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ABSTRACT
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by Meng Tian

Domain specific code generation improves software productivity and reliability. How-

ever, these advantages are lost if the generated code needs to be manually modified

or adapted before deployment. Thus, the systematic extensibility of domain specific

code generation becomes increasingly important to ensure that these advantages are

maintained. However, the traditional extension approaches, like round-trip engineer-

ing, have their limitations in supporting certain code customization scenarios. In this

thesis, we address this problem with aspect-oriented techniques. We first show that

the meta-model and the code generator can be used to derive a domain specific aspect

language whose join points are based on domain specific elements. We then show that

a corresponding aspect weaver can be derived as well, provided a proper model tracing

facility can be made available for the code generator. We demonstrate the viability of

our approach on several concrete domain specific code generation case studies, respec-

tively with the AUTOFILTER code generator, the ANTLR parser generator, and the

CUP parser generator. We successfully construct a few Java program analysis tools as

a result of these case studies.
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Chapter 1

Introduction

Model based software engineering approaches, such as Model Driven Engineering (MDE)

[1, 2], have raised the abstraction level at which engineers develop software from code

to models in specific domains, and have brought about many advantages in productiv-

ity and reliability over traditional software development [3]. These advantages mainly

come from the use of automatic code generation techniques, which enable the systematic

and reliable transformation of models into code and provide a “correct-by-construction”

guarantee [4]. This allows domain experts to ignore implementation details and to fo-

cus on the more abstract models by automatically bridging the gap between different

abstraction levels. Different abstraction gaps lead to different applications of code gen-

eration. For instance, a code generator that maps between a code template and its

instantiated code blocks can be used as a background supporting tool for the corre-

sponding wizard of an IDE. Although code generation techniques can be utilized in a

broad range of applications, our discussion about code generation in this thesis will fo-

cus on its application in model based software engineering approaches, in particular, the

code generation from domain specific models.

Domain Specific Code Generation (DSCG), as a specialized model based code gener-

ation approach, provides an automatic mapping between domain specific models and

their corresponding implementation. Compared with models that are built in a general

purpose modelling language, domain specific models are normally more effective and less

complicated [5]. This is because they are built with the elements that are specifically

used in the target domain, which would otherwise need to be built from scratch with

more general and basic elements. With the help of DSCG, domain experts can build

models directly with domain specific concepts that they are familiar with. Therefore,

DSCG has become increasingly popular over the last decade. In DSCG, code genera-

tors encapsulate the details of the mapping between the domain specific models and the

generated code. These details are normally based on the best practice in similar code

generation scenarios. As a result, DSCG not only increases the productivity of software

developers significantly, but also further raises the quality of the generated code [3].

1



2 Chapter 1 Introduction

On the other hand, DSCG also has its limitations. In order to maintain the “correct-

by-construction” guarantee, the code that is automatically generated from DSCG is, in

general, expected to remain unchanged once it is generated. However, there might be a

multitude of different reasons to introduce modifications to the generated code to make

it work well. For instance, the exposed interface of a component needs to adjust due to

a recent change of a dependent library, or the database communication layer needs to be

modified since a database migration has just been launched on a user’s demand. These

modifications may vary greatly in the scope or the complexity of the affected code, for

example, from renaming a single variable to a complete refactoring of the framework of

the code, or even to migrating to a new implementation platform. Figure 1.1 shows a

general overview of the scenario.

Figure 1.1: Generated code often needs customization before deployment

However, if this kind of arbitrary modification gets directly introduced to the generated

code, no matter how trivial the modification may be, it will break the synchroniza-

tion previously maintained between the domain specific model and its generated code.

The “correct-by-construction” guarantee will disappear due to the syntactic or semantic
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alteration of the generated code. The quality of the modified code will thus be uncer-

tain, unless the modification can be somehow verified or validated. In addition, DSCG

is often used in complex system development, which could make the modification time-

consuming and error-prone. For instance, if a widely used interface of an internal library

in a complicated system gets changed, the modification to the generated code would en-

tail updates in many scattered code segments. Unfortunately, these modifications are

sometimes necessary and inevitable. We cannot simply prohibit all modifications to the

generated code.

In order to support the full software development life-cycle and to accommodate un-

foreseen feature requests or changes to the existing system, the code generation process

needs to be able to adapt systematically and efficiently. Researchers have addressed

different extension approaches [3, 6], which can be categorized into two groups: the pure

model based philosophy and model round-trip engineering approach. Unfortunately,

both of them have their limitations in supporting different DSCG extension scenarios.

In a pure model based philosophy, models are regarded as first class citizens, and code is

considered as a subsidiary artifact that can be easily generated at any point. Therefore,

the system evolution process follows a “model change ⇒ code re-generation” style as

shown in Figure 1.2. In principle, this style is elegant and well supported. In practice,

unfortunately, it does not always work well, because it requires the models to be detailed

enough to reflect the changes, while many changes (e.g. adding logging functionality or

code refactorings) can be very difficult to express in the model level. A natural remedy

for this is to enrich the domain modelling language, so that it can be more expressive

and able to describe supplementary details in models. However, this can lead to the

pollution of the model with concepts in a lower abstraction level and, eventually, to a

breakdown of the abstraction hierarchy. Moreover, a pure model based approach requires

meta-model updates, which are supported much less well than model updates, and are

sometimes even impossible. For example, updating a meta-model is not appropriate if

one cannot update the code generator to account for the meta-model updates. Besides,

such updates can lead to incompatibilities between different meta-model versions.

Figure 1.2: System Evolution in A Pure Model Based Philosophy.

The other approach is to directly modify the generated code via some cost effective
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solutions, and then rebuild the synchronization between the modified code and the model

after the code modification. This approach is called the Model Round Trip Engineering

(MRTE) [7, 8] approach. The basic idea is to rebuild the synchronization by enabling

a reverse engineering process that derives an evolved domain specific model from the

modified code as shown in Figure 1.3. This approach implicitly requires that it is always

possible to find or derive a reverse process of the target code generation, so that a

bidirectional (ideally bijective) mapping between domain specific models and code can

be established. Unfortunately, in practice the domain specific code generation is a

general, often non-injective, transformation of domain specific models into code.

Figure 1.3: System Evolution by MRTE.

On the other hand, MRTE was originally introduced to address model update problems

in model-to-model transformations, where artifacts on each side are equally important

core products. However, our scenario is model to code. As such, using MRTE places an

important assumption on the code, i.e. considering the code as a model as well. However,

code needs to deal with implementation details, which are exactly what we try to conceal

from models. Figure 1.4 illustrates the transfer of information in DSCG process. We can

see that the information finally conveyed to the generated code comes from two sources:

the model and the code generator. When we change the code, if the information involved

comes from the model, we want to propagate the change to the model level. Otherwise, if

the information comes from the code generator, we do not pollute the model with it. The

MRTE DSCG extension approach enforces that the code change is always propagated

to the model side.

Figure 1.4: Transfer of Information in DSCG.
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1.1 Problem Statement

In this section, we list the limitations and drawbacks that we observed in the existing

DSCG extension approaches and identify the problems that we are tackling.

Observation 1: It can be very difficult to describe the desired modifications

in terms of the domain specific models, if at all possible.

As mentioned before, the modification requirements are introduced in arbitrary and

unforeseen ways. It is very likely that sometimes the modification descriptions are

beyond the expressiveness of the original modelling language. This will lead to the

failure to construct a new domain specific model to reflect the modification.

Figure 1.5 illustrates a simple example where the expected modification cannot be re-

flected in the domain specific model. The domain specific model is a deterministic finite

automaton with three states: S0, S1 and S2. S0 is the start state. S2 is the end (or

accept) state. There are three transitions among them. Each transition fires when a

specific character is read from the input stream. Apparently, this automaton accepts

digit string in the format of “1(3)∗5”.

Let us assume that the current modification requirement is to supplement a logging

method and invoke it after the self-transition of S1 fires to count the number of digit

“3” in the input string. The modelling domain here is the deterministic automaton

construction and execution, where logging is generally not regarded as a domain element.

In other words, the domain specific modelling language is “too abstract” to reflect the

expected modification. In addition, this scenario also makes a solution based on MRTE

[9] quite difficult to implement, as the change to the code cannot be translated into

a corresponding exact change to the domain specific model. This kind of change is

regarded as “invalid” by Thomas et al. [8]. Even if we managed to establish a round-trip

transformation, i.e. the reverse code generation process, the new model that is rebuilt

from the modified code is very likely to be identical to the original one.

Observation 2: Crosscutting concerns in the expected changes make the mod-

ification process inefficient and error-prone.

In the expected changes to a software system, some concerns are closely coupled with

“primary functionality of the system”, or “core concerns” [10], and thus cannot be

effectively expressed in a modular way using traditional development approaches. For

example, logging or asserting functions, often have to crosscut the whole software system.

Returning to the above state machine example, let us assume the change we need is to log

every transition. If the logging function can be added directly into the model, it entails
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Figure 1.5: A manual DSCG extension where the change cannot be reflected in the
domain specific model.

manual update of every transition in it. If not, it requires modifying every conditional

branch inside the “while” loop (except the final exception raising branch). In both

cases, the required change leads to manual changes that are scattered in the system. It

is obvious that when the expected change involves such crosscutting concerns, no matter

whether they can be described in the model level or not, they have to be introduced
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separately in different places of the system, which often contain very similar or even

the same modification. This makes the modification process rather inefficient, and such

duplication may easily lead to errors.

Observation 3: The existing DSCG extension approaches always seek to main-

tain a direct mapping between domain specific models and code.

An obvious common point of the above solutions via existing approaches is that they

are both based on a direct mapping between model and code. Whenever a valid model

is created, there exists a version of code that could be generated from it. As for the

pure model based approach, it introduces the restriction that code can only be produced

through model based code generation. Therefore, whenever there is a version of code

generated, there is a model used as the DSCG input in the first place. In the MRTE

approach, if the code is generated through code generation, there is a corresponding

model involved to produce it. If not, there will be a corresponding model computed

by the reverse engineering. In brief, the existing approaches bind model and code with

a direct mapping, so that they would update in lock-step. No matter whether the

model model′ is directly modified with ΔM in the pure model based approach, or model′

is computed from ΔC in the MRTE approach, the extension is always achieved by a

concomitant update of both model and code. In other words, a change introduced from

either model or code side is always propagated to the other side. As a result, an extension

via existing approaches always leads to an update of the domain specific model.

Taking into account the observations above, we list the following problems in the existing

DSCG extension approaches.

Problem 1: The existing approaches may lead to a breakdown of the abstrac-

tion hierarchy.

In Observation 1, we show an example where the expected change cannot be reflected

in the domain specific model. But it is not a scenario where the existing approaches

cannot accomplish the extension requirement. In fact, the pure model based approach

can provide a working solution. However, there is a serious problem in this solution. As

shown in Figure 1.6, a solution following the pure model based approach first extends

the domain specific modelling language with a new domain concept, i.e. eventlog, which

is bound either before or after a certain transition. It then updates the model by adding

an instance of eventlog after the self-transition of S1. Finally, the updated model is used

to regenerate the code. The problem here is that such a solution pollutes the model

with an eventlog concept, which is commonly seen in the less abstract level (code level),

rather than in the deterministic finite automaton model level.
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Figure 1.6: An extended solution following the pure model based approach in the
deterministic finite automaton example.

Problem 2: The existing approaches implicitly demand that the relationship

between model and code is a surjective function. This deviates from

the original intention of model based engineering.

Apart from the risk of breaking down the abstraction hierarchy, there is even a deeper

problem in the solutions via the existing approaches. As mentioned in Observation 2,
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the existing approaches bind model and code with a direct mapping throughout the

software maintenance life-cycle. More formally, they define a function from domain

specific models to code. In other words, for each valid domain specific model, there exist

one and only one version of code, as the same model always generates the same version of

code once the code generator is specific. In particular, this function is surjective, as for

each version of code, there exists at least one domain specific model. In the pure model

based approach, this restriction is intrinsic as code can only be generated through DSCG

process. In the MRTE approach, it is also required. Because the round-trip would be cut

if there exists a certain version of code, for which a corresponding domain specific model

cannot be found. In fact, the restriction in the MRTE approach is even more strict.

If the function is non-injective, different domain specific models can generate the same

version of code, which would make it impossible to establish a reverse function from

code to model to complete the round-trip. Therefore, the function from model to code

in the MRTE approach needs to be not only surjective, but also injective, i.e. bijective.

All above restrictions on the relationship between model and code may seem inevitable.

However, they are not required by the nature of model based engineering. The defining

characteristic of model based engineering is that the primary focus and product in

traditional software development, programs, are superseded by models [11]. The models,

as core products, should not be imperatively bound with some non-core products, like

code. The relationship between model and code does not necessarily need to be a

function at all. As an example, consider a refactoring of some generated code C to C′.

A loose analogy of the relationship between model and code in model based engineering

is the relationship between code and machine code in traditional software engineering.

In model based engineering, a model can be related to multiple versions of code, just

like a version of high-level programming language code can be compiled into different

machine code on different platforms in traditional software engineering, where the code

is regarded as core product. In short, the restrictions to keep model and code in stringent

synchronization deviates from the original intention of model based engineering.

Problem 3: The existing approaches may lose track of the software when the

introduced change cannot be reflected in the model.

Version control, as Yuehua et al. [12] argued, is a vital technique towards improving

quality and maintainability in the latter stages of the model based software life-cycle.

The tracking of model based software is naturally implemented by tracking the versions

of the model. Unfortunately, the existing approaches cannot support it well in certain

scenarios. From the above discussion, we may find that both the pure model based

approach and the MRTE approach can be inadequate when the expected changes can-

not be reflected in the models. In fact, even if we somehow managed to implement a

solution to introduce such a change to the code, it might hinder the proper tracking of

the software. In the pure model based approach, the changes have to be introduced by
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extending the modelling language first, and then translating the model from the original

modelling language to the extended modelling language, and finally updating the trans-

lated model according to the expected change. Obviously, such kind of model updates

with a prerequisite of modelling language change cannot be tracked the same way as the

common model updates. A common version reversing request may fail due to the model

incompatibility problem.

1.2 Our Solution

Our primary research objective is to sustain the benefits of DSCG that may get lost

during the introduction of changes that cannot be expressed by the original mod-

elling language. To achieve this, we develop a systematic and partially automatic ap-

proach to extend the given DSCG. This research objective can be expounded as to de-

velop a new DSCG extension approach, which does not affect the use of the other tools

that conform to the modelling language of the given DSCG, to accommodate changes

that cannot be described by the same modelling language.

Inspired by the aspect-oriented software development methods [13, 14], which naturally

supports the direct manipulation of the code and the encapsulation of customization

concerns, we propose our DSCG extension approach via domain specific aspect weav-

ing. We first dynamically generate a domain specific aspect language according to the

meta-model of the target domain, and then encapsulate the changes into domain spe-

cific aspects. Finally we weave these aspects to introduce the expected changes. Our

approach allows domain experts, who have little knowledge of the generated code, to

customize the code generation process conveniently by organizing their modification con-

cerns in terms of aspects that written in the generated domain specific aspect language,

which coordinates both domain concepts and code elements to describe the expected

modifications in a flexible and concise way.

Our approach properly solves the problems we listed above respectively. First, when

the models cannot reflect the expected changes, we can describe them in aspect, where

elements of both the problem domain and the solution domain can be used, e.g. code

level depiction is allowed. Thus, unnecessary modelling language updates can be effec-

tively avoided, so that the risk of a breakdown of the abstract hierarchy can be reduced

greatly. Second, the aspects can be regarded as an intermediate abstract level between

model and code. A model can thus relate to multiple versions of code with the help

of different aspects. Last, our approach clearly distinguishes between the software up-

dates due to model change and the updates due to aspect weaving. This bidimensional

version mechanism can support version control system well. Figure 1.7 illustrates the

comparison between the existing approaches and our approach over the version control

mechanism.
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From Figure 1.7, we can observe that our DSCG extension approach is not designed as a

replacement to the existing approaches. Instead, we attempt to introduce it as a powerful

supplement to them. When the expected changes can be reflected in the models, domain

experts can still introduce the change by directly modifying the models and launching

the corresponding code regeneration. However, when the changes cannot be expressed

by the current modelling languages, our domain specific aspect based DSCG extension

approach becomes necessary. Besides, sometimes our approach can be more efficient to

introduce the changes than the existing approaches provided all of them can do the job.

The remainder of this thesis is organized as follows:

In Chapter 2, we discuss the background context related to this thesis. It mainly includes

three areas: the model based software development, the domain specific code generation,

and the aspect-oriented software development. In Chapter 3, we elaborate on our DSCG

extension approach, and use a typical scenario to demonstrate how it can solve the target

problem. In the next three chapters, we demonstrate the viability of our approach by

experimenting on several concrete DSCG case studies, where we respectively implement

an extension mechanism that allow us to introduce some common customizations in the

different domains. In Chapter 4, we start with Kalman Filter domain as our first target

domain, and extend the code generation by a specific generator called AUTOFILTER

[15] that generates the C implementations of the Kalman Filter algorithm from high-level

specifications. In Chapter 5, we move on to a more well-established parser generation

domain, and work with a very popular parser generator, ANTLR [16], which accepts

an LL(*) grammar specification of a certain language, and generates a parser of the

language implemented in Java. In Chapter 6, we work with another widely used parser

generator, CUP [17], which accepts an LALR(1) grammar specification of a certain

language, and generates a parser of the language implemented in Java. In Chapter 7,

we evaluate our approach by comparing it with the two existing approaches. Finally, we

provide concluding remarks and potential future work in Chapter 8.



12 Chapter 1 Introduction

Figure 1.7: A comparison between the existing approaches and our approach over the
relationship between the model and code, as well as the versioning mechanism.



Chapter 2

Background

In this chapter, we discuss the background of extending domain specific code generation

and the related literature. We start with the background knowledge involved in domain

specific code generation, which mainly about model based software development, such

as domain specific modelling, etc. We then discuss the code generation techniques and

model traceability in domain specific code generation. Finally, we introduce the aspect-

oriented software development methods that directly inspires our work.

2.1 Model Based Software Development

The term Model Based Software Development (MBSD) subsumes a number of related

software development approaches such as Model Driven Engineering (MDE) [2, 18],

Model Driven Development (MDD) [19, 20], or Model Driven Architecture (MDA) [21].

These approaches are essentially much alike, but there are subtle differences between

them. For example, MDD and MDE refer to the same software development approach,

while MDA refers to a specific, architecture based implementation [22] of the approach,

as defined by the Object Management Group (OMG).

2.1.1 MDD, MDE, and MDA

There are three concepts that are often referred to in different literature related to

MBSD. Here we first provide a more detailed description of each concept, and then

clarify our terminology in this thesis.

Model Driven Development Model Driven Development (MDD) [2, 19, 20, 23] is a

common name for a family of software development approaches that raise the abstraction

level of software development from programming language implementation to problem

13
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domain modelling. According to Atkinson and Kühne [19], MDD is an approach mod-

elling the necessary functionality and system architecture, instead of spelling out detailed

implementation in a programming language, with the aim of automating many of the

complex (but routine) programming tasks. Later on, Hailpern and Tarr [20] provided

a more detailed description of MDD. They described MDD as “a software engineering

approach consisting of the application of models and model technologies to raise the

level of abstraction at which developers create and evolve software, with the goal of

both simplifying (making easier) and formalizing (standardizing, so that automation is

possible) the various activities and tasks that comprise the software life-cycle”.

Model Driven Engineering Model Driven Engineering (MDE) [1, 18] is a software

engineering methodology that concentrates on model creation and exploitation instead

of the traditional implementation in programming languages. According to Schmidt

[18], MDE is “a promising approach to address platform complexity and the inability

of third-generation languages to alleviate this complexity and express domain concepts

effectively”, in which there are a set of technologies that combine domain specific mod-

elling languages, model transformation engines and code generators. Compared to this

long definition, Kent [1] provided a much more brief explanation of MDE as “a method-

ology combining process and analysis with the MDA”, where MDA is explained below.

From the above definitions and explanations we can see that MDD and MDE are much

alike in definition, and the terms are used interchangeably in most situations. As we

understand, the only difference between MDD and MDE is that sometimes the former

is preferred in discussing software development paradigms and the latter is preferred in

discussing software engineering methods.

Model Driven Architecture According to Mellor et al. [21], Model Driven Archi-

tecture (MDA) is a software development framework using models as descriptions of the

system to be built. These descriptions “can be expressed at various levels of abstrac-

tion, with each level emphasizing certain aspects or viewpoints of the system.” Later,

Beydeda et al. [23] defined MDA with more detailed technical concerns. According to

their definition, MDA is a software development architecture in which “we can define

rules for automating many of the steps needed to convert one model representation to

another, for tracing between model elements, and for analyzing important characteristics

of the models”.

On the other hand, the term MDA also refers to the specific standardized architecture

formulated by the Object Management Group (OMG). In 2001, MDA was adopted by

the OMG as a standard framework for model driven software development. According

to OMG’s MDA specification [22], MDA can be considered as a development process

in which models are first class artifacts and are integrated through the chain of trans-
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formation from model to code. The latest official MDA specification version number is

1.0.1 [24].

From the above introduction, we can find that the differences between these model based

approaches are very subtle in terms of the scope of our discussion. It is reasonable for us

to ignore these differences and focus instead on their much larger commonalities. Rather

than emphasizing any one of these approaches, in this thesis, we will use the neutral

term Model Based Development (MBD) to refer to such commonalities.

The main goal of MBD is to raise the abstraction level of software development from

programming language level implementation to problem domain modelling. Software

development thus starts with the creation of an abstract model of the target system,

which is then repeatedly refined and systematically transformed into a concrete imple-

mentation. Model based approaches combine a number of technologies. The models are

formulated in one or possibly multiple modelling languages that conform to an (explicit)

meta-model. The concretization is implemented via a series of model-to-model transfor-

mations, followed by a final model-to-code transformation step. Obviously, comparing

to the traditional software development approaches, the most essential change in MBD

is that models replace code as the core product to be designed, refined, and reused in

the software development processes.

2.1.2 Models and Model Transformation

According to Beydeda et al. [23], models and modelling make up the basis of model based

development. This argument conveys two fundamental ideas in MBD. First, models are

the core products. Second, models need to evolve or develop to be gradually refined to

the final software product. In this section, we will present a brief introduction of a few

related concepts, including model, modelling dimensions, and model transformation.

Models No matter what technique or architecture is adopted in practice, the princi-

pal element of MBD is models. The term model here refers to a conceptual or abstract

representation of something or some system in a specific domain. As a basis for sub-

sequent development, models are a vital part of any MBD method. As Selic indicated

[11], the defining characteristic of MDD is that programs, the primary focus and prod-

uct in traditional software development, are superseded by models. This substantial

change makes the design focus less bound to the underlying implementation and closer

to the problem domain, which turns out to be such a significant raise in abstraction level

that Selic believed that “MDD holds promise of being the first true generational leap in

software development since the introduction of the compiler”.

The major difference between model and code is that they belong to different abstract

levels. Models represent the design concerns with the elements or relationships in a
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the problem modelling domain, while code conveys detailed information about the im-

plementation. According to Kleppe et al. [25], “a model is a description of (part of) a

system written in a well-defined language. A well-defined language is a language with

well-defined form (syntax), and meaning (semantics), which is suitable for automated

interpretation by a computer.” The explanation of “well-defined language” here can be

regarded as a concise definition of “modelling language.”

Modelling Dimensions The modelling space can be structured in various dimen-

sions of concerns, for example, security or reliability. A common dimension of concern is

the abstraction level. In an MBD project, there should be one or more problem domain

models derived from the requirements analysis in the beginning, which are constructed

using only problem domain concepts. These models are transformed later into solution

domain models, which are built with solution domain concepts. The abstraction level

of these models thus forms a dimension of the modelling space. OMG’s MDA standard

defines two terms Platform Independent Models (PIMs) and Platform Specific Models

(PSMs). As their names suggest, PIMs model platform independent concerns of the

target system, while PSMs refine PIMs by including platform specific concerns in them.

Kent [1] proposed that the MDA framework group models into PIMs and PSMs by

categorizing perspectives. Laforcade et al. [26] refined this categorization by indicating

a third model class in the MDA, Computation Independent Models (CIM). Kent ad-

dressed that several other dimensions of concerns have begun to be identified in the area

of Aspect Oriented Software Development (AOSD) [27]. Kent also pointed out some

seldom considered dimensions: abstraction/concretization, in regard with managerial

and societal aspects, like authorship, version.

Model Transformation Model transformation plays a very important role in refin-

ing the models in MBD processes. According to Sendall [9], model transformation refers

to the processes that “take one or more source models as input and produce one or more

target models as output, following a set of transformation rules.” Based on a taxonomy

of the design features of model transformation approaches, Czarnecki and Helsen [28]

categorize the transformation approaches into six categories: direct-manipulation, rela-

tional, graph-transformation-based, structure-driven, hybrid, and other. According to

the definition of “well-defined language” and “model” we discussed in Section 2.1.2, we

can infer that a programming language can be considered as a “well-defined language”,

and an implementation in a certain programming language can then be regarded a model.

Hence, the model-to-code transformation, i.e. the code generation, is also a specialized

kind of model transformation. Without special explanation, “model transformantion” in

this thesisalways refers to “model-to-model” transformations. We will separately discuss

code generation in Section 2.2.1.
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2.1.3 Domain Specific Modelling

In order to describe a software system more precisely, developers often need to concen-

trate only on a specific area and its related entities, attributes, and relationships. In soft-

ware engineering, these areas are often referred to as domains, and the related entities,

attributes, and relationships are often referred to as domain elements. The increasing

complexity and variety of different domains prevent general purpose modelling languages

from building models precisely and concisely. It would be more convenient and cost ef-

fective if we could build models directly with the basic concepts in the specific domains.

This leads to the notion of domain specific modelling. In simple terms, domain specific

modelling (DSM) is a specialized modelling method based on domain specific knowledge.

From the model dimensional view, all domain specific models are problem domain mod-

els. We did not find a standardized or generally accepted definition of DSM, as different

people define it from different angles. According to Kelly and Tolvanen [3], DSM is an

approach requiring three parts to form a development environment: a domain specific

modelling language, a domain specific code generator, and a domain framework, while

Choi et al. [29] define it as design representation with terms of parameters associated

with a specific domain. As we understand, DSM is a software engineering methodology

that systematically utilizes a domain specific modelling language to describe the domain

ontology of the specific domain. Next, we explain several related concepts.

Domain According to Simos et al. [30], the term “domain” has two different mean-

ings. First, a domain is the “real world” encapsulating the knowledge about a problem

area, which excludes any detail about its solution or the corresponding software automat-

ing. Second, a domain is a set of systems. As Czarnecki and Eisenecker [31] argued, “in

the software reuse community (and particularly in the field of Domain Engineering), the

term ‘domain’ encompasses not only the ‘real world’ knowledge in a given problem area,

but also the knowledge about how to build softwares in that area”.

Domain Ontology and Meta-Model The term ontology originally denotes the

philosophical probing of existence. To our knowledge, it was first introduced into Com-

puter Science by Gruber [32], referring to “a specification of a conceptualization.” An

ontology is “a description of the concepts and relationships that can exist.” It is now

widely used in Computer Science, especially in Artificial Intelligence and Domain Mod-

elling, to describe the knowledge within a domain. According to Musen [33], models

consist of the foundational domain concepts, and possibly the problem-solving proce-

dures that might be applied to those concepts. These enumerations of the domain

concepts and their relationships are referred to as domain ontologies. In MBD, the de-

sign models are transformed into various artifacts, all of which conceptually map to the

abstract design models that are described in terms of domain ontology. To this extent,
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the domain ontology can be considered as the reference frame through the whole MBD

procedure.

In Sergeevitch’s paper [34], the domain ontology is the mechanism of creating continu-

ous information field within the domain. It consists of two perception subjects, domain

objects and the relation between these objects. According to Grüninger and Lee [35],

an ontology is generally defined as a“formal explicit specification of shared conceptual-

ization” or the “classifications of the existing concepts.” A domain ontology can thus

be considered as a formal representation of domain knowledge. In this thesis, we define

domain ontology as a formal representation of the existing domain knowledge of a cer-

tain application domain, which mainly includes two parts: the specific elements in the

domain, and the relations among these elements.

Simply stated, meta-model is a model of models, which conform to a specific domain

ontology. They can be regarded as concrete descriptions of how models conforming to a

certain domain ontology can be built, especially in terms of constructs and rules. From

the perspective of graph theory, a meta model can be considered as a graph, in which

nodes are classes and properties. In practice, domain specific modelling Languages often

serve as the meta-models describing the corresponding domain ontologies. Interestingly,

meta modellingitself can also be considered as a particular domain, which can be modeled

within MDA. Djuric et al. [36] presented the Ontology Definition Metamodel (ODM)

that is defined using the Meta Object Facility (MOF) [37] to promote the MDA standards

in the ontological engineering.

Domain Specific Modelling Language A Domain Specific Modelling Language

(DSML) is a formalized modelling language that is capable of specifying all parts or

certain desirable facets of the domain ontology in a particular domain. Different from

the general purpose modelling languages, like UML, DSMLs focus on a specific problem

domains, offer higher abstraction levels that enable building models directly using the

elements in the problem domains, and hence reduce design space.

Domain Specific Language Domain Specific Languages (DSLs) are sometimes iden-

tified with DSMLs. However, according to Deursen et al. [5], DSL is actually a different

concept that is defined as “a programming language or executable specification language

that offers, through appropriate notations and abstractions, expressive power focused

on, and usually restricted to, a particular problem domain.” In brief, the difference be-

tween DSML and DSL is that models built in DSML do not need to be executable while

models in DSL need to be executable. In this thesis, we will not distinguish them, and

will use them interchangeably.

To some extent, DSM can be considered as an extension of the general purpose mod-

elling approach. It pushes the design context to the problem domain, which brings
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about the highest abstraction level that can be achieved from modelling. Accord-

ing to Booch et al. [38], the full value of MBD can only be achieved when the mod-

elling concepts map directly to domain concepts rather than computer technology con-

cepts. To this extent, the foundation of MBD is automation. Without automation,

models would merely end up as documentation. Therefore, appropriate automation

techniques are required in MBD to fulfill its promise.

2.2 Code Generation and Domain Specific Modelling

In this section, we first give a general introduction to code generation and its relevant

techniques. Then we discuss how code generation works together with DSM technology

to deliver the working software product in MBD.

2.2.1 Code Generation

Code generation [3, 39–41] has become a very popular topic in computer science re-

search. However, there has been little agreement on a precise definition of the term

“code generation.” A major reason is that the meaning behind it has gradually changed

since the notion was first proposed. Initially, the notion of code generation was used to

refer to an internal program construction process in compilers for high-level program-

ming languages [42]. Hence, the “code” here refers to the intermediate code or machine

code. With the maturity of the compiler related code generation techniques and the

boom of model driven development, code generation now refers to the source code gen-

eration process in MBD in increasingly more papers [3, 41]. In terms of the way that

different code generation techniques assure the correctness of their generated code, code

generation techniques can be grouped into two main categories: deduction based code

generation and transformation based code generation.

Deduction Based Code Generation According to Stickel et al. [43], deduction

based code generation (or “deductive program synthesis” [4]) is a code generation ap-

proach in which the code is “developed from the logical form of the specification by a

deductive approach.” In this approach, the code is generated as the byproduct of the

proving process, which gives the basis of ensuring and demonstrating the correctness of

the generated code. The structure of the generated code thus “reflects the proof from

which it was extracted.” Since the foundation of this code generation approach is the

underlying theorem proving process, the code generated in this approach is guaranteed

to be “correct-by-construction”.
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Transformation Based Code Generation Different from the “correct-by-construction”

guarantee provided in the deduction based code generation approach, the correctness

of the code that is generated as a direct product of certain transformation processes

depends on the tools that actually conduct the transformation, i.e. the code generator

[4]. A code generator takes in a model as input, puts it through certain transformation

processes, and finally produces a corresponding program as output.Code generators may

vary greatly in terms of the nature and strategy of the transformations they implement.

In the famous book “generative programming” by Czarnecki et al. [31], model-to-code

transformation is categorized into horizontal transformation, vertical transformation and

oblique transformation. A horizontal transformation operates on one level of abstraction

and modifies the modular structure of a model. In contrast, a vertical transformation, or

forward refinement, performs strictly hierarchical decomposition, preserves the modular

structure of the higher level representation and implements it with one or more modules

at the lower level. An oblique transformation does not only perform hierarchical de-

composition, but also changes the modular structure of the higher-level representation.

Figure 2.1 illustrates these three kinds of transformations.

Figure 2.1: Transformations in code generation discussed in the book “Generative

Programming: Methods, Techniques, and Applications Tutorial Abstract” by Czar-

necki et al. [31]

Accordingly, Czarnecki et al. group code generators into two categories: compositional

generators and transformational generators. Compositional generators only implement

forward refinement, while transformational generators perform horizontal or oblique

transformation. It is worth noting the “transformation” here does not refer to the

general “model transformation”. Instead, it specifically refers to the transformation in

which the modular structure of the model at higher level of abstraction is breached. Most

generators found in practice by then have a “predominantly compositional character”

[31].

On the other hand, in terms of their implementation strategies, code generation can be
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categorized into two main kind: template based code generation, and rewrite based code

generation.

∙ Template Based Code Generation As its name suggests, template based code

generation is a code generation approach based on template expansion techniques.

As Czarnecki and Helsen [28] argued, a template “usually consists of the target

text containing splices of metacode to access information from the source and to

perform code selection and iterative expansion.” A template resembles closely the

code to be generated in terms of structure, and is independent of the target lan-

guage. These features make this approach rather easy to implement. Nonetheless,

a template is essentially a container of textual patterns, which are untyped. It

inherently allows syntactic and/or semantical errors. Thus the correctness of this

code generation approach relies on the correctness of the base templates and their

expansion process. Further discussion about template based code generation can

be found in the book by Cleaveland et al. [44].

∙ Rewriting Based Code Generation Pfenning and Elliott [45] indicated that

Abstract Syntax Trees (AST) have been proved very useful in contexts like effi-

cient and correct program transformation or inference rule application. AST is

the core artifact in rewriting based code generation, which generally consists of

three consecutive steps. First, the textual representation of the input model is

transformed into an AST that conforms to a regular tree grammar. Second, a se-

quence of rewriting rules are applied to the AST. A rewriting rule can be described

in the form R : T1 → T2 wℎere C, which means on the match of term T1 when

condition C is satisfied, a rule named R rewrites T1 with new term T2. Finally,

the modified AST, which represents the transformed model, is translated to the

output programming language to complete the code generation process. Accord-

ing to the conclusion of a case study by Hemel et al. [46] on a typical rewriting

based framework Stratego/XT [47], term rewriting has several advantages over

template expansion in code generation, which include the ability to ensure syntac-

tical correctness of generated code. However, such improvement relies on a correct

grammar to construct the right AST in the first step. From this perspective, the

correctness of this approach depends on the correctness of the AST construction

and rewriting rule application.

2.2.2 Benefits of Code Generation

The benefits of code generation have been presented and discussed in many papers

and books [3, 11, 41, 48]. Here we focus on two major benefits of code generation:

productivity improvement and quality improvement.
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Productivity Improvement The productivity improvements include the following as-

pects:

Lower Learning Cost Since models hide many code level details that are often

complicated and error-prone, software developers only need to master the

domain knowledge at the model level, instead of having to understand model

level domain knowledge as well as code level details and their mappings with

domain elements.

Higher Development Efficiency With the automatic code generation process,

the cost of making design changes even in late stage of software engineering

life-cycle is greatly reduced.

Better Maintainability With code generation, developers no longer have to di-

rectly modify the code in order to introduce a design change. Instead, they

only need to change the corresponding model (though sometimes a certain

amount of coding is still needed), which is relatively simpler and less error-

prone.

Quality Improvement The quality improvements include the following aspects:

Increased Reliability Code generators often adopt existing best practice and

specialized design patterns as the basis of the generated code. The adoption

of these “built-in code templates” effectively avoids the tedious and error-

prone manual coding process and increases the reliability of the generated

code in return.

Improved Performance Besides increased reliability, raised performance of the

generated code is another benefit that is often gained from these “built-in

code templates.” It is because the templates often introduce optimized al-

gorithms and specialized programming tricks to a certain problem, which

greatly enhances the performance of the generated code.

However, the above benefits may get lost if direct manual code modifications are intro-

duced after the code generation. That is exactly the main motivation for our work.

2.2.3 Domain Specific Code Generation

Now that we have presented a general introduction about domain specific modelling and

code generation. In this section, we introduce the problem domain of our research, do-

main specific code generation. Domain specific code generation (DSCG) is a specialized

code generation technique applied in domain specific modelling. It translates the domain

specific models that are built by domain experts to the corresponding implementation of

source code. In other words, the DSCG transforms the DSL description of a system in
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the problem domain into its corresponding representation in the solution domain, e.g. a

Java implementation. Before further discussion, we need to clarify the meanings of

several relevant terms that will be used in our discussion.

The Problem Domain Despite its vagueness and volatility [5], “problem domain”

often serves as a defining term in DSM related definitions. According to Czarnecki

and Eisenecker [49], the problem domain (or problem space in Czarnecki’s terminology)

“consists of the application-oriented concepts and features that application programmers

would like to use to express their needs”. As for the coordination of the problem domain

and the solution domain, they explicitly define a concept called configuration knowledge,

which maps abstract requirements onto appropriate configurations of solution compo-

nents. According to their definition, the configuration knowledge consists of five parts:

illegal feature combinations, default settings, default dependencies, construction rules,

and optimizations. They believe such separation between the problem space and the

solution space and the configuration knowledge helps in requesting concrete systems or

components.

However, for the discussion under the context of DSCG, this separation does not often

help. In DSCG, the input problem model includes the goals that the problem owner

wishes to achieve, the context within which the problem exists, and all rules that define

essential functions or other aspects of any solution product. In other words, the problem

domain here represents the environment in which a solution will have to operate, as well

as the problem itself. In this thesis, we define “problem domain” as all information that

defines the problem and the constraints on the solution. In terms of DSCG, the problem

domain is the context where domain specific models are constructed. It can be regarded

as a meta-model of the input problems.

The Solution Domain While the “problem domain” defines the environment in

which the solution work, the “solution domain” defines the environment where the so-

lution is developed. As Czarnecki and Eisenecker [49] put it, the solution domain (or

solution space) “consists of the implementation components with all their possible com-

binations”. Accordingly, in this thesis, we define the “solution domain” as all elements

that are used to form a solution. It is worth noting that the elements in the solution

domain may reside at more than one levels of abstraction. The higher level solution do-

main defines the abstract context in which a solution is constructed, while the lower level

solution domain includes the corresponding implementation, e.g. in the form of source

code. As there is not a consensus about the definition of the “problem domain” and

the “solution domain”, we will not introduce the ontologies of them respectively in the

case studies of our extension approach. Instead, our discussion will be around the target

domains, which refer to a general combination of the corresponding problem domain

and solution domain.
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Output Languages, Target Languages and Host Languages The terms target

languages and output languages are introduced from the perspective of DSCG code gen-

erators. They normally refer to the same concept, namely the programming languages

in which the code is generated. There is difference between them only when the model

tracing information is directly tangled with the generated code. In that case, we use the

term target languages to refer to the original programming languages without the defini-

tion of the grammatical constructs for model tracing information, e.g. the comments for

tracing an instance of a certain domain class. We use the term output languages to refer

to extended programming languages which include the definition of such model tracing

constructs. In practice, target languages are often standard versions of some mainstream

programming languages, such as C11 (ISO/IEC 9899:2011) [50]. Output languages, on

the other hand, are the extended versions of the target languages, which include the

model tracing constructs. We can see some examples in later discussion. It is worth

noting that such extensions only enrich the semantics of the target languages conforming

to the existing syntactic specifications of them, so that they do not require extended

compilers. It is because that interpreting the extra semantics for model tracing is not

the job of the target language compilers. Another relevant term is host languages. As

Hutchins [51] indicated, “DSLs are often implemented by code generation, in which do-

main specific constructs are translated to a general purpose ‘host’ language.” From this

perspective, the DSCG process is essentially the DSL compilation process. Therefore,

the host languages of DSLs are in fact the output languages in the underlying DSCGs,

provided that the DSLs are implemented by the DSCGs.

