<xs:restriction base="xs:integer">
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<xs:minInclusive value="1"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="expr_string">
<xs:restriction base="xs:normalizedString"/>

</xs:simpleType>

<xs:simpleType name="name_string">
<xs:restriction base="xs:string">
<xs:pattern value="([A-Za-z_])+"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="basic_data_ref">
<xs:restriction base="xs:string">
<xs:enumeration value="nat"/>
<Xxs:enumeration value="int"/>
<xs:enumeration value="double"/>
</Xxs:restriction>
</xs:simpleType>
<!-- </helpers> -->

<xs:complexType name="Scalar">
<Xs:sequence>
<xs:element name="name" type="name_string"/>
<xs:element name="element" type="basic_data_ref"/>
<xs:element name="init_value" type="expr_string"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="Vector">
<xs:sequence>
<xs:element name="name" type="name_string"/>
<xs:element name="element" type="basic_data_ref"/>
<xs:element name="length" type="natural_number"/>
<xs:element name="init_value" type="expr_string"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>

</xs:complexType >
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<xs:complexType name="Matrix">
<xs:sequence>
<xs:element name="name" type="name_string"/>
<xs:element name="element" type="basic_data_ref"/>
<xs:element name="size_1" type="natural_number"/>
<xs:element name="size_2" type="natural_number"/>
<xs:element name="init_value" type="expr_string"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>

</xs:complexType >

<xs:simpleType name="AlgorithmicParticipantType">
<xs:restriction base="xs:string">
<xs:enumeration value="Scalar"/>
<xs:enumeration value="Vector"/>
<xs:enumeration value="Matrix"/>
</Xxs:restriction>

</xs:simpleType>

<xs:simpleType name="AlgorithmicStage">
<xs:annotation>
<xs:documentation>IJoinInstance</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:enumeration value="init"/>
<xs:enumeration value="predict"/>
<xs:enumeration value="update"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="AlgorithmicParticipant">
<xs:annotation>
<xs:documentation>IJoinInstance</xs:documentation>
</xs:annotation>
<Xs:sequence>
<xs:element name="name" type="name_string"/>
<xs:element name="type" type="
AlgorithmicParticipantType"/>
</xs:sequence>

</xs:complexType >
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</xs:schema>

LisTING B.3: The effective meta-model of the Kalman filter domain

%% Kalman Filter Aspect Language

module KFAL

imports KFCS

exports
sorts CrosscutPatternModifier ReservedString Keyword
APIdentifier PointcutDescriptorName
GenericPointcutDescriptor SpecificPointcutDescriptor
PointcutDescriptorDeclaration AdviceBlock

CustomizationBlock

lexical syntax
"before" ->
CrosscutPatternModifier {cons("before")}
"after" ->
CrosscutPatternModifier {cons("after")}
"around" ->

CrosscutPatternModifier {cons("around")}

"customization" -> ReservedString {

cons("customization")}

ReservedString -> Keyword {cons ("
ReservedString")}
CrosscutPatternModifier -> Keyword {cons ("

CrosscutPatternModifier")}

Keyword -> Identifier {
reject}
"Base" -> Keyword {cons("

BasecodePlaceholder")?}

context-free syntax
"$" AlgorithmicParticipant -> APIdentifier {
cons ("APIdentifier")}
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APIdentifier -> Identifier {cons(
"APApplication")}

Identifier ->
PointcutDescriptorName {cons("PointcutDescriptorName")}
AlgorithmicStage ->

PointcutDescriptorName {reject}

AlgorithmicStage ->
GenericPointcutDescriptor {cons ("
GenericPointcutDescriptor")}

AlgorithmicStage "$" AlgorithmicParticipant ->
SpecificPointcutDescriptor {cons("

SpecificPointcutDescriptor")}

"pointcut" PointcutDescriptorName ":"
GenericPointcutDescriptor ->
PointcutDescriptorDeclaration {cons ("
GenericPointcutDescriptorDeclaration")}

"pointcut" PointcutDescriptorName ":"
SpecificPointcutDescriptor ->
PointcutDescriptorDeclaration {cons ("

SpecificPointcutDescriptorDeclaration")}

CrosscutPatternModifier PointcutDescriptorName " ()" "{"
Statement "};" -> AdviceBlock {cons ("
PointcutNameBasedAdvice")}

CrosscutPatternModifier GenericPointcutDescriptor "()" "

{" Statement "};" -> AdviceBlock {cons("GenericAdvice")
}

CrosscutPatternModifier SpecificPointcutDescriptor "()"
"{" Statement "};" -> AdviceBlock {cons("SpecificAdvice"
)}

"customization" Identifier "{"
PointcutDescriptorDeclaration* AdviceBlockx* "} ->

CustomizationBlock {cons("CustomizationBlock")}

"customization" APIdentifier "{" AdviceBlockx*x "}" ->

CustomizationBlock {reject}
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"Base;" -> Statement

BasecodePlaceholderStatement")}

hiddens

context-free start-symbols CustomizationBlock

Listing B.4: The SDF module of our DSAL template

%% KalmanFilterAlgorithm - effective meta-model
module KalmanFilterAlgorithm
imports Whitespace
exports
sorts Vector Matrix AlgorithmicParticipant
AlgorithmicStage DomainSpecificElement
lexical syntax
" -> ControlVector
" -> StateVector

u
X
tyt -> Innovation
z

" -> MeasurementVector

{cons ("

ControlVector -> Vector

StateVector -> Vector
InnovationVector -> Vector
MeasurementVector -> Vector

"K" -> KalmanGain

"p" -> EstimateCovariance
"s" -> InnovationCovariance
KalmanGain -> Matrix
EstimateCovariance -> Matrix
InnovationCovariance -> Matrix

Vector -> AlgorithmicParticipant

Matrix -> AlgorithmicParticipant
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"init" -> AlgorithmicStage {cons("
init")}

"predict" -> AlgorithmicStage {cons("
predict")}

"update" -> AlgorithmicStage {cons("
update")}

AlgorithmicStage -> DomainSpecificElement

AlgorithmicParticipant -> DomainSpecificElement

LisTiNG B.5: Join point expansion for the KFAL generation

SpecificAdviceApplication(|weavingpattern,algostage,
algoparticipant ,customcode ,participantlist) = 7tmp;!
weavingpattern;

switch id

case equal(|"before") : !tmp;oncebu(
SpecificAdviceApplicationBefore (|algostage,
algoparticipant ,customcode ,participantlist))

case equal(|"after") : !tmp;oncebu(
SpecificAdviceApplicationAfter (|algostage ,algoparticipant
,customcode ,participantlist))

case equal(|"around") : !tmp;oncebu(
SpecificAdviceApplicationAround (|algostage,
algoparticipant ,customcode ,participantlist))

otherwise : fail

end

/* SpecificAdviceApplication helper strategy section
begins. */
SpecificAdviceApplicationBefore (|algostage ,algoparticipant
,customcode ,participantlist)
JoinPointSentinelStatement (JoinPointSentinel (
JoinPointSentinelBeginTag("/*<JoinPoint -Begin",
CommonJoinPointDescription(StageDescription(algostage),
KeyRoleDescription(Participant (algoparticipant, apvarid))
),
"/>x/"), JoinPointSentinelContent (Code),
JoinPointSentinelEndTag (" /*<JoinPoint -End",
CommonJoinPointDescription(StageDescription(algostage),
KeyRoleDescription(Participant (algoparticipant, apvarid))
),
"/>x/"))) ->
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JoinPointSentinelStatement (JoinPointSentinel (
JoinPointSentinelBeginTag("/*<JoinPoint -Begin",

CommonJoinPointDescription(StageDescription(algostage),
KeyRoleDescription(Participant (algoparticipant, apvarid))
),

"/>x/"), JoinPointSentinelContent (mergedcode),
JoinPointSentinelEndTag("/*<JoinPoint-End",

CommonJoinPointDescription(StageDescription(algostage),
KeyRoleDescription(Participant (algoparticipant, apvarid))
),

"/>+/"))) where ctmcode := <ReplaceAPWithVar (|
algoparticipant, apvarid, participantlist, customcode)>
customcode ;mergedcode := <MergeCode (|ctmcode,Code)> Code

LisTING B.6: Stratego rewriting rules supporting before, after and around advice
patterns

/* Code manipulation helper strategy section begins. */
MergeCode (|t1,t2) = <oncebu(?CompoundStat (t251,t2S2) ;!
CompoundStat (CompoundStat (t1,t2S1),t2S52))> t2

MergeCode (|t1,t2) : tl1 -> CompoundStat(tl,t2) where !'t2;
not (oncebu (?CompoundStat (_,_)))

ReplaceSingleAPWithVar (lap, apvar, code) = <innermost (7Id(
APApplication (APIdentifier (ap)));!Id(apvar))> code

ReplaceAPWithVar (|lap, apvar, pl, code) =
tmpcode := <ReplaceApplier> (pl, code); <innermost (?Id(
APApplication (APIdentifier (ap)));!Id(apvar))> tmpcode

ReplaceApplier
([1, code) -> code

ReplaceApplier

([Participant (ap,apvar) | aps], codel) -> code3

where code2 := <ReplaceSingleAPWithVar (|ap, apvar, codel)>
codel;

code3 := <ReplaceApplier>(aps, code2)

StatementExtractor =
collect (not (?CompoundStat (_,_)))
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StatementWrapperHelper
([1, ct) -> ct

StatementWrapperHelper

([xlxs], ctl) -> ct3

where ct2 := CompoundStat(ctl,x);

ct3 := <StatementWrapperHelper> (xs,ct2)

StatementWrapper
[x,ylxs] -> <StatementWrapperHelper> (xs,CompoundStat(x,y)

)

ReplaceBasecodePlaceHolder (| basecode)

customcode -> <StatementWrapper> ctclist where extcode :=
<StatementExtractor> basecode;

ctc := <StatementExtractor> customcode; (befcode,aftcode)
= <split-fetch(?BasecodePlaceholderStatement ())> ctc;

ctclist := <concat>[befcode,extcode,aftcode]

BasecodePlaceholderHandler (| basecode)

customcode -> <ReplaceBasecodePlaceHolder (|basecode)>
customcode where <oncebu(?BasecodePlaceholderStatement ())
> customcode

/* Code manipulation helper strategy section ends. */

LisTING B.7: Stratego rewriting rules replacing domain element names during merging

B.2 The ANTLR Case Study

/ *

[The "BSD licence"]

Copyright (c) 2005-2007 Teremce Parr

All rights reserwved.

Redistribution and use in source and binary forms, with or
without

modification, are permitted provided that the following
conditions

are met:

1. Redistributions of source code must retain the above

copyright
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notice, thtis list of conditions and the following
disclaimer.
2. Redistributions in binary form must reproduce the above
copyright
notice, this list of conditions and the following
disclaimer 1in the
documentation and/or other materials provided with the
distridbution.
3. The name of the author may not be used to endorse or
promote products
derived from this software without specific prior
written permission.
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY
EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (
INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES
; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.
*/
grammar ANTLRv3;

grammarDef

DOC_COMMENT? ( ’lexer’ | ’parser’ | ’tree’ )

tokensSpec
TOKENS tokenSpec+ ’1}°
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tokenSpec
TOKEN_REF ( ’=’ ( STRING_LITERAL | CHAR_LITERAL ) | ) >

attrScope
’scope’ id ACTION

action
@’ ( actionScopeName ’::’ )7 id ACTION

actionScopeName

id | ’lexer’ | ’parser’

optionsSpec
OPTIONS ( optiom ;7 )+ ’}°

id ’=’ optionValue

optionValue

id | STRING_LITERAL | CHAR_LITERAL | INT | s = 2%’
rule_
DOC_COMMENT? ( ( ’protected’ | ’public’ | ’private’ | ’
fragment’ ) )7 id ’!’7? ( ARG_ACTION )? ( ’returns’

ARG_ACTION )? throwsSpec? optionsSpec? ruleScopeSpec?

ruleAction* ’:’ altList ’;’ exceptionGroup?

’

rulelAction
@’ id ACTION
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throwsSpec

>throws’ id ( ’,’ id )=x*

ruleScopeSpec
’scope’ ACTION | ’scope’ id ( ’,’ id )x* ’;°? ’scope’
ACTION ’scope’ id ( 2,2 id )x*x °’;°

b

block
(> ( ( optionsSpec )7 ’:’ )7 alternative rewrite ( ’|?

alternative rewrite )*x )’

altList

alternative rewrite ( ’|’ alternative rewrite )*

alternative

element+

exceptionGroup
( exceptionHandler )+ ( finallyClause )7 |

finallyClause

’

exceptionHandler
>catch’ ARG_ACTION ACTION

finallyClause
>finally’ ACTION

element

elementNoOptionSpec

elementNoOptionSpec
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id ( ’=> | ’+=’ ) atom ( ebnfSuffix ) | id ( ’=’> | ’+=>
) block ( ebnfSuffix ) | atom ( ebnfSuffix ) | ebnf |
ACTION | SEMPRED ( ’=>’ ) | treeSpec ( ebnfSuffix )

’

atom
range ( ( >~> | 212> ) ) | terminal_ | notSet ( ( ’~°°
>12 ) ) | RULE_REF ( ARG_ACTION )7 ( (C 2>~ | 212 ) )7
notSet
>>2 ( notTerminal | block )
treeSpec
>~(? element ( element )+ ’)°
ebnf
blOCk ( 7?7 I 7*7 I )+7 | )=>) )
range

CHAR_LITERAL RANGE CHAR_LITERAL

terminal _
( CHAR_LITERAL | TOKEN_REF ( ARG_ACTION ) |
STRING_LITERAL | 2.2 ) ( >~ | 212 )7

b

notTerminal
CHAR_LITERAL | TOKEN_REF | STRING_LITERAL

ebnfSuffix

7?7 I ) %) | >4

rewrite
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( ’>->° SEMPREDrewrite_alternative )x*x ’->
rewrite_alternative