In the following discussion, the term code generation only refers to the code genera-

tion process in MBD, i.e. the “model-to-code” transformation. With the help of DSCG,

software designers can be relieved from worrying about tedious details in the solution do-

main, such as system portability, or adopting best practice for certain solution patterns.

Thus they can indeed work at raised abstraction level. Moreover, the higher abstraction

level also leads to significantly reduced design space, which helps in decreasing design

errors. On the other hand, the greater abstraction level gap between the original models

and the generated code makes the mapping between them more tenuous. Therefore,

model traceability becomes more important in maintaining the link between the models

and their corresponding code.

2.2.4 Model Traceability

The notion of traceability in software development was originally defined as the “degree

to which a relationship can be established between multiple products in the software de-

velopment process or the degree to which each element in a single product establishes its

reason for existing” [52]. Aizenbud et al. [53] argued that this definition was “strongly

influenced by the originators of traceability–the requirements management community”,
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and broadened it to include “any relationship between artifacts involved in the software

engineering life-cycle.” Traceability is often mandated in industrial projects, especially

in safety-critical systems [54] and is often achieved by generating human-readable docu-

ments about how requirements can be related to various artifacts involved in the whole

process [55].

In MBD, traceability is naturally gained by its transformation chain, along which each

transformation relates its source and target models to each other. The application of

repeated transformations from the original models to the finally delivered code make it

very difficult to recognize the system elements that are specified in the original models. In

details, the traceability is often achieved by maintaining extra information that conforms

to a traceability meta-model, which may be used along the transformation tool chain.

This extra information from the applied sequence of transformations can be chained

together, and so provide an argument for how the generated programs conform to the

original models.

In this thesis, with DSCG as our research problem domain, we are interested in the

traceability of the domain specific models along the DSCG process. We use the term

model traceability specifically to refer to the ability of tracing the domain specific model

in the generated code. We use the term traceability links, which is used by Czarnecki

and Helsen [28], to refer to any artifact that provides or maintains the traceability from

the generated code back to the domain specific models. As they indicated, traceability

links may be constructed in different ways, e.g. by encoding in transformation rules,

or by storing unique GUID in each model element. In practice, there are different

types of traceability links in terms of the way we keep them. For example, they can

be kept inside the model and/or the generated code, or be kept separately, e.g. as a

standalone tracing log file. In particular, we often call the traceability links intertwined

in code at the entry and exit of the generated code blocks corresponding to a specific

domain element, the sentinels (of the domain elements). In respect of the DSL and the

output languages, the traceability links may exist in different forms, such as annotations

in models, comments or function invocations in code, etc. Some examples of these

traceability link implementations are shown in Appendix A.1. It is worth noting that

traceability links are very important to model traceability, especially when the code block

corresponding to the domain specific elements are not original linguistic constructs in

the output language, such as variable modifications or function invocations.

Model traceability is often an expected property of code generators in MBD. Most

commercial code generators support it by directly adding tracing information to the

generated code in the form of comments or embeded links [56], while academic research

has worked on maintaining and recovering it [57, 58].
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2.3 Aspect-Oriented Software Development

Aspect-Oriented Software Development (AOSD) is, as Mehmood et al. summarized, an

approach “which allows explicit identification, separation, and encapsulation of concerns

that cut across the primary modularization of a system.” [10] AOSD provides an effective

way to separate and express these cross-cutting concerns. Early research works on AOSD

are often from the perspective of programming paradigm based on such idea, which is well

known as Aspect-Oriented Programming (AOP) [13, 14]. In AOP, cross-cutting concerns

are encapsulated into a separate category of modules called aspects, which are invasively

composed with (or woven into) a base system. It allows an “aspectual” decomposition

of the system instead of (or in addition to) the traditional modular decomposition, and

also enables an easy modification of the existing systems. In the following discussion,

we follow the terminology used by Kiczales et al. [13]. We call the program of the target

system the base program, and the language in which the base program is written the

component language. We call the program of the aspect the aspect program, and the

language in which the aspect program is written the aspect language. We call the tool

that takes in aspect programs and then composes them with their corresponding base

programs the aspect weaver. Finally, we call the output program of the aspect weaver

the woven program.

2.3.1 Component Language

The above concepts by Kiczales et al. are based on the assumption that the target soft-

ware system is implemented in a Generalized Procedure (GP) language, whose key ab-

straction and composition mechanism is always rooted in a certain form of generalized

procedure [13]. The components, which are the system’s functional units, are thus en-

capsulated in these GPs in a “well-localized, easily accessed and composed as necessary”

manner. Therefore, the languages that these components are implemented in are called

component languages.

2.3.2 Aspect Languages

To give a precise definition of aspect, we first need to clarify the notion of crosscut. In

general software system design, whenever two properties have to be built up following

different composition rules and yet be coordinated, we say that they crosscut each other

[13]. From this perspective, components can be regarded as the system properties that

are built up via the major composition mechanism provided by GP languages. Aspects

can thus be considered as the system properties that crosscut the components. Or as

Kiczales et al. defined, aspects are the system properties that “affect the performance

or semantics of its components in systematic way”. The languages in which aspects
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are written are called Aspect Languages (ALs). According to the different crosscutting

concerns that they focus on, ALs can be grouped into two categories: general purpose

aspect languages and domain specific aspect languages.

General Purpose Aspect Languages An aspect language is often referred to as

a General Purpose Aspect Language (GPAL), if it “is not coupled to any specific cross-

cutting concern and provides general language constructs that permit modularisation

of a broad range of concerns” [59]. It is worth noting that a GPAL is not defined as

an aspect language working with a General Purpose Programming Language (GPPL) as

its component language. The distinguishing characteristic of an aspect language is the

crosscutting concerns it focuses on, instead of the component language it works with.

GPALs are very useful in software development, as there are many crosscutting concerns

in software systems at source code level, for example, system logging, or error handling.

AspectJ [60] is a very widely used GPAL, whose component language is Java. As a simple

and practical aspect-oriented extension to Java [61], it allows its users to encapsulate

their crosscutting concerns for modification in separate aspects that are declared in

a similar form to Java classes. An aspect declaration in AspectJ may contain three

kinds of declarations: pointcut declarations, advice declarations, and all other kinds of

declarations allowed in class declarations. To show a general idea of AspectJ, here we

present an example of how it helps to modify an existing picture drawing tool. Figure 2.3

shows the current implementation of the tool.

Assume that we want to forbid any attempt to move a FigureElement to its left. We do

not need to modify the code of every class that inherits FigureElement interface. Instead,

we only need to write an aspect containing all the custom code we need to introduce, as

shown in the AspectProgram in Figure 2.2.
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Figure 2.2: An example of how AspectJ modifies the picture drawing tool.
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Figure 2.3: Part of the sample picture drawing tool.
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Domain Specific Aspect Languages Apart from the general concerns that relate

to the component languages, there can be some particular concerns related to specific

domains, i.e. domain specific concerns. For example, Harbulot and Gurd [62] developed

the loop join point model that focuses on the specific semantic structures in the compo-

nent language, in particular, the loop structure in Java. Ali and Rashid proposed the

state based join point model [63] aiming for the safety critical system domain, in which

state and state transitions of the system are the particular domain specific concerns.

An aspect langauge is often referred to as a Domain Specific Aspect Language (DSAL),

if it “allows special forms of crosscutting concerns to be decomposed into modularized

constructs” [64]. As we emphasized above, whether an aspect language is a DSAL does

not depend on its component language, but on the forms of crosscutting concerns it

focuses on. The component language of a DSAL does not necessarily need to be a DSL.

An AL, whose component language is a GPPL, can still be a DSAL, as long as it focuses

on specific concerns. Interestingly, the majority of DSALs have been developed to work

with GPPLs [59].

2.3.3 Join Point Models

The general definition of the term join points is given by Kiczales et al. [13] as the “ele-

ments of the component language semantics that the aspect programs coordinate with.”

From the perspective of program execution, join points are the points (or actions) in

base programs where aspect programs interact with base programs. The models that

formalize the join points and the allowed interactions at them are referred to as the Join

Point Models (JPMs). In particular, JPMs specify at which level the join points may

crosscut the components. According to Kiczales et al. [31], the join point may crosscut

the component at either the class level, i.e. crosscutting all instances of a class, or the

instance level, i.e. crosscutting specific instance of the class. As Masuhara et al. [65] in-

dicated, JPM is both a syntactic concept and a semantic concept. From semantic side,

it defines which specific points are join points in base programs and which specific inter-

actions or operations are allowed at these join points. From syntactic side, it defines the

pointcut mechanism, i.e. how to identify join points, and the advice mechanism, i.e. how

to specify the interactions allowed at join points. The core of an aspect language is its

JPM, as it determines how it crosscuts its component language by defining its pointcut

and advice mechanisms. We will elaborate upon the pointcut mechanism in Section

2.3.4 and the advice mechanism in Section 2.3.7. The JPMs of GPALs are often built in

accordance with their component languages. In detail, their join points are the linguistic

actions, like function invocations or variable value modifications. The basic elements we

manipulate with in the interactions at these join points are also the linguistic entities,

like variables. There are several general JPMs defined based on the different concerns

in join point definition or interactions at join points. For example, based on the concern
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about the timing of join point interactions, there are static/dynamic join point models,

in which aspect programs interact with base programs at compile-time/runtime. As-

pectJ, for example, includes the dynamic join point model, in which join points are

specified as “principled points in the execution of the program” [61]. Returning to our

AspectJ example shown in Figure 2.2, the ForbidLeftMove aspect captures the points in

the TestProgram wherever an object whose class type implements interface FigureElement

invokes its moveBy method.

2.3.4 Pointcut Mechanism

The notion of pointcut is another basic concept in aspect languages. A pointcut is a

collection of join points that satisfy the conditions it specifies. To describe a point-

cut in an aspect, a specific syntactic construct is introduced into the corresponding

aspect language, which is called pointcut designator [61] or pointcut descriptor. Both

of them are often abbreviated as PCD. It is worth noting that people may refer to the

languages in which PCDs are defined as crosscut languages [66] or pointcut languages

[67]. A crosscut language can be considered as an embedded language or mechanism

in its “host” aspect language to describe pointcuts. Different aspect languages may

have their own terms in referring to their crosscut languages. For example, in As-

pectJ, it is called “pointcut language” [68]. In DJ, it is called “traversal strategies”

[69]. Crosscut languages do not only formalize the syntax to describe the pointcuts, but

also reflect the underlying join point models adopted by the corresponding aspect lan-

guages. Returning to our AspectJ example shown above, we define the ForbidLeftMove

aspect containing a PCD called FigureElementMove(intx, inty). We can see clearly that

the PCD consists of three parts: the initial keyword pointcut, the declarative name

of the pointcut before “:”, and the join point description part after “:.” From the fi-

nal part args(x, y)&&execution(public void FigureElement.moveBy(int, int)), we identify all

join points where an object of a type implementing FigureElement invokes its moveBy

method with two int type parameters x and y. Moreover, it also reflects that AspectJ

includes a dynamic join point model that allows user to capture the arguments of the

execution of a method invocation as a join point.

2.3.5 Domain Specific Join Point Models

As its name suggests, Domain Specific Join Point Models (DSJPMs) are referred to

the JPMs of DSALs, according to which domain specific elements can be used in both

join point descriptions and the operations at join points. The basis of such a special

crosscutting mechanism requires a unique perspective upon component languages; as

we indicated in Section 2.3.1, Kiczales et al. introduce the general AOP architecture

based on an assumption about the component languages of GPALs that they are GP

languages, i.e. their key abstraction and composition mechanism is always rooted in a



32 Chapter 2 Background

certain form of generalized procedure. Similarly, when we talk about the component

languages of DSALs, we implicitly view the programs in the component languages as

organized in certain forms of specialized procedures defined in specific domains. With

respect to the consistency of the terminology used by Kiczales et al. , we call such com-

ponent languages Specialized Procedure (SP) languages. In this thesis, any discussion

about DSALs is based on the assumption that the component languages are always SP

languages.

A DSJPM defines the specialized procedures in its domain, or Domain Specific Pro-

cedures (DSPs), as their join points, which normally correspond to some elements in

the domain meta-model. There are often other domain elements involved in the DSP at

each join point, which can be classes or properties in the meta-model, e.g. from state and

to state in state transitions in our automata example. From the perspective of DSALs,

a DSP is represented by a pointcut. which can be defined by domain specific elements,

instead of the basic linguistic constructs in the GPPLs. Domain specific elements can

also be used in the advice code, which modifies the behavior of the captured join point.

2.3.6 Problems Related to Pointcut Designators

There are a few problems related to PCDs that we need to discuss, as they have influ-

enced our design of the pointcut designator in our aspect languages.

Coupling of Pointcut Designators to Base Programs The pointcut designators

in many aspect languages are based on pattern matching of the base program’s struc-

tures and behaviours. For instance, our previous examples in AspectJ have shown how

pointcuts are defined by certain patterns of the method declarations. This tight coupling

between pointcut designators and base programs may lead to problems in further evolu-

tions. For example, Koppen et al. address the fragile pointcut problem [70], in which the

autonomous evolution of base programs may incidentally lead to the failure of aspect

weaving. Gybels et al. indicate the arranged pattern problem [66], where the evolution of

base programs may render the aspects inoperative if the pointcuts are based on certain

conventions and patterns in programs. All these problems hinder the evolution of aspect

oriented programs, as they imply restrictions on the autonomous evolution of the base

programs.

Attempts to Decouple Pointcut Designators from Base Programs There

are several attempts made to decouple pointcut definition mechanisms from programs.

AspectJ designers introduced abstract aspects, which contain abstract pointcuts that can

be defined by inheriting concrete aspects. However, this only decouples the pointcuts

from the aspects, instead of the base programs. The fragile pointcut problem still remains
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among the concrete aspects that implement the abstract aspects. Stoerzer et al. present

the pointcut delta analysis [71] approach to address the fragile pointcut problem. They

introduce a program analysis to both base programs and modified programs, in which

they could (partly) detect the changes in pointcut matching (which they call pointcut

delta) and finally reveal unintended code modifications that cause pointcut deltas. This

approach might be useful to partially solve the fragile pointcut problem. However, it

relies on “a good approximation of dynamic pointcut designators” [71] and requires

dedicated supporting tools, which come with considerable cost. Moreover, it is merely

treating the symptoms. It is not attacking the coupling which is the root cause of these

problems.

Ostermann et al. present expressive pointcuts [72], which improves the expressiveness

and robustness of the pointcuts by exploiting various information from the program,

such as the execution trace or the syntax tree. However, the extra information intro-

duced to increase the pointcut precision is based on static analysis of the program.

Moreover, the abstraction capability of expressive pointcuts, such as functional compo-

sition and higher-order pointcuts, allows the composition of primitive pointcuts to build

complicated pointcuts. The increased complexity of the aspects increases the possibil-

ity of aspect interaction problems. For example, the precedence of multiple aspects is

more likely to lead to different program behaviours [73]. Different from the expressive

pointcuts approach, which requires specific program analysis, the program annotations

[71] approach achieves more precision via annotations to the programs. This approach

maintains a conceptual view of the programs by adding meta-information in the form of

annotation or comment. Though it demands the extra decoration of the program, the

decoration itself does not affect the basic compilation of the program. All annotation

related functions are encapsulated by the aspect weaver, which makes this decoupling

approach the most light weight one with regard to the cost.

2.3.7 Advice Mechanism

Whenever a join point is successfully captured, the aspect needs to apply the expected

modification to the corresponding base program. A semantic rule conveying such ex-

pected modification is often referred to as advice. Advice normally consists of two parts:

header and body. A header declares the target pointcut that the current advice associates

with, or to be applied to. This can be done in two ways, either by directly describing the

target pointcut, or by referring to an existing pointcut that is defined elsewhere. A body

contains the code snippet for adapting the captured join points which are specified by

the pointcut declared in its header. In this thesis, we refer to such code snippet defined

in the body of an advice as custom code. We refer to the language in which custom code

is written as custom language.

There are mainly three concerns related to advice in an aspect language design. The
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first concern is how an advice communicates with associated pointcut, in particular,

how information is exchanged between the captured join points and the custom code

scope, i.e. context exchange [59]. For example, sometimes an advice needs to retrieve

specific information from its captured join points, such as the runtime values of the

parameters passed into a function, so that its custom code can work properly. On the

other hand, if the custom code is an independent code block to append to the captured

join points, there is no need for much context exchange. The second concern is how the

custom code is applied to the captured join points, specifically, the pattern in which the

custom code is integrated with the corresponding piece of code in the base program.

Such patterns are often referred to as advice patterns. Different aspect languages may

have their own advice patterns. Take AspectJ for instance, advice is designed to be “a

method-like mechanism used to declare that certain code should execute at each of the

join points in a pointcut” [61]. Thus the related advice patterns supported by AspectJ

include: before, after, and around. As an example, we declare a piece of around advice in

the ForbidLeftMove aspect, as shown in Figure 2.2. The third concern is in which order

multiple advice should be applied when they are associated with the same pointcut. This

may seem not important at the first glance. However, it does influence the modification

result if the custom code of these advice have logical overlap. For example, assume we

have two aspects A and B. Both are applied to pointcut P in after pattern. There is a

variable x visible in the scope of the captured join points. A tries to update the value of

x to 3. B tries to update the value of x to 5. If A is applied before B, then the modified

code would finally set the value of x to 5. Otherwise, that would be 3.

From above discussion, we can observe that advice design relates closely to both pointcut

language design and aspect weaver design. In the first concern, if we want to have

more information available in the context exchange in an advice, we have to make

the corresponding pointcut designator finer grained, so that it is able to capture more

information in the first place. In the second concern, the advice patterns exposed to the

users of an aspect language depends on how its aspect weaver can actually weave the

custom code into the base programs. In the third concern, the advice application order

known to the aspect language users must reflect in the implementation of its aspect

weaver.

2.3.8 Aspect Weaver

The semantics of aspect languages, which are mainly about join points capture and

advice application, are supported by their auxiliary tools, which accepts base programs

and aspect programs as input and emits modified (or woven) programs as output. Such

auxiliary tools are often referred to as aspect weavers, and the transformation process

is called aspect weaving. Kiczales et al. [13] argued that aspect weaving “must process

the component and aspect languages, composing them properly to produce the desired
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total system operation.” They define three distinct phases in the aspect weaving process.

The first phase is to generate a data flow graph from the base program. The second

phase is to run the aspect program to adjust the generated graph accordingly. The last

phase is to walk through the adjusted graph and generate the modified program. In this

process, they emphasized that the weaver should not be a “smart” compiler. Instead,

its job should be “integration, rather than inspiration.” That means the weaver should

work as a rewriting engine which only performs predefined primitive rewriting rules.

All the “actual smarts” should be provided in the aspect by the programmer. To this

extent, aspect weaving is essentially the compilation process of both aspects and their

base programs. Aspect weavers can thus be regarded as compilers of aspect languages.

Although the aspect weaver is often not considered as part of the aspect language, the

aspect language relies on its underlying aspect weaver to work. A weaver of a GPAL

can be referred to as a general purpose aspect weaver. Similarly, a weaver of a DSAL

can be referred to as a domain specific aspect weaver.

2.4 Aspect-Oriented Approaches for Domain Specific Code

Generation

Many aspect-oriented approaches have been proposed to work in the MDE context. Re-

search works in this area have covered diverse topics ranging from techniques focused

on specific modelling languages, like [74], to general software modelling paradigm like

Aspect-Oriented Modelling (AOM) [75, 76], which uses aspect technology for the modu-

larization and composition of crosscutting concerns during the design stage of software

development. The general idea of them is to separate concerns in several models (in-

cluding aspects) and then compose them together to derive the software system. In this

section, we briefly introduce some of these works related to our work.

2.4.1 Symmetry of Aspect-Oriented Approaches

Symmetry is an important property of aspect oriented approaches, or more precisely,

their composition paradigms. Interestingly, it was not proposed alongside the aspect-

oriented approaches. The concept is not denoted until the base (or component) and

aspects are clearly delineated as different elements involved in composition. Asymmetric

aspect-oriented approaches explicitly distinguish the base and aspects that affect the

base. Their composition is based on the join point model of the aspects, which is specified

by the corresponding aspect language. In this style of aspect-oriented approaches, the

base is the primary model with stand-alone descriptions. The aspects, on the other hand,

can be considered as decorators of the base model, which can only be described in relation

to the base. Their composition is essentially a one-way influence of aspect over the base
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through join points, e.g. the aspect application (or weaving) following the “pointcut-

advice” pattern in AspectJ. The opposite influence is impossible, i.e. there is no way

the base can affect the aspects. In contrast, symmetric aspect-oriented approaches do

not have the above distinction. There is no “base” or “aspects” at all. Instead, there

are only “partial views”, which contain separated concerns of the system. Each view

may affect every other view being composed. Their composition follows rules that are

often independent of the views themselves.

To analyze the ramifications of using symmetric and asymmetric paradigms, Harri-

son et al. [77] define three levels of symmetry: “element symmetry”, “join point symme-

try” and “relationship symmetry”, which are corresponding to the three kinds of entities

involved in a composition paradigm, “composable element”, “join points” and “compo-

sition relationship”. As its name suggests, “composable element” denotes the element

that can be composed, e.g. the base, aspect, and partial views. Each “join point”, as the

point inside the composable elements where composition can occur, can be intrinsically

asymmetric or symmetric. Asymmetric join points contain explicit references to specific

concerns, while symmetric join points allow composition of any concern. The details

of how composition happens at join points are specified by “composition relationship”.

Asymmetric composition relationship has to be binary, which refers explicitly to the base

and implicitly to the aspects that composed to the base. On the other hand, symmetric

composition relationship has a scope ranging across all concerns being composed.

In practice, most AOSD approaches follow the asymmetric paradigm, including PARC

AOP [78] and AspectJ. Contemporary software development has, to some extent, in-

corporated asymmetric aspect orientation. However, the industry adoption still does

not fulfill the high hopes put into aspect orientation at its beginning, that it can im-

prove software modularity. With regards to this, symmetric aspect orientation becomes

promising, particularly to academia, as it shows the possibility of keeping concerns

modularized from specification to implementation/code, e.g. the “Theme” approach by

Clarke and Baniassad [79].

2.4.2 Model Composition Paradigms

The crux of aspect-oriented model-driven code generation is how to compose the base

model and the related aspects, which contains separate concerns, into the complete

software system. This process is often referred to as model composition. According to

a systematic mapping study in this area by Mehmood et al. [10], model composition

approaches can be categorized into at least two main groups.

The “Weave-Then-Generate” Approach The approaches in the first group, such

as [75] and [80], directly compose the base model and the aspect model into an enhanced
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model, and then transform the obtained model into code of a target programming lan-

guage through the DSCG process. For this reason, these approaches are also referred

to as “Weave-Then-Generate” [81] approaches. The “Weave-Then-Generate” approach

seems ideal from the MDE perspective. The outcome of composition is a composed

model, which can be considered as a modification of the original model. The composed

model can then be used to analyze or to generate new implementation/code. Thus the

composed model remains as the primary artifact in the software development, and the

typical “model change ⇒ code re-generation” evolution pattern in MDE orthodoxy can

be maintained. The weakness of this approach, on the other hand, is a potentially large

semantic gap between the composed model and code. First, it can be quite difficult to

develop the composition tool. For example, the aspects being composed may require

modification of the meta-model of the base. A trade-off has to be made between the

expressiveness of aspects and the consistency of the meta-model of the base. Second,

the traceability of code errors may be hindered. When an error is detected in code, it

could be difficult to identify if it comes from the base or a certain aspect.

The “Generate-Then-Weave” Approach The second group of model composi-

tion approaches first generate the base program from the base model, and then explore

the direct transformation of aspect model into code of a target aspect language, which

is often a GPAL, e.g. AspectJ. Finally, the obtained aspect program is applied to the

base program using the weaver of the target aspect language. These approaches are also

referred to as “Generate-Then-Weave” [81] approaches. The “Generate-Then-Weave”

paradigm is adopted by many code generation tools/frameworks, such as the Formal

Design Analysis Framework (FDAF) by Bennet et al. [82] and the “GenERTiCA” gen-

eration tool by Wehrmeister et al. [83]. Compared with the “Weave-Then-Generate”

approach, the “Generate-Then-Weave” approach produces potentially smaller semantic

gap between model and code, and it simplifies the generation of the composition tool. It

only requires translation tools from the DSALs into some target GPALs. The translated

aspects can then be applied to the base program using the the weavers of the underlying

GPALs. Moreover, a smaller semantic gap makes it easier to relate the errors detected

in code back to the base models or certain domain specific aspects.

2.4.3 Transformation-Oriented Views of Model Composition

If we consider the code generated in DSCG as the lower-level ( i.e. code level) models

that correspond to the input domain specific models, the DSCG process can thus be

considered as a special case of model transformation. Thus the composition of the code

level models and the aspect models can be examined from the transformation-oriented

views. According to an exploration work on the relationship between model composition

and model transformation by Fleurey et al. [84], there is a spectrum of transformation-

oriented composition approaches from dedicated composition to generic composition.
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In a dedicated composition, all content that a primary model needs to incorporate is

specified by a context specific aspect model, while no knowledge about the primary

model, aspect model, composition directives, bindings and the signatures is included

in the transformation actions in a generic composition. As they argued, such generic

transformation would be “extremely difficult (if not impossible) to implement”. To

make our approach as generic as possible, we develop the approach following a pattern

of template aspect model and model-transformation-specialized framework, on which we

will elaborate in the next chapter.

2.4.4 Generic Model Composition

Although aspect-oriented approaches show a propitious prospect in dealing with sys-

tem complexity and maintainability, they rely on the ability of automatic model com-

position in various domains. This attracts research effort in a generic model compo-

sition framework that can be adapted to different domains, i.e. modelling languages.

Bézivin et al. [85] examined three different model composition frameworks, from which

they extracted a core set of common definitions in model composition, such as “match

operation”, “merge operation”. Fleurey et al. [86] proposed a generic model composition

framework, in which model composition is decomposed into two major steps: a domain-

specific “Matching” step and a domain-independent “Merging” step. The framework

defines “Signature” to identify meta-model elements, and “Mergeable” to represent any

domain element that can be merged in a generic mechanism. As the first step to adapt

the framework to a specific modelling language L, a “composition strategy” MC needs

to be defined to specify the three things: “Mergeable” elements in the meta-model of

the given modelling language ML, their “signature”, and a specific matching operator

based on these “signatures”. ML can then be composed with MC to obtain M′L that has

composition capabilities. Any model that conforms to ML should also conform to M′L.

When the adapted framework takes two models conforming to M′L, all “Mergeable” ele-

ments in the models are checked using the “signature” matching operator. All matching

elements are finally merged using generic algorithm to finish the model composition.

We gleaned two pieces of inspiration from this work. First, meta-model can be used as a

clear interface to specialize a generic model manipulation framework for a given domain

specific modelling language. In particular, the meta-model of a modelling language can

be extended through a composition with a functional model, e.g. “composition strategy”

in this work, to obtain the corresponding functionalities, i.e. the composition capability.

Second, not every element in the given meta-model is used by the framework, only a

subset of the given classes and properties is involved in its functional extension. In

real-life DSCG cases, the meta-model of a given modelling language can be large and

complex. An effective way to derive such a simplified meta model may benefit the

extension in terms of its complexity and efficiency.
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2.4.5 Meta-model Pruning

Meta-model pruning is an algorithm proposed by Sen et al. [87] to prune meta-models

by removing unnecessary elements. In detail, the algorithm takes as input a meta-model

M and a set of its classes and properties marked as required, and trims off any other

classes and properties that are determined as unnecessary based on a set of rules and

options. As a result, a potentially smaller meta-model M′ is derived, which contains

only the elements in the input set and their mandatory dependents. The derived meta-

model M′ is often referred to as an effective meta-model (of the original meta model

M). From the graph-theoretical perspective, this pruning process is to simplify a given

meta-model by cutting off all unnecessary nodes (classes or properties) from its graph.

Moreover, it preserves the names of the meta-classes and meta-properties retained from

the original meta-model in the effective meta model. From a type-theoretical perspective,

the effective meta-model can be taken as a “super-type” of the original meta-model. As

Sen et al. argued, “all models of the effective meta-model are exchangeable across tools

that use the large input meta-model as a standard.” As a conclusion, the meta-model

pruning algorithm provides us a generic method of meta-model simplification, which can

help us tailor the meta-models before any further customization.





Chapter 3

Extension in DSCG with Domain

Specific Aspects

In Section 1.2, we mentioned that the primary objective of our work is to accommodate

changes that can not be expressed by the original domain specific modelling languages,

whilst the benefits of DSCG can be maintained. The benefits here mainly refer to

the reliability, i.e. the correctness of the modified code, and the productivity, i.e. the

effectiveness of the modification. To achieve this, we develop an approach that takes

as input the meta-model of the target DSCG, and extend it with an aspect oriented

system, so that we can express such changes as domain specific aspects and compose

them systematically with the current system by weaving them into the base code. In

this chapter, we first explain some concepts and terms involved in our work, and then

raise some assumptions of our “DSCG extension approach”. We then elaborate on this

approach and demonstrate the modification process using a simple extension scenario of

the automata example in Section 1.1.

3.1 Terms and Assumptions

Before we start the detailed introduction of our approach, we first explain a few concepts

and terms that are involved in the following discussion, and raise several assumptions

to narrow the scope of the discussion.

3.1.1 Context Free Grammar

In our approach, DSAL is generated according to the target DSCG. The generated DSAL

is specified as a Context Free Grammar (CFG) [88]. As its name suggests, production

rules in its grammar can be applied regardless of the context. There is a formal definition

41
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of CFG given by DeRemer et al. [89]. The definition denotes a CFG by a quadruple

(VT,VN, S,P), where

∙ VT is a finite set of symbols that often called terminals

∙ VN is a finite set of symbols distinct from VT that often called nonterminals

∙ S is a unique symbol called start symbol, where S ∈ VN

∙ P is a finite set of rules that often called production rules

∙ ∀ p ∈ P, p is a pair (�, �), where � ∈ VN and � ∈ (VT
∪

VN)∗

As � always appears on the left hand side of production rules, it is often referred to as

the Left Hand Side (LHS). Accordingly, � is often referred to as the Right Hand Side

(RHS). When one � appears as LHS in more than one production rule, it is common to

list all the �s as the RHS of a “merged” production rule, where each of the original �s

is called an alternative and separated by symbol “∣”.

3.1.2 Abstract Syntax Tree and Parse Tree

To parse a program according to a given grammar, a parser normally first interprets

the program into a token string through lexical analysis, and then generates a “tree-like

intermediate representation that depicts the grammatical structure of the token stream”

[40]. There are two typical types of “tree-like” representations that can be created in

the parsing process. One is abstract syntax tree and the other is parse tree.

Abstract Syntax Tree An Abstract Syntax Tree (AST), or sometimes shortened

as syntax tree, is a tree representation of the syntactic structure of an input string

in a given language. It is “abstract” because its nodes represent the abstract syntax

of the language, instead of the concrete tokens defined by some formal grammar that

specifies the language. In other words, an AST is a conceptual representation built

with language constructs. For example, the AST of the expression “3 + 4” in a simple

arithmetic operation language is shown in Figure 3.1.

Parse Tree Similar to an AST, a parse tree is also a tree representation of the

syntactic structure of an input string in a given language. The difference is that a

parse tree is always related to a formal grammar specifying the given language, instead

of the language itself. The nodes of a parse tree represent concrete syntax. Or more

precisely, the internal nodes of a parse tree represent the nonterminals defined in the

related grammar, whereas its leave nodes represent the terminals. To emphasize this
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Figure 3.1: The AST of in-
put “3 + 4”

Figure 3.2: The parse tree of
input “3 + 4”

contrast, a parse tree is sometimes called a Concrete Syntax Tree (CST). Assume that

the above arithmetic operation language is specified with a simple grammar, whose

EBNF representation is shown in Listing 3.1, the parse tree of the expression “3 + 4” is

shown in Figure 3.2.

expr := add | mul ;

add := var pm var ;

pm := ’+’ | ’-’ ;

add := var md var ;

md := ’*’ | ’/’ ;

var := ’0’ | ’1-9’ {’0-9’}*

Listing 3.1: A simple grammar specifying the arithmetic operation language

In summary, a parse tree is a representation of a program, which contains the concrete

syntax constructs defined in the given grammar. It is a record of grammar rule appli-

cations. An AST, on the other hand, is an abstract representation of a program, which

trims off the concrete syntax constructs and retains the “real content” of the program.

3.1.3 Languages in DSCG

In the context of DSCG and DSAL, concepts and terms can sometimes be quite confus-

ing, as the artifacts they refer to may have multiple appellations from different perspec-

tives or in different terminologies. For example, the programming language, in which

the code is generated, can be called the output language of the DSCG code generator in

the context of DSCG . The same language can, from the DSL perspective, be referred

to as the host language of the DSL. In this section, we clarify the definitions of some

terms commonly used in our discussion.

The terms target languages and output languages are both defined from the perspective

of DSCG. In general, they are used to refer to the same artifact, i.e. the programming
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languages in which the generated code is written. Target languages emphasize the model-

to-code transformation process, in which the modelling languages are the source and the

programming languages are the target. Output languages emphasize the code generators,

which use the programming languages to describe the output. In our approach, as the

code generator would be updated to include the traceability link in the code generation

process, we use them to distinguish the programming language before the code generator

update and after that. In detail, we use the term target languages to refer to the original

programming languages used in the target DSCG. We use the term output languages to

refer to the programming languages extended with the extra syntax and semantics for

the intertwined traceability links, e.g. the traceability links based on comments.

As an example, Listing A.1 shows a code block wrapped by a pair of comment based

traceability links in a programming language. From the perspective of the target lan-

guage, the two traceability links are merely two lines of textual comments with no

semantics. Removing the comments will not affect the generated code in terms of its

functional correctness and performance. On the other hand, from the perspective of the

output language, these comments can be parsed with finer grained syntactical rules, to

get some extra model tracing semantics. Although their removal still does not affect

the functional correctness and performance of the generated code, it will impede the

proper crosscutting behaviour of our DSAL weaver. In practice, target languages are of-

ten standard versions of some mainstream programming languages, e.g. C11 (ISO/IEC

9899:2011) [50].

3.1.4 Assumptions

In practice, there are many factors involved in the DSCG contexts that may influence

the feasibility of our approach, e.g. the implementation of the DSCG code generators.

As such, we raise several assumptions to focus on the concrete problem to be addressed

by our approach.

Assumption 1: We focus on the DSCG for only textual DSLs.

As Grönniger et al. [90] mentioned, there types of DSLs used nowadays: textual DSLs,

graphical DSLs and hybrid DSLs. The experience from practical work indicates that

there are indeed some advantages of the textual DSLs over the graphical DSLs, in terms

of the interpretation and manipulation of the DSLs. In this work, to accommodate the

modification requirements that cannot be expressed by the original DSLs, our approach

aims at extending the DSLs by generating the corresponding Domain Specific Aspect

Languages (DSALs) from them. The very first step in this process is to extract the do-

main meta-models from the DSLs. Although this is still possible with graphical DSLs,

it would be much easier to work with textual DSLs. Besides, Grönniger et al. indicated
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some other important advantages of textual DSLs, such as less dependence on the plat-

forms and tools.

Assumption 2: We only focus on the transformation based DSCG.

The basis of the DSALs generated in our approach is the model traceability in the gen-

erated code. If the target DSCG is transformation based, the generated code would be

a direct product of certain transformation process. No matter whether the transforma-

tions are rule based rewritings or template expansions, it is still possible to maintain

the model traceability in the final transformation result, i.e. the generated code. How-

ever, if the target DSCG is deduction based, the code would be generated only as the

byproduct of the proving process, which “reflects the proof from which it was extracted”

instead of the target domain elements. As a result, there is no guarantee that model

traceability can be established in the generated code. Therefore, we only focus on only

the transformation based DSCG.

Assumption 3: The DSCG code generators must be compositional genera-

tors.

In Section 2.2.4, we mentioned that it can be very difficult to trace domain specific

elements in the code generated through multiple transformations conducted by the code

generator. If the code generator allows horizontal transformations that breach the mod-

ular boundary in their higher level representations, the potential overlapped modules

in the lower level representations would make it very difficult to trace certain domain

specific elements in the generated code. Particularly in our approach, we use sentinel

pairs at the boundary of the code block corresponding to certain domain element in-

stance. Such impediment in model traceability would severely hinder the generation of

the DSALs. Figure 3.3 shows an example of the problem when the higher level modular

structure is not preserved.
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Figure 3.3: An example in which higher level modular structure is broken.

In this example, Action A and B in the domain specific model does not have any over-

lap at the beginning. However, as the result of an internal optimization (a horizontal

transformation), Action A and B are restructured into Action A′ and B′ which share

an overlap part A′ ∩ B′. In the final output program, Statement 1-3 are generated from

Action A′ while Statement 3-5 are generated from Action B′. Obviously, Statement 3,

as an overlap, would cause problems when we try to trace A′ or B′. For example, if

we changed statement3 in an attempt to modify Action A′, we actually also changed

Action B′ in the meantime. Therefore, some tricks need to be developed to address such

tracing problems. As such tricks are beyond our research interest, we just forbid any

horizontal transformations in the target code generators to avoid such problems in our

discussion. Compositional code generators, as we introduced in Section 2.2.1, only allow

vertical transformations. Thus we simplify the environment by assuming that the code

generators in our discussion are always compositional.

3.2 The DSCG Extension Approach

The basic idea of our approach is to develop a generic aspect oriented framework, which

can take as input a target DSCG, the involved DSL in particular, and dynamically gener-

ate as output a DSAL and a corresponding aspect weaver from it. The generated DSAL

allows domain experts to describe the expected changes, which cannot be expressed in

the original modelling language, and automatically weave them into the base code using

the generated DSAL weaver. From the perspective of MDE, the generated DSAL can

be considered as an auxiliary of the target domain modelling language, and its weaver

as an appendage of the modelling tool chain, at the end of the code generator. They as

a whole can be regarded as an extension of the target DSCG to accommodate certain
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modification requirement in a systematic way. For this reason, we call it the “DSCG

extension approach”.

3.2.1 Overview

Figure 3.4 illustrates the general process to accommodate changes using our DSCG

extension approach, which can be divided into three main parts: Target DSCG, DSCG

extension and DSAL application.

Figure 3.4: An overview of our DSCG extension approach.

The target DSCG process is shown in the left rectangle with the dashed outline. Domain

experts write models conforming to the domain meta-model, i.e. the DSL, and then send

them into the DSL code generator to generate programs, or “base code”, that conform
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to the output language specification. The extension of the target DSCG is shown in the

upper right rectangle with the dashed outline. This is the core step in our approach,

to generate the modification systems. Simply stated, the extension requirements are

first interpreted to specify how domain meta-models need to be involved in the expected

change and what DSAL patterns can make it easy to describe these changes. With

regards to the interpreted specification, a traceable meta-model of the target domain

and a specification of the DSAL are then generated respectively. Finally, a corresponding

aspect weaver is created in accordance with them. We will elaborate on these generation

process in Section 3.3. The next step in our approach is to apply the generated DSAL,

in which domain experts can describe the expected change in DSAL aspects, and weave

them into the base code using the generated DSAL weaver, to finish the modification

process.