)

rewrite_alternative

rewrite_template | rewrite_tree_alternative

rewrite_tree_block

>(’ rewrite_tree_alternative ’)°’

rewrite_tree_alternative

rewrite_tree_element+

rewrite_tree_element
rewrite_tree_atom | rewrite_tree_atom ebnfSuffix |

rewrite_tree ( ebnfSuffix ) | rewrite_tree_ebnf

)

rewrite_tree_atom
CHAR_LITERAL | TOKEN_REF ARG_ACTION? | RULE_REF |
STRING_LITERAL | ’$’ id | ACTION

I

rewrite_tree_ebnf

rewrite_tree_block ebnfSuffix

rewrite_tree

>~(’ rewrite_tree_atom rewrite_tree_elementx*x ’)°

rewrite_template

rewrite_template_ref

id ’(’ rewrite_template_args ’)’
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rewrite_indirect_template_head
>(? ACTION ’)’ ’(’ rewrite_template_args ’)°’

rewrite_template_args

rewrite_template_arg ( ’,’ rewrite_template_arg )*

rewrite_template_arg
id ’=’ ACTION

id
TOKEN_REF | RULE_REF
SL_COMMENT
»//2> (2 $ANTLR ” SRC | = (C ’\r’ | ’\n’” )* ) ’\r’? ’\n’
-> skip
ML_COMMENT
7/*7 ()*7 )*/;

CHAR_LITERAL
>\?>’ LITERAL_CHAR ’\’’

STRING_LITERAL
>’\’? LITERAL_CHAR LITERAL_CHARx* ’\’’

fragment LITERAL_CHAR
ESC | = €\ | ’\\” )
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DOUBLE_QUOTE_STRING_LITERAL
>N ( ESC | ~ ( ;\\7 | yno ) )* yno

DOUBLE_ANGLE_STRING_LITERAL
1< ()% 2>>0

fragment ESC
)\\; ( ‘n? | Yy | T | ’p? | 1 £ | yno | J\)) I )\\)
| >>° | ’u’ XDIGIT XDIGIT XDIGIT XDIGIT | . )

b

fragment XDIGIT

0% .. 92 | a’ .. f> | A’ .. °F?
INT

707 .. )9)+
ARG_ACTION

NESTED_ARG_ACTION

fragment NESTED_ARG_ACTION
[’ ( NESTED_ARG_ACTION | ACTION_STRING_LITERAL |
ACTION_CHAR_LITERAL | . )* ’]°

b

ACTION
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NESTED_ACTION ( ’7° )7

fragment NESTED_ACTION
>»{? ( NESTED_ACTION | SL_COMMENT | ML_COMMENT |
ACTION_STRING_LITERAL | ACTION_CHAR_LITERAL | . )x*x °}’

b

fragment ACTION_CHAR_LITERAL
’\?? ( ACTION_ESC | ~ (C °\\7 | >\’ ) ) *\?>

fragment ACTION_STRING_LITERAL
yn o ( ACTIUN_ESC | ~ ( )\\; | yn o ) )* N

fragment ACTION_ESC

7\\\77 | ;\\) yno | ;\\) ~ ( ;\7) | >N )
TOKEN_REF
YA . 17 ( 19 . 1) | b . 17 I 7_7 | ’0° . 19
) *
RULE_REF
’1g? . 1z ( ’1a°? . 1z | b . 170 I )_7 | ’0° . 19>
) *
OPTIONS

’options’ WS_LOOP °’{°
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TOKENS
>tokens’ WS_LOOP °’{°

fragment SRC
’src’ ’ 7 ACTION_STRING_LITERAL > ’ INT

WS
(> > 1 °\t> | °\r’? ’\n’> )+ -> skip

fragment WS_LOOP
( WS | SL_COMMENT | ML_COMMENT )

DOC_COMMENT
>’DOC_COMMENT”’

PARSER
>PARSER’

LEXER
>LEXER’

RULE
>RULE’
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BLOCK
’BLOCK”’

OPTIONAL
>OPTIONAL’

CLOSURE
>CLOSURE”’

POSITIVE_CLOSURE

>POSITIVE_CLOSURE’

SYNPRED

>SYNPRED’
RANGE

>RANGE”’
CHAR_RANGE

>CHAR_RANGE’
EPSILON

>EPSILON’

ALT
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>ALT’
EOR

>EOR”’
EOB

>EOB’
EQA

>EQA”’

// end of alt

ID
7ID7
ARG
>ARG’
ARGLIST
>ARGLIST’
RET
>RET”’

LEXER_GRAMMAR
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>LEXER_GRAMMAR’

PARSER_GRAMMAR
>PARSER_GRAMMAR’

TREE_GRAMMAR
>TREE_GRAMMAR’

COMBINED_GRAMMAR
>COMBINED_GRAMMAR’

INITACTION
>INITACTION’

LABEL
>LABEL’

TEMPLATE
>TEMPLATE”’

SCOPE

’scope’

SEMPRED
> SEMPRED”’
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GATED_SEMPRED
>GATED _SEMPRED’

SYN_SEMPRED
>SYN_SEMPRED’

BACKTRACK_SEMPRED
>BACKTRACK_SEMPRED’

FRAGMENT

’fragment’

TREE_BEGIN
J"(J

ROOT

BANG

PR ]

RANGE2

) J
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REWRITE
7_>7

LisTING B.8: The ANTLR grammar of the ANTLR grammar specification language

<?7xml version="1.0" encoding="utf-8"7>
<xs:schema id="generalParsingDomainSchema" xmlns:xs="http://
www.w3.0rg/2001/XMLSchema">

<xs:simpleType name="terminalNameConvention">
<xs:restriction base="xs:string">
<!-- by convention -->
<xs:pattern value="([A-Z_]1)+"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="nonterminalNameConvention">
<xs:restriction base="xs:string">
<!-- by convention -->
<xs:pattern value="([a-z_])+"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="terminalType">
<xs:sequence>

<xs:element name="name" type="terminalNameConvention"/

<xs:element name="value" type="xs:string"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="nonterminalType">
<xs:sequence>
<xs:element name="name" type="
nonterminalNameConvention">
</xs:element>
</xs:sequence>

</xs:complexType>

<xs:complexType name="singleNonterminalType">
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<xs:sequence>
<xs:element name="nonterminal" type="nonterminalType"/
>
</xs:sequence>

</xs:complexType>

<l --
<xs:simpleType name="nonZeroUnsignedInt">
<xs:restriction base="xs:unsignedInt">
<xs:minInclusive value="1"/>
</xs:restriction>
</xs:simpleType>
-=>

<xs:complexType name="alternativeType">
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element name="terminal" type="terminalType"/>
<xs:element name="nonterminal" type="nonterminalType"/
>
</xs:choice>

</xs:complexType>

<xs:complexType name="rhsType">
<xs:sequence>
<xs:element name="alternative" type="alternativeType"
minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="ruleType">
<xs:sequence>
<xs:element name="lhs" type="singleNonterminalType"/>
<xs:element name="rhs" type="rhsType"/>
</xs:sequence>

</xs:complexType>

<l -- 4ndependent type definition facilitates modular
extension -->
<xs:complexType name="GeneralGrammarType">