It is not difficult to find that meta-models are used throughout the DSCG extension

process. These meta-models are the basis in constructing the modification systems in

our approach. Thus we also refer to this approach as the meta-model based DSCG

extension approach. In practice, these meta-models can be specified using different tech-

niques, e.g. the Unified Modelling Language (UML) [91], the XML Schema Definition

(XSD) language [92], or the Kernel MetaMetaModel (KM3) [122]. The technique selec-

tion may depend on the preference of the DSCG extension implementor, e.g. UML for

graphical representation and XSD for textual representation, as well as the availability

of the tool set, e.g. Visual Paradigm [93] for UML and Visual Studio [94] for XSD.

Within the entire modification process, we can see that there are four steps annotated

with circled numbers. These steps may require human communication and decisions,

and thus affect the efficiency of introducing the expected changes. There may be trade-

offs between productivity and some property that we prefer in these steps. We will have

further discussion on this later.

3.2.2 An Example of Extension Scenario

To demonstrate how our approach works in detail, we use a hypothetical scenario about

our automata example shown in Section 1.1, in which the expected changes cannot be

described with the original DSL.

Meta-Model of Target Domain The target domain is the simulation of Determin-

istic Finite Automata (DFA), or Deterministic Finite State Machine (DFSM) [95]. The

corresponding DSL is very simple. As shown in Figure 3.5, there are only four domain

classes defined: State, Input, Transition, Automata. Each State has a name property and

may have zero or more inbound or outbound Transition objects. Each Transition has

three properties: a from state, a to state, and an input object. Each Automata may have
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one or more State objects, zero or more transitions, and two other properties, start state

and accept state.

Figure 3.5: UML diagram of DFA domain modelling language.

The DSL used in this example is called “DFA”. It is specified by a language specification

framework called ANTLR [16, 96, 97], upon which we will elaborate in Section 5.2. The

complete ANTLR specification of the DFA language is attached in Appendix A.5. The

corresponding description in Extended Backus-Naur Form (EBNF) [98, 99] is shown in

Listing 3.2.

INTLITERAL := ’0’ | ’1’..’9’ {’0’..’9’}* ;

INTLIST := ’{’ INTLITERAL (’,’ INTLITERAL)* ’}’ ;

alphabet_declaration := ’Alphabet ’ INTLIST ’;’ ;

states_decl := ’States ’ INTLIST ’;’ ;

start_state_decl := ’StartState ’ ’(’ INTLITERAL ’)’ ’;’ ;

accept_states_decl := ’AcceptStates ’ INTLIST ’;’ ;

state_declaration := states_decl start_state_decl

accept_states_decl ;

transition_decl := ’Transition ’ ’(’ INTLITERAL ’,’

INTLITERAL ’,’ INTLITERAL ’)’ ’;’ ;

transition_declaration := (transition_decl)* ;

program := ’DFA’ ’{’ alphabet_declaration state_declaration

transition_declaration ’}’ ;

Listing 3.2: The EBNF representation of the “DFA” language
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Extension Requirement Now assume that the domain experts want to trace certain

transitions in simulation, e.g. to count and log any transition from state x to state y. Ob-

viously, the current DSL cannot express this requirement, since there is no domain class

capable of counting numbers or logging transitions. According to the pure model based

approaches, the DSL needs to be extended with supplementary domain classes, e.g. a

“logger” class, and the code generator needs to be updated accordingly, so that the base

model can be rewritten in the extended DSL, and then be used to regenerate the code

with the customized code generator. However, the domain experts do not agree to ex-

tend the DSL with any counting or logging facilities. They do not want to get into any

compatibility trouble with the existing models or the MDE tool chain. Besides, there

is an existing function “log()” in the legacy library code, which implements exactly the

expected counting and logging function. The ideal way to modify the code is to insert

a line to invoke this function at the entry of each code block corresponding to a target

transition. However, such manual modification will sacrifice the reliability of the code

and the productivity based on the modelling tool chain. This is a typical scenario where

our approach can be a helpful alternative. Now consider a simple automata model that

is used to generate the code shown in Figure 1.5, its description in the “DFA” language

is shown in Listing 3.3.

DFA {

States {0,1,2};

StartState (0);

AcceptStates {2};

Transition (0,1,1);

Transition (1,3,1);

Transition (1,5,2);

}

Listing 3.3: The DFA model involved in our automata example

In the next section, we will elaborate on how our approach can help domain experts to

introduce this change step by step.

3.3 Meta-Model Based DSCG Extension

In our DSCG extension approach, the generation of the DSAL is the first and funda-

mental step. It consists of four main processes. First, the extension requirements are

interpreted. Accordingly, a compact meta-model of the target domain M′ containing all

domain elements involved in the expected changes is generated, and a generic DSAL

specification is created. Second, a trace strategy model is created with insight of the

implementation of the code generator, and composed with the derived meta-model M′.
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Thus all domain elements in the composed meta-model M′tr obtain the tracing func-

tionalities. The code generator is then updated according to M′tr to become capable of

building the traceability links in its code generation. Third, the created DSAL specifica-

tion is composed with M′ to derive a specification of the DSAL. Finally, a corresponding

aspect weaver is created with regards to both M′tr and the DSAL specification.

3.3.1 Extension Requirement Analysis

In our approach, the analysis of the extension requirements aims to extract formal

specifications of the expected changes from the description by domain experts in natural

language, in particular, the answers to the following two questions. The first question is

How domain classes and properties may be involved in the expected changes?. The second

question is Which DSAL patterns would be the best to accommodate these changes? The

first answer, annotated with 1.1 , helps to derive a subset of the target domain meta-

model. The second answer, annotated with 1.2 , helps to create a template DSAL

specification.

Effective Meta-Model The first answer from domain experts specifies which classes

and properties in the original domain meta-model M would be involved in the expected

changes. In particular, the classes they want to use to crosscut the base model, i.e. the

classes to be used as join points, should be indicated explicitly. There can be one or more

class in M selected as join point classes. Each join point class normally corresponds to one

specific PCD pattern and potentially an advice pattern. Each join point class should be

specified that at which level they are supposed to crosscut the base model, e.g. the class

level or the instance level, as explained in Section2.3.3. For instance, in our UML-based

meta-model in our automata example, we can use join point interfaces like “IJoinIn-

stance” as the indicators. Besides, the domain experts also need to confirm if each

property in the selected join point class is involved in the expected changes. Each join

point class will be composed later into our DSAL template, which means a corresponding

type of traceability link will need to be established, and a corresponding DSAL grammar

rule will need to be created. If we could trim off some unrelated domain elements, we

can reduce the complexity of the involved domain meta-models and potentially reduce

the complexity of the composition with the DSAL templates. For this reason, the classes

and properties selected by the domain experts can be sent as input of a pruning method.

The method will calculate a closed subset of M, according to certain interests or con-

cerns. The calculated meta-model, i.e. M′ is often referred to as effective meta-model.

In our following experiments, we always use the algorithm proposed by Sen et al. [87],

which calculates the effective meta-model through the dependencies of the given subset

of domain meta-model.

Returning to our DFA example, here we use UML to specify the domain meta-models.
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As the domain experts only want to trace certain transitions determined by their proper-

ties, i.e. from state, input or to state. They do not care which specific automata instance

has included these transitions. Therefore, we do not need to include class “Automata”

in the effective meta-model. To mark the “join point” class, we enforce them to imple-

ment the “IJoinInstance” interface, which represents join points that crosscut at instance

level. The corresponding effective meta-model in UML is shown in Figure 3.6.

Figure 3.6: Effective Meta-Model of the DFA domain.

DSAL Template Selection The second answer from domain experts specifies which

aspect oriented modification patterns can simplify and facilitate the description of the

expected changes. As domain experts may not be familiar with AOP or DSAL, we cre-

ate a number of formal language templates, or DSAL grammar templates to be precise,

which are based on different aspect oriented modification patterns, e.g. PCD patterns

and advice patterns, so that they can select the most convenient way to accommodate

the changes they expected. If no existing template can satisfy their need, we can of

course create new templates. The selected template will then be expanded according

to the derived effective meta-model M′, to generate a valid DSAL that domain ex-

perts can use to describe the changes. In these DSAL templates, placeholders are used

to represent the domain specific content, such as the filtering condition in the PCDs.

When a selected template is expanded in accordance with an effective meta-model M′,

the placeholders will be expanded with the specific join point classes and their related

properties in M′. The templates we use in our experiments are defined as Context-Free

Grammars (CFGs), as there are a number of parser generation frameworks supporting

CFGs, e.g. the ANTLR framework [16], with which the generation of the DSAL weaver

might be partially automated.

Our DSAL templates follow the asymmetric aspect orientation paradigm, i.e. to take the

generated code as the primary base model, and describe the changes as aspects. There

are two reasons behind it. First, our purpose of this aspect oriented extension of the

target DSCG is to provide an auxiliary way to modify the model-based generated code,

without breaking the existing tool chain conforming to the given DSL. We still want to
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keep the existing models as the primary artifact, and to distinguish them from any arti-

fact we introduce for modification purpose, e.g. the aspects. Second, symmetric aspect

orientation paradigm does not distinguish aspects from models. This may introduce un-

desirable influence in the detailed behavior of model composition, especially when there

are multiple relevant aspects involved. For example, when there are two aspects to be

applied to the same model, the two aspects may have implicit and unwanted impact

over each other, before they are applied to the model.

The DSAL templates can be specified with any language specification formalism, such as

Syntax Definition Formalism (SDF) or the ANTLR grammar specification language [96],

as long as the templates can be easily composed with the derived effective meta-model

M′. From the perspective of AOP, our templates follow a “pointcut-advice” pattern. In

this pattern, each pointcut describes a collection of join points that satisfy a specific

condition. The placeholders are often used in such conditional filters, which can be a

simple value check on one of the domain properties, or a compound condition involving

multiple domain elements. Domain experts need to determine which specific type of

modification they want to make at the join points. For example, if the expected changes

at a join point instance would only happen at the entry and exit of the join points, the

“before” and “after” advice pattern would suffice. On the other hand, if the join points

are supposed to be modified by replacement or rewriting, the “around” advice pattern

would become necessary.

The placeholders may also be used in advice, such as the custom code, i.e. the code block

to be woven into the join points. According to the expected changes, domain experts

sometimes only want to add a snippet of proven code at the join points, and do not

need to worry about its correctness. In this case, we can select an advice pattern that

takes the custom code block as plain text, and apply it directly. On the other hand,

if the custom code has not been proved, e.g. temporary code from the aspect writers,

we can select an advice pattern capable of checking the syntactical correctness of the

custom code, according to the grammar of the output language in the target DSCG. In

particular, if domain experts would like to use certain domain element directly in the

custom code block, we would need to select an advice pattern that uses placeholders in

the custom code block to represent the domain specific elements.

Another concern in selecting the DSAL templates is the support of generic pointcuts.

Generic pointcuts provide aspect writers an effective way to express the crosscutting

concerns. Many aspect languages, such as AspectJ [60] and AspectC++ [100], support

generic wildcards in their PCDs. Although they use different syntax, like ‘+’ and ‘∗’
in AspectJ, and ‘%’ in AspectC++, these generic wildcards are used to define generic

pointcuts. For example, AspectJ allows users to define the pointcut shown in Listing

3.4.
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pointcut generic_pc () : call(public final * Foo.*( int));

Listing 3.4: Using wildcards in the pointcuts of AspectJ

This pointcut captures the invocations of any public final method of Class Foo, which

takes in one parameter of int type. The first wildcard symbol ‘∗’ stands for any return

type, and the second ‘∗’ stands for any method name. In our templates, we support

generic pointcut by either allowing the absence of filters in PCD conditions or explicitly

using symbol ‘∗’ or ‘?’ in the basic value type definitions.

Now that we have explained about the basic structure of our DSAL templates, and the

general concerns involved in their selection. Back to our automata example, the domain

experts want to insert an invocation of function “logging”, to each join point instance

corresponding to a target transition. In other words, they need to add proven code

at the beginning of captured join point. They can select a template with placeholders

for domain specific PCD to capture the target join points, i.e. the “Transition” class

instances, and the “before&after” advice pattern for the insertion of proven code. The

placeholder production rules for the conditional filter in PCD are shown in List 3.5. The

complete ANTLR specification of the selected template is shown in List A.6.

/* Placeholder: property_filter

* Use: a conditional expression of

* the properties of join point class

* Expansion sample:

* "filter_property1 operator value_literal"

* Note:

* rule "operator" and "value_literal"

* will be selected according to

* the type of "filter_property1"

*/

property_filter

:

;

/* Placeholder: filter_property

* Use: the properties of join point class

* Expansion sample:

* "jp_class1_name COLON property1 .1 _name"

* "jp_class1_name COLON property1 .2 _name"

* ...

* "jp_class2_name COLON property1 .1 _name"

* ...

*/

filter_property
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:

;

Listing 3.5: The PCD placeholders in the DSAL template selected in the automata

example

3.3.2 Generation of DSAL

As explained in Section 3.3.1, once a DSAL template is selected, it can be expanded

according to the derived effective meta-model. Due to the diverse modification require-

ments in different domains, this expansion is normally a manual process. In detail,

the template expansion process often includes two steps. First, the placeholders, e.g. for

PCD or its filter, are expanded according to the domain specific join point models, which

mainly include the join point classes and properties in the effective meta-model M′. Sec-

ond, there may be some functions or macros in the legacy code, which needs to be used

directly in the custom code, e.g. a logging function. Returning to our automata example,

the only join point class is the Transition class, with three properties from state, input

and to state. Accordingly, the placeholders shown in List A.6 are expanded as shown

below. In the following discussion, we call this generated DSAL “AspectDFA”. The

complete ANTLR specification of AspectDFA is attached in Listing A.7.

property_filter

: filter_property1 numerical_comparer INTLITERAL

| filter_property2 numerical_comparer INTLITERAL

| filter_property3 numerical_comparer INTLITERAL

;

filter_property1

: ’Transition ’ COLON ’from_state ’

;

filter_property2

: ’Transition ’ COLON ’to_state ’

;

filter_property1

: ’Transition ’ COLON ’input ’

;

Listing 3.6: Production rules created in template expansion
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3.3.3 Generation of Traceable Domain Meta-Model

The DSALs to generate in our approach rely on the model traceability in the generated

code with regards to the domain specific join points. After generating the DSALs from

the templates, we need to guarantee the correct generation of the traceability links in

the DSCG process. To do this, we acquire deep insight of the target code generator,

and select an appropriate model tracing strategy, which is then composed with the

effective meta-model M′, to derive a traceable meta-model M′tr. The derived traceable

meta-model is used to guide the update of the code generator, so that the updated code

generator will be capable of generating traceability links in the code generation process.

Tracing Strategy Selection To select a proper tracing strategy is the first step to

generate a traceable meta-model. It is annotated with 3.1 in Figure 3.4. In Section 2.2.4,

we introduced a few different traceability link implementations, such as standalone links

based on separate XML file and sentinels based on programming language constructs,

like comments and annotations.

By the term “tracing strategy”, we refer to the strategy to implement the traceability

links. From the perspective of DSAL, these links can be regarded as markers of the

domain elements in the generated code. The detailed implementation of these links

determines how our DSALs can crosscut the code generated from the domain specific

models, since the PCDs in the DSALs directly work with these traceability links. As

discussed in Section 2.3.6, there are many problems related to the PCDs, such as the

fragile pointcut problem [71]. In our experiments, we define the traceability links as the

profiles of the join points, which contain the static information of the corresponding join

points. Such information can be a name mapping between the domain class instances

and their corresponding variables in the generated code.

A tracing strategy is basically a definition of a set of class attributes, which often exist

as class attribute functions, containing the definition of certain traceability links. A

tracing strategy model can be composed with the join point classes in the effective meta-

model. Each tracing strategy corresponds to a specific implementation of sentinels, and

contains a set of functions defined with string templates to be used in the code generator

update. In our experiments, we use String Template [101], a textual-based template

expansion technique, to describe the templates, and if possible guide their expansion

in the corresponding update of the code generator. It is worth noting that a tracing

strategy is language-specific, depending on the output language of the target DSCG.

To decide what specific tracing strategy to use, we need to obtain deep insight of the code

generator with regard to the potential effect of the sentinels over the generated code. In

detail, there are four major concerns. The first concern is the correctness of the generated

code with sentinels inserted. Apart from the basic syntactical and semantical correctness
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requirement, there are often extra agreements upon the generated code, such as safety

certifications [4] and the conformance to predefined library interfaces. The insertion of

our sentinels must not break such agreements. The second concern is to minimize the cost

of adding the traceability links, which includes the performance impact of generating the

traceability links during the code generation process, and the complexity of modifying

the implementation of the code generator. The third concern is to minimize the effect

of the traceability links to the generated code, in terms of its functional correctness

and performance. Sometimes, the choices based on these two concerns may conflict

with each other. For example, the comment-based sentinels may generally require lower

cost in code generator customization, while the other forms of sentinels may potentially

affect the functional correctness of the generated code, as well as its performance. In

practice, we may sometimes insert function invocations as sentinels into the generated

code. Even though they are idle functions that do nothing inside, their invocation would

still change the call stack of the code, and thus result in little performance penalty. The

last concern is the limitation from the output language of the target DSCG. For instance,

if the output language does not support annotation at all, we obviously cannot choose

annotation based sentinels. Sometimes, the consideration over these concerns can lead

to a specific choice. For example, if the given DSL host language is Java, and there is

no strict time constraints on the generated code, and the performance penalty caused

by the invocations of the sentinel functions is not problematic, and a reliable AspectJ

weaver is available, it would be easy to reach a consensus on adopting sentinel functions

as traceability links. Unfortunately, these factors may be incompatible in other cases

and no choice can satisfy all of them. Trade-offs have to be made on ad hoc basis.

Returning to our DFA example, as the code generator is template based, it is not

difficult to add sentinel templates directly in its existing code template. As the output

language is Java, we can select sentinel template based on annotation, comment, or

idle function invocation. Although comment based sentinels may have no impact of

the generated code in terms of its correctness and performance, it is not an appealing

option to us, since there is, to the best of our knowledge, no existing aspect language

that supports Java comments based join point. We finally select a function invocation

based sentinel template, as the code generated here is not time sensitive software, like

embedded system, the performance hindrance due to the sentinel function invocations

will not be a big concern for us. Moreover, using function based sentinels could facilitate

the reuse of AspectJ in generating our DSAL. Besides, we can see that the members of the

join point class, i.e. Transition, are all of simple type, i.e. String. The code generator is

generating separate code blocks for join points with different transition member values.

We can thus even include value mapping in our sentinels, so that we do not need to

separately check on the member values when try to capture the target join points. The

selected tracing methods and their underlying sentinel templates are shown in List 3.7.

// public interface

InstanceLevel_EntrySentinel () ::= <<
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String getInstanceEntrySentinel () {

return "<InstanceLevel_BeginSentinel >";

}

>>

InstanceLevel_ExitSentinel () ::= <<

String getInstanceExitSentinel () {

return "<InstanceLevel_EndSentinel >";

}

>>

// instance level sentinel templates

InstanceLevel_BeginSentinel(className , memList) ::= <<

Begin___ <className >___<memList:{p | memberMapping(<p>)};

separator="__">

>>

InstanceLevel_EndSentinel(className , memList) ::= <<

End___ <className >___<memList:{p | memberMapping(<p>)};

separator="__">

>>

// for each join point class member , inform the code

generator to

// trace their domain element name and value

memberMapping(name) ::= <<

<name>_\<prpt_value\>

>>

Listing 3.7: The tracing sentinel template selected in the automata example

Composition of Domain Meta-Model with Tracing Strategy Once the tracing

strategy is selected, it can be automatically composed with the effective meta-model M′.

Their composition is essentially a two step process. The first step is a partial expansion

of the selected sentinel templates according to the class specific information of the join

point classes in M′. The expansion is not complete here, because some information is

only available at generation-time, e.g. the variable name that correspond to a specific

domain element instance. The second step is to append the tracing attributes, which

are defined with the partially expanded templates, to the join point classes in M′. With

these tracing attributes, the target code generator can be updated to generate code that

can be traced back to the corresponding domain specific model. Therefore, we call the

composed meta-model traceable meta-model M′tr. Returning to our automata example,

the implementation of the tracing methods according to the selected tracing strategy is

shown in Listing 3.8.
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// in the "Transition" class

string getInstanceEntrySentinel () {

return "Begin___Transition___from_state__ <prpt_value >

__to_state__ <prpt_value >__input__ <prpt_value >";

}

string getInstanceExitSentinel () {

return "End___Transition___from_state__ <prpt_value >

__to_state__ <prpt_value >__input__ <prpt_value >";

}

Listing 3.8: The tracing sentinel template selected in the automata example

It is worth noting that M′ → M′tr is a restricted extension. M′tr can be regarded as a

transient modelling language that enhances the original modelling language M in a sense

that models conforming to M can now be used to generate traceable code. Although

M′tr only exists within the scope of our DSAL generation framework, it will influence the

domain specific code generator in its update to support model traceability, and further

affect the code generated with it. To guarantee the correctness of the generated code,

we need to ensure the sentinels do not have write access to the rest of the code. Any

sentinel implementation in the tracing strategies needs to satisfy this standard.

Code Generator Customization With the traceable meta-model M′tr, we can cus-

tomize the target code generator accordingly to enable the model traceability in the

code generation process. This step is annotated with 3.2 in Figure 3.4. Unfortunately,

as different domain specific code generators may vary greatly in terms of their system

architecture designs, implementation technologies, etc, it is very difficult to distill a gen-

eralized process or technique to customize domain specific code generators. Yet we can

define two general principles in the customization of the code generators. First, the sen-

tinel insertion should be configurable. For example, our customization of the ANTLR

parser generator (in Section 5.4.3) only generates the sentinels when the “-trace” op-

tion is selected. Ideally, when the sentinel generation option is off, the customized code

generator should output exactly the same code as the code previously generated by the

original code generator from the same model. Second, provided the sentinels themselves

are executable lines, e.g. function invocations, the sentinel code block MUST not change

the value of any variable defined outside the sentinel code blocks. This can guarantee

that the code generated by the customized code generators is functionally identical with

the code generated by the original code generator from the same model.

To make the tracing strategy, especially their underlying sentinel templates, more reusable

in code generation, we can define a unified model of syntax and semantics for the spe-

cial placeholders in our sentinel templates, e.g. <inst name>, <prpt value>, etc, which
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requires expansion in the code generation stage. For example, “className <instance -

name>” means “the name of the current instance of domain class ‘className’”. Re-

turning to our automata example, the placeholder <prpt value> used in the template of

the entry sentinel means “the value of property ‘propertyName’ in the current instance”.

It is worth noting that some generator-specific factors may still affect the generation of

the sentinels in the code, even with the traceable domain meta-models as formal guide.

An example is the addition of “if” conditional check for the value of backtracking in the

ANTLR experiment, on which will be elaborated in Section 5.4.3.

3.3.4 Generation of DSAL Weaver

The last step in our DSCG extension process is to generate a tool that can automatically

apply the expected changes described in the DSAL aspects to the base code, which is gen-

erated from the base model using the updated code generator. In detail, the tool, i.e. the

DSAL weaver, takes as input a DSAL aspect and the target base code, and generates

as output the code customized according to the input DSAL aspect. This process can

be decomposed into two steps. The first step is the parsing of the DSAL aspect, which

includes lexical analysis, syntactical analysis. The second step is the semantic analysis

of the DSAL aspect and its application into the base code. To generate a DSAL weaver,

is basically to implement the above two functions. The first function is relatively easy to

achieve. As mentioned in Section 3.3.1, there are some frameworks capable of generating

lexers and parsers automatically from the given language specifications, like the DSAL

specifications derived in our approach. To implement the second function, the traceable

domain meta-model M′ tr is required for the detailed implementation of the sentinels

for each join point class, as the sentinels are often the “real” underlying join points the

DSAL weavers capture. There are generally two approaches to do the semantic analysis

of the DSAL aspects and weave them into the corresponding base code.

DSAL Weaver Based on Existing Aspect Weaver The first approach is to

leverage an existing aspect weaving system, e.g. AspectJ. In this approach, we can choose

another aspect language, and define translation rules from our DSAL to the target aspect

language. For any aspect written in our DSAL, it can thus be translated into the target

aspect language first, and then woven into the base code using an aspect weaver of

the target aspect language. In practice, the Syntax-Directed Translation (SDT) [102]

technique, which binds extra semantics to the correpsonding production rules in the

language specification, can be used to translate the PCDs based on the traceability

links and their related advices, from the DSAL syntax to the corresponding syntax of

the underlying aspect language. Once the DSAL aspect has been successfully translated,

we can weave the translated aspect into the base code using its existing aspect weavers.

The major advantage of this approach is flexibility. By reusing the existing aspect

weaving system, we only need to build translators from our generated DSALs into the
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underlying aspect languages, which means the implementation of our DSAL weaver does

not need to be restricted to a specific technique or framework. As long as there is a

valid translation from our DSAL into another aspect language, we can build a translator

and reuse an existing weaver. Besides, the translators can be automatically generated

through techniques like SDT. In our automata example, we use ANTLR framework to

build a translator from our AspectDFA to AspectJ, and then use AspectJ weaver to

perform the underlying weaving work. In detail, we modify the ANTLR specification of

AspectDFA to attach extra semantics to the relevant production rules for the translation

into AspectJ. For example, production rule aspect statement is expanded as shown in

Listing 3.9.

aspect_statement

: lm=loc_modifier pd=pcd_decl ad=adv_decl

-> aspectStatement(pcdloc ={$lm.pcd}, advloc ={$lm.adv

}, pcd={$pd.st}, body ={$ad.st})

;

aspectStatement(pcdloc , advloc , pcd , body) ::= <<

<advloc >(): <pcdloc >__<pcd>() <body>

>>

loc_modifier

: ’before ’ {$pcd = "Begin"; $adv = "after"}

| ’after’ {$pcd = "End"; $adv = "before"}

;

Listing 3.9: Production rule aspect statement with semantic action for translation

With the above syntax-directed semantics, aspect translators from our DSAL to AspectJ

can be automatically generated. However, it is possible that there is no valid translation

from the generated DSAL into any other aspect language, or there is no existing aspect

weaving system that can work with the current output language. In that case, we have

to turn to the second approach, to build our own AST rewriter.

DSAL Weaver Built as AST Rewriter The second approach is basically to build

our DSAL aspect weavers as a rewriter working at the AST level. There are mainly two

components in such a weaver. The first component takes in the parsing results of a DSAL

aspect and interprets the corresponding semantics into an AST rewriting strategy, i.e. a

collection of rewriting rules over the input base code. With the interpreted rewriting

strategy, the second component can walk through the AST parsed from the base code

and rewrite it accordingly. We will elaborate on this approach in our case study with

the AUTOFILTER code generator discussed in Chapter 4.
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Sentinel Location Maintenance in Custom Code Weaving At last, we need

to emphasize the importance of maintaining the sentinel locations. Sentinels are the

primary model tracing infrastructure in our approach. Their locations directly convey

the model tracing information by indicating the boundaries of code block corresponding

to certain domain elements. Therefore, it is important that we maintain the proper lo-

cations of the sentinels in each custom code weaving operation, so that we can guarantee

the validity of the sentinels for the forthcoming aspect weaving request. Let us see a

piece of generated code corresponding to a certain join point, as shown in Listing 3.10.

...

// Location A

Begin_Sentinel ();

// Location B

<code block corresponding to target join point >

// Location C

End_Sentinel ();

// Location D

...

Listing 3.10: Problem in maintaining the sentinel locations

If there is an advice trying to insert some custom code into the location “before this join

point”, the custom code should be inserted into “Location B” instead of “Location A”.

Otherwise, Begin Sentinel() would be left in a wrong location after the custom code is

woven, as it no longer marks the beginning of the join point related code block. Similarly,

the custom code in an after advice should go to “Location C” instead of “Location

D”. The maintenance of sentinel location is important as it ensures the correctness of

applying multiple DSAL aspects to the same base code. In particular, if we build the

DSAL weavers on top of existing aspect language weavers, we need to guarantee the

translation semantics generate the correct location modifiers.

3.4 Code Modification Through DSAL Aspect Weaving

So far we have generated a DSAL that can crosscut the base model at the domain specific

join points selected by the domain experts, and a corresponding weaver that can apply

the aspects written in the DSAL, the domain experts can now describe the changes they

want in DSAL aspects. It is not difficult for them to learn the syntax and semantics

of the generated DSAL, as they already have a general understanding about it during
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our communication about selecting the DSAL template. Returning to our automata

example, the domain experts can now extend the current DFA model to log transitions

that satisfy the given conditions. For example, to log any transition from state 1 to

state 3, the domain experts can write a DSAL aspect as shown below.

aspect sample {

after (Transition:from_state =1&& Transition:to_state =3) {

log();

}

}

Listing 3.11: AspectDFA aspect for logging self transition over state 1

The AspectDFA weaver then translates this aspect into AspectJ. If there is any syntac-

tic issue, the weavers would stop the compilation and emit proper error messages. For

example, if we deliberately give a different property name other than the three prop-

erty names expanded during the DSAL generation step, e.g. replacing “from state” with

“previous state”, the translation process will stop with the following error message.

line 2:22 mismatched input ’previous_state ’ expecting ’from_state ’

If there is no syntax error, the aspect should be translated into an AspectJ aspect as

shown in Listing 3.12.

package antlr.DFA;

public aspect sample {

before (): call(

End___Transition___from_state__1__to_state__1 *()) {

log();

}

}

Listing 3.12: Translated AspectJ aspect

It is worth noting that the translated advice location modifier is “before”, although it

was “after” in the DSAL aspect. This is because the modifier “after” in the DSAL

aspect refers to the ending of the domain specific join point, i.e. “transition”, which is

labeled by our “end sentinel”. Therefore, the correct location to insert the custom code

is “before” the “end sentinel” instead of “after” it. This is achieved by the corresponding

SDT semantics to the AspectDFA grammar, which is shown in List 3.13.

aspect_statement

: lm=loc_modifier pd=pcd_decl ad=adv_decl

-> aspectStatement(pcdloc ={$lm.pcd}, advloc ={$lm.adv

}, pcd={$pd.st}, body ={$ad.st})

;
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aspectStatement(pcdloc , advloc , pcd , body) ::= <<

<advloc >(): <pcdloc >__<pcd>() <body>

>>

loc_modifier

: ’before ’ {$pcd = "Begin"; $adv = "after"}

| ’after’ {$pcd = "End"; $adv = "before"}

;

Listing 3.13: SDT semantics in AspectDFA for correct location of custom code

insertion

The translated AspectJ aspect will then be passed to a reliable AspectJ weaver, such

as the default “ajc” weaver, to finish the weaving process. As AspectJ actually weaves

custom code at Java bytecode level, which is not very easy to understand, we present

the equivalent customized Java code in Listing 3.14, to give an intuition of the effect of

this aspect weaving into the base code.

if (currentState == 0 && input == 1) {

Begin___Transition___from_state__0__to_state__1__input__1

(); // begin sentinel

currentState = 1;

End___Transition___from_state__0__to_state__1__input__1 ()

; // end sentinel

} else if (currentState == 1 && input == 3) {

Begin___Transition___from_state__1__to_state__1__input__3

(); // begin sentinel

currentState = 1;

log();

End___Transition___from_state__1__to_state__1__input__3 ()

; // end sentinel

} else if (currentState == 1 && input == 5) {

Begin___Transition___from_state__1__to_state__2__input__5

(); // begin sentinel

currentState = 2;

End___Transition___from_state__1__to_state__2__input__5 ()
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; // end sentinel

} else if (currentState == endState) {

return;

} else {

throw new Exception("invalid state");

}

}

Listing 3.14: Customized Java code in our automata example

Compared with the manual modification shown in Figure 1.5, our custom code is intro-

duced systematically by the DSAL aspect weavering process. The generated DSAL and

the aspect weaver can be reused for similar modification requirements. Besides, our ap-

proach does not break the existing MDE tool chain. The simulator program regenerated

by the customized code generator is still synchronized with the input model.

In this chapter, we have given an introduction about our meta-model based DSCG

extension approach for accommodating changes to the DSCG generated code that cannot

be described at model level. Although this approach entails considerable human effort

to implement, it provides the capability to formalize the changes and to guarantee the

correctness of the corresponding code modification. In the next three chapters, we

respectively test our approach in three different real-life DSCG extention scenarios as

concrete case studies. In Chapter 4, we extend the generation of state estimators based

on Kalman filter algorithms with the code generator AUTOFILTER. In Chapter 5, we

extend the generation of LL(*) grammar parsers with the ANTLR parser generator,. In

Chapter 6, we extend the generation of LALR(1) grammar parsers with the CUP parser

generator.





Chapter 4

DSCG Extension for

AUTOFILTER

The first concrete case study for our meta-model based DSCG extension approach is to

modify the C code generated by a domain specific code generator called AUTOFILTER

[15]. AUTOFILTER is a code generator that takes the descriptions of state estima-

tion problems as input domain specific models, and generates the implementation of

a process that computes statistically optimal estimates using the Kalman filter algo-

rithm [103, 104]. In this chapter, we first introduce the Kalman filter algorithm and the

AUTOFILTER code generator. We then extract the domain meta-model and describe

the extension scenario. Finally, we illustrate the construction of the DSCG extension

system, and demonstrate how to accommodate the expected changes with it.

4.1 The Kalman Filter and The AUTOFILTER Code Gen-

erator

4.1.1 The Kalman Filter Algorithm

The Kalman filter algorithm was first introduced by Kalman [103], as an algorithm

that provides a recursive computational solution to the discrete data linear filtering

problems. It addresses the general estimation problem in a discrete time controlled

stochastic process. The process to be estimated is influenced respectively by the process

and measurement noise. They are assumed to be independent of each other, and to be

Gaussian white noise, which means that they are serially uncorrelated and with normal

distributions. Formally, the process is governed thus:

xk+1 = Akxk +Buk + wk, (4.1)

67
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and the measurement vector is

zk = Hkxk + vk (4.2)

Here the subscript means “at step k”. x denotes the state vector. The length of x is often

denoted by n. A, sometimes also noted as F, denotes the n× n state transition matrix.

u denotes the control vector. The length of u is often denoted by l. B denotes the n× l

control matrix, which maps the control to the state variables. w denotes the process

noise vector, whose length is also n. z denotes the measurement vector. The length of

z is often denoted by m. H denotes an n×m matrix, which extracts the measurement

from the state variables. v denotes the measurement noise vector, whose length is also

m.

p(w) ∼ N(0, Q) (4.3)

p(v) ∼ N(0, R) (4.4)

Q denotes an n× n state variance matrix, which represents the estimation error. R

denotes an m×m measurement variance matrix, which represents the measurement

error.

The term “filter” comes from the signal process domain, where it is used to refer to the

process that removes some undesirable component or feature from a signal. The Kalman

filter estimates the above process as a recursive filter, which predicts the process state

at some time and then procures feedback on measurements. In each iteration of the

recursion, there are two stages: predict and update. The “predict” stage is also referred

to as the “time update” stage. In this stage, it estimates the process state according

to the process model, and then calculates an a priori error covariance estimate, which

is represented as an n× n matrix P, according to the process model and the process

noise model. Here we use the denotation that used by Welch and Bishop [105]. The

superscript “−” is used to mark the intermediate results, meaning “in between step k

and k+1”.

x−k+1 = Akxk +Buk (4.5)

P−k+1 = AkPkA
T
k +Qk (4.6)

The “update” stage is also referred to as the “measurement update” stage. In this stage,

the Kalman filter first computes an n×m matrix K, which is introduced to minimize
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the estimation error covariance. K denotes the Kalman gain, or blending factor. It is

computed with the state error covariance matrix P, the measurement matrix H, and the

measurement error covariance matrix R, according to the following equation.

Kk = P−k H
T
k (HkP

−
k H

T
k +Rk)−1 (4.7)

It then computes the measurement innovation, or the residual, to evaluate the discrep-

ancy of the predicted measurement, i.e. Hkxk, and the actual measurement z. This

innovation is used to compute the a posteriori state estimate.

xk = x−k +K(zk −Hkx
−
k ) (4.8)

Finally, it computes the a posteriori error covariance estimate according to the priori

error covariance obtained in the “predict” stage.

Pk = (I −KkHk)P−k (4.9)

To make the whole computation process more clear, we illustrates the corresponding

pseudo code in Figure 4.1.

⟨Initialization⟩
while(⟨more input available⟩) do

input u, z // u control vector, z measurement vector
// Prediction

x = Fx + Bu // x (a priori) state estimate, F process model, B control model

P = FPFT + Q // P (a priori) estimate covariance, Q process noise covariance
// Update

y = z−Hx // y innovation, H observation model

S = HPHT + R // S innovation covariance, R measurement noise covariance

K = PHTS−1 // K Kalman gain
x = x + Ky // (a posteriori) state estimate
P = (I−KH)P // (a posteriori) estimate covariance, I identity matrix
output x

end

Figure 4.1: Abstract form of the discrete Kalman filter algorithm.

The Kalman filter algorithm is the basis of mathematical models formulated to solve

the estimation problems. It is widely used in solutions estimating the internal states

of dynamic systems with a series of observation measurements. To cope with different

process models, there are a number of variants of the standard Kalman filter developed,

such as the Extended Kalman filter [106] and the Unscented Kalman filter [107] for

the nonlinear systems. Different estimation problems require different mathematical
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models that involve different variants of the Kalman filter. However, for each formulated

mathematical model, it still takes a lot of time and effort to build an associated estimator

for testing. This is the motivation behind the AUTOFILTER code generator.

4.1.2 The AUTOFILTER Code Generator

The AUTOFILTER code generator is a “knowledge-based” tool developed by Whit-

tle and Schumann [15], which takes as input the estimation problem description, and

generates as output the implementation of its estimator based on a properly selected

Kalman filter. The input description defines the physical characteristics of the problem

in terms of the process model and measurement model. The output implementation

can be configured into a number of languages, including C, C++, and Modula 2 [108].

AUTOFILTER significantly reduces the coding effort in generating the implementations

of various Kalman filter variants for different problems.It requires no low-level program-

ming skill, such as to “glue” toolkit function invocations. AUTOFILTER also facilitates

the prototyping of the estimators for the input problems. The information given in the

input specification is used to generate an corresponding simulation or testing. Thus the

iterations on the given models can be made quickly and easily.

From the perspective of DSCG, AUTOFILTER can be regarded as a domain specific

code generator. It takes as input a mathematical description of a given estimation

problem, then selects a specific Kalman filter algorithm schema as its solution, and finally

generates the corresponding implementation. Strictly speaking, the solution selection

process in AUTOFILTER is a set-valued function. For each input problem specification,

there is a specific set of solutions. However, the output can be any solution in the set. In

other words, an input description may lead to more than one output solutions. For the

sake of simplicity, we make two assumptions. The first assumption is that the C language

is only output language AUTOFILTER supports. The second one is that the same

solution is always selected for the same problem each time. Based on this assumption,

the target domain can be considered as a composition of the state estimation problem

domain and their Kalman filter based solution domain. Accordingly, we can regard the

input estimation problem and its specific Kalman filter algorithm together as the input

model, and the underlying algorithm implementation as the DSCG process.