<xs: sequence>
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<xs:element name="symbols">
<xs:complexType>
<xs:sequence>
<xs:element name="terminal" type="terminalType"
minOccurs="1" maxOccurs="unbounded"/>
<xs:element name="nonterminal" type="
nonterminalType" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="root" type="singleNonterminalType"/>

<xs:element name="rules">
<xs:complexType>
<xXs:sequence>
<xs:element name="rule" type="ruleType"
minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required
n"/>
<xs:attribute name="type" use="required">
<xs:simpleType>
<xs:restriction base="xs:string">
<xs:pattern value="LL_STAR"/>
<xs:pattern value="LALR_1"/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>

</xs:complexType>

</xs:schema>

LisTiNG B.9: The general CFG domain meta-model

<?xml version="1.0" encoding="utf-8"7>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:include schemalocation="General_Parsing_Domain.xsd"/>
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<xs:redefine schemalocation="General_Parsing_Domain.xsd">
<xs:complexType name="ruleType">
<xs:complexContent>
<xs:extension base="ruleType">
<xs:sequence>
<xs:element name="attributes" type="
attributesType" minOccurs="0" maxOccurs="1"/>
<xs:element name="parameters" type="
parametersType" minOccurs="0" maxOccurs="1"/>
<xs:element name="rule_actions" type="
ruleActionType" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:complexType name="alternativeType">
<xs:complexContent>
<xs:extension base="alternativeType">
<xs:sequence>
<xs:element name="alternative_action" type="
alternativeActionType" minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

</xs:redefine>

<! -- <domain elements that do not need to be involved in a
domain-specific model, i.e., a LL* grammar> -->
<xs:complexType name="peekAction">
<xs:sequence>
<xs:element name="peek_token" type="terminalType"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="matchAction">
<xs:sequence>
<xs:element name="match_token" type="terminalType"/>

</xs:sequence>
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</xs:complexType>

<xs:complexType name="predictAction'">
<Xxs:sequence>
<xs:element name="target_symbol" type="nonterminalType
||/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="actionType">
<xs:choice>
<xs:element name="peek" type="peekAction"/>
<xs:element name="match" type="matchAction"/>
<xs:element name="predict" type="predictAction"/>
</xs:choice>

</xs:complexType>

<! -- </domain elements that do not need to be involved in
a domain-specific model, i.e., a LL* grammar> -->
<!l -- <extension for rule attribute> -->

<xs:simpleType name="attributeTypeType">
<xs:restriction base="xs:string">
<xs:enumeration value="String"/>
<xs:enumeration value="int"/>
<xs:enumeration value="float"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="attributeType">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="type" type="attributeTypeType"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="attributesType">
<xs:sequence>
<xs:element name="attribute" type="attributeType"
minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
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<l -- </extension for rule attribute> -->

<! -- <extension for rule parameter> -->
<xs:complexType name="parametersType">

<xs:sequence>

<xs:element name="parameter" type="attributeType"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<!-- </extension for rule parameter> -->

<! -- <extension for rule action> -->
<xs:simpleType name="alternativeActionType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:complexType name="ruleActionType">
<xs:sequence>
<xs:element name="before_rule_action" type="xs:string"
minOccurs="0" maxOccurs="1"/>
<xs:element name="after_rule_action" type="xs:string"
minOccurs="0" maxOccurs="1"/>
</xs:sequence>
</xs:complexType>

<! -- </extension for rule action> -->
<xs:element name="grammar" type="GeneralGrammarType"/>
</xs:schema>
LisTING B.10: The LL(*) grammar domain meta-model
prog

(temporal {System.out.println($temporal.esbmc);}) + EOF

temporal returns [String esbmc, int a, int c]

NEXT disj {$esbmc = "X ".concat($disj.esbmc);$a=1;}
| EVENTUALLY disj {$esbmc = "F ".concat($disj.esbmc);$c
=3}
| GLOBALLY disj {$esbmc = "G ".concat($disj.esbmc) ;$a=3; $c
=3;}

| disj temporal_f[$disj.esbmc] {$esbmc = $temporal_f.esbmc
s
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temporal _f [String left] returns [String esbmc, int b]
UNTIL disj {$esbmc = $left.concat(" U ").concat($disj.

esbmc) ;}
| WEAKUNTIL disj
{$esbmc = "(".concat($left).concat(" U ").concat($disj.

esbmc) .concat (")
[l (G ").concat($left).concat(")");$b=-2;}
| RELEASE disj {$esbmc = $left.concat(" R ").concat($disj.
esbmc) ;}
| {$esbmc = $left;}

s

disj returns [String esbmc]

conj disj_f {$esbmc = $conj.esbmc.concat($disj_f.esbmc)

s

disj_f returns [String esbmc]
OR d=disj {$esbmc = " || ".concat($d.esbmc);}
| {$esbmc = "";}

b

conj returns [String esbmc]
literal conj_f {$esbmc = $literal.esbmc.concat($conj_=.

esbmc) ; }

conj_f returns [String esbmc]
AND c=conj {$esbmc = " && ".concat($c.esbmc);}
| {$esbmc = "";}

b

literal returns [String esbmc]
NOT LPAR temporal RPAR

{$esbmc = "!(".concat($temporal.esbmc).concat(")");}
| LPAR temporal RPAR

{$esbmc = "(".concat($temporal.esbmc).concat(")");}
| NOT atom["!="] {$esbmc = $atom.esbmc;}

| atom["=="] {$esbmc = $atom.esbmc;}
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atom[String op] returns [String esbmc, int c]
input [$op] {$esbmc = $input.esbmc;$c=1;}
| output[$op] {$esbmc = $output.esbmc;$c=2;}
input [String op] returns [String esbmc]
’iA’ {$esbmc = "{input ".concat($op).concat (" 1}");}
| 2iB’ {$esbmc = "{input ".concat ($op).concat (" 2}");}
| 2iC’ {$esbmc = "{input ".concat($op).concat(" 3}");}
| 2iD’ {$esbmc = "{input ".concat ($op).concat (" 4}");}
| ?iE’ {$esbmc = "{input ".concat ($op).concat(" 5}");}
| 7iF’ {$esbmc = "{input ".concat ($op).concat(" 6}");}
output [String op] returns [String esbmc, int c]
’oU’ {$esbmc = "{output ".concat($op).concat(" 21}");$c
=11;}
| 0V’ {$esbmc = "{output ".concat($op).concat (" 22}");$c
=12;}
| oW’ {$esbmc = "{output ".concat($op).concat (" 23}");$c
=13;}
| ’0X’ {$esbmc = "{output ".concat($op).concat (" 243}");$c
=14;}
| oY’ {$esbmc = "{output ".concat($op).concat(" 25}");$c
=15;%}
| ’0Z’ {$esbmc = "{output ".concat($op).concat(" 26}");$c
=16;%}
LisTING B.11: Production rules of the RERS grammar

grammar AspectRERS;

options {
backtrack=true;
memoize=true;

output=template

tokens {

ASP = ’aspect’;

b



224

Appendix B Case Studies

PCD = ’pointcut’;
RUL = ’@’;
TKN = #7;
ATR = °$7;
BEF = ’before’;
AFT = ’after’;
MTH = ’match’;
SET = ’set’;
WTN = ’within’;
CFW = ’cflow’;
NOT = 17,
OR = ||’
AND = &&’;
BEFORE_MAIN_EXIT = ’BeforeMainExit’;
}
program

pd=packageDeclaration ad=aspect_declaration EOF

packageDeclaration

PACKAGE gn=qualifiedName SEMI

aspect_declaration

am=access_modifier ASP an=IDENTIFIER LPAREN grn=
IDENTIFIER RPAREN LBRACE asl=aspect_statement_list RBRACE