The estimation problems for AUTOFILTER can be specified in terms of continuous or

discrete, linear or nonlinear process and measurement dynamics. The problem domain

here encompasses the state vector x, the process model, the measurement model, and

some basic controlling properties over the Kalman filter based solutions. AUTOFILTER

uses its proprietary problem specification language, i.e. the Domain Specific Language

(DSL), to describe these elements. As Whittle and Schumann [15] put it, the language

“allows the concise specification of the process model, the measurement model, and

other important design information.”
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The input language of AUTOFILTER is not only designed to provide syntax close to the

notations that are familiar to the domain experts ( i.e. vectors, matrices, and differential

equations) to describe the basics of the estimation problems, e.g. the process models and

measurement models. It also allows model designers to specify certain details about

the desired output estimator, e.g. its name and interface, or how it is initialized with

the declared elements, etc. The specification of the input language consists of two

parts: the basics of the estimation problems and the information of the desired filter(s).

The first part specifies the declarations of the basics ( i.e. scalars, vectors, or matrices)

of the estimation problems, and the dynamics of the process and measurement. The

second part specifies certain information of the estimator code, such as the interfaces

and synthesis goal.

Declarations In the declaration part, a domain element can be declared as a scalar,

vector, or matrix, with a modifier indicating its usage. const means “used as constant”;

data means “used as input data”; absent modifier means “used as variable”. The basic

data types include nat (natural number), int (integer), double (double-precision floating-

point number). For vectors and matrices, the dimensions are specified with a lower and

upper bound, which can be arbitrary expressions. The corresponding EBNF specification

is shown in Listing 4.1.

DECL := [ const | data ] TYPE VAR [ := EXPR ] [ as COMMENT ]

| IVAR ˜ gauss(EXPR , EXPR) ;

TYPE := nat | int | double ;

VAR := NAME | NAME(EXPR .. EXPR) | NAME(EXPR .. EXPR , EXPR

.. EXPR) ;

IVAR := NAME | NAME(IND) | NAME(IND , IND) ;

IND := ’0’ | ’1’..’9’ {’0’..’9’}* ;

COMMENT := STRING+ ;

Listing 4.1: Input language specification for the basic declarations of the estimation

problems

EXPR represents scalar arithmetic expressions. Vector and matrix are declared in a

FORTRAN-style: NAME(EXPR), and NAME(EXPR,EXPR), respectively. IND are all-

quantified specification variables to denote generic indices. As some variables are statis-

tical variables that have a distribution, in particular the Gaussian distribution, they are

declared as IVAR ∼ gauss(EXPR,EXPR). For example, x(I) ∼ gauss(0, sigma(I)) means

that each element of the vector x has a zero-mean Gaussian distribution with a standard

deviation corresponding to the vector element sigma(I).

Process Models and Measurement Models As both the process model and the

measurement models relate to the state vector x, they are specified as a set of equations
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over the state vectors. For continuous models, differential equations (x̂ = F (x), repre-

sented as CONT EQU) are used; a discrete model is given as a set of difference equations

(xk+1 = F (xk), represented as DISC EQU). The corresponding input language specifi-

cation is shown in Listing 4.2.

MODEL_DEF := equation_set NAME has ’[’ DISC_EQU+ | CONT_EQU+

’]’ ’.’ ;

DISC_EQU := disc NAME(EXPR) := EXPR ;

CONT_EQU := d/dt NAME(EXPR) := EXPR ;

Listing 4.2: Input language specification for the dynamics of the estimation problems

Output Controls and Constraints This part specifies the controlling and con-

straining information over the desired output, e.g. state vectors or filters, the interface,

and additional information, e.g. on the filter initialization. The name of the output

Kalman filter is given after the estimator keyword. Then various properties of the filter

are specified. The corresponding EBNF specification is shown in Listing 4.3.

CONTROL := ESTIMATOR_DECL SET_ATTR+ SYNTH_GOAL ;

ESTIMATOR_DECL := estimator NAME ’.’ ;

SET_ATTR := ’attribute(’ NAME ’,’ ’steps ’ ’)’ ’::=’ EXPR

% number of filter execution steps

| ’attribute(’ NAME ’,’ ’process_eqs ’ ’)’ ’::=’ NAME

% name of process equation set

| ’attribute(’ NAME ’,’ ’measurement_eqs ’ ’)’ ’::=’ NAME

% name of measurement equation set

| ’attribute(’ NAME ’,’ ’initials ’ ’)’ ’::=’ NAME(IND)

% initial values state vector

| ’attribute(’ NAME ’,’ ’initial_covariance ’ ’)’ ’::=’

EXPR

% initial covariance matrix

;

SYNTH_GOAL := DECL* output_filter FNAME ;

FNAME := NAME | NAME ’par’ FNAME ;

Listing 4.3: Input language specification for the output code control

This part of the specification mainly defines how to link the problem domain, i.e. the

estimation problem domain, and the solution domain, i.e. the Kalman filter domain. The

expected output may be a single filter or a number of Kalman filters running in parallel

(defined by par). Each output filter is given a name NAME. We can specify the output

parameters as part of the synthesis goal. For example, the following input description

specifies that we want to generate a Kalman filter named test, along with an output

matrix named xhat of type double.
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double xhat (0.. n_statevars -1, 0.. n_steps -1).

output_filter test.

Listing 4.4: Example of the output code control

For the convenience of the model builders, it also defines how to control the basics of

the output code. In fact, the language also supports the definition of operating modes

in which different filters run in each mode. However, that is beyond our interest. So we

will not cover here.

4.1.3 The Target Domain Meta-Model

The target domain includes the estimation problem domain, as well as the solution

domain, i.e. the Kalman filter domain. Accordingly, we define the target domain meta-

model as two parts respectively from the given DSL specification and the AUTOFILTER

code generator. From the above DSL specification, we can derive the first part of the

target domain meta-model in the form of XML schema. Accordingly, the estimation

problem domain meta-model consists of the basic types such as “scalar” and “vector”,

components classes, e.g. the process model and measurement model, and the controls and

constraints on a certain Kalman filter. For example, the problem domain class “scalar”

in the meta-model is shown in Listing 4.5. The complete meta-model is attached in

Appendix B.1.

<xs:simpleType name="expr_string_type">

<xs:restriction base="xs:normalizedString"/>

</xs:simpleType >

<xs:simpleType name="name_string_type">

<xs:restriction base="xs:string">

<xs:pattern value="([A-Za -z_])+"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="basic_data_ref_type">

<xs:restriction base="xs:string">

<xs:enumeration value="nat"/>

<xs:enumeration value="int"/>

<xs:enumeration value="double"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="role_type">

<xs:restriction base="xs:string">

<xs:enumeration value="const"/>
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<xs:enumeration value="variable"/>

<xs:enumeration value="data"/>

</xs:restriction >

</xs:simpleType >

<xs:complexType name="scalar_type">

<xs:sequence >

<xs:element name="role" type="role_type"/>

<xs:element name="name" type="name_string_type"/>

<xs:element name="element_type" type="

basic_data_ref_type"/>

<xs:element name="init_value" type="expr_string_type"

minOccurs="0" maxOccurs="1"/>

</xs:sequence >

</xs:complexType >

Listing 4.5: The “scalar” class in the estimation problem domain meta-model

Unlike the problem domain meta-model that is explicitly defined in the DSL specifi-

cation, the rest of the target domain meta-model, i.e. the solution domain meta-model,

is formed implicitly in the AUTOFILTER code generator. It includes all participants

involved in the Kalman filter construction and the estimations based on them. More

specifically, it consists of the calculations of the state estimate vector x and its error co-

variance P respectively in the “predict” and “update” stage. In detail, the calculations

are comprised by several finer grained sub calculations, such as the calculation of the

Kalman gain K. There are two points worth noting here. First, as mentioned in Section

4.1.1, the Kalman filters use a two-stage model, i.e. a priori state and a posteriori state,

in the process state estimation. This is reflected in the representation of both the state

vector and its estimation error covariance. For instance, the solution domain respec-

tively defines the priori state estimate x̂−, whose value is calculated in the “predict”

stage, and the posteriori state estimate x̂, whose value is calculated in the “update”

stage. Similarly, it defines the prior process covariance P−, and the posterior process

covariance P+. Second, the solution domain here spans two levels of abstraction. The

higher level solution domain defines the abstract elements in the Kalman filter domain,

such as x̂− and P−, whereas the lower level solution domain specifies the corresponding

implementation in the form of C code. The solution domain meta-model in XSD schema

is attached in Appendix B.2.

4.2 Extension Scenario

In this section, we first introduce a specific estimation problem, and the correspond-

ing Kalman filter algorithm selected by AUTOFILTER. We then describe the expected
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changes to the selected Kalman filter algorithm, which cannot be expressed by the target

domain modelling language. This scenario will be used as a driving example to demon-

strate how we can accommodate such changes using our DSCG extension approach.

4.2.1 The Cruiser Estimation Problem

The input description in our driving example specifies a problem about a craft cruising

at constant attitude in a 2D coordinates with random perturbations. We call it “the

cruiser problem”. The state vector in the cruiser problem is declared as “x”, where

x[0] represent the “angle to X axis of trajectory”, x[1] represents the “X coordinate of

craft”, x[2] represents the “Y coordinate of the craft”. The state vector is the major

concern in the estimation problem, and the key variable in the corresponding Kalman

filter algorithm. Apart from the state vector, the problem description also specify a

number of related scalars and vectors as shown in Listing 4.6.

const nat n_statevars := 3 as ’Number of state variables ’.

double x(0.. n_statevars -1) as ’state variables vector ’.

double w(0.. n_statevars -1) as ’process noise vector ’.

const double sigma (0.. n_statevars -1) := [0.1 ,0.1 ,0.1] as ’

standard deviation of process noise ’.

where 0 =< sigma(_).

w(I) ˜ gauss(0,sigma(I)).

double xinit (0.. n_statevars -1) as ’initial values of state

variables ’.

data double x_init_noise (0.. n_statevars -1) as ’initial state

noise’.

data double xinit_mean (0.. n_statevars -1) as ’initial value

means’.

xinit(I) ˜ gauss(xinit_mean(I), x_init_noise(I)).

const double s:=10.0 as ’Constant speed ’.

const double ts:= 1.0 as ’Time step in seconds ’.

Listing 4.6: Declaration of scalars and vectors in the cruiser problem description
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The process model and the measurement model of the cruiser problem is shown in Listing

4.7.

/*

Process model.

*/

equation_set cruising_model has

[

disc x(0) := x(0) + w(0),

disc x(1) := x(1) + ts * s * cos(x(0)) + w(1),

disc x(2) := x(2) + ts * s * sin(x(0)) + w(2)

].

equation_set measurement_model has

[

z(0,tvar) := x(1) + v(0),

z(1,tvar) := x(2) + v(1)

].

Listing 4.7: The process model and the measurement model in the cruiser problem

description

The description finally specifies several controlling properties and constraints over the

solution, i.e. the Kalman filter. For example, the “constant speed” s, the “time step in

seconds” ts, and “sampling interval” t, etc. Besides, the solution controlling information

indicates details such as the name and the initialization of the estimator, etc.

estimator test.

attribute(test , update_interval) ::= t.

attribute(test , steps) ::= 100. % note has to be a known

constant integer , cannot be a symbolic constant. This is

a deficiency.

attribute(test , process_eqs) ::= cruising_model.

attribute(test , measurement_eqs) ::= measurement_model.

attribute(test , initials) ::= xinit(I).

attribute(test , timevar) ::= tvar.

attribute(test , initial_covariance) ::=

mx(idx(pvar (990) , 0, 2), idx(pvar (991), 0, 2),

[[ x_init_noise (0) ,0,0],[0, x_init_noise (1) ,0],[0,0,

x_init_noise (2) ]]).

double xhat (0.. n_statevars -1, 0.. n_steps -1).

output_filter test.

Listing 4.8: The controlling and constraining information in the cruiser problem

description
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4.2.2 Extension Requirements

From the abstract form of the Kalman filter shown in Figure 4.1, we can see the code

generated by AUTOFILTER is based on matrix computations. However, due to the

variety of the Kalman filter algorithm family, the exact number of the involved matrices,

as well as the form and order of the matrix computations may vary greatly from one

model to another. Worse still, there are some anti-patterns in the code generated by

AUTOFILTER. For example, it keeps a bad naming convention of array variables, which

constructs array names by adding a positive number to a common prefix “pv”. Besides,

magic numbers [109] are used as matrix sizes and indexes throughout the generated code

without much explanation about their meanings. All these factors make it difficult to

understand the code generated by AUTOFILTER, despite it being well documented.

Simply stated, manual changes to the generated code can be rather difficult and error-

prone.

The expected extension is to allow domain experts to monitor the updates of the variables

involved in the Kalman filter algorithm, in particular, the state vector x, the estimate

error covariance P, and the Kalman gain K, respectively in the “init”, “predict” and

“update” stages. For monitoring purpose, they require the ability to modify these join

points with simple functions in terms of output language statements, e.g. printing and

logging. Sometimes, they may also want to check some rare runtime status by tampering

with certain join points, e.g. skipping their normal execution. These changes cannot be

expressed in terms of the elements in either the estimation problem domain, or the

Kalman filter domain. This is a good scenario to test our meta-model based DSCG

extension approach. First, the modelling language, i.e. the problem description cannot

describe certain details in the solution domain, such as the “predict” and “update”

stages. Besides, neither the estimation problem domain elements or the Kalman filter

domain elements are capable of supporting the simple functions needed by the domain

experts. Second, due to the difficulty in understanding the generated code, manual

modification can be quite difficult or even impractical. Third, we cannot directly access

the source code of AUTOFILTER. We have to use some formal descriptions, i.e. the

meta-models in our approach, to guide the code generator maintainers to modify it for

us. This helps to verify that our meta-model based approach is truly independent from

the specific domains.

4.3 The Extension of AUTOFILTER DSCG

Following our approach, we first need to analyze the extension requirement to derive

the effective meta-model for crosscutting the Kalman filter model and to select a DSAL

template for the expected modification.
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4.3.1 The Kalman Filter Domain Effective Meta-Model

In this example, the join points involved in the extension requirements are the variables

involved in the Kalman filter algorithm, including scalars, vectors and matrices, and

the three algorithm stages, i.e. “init”, “predict” and “update”. Accordingly, the join

point classes are the “AlgorithmicParticipant” class and the “AlgorithmicStage” class.

To specify the corresponding meta-model, we use the XML Schema Definition (XSD)

language, which can be easily reused later in the generation of the DSAL. In XSD,

the meta-model classes are defined as “<xs:simpleType>” or “<xs:complexType>”,

and the properties are defined as “<xs:element>”. In particular, the join point classes

are annotated with the “IJoinInstance” annotation. The complete specification of the

effective meta-model is shown in Appendix B.3.

4.3.2 DSAL Template in SDF

As domain experts are concerned about the correctness of the C code snippet inserted

into the base programs through the advice in the generated DSAL. We want to select a

DSAL template, in which the custom code in advice can be syntactically checked at the

aspect weaving time. In this experiment, we use syntax definition formalism to specify

the DSAL template, as there is a reusable specification module of the C programming

language.

Syntax Definition Formalism Syntax Definition Formalism (SDF) is a formalism

for the definition of both lexical and context-free syntax [110]. It is a declarative language

that allows a concise and natural expression of the syntax of a context-free language.

It is modular, and richer than the traditional formalisms, such as BNF and Yacc. It is

less restrictive than Yacc, which can generate a parser only if the input grammar falls

within the LALR subclass [111]. Besides, it supports disambiguation by applying special

purpose facilities in SDF, such as priorities and reject productions.

In this example, the simple functions we need to support in custom code, can be imple-

mented directly as C statements. For example, the printing function can be implemented

by calling C function “printf()”. By including the C grammar module, we can have finer-

grained definition for the custom code in the advice of our DSAL specification. Another

benefit of the SDF modularity is that we can encapsulate all syntax placeholders cor-

responding to the domain elements in a dedicated, “domain specific” module. We can

thus define the rest part of the DSAL template as an independent module, which will

include the expanded “domain specific” module later to complete the generation of the

DSAL.
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Pointcut and Advice Patterns As mentioned in Section 4.2.2, sometimes an ex-

pected change may entail thorough modification of a join point, e.g. removing or replac-

ing its corresponding code block in the generated code. Therefore, we need to select a

template that supports the “around” advice pattern. This pattern allows the custom

code to overwrite the join point code block, or to insert extra code around it. In the

latter case, the original code block is normally represented by some predefined syntax

in the custom code, e.g. the “proceed();” in AspectJ. As shown in Listing 4.9, the cor-

responding syntax in our DSAL template is “Base;”, which will be parsed as a normal

C statement. The complete DSAL template we select is shown in Appendix B.4.

"Base;" -> Statement {cons("

BasecodePlaceholderStatement")}

Listing 4.9: The SDF module of our DSAL template

4.3.3 Traceable Domain Meta-Model

Now that we produced the effective meta-model of the target domain, we can now select

a tracing strategy and compose it into the effective meta-model to derive the traceable

domain meta-model.

Tracing Strategy As mentioned in Section 4.2.2, we have no direct access the source

code of AUTOFILTER. But we know that the generated code is time-critical C program.

We are thus inclined to use the sentinel pairs based on C style comments. A sentinel pair

includes a beginning sentinel that resides at the beginning of the join point code block

and an ending sentinel that resides at the end of it. Each sentinel comment consists

of three parts, prefix, body, and suffix. Only prefix part differs between the beginning

sentinel and the ending sentinel in the same pair. All sentinels share the same suffix.

More details of the sentinel template are shown in Listing 4.10.

"/*<JoinPoint -Begin" ->

JoinPointSentinelBeginTagPrefix {cons("

JoinPointSentinelBeginTagPrefix")}

"/*<JoinPoint -End" ->

JoinPointSentinelEndTagPrefix {cons("

JoinPointSentinelEndTagPrefix")}

"/*< Declaration" ->

DeclarationSentinelPrefix {cons("

DeclarationSentinelPrefix")}

"/>*/" ->

SentinelCommonSuffix {cons("SentinelCommonSuffix")}

Listing 4.10: Sentinel string in tracing strategy
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The body of each sentinel records the stage in which the value of an AlgorithmicParticipant

instance is updated and a name mapping of all involved AlgorithmicParticipant instances

and their corresponding variables in the generated code. Sometimes, an instance is

updated with its old value. For example, x = Fx + Bu in the predict stage. As the

AUTOFILTER generate two different variables to represent the previous and current

value of x, we keep different entries in the name mapping for them respectively. The

entry name for the variable storing the latest value is KeyRole, and the variable storing

the old value is ForeRole.

AlgorithmicParticipant ":" Identifier ->

Participant {cons("Participant")}

"Stage =\"" AlgorithmicStage "\"" -> StageDescription

{cons("StageDescription")}

"KeyRole =\"" Participant "\"" ->

KeyRoleDescription {cons("KeyRoleDescription")}

"ForeRole =\"" Participant "\"" ->

ForeRoleDescription {cons("ForeRoleDescription")}

StageDescription "," KeyRoleDescription

-> JoinPointDescription {cons("

CommonJoinPointDescription")}

StageDescription "," KeyRoleDescription ","

ForeRoleDescription -> JoinPointDescription {cons("

UpdateJoinPointDescription")}

JoinPointSentinelBeginTagPrefix JoinPointDescription

SentinelCommonSuffix -> JoinPointSentinelBeginTag {cons

("JoinPointSentinelBeginTag")}

JoinPointSentinelEndTagPrefix JoinPointDescription

SentinelCommonSuffix -> JoinPointSentinelEndTag {cons

("JoinPointSentinelEndTag")}

Listing 4.11: SDF definition of the body of sentinels

4.3.4 Generation of Kalman Filter Aspect Language

We call the DSAL to generate here the Kalman Filter Aspect Language (KFAL). The

generation process is basically an expansion of the produced DSAL template in accor-

dance with the above domain effective meta-model. In detail, we transform the above

effective meta-model into an SDF module called KalmanFilterAlgorithm, in which the

root elements are AlgorithmicParticipant and AlgorithmicStage that respectively corre-

spond to the two join point classes in the effective meta-model with the same names.
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The complete SDF specification of KalmanFilterAlgorithm module is shown in Ap-

pendix B.5.

The general structure of a KFAL aspect is similar to that of an AspectJ aspect. The

aspect declaration is followed by a list of PCD and advice, which are wrapped by a pair

of braces. The keyword for aspect declaration is “customization” instead of “aspect”

in AspectJ. KFAL supports both specific pointcuts and generic pointcuts. A specific

pointcut captures the update of a specific AlgorithmicParticipant in a specific stage. In

contrast, a generic pointcut captures the update of any AlgorithmicParticipant in a spe-

cific stage. Technically, we can easily support an even “more generic” pointcut, which

captures the update of any AlgorithmicParticipant in any stage. As domain experts do

not think it necessary, we do not support this kind of PCD in KFAL. The SDF definition

of KFAL PCD is shown in Listing 4.12.

"$" AlgorithmicParticipant -> APIdentifier {

cons("APIdentifier")}

APIdentifier -> Identifier {cons(

"APApplication")}

Identifier ->

PointcutDescriptorName {cons("PointcutDescriptorName")}

AlgorithmicStage ->

PointcutDescriptorName {reject}

AlgorithmicStage ->

GenericPointcutDescriptor {cons("

GenericPointcutDescriptor")}

AlgorithmicStage "$" AlgorithmicParticipant ->

SpecificPointcutDescriptor {cons("

SpecificPointcutDescriptor")}

"pointcut" PointcutDescriptorName ":"

GenericPointcutDescriptor ->

PointcutDescriptorDeclaration {cons("

GenericPointcutDescriptorDeclaration")}

"pointcut" PointcutDescriptorName ":"

SpecificPointcutDescriptor ->

PointcutDescriptorDeclaration {cons("

SpecificPointcutDescriptorDeclaration")}

Listing 4.12: SDF definition of pointcut in KFAL

Here, GenericPointcutDescriptor and SpecificPointcutDescriptor specify the PCD for generic

pointcuts and specific pointcuts respectively. AlgorithmicParticipant and AlgorithmicStage
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are imported from module KalmanFilterAlgorithm.

pointcut spc_update_x : update $x

pointcut gpc_predict_any : predict

Listing 4.13: Pointcut examples of KFAL

Listing 4.13 shows two PCD examples in KFAL. The first pointcut, whose name is

prefixed by “spc” (Specific PointCut), is a specific pointcut that captures the join points

updating the state estimate vector x in the update stage. Note that we use a special

character $ before the name of any AlgorithmicParticipant in KFAL, to indicate it as a

domain element instead of a common variable in the generated C code. This helps to

avoid ambiguity caused by name conflicts. The second pointcut, whose name is prefixed

by “gpc” (Generic PointCut), is a general pointcut that captures the join points updating

any traced domain element, i.e. the state estimate vector x and the estimate covariance

matrix P, in the predict stage.

Similar to AspectJ, KFAL supports three advice patterns, before, after and around,

which allows aspect writers to insert custom code either before a specific join point or

after it, or simply to replace the whole join point with the given custom code. Specifically,

around advice can also insert custom code to both the start and the end of a specific

join point, without removing the original code block. In that case, the original code

block is denoted by keyword Base in advice code. The corresponding SDF definition is

shown in Listing 4.14.

"before" ->

CrosscutPatternModifier {cons("before")}

"after" ->

CrosscutPatternModifier {cons("after")}

"around" ->

CrosscutPatternModifier {cons("around")}

CrosscutPatternModifier -> Keyword {cons("

CrosscutPatternModifier")}

Keyword -> Identifier {

reject}

"Base" -> Keyword {cons("

BasecodePlaceholder")}

CrosscutPatternModifier PointcutDescriptorName "()" "{"

Statement "};" -> AdviceBlock {cons("

PointcutNameBasedAdvice")}

CrosscutPatternModifier GenericPointcutDescriptor "()" "

{" Statement "};" -> AdviceBlock {cons("GenericAdvice")
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}

CrosscutPatternModifier SpecificPointcutDescriptor "()"

"{" Statement "};" -> AdviceBlock {cons("SpecificAdvice"

)}

"Base;" -> Statement {cons("

BasecodePlaceholderStatement")}

Listing 4.14: SDF definition of advice in KFAL

From the above SDF definition, we can see that Base; is recognized as a Statement, which

is imported from module Default-C. The term represents a common C statement. On

this matching, a node called “BasecodePlaceholderStatement” will be created in the

parsed syntax tree, whereas the nodes created by the other “normal” C statements all

have different names. This is defined by syntax cons(“BasecodePlaceholderStatement”).

Based on this difference, our rewriting rule can distinguish this placeholder from normal

C statements, so that we can replace it with the original code block. For the sake of the

simplicity, KFAL does not support logic combination of multiple crosscutting conditions.

As for advice declaration, KFAL supports referencing a defined pointcut by its name,

as well as directly embedding a pointcut definition. For example, both of the two code

blocks shown in Listing 4.15 insert some custom code before initializing the process

model F.

before pcd1 () {

...

};

...

};

Listing 4.15: Two ways to link advice with pointcut in KFAL

Two pieces of advice examples are shown in Listing 4.16.

after predict $x () {

log_current_var($x);

log_current_var($P);

};

around init $H () {

before_init_H ();

Base;

after_init_H ();

};

Listing 4.16: Advice examples of KFAL

The first piece of advice logs both the state estimate vector x and the covariance matrix P

after each prediction of x. The second piece of advice reuses two functions before init H()
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and after init H() from the legacy code around the join points initializing the observation

model H.

4.3.5 KFAL Weaver Generation with Stratego/XT

To the best of our knowledge, there is no existing aspect weaver that supports crosscut-

ting C programs by C style comments. Therefore, we build KFAL aspect weaver as an

AST rewriter which accepts the base code and the KFAL aspects as input, and generates

the customized code according to the rewriting strategies specified in the KFAL aspects.

More specifically, the KFAL weaver first parses the input base code into corresponding

ASTs, then traverses them and applies the detailed rewriting strategies interpreted from

the advice in the input KFAL aspects, it finally restores the rewritten ASTs back into

customized code.

The Stratego/XT framework provides a complete tool chain to generate parsers accord-

ing to given SDF specifications, and generate AST rewriters with Stratego rewriting

rules. Simply stated, parse tables are generated for built-in generic parsers, so that any

program written in the languages defined by the given SDF specifications can be parsed

into corresponding tree structures, i.e. AST or CST. The parsed tree structures are then

rewritten according to the given Stratego rewriting strategies, and finally pretty-printted

back to programs to finish the modification, i.e. aspect weaving process.

SDF to Parse Table First, we use tool sdf2table to automatically generate parse

table KFOL.tbl from the SDF definition of the updated output language, i.e. KFOL.sdf

and parse table KFAL.tbl from KFAL.sdf. The generated parse tables can then be used

as input to a generalized LR parser sglri, which checks the syntactic correctness of

the input base code and KFAL aspects by parsing them into structured ASTs. Further

discussion about LR parsing can be found in Section 6.1.2. Strictly speaking, parsing

via sglri is a two-step process. It first invokes the base parser sglr to parse the input

programs into concrete syntax trees or parse trees. It then implodes the parse trees

into the corresponding ASTs represented in ATerm, or more precisely, AsFix, by tool

implode-asfix. Annotated Term (ATerm) format [112, 113] is a format for exchanging

structured data in Stratego/XT. The ATerm format is a generic internal and external

representation of data by means of simple prefix terms. AsFix [114], namely “ASF+SDF

fixed format”, is a format for representing parse trees in the ATerm format. In detail,

there are two kinds of AsFix: AsFix2ME, a compact version with lists, layout and

literals flattened, and AsFix2, a very verbose version with a structured representation

of its content. Specifically, the ASTs generated by sglri is by default in the format of

AsFix2.
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Stratego Rewriting Rules Construction The seamless support of SDF in the

Stratego/XT framework is reflected in the convenient transformation from SDF defini-

tion to Stratego signature. As the basis of the rewriting transformation, the rewriting

rules derived from KFAL aspects need to recognize the comment sentinel structures, as

well as the traced Kalman filter domain elements. The Stratego/XT framework provides

the tool sdf2rtg to generate abstract Regular Tree Grammar (RTG) from SDF defini-

tions, and the tool rtg2sig to generate the corresponding Stratego signatures from the

generated RTGs. As for KFAL, we generate the Stratego signature module (KFAL.str)

from the SDF module (KFAL.sdf), we then import it as the basis of the AST rewriting

module. The second step of KFAL weaver generation is to construct Stratego rewriting

rules to interpret the input KFAL aspects into a series of rewriting rules that can be

applied during a traversal of the ASTs generated from the input base code. In general,

Stratego rewriting strategies follow a “first match, and then apply” pattern. There-

fore, we define a number of Stratego rewriting rules to translate different kinds of KFAL

pointcuts and advice into the corresponding Stratego rewriting rules. In detail, we define

a series of fundamental rewriting strategies for each advice pattern we support. Back

to our cruise filter example, as our advice model supports before, after and around pat-

terns, we define the corresponding Stratego rewriting strategies as shown in Appendix

B.6.

The SpecificAdviceApplication strategy shown above is a combination of Stratego built-in

rewriting strategies, such as oncebu, which applies its parameter strategy at one posi-

tion in an AST, and our customized strategies, such as SpecificAdviceApplicationBefore,

which merges the custom code block represented by parameter customcode and the code

block wrapped by comment sentinels matching both stage information represented by

algostage and involved domain elements information represented by algoparticipant and

participantlist into a new AST branch, and replace the branch of the original code block

with it. There are three points worth noting here. First, during this merging process,

any domain element name will be replaced with the name of its corresponding variable

in base code. For example, the observation model H will be replaced with variable name

h text. Second, only the domain elements originally involved in a certain join point are

visible in extension. Any other domain elements are regarded as “undefined”, and their

names cannot be properly replaced with the corresponding variable names. For example,

only the observation model H is visible in the scope of the join point initializing it. If we

try to modify the innovation vector y, it will not be replaced with the proper variable

name, so that a compilation error will be thrown when we compile the customized code.

This design is to prevent potential tampering with irrelevant domain elements in certain

join points. Third, the advice application strategies apply to the advice defining the

PCDs directly instead of referencing by their names. The relevant rewriting strategies

are shown in Appendix B.7.

In short, the SpecificAdviceApplicationBefore rewriting strategy modifies the custom code
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by proper name replacements of the domain elements involved, and then inserts it into

the AST branch of the target join points at its beginning. Similarly, we define the

strategies for around and after patterns, as well as the strategies for general advice. On

top of these strategies for advice application, we define strategies traversing the ASTs

of the input KFAL aspects and translating the “pointcut-advice” pairs into Stratego

rewriting strategies against the ASTs of the input base code, which match the join point

conditions specified in the pointcuts and then apply the corresponding advice application

strategies. The Stratego rewriting rules that translate the KFAL pointcut-advice pairs

are shown in Listing 4.17.

PointcutReplacer :

([],list) -> list

PointcutReplacer :

([pt | pts],list1) -> list3

where list2 := <PointcutReplacer > (pt,list1);

list3 := <PointcutReplacer > (pts ,list2)

PointcutReplacer :

(SpecificPointcutDescriptorDeclaration(

PointcutDescriptorName(pdn), spd), advlist1) -> advlist2

where advlist2 := <map(try(SpecificPointcutReplacer (|pdn ,

spd)))> advlist1

PointcutReplacer :

(GeneralPointcutDescriptorDeclaration(

PointcutDescriptorName(pdn), gpd), advlist1) -> advlist2

where advlist2 := <map(try(GeneralPointcutReplacer (|pdn ,

gpd)))> advlist1

SpecificPointcutReplacer (|pdn ,spd) :

PointcutNameBasedAdvice(wp ,PointcutDescriptorName(name),cc

) -> SpecificAdvice(wp,spd ,cc) where equal (|name ,pdn)

GeneralPointcutReplacer (|pdn ,gpd) :

PointcutNameBasedAdvice(wp ,PointcutDescriptorName(name),cc

) -> GeneralAdvice(wp,gpd ,cc) where equal (|name ,pdn)

Listing 4.17: Stratego rewriting rules translating KFAL pointcut-advice pairs

The above strategies traverse the ASTs of the input KFAL aspects for the advice list,

and replace every pointcut name involved in advice with its definition, so that the advice
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application strategies like SpecificAdviceApplication can be applied. The strategies shown

in Listing 4.18 distribute the proper advice application strategies to each advice in the

list.

CustomizationApplier :

([], pl , code) -> code

CustomizationApplier :

([task | tasks], pl , code1) -> code3

where code2 := <CustomizationApplier >(task , pl, code1);

code3 := <CustomizationApplier >(tasks , pl, code2)

CustomizationApplier :

(SpecificAdvice(wp,SpecificPointcutDescriptor(as,ap),cc),

pl , code1) -> code2 where code2 := <

SpecificAdviceApplication (|wp ,as ,ap ,cc ,pl)> code1

CustomizationApplier :

(GeneralAdvice(wp,GeneralPointcutDescriptor(as),cc), pl,

code1) -> code2 where code2 := <GeneralAdviceApplication

(|wp,as ,cc ,pl)> code1

Listing 4.18: Stratego rewriting rules applying proper advice application strategies

All above Stratego rewriting rules implement two major functions. The first one is to

traverse the ASTs of the input KFAL aspects to load the appropriate advice application

strategies. The second one is to traverse the ASTs of the input base code to apply

each loaded advice application strategy. It is worth noting that the advice in KFAL

aspects will be parsed and applied to base code ASTs in the order they appear. This

is important as it avoids the ambiguity in applying multiple advice to the same join

point. We will show a detailed example later in Section 4.4. Now that we have finished

the construction of all needed rewriting rules. With tool strc, we compile them into a

single executable, which we call KFRewriter. It is worth noting that the KFRewriter

can recognize and manipulate ASTs derived from both base code in KFOL and aspects

in KFAL, as the imported Stratego signature module KFAL.str contains all the language

construct definition of KFOL in it.

Pretty Printing in XT In Stratego/XT, the process unparsing ASTs back to code

text is often referred to as Pretty Printing. The XT tool set contains a GPP package,

which is a tool suite for generic pretty printing. GPP supports pretty printing of ASTs

in AsFix format into text in a number of output formats, including plain text, LaTeX

and HTML. Similar to the two-step code-to-AST parsing process, the pretty printing

process also consists of two step process. In the first step, the ASTs in AsFix format are
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unparsed by tool ast2abox into intermediate representation in an internal format called

the Box language [115]. The unparsing step requires pretty print tables to specify how

the target language constructs need to be pretty printed. The Stratego/XT framework

shows its hospitality again to SDF language definition. It provides the tool ppgen to

generates pretty print tables directly from SDF definitions. We use it to generate the

unparse table of KFOL, KFOL.pp, from KFOL.sdf. In the second step, the unparsed box

representations are further translated into code text by tool abox2text.

KFAL Aspect Weaving So far we have explained the generation of all the compo-

nents required in the KFAL aspect weaving process. The final step of the KFAL aspect

weaver generation is to get these components to work together. We write a bash script

we call KFALWeaver.sh to integrate the whole weaver system. The KFAL aspect weaving

process consists of three steps. First, the input base code is parsed into AST in AsFix

format with the help of the corresponding parse table KFOL.tbl. The XT command to

parse the base code into ASTs is shown in Listing 4.19.

sglri -i Input/Aspect.akf -p Utility/KFAL.tbl -o tmp/Aspect.

trm

Listing 4.19: XT command parsing base code into ASTs

Similarly, the input KFAL aspects are also parsed into ASTs. A little trick here is to

concatenate the ASTs of both base code and KFAL aspects into the intermediate file

storing the base code ASTs, so that our core rewriter KFRewriter can handle them from

a single file. Second, the underlying rewriter takes the merged ASTs and launches the

traversal for a two-step rewriting, i.e. loading required advice application strategies from

KFAL aspect ASTs and then applying them to base code ASTs. The XT command to

rewrite the base code ASTs is shown in Listing 4.20.

Utility/KFRewriter -i tmp/BaseCode.trm -o tmp/CustomizedCode

.trm

Listing 4.20: XT command rewriting base code ASTs

Finally, the rewritten ASTs go through a two-step pretty printing process to be unparsed

into code text with the woven custom code. The XT command to pretty print the

rewritten ASTs in Listing 4.21.

ast2abox -p Utility/KFOL.pp -i tmp/CustomizedCode.trm -o tmp

/CustomizedCode.abox

abox2text -i tmp/CustomizedCode.abox -o Output/

CustomizedCode.c

Listing 4.21: XT command pretty printing rewritten ASTs
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4.4 KFAL Aspect Application in Cruise Filter

So far we have generated the DSAL for Kalman filter domain, i.e. KFAL and its AST

rewriting based aspect weaver. To complete our case study, we write a testing aspect in

KFAL and apply it to the Kalman filter implementation generated by AUTOFILTER in

the cruise filter example described in Section 4.1.3, and then check the modified program

for the weaving result. We basically include five testing purposes in this aspect. The

first purpose is to verify that both ways of referencing PCDs in advice work. The second

purpose is to ensure both specific pointcut and generic pointcut work. The third purpose

is to check whether multiple advice are applied to the same join point in the same order

as they are defined in the example KFAL aspects. The fourth purpose is to verify that

the model element names are properly replaced with the corresponding variable names

in the custom code. The fifth purpose is to verify that the around advice can completely

replace the captured join points with custom code. The testing KFAL aspect is shown

in Listing 4.22.

customization sample {

pointcut spt_predict_P : predict $P

pointcut spt_predict_x : predict $x

pointcut spt_update_P : update $P

pointcut gpt_predict : predict

before spt_predict_P () {

SET_ZERO($P); // A macro to set all elements of the

input parameter as "0".

};

// A generic advice , which is to append a time logging

after any "predict" process.

before predict () {

log_current_var($H);

};

// A generic advice , which is to append a time logging

after any "predict" process.

after gpt_predict () {

log_current_var($x);

log_current_var($P);

};

around init $H () {

before_init_H ();

Base;
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after_init_H ();

};

after spt_update_P () {

printf("estimation error: %f", norm($P));

};

around init $Q () {

SET_ZERO($Q);

};

}

Listing 4.22: KFAL aspect to extend the cruise filter example

As we can see, the first piece of advice references a specific pointcut by its name

spt predict P, whereas the second piece of advice directly declares a general pointcut.

Besides, the first two pieces of advice are applied to the same join point, i.e. predicting

the estimate covariance matrix P. In the third advice, we deliberately use the irrele-

vant domain element x in the join points predicting P. For this, we define the last and

third-to-last advice to test these two different applications respectively. Besides, the

SET ZERO macro from legacy code is to set all elements of its parameter to 0. The

norm method is also from legacy code, which returns the estimation error according

to the given covariance matrix. Our aspect example diversifies as much as possible in

the extension requirements that KFAL supports. It covers both specific and general

pointcuts, and all three patterns of advice.

4.4.1 Aspect Weaving Result

The test environment of our KFAL weaver is Ubuntu 12.04.3 LTS, with three core pack-

ages installed for Stratego/XT: aterm-2.5, sdf2-bundle-2.4 and strategoxt-0.17.

We apply the example aspect shown above to the base code generated by AUTOFILTER

in the cruise filter example, and then verify the weaving result by manually checking and

compiling the customized code generated by the KFAL weaver script. The customized

code gives positive answers to all our test concerns. Take the code block predicting P

for example, as all the first three pieces of advice is applied to it. The corresponding

base code is shown in Listing 4.23.

/*<JoinPoint -Begin Stage =" predict",KeyRole ="P:

pminus_test",ForeRole ="P:pplus_test "/>*/

// Calculation of matrix transpose

pv92[0 ][ 0] = phi_test [0 ][ 0];

. . .
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pminus_test [2 ][ 2] = q_test [2 ][ 2] + pv90[2 ][ 2];

/*<JoinPoint -End Stage =" predict",KeyRole ="P:pminus_test

",ForeRole ="P:pplus_test "/>*/

Listing 4.23: Base code of join point predicting P

There are two points to explain. First, any comment in the base code, except for our

comment sentinels, is discarded in the aspect weaving process according to our grammar

KFOL.sdf. Second, there are many extra white spaces inserted in the customized code,

which are introduced in the pretty printing process due to the default Box language

translation rules. As they do not affect the compilation of the customized code, we

simply leave it untouched. The customized code is shown in Listing 4.24.

/*<JoinPoint -Begin Stage=" predict " , KeyRole =" P :

pminus_test " , ForeRole =" P : pplus_test " />*/

log_current_var ( h_test ) ;

SET_ZERO ( phi_test ) ;

pv92 [ 0 ] [ 0 ] = phi_test [ 0 ] [ 0 ] ;

. . .

pminus_test [ 2 ] [ 2 ] = q_test [ 2 ] [ 2 ] + pv90 [

2 ] [ 2 ] ;

log_current_var ( $ x ) ;

log_current_var ( pminus_test ) ;

/*<JoinPoint -End Stage=" predict " , KeyRole =" P :

pminus_test " , ForeRole =" P : pplus_test " />*/

Listing 4.24: Customized code of join point predicting P

The first piece of advice inserts the SET ZERO macro at the beginning of the code block,

and then the second piece of advice inserts a statement logging H also at the beginning

of it. Therefore, it comes before the inserted macro. This result proves that multiple

pieces of advice are actually applied in the order they are defined in KFAL aspects.

The third advice applied here defines custom code involves both x and P. As this join

point predicts only estimate covariance P, its name is replaced with the corresponding

variable name pminus test, whereas x remains the same in the woven code, which would

lead to a compilation error indicating x is undefined. In summary, the KFAL aspect

weaving system successfully extends the DSCG of AUTOFILTER for a model, i.e. the

cruise filter, as we expected.

In this chapter, we illustrate that our DSCG extension approach can successfully ac-

commodate modifications that previously cannot be described by the target DSL to

AUTOFILTER generated code. With the help of the Stratego/XT framework, we im-

plement a complete system to establish proper tracing mechanism on certain elements in
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the Kalman filter domain, and to generate a DSAL called KFAL and its aspect weaver

on top of the meta-model tracing system. We then test the whole KFAL based exten-

sion system with the cruise filter example by writing a test KFAL aspect with diversified

pointcuts and advice and then verifying the customized code generated by the aspect

weaving process. The test result shows the feasibility of our meta-model based DSCG

extension approach, in a circumstance where we aim at a very specific target domain

and build our aspect weaver as an AST rewriter.



Chapter 5

DSCG Extension for ANTLR

As a second case study, we test our approach within a well-established domain, the

parsing of Context Free Grammar (CFG) languages.There are a number of different

parsing algorithms involved in this domain. According to the order of grammar rule

application, they can be mainly categorized into Left-to-right Leftmost (LL) parsing

algorithms and Left-to-right Rightmost parsing algorithms, on which we will elaborate

in Section 5.2. There are many parser generators developed with different techniques for

each kind of parsing algorithm. In this case study, we focus on one of the most widely

used parser generators, ANTLR [16, 96, 97].

5.1 Context Free Language Parsing

A language, as conceived by Chomsky [116], is “a set (finite or infinite) of sentences,

each finite in length and constructed out of a finite set of elements”, which have “a

finite number of phonemes (or letters in its alphabet) and each sentence is representable

as a finite sequence of these phonemes (or letters)”. Instead of the loose concept of

general languages, the term “language” in our discussion refers to the formal languages,

in particular, those involved in the computer science domain, which may include pro-

gramming languages, modelling languages, representation languages, etc. According to

Earley [88], a formal language is “a set of strings over a finite set of symbols”. A gram-

mar of a language can be considered as a formal device that specifies the symbol sets

that are allowed in the language. According to Aho et al. [117], a grammar defines a lan-

guage by imposing a structure on each sentence in the language. In computer science,

formal grammars can be categorized into two types according to whether their rules

can be applied regardless of context. In Section 3.1.1, we have introduced Context Free

Grammar (CFG), which is widely used to specify formal languages. A formal languages

specified by CFG is often referred to as Context Free Language (CFL). In this case study,

the target DSCG is exactly the generation of the parsers for context free grammars. On

93
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the other hand, a production rule of a formal grammar can be constrained to a specific

context, e.g. after matching another production rule, such a grammar is a Context Sen-

sitive Grammar (CSG). In practice, CSG is seldom used as there is no efficient context

sensitive recognition algorithm, whereas CFGs describe formal languages in a way that

their sentences are built recursively from smaller terms. This allows the construction

of efficient parsing algorithms, and CFG parsing becomes popular and arouses much

research effort in computer science. The reason we choose CFG parsing as the target

domain is because this is a well-established domain, and many parsing algorithms have

been invented and improved. Moreover, a number of mature parser generation tools are

available to us as potential code generators in our experiments.

5.1.1 CFG Parsing Algorithms

According to Aho et al. [40], the compilation process comprises seven phases. The first

phase is called lexical analysis, which transforms the given input text into a string

of tokens, i.e. terminals, defined in the formal grammar. The second phase is called

syntactic analysis or parsing, which analyze the transformed token string. Note that all

formal grammars involved in our discussion are CFGs unless specifically indicated.

A common problem encountered in CFG parsing is ambiguity. Given the fact that a

sentence of a language specified by CFG can be constructed by applying a sequence

of production rules to the start symbol, a CFG is regarded to be ambiguous if we can

find more than one sequence for a specific sentence. In other words, in an unambiguous

grammar, a syntactically correct sentence can be derived from the start symbol by

applying only one specific sequence of production rules. A rule application sequence is

called a derivation. In each step of a derivation, the start symbol is rewritten into an

updated string, which may include both terminals and nonterminals. Such a string is

often called a sentential form. Obviously, a sentence is a sentential form containing only

terminals.

From this perspective, the purpose of parsing is exactly to identify the specific derivation

of an input sentence, e.g. a program, according to the given grammar, and to return the

reverse of the identified derivation, which is often called a parse. Obviously, the basis of

a successful parsing is that the grammar must be unambiguous. Note that all grammars

involved in our discussion are unambiguous unless specifically indicated.

The goal of a parsing algorithm is thus to construct a parsing system according to a given

grammar, and find out which production rules are applied in building the input string

and the application order. There are many parsing algorithms developed for CFGs,

among which two groups of parsing algorithms have become entrenched, i.e. LL parsing

and LR parsing. In this chapter, we focus on LL parsing algorithms. We will elaborate

on LR parsing algorithms in Section 6.1.2.
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LL Parsing Each LL parsing algorithm is a top-down, recursive descent parsing

algorithm. The first L in its name means that an LL parser scans the input string

from “Left to right”. The second L indicates an LL parser’s preference for “Leftmost

derivation”. “Top-down” is a conceptual description of the parsing process, in which

parse trees are constructed in a “top-down” pattern, i.e. from roots (start symbols) to

leaves (terminals). “Recursive descent” describes two features of the parsing process.

“Recursive” stands for the recursive applications of CFG production rules in the parsing

process. “Descent” indicates that the parsing is actually based on Depth First Search

(DFS) on derivation trees. Obviously, the parsing will be in infinite loop if a production

rule of the given grammar is “left recursive”. Therefore, LL parsers normally do not

support left recursive grammars by default. In the parsing process of an LL parser, it

scans one token from the input string at each time, and then applies an appropriate

production rule according to the scanned token based on some selection strategy.

The original LL parsing algorithm relies on sheer luck, and there is no production rule

selection strategy at all. The parser simply performs a DFS and backtracks whenever

hitting an unexpected sentential form due to some wrong application of production

rules. To reduce the performance penalty caused by backtracking, the concept of pre-

dictive parsing is developed to avoid backtracking. The trick is to build a parse table

according to the given CFG, assuming the parser can always look ahead to a fixed num-

ber of tokens that follow the current token that it scans, to predict the current state,

which is essentially decided by the remaining input. By convention, predictive LL pars-

ing algorithms are collectively called LL(k) (k>0), where k stands for the number of

lookahead tokens. The original LL parsing algorithm is thus denoted as LL(0). Here we

use a very simple CFG and the LL(1) parsing algorithm to give an intuition about how

a predictive parsing algorithm works. The EBNF representation of the example CFG is

shown in Listing 5.1.

Expr := ’int’ ; (* Rule 1 *)

Expr := ’(’ Expr Op Expr ’)’ ; (* Rule 2 *)

Op := ’+’ ; (* Rule 3 *)

Op := ’*’ ; (* Rule 4 *)

Listing 5.1: The example grammar

The parse table of this LL(1) grammar can be constructed as shown below.

int ( ) + *

Expr Rule 1 Rule 2 − − −
Op − − − Rule 3 Rule 4

Each row of the parse table represents a specific LHS nonterminal in one of the pro-

duction rules. Each column stands for the first token of a certain RHS in one of the
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production rules. The table values are calculated according to the FIRST set and the

FOLLOW set of each LHS nonterminal, which are computed with a transitive closure

algorithm (or a fixed point iteration). More details of the computation of these sets

can be found in the famous book about compilers by Aho et al. [40]. These details are

outside the scope of this work and are not further discussed here. We only need to

know that we are able to generate this kind of parse tables from an unambiguous LL(1)

grammar. An LL(1) parser maintains a token stack S to record its internal states and

an index p pointing to an input string to mark the parsing progress. Before each parsing

process, the parser initializes S with the start symbol and set p pointing to the left of

the first token of the input string. The parser then performs a recursion containing the

following steps.

Step 1 If p is pointing to the end of the input string, parsing is complete.

Step 2 Look ahead to the first input token lat to the right of p.

Step 3 Check the top token t in S. If t is a terminal, go to Step 4. Otherwise, go

to Step 5.

Step 4 Match t against las. If successful, pop t from S, move p to the right of las,

and then skip the current iteration. Otherwise, report error and end the parsing

process. This step is often called a match step.

Step 5 Look for a cell in the parse table, whose row matches t and whose column

matches las. If the search is successful, the cell value r is the production rule to

apply according to the prediction. Otherwise, report error and end the parsing

process. This step is often called a predict step.

Step 6 Pop t from S and move t to the right of las. This step is in fact a simulation

of the application of production rule r.

Apparently, the more tokens a parser can look ahead, the more accurate its prediction

would be. In the extreme case, if all the remaining tokens were kept as lookahead

tokens, “prediction” would actually become “lookup” in the whole state space with

100% accuracy. However, a rising number of lookahead tokens does not necessarily

result in more effective parsing. The increase of the number of lookahead tokens will

lead to exponential increase of the cell number of parse tables and incredibly complicate

the parser, not to mention the fact that real life parsing requires arbitrary lookahead

as the length of an input string is normally unpredictable. Besides, with the increase

of k, stronger restrictions are implicitly enforced to CFGs that can be parsed by LL(k)

algorithm, which in return makes LL(k) less expressive.

In summary, LL(0) and LL(k) (k>0) are two types of conventional LL parsing algo-

rithms. By allowing backtracking, LL(0) accepts all but left recursive CFGs, while suf-

fers from performance penalty in parsing. By enforcing looking ahead to a fixed number
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i.e. k, of following tokens and disabling backtracking, LL(k) avoids performance penalty,

at the cost of accepting fewer CFGs and increased complexity of parser.

5.1.2 LL(*) Parsing

So far we have explained the advantages and disadvantages of the two types of tradi-

tional LL parsing algorithms. LL(0) is simple and expressive, but produces slow parsers;

whereas LL(k) (k>0) produces fast parsers, but is more complex and less expressive.

As an improvement, another LL parsing strategy called LL(*) [118] is proposed. It

matches the lookahead tokens with regular expressions instead of using linear search

of token sequences in prediction of production rules. When predicting an appropriate

production rule for an LHS nonterminal, LL(*) parsing relies on a Deterministic Finite

Automaton (DFA), which can be cyclic to deal with arbitrary lookahead tokens. The

design of DFA based lookahead in LL(*) does not only make specifying lookahead depth

unnecessary as in LL(k), but also improves the performance of an LL(*) parser. Com-

pared to backtracking with full parser, which entails method invocations for production

rule applications and unrolling their effects, backtracking of lookahead DFAs in LL(*)

is more lightweight, in terms of simpler implementation and better performance.

These lookahead DFAs in LL(*) are constructed by the grammar analyzer in ANTLR

in a heuristic way. A valid LL(*) DFA has the following properties.

∙ All states are reachable.

∙ All states can reach an accept state.

∙ At least one accept state can be reached for each alternative.

The DFA construction would be terminated when there is recursion in at least two

alternatives for a certain LHS nonterminal. On such an unsuccessful attempt, which

is rare according to empirical results [118], LL(*) would fail over to LL(1) by enabling

backtracking.

5.2 The ANTLR Parser Generation Framework

In this case study, the target DSCG is the ANTLR parser generation process, which

takes an ANTLR specification of an LL(*) grammar as input, and generates a lexer

and a parser as output. In this section, we introduce the key artifacts involved in the

ANTLR parser generation framework.
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5.2.1 ANTLR

The domain specific code generator here is called ANother Tool for Language Recognition,

ANTLR [16, 96, 97, 118]. As the successor to the Purdue Compiler Construction Tool

Set (PCCTS) [119], it was first developed by Professor Terence J. Parr in 1989 for LL(k)

parser generation [16]. It is maintained by Parr since then and is under active develop-

ment. With the development of LL(*) parsing strategy, ANTLR becomes a dedicated

LL(*) parser generator.

Strictly speaking, ANTLR is a powerful framework, capable of constructing various tools

involved in language development, such as recognizers, interpreters, translators, etc. In

our experiment, we work with one of its recent stable release, ANTLR v3.5 [120]. It takes

as input formal grammars, i.e. ANTLR grammars, and generates as output the source

code of the corresponding parsers. In each code generation process, there are two main

output artifacts. One is a lexical analyzer called lexer or recognizer, which transforms

an input string into a token stream. The other one is a parser, which would parse

the transformed token stream into the corresponding parse tree and walk through it to

execute required actions defined in the input ANTLR grammar. By default, the output

language of ANTLR is Java. As other options, a number of mainstream languages are

available, such as C, C#. As the lexer class can be considered as a helper class of the

parser and will not be involved by the the extension requirements in our experiments,

we focus on only the parser class program generated by ANTLR in our experiments.

When we mention “base program” in the following discussion, we always refer to the

source code of the parser class.

5.2.2 ANTLR Grammar

In the ANTLR parser generation process, the input grammars are specified using YACC -

like syntax with EBNF operators and token literals in single quotes. This specification

language is called the ANTLR grammar description language. The grammars defined

in it are called ANTLR grammars. There are four kinds of ANTLR grammars: lexer,

parser, tree, and combined lexer and parser. Lexer grammars define the tokens, or lex-

emes, of input grammars, and the lexical rules. Parser grammars define the production

rules, also known as the parsing rules. Tree grammars define the tree matching rules.

Combined grammars integrate the related lexer and parser grammars together. All of

the four kinds of grammars have the same basic structure as shown in Listing 5.2.

<grammarType > grammar grammarName;

<optionsSpec >

<tokensSpec >

<attributeScopes >

<actions >



Chapter 5 DSCG Extension for ANTLR 99

rule1 : ... | ... | ... ;

rule2 : ... | ... | ... ;

...

Listing 5.2: General structure of ANTLR grammars

In the first line, grammarType indicates which specific type of grammar is defined. Its

value can be one of the four values: “lexer”, “parser”, “tree”, “lexer parser”. The

following grammar is the keyword reserved to define ANTLR grammars, which is followed

by the name of the ANTLR grammar. The optionsSpec block is used to define the general

configurations of the generated parsers. For example, the option block shown in Listing

5.3 sets the output language as C# instead of the default Java and sets the parsing

output in form of template.

options {

language = C#;

output=template;

}

Listing 5.3: An example of ANTLR grammar options specification

As its name suggests, tokensSpec block is used to define the tokens, or lexemes, of

input grammars. By convention, tokens are named with uppercase letters, and can

be declared with or without initialization values. Take the grammar of the arithmetic

operation language we used in Section 3.1.2 for example, its lexer grammar is shown in

Listing 5.4.

tokens {

PM;

MD;

VAR;

}

Listing 5.4: An example of ANTLR grammar token specification

Generally speaking, the only way supported by ANTLR to pass information between

two production rules is to use function parameters and return values. This can be

quite inconvenient in situations like communicating with deeply nested rules. ANTLR

allows users to define their attribute scopes. All attributes defined in a certain scope are

visible to any rule declared to be in the scope. The scope shown in Listing 5.5 defines

an attribute called x of type int.

scope ScopeOne {

int x;

}

Listing 5.5: An example of ANTLR grammar attribute scopes
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ANTLR generates a method for each rules in the given ANTLR grammar. These meth-

ods are encapsulated respectively in a lexer class and a parser class in the ouput language.

ANTLR allows users to directly modify such classes in ANTLR grammars through ac-

tions called GrammarActions, which can be used to modify the members or the headers

of either class.

@lexer :: header {

import some.dependent.class;

}

@member {

int y;

}

Listing 5.6: Two examples of ANTLR grammar actions

The first grammar action imports an additional class some.dependent.class for the lexer

class. The second action adds a new member variable y of type int to the parser class.

As for the rule part, different ANTLR grammars define different kinds of rules. Lexer

grammars define lexical rules. For example, the lexical rules related to the tokens of the

arithmetic operation grammar are shown in Listing 5.7.

PM : ’+’ | ’-’ ;

MD : ’*’ | ’/’ ;

VAR : ’0’ | ’1-9’ {’0-9’}*

Listing 5.7: An example of lexical rules in ANTLR grammar

Tree grammars define tree matching rules with tree pattern, which is in the form of

ˆ(root child1 child2 ... childN). For example, the tree grammar rule shown in Listing 5.8

matches an AST of an “add” operation in the arithmetic operation grammar.

add : ˆ( ’+’ VAR VAR )

| ˆ( ’-’ VAR VAR )

;

Listing 5.8: An example of tree matching rules

In ANTLR, there are two ways to rewrite input streams. One is to directly manipulate

the existing parse trees to accommodate expected changes, which can be implemented

with tree rewriting patterns. As such is not related to our extension requirements, we

will not go further about tree grammars and tree rewriting. Instead, we focus on the

other way, i.e. template rewriting, which is based on extra attributes and actions that

are defined at the production rule level in the input grammars.
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Production Rule in ANTLR Grammars Each production rule in an ANTLR

grammar consists of an LHS nonterminal, which is also used as the name of the rule,

and one or more alternatives. Each alternative can reference other rules by their names.

The general structure of an ANTLR production rule is illustrated in Listing 5.9.

ruleName <arguments > returns <returnValues >

<throwSpec >

<optionspec >

<ruleAttributeScopes >

<ruleActions >

: alternative1 -> rewriteRule1

| alternative2 -> rewriteRule2

...

;

<exceptionsSpec >

Listing 5.9: General structure of an ANTLR production rule

In ANTLR parser generation, ANTLR generates a method in output language for each

production rule of the given grammars, which will be invoked when the corresponding

rule is applied according to the current matching. The method name is the same as the

rule name. By default, such methods have no parameters or returns values. However,

when one rule reference another rule, ANTLR allows users to declare input parameters

and return values directly to pass information. Besides, ANTLR allows multiple vari-

ables to be defined within a production rule, which may be used to store information

or handle input or output parameters. These variables are called rule attributes. As

Parr [97] argued, “this is analogous to the normal programming language functionality

whereby methods communicate directly through parameters and return values”.

Apart from the basic syntax recognition of the input program, parsers often need to

provide extra functionalities during the parsing process, such as semantic computation.

ANTLR allows users to define embedded actions within production rules. In detail,

actions can be inserted before a production rule within @init block, or after it within

@after block, or simply before or after any specific alternative of the rule. Embedded

actions are written in output languages. The example shown in Listing 5.10 illustrates

a production rule named add with all these optional components.

add returns [int result]

@init { System.out.println("begin to apply add rule"); }

@after { System.out.println("add rule applied"); }

: a=VAR ’+’ b=VAR
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{$result = Integer.parseInt($a.text)+Integer.parseInt($b

.text);

System.out.println($result);}

|

{System.out.println("Empty alternative!");}

;

Listing 5.10: An example of ANTLR production rule

5.2.3 The ANTLR Grammar Domain Meta-Model

So far we have introduced the basics of ANTLR grammars. From the perspective of

DSCG, the code generator is ANTLR, and the DSL used is the ANTLR grammar spec-

ification language. Accordingly, the target domain is the ANTLR grammar domain.

To define the meta-model, we take two documents as guide. One the official ANTLR

grammar of the ANTLR grammar specification language itself, which is published on

the ANTLR home page [96] (shown in Appendix B.8). The other is the meta-model

written by Jouault [121] in KM3 [122]. We use XSD to specify our meta-model of the

ANTLR grammar domain, in a module way. We first define all the domain classes and

properties involved in the general CFG parsing process, e.g. “terminal”, “nonterminal”,

“production rule”, etc, in one XSD module General Parsing Domain, which is shown

in Appendix B.9. Thus the General Parsing Domain module can be reused in our next

case study. We can thus include the General Parsing Domain module and define the

LL(*) domain specific elements, such as token peeking, production rule parameters, etc,

in another XSD module LL STAR Domain, which is shown in Appendix B.10.

In the rest of this chapter, we will elaborate on two of our experiments based on this do-

main meta-model. The experiments have different domain specific models, i.e. ANTLR

grammars, and different extension requirements, to test the feasibility of our DSCG

extension based approach. The first experiment tries to enhance the parser with some

statistic functions in parsing an ANTLR grammar called RERS. The second experiment

adds similar functions for more concerns in the parsing process of the Java programs.

5.3 Extension Scenario

ANTLR allows domain experts to insert additional functions when applying a pro-

duction rule, e.g. by defining extra rule attribute, embedded actions within the corre-

sponding production rule. This modification mechanism is rather flexible, as the addi-

tional artifacts can be defined in statements of any programming language supported

by ANTLR, e.g. Java. However, it can still be very difficult to introduce functions that
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involve multiple production rules. In ANTLR, passing information among different pro-

duction rules is achieved by either explicitly declaring specific parameters and return

values, or using dedicated scopes. If we consider the declaration of the parameters,

return values, and scope information of a certain production rule as its signature, both

ways make the signatures of ANTLR production rules vulnerable to systematic changes.

Any concern crosscutting multiple production rules may lead to a cascade of signature

updates of all relevant production rules.

5.3.1 RERS ANTLR Grammar

In our first experiment, the input model is a simple grammar specifying a tiny formal

language called RERS, which is used to define Linear Temporal Logic (LTL) [123] for-

mulae. The token part of the RERS grammar includes the basic input/output elements

and keywords for different relations between propositions in the LTL formulae, such as

“NEXT”, “EVENTUALLY”, and “GLOBALLY”. More details are as shown in Listing

5.11.

tokens {

NOT = ’!’;

AND = ’&’;

OR = ’|’;

NEXT = ’X’;

EVENTUALLY = ’F’;

GLOBALLY = ’G’;

UNTIL = ’U’;

WEAKUNTIL = ’WU’;

RELEASE = ’R’;

LPAR = ’(’;

RPAR = ’)’;

}

Listing 5.11: Token definition in the RERS grammar

The production rule section of RERS grammar starts with the prog rule. The complete

section is shown in Appendix B.11.

5.3.2 Extension Requirements

The modification requirement is to add finer grained and more flexible monitoring func-

tions in the parsing process. For example, to monitor domain events like token matchings
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and rule attribute settings. Basically, domain experts want to monitor the events ac-

cording to their production rule application context. For example, they want to trace

all the matching of a specific token T in the application of any production rules. Ob-

viously, this demand may crosscut multiple production rules, in which T appears. If

we use ANTLR built-in support we mentioned above to implement this, the solution

would entail the signature updates of all relevant production rules, though it might still

be practicable. The real problem is that each specific tracing requirement would result

in such a cascade of signature updates, in other words, an update of the input model.

Worse still, ANTLR built-in solution would become deficient to cope with more compli-

cated tracing requirements. By “tracing”, we refer to monitoring the dynamic behavior,

not a static code insertion. For example, domain experts only want to trace the match-

ing of T in a certain context, e.g. during the application of a specific production rule p.

This requirement leaves ANTLR users to identify which production rules that involve

the matching of T may be applied during the application of p.

5.4 Extension of ANTLR Parser Generation

From the requirement analysis, we can identify three modification concerns, i.e. token

matching, rule attribute value changing, and production rule application. Accordingly,

we can tailor our domain meta-model into an effective meta-model, in which class “ter-

minalType”, “attributeType”, and “alternativeType” are defined as join point classes.

For example, the “terminalType” class is defined in the effective meta-model as shown

in listing 5.12.

<xs:complexType name="terminalType">

<xs:sequence >

<xs:element name="name" type="terminalNameConvention"/

>

<xs:element name="value" type="xs:string"/>

</xs:sequence >

</xs:complexType >

Listing 5.12: The “terminalType” join point class in the meta-model

5.4.1 Generation of AspectRERS

We call the ANTLR domain specific aspect language “AspectRERS”, as it is generated

on demand of modifying the “RERS” model. In Section 5.4.2, we mentioned our in-

tension of reusing AspectJ in our DSAL generation. By “reusing” AspectJ, we refer to

reusing both its join point model and its weaver. Therefore, we select a DSAL template

close to AspectJ syntactically and semantically, so that it is easier for us to build the
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AspectRERS weaver as a translator from AspectRERS to the underlying AspectJ. Like

AspectJ, this template allows definition of local variables inside an aspect. Each PCD

is defined with a name, which can be referenced to be bound with a piece of advice. For

each PCD, there can be one or more filter conditions, which can be combined by logi-

cal “and” operator and logical “or” operator. Placeholders are used for the production

rule of PCD. Besides, we also reuse the existing ANTLR grammar blocks for the Java

grammar, so that we can syntactically check the correctness of the custom code blocks

in advice.

There is a significant difference in advice pattern between this template and AspectJ.

It does not support the around advice. This is because the modifications requiring

the around advice are essentially trying to achieve two goals. One is to change the

internal behavior of the code generator, e.g. the behavior in matching a token or setting

an attribute. This kind of modifications should be accommodated by a customization

of the code generator. The other is to alter the production rules or alternatives in the

input grammar. This kind of change should be achieved by direct modification to the

input grammar. We believe neither of them should be introduced in a “patching” way by

using aspects in the DSAL generated in our approach. Therefore, our join point model

only supports “insertion” changes, which only insert extra code in the generated code.

A major benefit of this is we can leave all statements in the base programs immutable,

as the sentinels are inserted in the “slots” between two adjacent statements in the base

program. The sentinels also decouple the PCDs from the base program, which prevents

the problems caused by the coupling between them, such as fragile pointcut [70] and

arranged pattern. More details of the template are shown in Appendix B.12.

Now we can expand the selected DSAL template with the effective meta-model. The ex-

pansion is basically to replace placeholder pointcut filter with several ANTLR grammar

domain specific crosscutting patterns. In AspectRERS, we support two groups of point-

cuts. The first group of pointcuts locates some specific points in the parser execution,

like token matching, etc. We call such pointcuts pinpoint pointcuts. In AspectRERS,

we support four types of pinpoint pointcuts, attribute setting pointcuts, token matching

pointcuts, sub rule pointcuts, and branch pointcuts.

Attribute Setting Pointcuts relate to the setting of a rule attribute in one or more

production rule or alternative. For example, pointcut after(@temporal : 2 : $esbmc) cap-

tures all “slots” just after the points in the application of the second alternative of

rule temporal where the value of attribute esbmc is changed. Note that the syntax of

AspectRERS demands @ before rule names and $ before attribute names. Besides, de-

tailed context restriction defined in the first two columns is optional. For instance,

(@temporal : $esbmc) refers to the value setting of esbmc in any alternative of rule

temporal. Similarly, (: 2 : $esbmc) refers to the value setting of esbmc in the second

alternative of any rule, and ($esbmc) simply refers to the value setting of esbmc in
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any context. To make pointcut definitions more flexible, we also support an unary

operator ! to get the complement, which means “any ... other than”. For example,

(@temporal : 2 :!$esbmc) refers to the setting of any attribute other than esbmc in the

second alternative of rule temporal. This operator can also be applied to the first two

context columns.

Token Matching Pointcuts relate to the token matchings. They work in a very sim-

ilar way to attribute setting pointcuts. The only difference is that its syntax expects # in-

stead of $ before token names. For example, the before(@temporal : 2 : #EVENTUALLY)

pointcut captures the slots just before the matching of token EVENTUALLY in the ap-

plication of the second alternative of rule temporal, while (@temporal :!#EVENTUALLY)

refers to the matching of any token other than EVENTUALLY in the application of rule

temporal.

Sub Rule Pointcuts relate to the application of a production under the control

flow of a production rule or one of its alternatives. They also work in a similar way to

the above two kinds of pointcuts, although there are a few differences. First, the syntax

expects @ in the third column before the names of the nonterminal involved as sub rules.

Second, the third column accepts empty sub rule name, i.e. a single @. For example,

pointcut before(@temporal : 2 : @) captures the spots just before the application of any

nonterminals applied as a sub rule of rule temporal.

Branch Pointcuts relate to the application of one or more alternatives of one or

more production rules. Unlike the above pointcuts, branch pointcuts only have the first

two columns. The branch pointcuts help to pinpoint the branching spots in the control

flow of the parsing process. For example, pointcut before(@temporal : 2) captures the

spots just before the application of the second alternative of rule temporal. In branch

pointcuts, both column support the ! operator. For instance, (@temporal :!2) refers

to the application of any alternative of rule temporal except the second one, whereas

(!@temporal : 2) refers to the application of the second alternative of any rule except

temporal.

Strictly speaking, the second kind of pointcuts are not pointcuts, as they cannot capture

any join points by themselves. Instead, they help to define a certain range of the static

code or its dynamic execution. So that pinpoint pointcuts can combine them to introduce

more detailed range constraints. For the convenience of AspectRERS users to reuse such

constraints, we allow them to be defined independently, just like normal pointcuts. We

call such “pointcuts” range pointcuts. In detail, we support two types of range pointcuts

within pointcuts and cflow pointcuts.
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Within Pointcuts restrict a certain range of the base program, which can be either

one or all alternatives of a production rule. As the rule application process is regarded as

function invocations instead of class definition, they actually map to the “withincode”

pointcuts in AspectJ. It is worth noting that the basic ranges are the alternatives of rules,

instead of the rules themselves. For example, pointcut within(@temporal : 2) restricts the

range as the second alternative of rule temporal, whereas pointcut within(@temporal) re-

stricts the range as any alternative of rule temporal. Similar to pinpoint pointcuts,

range pointcuts also support the ! operator in both columns. For instance, point-

cut within(@temporal :!2) restricts the range as any but the second alternative of rule

temporal, while pointcut within(!@temporal : 2) restricts the range as the second alterna-

tive of any rule other than temporal.

Cflow Pointcuts restrict a certain range of the dynamic execution of the base pro-

gram, instead of the static code. They help to capture dynamic join points in rule

application control flow in a similar way as the “cflow” pointcuts in AspectJ. The major

difference here is that the control flows here are the applications of the production rules,

or more precisely, the alternatives of them. For example, the production rule application

control flow in parsing the RERS expression F oZ would look as follows.

Figure 5.1: Control flow sample of ANTLR rule applications in parsing the RERS
expression “F oZ”.

Besides, cflow pointcuts should also support the ! operator in both columns. For ex-

ample, pointcut cflow(!@temporal : 2) defines the range as the application of the second

alternative of any rule other than temporal, whereas pointcut cflow(@temporal :!2) de-

fines the range as the application of any but the second alternative of rule temporal.

However, although the inserted sentinels can store the static information about the code

block, they cannot store the dynamic information at runtime about the “parsing stack”

in terms of alternative branches. To achieve this, we use a little trick by keeping a local

stack (Stack<String> in Java) for branch tracing, as shown in Listing 5.13.
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@members {

public static Stack <String > branchTrace = new Stack <

String >();

}

Listing 5.13: The little trick for range pointcut in expansion

This trick also entails a customization of the sentinel templates in the tracing strat-

egy, i.e. to add a Java statement to push the current production rule and alternative

information, into the local “branchTrace”, which we will explain later. The complete

expanded part is shown in Appendix B.13.

5.4.2 Traceable Domain Meta-Model

From the perspective of DSCG, the DSL in ANTLR parser generation is the ANTLR

grammar description language. By default, the output language is Java. As the gener-

ated parser programs have no strict restrictions in performance, the only restriction for

our tracing strategy selection is that the inserted sentinels cannot break the compilation

of the generated parser programs in Java. With regard to the possibility of reusing

AspectJ, we choose the sentinels based on idle function invocations. By “idle function”,

we refer to function with empty body. In particular, we specify the tracing strategy in

eXtensible Stylesheet Language Transformations (XSLT) [124], which can automatically

transform the XSD based meta-models. In the strategy, we use three specific sentinel

pairs in accordance with the join point classes in the effective meta-model. Take the

“terminalType” class for instance, we define the following tracing strategy rule.

<xsl:template match="terminalType">

<xsl:copy >

<xsl:apply -templates select="@* | node()" />

<xsl:element name="xs:element">

<xsl:attribute name="name">before_match </xsl:

attribute >

<xsl:attribute name="default">Begin_Match_Token_&lt;

instance_name&gt;();</xsl:attribute >

</xsl:element >

<xsl:element name="xs:element">

<xsl:attribute name="name">after_match </xsl:

attribute >

<xsl:attribute name="default">End_Match_Token_&lt;

instance_name&gt;();</xsl:attribute >

</xsl:element >

</xsl:copy >
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</xsl:template >

Listing 5.14: Tracing rule for “terminal” join point class

The composition of the tracing strategy with the effective meta-model is essentially a

transformation of the XSD file representing the effective meta-model according to the

XSLT file representing the tracing strategy. For example, the “terminalType” class after

the composition is as shown in listing 5.16.

<xs:complexType name="terminalType">

<xs:sequence >

<xs:element name="name" type="terminalNameConvention"/

>

<xs:element name="value" type="xs:string"/>

<xs:element name="before_match" default="

Begin_Match_Token_&lt;instance_name&gt;();" type="

xs:string"/>

<xs:element name="after_match" default="

End_Match_Token_&lt;instance_name&gt;();" type="xs:string

"/>

</xs:sequence >

</xs:complexType >

Listing 5.15: The “terminalType” join point class in the traceable domain meta-model

The placeholder “instance name” will be replaced at generation-time, with the specific

terminal instance name, through our customization of the code generator. It is worth

noting that the change for the trick to support the cflow pointcuts is reflected in the

declaration of the sentinel functions. Prior to the trick, the function bodies are empty.

Now a Java statement is respectively added to the function bodies.

<xs:complexType name="sentinelDeclaration">

<xs:sequence >

<xs:element name="before_match" default="public static

Begin_Match_Token_&lt;instance_name&gt;() {branchTrace.

push(&quot;&lt;ruleName&gt;:&quot ;+& quot;&lt;altNum&gt;&

quot;);}" type="xs:string"/>

<xs:element name="after_match" default="public static

End_Match_Token_&lt;instance_name&gt;() {branchTrace.pop

();}" type="xs:string"/>

</xs:sequence >

</xs:complexType >

</xs:schema >

Listing 5.16: The declaration of the sentinel functions for the “terminalType” class

in the traceable domain meta-model
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5.4.3 Code Generator Customization

Now that we have produced the traceable ANTLR domain meta-model, we can modify

the ANTLR code generator with it to enable the model traceability in the generated

code. As mentioned in Section 5.2.1, the output language of ANTLR is Java by default,

while a number of other languages are available, such as C, C#. This is achieved by the

use of StringTemplate [101] technique in ANTLR. For each target language, ANTLR

defines a dedicated template to generate output code. Such templates are defined in

String Template Group (.stg) files. This design makes our customization of the ANTLR

code generator very easy. We first back up the original template file for Java code

generation, i.e. /org/antlr/codegen/templates/Java/Java.stg in the ANTLR tool

package antlr-3.5-complete.jar, and then introduce all sentinel related Java code

change in the template. If any of our modification blocked the original DSCG, we

can easily replace the updated template with the backup file. Neither the modification

process nor the error recovery process requires a recompilation of the ANTLR tool

package.

As mentioned in Section 5.1.2, sometimes LL(*) parsing may fail over to LL(1) enabling

backtracking. In the modification requirements, the applications of production rules

to monitor obviously refer to the correct applications of production rules, instead of

the applications “rolled back” in backtracking. ANTLR generates a global variable

backtracking in the parser code, to store the current depth of backtracking. To make

this transparent to our DSAL users, we add an “if” conditional check for each sentinel

function invocations, to ensure the invocations occurs only if backtracking equals to 0.

Besides, ANTLR parser generation supports several different modes, including basic

mode, trace mode, and verbose mode, which allows users to generate more extra in-

formation in the generated code. To ensure that our modification to the out template

will not break the basic parser generation function, we encapsulate all our modification

snippet with a conditional check <if(trace)>, so that users can still use any generation

mode other than “trace” to ensure the generated code will not be affected by our change.

Instead of showing full details of the modification, we show our modification for token

matching sentinels only. This serves to illustrate how we add the declarations of the

sentinel functions and how we add their invocation statements in the template.

<if(trace)>

/* Begin token hook function declaration block */

<rest(tokens):{tk | <declTokenHook(tk)>}>

/* End token hook function declaration block */ <\n><endif >

declTokenHook(token) ::= <<

public static void Begin_Match_Token_ <token.name >() {}

public static void Begin_Match_Token_ <token.type >() {}

public static void End_Match_Token_ <token.type >() {}
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public static void End_Match_Token_ <token.name >() {}<\n>

>>

Listing 5.17: Declarations of token matching sentinel functions

/** match a token optionally with a label in front */

tokenRef(token ,label ,elementIndex ,terminalOptions ={}) ::=

<<

<if(trace)><if(! isSynpredRule)>if(state.backtracking ==0)

Begin_Match_Token_ <token >();<endif ><endif >

<if(label)><label >=(<labelType >)<endif >match(input ,<token

>,FOLLOW_ <token >_in_ <ruleName ><elementIndex >); <

checkRuleBacktrackFailure ()>

<if(trace)><if(! isSynpredRule)>if(state.backtracking ==0)

End_Match_Token_ <token >();<endif ><endif >

>>

Listing 5.18: Invocations of token matching sentinel functions

5.4.4 Generation of AspectRERS Weaver

As mentioned in Section 5.4.1, to generate the AspectRERS weaver is to build a trans-

lator from AspectRERS into AspectJ. Now that we have an ANTLR grammar of As-

pectRERS, we can define the corresponding string templates in this grammar to rewrite

the AspectRERS aspects into the corresponding AspectJ aspects. In detail, we append

a proper string template to each production rule in AspectRERS.g, so that ANTLR

knows which string template to use when applying the rules. All relevant string tem-

plates are encapsulated in AspectRERS.stg. Except for the pinpoint and range pointcuts

which are domain specific, AspectRERS syntax can be almost directly mapped to As-

pectJ syntax with minimal change. For example, an AspectRERS aspect definition

public aspect Sample(RERS) {...} is simply translated into an AspectJ aspect definition

with exactly the same name public aspect Sample {...}. The relevant string template

appending in AspectRERS.g is shown in Listing 5.19 and Listing 5.20.

aspect_declaration

: am=access_modifier ASP an=IDENTIFIER LPAREN grn=

IDENTIFIER RPAREN LBRACE asl=aspect_statement_list RBRACE

-> asptDecl(accessModifier ={$am.code}, aspectName ={

$an.text}, grammarName ={$grn.text}, aspectBody ={$asl.st})

;

Listing 5.19: String template asptDecl to translate aspect definition

asptDecl(accessModifier , aspectName , grammarName , aspectBody

) ::= <<
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<accessModifier > aspect <aspectName > {

<aspectBody >

}

>>

Listing 5.20: Definition of string template asptDecl in AspectRERS.stg

The translation of pointcuts in AspectRERS is essentially a concatenation over a series of

sentinel function signatures to form valid AspectJ pointcut definitions. In detail, domain

specific information, such as rule names and alternative indices, is first extracted from

AspectRERS pointcuts. The information is then sent to different string templates to

construct the corresponding sentinel function signature strings, which are then used

to build different kinds of pointcuts. These constructed strings are finally linked with

proper logic operations to form a valid AspectJ pointcut descriptor. In particular, the

translation of pinpoint pointcuts is different from that of range pointcuts.