I

access_modifier returns [String code]
PUBLIC {$code = $PUBLIC.text;}

| PROTECTED {$code = $PROTECTED.text;}

| PRIVATE {$code = $PRIVATE.text;}

| {$code = "private";}

aspect_statement_list
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(s+=aspect_statement)+

aspect_statement
md=memberDecl
| pd=pcd_decl
| ad=adv_decl

pcd_decl

am=access_modifier pd=pointcut_descriptor SEMI

pointcut_descriptor
PCD IDENTIFIER EQ p=pcd_body

pcd_body
df=disflt

| mf=macro_filter

adv_decl
Im=1location_modifier COLON d=disflt b=block

disflt
c=conflt d=disflt_f

disflt_f
OR d=disflt

conflt
1=1itflt c=conflt_f£f

conflt_f
AND c=conflt



226

Appendix B Case Studies

litflt
LPAREN d=disflt RPAREN
| af=atomic_filter
I NOT 1f=1itflt

atomic_filter
pf=pointcut_filter
| abf=advice_bound_filter
advice_bound_filter
IDENTIFIER LPAREN RPAREN

/* Java grammar block below */

LisTiNG B.12: The AspectRERS template skeleton

pointcut_filter
pf=pinpoint_filter

| rf=range_filter

pinpoint_filter
af=attribute_filter
| tf=token_filter
| nf=nonterminel_filter
| bf=branch_filter

macro_filter

PERCENT m=macro_filter_expression

macro_filter_expression

b=before_main_exit

before_main_exit
BEFORE_MAIN_EXIT
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attribute_filter

Im=location_modifier

LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON an=attr_indicator RPAREN

| Im=location_modifier

LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON NOT an=attr_indicator

RPAREN
| lm=location_modifier
=alt_indicator_for_within
| lm=location_modifier
| Im=location_modifier

RPAREN

3

location_modifier returns
BEF
| AFT

rule_indicator returns
RUL IDENTIFIER

alt_indicator_for_within
COLON ai=INTLITERAL

LPAREN NOT rn=rule_indicator ai
COLON an=attr_indicator RPAREN
LPAREN an=attr_indicator RPAREN
LPAREN NOT an=attr_indicator

| COLON NOT ai=INTLITERAL

attr_indicator returns
ATR IDENTIFIER
I ATR

token_filter

Im=1location_modifier

LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON tn=token_indicator RPAREN

| lm=location_modifier

LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON NOT tn=token_indicator
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RPAREN

| Im=location_modifier LPAREN NOT rn=rule_indicator ai
=alt_indicator_for_within COLON tn=token_indicator RPAREN

| Im=location_modifier LPAREN tn=token_indicator
RPAREN

| Im=location_modifier LPAREN NOT tn=token_indicator
RPAREN

3

token_indicator returns [String code]
TKN IDENTIFIER {$code=$IDENTIFIER.text;}
| TKN {$code="%x";}

nonterminel_filter
Im=1location_modifier LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON srn=subrule_indicator
RPAREN

| Im=location_modifier LPAREN rn=rule_indicator ai=
alt_indicator_for_within COLON NOT srn=subrule_indicator
RPAREN

| Im=location_modifier LPAREN NOT rn=rule_indicator ai
=alt_indicator_for_within COLON srn=subrule_indicator

RPAREN

J

subrule_indicator returns [String code]
RUL IDENTIFIER {$code=$IDENTIFIER.text;}
| RUL {$code="x";}

branch_filter
Im=location_modifier LPAREN rn=rule_indicator COLON

bi=branch_indicator RPAREN

| Im=location_modifier LPAREN rn=rule_indicator COLON
NOT bi=branch_indicator RPAREN

| Im=location_modifier LPAREN NOT rn=rule_indicator
COLON bi=branch_indicator RPAREN

| Im=1location_modifier LPAREN NOT rn=rule_indicator
COLON NOT bi=branch_indicator RPAREN

| Im=1location_modifier LPAREN rn=rule_indicator RPAREN
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| Im=1location_modifier LPAREN NOT rn=rule_indicator

RPAREN

3

branch_indicator returns [String code]
INTLITERAL {$code=$INTLITERAL.text;}
I {$code="x";}

range_filter
wf=within_filter

| cf=cflow_filter

within_filter
WTN LPAREN rn=rule_indicator ai=
alt_indicator_for_within RPAREN
| WTN LPAREN NOT rn=rule_indicator ai=
alt_indicator_for_within RPAREN

3

cflow_filter
CFW LPAREN rn=rule_indicator ai=
alt_indicator_for_cflow RPAREN
| CFW LPAREN NOT rn=rule_indicator ai=
alt_indicator_for_cflow RPAREN

I

alt_indicator_for_cflow
COLON ai=INTLITERAL
| COLON NOT ai=INTLITERAL

LisTING B.13: The AspectRERS template skeleton

attribute_filter

Im=location_modifier LPAREN rn=rule_indicator ai=
alt_indicator_for_within COLON an=attr_indicator RPAREN
-> attrFilterl1(locationModifier={$1m.codel,

ruleNameValue={$rn.value}, ruleNamePattern={$rn.pattern},

alt={$ai.st}, attributeName={$an.codel})
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| Im=location_modifier LPAREN rn=rule_indicator ai=
alt_indicator_for_within COLON NOT an=attr_indicator
RPAREN
-> attrFilter2(locationModifier={$1m.code},
ruleNameValue={$rn.value}, ruleNamePattern={$rn.pattern},
alt={$ai.st}, attributeName={$an.codel})
| Im=location_modifier LPAREN NOT rn=rule_indicator ai
=alt_indicator_for_within COLON an=attr_indicator RPAREN
-> attrFilter3(locationModifier={$1lm.code},
ruleNameValue={$rn.value}, ruleNamePattern={"\\\\wx"3},
alt={$ai.st}, attributeName={$an.codel})
| Im=location_modifier LPAREN an=attr_indicator RPAREN
-> attrFilterl1(locationModifier={$1lm.code},
ruleNameValue={"*"}, alt={""}, attributeName={$an.codel})
| Im=location_modifier LPAREN NOT an=attr_indicator
RPAREN
-> attrFilter2(locationModifier={$1lm.codel},
ruleNameValue={"*"}, alt={""}, attributeName={$an.codel})