Pinpoint Pointcut Translation The pinpoint pointcuts capture the invocations of

our sentinel functions. So their translation is mainly straightforward mapping to some

“call” pointcuts capturing the proper sentinel function invocations. The only nontriv-

ial part is how to deal with alternatives in the pointcuts. The “call” pointcuts cannot

help us in distinguishing different alternatives in the same rule, as their corresponding

code blocks are all defined within the same function, i.e. the function correspond to the

production rule. Instead, we use our internal tracing stack, i.e. branchTrace, to translate

the alternative constraints. Assume we want to confine the range of pointcut match-

ing within the code block correspond to alternative N of rule X. At runtime, if the control

flow enters this specific alternative, our sentinel function Begin Parse Rule X Alternative N()

must have been invoked. In the meantime, the tracing string “X : N” must have been

pushed into branchTrace. Moreover, the string “X : N” must be the top element in the

stack, as there is no further sentinel function invocation. This means that we can tell

if the target code is statically “within” alternative N of rule X, by matching string

“X : N” as the top element of branchTrace. As an example, Appendix B.14 and B.15 il-

lustrate how we implement the translation of production rule attribute filter with string

templates.

As all our sentinel functions are declared with the same prefix string public static void,

the string templates for translating the pinpoint PCDs, such as attrFilterN, always start

with call(public static void. The first alternative of attribute filter matches the pattern

<slotLocation>(@<ruleName> : <alternativeIndex> : $<attributeName>). The slot lo-

cation information is extracted when applying rule location modifier. If it is before, we

know that Begin should be the prefix of the sentinel function name. It is then sent to

template attrFilter1 as its parameter locationModifier. Similarly, the name of the target

production rule is extracted when applying rule rule indicator, and then sent to attrFilter1
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as parameter ruleNameValue. The name of the target attribute is extracted when ap-

plying rule attr indicator, and then sent to attrFilter1 as parameter attributeName. With

above information, string template attrFilter1 can thus construct the main body of the

corresponding AspectJ as shown below.

call(public static void <grammarName >Parser.<locationModifier >

_Set_Rule_ <ruleNameValue >_Attribute_ <attributeName >())

However, this is not a complete translation for the input attribute setting pointcut. What

is missing here is the constraint on alternatives. As we mentioned in Section 5.4.2, we

maintain an internal stack called branchTrace to trace the control flow of production

rule applications. We match the strings stored in branchTrace against certain patterns

to construct the predicate expression representing the missing constraints. In detail, this

is achieved with string template altFilterForWithin or reverseAltFilterForWithin, depend-

ing on whether the target code range is a specific alternative or its complement. The

constructed constraint string is then sent to attrFilter1 as parameter alt, and appended

to the end of the above incomplete AspectJ pointcut.

String templates involved in other alternatives of attribute filter work in quite simi-

lar ways. Take the second alternative for example, it deals with pointcuts in form of

(@<ruleName> : <alternativeIndex> :!$<attributeName>), which aim for any attribute

except attributeName. This is reflected as two AspectJ PCD combined with “and” by

string template attrFilter2. The first PCD captures any attribute setting in the target

rule by the following AspectJ PCD.

call(public static void <grammarName >Parser.<locationModifier >

_Set_Rule_ <ruleNameValue >_Attribute_ *())

The second PCD filters out the matching of a specific attribute setting in the target rule

by the AspectJ PCD as shown below.

!call(public static void <grammarName >Parser.<locationModifier >

_Set_Rule_ <ruleNameValue >_Attribute_ <attributeName >())

This is because the second alternative is meant to match the complement of a specific

attribute setting with the same rule and alternative constraints.

Range Pointcut Translation The translation of within pointcuts in AspectRERS

is even simpler than that of the pinpoint pointcuts mentioned above. We translate

a within pointcut in AspectRERS into a withincode pointcut in AspectJ confining the

range as the parsing function generated for the target production rule, which is then

appended with the corresponding alternative constraint string. For example, pointcut

within(@<ruleName> : <alternativeIndex>) is translated into withincode(public final ∗ <grammarName>Parser.<ruleName>(..)).

It is then combined with the alternative constraint string as shown below.
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if(<grammarName >Parser.branchTrace.peek().matches("<ruleName >:<

alternativeIndex >"))

More details of the relevant string templates are shown in Listing 5.21, and their defini-

tions in Listing 5.22.

within_filter

: WTN LPAREN rn=rule_indicator ai=

alt_indicator_for_within RPAREN

-> withinFilter1(rangeModifier ={"withincode"},

ruleNameValue ={$rn.value}, ruleNamePattern ={$rn.pattern},

alt={$ai.st})

| WTN LPAREN NOT rn=rule_indicator ai=

alt_indicator_for_within RPAREN

-> withinFilter2(rangeModifier ={"withincode"},

ruleNameValue ={$rn.value}, ruleNamePattern ={"\\\\w*"},

alt={$ai.st})

;

Listing 5.21: String templates withinFilterN to translate within pointcuts

withinFilter1(rangeModifier , ruleNameValue , ruleNamePattern ,

alt) ::= <<

<rangeModifier >( public final * <grammarName >Parser.<

ruleNameValue >(..))<alt >

>>

withinFilter2(rangeModifier , ruleNameValue , ruleNamePattern ,

alt) ::= <<

<rangeModifier >( public final * <grammarName >Parser .*(..))

&&!< rangeModifier >( public final * <grammarName >Parser.<

ruleNameValue >(..))<alt >

>>

Listing 5.22: Definition of relevant string templates for within filter in

AspectRERS.stg

The cflow pointcuts are translated in a quite similar way, with only two differences

here. First, the corresponding AspectJ pointcuts are “cflow”, instead of “withincode”.

Second, the alternative constraint strings are in a different pattern. From the perspective

of the parsing control flows, the within pointcuts focus on only the current “layer”

of the target rule application, whereas the cflow pointcuts also concern about all the

descending control flows under the target layer. In terms of our branchTrace string

matching, the alternative constraint strings for within pointcuts match the target rule

application string, i.e. “<ruleName> : <alternativeIndex>”, against the top element in
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branchTrace. The constraint strings for cflow pointcuts, on the other hand, only care

about whether the target string is contained by branchTrace. For example, the constraint

string for pointcut cflow(@<ruleName> : <alternativeIndex>) is shown below.

if(java.util.Arrays.toString(<grammarName >Parser.branchTrace.

toArray ()).contains("<ruleName >:<alternativeIndex >"))

The relevant string templates are shown in Listing 5.23, and their definitions in Listing

5.24.

cflow_filter

: CFW LPAREN rn=rule_indicator ai=

alt_indicator_for_cflow RPAREN

-> controlflowFilter1(rangeModifier ={$CFW.text},

ruleNameValue ={$rn.value}, ruleNamePattern ={$rn.pattern},

ruleNameCflowPattern ={$rn.pattern}, alt={$ai.st})

| CFW LPAREN NOT rn=rule_indicator ai=

alt_indicator_for_cflow RPAREN

-> controlflowFilter2(rangeModifier ={$CFW.text},

ruleNameValue ={$rn.value}, ruleNamePattern ={"\\\\w*"},

ruleNameCflowPattern ={""}, alt={$ai.st})

;

alt_indicator_for_cflow

: COLON ai=INTLITERAL -> altFilterForCflow(altIndex ={

$ai.text})

| COLON NOT ai=INTLITERAL -> reverseAltFilterForCflow(

altIndex ={$ai.text})

| -> eptStr ()

;

Listing 5.23: String templates controlflowFilterN to translate cflow pointcuts

controlflowFilter1(rangeModifier , ruleNameValue ,

ruleNamePattern , alt) ::= <<

<rangeModifier >(call(public final * <grammarName >Parser.<

ruleNameValue >(..)))<alt >

>>

controlflowFilter2(rangeModifier , ruleNameValue ,

ruleNamePattern , alt) ::= <<

<rangeModifier >(call(public final * <grammarName >Parser

.*(..)))&&!< rangeModifier >(call(public final * <

grammarName >Parser.<ruleNameValue >(..)))<alt >
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>>

Listing 5.24: Definition of relevant string templates for cflow filter in AspectRERS.stg

With the string templates like the above ones defined in AspectRERS.g and Aspec-

tRERS.stg, an AspectRERS-to-AspectJ translator can be generated by ANTLR. We

then finish the AspectRERS weaver generation by wrapping the generated translator

and the AspectJ weaver in one single script, so that it behaves as a proper weaver for

AspectRERS.

5.5 RERS Parser Modification with AspectRERS Aspect

Weaving

In this section, we test the above AspectRERS based modification system with a valid

input program in RERS language and concrete extension requirements. The RERS

program is shown in Listing 5.25.

(! oZ WU (oU & ! oZ))

(G (! iC | (F oZ)))

((G ! oW) | (F (oW & (F oU))))

(G (! iE | (F oY)))

(G (! (iB & ! oU) | (! oV WU oU)))

(! oV WU oX)

((G ! oW) | (F (oW & (F oU))))

(! oU WU (oX & ! oU))

Listing 5.25: Test program in RERS language

There are two requirements to accommodate in the parsing process. One is to count

the number of GLOBALLY temporal logic expressions in the program. The other one is

to count how many output expression other than oU are involved in those GLOBALLY

expressions. According to our DSAL extension approach, we first regenerate the base

program, i.e. RERSParser.java, using the modified ANTLR generator, so that model

tracing information is inserted as the infrastructure for AspectRERS to work. We then

describe the extension requirements within an AspectRERS aspect as shown in Listing

5.26.

package antlr.RERS;

public aspect test(RERS) {

// counting "GLOBALLY" expression

int GLOBALLY_expression_counter =0;
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pointcut GLOBALLY_expression=after(@temporal :3);

after : GLOBALLY_expression () {

GLOBALLY_expression_counter ++;

}

// counting "oU" expression in "GLOBALLY" expression

int oU_in_GLOBALLY_expression_counter =0;

pointcut oU_in_GLOBALLY_expression=after(@output :1)&&

cflow(@temporal :3);

after : oU_in_GLOBALLY_expression () {

oU_in_GLOBALLY_expression_counter ++;

}

pointcut summary =% BeforeMainExit;

after : summary () {

System.out.println("There are " +

GLOBALLY_expression_counter + " \" GLOBALLY \" expressions.

");

System.out.println("There are " +

oU_in_GLOBALLY_expression_counter + " \"oU\" expressions

found in these \" GLOBALLY \" expressions.");

}

}

Listing 5.26: The AspectRERS aspect to accommodate the extension requirements

This aspect is rather logically straightforward. In the first block, we define a counter

and a pointcut to capture all applications of the third alternative of rule temporal, which

represents the GLOBALLY expression. The corresponding advice increases the counter.

Similarly, the pointcut in the second block for the second counting requirement is defined

to capture the occurrence of non-“oU” expression in the application, or under the control

flow, of the third alternative of rule temporal. Finally, before the parser program exits,

it prints out the counting results. We then compile this aspect with our AspectRERS

weaver, which first translates it into the AspectJ aspect shown in Listing 5.27, and then

invokes the AspectJ weaver to complete the “actual” weaving process.

package antlr.RERS;

public aspect test {

int GLOBALLY_expression_counter =0;

private pointcut GLOBALLY_expression () : within(

RERSParser)&&(( call(public static void RERSParser.

End_Parse_Rule_temporal_Alternative_3 ())));

after(): GLOBALLY_expression ()
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{

GLOBALLY_expression_counter ++;

}

int oU_in_GLOBALLY_expression_counter =0;

private pointcut oU_in_GLOBALLY_expression () : within(

RERSParser)&&(( call(public static void RERSParser.

End_Parse_Rule_output_Alternative_1 ()))&&( cflow(call(

public final * RERSParser.temporal (..)))&&if(java.util.

Arrays.toString(RERSParser.branchTrace.toArray ()).

contains("temporal :3"))));

after(): oU_in_GLOBALLY_expression ()

{

oU_in_GLOBALLY_expression_counter ++;

}

private pointcut summary () : execution(public static

void main(String []));

after(): summary ()

{

System.out.println("There are "+

GLOBALLY_expression_counter+" \" GLOBALLY \" expressions.")

;

System.out.println("There are "+

oU_in_GLOBALLY_expression_counter+" \"oU\" expressions

found in these \" GLOBALLY \" expressions.");

}

}

Listing 5.27: The translated AspectJ aspect to accommodate the extension

requirements

We finally use the woven parser to parse the above RERS program. The output of the

counting result is shown in Listing 5.28.

There are 5 "GLOBALLY" expressions.

There are 2 non -"oU" expressions involved in these "GLOBALLY

" expressions.

Listing 5.28: The counting result from the parser

Without difficulty, the results can be verified manually. This experiment shows that

the DSCG extension approach can be used to build practical modification system for

generated code. Given the fact that ANTLR provides the grammars of many mainstream

programming languages, our approach also shows its potential capability of generating

generic program synthesis tools for these languages. In order to test this position, we
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performed a number of additional experiment to generate Java program analysis tools

through DSAL aspect weaving.

5.6 Further Experiments to Build Java Program Analysis

Tools

In this experiment, we still use our approach to customize the Java parser generated

by ANTLR. Precisely, we aim to generate Java program analysis tools with different

functionalities by weaving the corresponding DSAL aspects into the generated Java

parser. The term “program analysis” mainly refers to syntax-directed searching tasks

for code statistics and inspections, such as the detection of code smells [125].

The whole DSCG scenario remains the same except that the input model is now the

ANTLR grammar for Java, i.e. Java.g, instead of the RERS grammar, and the base

program is JavaParser.java. The ANTLR grammar of Java is downloaded from the

ANTLR homepage [126]. As Java is a quite widely used programming language, we do

not introduce its grammar here.

5.6.1 Extension Requirements Analysis

The key feature of the Java analysis tools generated in our approach is that they are,

to some extent, “programmable”. The programming language is exactly our DSAL. We

can generate Java analysis tools with different functionalities on the fly, by weaving the

proper DSAL aspects into the generated Java parser. More precisely, we use the DSAL

pointcuts to describe the points in which we are interested with descriptions in terms

of Java syntax, and we use the DSAL advice to describe the expected modification to

these points. In this experiment, our DSAL aspects need to be “powerful” enough to

supplement some really useful functionalities to the generated Java parser.

In detail, we generate two Java program analysis tools with two DSAL aspects. The

first aspect enables the woven Java parser to count the “simple ‘if’ statements” [127],

or the “if-only” statements, i.e. the “if” statements without defining their corresponding

“else” parts. This function is useful, as the “if-only” statements leave the “else” branch

uncovered during the program execution, which may lead to potential bugs. Besides,

the aspect also helps to count and locate the expressions for “equality checks” in the

predicates in the “if” statements. The involved comparison operators include “==”

and “!=”. The second aspect enables the woven Java parser to count the Line Of

Code (LOC), which is a common code metric, of the parsed programs according to the

counting rules that are defined in the given aspects.
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These functionalities can be interpreted as one or more queries to our model tracing

system. From the perspective of model traceability, the domain elements to be traced

remain unchanged since our AspectRERS experiment, i.e. the matching of Java syntac-

tical tokens under static / dynamic range constraints in terms of the applications of

production rules and their alternatives, as well as the value settings of the involved

attributes. As a result, we can reuse the traceable domain meta-model derived in our

AspectRERS experiment, which means we can also reuse the ANTLR code generator

we customized accordingly. This reuse shows the meta-model based reusability of our

approach. On the other hand, such reuse does not necessarily guarantee the reuse of the

DSALs generated in our approach, as the modification requirements may have different

prospectives and concerns of the same effective meta-model, which can be reflected in

the join point model of the DSALs.

5.6.2 Generation of AspectJava

Although we can reuse meta-models in the AspectRERS experiment, the new modifica-

tion requirements entail more expressive DSAL to support more complex crosscutting

patterns and finer grained access to the join points. We call the new DSAL AspectJava.

Compared with the ANTLR grammar of RERS, the ANTLR grammar of Java has much

more production rules, which leads to more complicated patterns in the control flows

of the rule applications, e.g. larger loops in rule application stack. Therefore, to inter-

pret the above Java program analysis concerns in terms of domain crosscutting queries

demands a more precise and effective way to describe the expected join points, as well

as finer grained access and manipulation of the captured join points. As a result, we

introduce a new PCD and four macros that can be used in custom code block in advice.

CflowPattern Pointcuts This is a more precise PCD than the cflow PCD we use in

AspectRERS. For example, assume we need to capture the matching of token T in the

control flow of the second alternative of rule R1, which should be under the control flow

of the third alternative of another rule R2. With only “cflow” pattern, the PCD will look

like cflow(R1 : 2)&&cflow(R2 : 3). But this is actually not correct, as it will also capture

the matching of token T under the control flow of “R2:3”, which is under the control

flow of “R1:2”. Obviously, this is not expected. With our cflowPattern pattern, we can

distinguish these two scenarios with different expressions: cflowPattern(R1 : 2,R2 : 3)

and cflowPattern(R2 : 3,R1 : 2).

It is worth noting that the length of control flow patterns we need to express is not

necessarily constrained to two. For example, the target control flow pattern may be

“R1:ALT1” → “R2:ALT2” → “R3:ALT3” → . . .. To support this, we introduce a new

crosscutting pattern cflowpattern. The above control flow pattern can be expressed sim-

ply as cflowpattern(@R1 : ALT1,R2 : ALT2,R3 : ALT3, . . .). The rule name column here
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Figure 5.2: Different control flow patterns that “cflow” fails to distinguish.

can be left empty, which captures any rule. It is similar for the alternative index column.

For example, “R1:*” → “*:ALT2” captures the control flow where the “ALT2” alterna-

tive of any rule is under any alternative of rule “R1”. The corresponding specification

snippet for the “cflowpattern” is shown in Listing 5.33.

cflowPattern_filter

: CFP LPAREN b=branch_element_list RPAREN

;

branch_element_list

: branch_element (’,’ branch_element)*

;

branch_element

: rule_indicator alt_indicator_for_cflowPattern

;

alt_indicator_for_cflowPattern

: COLON INTLITERAL

|
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;

Listing 5.29: Specification snippet for the “cflowpattern” pointcut

Four DSESs In the custom code block of DSAL advice, we introduce four finer

grained operations, to facilitate the modifications at the captured join points. We call

these operations the Domain Specific Extension Statements (DSESs). The syntax of

these DSESs are much alike that of the normal Java function invocations. To distinguish

these DSESs from the normal Java statements, each DSES starts with a % symbol. The

first DSES is GetToken. It takes in an int parameter as the index of the lookahead

token, and returns a String containing the corresponding lookahead token.The indices

here are 1-based. For example, %GetToken(1) returns the first lookahead token. The

second DSES is GetParsedText. It has no parameter and returns a String containing

the text that has been successfully parsed so far. It has an overloaded version, which

takes in an int parameter as the index of the ending token according to their order being

parsed. The indices are 0-based, but count in a descending order. %GetParsedText(k)

returns the parsed text ending at the last but k token. For example, %GetParsedText(−1)

returns a String containing the parsed text that ends at the last but one token. From

this perspective, the non-parameterized GetParsedText can be considered as a special

form of the parameterized GetParsedText, i.e. %GetParsedText(0). The third DSES is

GetParsingStackTrace. It has no parameter and returns a String representing the control

flow information stored in our branchTrace from bottom to top. It is helpful to identify

the specific point in the parsing process. The last DSES is GetBacktrackLevel has no

parameter and returns an int value that indicates the current backtrack level.

5.6.3 Generation of AspectJava Weaver

Similar to the weaver generation for AspectRERS, we still use string templates to gener-

ate the translator from AspectJava to AspectJ. Here we only need to add the templates

for translating the cflowPattern pointcut and the four DSESs.

We have briefly explained how cflowPattern pointcut works in Section 5.6.2. In detail,

we concatenate a regular expression according to the given control flow pattern, and

then use it to launch a matching against the string converted from the content of our

branchTrace. As shown in Listing 5.30, three templates are involved, cflowPatternFilter,

branchElementList, and branchElement, to generate the corresponding AspectJ code.

cflowPattern_filter

: CFP LPAREN b=branch_element_list RPAREN

-> cflowPatternFilter(pc={ current_cflowpattern}, fc

={$b.st})

;
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branch_element_list

@init {

current_cflowpattern="\\\\[([\\\\w:,\\\\s]*)";

}

: b0=branch_element (’,’ b+= branch_element)*

{current_cflowpattern +="\\\\]";}

-> branchElementList(fb={$b0.st}, bl={$b})

;

branch_element

: r=rule_indicator a=alt_indicator_for_cflowPattern

{current_cflowpattern=current_cflowpattern+$r.

pattern+":"+$a.altIndex+"([\\\\w:,\\\\s]*)";}

-> branchElement(rulePattern ={$r.value})

;

alt_indicator_for_cflowPattern returns [String altIndex]

: COLON INTLITERAL

{$altIndex=$INTLITERAL.text;}

| {$altIndex="\\\\d*";}

;

Listing 5.30: Specification snippet for the cflowpattern pointcut with the string

templates

The definitions of these templates are shown in Listing 5.33.

cflowPatternFilter(pc, fc) ::= <<

<fc >&&if(java.util.Arrays.toString(<grammarName >Parser.

branchTrace.toArray ()).matches("<pc>"))

>>

branchElementList(fb, bl) ::= <<

<fb >&&<bl:{b | <b>}; separator="&&">

>>

branchElement(rulePattern) ::= <<

cflow(call(public final * <grammarName >Parser.<rulePattern

>(..)))

>>

Listing 5.31: Definitions of the string templates for the cflowpattern pointcut
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As for the DSESs, our implementation relies on a special reference variable thisJoinPoint

in AspectJ. It helps to reference the generated parser class, i.e. class JavaParser. The

class exposes a field called input of type TokenStream, which stores the information of

the input token stream. From this object, we can access both the parsed tokens and

lookahead tokens. In detail, we get the index of the last parsed token in the stream

by calling intJavaParser.input.index(). We can thus access part of the parsed text by

calling StringJavaParser.input.toString(startTokenIndex, endTokenIndex. We can access the

lookahead tokens by calling GetToken(k), where k is the index of the expected lookahead

token. As for the DSES GetBacktrackLevel, we can get the value of the current backtrack

level by calling JavaParser.getBacktrackingLevel().

5.6.4 Build Java Program Analysis Tools By Aspect Weaving

As mentioned in Section 5.6.1, the extended functionalities we want for the parser are

first interpreted in one or more model tracing and modification queries. We then express

these queries as AspectJava aspects, and respectively weave them into the generated

parser to equip it to be the expected Java program analysis tool. In this section, we

briefly explain the two AspectJava aspects and test the generated analysis tools.

If Predicate Checker As its name suggests, the first aspect helps to analyze the

predicates in the “if” statements in Java programs. In particular, it counts the “if-only”

statements that do not have a corresponding “else” part and counts the equality checking

expressions in the “if” predicates.

In the input model, i.e. the ANTLR grammar of Java, the definition of the basic Java

statement is shown in Listing 5.32. We can see that the “if” statement is defined in the

fourth alternative of the statement production rule.

statement

: block

| (’assert ’

)

expression (’:’ expression)? ’;’

| ’assert ’ expression (’:’ expression)? ’;’

| ’if’ parExpression statement (’else’ statement)?

| forstatement

| ’while’ parExpression statement

| ’do’ statement ’while ’ parExpression ’;’

| trystatement

| ’switch ’ parExpression ’{’

switchBlockStatementGroups ’}’
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| ’synchronized ’ parExpression block

| ’return ’ (expression )? ’;’

| ’throw’ expression ’;’

| ’break’

(IDENTIFIER

)? ’;’

| ’continue ’

(IDENTIFIER

)? ’;’

| expression ’;’

| IDENTIFIER ’:’ statement

| ’;’

;

Listing 5.32: Definition of basic “statement” in Java ANTLR grammar

For the first task, the straightforward solution is to count the application of the fourth

alternative of rule statement, where the statement following the else token is resolved as

empty string. However, this condition is not easy to describe in AspectJava. Instead,

we can count all “if” statements, i.e. with and without the “else” parts, and save the

result in c1. We then count the “if-else” statements, and save the result in c2. Their

difference is exactly what we want. In terms of the DSL here, to parse an “if” statement

is to apply the fourth alternative of the statement production rule. Given the fact that

we can parse an “if-else” statement if and only if we can match an “else” token, we can

simply count the instances of the “else” token. The number of “if-only” statements thus

equals to c1− c2. In AspectJava, these DSESs can be expressed as shown in Listing

5.33.

pointcut summary =% BeforeMainExit;

//===== begin: count if-only statement =====

int c1=0;

int c2=0;

pointcut ifStatement=after(@statement :4);

pointcut ifElseStatement=after (#ELSE);

after : ifStatement () {

c1++;

}

after : ifElseStatement () {



126 Chapter 5 DSCG Extension for ANTLR

c2++;

}

after : summary () {

System.out.println("there are " + (c1 -c2) + " if -

only if-statements.");

}

//===== end: count if-only statement =====

Listing 5.33: AspectJava code to count the “if-only” statement

For the second task, to locate the expressions in the “if” predicates entails that the

application of parExpression is under the control flow of the application of the fourth

alternative of statement. As for the application of parExpression, the involved production

rules are shown in Appendix B.16.

In terms of the DSL, an “equality check” in expressions implies an application of

instanceOfExpression under the control flow of the application of equalityExpression, where

the first lookahead token is either == or parExpression. Besides, the whole context has

to be under the control flow of “@statement : 4,@parExpression : ∗”. We can use the

cflowPattern pointcut to locate such an “equality check”. Apart from counting these

“equality checks”, we also want to reflect the location of them. So we print the first

lookahead token and the parsed text when we meet any “if-only” statement. In Aspec-

tJava, these DSESs can be expressed as shown in Listing 5.34.

//===== begin: count equality checks =====

int c3=0;

pointcut ifPredicateEqualityCheck=after(

@instanceOfExpression :)&& cflowpattern(@statement :4,

@parExpression ,@equalityExpression);

after : ifPredicateEqualityCheck () {

if (% GetToken (1).equals("==") || %GetToken (1).equals

("!=")) {

c3++;

System.out.println (% GetToken (1));

System.out.println (% GetParsedText (1));

}

}

after : summary () {

System.out.println("there are " + c3 + " equality

checks involved in if -predicates.");
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}

//===== end: count equality checks =====

Listing 5.34: AspectJava code to count and locate the “equality checks” in “if”

predicates

Now that we have written an AspectJava aspect with the expected “if” statement

analysis functionalities, we weave it to the base code, i.e. the Java parser generated

by ANTLR, to finish our first Java program analysis tool. Finally, we test the tool

with a simple Java program, which is contrived to have as many different grammatical

structures as we can think of. The test Java program is shown in Appendix B.17.

Our test environment, in which the translated AspectJ aspect gets woven and executed,

is “Eclipse Java EE IDE for Web Developers (version:Juno SR2)” [128] + AJDT

2.1.2 [129]. The parsing result shows that each “if-only” statement is captured, as well

as each “equality check”. A snapshot of the detailed output is shown in Figure 5.3.

Figure 5.3: The output of weaving aspect IfPredicateChecker in Eclipse.
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LOC Counter Lines Of Code (LOC), also known as Source Lines Of Code (SLOC),

is an important software metric, which measures the size of a program by counting the

number of lines in the text of its source code. It is commonly used in the prediction

of development effort, the estimation of the software quality, etc. However, the LOC

number of the same program may vary if we follow different counting principles. For

example, we can simply count any nonempty line in the program. However, the LOC

number we get may be misleading, as programmers may write big block of comments,

or break a long single statement into multiple lines for better appearance of the text,

etc. Therefore, we need finer grained counting principles to describe which kinds of

grammatical structure should be counted. For instance, we can specify whether to

count the Java “import” statement or not. In our aspect, we count the following Java

grammatical structures as valid lines.

1. Primitive statements including “assert” statements, “return” statements, “throw”

statements, and normal statements. Here normal statements refers to the state-

ments represented by the fifteenth alternative of the statement rule.

2. The declarations of local variables

3. The declarations of class variables

4. The declarations of class methods.

5. The declarations of classes.

6. Sub statements including “if” predicates, “for” conditions, “while” conditions,

“do-while” conditions, “catch” clauses, “switch” conditions, and “sync” resources.

To organize the above DSES in a modular way, we first specify all the primitive state-

ments according to the statement rule. The corresponding AspectJava code snippet is

shown in Appendix B.18. With the pointcuts that represent primitive statements, we

can easily change the counting principles. We then specify the declarations to count as

shown in Appendix B.19. We then specify which sub statements to count as shown in

Appendix B.20.

So far we have specified all the grammatical structures that we want to count as “lines”.

We then describe the grammatical structures that we do not count. Strictly speaking,

we do not this part in the aspect, as we do not have much to do with these structures

under our current goal. We list them here just for the clarification of the whole aspect

structure. The corresponding AspectJava code snippet is shown in Listing 5.35.

/* <begin: uncountable statement > */

/* <begin: import statement > */

pointcut import_stmt=after(@importDeclaration :);

after : import_stmt () {
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System.out.println("end of an import statement\n");

}

/* <end: import statement > */

pointcut uncountable_stmt=import_stmt ()||

uncountable_primitive_stmt ();

/* <end: uncountable statement > */

Listing 5.35: AspectJava code for the grammatical structures that we do not count

The final part of the aspect simply defines the common advice for the “lines” we

count, i.e. increasing the counter by one and print the parsed text at the point. The

corresponding AspectJava code snippet is shown in Listing 5.36.

/* <begin: code metrics - line of code > */

pointcut print_result =% BeforeMainExit;

int idx = 0;

int counter = 0;

public void count(){

counter ++;

}

after : print_result () {

System.out.println("Current loc: "+counter);

}

pointcut countable=countable_stmt ()|| countable_sub_stmt

();

before : countable () {

count ();

String currentStr =% GetParsedText (-1);

System.out.println(counter+": "+currentStr.substring

(idx));

idx=currentStr.length ();

}

pointcut uncountable=uncountable_stmt ();

before : uncountable () {

String currentStr =% GetParsedText (-1);

System.out.println(currentStr.substring(idx));

idx=currentStr.length ();
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}

/* <end: code metrics - line of code > */

}

Listing 5.36: Final part of the LOCCounter aspect

In the same test environment for the last aspect, we test the LOC counter aspect with

two Java programs. The first one is our contrived test program in the test of the last

aspect, as it is short enough that we can manually verify its result. Figure 5.4 shows

the test result in Eclipse, that the LOC of the input program is 51.

Figure 5.4: The output of parsing testJavaProg.java with the LOCCounter-woven
JavaParser.

The second test program is the generated JavaParser class itself, which has 19438 lines

of text in it, including comments and blank lines. The result the LOC of the input

program is 13431 in accordance with our counting rules. The test result in Eclipse is

shown in Figure 5.5.

In this chapter, we elaborated on our experiments to modify the ANTLR generated

parsers with our DSCG extension approach. In particular, we use the AspectRERS
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Figure 5.5: The output of parsing JavaParser.java with the LOCCounter-woven
JavaParser.

experiment to discuss the implementation details. Besides, we did two additional ex-

periments with ANTLR generated Java parser to further explore the reusability of our

approach. In the next chapter, we continue our experiments with a quite similar domain

but different code generator.





Chapter 6

DSCG Extension for CUP

As a third case study, we test our approach within another CFG parsing domain,

LALR(1) parsing. On one hand, it shares much common ground with the LL(*) parsing

domain, such as the concepts of terminals/nonterminals, prediction based production

rule applications, etc. On the other hand, they have significant difference in the pars-

ing process, such as the reverse production rule applications, etc. In this case study,

we select CUP as the target code generator, which is a Java version of its well-known

predecessor YACC.

6.1 CUP Parser Generator and LALR Parsing

In this section, we first introduce the CUP Parser Generator. We then discuss the

LR and LALR parsing algorithms, in particular their difference from the LL parsing

algorithms. Finally, we illustrate the meta-model of the LALR(1) parsing domain.

6.1.1 YACC and CUP

In 1970, Stephen C. Johnson developed a LALR parser generator, named Yet Another

Compiler Compiler (YACC) [130, 131]. It works on the Unix operating system and

generates an LALR parser on the input of an LALR grammar. YACC becomes so

popular that there are so many variants of it with additional features and for various

languages, such as Berkeley Yacc (BYACC) [132] and GNU Bison (commonly known as

Bison) [133]. Among these variants, we choose Constructor of Useful Parsers (CUP)

[17, 134] as our target DSCG code generator, because it shares two points in common

with ANTLR. First, unlike BYACC and Bison that are both implemented in C, the CUP

parser generator is implemented in Java, the same implementation language as ANTLR.

This could help us collate the way we instrument different code generators to produce

sentinels so we may discover a generative method. Second, as the output language in

133
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our ANTLR case study is Java, the fact that CUP also generates parsers in Java makes

it more convenient to compare the tracing strategies to use, which is coupled closely

with the output language.

Unlike ANTLR generating lexer and parser at the same time, CUP and many YACC

variant tools only generate parsers. Thus they always have to work together with exter-

nal lexer tools. For example, YACC has to work with Lex [135], Bison with Flex [136],

CUP with JFlex [137]. They are functionally identical, to scan the input string and

translate it into a stream of recognized tokens. There is only subtle difference among

them, due to the different implementation of their partner LALR parser generators.

Again, we only focus on the parser generation process in our discussion. Besides, al-

though the current CUP maintainers (Technical University of Munich) are working on

CUP2, it is still not ready according to their development page [138]. Thus we still use

the last stable release of the original CUP, i.e. “cup-11a” in our experiment.

6.1.2 LR Parsing and LALR Parsing

The parsers generated by CUP are LALR parsers. To explain the LALR parsing al-

gorithm, we first need to introduce the LR parsing algorithm, since the LALR parsing

algorithm is an enhanced variant of the original LR parsing algorithm.

LR Parsing is a bottom-up parsing algorithm. The L here still refers to “Left to

right” scanning, while the R stands for “Rightmost derivation”. As mentioned in Section

5.1.1, CFG parsing algorithms mainly include LL parsing and LR parsing. In contrast

to LL parsing, LR parsing constructs parse trees in a “bottom-up” pattern, i.e. from

leaves to roots. As an LR parser scans the input token stream from left to right, it tries

to recognize the Right Hand Side (RHS) of the proper production rule, so that it can

apply it in a reverse way, i.e. to reduce its RHS to the nonterminal in its LHS. This step

is often called reduce. If the currently parsed token stream cannot match the RHS of

any production rule, the parser simply takes in the next token to see if any luck. This

step is often called a shift.

Similar to the original LL parsing algorithm, the original LR parsing algorithm also

lacks an effective strategy to “smartly” choose the proper production to apply according

to the currently parsed tokens. Therefore, the lookahead strategy is used again to allow

predictions in LR parsing. But a primary difference here is that at any point in an LL

parsing process, each token in the string to the left of the next token has already found its

proper position on the parse tree, while in LR parsing, these tokens often still wait aside

to be put on the parse tree after the current reduction, or “handle pruning” by D. Knuth

[139]. Handle here is defined as “the leftmost set of adjacent leaves forming a complete

branch”. Thus the major problem in LR parsing becomes how to iteratively search for
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the current handle. Similar to LL(k) parsing, a table-driven method is involved to solve

the searching problem. However, the uncertainty caused by the “unstructured” token

string on the left of the current handle makes the parse table here more complicated.

The keys of the parse table are two-dimensional pairs of the tokens and states within

the state space of the deterministic finite automatons (DFAs) built from the grammar,

instead of one-dimensional tokens. The values in the table cells are actions over the

production rules, such as “shift”, “accept”, or “reduce”.

More details about the table/DFA constructions are beyond the scope of our research.

We only need to understand that we are able to somehow build the tables to tell us

what action we should do in a certain state on the recognition of a specific token.

Besides, like LL parsing, LR(0) parsing can be enhanced with predicting ability, which

are collectively called LR(k) (k>0) parsing algorithms. However, as a grammar getting

more complicated, the state space of the DFA derived from it grows very fast, which

will finally lead to a steep increase of the LR(k) look-up table size. To reduce the size

of parse table, several variations of LR(0) parsing are developed. For example, Simple

LR (SLR) is introduced by identifying the current handle more strictly.

LALR Parsing is a commonly used variant of LR parsing, which merges the states

in the LR(k) DFAs that are identical except for their lookahead sets. The LookAhead LR

(LALR) is defined by DeRemer [140, 141] to enhance the LR parsing algorithms with

the token peeking ability, and keeps the size growth of the LR DFAs internal state space

under control. In other words, LALR parsing sacrifices a finer grained parser internal

state description so we can create DFAs with realistic size. In our case study, we partic-

ularly focus on an LALR parsing variant with only one lookahead token, i.e. LALR(1)

parsing.

6.1.3 LALR(1) Specific Domain Meta-Model

In Section 5.1, we have discussed the general parsing domain, which includes the common

concepts shared by LL(*) parsing domain and the LALR(1) parsing domain, e.g. terminal,

nonterminal, parse rule, alternative, etc. In this section, we focus on the classes and

properties in the domain meta-model that are uniquely related to the LALR(1) parsing.

Shifting and Reducing In both LL(*) parsing and LALR(1) parsing, the parser

keeps a cursor that tracking the parsing progress, which divides the input token string

into two substrings: the left parsed part and the right unparsed part. The major differ-

ence is the way to move the cursor. The LL(*) parser tries to parse in a “predict/match”

pattern, i.e. try to parse the following token with a certain production rule that is pre-

dicted according to the current lookahead token, until an error might occur and then
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backtrack. In other words, the cursor may shift either to the left (when backtracking)

or to the right, but it will finally reach the right end to finish the parsing process.

The LALR(1) parser, on the other hand, treats the left string as its work area, where

all handles get reduced at the right end of it. Its cursor only shift to the right, as each

symbol in the left string is part of a handle. Therefore, in LALR(1) parsing, there are no

longer steps like “predicting” or “matching”. Instead, the basic parsing operations are

“shifting” and “reducing”. “Shifting” refers to moving a token across the cursor from

the right to the left for reduction. It is similar to the notion “matching a token” in LL(*)

parsing. The difference is that when a LALR(1) parser shifts, it is moves the very first

unparsed token to the end of the left string, which means it is “ready for reduction”.

“Reducing” refers to reducing the current handle to the proper nonterminal, i.e. the

application of reverse production rule. In detail, it consists of three logical steps. First,

the parser pops out all the terminals and/or nonterminals of the current handle. It then

replaces the handle into a single nonterminal. Finally, it pushes the reduced nonterminal

back to the parse stack.

Handle Detecting and Pruning As a bottom-up parsing algorithm, LALR(1) tries

to reduce the predicted parse tree by always trimming the left most subtree from leaf

level. As the detecting of each handle has been encoded in the states of the pre-built

DFA, it does not reflect directly in the parse table. On detecting a handle, the instruction

indicated by the parse table may be either to shift or to reduce. Therefore, the parser

cannot tell the inception of the parsing of a certain parse rule on recognizing a specific

terminal. In other words, we cannot pinpoint the specific time point when the parser

starts parsing a specific production rule during parsing. The pruning of handle, on the

contrary, is much easier to detect, as it is the major step in the “reducing” action. It

transforms a group of symbols (either terminal or nonterminal) into one nonterminal

according to a specific parse rule alternative.

Parse Stack In LALR(1) parsing process, the parsed input is stored in a stack

structure, which is often referred to as Parse Stack. It serves the detecting and pruning

of handles. More precisely, if the action according to the parse table is to “shift”, the

parser simply pushes the current token into the stack. If the action is to “reduce”, the

stack pops out the symbols (either terminal or nonterminal), so that the parser can

reduce them into a single nonterminal and then push it back to the stack. Obviously,

the elements in the stack can be either terminals or nonterminals.

Embedded Action In LL(*) parsing, the “predict/match” pattern allows the parser

to be aware of both the commencement and completion of parsing a certain parse rule.

Therefore, LL(*) grammar allows the users to include customized code to these loca-

tion. The code are called embedded action. In LALR(1) parsing, however, the users can
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only insert their code on finishing the parsing of a certain production rule. In other

words, embedded actions are allowed only at the very end of the second step of “reduc-

ing”, i.e. handle pruning. Another limitation due to the invisibility of handle detection

is that there is no tracking on parse rule scale. For example, the users cannot set a flag

at the beginning of a rule parsing process, which may get modified through the parsing,

and check it on finishing the parsing process. Thus the LALR(1) grammar does not

support parse rule attribute in embedded action.

By including the XSD module we created in Section 5.2.3, we define the LALR(1)

grammar domain meta-model in another XSD module called LALR 1 Domain, which is

shown in Appendix B.21.

6.2 Extending CUP Parser Generation

As an comparative experiment, we start our case study by modifying the “RERS” parser

generated by CUP. We write an LALR(1) grammar for the “RERS” language that we

used with in our ANTLR experiment in Section 5.3.1. Strictly speaking, the grammar

consists of two separate files: RERS.flex for terminal definition only and RERS.cup for

the rest of the grammar. The output are three separate files: the lexer MyScanner.java

generated by JFlex from RERS.flex, the parser Parser.java generated by CUP from

RERS.cup, and an auxiliary class sym.java. As we only focus on the parser generation

process, we refer to the generated Parser.java by “base code”.

The specifications of the CUP grammars are easy to understand. The general struc-

ture look similar to that of the ANTLR grammars, except that they require explicit

declarations of nonterminals and allow the definitions of precedences and associativity

of the operators. The input model, i.e. the RERS.cup, is shown in Appendix B.22. As

for the production rules, CUP grammars do not support rule parameters or attributes.

Instead, they only support a built-in return value for each rule, which can be referred

to as RESULT in the embedded actions.

6.2.1 Extension Requirements Analysis

The extension requirement in this experiment is quite similar to that we mentioned

in Section 5.3.2, to develop a finer grained and more flexible monitoring functions to

the generated parsers, e.g. to monitor the token matching events. However, due to the

different parsing mechanisms of the LL(*) grammars and the LALR grammars, we can

identify the following differences. First, as the applications of production rules can only

be detected when they are finished, we can only monitor the exiting of a production rule,

just like the embedded actions allowed in CUP. Second, as CUP does not support rule

attribute, we no longer need to monitor the attribute setting events. Third, we want to
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monitor the “shift” action. Fourth, we want to monitor the handle reduction, in terms

of the handle detection and the handle pruning.

The Effective Meta-Model According to the four events to monitor in the above

extension requirement, which include “token matching”, “invoking rule embedded ac-

tion”, “shift action”, “handle reduction”, we can identify four join point classes in the

LALR(1) domain meta-model, i.e. class “terminalType”, class “embeddedAction”, class

“shiftAction”, and class “reduceAction”. The first two classes are instance level join

point classes. The last two classes have no properties, and are class level join point

classes. This difference will affect the expansion of the corresponding PCD production

rules in the DSAL template, which will be explained in Section 6.2.2.

The DSAL Template Selection Given the fact that the differences between the

modification requirements in the AspectRERS ANTLR experiment and that in the As-

pectRERS CUP experiment are all domain specific, we can simply reuse the DSAL

template we used in Section 5.4.1.

6.2.2 Generation of AspectRERS

In this experiment, we still call the DSAL to generate AspectRERS. The generation of

AspectRERS is essentially an expansion of the selected DSAL template in accordance

with the effective meta-model, especially the creation of the four domain specific PCD

definitions corresponding to the four join point classes.

Token Matching Pointcuts describe the join points focusing on the points tokens

are matched, i.e. before or after them. In LR parsing, the beginning of applying a

production rule is difficult to detect. In other words, it is difficult to tell whether a

token is matched within the application of a specific production rule. Therefore, we no

longer trace the token matching events within the rule application frames. Instead, we

regard them as standalone events. For example, pointcut after(#9) captures all “slots”

just after matching a token with internal index value 9. Besides, we also support an

unary operator ! to get the complement, which means “any ... other than”. For example,

pointcut before(!#9) refers to the “slots” just before matching any token, except for the

one with internal index value 9. The ANTLR grammar definition of the token matching

pointcuts is shown in Listing 6.1.

token_filter

: BEF LPAREN tn=token_indicator RPAREN

-> beforeTokenFilter1(locationModifier ={"Begin"},

tokenIdx ={$tn.code})
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| BEF LPAREN NOT tn=token_indicator RPAREN

-> beforeTokenFilter2(locationModifier ={"Begin"},

tokenIdx ={$tn.code})

| AFT LPAREN tn=token_indicator RPAREN

-> afterTokenFilter1(locationModifier ={"End"},

tokenIdx ={$tn.code})

| AFT LPAREN NOT tn=token_indicator RPAREN

-> afterTokenFilter2(locationModifier ={"End"},

tokenIdx ={$tn.code})

;

location_modifier returns [String code]

: BEF {$code = "Begin";}

| AFT {$code = "End";}

;

token_indicator returns [String code]

: TKN INTLITERAL {$code=$INTLITERAL.text;}

| TKN {$code="-1";}

;

Listing 6.1: ANTLR definition of the token matching pointcuts

Embedded Action Pointcuts describe the join points before or after an embedded

action that is executed after a certain production rule is applied. For example, pointcut

before(@temporal : 2) captures the “slots” just before executing the embedded action

that follows the application of the second alternative of rule @temporal. Similar to the

branch pointcuts we described in Section 5.4.1, both columns of the embedded action

pointcuts support the ! operator. For instance, (@temporal :!2) refers to the application

of any alternative of rule temporal except the second one, whereas (!@temporal : 2) refers

to the application of the second alternative of any rule except temporal. The ANTLR

grammar definition of the embedded action pointcuts is shown in Listing 6.2.

reduction_action_filter

: lm=location_modifier LPAREN rn=rule_indicator COLON

bi=branch_indicator RPAREN

-> reductionActionFilter1(locationModifier ={$lm.code

}, ruleNameValue ={$rn.value}, altIndex ={$bi.code})

| lm=location_modifier LPAREN rn=rule_indicator COLON

NOT bi=branch_indicator RPAREN
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-> reductionActionFilter2(locationModifier ={$lm.code

}, ruleNameValue ={$rn.value}, altIndex ={$bi.code})

| lm=location_modifier LPAREN NOT rn=rule_indicator

COLON bi=branch_indicator RPAREN

-> reductionActionFilter3(locationModifier ={$lm.code

}, ruleNameValue ={$rn.value}, altIndex ={$bi.code})

| lm=location_modifier LPAREN NOT rn=rule_indicator

COLON NOT bi=branch_indicator RPAREN

-> reductionActionFilter4(locationModifier ={$lm.code

}, ruleNameValue ={$rn.value}, altIndex ={$bi.code})

;

branch_indicator returns [String code]

: INTLITERAL {$code=$INTLITERAL.text;}

| {$code="*";}

;

rule_indicator returns [String value]

: RUL IDENTIFIER

{$value=$IDENTIFIER.text;}

| {$value="*";}

;

Listing 6.2: ANTLR definition of the embedded action pointcuts

Shift Action Pointcuts describe the join points before or after the “shift” action,

which is an internal state transition of the parser. As the corresponding join point

class “shiftAction” is a class level join point class, which means join point instances

do not relate to any domain element, such as token or production rule, we define two

special pointcuts, BeforeShift and AfterShift, which respectively capture the beginning

and ending slots of ANY shift action. The corresponding ANTLR definition is shown

in Listing 6.5.

BEFORE_SHIFT = ’BeforeShift ’;

AFTER_SHIFT = ’AfterShift ’;

shift_filter

: BEFORE_SHIFT

-> shiftFilter1 ()

| AFTER_SHIFT

-> shiftFilter2 ()

;

Listing 6.3: ANTLR definition of the shift action pointcuts
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To distinguish the pointcut corresponding to the class level join points, we define a

percent character before the PCD names. The corresponding ANTLR definition is shown

in Listing 6.4.

macro_filter

: PERCENT m=macro_filter_expression

-> copyStr(f={$m.st})

;

macro_filter_expression

: bme=before_main_exit

-> copyStr(f={$bme.st})

| hf=handle_filter

-> copyStr(f={$hf.st})

| sf=shift_filter

-> copyStr(f={$sf.st})

;

Listing 6.4: ANTLR definition of the class level pointcuts

Handle Reduction Pointcuts describe the join points before or after the operations

related to the “reduce” action, i.e. handle detection and handle pruning, which are also

internal actions of the LR parser. Similar to the shift action pointcuts, it also correspond

to a class level join point class “reduceAction”. Similarly, we define two special point-

cuts FoundHandle and PrunedHandle. The corresponding ANTLR definition is shown in

Listing 6.5.

FOUND_HANDLE = ’FoundHandle ’;

PRUNED_HANDLE = ’PrunedHandle ’;

handle_filter

: FOUND_HANDLE

-> handleFilter1 ()

| PRUNED_HANDLE

-> handleFilter2 ()

;

Listing 6.5: ANTLR definition of the handle reduction pointcuts

We can see that all above pointcuts are pinpoint pointcuts. The LR parsers focus on

exploring handles in the parse stack, instead of explicitly tracing the applications of

production rules. Concepts, like the control flow of rule application, are thus of little

interest in the extension. Therefore, we do not define any “range” pointcuts, such as cflow

in our AspectRERS. The AspectRERS here supports the same advice patterns, i.e. before

and after advice, while it still does not support any parameter or return values bound
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to a certain pointcut. Similar to the four DSESs defined in Section 5.6.2, we define six

DSESs as shown below, which will be syntactically taken as normal Java statements.

∙ GetParsedText takes in no parameter and returns a java.lang.String typed object

containing the parsed token string.

∙ GetStackToken takes in an int typed parameter representing the index of the

target token in the parse stack, and returns a java cup.runtime.Symbol typed object

containing the target token. The indices are 0 based.

∙ GetCurrentToken takes in no parameter and returns a java cup.runtime.Symbol

typed object containing the current token.

∙ GetCurrentBranch takes in no parameter and returns a java.lang.String typed

object representing the production rule and its alternative indices, e.g. literal f : 1.

∙ GetCurrentBranchText takes in no parameter and returns a java.lang.String

typed object representing the full text of the production rule and its alternative

indices, e.g. literal f ::= LPAR temporal RPAR.

∙ PrintHandleTokens takes in no parameter and use standard output stream to

print out a java.lang.String typed object for each token that comprises the current

handle.

6.2.3 Traceable Domain Meta-Model

Due to the similar model traceability requirements as that in Section 5.4.2, we reuse

most part of the tracing strategy used in the previous experiment. For example, Figure

6.1 illustrates a sentinel for the beginning of the embedded actions of applying rule

temporal.
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Figure 6.1: The beginning sentinel marking the embedded actions of rule temporal.

It is worth noting that our sentinels are marking the beginnings and endings of the

embedded actions after applying a rule, not the beginnings and endings of a rule appli-

cation.

Code Generator Customization With the generated traceable domain meta-model

as formal guide, we start the customization of the latest CUP package cup-11a.jar, in

which the parser generation function is mainly implemented in two classes: emit.java

and lr parser.java. The lr parser.java class is the base class of the generated

Parser.java class, which contains the core functionalities of LR parsing, such as token

matching, “shift” and “reduce” actions. The related sentinels can thus be inserted by

directly modifying this class. For example, the sentinels for token matchings and “shift”



144 Chapter 6 DSCG Extension for CUP

actions are inserted as shown in Figure 6.2.

Figure 6.2: Part of the modified code in lr parser.java to generate sentinels for the

token matchings and “shift” actions.

The emit.java class is responsible to assemble the text string of the source code of the

Parser.java class and get it printed. We modify this class mainly for generating the

sentinels of the rule embedded actions. For example, we use a Hashtable<String, Integer>

object to maintain the mapping between each alternative of a given production rule and

its index, so that we can fetch the correct alternative index information whenever we

need to concatenate the sentinel strings. More details are shown in Figure 6.3.

It is worth noting that we add a comment starting with “/* Sentinel insertion:” before

each piece of code that we modify to generate the sentinels. After the modification for

all the sentinels in the CUP package, we recompile the whole package and create a new

CUP parser generator, CUPS.jar which stands for “CUP customized for Sentinels”.
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Figure 6.3: Part of the modified code in emit.java to declare the sentinel functions

of the rule embedded actions.

6.2.4 Generation of AspectRERS Weaver

In this experiment, we still build the AspectRERS aspect weaver as a translator from

AspectRERS into AspectJ. With the above ANTLR grammar of AspectRERS, we define

the corresponding string templates to rewrite the recognized AspectRERS aspects into

the corresponding AspectJ aspects. All these string template definitions are encapsu-

lated in AspectRERS.stg, as in the AspectRERS in the ANTLR extension experiment.

However, there are some difference in details. First, our aspects no longer need the names

of the input grammar as parameters, as parser class generated by CUP are always named

Parser.java. For example, an AspectRERS aspect definition public aspect Sample {...}
simply remains the same in its translation. Second, different pointcuts and underlying

sentinels require different ways of constructing the translated AspectJ strings.
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Token Matching Pointcut Translation Because of the implementation of the CUP

code generation process, we can only insert general token matching sentinels, i.e.

call(public void java cup.runtime.lr parser.[Begin/End] Match Token(). This means we can

no longer generate a simple “call” pointcut for the matching of a specific token, as the

sentinels for all tokens are the same. Therefore, we use an extra “if” pointcut in Aspect

to indicate the target token. For example, if we want to capture the beginning of the

matchings of token OV (index value 20), we define a pointcut as shown below.

pointcut bef_OV=before (#20);

The AspectJ translation of the above pointcut is as follows.

private pointcut bef_OV () : (call(public void java_cup.

runtime.lr_parser.Begin_Match_Token ())&&if(java_cup.

runtime.lr_parser.getCurToken ().sym ==20));

Listing 6.6 shows the definitions of the string templates behind the above translation.

beforeTokenFilter1(locationModifier , tokenIdx) ::= <<

call(public void java_cup.runtime.lr_parser.<

locationModifier >_Match_Token ())&&if(java_cup.runtime.

lr_parser.getCurToken ().sym==<tokenIdx >)

>>

beforeTokenFilter2(locationModifier , tokenIdx) ::= <<

call(public void java_cup.runtime.lr_parser.<

locationModifier >_Match_Token ())&&if(java_cup.runtime.

lr_parser.getCurToken ().sym!=<tokenIdx >)

>>

afterTokenFilter1(locationModifier , tokenIdx) ::= <<

call(public void java_cup.runtime.lr_parser.<

locationModifier >_Match_Token ())&&if(java_cup.runtime.

lr_parser.getPrevToken ().sym==<tokenIdx >)

>>

afterTokenFilter2(locationModifier , tokenIdx) ::= <<

call(public void java_cup.runtime.lr_parser.<

locationModifier >_Match_Token ())&&if(java_cup.runtime.

lr_parser.getPrevToken ().sym!=<tokenIdx >)

>>

Listing 6.6: String template definitions behind the translation of the token matching

pointcuts
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Embedded Action Pointcut Translation As we still generate alternative specific

sentinels for the embedded action join points, we can reuse our translation strategy in

our ANTLR experiment. For specific pointcuts, we simply construct the declarations of

the corresponding sentinels. For example,

pointcut bef_act=before(@literal_f :1);

is translated into

private pointcut bef_act () : (call(public void Parser.

Begin_Action_Rule_literal_f_Alternative_1(String)));

For generic pointcuts, we use ∗ to replace the specific alternative index in the translated

string. For example,

pointcut aft_act=after(@input :);

is translated into

private pointcut aft_act () : (call(public void Parser.

End_Action_Rule_input_Alternative_ *( String)));

The definitions of the string templates behind the above translation are shown in Ap-

pendix B.23.

Special Pointcut Translation The last two kinds of pointcuts, i.e. the shift action

pointcuts and the handle reduction pointcuts, are all special pointcuts. They are trans-

lated directly into predefined AspectJ pointcuts. The definitions of the string templates

involved here are shown in Appendix B.24.

DSES Translation Similar to the translation of the special pointcuts, we directly

translate the DSESs into predefined strings. The related string template definitions are

shown in Listing 6.7.

getParsedText () ::= <<

java_cup.runtime.lr_parser.getParsedText ()

>>

getStackSymbol(index) ::= <<

(( Parser)thisJoinPoint.getTarget ()).getStackSymbol(<index >)

>>

getCurrentSymbol () ::= <<

java_cup.runtime.lr_parser.getCurToken ()
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>>

getCurrentBranch () ::= <<

(( Parser)thisJoinPoint.getTarget ()).branchTrace.peek()[0]

>>

getCurrentBranchText () ::= <<

(( Parser)thisJoinPoint.getTarget ()).branchTrace.peek()[1]

>>

printHandleSymbols () ::= <<

for (int i = (( Parser)thisJoinPoint.getTarget ()).

getStackSize () -((Parser)thisJoinPoint.getTarget ()).

currentHandleSize; i \< (( Parser)thisJoinPoint.getTarget

()).getStackSize (); i++) { System.out.print ((( Parser)

thisJoinPoint.getTarget ()).getStackSymbol(i).toString ());

} System.out.println ()

>>

Listing 6.7: String template definitions behind the translation of the advice macros

6.2.5 Customization of CUP Parser with AspectRERS Aspect Weav-

ing

Now that we have implemented a complete parser generation extension system based on

AspectRERS, we test it with the same RERS program shown in Listing 5.25, which we

used in our ANTLR test. For the sake of convenience, it is also shown below.

(! oZ WU (oU & ! oZ))

(G (! iC | (F oZ)))

((G ! oW) | (F (oW & (F oU))))

(G (! iE | (F oY)))

(G (! (iB & ! oU) | (! oV WU oU)))

(! oV WU oX)

((G ! oW) | (F (oW & (F oU))))

(! oU WU (oX & ! oU))

As mentioned in Section 6.2.1, our extension purpose is to provide a finer grained and

more flexible monitoring system over the parsing process. In our AspectRERS aspect,

we define four pairs of pointcuts to respectively capture the beginnings and endings of

the four types of parsing events that we are interested in, as well as their corresponding

advice for proper operations.
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To test the monitoring of the token matching events, we capture the beginning of match-

ing token OV (index value 20) and the ending of matching token IB (index value 14).

We then print the parsed text, the third token from the top of the parse stack, and the

current token. The corresponding code block in our test aspect is shown in Appendix

B.25.

To test the monitoring of the embedded actions, we capture the beginning of the action

after a specific rule alternative, i.e. literal f : 1, and the ending of the action after any

alternative of rule input. Apart from the above advice operations, we also print the

current branch index and its full text, as well as the handle that has just been reduced.

More details are shown in Appendix B.26.

We then test the capturing of the beginning and ending of the “shift” action, as well as

the “reduce” action, where we respectively print the parsed text, and the top token in

the parse stack, plus the current handle. More details are shown in Appendix B.27.

With regard to the test aspect in our previous AspectRERS ANTLR experiment, we

also import its first pointcut to count the occurrence of the “GLOBALLY” expression.

Unfortunately, since it is difficult to detect the beginning of the rule application in LR

parsing, we cannot support the range pointcuts. Therefore we cannot import its second

pointcut here. The detailed aspect code block is shown in Listing 6.8.

// counting "GLOBALLY" expression

int GLOBALLY_expression_counter =0;

pointcut GLOBALLY_expression=after(@temporal :3);

after : GLOBALLY_expression () {

GLOBALLY_expression_counter ++;

}

pointcut summary =% BeforeMainExit;

after : summary () {

System.out.println("There are " +

GLOBALLY_expression_counter + " \" GLOBALLY \" expressions.

");

}

Listing 6.8: The code block of counting the “GLOBALLY” expression in the test

aspect

The result of parsing the RERS program is shown in Listing 5.25. According to it, there

5 “GLOBALLY” expressions in the above program, which agrees with the test result of

the AspectRER ANTLR experiment, which is shown in Section 5.5.
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6.3 Extending Java Parser Generation

For the purpose of comparison, we aim to equip the Java parser generated by CUP

the same functions as in our ANTLR AspectJava experiment. Unfortunately, due to

the limitation on the range pointcuts in LR parsing, we have to abandon the functions

requiring the ability to trace the parsing control flow. In other words, we lack the ability

to capture the rule application under a specific context in terms of the previously applied

rules. For example, we cannot capture the “equality check” in the expressions in the

“if” predicates, although we can still count the “if-only” statements. As for the LOC

counting function, the sub statement counting involved in it still requires the ability

to trace the parsing control flow. Although we can change the counting rules to skip

those situations in counting, it would not be a proper comparison any more. As a result,

we continue our Java parser extension experiment with only one requirement. Such

extension requirement can be fulfilled by the AspectRERS we generated in the above

experiment. Therefore, in this experiment we simple reuse the entire extension of the

CUP parser generation, except that we rename the DSAL as AspectJava.

The way we count the “if-only” statements is different here. In the ANTLR experiment,

we respectively capturing all the “if” statements and all the “else” tokens, and then get

the count by calculating their difference, as it is not easy to directly capture the “if-

only” statements. In the CUP experiment, we download a Java grammar from the CUP

official home page [134]. It explicitly defines a if then statement rule, which is shown in

Listing 6.9.

statement ::= statement_without_trailing_substatement

| labeled_statement

| if_then_statement

| if_then_else_statement

| while_statement

| for_statement

| foreach_statement

;

if_then_statement ::=

IF LPAREN expression RPAREN statement

;

Listing 6.9: The CUP grammar of the “if-only” statement in Java

This enables us to get the count by defining a pointcut that directly captures the ending

of the application of this rule, i.e. an embedded action pointcut. The corresponding

AspectJava aspect code is shown in Listing 6.10.

package cup.Java;

import cup.Java.Parse .*;
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public aspect CodeMetrics {

int ifonly_statement_count =0;

pointcut ifonly_statement_counter=after(

@if_then_statement :);

before : ifonly_statement_counter () {

ifonly_statement_count ++;

}

pointcut summary =% BeforeMainExit;

after : summary () {

System.out.println("ifonly_statement_count: "+

ifonly_statement_count);

}

}

Listing 6.10: The AspectJava code of counting the “if-only” statement

We run the test against two input Java programs. The first program is the artificial

program testJavaProg.java we used in Section 5.6.4. The translated AspectJ aspect

and the test result is shown in Figure 6.4. The result agrees with our previous test result

shown in Figure 5.3, which has been verified manually.

Figure 6.4: The CUP output of parsing testJavaProg.java with the
IfPredicateChecker-woven JavaParser.

The second test program is the JavaParser.java generated in the previous LOCCounter

experiment in Section 5.6.4, which has 19438 lines of text. The test result is that there

are 3175 “if-only” statements in the program JavaParser.java, as shown in Figure 6.5.
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Figure 6.5: The CUP output of parsing JavaParser.java with the

IfPredicateChecker-woven JavaParser.

As the above result is difficult to be verified manually, we weave the previous IfPredi-

cateChecker aspect into the ANTLR generated Java parser, and then parse the program

JavaParser.java. The test result is exactly the same as the above number we got. The

Eclipse output is shown in Figure 6.6.

We have not found a reliable tool with the function to count “if-only” statements in Java.

Thus we try to verify the result “manually”. In detail, we replace certain strings with

themselves to get the count of them in the program. We first count the “if” keyword

as the number of all “if” statement. To avoid counting in the “if” strings in the plain

text in the program, we respectively count two strings, “if(” and “if (”. Similarly, we

count the “else” token by counting string “else ” in JavaParser.java. According to

the results, there are 1868 “if(”, 1631 “if (”, and 324 “else ”. With these middle results,

we can calculate that the number of the “if-only” statements in JavaParser.java is

1868 + 1631− 324 = 3175. Although we still cannot guarantee that 3175 is the correct

answer, the fact that all three results of the two tests and our “manual” counting are
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Figure 6.6: The ANTLR output of parsing JavaParser.java with the
IfPredicateChecker-woven JavaParser.

the same makes us more confident about the correctness of this counting functionality

that derived from our AspectJava aspect weaving.

6.4 Exploring The Reusability of DSAL Aspects in Our

Approach

The AspectRERS and AspectJava implemented in the CUP experiments are in fact

the same DSAL. This gives us a chance to explore the possibility of reusing the same

DSAL aspects to different models conforming to the same domain meta-model. In

our experiments, we use two “model specific” DSAL aspects and two “general” DSAL

aspects, and apply each of them respectively to the CUP parser generated from the

RERS model and the Java model. By “model specific aspects”, we refer to the aspects

that aiming at model specific elements, in particular, not shared by the other models
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tested by the same aspects. The “general” aspects only include content shared by all

tested models.

Theoretically, if a DSAL aspect is applied to both the target models and unrelated

models, we expect its application should work properly with the related join points in

the target models. In the unrelated models, since the join points expected by the DSAL

aspect do not exist, the application of the aspects should either fail, or capture no join

point, and thus have no effect on the unrelated models. For example, the CUP grammar

of RERS shares nothing with the CUP grammar of Java but few terminals. This makes

it easy to define “model specific” aspects. In Section 6.2.5, we test the DSAL aspect

counting the “GLOBALLY” expressions in an RERS program. Obviously, this aspect

only involves one production rule temporal : 3, which is not defined in the CUP grammar

of Java. We then reuse it and apply it to the CUP grammar of Java. The compilation

and weaving works normally, and the test results in parsing the testJavaProg.java and

the JavaParser.java are both zero counts as expected. On the other hand, to apply

a Java aspect to the CUP grammar of RERS, we reuse the “if only” statement counter

aspect in Section 6.3. The compilation and weaving works well. The test of parsing

the RERS program shown in Section 5.5 still returns zero count result as expected. In

these two experiments, we apply irrelevant DSAL aspects to the models, i.e. the Java

elements related aspect applied to the RERS grammar and the RERS elements related

aspect applied to the Java grammar, without any compilation or weaving error. These

two experiments show the potential of safely reusing the DSAL aspects to any model

(of the target domain).

The above experiments are just preliminary exploration that the aspect reusing attempts

will not bring side effect to the unrelated models. The following test applies the aspects

with only the elements shared by all models. In detail, we prepare two aspects for the

RERS and Java models. The first aspect is to count the “shift” actions in parsing a

given program. The second aspect is to count the tokens in a given program. Since for

each “shift” action by the CUP generated parser, there must be a token that has been

parsed. Theoretically, the results of these two counting aspect should always be identical

in the application to each model. This also helps to verify the aspect application results.

The “shift” action counter aspect is shown in Listing 6.11.

package cup.Java;

public aspect CodeMetrics {

int shift_action_count =0;

pointcut shift_action_counter =% AfterShift;

before : shift_action_counter () {

shift_action_count ++;

}
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pointcut summary =% BeforeMainExit;

after : summary () {

System.out.println("shift_action_count: "+

shift_action_count);

}

}

Listing 6.11: The DSAL aspect of counting the “shift” actions in the parsing process

We apply this aspect to the RERS model and parse the sample RERS program shown in

Listing 5.25. The counting works fine and the result shows there are 110 “shift” actions

occurred in parsing the program. The token counter aspect is as shown in Listing 6.12.

package cup.Java;

public aspect CodeMetrics {

int token_count =0;

pointcut token_counter=after (#);

before : token_counter () {

token_count ++;

}

pointcut summary =% BeforeMainExit;

after : summary () {

System.out.println("token_count: "+token_count);

}

}

Listing 6.12: The DSAL aspect of counting tokens in the parsing process

As expected, the result of token counting in the sample RERS program is also 110, which

agrees with the “shift” action counting result. We then apply the “shift” action counter

aspect to the Java model and parse the testJavaProg.java. The counting works well

as well, and shows that there are 480 “shift” actions in parsing the testJavaProg.java.

Again, we use the token counter aspect to verify the result. The result is also 480.

In the above experiments, although the models contain different elements, they are

defined in the same DSL, i.e. they share the same domain meta-model, which gives the

common ground of reusing the aspects written in the DSAL generated in our approach.





Chapter 7

Evaluation

So far we have demonstrated our DSCG extension approach with three different case

studies based on real-world DSCG scenarios. From these case studies, we can see that

this approach allows dynamic generation of DSALs, according to the target DSCG and

the modification requirements. With the DSALs, domain experts can write domain

specific aspect to describe the changes they want, in which they can use both the do-

main specific elements and the output language statements. These aspects can then

be automatically woven into the code generated from the base models to complete the

modification process. In this chapter, we evaluate our approach through its comparison

with three alternative approaches, including the direct manual modification approach,

the model round-trip engineering approach, and the pure model based approach. In our

evaluation, we focus on four criteria, applicability, reliability, productivity, and reusabil-

ity.

7.1 Applicability

To evaluate a code modification approach, a criteria that naturally springs to mind may

be its applicability, i.e. its usefulness in accommodating different changes. In particu-

lar, we are interested in two questions, what kind of changes can be introduced to the

generated code? and how are they described?.

7.1.1 The Direct Manual Modification Approach

The Direct Manual Modification (DMM) approach might be the most expressive ap-

proach, with regard to the possible changes it can introduce to the generated code.

Since the changes can be made directly in certain programming languages, i.e. the out-

put languages of the domain specific code generators, this approach theoretically allows

any change to be introduced to the base code, as long as the change does not break its

157
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compilation or interpretation. In other words, the only constraint of introducing changes

in this approach is the syntactical and semantical rules of the output languages.

On the other hand, this approach often lacks high-level formal descriptions of the code

changes it accommodates, in respect of their purposes and impacts. Such succinct de-

scriptions are particularly important given the context of DSCG, where the high-level

models are considered as primary products and the generated code is taken as the low-

level representation of the models. Having to understand changes through their low-level

descriptions is a hindrance to the MDE development. Since the manual changes are de-

scribed directly in certain programming languages, it can be rather difficult for domain

experts, or even programmers other than the code changers themselves, to understand

the changes or to evaluate their influence. Although the changes are sometimes supple-

mented with extra descriptions for better understanding, like comments or documents,

such additional information normally does not coheres well with the changes themselves.

For example, the adjust in code changes cannot automatically update their correspond-

ing documents, or vice verse.

7.1.2 The Model Round-Trip Engineering Approach

In the Model Round-Trip Engineering (MRTE) approach, an MRTE system is built to

reverse the DSCG process. In detail, an MRTE system mainly consists of a detector

to detect any inconsistency between the models and the code, and a model restorer,

that can generate models from the modified code. This reverse transformation and the

target DSCG transformation constitute the complete transformation “round-trip”. In

this round-trip, the changes can be made either at the model level using the target

Domain Specific Languages (DSLs), or at the code level using the output languages of

the domain specific code generators. However, any change that can be made in this

approach must be reflexible in the base models. No matter what technique enables the

round-trip, if the change made at the code level cannot be reflected at the model level, the

round-trip will break. Even if the inconsistency between model and code can somehow

be detected, the base models would remain unchanged. As a result, the changes that

can be introduced to the base code in this approach are actually restricted by the target

domain DSLs. In this approach, since the changes are introduced through an incremental

round-trip process, there are always two descriptions for a single modification, a high-

level description at the model level, and a low-level description at the code level.

7.1.3 The Pure Model Based Approach

In this approach, the changes need to be made directly to the base models, and then

get reflected in the code through a regeneration from the modified models. The code

changes that can be made in this approach are restricted by both the target DSLs
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and the internal implementation of the DSCG code generators, e.g. the string templates

used in the ANTLR parser generator. In other words, this approach does not allow any

change that cannot be expressed by the target DSL, or cannot be generated by the target

code generator. Although we can extend the DSLs and/or the code generators to make

them more expressive, the allowed changes are still restricted by the extended DSLs

and/or the extended code generators. Despite the restrictions from the DSLs and the

code generators, the pure model based approach guarantees that all changes that can be

introduced to the base code have formal description at higher level of abstraction, i.e. in

DSLs.

7.1.4 The DSCG Extension Approach

In our DSCG extension approach, the changes are described in DSALs and automatically

woven into the base code by the corresponding aspect weavers. The changes that can

be introduced in this approach are restricted by the DSALs and their underlying aspect

weavers. This seems to be the same level of restrictions that applied in the pure model

based approach. But in fact, our approach is much more flexible in describing the

changes, and thus is capable of accommodating more potential changes.

First, the DSALs generated in this approach allow the expected modifications to be de-

scribed with the elements from both high-level, i.e. the model level, and low-level, i.e. the

code level, at the same time. For example, the DSAL generated in our “AUTOFILTER”

case study allows the variables of the base models to be directly used in the statements

of the output C programming language (as shown in Listing 4.22). It is worth noting

that this is different from the case in the MRTE approach, where a modification can be

described either completely at the model level or completely at the code level. Being

capable of using the elements from both the model level and the code level at the same

time makes it possible to describe the expected modifications in a more natural way.

Second, as the DSALs and their aspect weavers used in our approach are dynamically

generated according to the change requirements, our approach has the potential of cus-

tomizing them before they are used to describe and accommodate the expected modifi-

cations. Although the “acceptable” modifications in this approach are restricted by the

DSALs and their weavers, such restrictions can potentially be removed on demand. This

is different from the restrictions caused by the fixed DSLs used in the pure model based

approach. Take our “AspectRERS” experiment in the ANTLR case study for example,

if there is a need to monitor the complicated LTL formula based on complex “cflow pat-

tern” patterns, our approach allows adjust of the DSAL generation to include this new

pattern, so that the newly generated “AspectRERS” will support the “cflowPattern”

pointcut. Thus the same change can now be introduced with the new “AspectRERS”.

In short, the modifications that can be accommodated in this approach are restricted
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by the dynamically generated DSALs and their weavers. For each modification in this

approach, there is a formal description conforming to the generated DSAL.

7.2 Reliability

Our major research objective is that our approach should maintain the benefits of DSCG,

which basically include the reliability and productivity. The reliability of DSCG mainly

refers to the correctness of the generated code, which largely comes from the “correct-

by-construction” guarantee provided by the domain specific code generator. In our

evaluation, we look into the general steps involved in the code modification process

following each approach, and analyze their effect on the correctness of the modified code.

The correctness here does not only refer to the syntactical and the semantical correctness

that are generally expected in the generated code, but also include the conformance with

the original domain meta-models.

7.2.1 The Direct Manual Modification Approach

In DSCG, there is often great abstraction gap between the DSLs and the output pro-

gramming languages. A fragile synchronization between the models and the code is

maintained by the DSCG process, to guarantee the correctness of the code. A direct

manual modification would break such synchronization and leave the modified code with

no correctness guarantee, not to mention the fact that a manual modification itself is

often tedious and error-prone. For example, the generated code may contain a lot of

code-generator-specific details that cannot be easily understood, such as the magic num-

bers we see in the variable names in the code generated by AUTOFILTER. In short,

there is no guarantee of the correctness of the code that updated through a direct manual

modification.

7.2.2 The Model Round-Trip Engineering Approach

The changes can be introduced in two ways in the MRTE approach. The first way is to

modify the base model directly, which would be automatically detected by the round-

trip engineering framework and then re-trigger the DSCG process to keep the code

consistent, or synchronized, with the modified model. We can take this modification

process as “reliable”, provided the DSCG code generators remain unchanged. If the

code generators have been modified, e.g. to generate model traceability links during the

DSCG process, the correctness of the modified code would depend on the effect of the

code generator customization over the DSCG process.
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The second way is to modify the generated code, which would also be detected by the

round-trip engineering framework and then compute a corresponding model by the model

restorer. Unfortunately, the development of the model restorers or the detectors of mode-

code inconsistency is usually on ad hoc basis. There lacks the general or standardized

criteria to detect or maintain the inconsistency between the domain specific models and

the generated code. In brief, the reliability of this approach depends on the MRTE

systems built on ad hoc basis.

7.2.3 The Pure Model Based Approach

In the pure model based approach, if the expected modifications do not require an

update of the DSLs or the code generators, the “correct-by-construction” guarantee

will be maintained, which ensures the correctness of the modified code. However, if an

update of the DSLs or the code generators is required, the correctness of the modified

code relies on the effect of the code generator customization over the DSCG process.

7.2.4 The DSCG Extension Approach

Through the generation of DSALs and their aspect weavers, the DSCG extension ap-

proach essentially extends the original DSLs at both the domain meta-model level (by

the DSALs) and the code level (by the DSAL weavers). The correctness of the code

modified in this approach relies on the correctness of the DSAL aspects, and that of the

generated DSALs and their aspect weavers. In our evaluation, we simply assume the

DSAL aspects are always written correctly, and thus only focus on the correctness of

the generated DSALs and their weavers. In the previous case studies, we can see that

both the DSALs and their weavers are generated based on the domain meta-models from

mainly five aspects.

First, the target domain meta-models, i.e. the original DSLs, are tailored according to

the modification requirements into the effective meta-models, which can be regarded as a

transient extension of the DSLs within the modification systems built in our approach.

Second, the effective meta-models are composed with the tracing strategies to create

the traceable domain meta-models. This process can largely be automated, except that

the selection of the tracing strategies requires insight of the code generators, so that

the generation of the model tracing sentinels will not break the conformance of the

generated code with the original domain meta-models. Third, the traceable domain

meta-models serve as the formal guides to customize the code generators to enable the

model traceability in the generated code. Although this is a manual process and its

reliability is difficult to be evaluated, we can ensure that the code generated by the

customized code generators still conforms to the original DSLs, provided the compliance

with the traceable domain meta-models could be achieved in the customization process.
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Fourth, the traceable domain meta-models also serve as the guides to implement the

DSAL aspect weavers. From the perspective of the entire MDE tool chain involved in

this approach, the traceable domain meta-models can be regarded as a protocol between

the code generators and the corresponding aspect weavers. The code generators are

responsible to enable the model traceability in the generate code in compliance with the

protocol, and the aspect weavers interpret the generated code based on the compliance

of the same protocol, to weave the DSAL aspect correctly into the code to complete

the modification. Last, the compliance of the traceable domain meta-model can only

guarantee the construction and interpretation of the model tracing infrastructure. The

correctness of the DSAL aspect weaving also depends on the join point model of the

generated DSAL. In our approach, the composition of the effective meta-model and the

DSAL specification templates serves as the domain specific join point models.