’

location_modifier returns [String code]
BEF {$code
| AFT {$code

"Begin" ;}
”End" ’}

rule_indicator returns [String value, String pattern]
RUL IDENTIFIER
{$value=$IDENTIFIER. text; $pattern=$IDENTIFIER. text;}
| {$value="x";$pattern="\\\\wx";}

alt_indicator_for_within
COLON ai=INTLITERAL -> altFilterForWithin(altIndex={
$ai.text})
| COLON NOT ai=INTLITERAL -> reverseAltFilterForWithin
(altIndex={%ai.text})
| -> eptStr ()

I

attr_indicator returns [String code]
ATR IDENTIFIER {$code=$IDENTIFIER.text;}
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| ATR {$code="x";}

LisTING B.14: String templates attrFilterN to translate attribute setting pointcuts

altFilterForWithin(altIndex) ::= <<
&&if (<grammarName >Parser.branchTrace.peek () .matches ("<
ruleNamePattern>:<altIndex>"))

>>

reverseAltFilterForWithin(altIndex) ::= <<

&&if (! <grammarName >Parser.branchTrace.peek () .matches ("<
ruleNamePattern>:<altIndex>"))

>>

/* default behaviour of @rule:alt:$attr is set ($atir)EE
within (@rule:alt) */

attrFilterl1 (locationModifier, ruleNameValue, ruleNamePattern
, alt, attributeName) ::= <<

call (public static void <grammarName >Parser.<
locationModifier>_Set_Rule_<ruleNameValue>_Attribute_<
attributeName > () )<alt>

>>

attrFilter2(locationModifier, ruleNameValue, ruleNamePattern
, alt, attributeName) ::= <<

call (public static void <grammarName >Parser.<
locationModifier >_Set_Rule_<ruleNameValue>_Attribute_*())
&&!'call (public static void <grammarName >Parser.<
locationModifier>_Set_Rule_<ruleNameValue>_Attribute_<
attributeName >())<alt>

>>

attrFilter3(locationModifier, ruleNameValue, ruleNamePattern
, alt, attributeName) ::= <<

call (public static void <grammarName >Parser.<
locationModifier>_Set_Rule_x_Attribute_<attributeName >())
&&!call (public static void <grammarName >Parser.<
locationModifier>_Set_Rule_<ruleNameValue>_Attribute_<
attributeName >())<alt>

>>

LisTING B.15: Definition of the string templates for attribute_filter in AspectRERS.stg



232 Appendix B Case Studies

parExpression

>(’ expression )’

expressionlList
expression
(’,’ expression

) *

expression
conditionalExpression

(assignmentOperator expression

)7

assignmentOperator

| d 4=
| PR—
| ) k="
| ;/=;
| 7&=7
| )|=J
| )~ =)
| )%=)
Ygd g =0
| < <
IS IS IS =0
| > > >
IS IS Y =0
| > >

conditionalExpression
conditionalOrExpression

(’?’ expression ’:’ conditionalExpression

)7

conditionalOrExpression



Appendix B Case Studies

233

conditionalAndExpression
(11’ conditionalAndExpression

) *

conditionalAndExpression
inclusiveOrExpression
(’&&°’ inclusiveOrExpression

) *

inclusiveOrExpression
exclusiveOrExpression
(’1” exclusiveOrExpression

) *

exclusiveOrExpression
andExpression
("7’ andExpression

) *

andExpression
equalityExpression
(%’ equalityExpression

) *

equalityExpression
instanceOfExpression

(

(
I
)
i

nstanceOfExpression

instanceOfExpression

relationalExpression



234 Appendix B Case Studies

(’instanceof’ type

) ?

relationalExpression
shiftExpression
(relationalOp shiftExpression

) *

relationalOp
1 =0
| ESERES
RS
IS

shiftExpression
additiveExpression
(shiftOp additiveExpression
) %

shiftOp
)<] 7<)

| 2> 1> 2>

additiveExpression
multiplicativeExpression

(

multiplicativeExpression

) *



Appendix B Case Studies 235

multiplicativeExpression

unaryExpression

(
C ow
VA
I *h’
)
unaryExpression
R

LisTiNG B.16: Production rules involved in the application of parExpression in Java
ANTLR grammar

import java.util.Random;

import java.util.HashMap;

public class testJavaProg {
public static int al=0;
public boolean flag=true;
private static HashMap<String,Integer> map = new HashMap<

String,Integer>();

public static void s_test(int x, char cc) {

double y=(1>0)71.5:0.5;
int dec_only;
dec_only=1;

int z=10;
char no_init;

if (y<=1) {
System.out.println(y-1);

} else if (y!=2&&z<=1) {
System.out.println(y);

} else {
System.out.println (y++);

}

for (;true;z--) {
if (z>3) continue;

else break;

System.out.println(x);



236 Appendix B Case Studies

public int mi1() {
synchronized (this) {
System.out.println("sync block");

}
Random ran = new Random() ;
int x = 0;

while (x<7) {

x=ran.nextInt (6) + 3;

do {
x=ran.nextInt (6) + 3;

} while (x<7);

switch (x) {

case 1: System.out.println(l);break;
case 5: System.out.println(x+1);break;
default: System.out.println("default");
}

return x;

public static int s_m2() {
testJavaProg tjp = null;
try{
if(tjp.flag==true) tjp=new testJavaProg();
if (true) tjp.flag=false;
if(tjp.m1()==2) System.out.println("nothing");
throw new Exception("bla");
} catch(ArrayIndexQOutOfBoundsException e) {
System.out.println(e.getMessage ());
} catch(IOException e) {
System.out.println(e.getMessage());
} catch(FileNotFoundException e) {
System.out.println(e.getMessage());
} finally {
System.out.println("finally") ;
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}
return tjp.m1Q);

public static void main(Stringl[] args) {
int tmp=2;
s_test (((tmp)));
s_test (tmp);

LisTiNG B.17: Our artificial test Java program testJavaProg.java

/* <begin: primitive statement> */
pointcut assert_stmt=after (@statement:2)||after(
@statement :3) ;
after : assert_stmt() {
System.out.println("end of an assert statement\n");
}
pointcut branch_stmt=after (@statement :4);
after : branch_stmt () {
System.out.println("end of an if-else statement\n");
}
pointcut for_stmt=after (@statement:5);
after : for_stmt () {
System.out.println("end of a for statement\n");
}
pointcut while_stmt=after (@statement:6);
after : while_stmt () {
System.out.println("end of a while statement\n");
}
pointcut do_stmt=after(@statement:7);
after : do_stmt() {
System.out.println("end of a do statement\n");
}
pointcut try_stmt=after (@statement:8);
after : try_stmt () A

System.out.println("end of a try-catch statement\n")

}
pointcut switch_stmt=after (@statement:9);
after : switch_stmt () {

System.out.println("end of a switch statement\n");
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}
pointcut sync_stmt=after(@statement:10);
after : sync_stmt () {
System.out.println("end of a synchronized statement)\
n");
}
pointcut return_stmt=after(@statement:11);
after : return_stmt () {
System.out.println("end of a return statement\n");
}
pointcut throw_stmt=after (@statement:12);
after : throw_stmt () {
System.out.println("end of a throw statement\n");
}
pointcut break_stmt=after (@statement:13);
after : break_stmt () {
System.out.println("end of a break statement\n");
}
pointcut cont_stmt=after(@statement:14);
after : cont_stmt () {
System.out.println("end of a continue statement\n");
}
pointcut norm_stmt=after (@statement:15);
after : norm_stmt () {
System.out.println("end of a normal statement\n");
}
pointcut label_stmt=after (@statement:16) ;
after : label_stmt () {
System.out.println("end of a label statement\n");
}
pointcut empty_stmt=after (@statement:17);
after : empty_stmt() {

System.out.println("end of an empty statement\n");

pointcut countable_primitive_stmt=assert_stmt () ||
return_stmt () | |throw_stmt () | |norm_stmt () ;

pointcut uncountable_primitive_stmt=branch_stmt () |]
for_stmt () | |while_stmt () |ldo_stmt () ||ltry_stmt () ||
switch_stmt () || sync_stmt () ||break_stmt () || cont_stmt () ||
label_stmt () || empty_stmt () ;
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/* <end: primitive statement> */

LisTING B.18: AspectJava code to identify the Java primitive statements

/* <begin: countable statement> */
/* <begin: wariable/field declaration> */
pointcut local_var_decl=after(@variableDeclarator:
Q@QvariableInitializer)&&cflowpattern (
@localVariableDeclarationStatement:1,
@localVariableDeclaration:1,@variableDeclarator:1);
after : local_var_decl() {
System.out.println("end of a local variable
declaration\n");
+
pointcut class_var_decl=after (@memberDecl:1);
after : class_var_decl() {
System.out.println("end of a class field declaration
\n");
¥

/* <end: wvartable/field declaration> */

/* <begin: method declaration> */

pointcut class_method_name_decl_1=before(
@methodDeclaration:@blockStatement) ;

pointcut class_method_name_decl_2=before(
@methodDeclaration:@block) ;

pointcut class_method_name_decl=class_method_name_decl_1
()llclass_method_name_decl_2();

after : class_method_name_decl () {

System.out.println("start of a method declaration\n"

)

X

/* <end: method declaration> */

/* <begin: class declaration> */

pointcut class_name_decl=before(@normalClassDeclaration:
@classBody) ;

after : class_name_decl() {

System.out.println("start of a class declaration\n")

}

/* <end: class declaration> */
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pointcut countable_stmt=countable_primitive_stmt () ||
local_var_decl () ||l class_var_decl() ||

class_method_name_decl () || class_name_decl () ;

LisTING B.19: AspectJava code for the declarations to count

/* <begin: countable sub-statement> */

/* <begin: branch condition> */

pointcut if_predicate=after(@statement:Q@parExpression)&&
within(@statement :4) ;

after : if_predicate() {

System.out.println("end of a branch condition (if

predicate)\n") ;

3

/* <end: branch condition> */

/* <begin: for condition> */
pointcut for_condition=after (Q@forstatement :#RPAREN);
after : for_condition() {

System.out.println("end of a for condition\n");
}

/* <end: for condition> */

/* <begin: while condition> */
pointcut while_condition=after (@statement:@parExpression
Y&&within (@statement :6) ;
after : while_condition() {
System.out.println("end of a while condition\n");
}

/* <end: while condition> */

/* <begin: do while condition> */
pointcut do_while_condition=after(@statement:
@parExpression)&&within(@statement :7) ;
after : do_while_condition() {
System.out.println("end of a do-while condition\n");
}

/* <end: do while condition> */

/* <begin: try catch finally> */
pointcut trystmt_catch=after(Q@catchClause:#RPAREN) ;
after : trystmt_catch() {
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System.out.println("end of a catch clause condition\
n");
3
pointcut try_clause_group=trystmt_catch();
/* <end: try catch finally> */

/* <begin: switch condition> */
pointcut switch_condition=after(@statement:
@parExpression)&&within(@statement:9);
after : switch_condition () {
System.out.println("end of a switch condition\n");
}

/* <end: switch condition> */

/*¥ <begin: synchronized resource> */
pointcut sync_source=after (@statement:@parExpression)&&
within(@statement :10) ;
after : sync_source() {
System.out.println("start of a synchronized block\n"
)
+

/* <end: synchronized resource> */

pointcut countable_sub_stmt=if_predicate () ||
for_condition() ||while_condition() ||do_while_condition ()
|ltry_clause_group () || switch_condition() ||sync_source();

/* <end: countable sub-statement> */

LisTING B.20: AspectJava code for the sub statements to count

B.3 The CUP Case Study

<?7xml version="1.0" encoding="utf-8"7>

<xs:schema xmlns:xs="http://www.w3.o0rg/2001/XMLSchema">
<xs:include schemalocation="General_Parsing_Domain.xsd"/>

<xs:complexType name="shiftAction">
<xs:sequence>
<xs:choice>
<xs:element name="before_shift" type="xs:string"/>

<xs:element name="after_shift" type="xs:string"/>
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</xs:choice>
</xs:sequence>

</xs:complexType>

<xs:complexType name="embeddedAction">
<xs:sequence>
<xs:element name="rule" type="ruleType"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="actionType">
<xs:choice>
<xs:element name="shift" type="shiftAction"/>
<xs:element name="reduce" type="reduceAction"/>
</xs:choice>

</xs:complexType>

<xs:complexType name="reduceAction">
<xs:choice>
<xs:element name="handle_detection" type="xs:string"/>
<xs:element name="handle_pruning" type="xs:string"/>
</xs:choice>

</xs:complexType>

<xs:complexType name="LALR1GrammarType">
<xs:complexContent>
<xs:extension base="GeneralGrammarType"/>
</xs:complexContent>

</xs:complexType>

<xs:element name="grammar" type="LALR1GrammarType"/>
</xs:schema>

LisTING B.21: The LALR(1) grammar domain meta-model

// CUP specification for RERS
package cup.RERS;

import java_cup.runtime.x*;

/* Terminals (tokens returned by the scanner). */
terminal NOT, AND, OR;

terminal NEXT, EVENTUALLY, GLOBALLY;
terminal UNTIL, WEAKUNTIL, RELEASE;
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terminal LPAR, RPAR;
terminal IA, IB, IC, ID, IE, IF;
terminal ou, 0Oov, 0Ow, 0X, 0Y, 0Z;

/* Non-terminals */
non terminal prog, temporal, temporal_f, disj, disj_f
, conj, conj_£f;

non terminal literal, literal_f, atom, input, output;

/% Precedences */

precedence nonassoc AND, OR;

precedence right NEXT, EVENTUALLY, GLOBALLY, UNTIL,
WEAKUNTIL, RELEASE;

precedence right NOT;

/* The grammar */

prog ::= prog:p temporal:t
{: RESULT = (String)p + (String)t + "\n"; :}
I
{: RESULT = ""; :}
temporal = NEXT disj:d
{: RESULT = "NEXT" + (String)d; :}

I

EVENTUALLY disj:d

{: RESULT = "EVENTUALLY" + (String)d; :}
I

GLOBALLY disj:d

{: RESULT = "GLOBALLY" + (String)d; :}

I

disj:d temporal_f:t

{: RESULT = (String)d + (String)t; :}

b

temporal_f ::= UNTIL disj:d
{: RESULT = "UNTIL" + (String)d; :}
I
WEAKUNTIL disj:d
{: RESULT = "WEAKUNTIL" + (String)d; :}
I
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RELEASE disj:d

{: RESULT = "RELEASE" + (String)d; :}

I

{: RESULT = ""; :}
disj ::= conj:c disj_f:d

{: RESULT = (String)c + (String)d; :}
disj_=f ::= 0OR disj:d

{: RESULT = "|" + (String)d; :}

I

{: RESULT = ""; :}
conj ::= literal:1 conj_f:c

{: RESULT = (String)l + (String)c; :}
conj_£f ::= AND conj:c

{: RESULT = "&&" + (String)c; :}

I

{: RESULT = ""; :}
literal ::= NOT literal_f£f:1

{: RESULT = "!" + (String)l; :}

I
literal_f:1

{: RESULT = (String)l; :}
literal_f ::= LPAR temporal:t RPAR
{: RESULT = "(" + (String)t + ")"; :}
I
atom:a
{: RESULT = (String)a; :}

’

atom ::= input:i
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{: RESULT
I

output:o

(String)i; :%}

{: RESULT = (Stringo; :}
input ::= IA {: RESULT = "iA"; :}

|

IB {: RESULT = "iB"; :}

|

IC {: RESULT = "iC"; :}

|

ID {: RESULT = "iD"; :}

|

IE {: RESULT = "iE"; :}

|

IF {: RESULT = "iF"; :}
output ::= 0U {: RESULT = "oU"; :}

|

0V {: RESULT = "oV"; :}

|

OW {: RESULT = "oW"; :}

|

0X {: RESULT = "oX"; :}

|

0Y {: RESULT = "oY"; :}

|

0Z {: RESULT = "oZ"; :}

b

LisTinG B.22: The CUP grammar for RERS

reductionActionFilterl (locationModifier , ruleNameValue,
altIndex) ::= <<

call (public void Parser.<locationModifier>_Action_Rule_<
ruleNameValue>_Alternative_<altIndex>(String))

>>

reductionActionFilter2(locationModifier, ruleNameValue,

altIndex) ::= <<
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call (public void Parser.<locationModifier >_Parse_Rule_<
ruleNameValue>_Alternative_x*(String))&&!'call (public void
Parser.<locationModifier>_Action_Rule_<ruleNameValue>
_Alternative_<altIndex>(String))

>>

reductionActionFilter3(locationModifier, ruleNameValue,
altIndex) ::= <<

call (public void Parser.<locationModifier>_Parse_Rule_x
_Alternative_<altIndex>(String))&&!call(public void
Parser.<locationModifier>_Action_Rule_<ruleNameValue>
_Alternative_<altIndex>(String))

>>

reductionActionFilter4 (locationModifier, ruleNameValue,
altIndex) ::= <<

call (public void Parser.<locationModifier>_Action_Rule_x*
_Alternative_*(String))&&!'call(public void Parser.<
locationModifier>_Action_Rule_x*_Alternative_<altIndex>(
String))&&!call(public void Parser.<locationModifier>
_Action_Rule_<ruleNameValue>_Alternative_x*(String))

>>

LisTiNG B.23: String template definitions behind the translation of the embedded

action pointcuts

beforeMainExit () ::= <<
execution (public static void main(Stringl[]))
>>

shiftFilter1 () ::= <<

call (public void java_cup.runtime.lr_parser.Begin_Shift ())

>>

shiftFilter2() ::= <<

call(public void java_cup.runtime.lr_parser.End_Shift ())
>>

handleFilter1 () ::= <<

call (public void java_cup.runtime.lr_parser.Begin_Reduction

0O)

>>
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handleFilter2() ::= <<

call(public void java_cup.runtime.lr_parser.End_Reduction())
>>

LisTiING B.24: String template definitions behind the translation of the special

pointcuts

pointcut bef_0V=before (#20) ;
pointcut aft_IB=after (#14);
after : bef_0V() A{

System.out.println("========begin before token 0OV

System.out.println("Parsed text: "+),GetParsedText ())

System.out.println(/,GetStackToken (2));
System.out.println("Cur token: "+%GetCurrentToken ())

System.out.println("========end before token 0V
========t);
3
before aft _IB() {
System.out.println("========begin after token IB
========t);

System.out.println("Parsed text: "+ GetParsedText ())

System.out.println(%GetStackToken(2));
System.out.println("Cur token: "+)GetCurrentToken())

System.out.println("========end after token IB

LisTING B.25: An AspectRERS aspect snippet to test the token matching pointcuts

pointcut bef_act=before(@literal_f:1);
pointcut aft_act=after (@input:);
after : bef_act() {
System.out.println("========begin before the
embedded action of literal_f:l========");
System.out.println("Parsed text: "+),GetParsedText ())

System.out.println(%GetStackToken (4));
System.out.println("Cur token: "+%GetCurrentToken ())
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System.out.println("Cur branch: "+%GetCurrentBranch
ODN

System.out.println("Cur branch text: "+
GetCurrentBranchText ());

System.out.println("========");

System.out.print ("Cur handle: ");

%PrintHandleTokens () ;

System.out.println("========");
System.out.println("========end before the embedded
action of literal_f:l========");
}
before : aft_act() {
System.out.println("========begin after act input
tmms=====");
System.out.println("Parsed text: "+)GetParsedText ())
System.out.println(%GetStackToken(2));
System.out.println("Cur token: "+)GetCurrentToken())
System.out.println("Cur branch: "+%GetCurrentBranch
ODN

System.out.println("Cur branch text: "+
GetCurrentBranchText ());
System.out.println("========");
System.out.print ("Cur handle: ");
%PrintHandleTokens () ;

System.out.println("========");
System.out.println("========end after act input
MR n ) .

LisTING B.26: The code block of testing the rule embedded action pointcuts in the

test aspect

pointcut bef_sft=)BeforeShift;

pointcut aft_sft=%AfterShift;

after : bef_sft() {
System.out.println("========begin before shift

System.out.println("Parsed text: "+%GetParsedText ())

System.out.println("========end before shift========
I|);
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3
before : aft_sft() {
System.out.println("========begin after shift

System.out.println("Parsed text: "+%GetParsedText ())

System.out.println("========end after shift========"

pointcut bef_red=)FoundHandle;
pointcut aft_red=%PrunedHandle;
after : bef_red() {

System.out.println("========begin before reduction

System.out.println("Parsed text: "+)GetParsedText ())

System.out.println () GetStackToken (0));
%PrintHandleTokens () ;

System.out.println("========end before reduction
¥
before aft_red () {
System.out.println("========begin after reduction
========") ;
System.out.println("Parsed text: "+%GetParsedText ())
System.out.println(/,GetStackToken (0));
%PrintHandleTokens () ;
System.out.println("========end after reduction
========") ;
3

LisTING B.27: The code block of testing the “shift” and “reduce” action pointcuts in
the test aspect
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