In short, the reliability of our DSCG extension approach depends on the correct deriva-

tion of the target domain effective meta-models and the correct generation of the trace-

able domain meta-models, as they serve as the formal guide in the construction of the

DSAL based modification systems. Provided their correctness can be guaranteed, we

can ensure the correctness of the code modified by the DSAL aspect weaving process.

7.3 Productivity

To modify the code generated by DSCG is a very special scenario in the MDE context. A

basic principle in MDE is that the models are the core products instead of the code. The

code is supposed to be lower-level representations of the corresponding models. There

is no need to maintain an injective function between the models and the code. There-

fore, a change aiming at code level modification should be maintained independently

from the primary product in MDE, i.e. the domain specific models. In other words,

the code should be able to remain independent and to revert an applied change under

the modification system if needed. From this perspective, the productivity of a DSCG

code modification system is not only reflected in the effort required in introducing the

changes, but also reflected in the effort required in reverting them. In our evaluation,

we will take both into consideration. Besides, as the construction of the modification

system itself is the prerequisite of the modification process, we will also take the effort

it entails into consideration.

Strictly speaking, the productivity evaluation should be based on quantitative analysis

over the general steps involved in the modification process following a certain approach.

However, it is quite difficult to get accurate data in our evaluation. With regard to the

different DSCG contexts, e.g. different DSLs and output languages, it is difficult to define

a general benchmark system to assess the complexity or workload of the modification

requirements. The implementors with different knowledge bases and skill sets may also
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lead to quite different cost for the same task. Therefore, our evaluation is based on

rather loose estimation of the possible effort involved in the modification process in each

approach.

7.3.1 The Direct Manual Modification Approach

For simply changes, the DMM approach seems very cost-effective, as it does not require

any extra cost for building a modification system. Even for some experiments in our

case studies, this approach could be more productive than our DSCG extension approach

in accommodating the expected changes. However, there are three restrictions in this

approach. First, manual effort may not be trivial even for simple changes, e.g. when the

code blocks that need to be changed are scattered throughout the code. Adding code for

tracking the update of the state vector in our AUTOFILTER experiment is exactly an

example of this situation. This modification requires manual changes in the generated

code at every poin that the state vector value may be updated, to insert duplicate code

for monitoring purpose. Second, no matter how tiny the manual change is, it would break

the synchronization between the models and the code. Even if we do not consider the

maintenance of such synchronization, with more and more manual changes accumulated

in the generated code, the code would become more and more “deviated” from the base

models, thus difficult to understand, not to mention its maintenance. Third, the effort

of introducing multiple manual changes is accumulated in a linear way, even if they

are very similar to each other. Besides, this approach does not support reverting the

modifications, unless with the help of external tools for version control, such as git [142],

7.3.2 The Model Round-Trip Engineering Approach

In this approach, considerable effort is used to develop an MRTE system, so that the

code modifications can be propagated back to the base models. However, even with

such a system properly built, the effort in introducing a code level change would not be

evidently reduced. On the contrary, extra processes like the detection of the model-code

inconsistency and model restoration have to be finished before the modification is done.

These processes are introduced merely to maintain the synchronization between the

base models and the code. In short, the code level modification made in this approach

generally takes more time and effort than using the DMM approach. Similar to the DMM

approach, the MRTE approach does not support reverting the applied modifications,

unless with the help of external version control tools.
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7.3.3 The Pure Model Based Approach

In the pure model based approach, if the changes can be expressed by the original DSLs,

they can be introduced to the base code by modifying the models and automatically re-

generating the code through DSCG. With the description at more abstract level and

automated code modification, the cost of introducing a single modification in this ap-

proach is generally lower than the cost of the direct code modification, i.e. both the DMM

approach and the MRTE approach. However, if the expected modifications require ex-

tension of the DSLs and/or the customization of the domain specific code generators,

the cost would be again difficult to assess, due to the dependency of the implementors’

expertise in the target domain meta-models and the code generators. Worse still, the

extension of the DSLs and the code generators in this approach is normally introduced

on ad hoc basis. It can be very simple, like adding a new property to an existing class

in the domain meta-model, or rather complex, such as a thorough refactoring of the

domain meta-model. Therefore, the effort and cost involved in the extension in this

approach may vary greatly. Once the extension of the DSLs and the code generation is

finished, the cost of a single modification is supposed to be generally lower than that in

the above two approaches.

7.3.4 The DSCG Extension Approach

In the DSCG extension approach, the generated DSALs and their aspect weavers are

the actual tools to introduce modifications. As we elaborated in Chapter 3, their gen-

eration is based on the model traceability in the generated code, to trace the domain

elements included in the effective meta-models. To enable this model traceability, the

code generators are often required to be modified. This process can be decomposed into

four main tasks. The first task is the generation of the effective meta-models, including

the modification requirement analysis. The second task is the modification of the code

generators. The third task is the study and application of the underlying implemen-

tation technologies, e.g. to build the DSAL aspect weavers. The last task is to write

different DSAL aspects representing the expected changes, apply them to the generated

code, and test the modified code accordingly.

Here we show a table containing the time log of our DSCG extension experiments.

Although these are not experimental data, they can serve as a guide for estimating the

effort involved.

It is worth noting that we started as first-time user at the beginning of each case studies.

The tasks listed above may take much less amount of time for the developers experienced

in the specific area. For example, we spent four weeks on the implementation in the

CUP case study. Over 80% of the time was spent on learning the underlying techniques.
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AutoFilter ANTLR CUP

Effective
Meta-Model
Generation

10 days 6 days 8 days

Code Genera-
tor Modifica-
tion

4 days on modifica-
tion & 6 days on bug
fixing

6 days on modifica-
tion & 5 days on bug
fixing

4 days on modifica-
tion & 3 days on bug
fixing

Implementation
Techniques

SDF & Stratego/XT
(3 weeks)

ANTLR & LL(*) &
StringTemplate (4
weeks)

CUP & LALR (4
weeks)

Aspect Tests 5 days 3 days 6 days

Table 7.1: The time log of our experiments

It is very likely that the implementors experienced in this area can reduce the time for

this task significantly.

In brief, there is considerable effort involved in the DSCG extension process, including

the generation of DSALs and their weavers, and the modification of the code gener-

ators. However, with regard to the possibility of requiring accommodation of further

modifications that can be expressed by the generated DSALs, the cost of introducing

a single modification can be greatly reduced by writing with the generated DSALs and

weaving the aspects automatically by the corresponding aspect weavers. In a sentence,

the considerable modification system construction effort may pay back well in the long

run, provided there will be similar changes to accommodate.

7.4 Reusability

“Reusability is a measure of the ease with which those previous concepts and objects can

be used in the new situation.” [143] There are three main artifacts involved in the modifi-

cation of the generated code, the modification systems, the modifications accommodated

with them, and the base models/code to be modified. Accordingly, we can evaluate the

reusability at three different levels. First, we can evaluate the reusability of a single mod-

ification. Some modifications may aim at the model level changes, e.g. change the value

of a specific variable in the models. This kind of changes are naturally not supposed to

be reused for other models. Some other modifications may aim at the meta-model level

changes, e.g. change the value of all variables of a specific domain class in the models.

Ideally, this kind of modifications should be able to be reused to the code generated from

other models using the same code generator. In our following discussion about modi-

fication reuse, we always refer to this kind of modifications. Second, we can evaluate

the reusability of the modification systems, i.e. more modifications can be introduced to

the code generated from more models through the same modification system. As such
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systems normally involve considerable effort to build, it is very important that their

“once-for-all” cost can be “shared” by more and more further modifications. Last, we

can evaluate the reusability of the modified models/code. Strictly speaking, it should be

the reusability of the existing MDE tool chain, as both of the modified models and code

should still be able to reuse the existing MDE tool chain. More precisely, if the code

got updated during the modification process, it should remain “synchronized” to the

base models. If the models got updated during the modification process, they should

still conform to the original DSLs after the modification. This level of reusability is

even more important than the previous two levels, as it is the basis of maintaining the

benefits of DSCG after the modifications.

7.4.1 The Direct Manual Modification Approach

The modifications introduced in this approach basically exist as code patches. It is

usually difficult to apply the same patch, even if they aimed at the domain meta-model

level changes, to the code generated from different models. As there is not a modification

system involved, this approach does not have reusability at the modification system level.

This can explain the linear growth in the time cost of introducing multiple changes in

this approach. Worse still, the modified code is no longer synchronized with the base

models. In brief, the reusability of the DMM approach is very poor.

7.4.2 The Model Round-Trip Engineering Approach

Similar to the case of the DMM approach, the modifications in the MRTE approach also

exist as patches. The difference is that for each modification in the MRTE approach,

there are two patches, a model patch and a code patch. Theoretically, their modifica-

tion effect to the base models/code should be identical. Similarly, these modifications

cannot be reused on different models. As for the modification system reuse, as long as

the expected modification can be reflected by the DSLs, they can be accommodated by

reusing the MRTE systems. After the modification, the modified code remains “syn-

chronized” with the updated base models, and the updated base models still conform

to the original domain meta-model, i.e. the DSLs. In short, this approach supports the

reuse of the modification system, and maintains the existing MDE tool chain.

7.4.3 The Pure Model Based Approach

The modifications in this approach exist as the patches of models, which are generally

written in terms of model specific descriptions. As a result, they cannot be reused to

other models in the same DSLs, even if they aim at only the domain meta-model level

changes. For example, if the modification requirement is to change the value of a specific
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property p of ALL instances of a target domain class C, and there are two instances of

class C in model M1 (c1, c2), and three instances of C in model M2 (c3, c4, c5). A model

patch for M1 would look like c1.p = new value1; c2.p = new value2;. Obviously, it cannot

be reused by M2. As for the modification system reuse, as long as a modification can

be expressed by the current DSL, they can reuse the DSL and the corresponding code

generator. Finally, with regard to the reuse of the existing tool chain, it basically

depends on the compatibility of the DSLs. If the extended DSL is not compatible with

the original DSL, neither the modified models nor the regenerated code can reuse the

existing MDE tool chain that still in conformance of the original DSL.

7.4.4 The DSCG Extension Approach

From our case studies, we can observe the reusability in our approach at all three levels

mentioned above.

Reuse of The Aspects In Section 6.4, we illustrate that DSAL aspects can be

safely reused to different domain models, or more precisely, the code generated from

them by the customized code generators, as long as they conform to the same domain

meta-model. By “safely”, we refer to the effect of applying the aspects. When the

generated code contains the join points described by the PCDs in the aspects, the

woven code should contain the expected modifications described in the aspects. When

the generated code does not contain any join point involved in the aspects, the aspect

weaving process ought to have no effect on the generated code, either by directly failing

or resulting in no change to the generated code. In brief, our DSALs allow reusing DSAL

aspects among different models conforming to the same domain meta-model. Take our

experiments with “AspectRERS” for example, a pointcut after(: 4) can be reused to

pinpoint the parsing exit of the fourth alternative of any production rule, to any model

written in the RERS language. It is worth noting that our DSALs simply make this

level of reusability possible, not guarantee it. In the same “AspectRERS” example, if we

write the aspect with a number of model-specific pointcuts, such as after(@temporal : 4)

and after(@output : 4), the aspect still cannot be reused by other models.

Reuse of The DSALs As modification tools, the DSALs and the corresponding

weavers are generated to be reused for accommodating any modification that can be

expressed by the DSALs. We can observe many reuses of the generated DSALs in our

experiments. For example, we can reuse the AspectJava to write and apply both the “If

Predicate Checker” aspect and the “LOC Counter” aspect.

Reuse of The MDE Tool Chain Throughout the modification process in the

DSCG extension approach, the base models are regarded as the only core product and
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remain unchanged. The code generated from them is taken as a corresponding rep-

resentation of the models at the lower-level. To enable the model traceability in the

code, this approach requires modification of the code generators, so that the traceabil-

ity links, i.e. sentinels, can be properly inserted into the code by regeneration using the

modified generators. This also maintains the “synchronization” between the models and

the code. The unchanged base models and the regenerated code constitute the basis of

further modifications through the DSAL aspects. In the further modifications, for each

DSAL aspect, there will be a version of modified code, while the base code is always the

regenerated code. In other words, the modified code is in fact synchronized with the

DSAL aspect, instead of the regenerated code. This relationship is shown in the lower

half of Figure 1.7. In brief, our DSCG extension approach maintain a synchronization

parameterized by DSAL aspects between the base models and the modified code. From

this perspective, the unchanged models, the regenerated code, and the modified code

can be selectively used for reusing the existing MDE tool chain in different scenarios.

7.4.5 Summary

The results of the above comparison can be summarized into a few points as shown in

Table 7.4.5.

From the above comparison table, we can see that every modification approach, except

for the DMM approach, builds a reusable modification system on top of the target

DSCG process, although the initial purpose might be to accommodate only a single

modification of the code generated from a specific model. Without such a modification

system, e.g. as the case of the DMM approach, although a direct manual modification of

the generated code seems to be made in a prompt way, the cost is much greater than the

gain. First, it breaks the synchronization between the models and the code, which entails

the expiration of the “correct-by-construction” guarantee. Second, such modifications on

ad hoc basis lose the systematicness of the modification process. This makes the process

difficult to be standardized and automated, and finally damages the productivity of the

complete MDE tool chain. This is the reason why our DSCG extension approach still

constructs a complex DSCG extension system, despite its considerable cost.

It is not difficult to understand that these modification systems are essentially extensions

of the DSLs in the target DSCG. As the expected modifications cannot be expressed by

the DSLs in the first place, the DSLs have to be somehow extended to be able to describe

the modifications. The PMB approach adopts a direct way to update the DSLs, which

sometimes would lead to the compatibility problems. The MRTE approach implements

the DSL extension indirectly using a MRTE system based on reverse engineering. Both

approaches involve a code update and a model update in a single modification process.

Our DSCG extension approach extends the DSLs indirectly and enhance them with the

aspect-oriented perspective. Compared with the other two approaches, this extension
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The DMM Ap-
proach

The MRTE
Approach

The PMB Ap-
proach

The DSCG
Extension
Approach

Applicability any compilable
change

restricted by
DSL

restricted by
DSL

restricted by
DSAL

Reliability no guarantee depend on the
MRTE systems
built on ad hoc
basis

depend on the
extension of
DSLs and the
code generators

depend on: 1.
the modifica-
tion of the code
generator 2.
the generation
of the DSALs
and weavers
(both are based
on the domain
meta-models)

Productivity low cost for
simple modifi-
cation, linear
cost growth
for multiple
modifications

considerable
cost in build-
ing MRTE
system, gen-
erally higher
cost in single
modification
than the DMM
approach

uncertain cost
in the exten-
sion of the
DSLs and code
generators,
generally lower
cost in single
modification
than both
the DMM
and MRTE
approach

considerable
cost in building
DSCG exten-
sion, similar
cost in single
modification
as the PMB
approach

Reusability poor modification
not reusable

modification
not reusable,
potentially
break the exist-
ing MDE tool
chain

the modifica-
tion, modifi-
cation system,
and the exist-
ing MDE tool
chain are all
reusable

Table 7.2: Comparison table of alternative approaches for code modification in the
DSCG context.

seems more complicated, as it proposes a three-step modification process, which includes

a DSAL aspect creation, a regeneration of the base code using the modified code gen-

erator, and a composition of the regenerated code and the DSAL aspect. However, the

extra complexity in our approach brings about additional advantages.

First, the DSAL brings about extra expressiveness in the description of the expected

modifications, in terms of the aspect-oriented perspective and the finer-grained descrip-

tors, i.e. the statements in the lower-level output languages. Second, the base code

regeneration makes the base code more extensible by the insertion of the traceability

links, i.e. the sentinels, while it maintains the conformance of the base code to the origi-
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nal DSLs. This regeneration step can be regarded as a trade-off between the reusability

of the target DSCG and its extensibility, and the regenerated code is the prerequisite of

the DSAL aspect weaving process. It is worth noting that the customization of the code

generators in our approach is essentially different from that in the PMB approach. The

customization of the code generators in the PMB approach aims at supporting a spe-

cific kind of modifications, while the customization of the code generators in the DSCG

extension approach aims at the extensibility of the generated code. With the sentinels

inserted in the generated code, different DSALs can be created for different kinds of

modifications.

It is worth noting that the function of these modification systems is not just to make it

possible to introduce the previously inexpressible changes to the generated code. More

importantly, they serve as an adapter to the existing MDE tool chain, so that the

modifications accommodated through them can be accepted and reused by the existing

MDE tool chains. The protocol of this adaptation is exactly the domain meta-models

of the target DSCG. In other words, both the modifications and the base models/code

have to conform to the same domain meta-model. This is the root reason why all

three approaches, including our approach, focus on the domain meta-models. In our

DSCG approach, the “protocol” meta-models are referred to as the domain effective

meta-models.

On the other hand, there are some limitations in our approach. One major limitation

is insufficient automation. In the modification process following our approach, there

are several steps may require human interactions. For instance, the composition of the

effective meta-models and the DSAL templates often need manual effort to finish the

DSAL generation process. Another limitation in our approach is the gap between the

guide of the code generator customization, i.e. the traceable domain meta-models, and

the actual customization of the code generators. We will discuss about a recent work in

Section 8.2.1 that seems promising to bridge this gap.

In summary, we can see that our meta-model based DSCG extension approach guar-

antees the reliability and reasonable productivity of the target DSCG process and the

DSAL based modification process. Despite a few restrictions, this approach basically

achieves our primary research objective in this thesis, namely to maintain the benefits

of the DSCG when introducing the code modifications.

7.5 Other Related Works

Apart from the three alternative approaches we have compared so far, there are a few

more related works that worth discussion.
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7.5.1 Composition of Model Transformations

As Tisi et al. [144] argued, model transformation technologies have reached the level of

maturity that model transformations can now be treated as objects. As a result, model

transformations become first-class elements of the model based software systems, just

like models. To address increasingly complex application that require direct manipula-

tions of model transformation as objects, the concept of Higher-Order Transformation

(HOT) is defined to refer to a model transformation whose input and/or output mod-

els are model transformation objects. As discussed in Seciont 2.4.3, both the DSCG

process and the aspect weaving process, i.e. the composition of code and aspect, can be

considered as model transformations. From this perspective, an extension of the DSCG

process with aspect oriented approaches can be considered as a HOT that composes

these two model transformation objects. Kurtev et al. [145] demonstrated the feasibility

of HOT implementations with similar transformations. Their experiments are based on

the ATLAS Model Management Architecture (AMMA) framework. It contains a mature

implementation of the ATL Transformation Language (ATL), which follows the OMG

QVT standard [146]. Within AMMA, a DSCG can be defined as an ATL transforma-

tion model, with its domain meta-models specified with the Gruber’s definition [147].

Unfortunately, this framework does not support aspect-weaving based transformation.

Thus it cannot help us to build the DSCG extension system.

7.5.2 Meta-Programming in DSAL

Although the DSALs in our approach are dynamically generated with regard to the

given modification requirements, it is difficult to foresee all the potentially related mod-

ification requirements and take them into consideration during the generation of the

DSALs. Once the DSALs have been generated, their syntax and semantics are fixed.

If any further modification requirement is restricted by the current DSALs, the only

way to accommodate the modification is to regenerate the DSALs. Regarding the high

cost in the generation of the DSALs and their aspect weavers, it could be much easier

if the DSAL aspect writers can tailor the language semantics in a modification specific

manner. For example, when several pieces of advice need to be applied to the same join

point, different orders of application may lead to different results or even conflicts. This

is a typical issue in the aspect interaction [148], and there are several conflict resolution

approaches to specify the order of advice execution [148, 149]. Meta-Aspect Protocol

(MAP) is an extension built on top of the Groovy [150] Meta-Object Protocol, to re-

alize the aspect languages implemented by the Pluggable and OPen Aspect RunTime

(POPART) runtime. Dinkelaker et al. [151] implemented an extensible advice ordering

mechanism with the MAP, which can be adapted at runtime to resolve the aspect inter-

action problems. Although such aspect language extension system has specific technical

dependency (the POPART runtime), it shows a possible extension of our approach for
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better reusability of the generated DSALs. It is worth noting that MAJ is only one

potential extension of the generated DSALs. There are a lot more possible extensions

can be made to the DSALs to improve the reusability, e.g. the XML based framed aspect

technique [152].



Chapter 8

Conclusion and Future Works

In the previous chapter, we evaluate our meta-model based DSCG extension approach

through its comparison with three alternative approaches, in terms of its applicability,

reliability, productivity and reusability. In the final chapter, we conclude all our work

and list some further works that can be done to refine or extend our approach.

8.1 Conclusion

Model based software engineering approaches raise the abstraction level of software de-

velopment from code to models. In particular, the Domain Specific Code Generation

(DSCG) technique allows the domain experts to develop reliable software by directly

building the domain specific models, and bridges the big gap between domain specific

modelling level and code level, by automatically transforming domain specific models

into code with a “correct-by-construction” guarantee. Compared with the traditional

software development, it brings about many benefits in productivity and reliability. Un-

fortunately, such advantages are easily lost in the modification of the generated code.

Traditionally, three approaches are commonly used to introduce changes to the gener-

ated code, i.e. the Direct Manual Modification (DMM) approach, the Model Round-Trip

Engineering (MRTE) approach, and the Pure Model Based (PMB) approach. From

these approaches, we identified three specific problems.

1. The changes that cannot be reflected in the models require adding unnecessary

details into the modelling languages, which can lead to a breakdown of the ab-

straction hierarchy.

2. Enforcing a surjective or even bijective function between the models and the code

deviates from the nature of the model based software engineering.
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3. The existing approaches may lose track of the software when the introduced

changes cannot be reflected in the models.

The primary contribution of this thesis is to propose a meta-model based DSCG exten-

sion approach to address the primary problem of losing the benefits of DSCG in the

modification of the generated code, with regard to the above three specific problems.

Given a target DSCG and certain modification requirements, our approach extends the

DSCG by dynamically generating a Domain Specific Aspect Language (DSAL) and its

aspect weaver, based on the analysis of the modification requirements. Thus the do-

main experts can describe their expected modifications as domain specific aspects in

the generated DSAL, and use the generated aspect weaver to automatically weave the

aspects into the code generated from certain input model, to complete the modification

process. The entire DSCG extension system is constructed based on the meta-models of

the target domain. In particular, an effective meta-model is generated to describe the

domain classes and properties that are involved in the expected modifications. A trace-

able domain meta-model is generated from the effective meta-model to describe how

customize the code generator to enable the model traceability in the generated code,

which is the basis of the domain specific aspect weaving. As the modifications are in

fact accommodated by such meta-model based extension system of the target DSCG,

we call this approach as the “meta-model based DSCG extension approach”, or “DSCG

extension approach” for short.

In our approach, a modification that previous cannot be expressed by the original DSL

can now be described in the dynamically generated DSAL at both model level and code

level, and then woven into the generated code automatically. Throughout the modifi-

cation process, the input model will remain unchanged. The modification is directly

made to the generated code. The modified code does not need to be manipulated to

maintain the synchronization with the input model. Instead, it is synchronized with a

combination of the input model and the DSAL aspect applied to it, which makes more

sense in respect of the principle of MDE. Code is the lower-level representation of the

primary product, i.e. models. A change made to the representation should not affect

the models themselves. This relationship is illustrated in the lower half of Figure 1.7.

With our approach, the version controlling of the software developed with DSCG also

becomes very simple. We only need to track the versions of the models and DSAL as-

pects. The code version can always be calculated through a combination of the model

version and the aspect version. Moreover, the evaluation based on the comparison with

the alternative code modification approaches shows that the DSALs and their weavers

that systematically generated based on the domain meta-models can provide reason-

able guarantee for the reliability and the productivity of the modification process. As

a whole, the meta-model base DSCG extension approach that we propose successfully

achieves our initial research objectives.
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A secondary contribution of our work is to develop a generic approach to generate config-

urable parser enhancement tools for theoretically any programming language. The basic

idea is to apply our DSCG extension approach to the language parser generation process.

By generating DSALs of the language grammar domain, our approach allows configuring

enhancement of the language parsers by writing and applying the corresponding gram-

mar enhancement aspects. By applying such aspects to the parsers generated from the

target language grammars, we generate the parsers with configured enhancements. For

example, we build a DSAL called “AspectJava” to extend the ANTLR parser genera-

tion process. As shown in Section 5.6.4, we write an “IfPredicateChecker” aspect and

an “LOCCounter” aspect in “AspectJava”, and respectively weave them into the Java

parser generated from the ANTLR grammer of Java, to generate two different statistics

tools for Java programs, one for logging the “if-only” statements and involved “equality

checks”, the other for counting the Line Of Code (LOC), for any Java program. With

similar aspects, we can conveniently configure a Java parser generated by ANTLR with

many other enhancements, e.g. to measure code metrics like code coverage, etc.

8.2 Future Works

As mentioned in Section 7.4.4, there are still some limitations of our approach. In this

section, we discuss some potential refinements or extensions that can be introduced to

our work.

8.2.1 Guided Customization of Code Generators Using Symbol Table

The recent work by Nazari et al. [153] proposes an approach to manage customizations

of template-based code generators at generation-time by reusing the symbol table [40]

data structure. In particular, we are interested in its discussion about how to manage

the template replacements dynamically at generation-time for a guided customization.

The basic idea is to define some hook points in the code templates. Each hook point

has a unique identity and can be bound with one or more values, which can be either a

string or another template. Thus a template graph is formed through these hook points.

The symbol table is then used as a map of the graph of the hook points and templates.

Each table entry, i.e. a symbol, stores the name, the type, and all essential information of

a model element, which can be a hook point or a template among others. Given a name

and a type, the symbol table can find all associated information of the corresponding

element.

In our approach, we use traceable domain meta-models to guide the customization of

the DSCG code generators to insert sentinels into the corresponding locations in the

generated code, so that the generated DSAL weavers can trace the domain models in
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the code. This process can be regarded as a “guided customization” of the DSCG code

generator. Given a traceable domain meta-model, we can define a symbol table accord-

ingly, with the join point classes as the root symbol elements, and the corresponding

sentinel strings as the string values bound to the underlying hook points. During the

base code regeneration, these symbols are evaluated in the template expansions and help

to generate the corresponding sentinels in the regenerated code.

8.2.2 Generating Better Domain Specific Aspect Language

In our experiments with the ANTLR and CUP generators, we deliberately reuse AspectJ

as the underlying aspect language of the generated DSALs. This decision helps to reduce

the cost in the generation of the DSAL. But it restricts the DSALs with the limitations of

AspectJ. In fact, the DSALs work like the general purpose aspect languages, in which the

participants are domain specific elements. However, the “real” DSALs should work more

closely with the domain meta-models. Some other “domain specific” content other than

the participated domain elements, such as the domain restrictions, should be reflected in

the DSALs as well. For example, if the value of domain element x should not be modified

in the predict stage, any attempt to update x in the advice binding the pointcuts that

capture the predict stage join points should be detected and alerted. To achieve this, the

“translator+GPAL core” pattern seems not enough. Unfortunately, our investigation

does not find many promising alternatives. The “library+notation” pattern is very

similar to our “translator+GPAL core” pattern, and it has to build its own library

for the domain semantics. The “partial evaluation+reflection” pattern demands the

reflection function, and work best with object oriented programming languages.
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Appendix A

Examples

A.1 Traceability Link Examples

/* <DomainElementTracing type=" Action" name=" action1"> */

<code block generated for action1 >

/* </DomainElementTracing type=" Action" name=" action1"> */

Listing A.1: A pair of comments serve as a link to trace domain specific element

“action1”

Begin_Tracing_action1 ();

<code block generated for action1 >

End_Tracing_action1 ();

Listing A.2: A pair of function invocations serve as a link to trace domain specific

element “action1”

@DomainElementTracing(type="Action" name="action1")

int tracingBegin;

<code block generated for action1 >

@DomainElementTracing(type="Action" name="action1")

int tracingEnd;

Listing A.3: A pair of annotated variable serve as a link to trace domain specific

element “action1”

<DomainElementTracing type="Action" name="action1">

<location >

<start_point >

<line_number >10</line_number >

<column_number >10</column_number >

</start_point >
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<end_point >

<line_number >12</line_number >

<column_number >10</column_number >

</end_point >

</location >

</DomainElementTracing >

Listing A.4: A node inside a standalone XML log file serves as a link to trace domain

specific element “action1”

A.2 The Automata Example

grammar DFA;

tokens {

DFA = ’DFA’;

ALP = ’Alphabet ’;

STA = ’States ’;

SST = ’StartState ’;

AST = ’AcceptStates ’;

TRSN = ’Transition ’;

}

INTLITERAL

: IntegerNumber

;

fragment

IntegerNumber

: ’0’

| ’1’..’9’ (’0’..’9’)*

;

INTLIST

: ’{’ INTLITERAL (’,’ INTLITERAL)* ’}’

;

WHITESPACE : ( ’\t’ | ’\n’ | ’ ’ | ’\r’ | ’\u000C ’ )+ {$

channel = HIDDEN; };

program
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: DFA ’{’ alphabet_declaration state_declaration

transition_declaration ’}’ EOF

;

alphabet_declaration

: ALP INTLIST ’;’

;

state_declaration

: states_decl start_state_decl accept_states_decl

;

states_decl

: STA INTLIST ’;’

;

start_state_decl

: SST ’(’ INTLITERAL ’)’ ’;’

;

accept_states_decl

: AST INTLIST ’;’

;

transition_declaration

: (transition_decl)*

;

transition_decl

: TRSN ’(’ INTLITERAL ’,’ INTLITERAL ’,’ INTLITERAL ’)

’ ’;’

;

Listing A.5: The ANTLR grammar of the “DFA” language

grammar DSAL;

options {

backtrack=true;

memoize=true;

output=template;

}
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tokens {

NOT = ’!’;

OR = ’||’;

AND = ’&&’;

}

WHITESPACE

: ( ’\t’ | ’\n’ | ’ ’ | ’\r’ | ’\u000C ’ )+ {$channel =

HIDDEN; }

;

program

: ’aspect ’ an=IDENTIFIER LBRACE (s+= aspect_statement)+

RBRACE

;

aspect_statement

: loc_modifier pd=pcd_decl ad=adv_decl

;

loc_modifier

: ’before ’

| ’after’

;

pcd_decl

: LPAREN df=disflt RPAREN

;

adv_decl

: LBRACE cc=custom_code RBRACE

;

custom_code

: STRINGLITERAL

;

disflt

: c=conflt d=disflt_f

;
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disflt_f

: OR d=disflt

|

;

conflt

: l=litflt c=conflt_f

;

conflt_f

: AND c=conflt

|

;

litflt

: LPAREN d=disflt RPAREN

| af=property_filter

| NOT lf=litflt

;

/* Placeholder: property_filter

* Use: a conditional expression of

* the properties of join point class

* Expansion sample:

* "filter_property1 operator value_literal"

* Note:

* rule "operator" and "value_literal"

* will be selected according to

* the type of "filter_property1"

*/

property_filter

:

;

/* Placeholder: filter_property

* Use: the properties of join point class

* Expansion sample:

* "jp_class1_name COLON property1 .1_name"

* "jp_class1_name COLON property1 .2_name"

* ...

* "jp_class2_name COLON property1 .1_name"
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* ...

*/

filter_property

:

;

Listing A.6: The DSAL template selected in the automata example

grammar DSAL;

options {

backtrack=true;

memoize=true;

output=template;

}

tokens {

NOT = ’!’;

OR = ’||’;

AND = ’&&’;

}

WHITESPACE

: ( ’\t’ | ’\n’ | ’ ’ | ’\r’ | ’\u000C ’ )+ {$channel =

HIDDEN; }

;

program

: ’aspect ’ an=IDENTIFIER LBRACE (s+= aspect_statement)+

RBRACE

;

aspect_statement

: loc_modifier pd=pcd_decl ad=adv_decl

;

loc_modifier

: ’before ’

| ’after’

;

pcd_decl
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: LPAREN df=disflt RPAREN

;

adv_decl

: LBRACE cc=custom_code RBRACE

;

custom_code

: STRINGLITERAL

;

disflt

: c=conflt d=disflt_f

;

disflt_f

: OR d=disflt

|

;

conflt

: l=litflt c=conflt_f

;

conflt_f

: AND c=conflt

|

;

litflt

: LPAREN d=disflt RPAREN

| af=property_filter

| NOT lf=litflt

;

/* Placeholder: property_filter

* Use: a conditional expression of

* the properties of join point class

* Expansion sample:

* "filter_property1 operator value_literal"

* Note:
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* rule "operator" and "value_literal"

* will be selected according to

* the type of "filter_property1"

*/

property_filter

: filter_property1 numerical_comparer INTLITERAL

| filter_property2 numerical_comparer INTLITERAL

| filter_property3 numerical_comparer INTLITERAL

;

/* Placeholder: filter_property

* Use: the properties of join point class

* Expansion sample:

* "jp_class1_name COLON property1 .1_name"

* "jp_class1_name COLON property1 .2_name"

* ...

* "jp_class2_name COLON property1 .1_name"

* ...

*/

filter_property1

: ’Transition ’ COLON ’from_state ’

;

filter_property2

: ’Transition ’ COLON ’to_state ’

;

filter_property1

: ’Transition ’ COLON ’input ’

;

Listing A.7: The ANTLR grammar of “AspectDFA” generated by template expansion
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Case Studies

B.1 The AUTOFILTER Case Study

<?xml version="1.0" encoding="utf -8"?>

<xs:schema id="EstimationProblemDomainSchema" xmlns:xs="

http://www.w3.org /2001/ XMLSchema">

<!-- <helper_types > -->

<xs:simpleType name="natural_number_type">

<xs:restriction base="xs:integer">

<xs:minInclusive value="1"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="expr_string_type">

<xs:restriction base="xs:normalizedString"/>

</xs:simpleType >

<xs:simpleType name="name_string_type">

<xs:restriction base="xs:string">

<xs:pattern value="([A-Za -z_])+"/>

</xs:restriction >

</xs:simpleType >

<xs:complexType name="mean_type">

<xs:choice >

<xs:element name="mean_value" type="double"/>

<xs:element name="mean_vector_name" type="

name_string_type"/>
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</xs:choice >

</xs:complexType >

<!--

<xs:complexType name="basic_data_ref_type">

<xs:choice >

<xs:element name="nat_type" type="nat"/>

<xs:element name="type" type="int"/>

<xs:element name="type" type="double"/>

</xs:choice >

</xs:complexType >

-->

<xs:simpleType name="basic_data_ref_type">

<xs:restriction base="xs:string">

<xs:enumeration value="nat"/>

<xs:enumeration value="int"/>

<xs:enumeration value="double"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="role_type">

<xs:restriction base="xs:string">

<xs:enumeration value="const"/>

<xs:enumeration value="variable"/>

<xs:enumeration value="data"/>

</xs:restriction >

</xs:simpleType >

<xs:complexType name="basic_domain_element_type">

<xs:choice >

<xs:element name="scalar" type="scalar_type"/>

<xs:element name="vector" type="vector_type"/>

<xs:element name="matrix" type="matrix_type"/>

</xs:choice >

</xs:complexType >

<!-- </helper_types > -->

<xs:simpleType name="nat">

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

</xs:restriction >
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</xs:simpleType >

<xs:simpleType name="int">

<xs:restriction base="xs:integer"/>

</xs:simpleType >

<xs:simpleType name="double">

<xs:restriction base="xs:decimal"/>

</xs:simpleType >

<xs:complexType name="scalar_type">

<xs:sequence >

<xs:element name="role" type="role_type"/>

<xs:element name="name" type="name_string_type"/>

<xs:element name="element_type" type="

basic_data_ref_type"/>

<xs:element name="init_value" type="expr_string_type"

minOccurs="0" maxOccurs="1"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="vector_type">

<xs:sequence >

<xs:element name="role" type="role_type"/>

<xs:element name="name" type="name_string_type"/>

<xs:element name="element_type" type="

basic_data_ref_type"/>

<xs:element name="length" type="natural_number_type"/>

<xs:element name="init_value" type="expr_string_type"

minOccurs="0" maxOccurs="1"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="matrix_type">

<xs:sequence >

<xs:element name="role" type="role_type"/>

<xs:element name="name" type="name_string_type"/>

<xs:element name="element_type" type="

basic_data_ref_type"/>

<xs:element name="size_1" type="natural_number_type"/>

<xs:element name="size_2" type="natural_number_type"/>
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<xs:element name="init_value" type="expr_string_type"

minOccurs="0" maxOccurs="1"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="vector_with_gaussian_distribution">

<xs:sequence >

<xs:element name="target_vector_name" type="

name_string_type"/>

<xs:element name="mean" type="mean_type"/>

<xs:element name="standard_deviation_vector_name" type

="name_string_type"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="equation_set_type">

<xs:sequence >

<xs:element name="equation" type="expr_string_type"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="eqs_model_type">

<xs:sequence >

<xs:element name="name" type="name_string_type"/>

<xs:element name="equation_set" type="

equation_set_type"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="problem_type">

<xs:sequence >

<xs:element name="auxiliary_element" type="

basic_domain_element_type" minOccurs="0" maxOccurs="

unbounded"/>

<xs:element name="statistical_variable_declaration"

type="vector_with_gaussian_distribution" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="state_vector" type="vector_type"/>
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<xs:element name="process_noise_vector" type="

vector_type"/>

<xs:element name="process_noise_distribution" type="

vector_with_gaussian_distribution"/>

<xs:element name="process_model" type="eqs_model_type"

/>

<xs:element name="measurement_noise_vector" type="

vector_type"/>

<xs:element name="measurement_noise_distribution" type

="vector_with_gaussian_distribution"/>

<xs:element name="measurement_model" type="

eqs_model_type"/>

<xs:element name="filter" type="filter_type"/>

<xs:element name="estimator" type="estimator_type"/>

</xs:sequence >

<xs:attribute name="name" type="name_string_type" use="

required"/>

</xs:complexType >

<xs:complexType name="filter_type">

<xs:sequence >

<xs:element name="name" type="name_string_type"/>

<xs:element name="output_parameter" type="

basic_domain_element_type" minOccurs="0" maxOccurs="

unbounded"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="estimator_type">

<xs:sequence >

<xs:element name="name" type="name_string_type"/>

<xs:element name="steps" type="natural_number_type"

minOccurs="0" maxOccurs="1"/>

<xs:element name="update_interval" type="double"

minOccurs="0" maxOccurs="1"/>

<xs:element name="timevar" type="name_string_type"

minOccurs="0" maxOccurs="1"/>
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<xs:element name="process_eqs" type="name_string_type"

/>

<xs:element name="measurement_eqs" type="

name_string_type"/>

<xs:element name="initials" type="expr_string_type"/>

<xs:element name="initial_covariance" type="

expr_string_type"/>

</xs:sequence >

</xs:complexType >

<!-- <xs:element name="problem" type="problem_type"/> --

>

</xs:schema >

Listing B.1: The XML schema of the estimation problem domain meta-model

<?xml version="1.0" encoding="utf -8"?>

<xs:schema id="KalmanFilterDomainSchema" xmlns:xs="http://

www.w3.org /2001/ XMLSchema">

<xs:include schemaLocation="EstimationProblem_Domain.xsd"/

>

<!-- <helper_types > -->

<xs:simpleType name="kalman_filter_type_type">

<xs:restriction base="xs:string">

<xs:enumeration value="standard"/>

<xs:enumeration value="linearized"/>

<xs:enumeration value="extended"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="stage_type">

<xs:restriction base="xs:string">

<xs:enumeration value="init"/>

<xs:enumeration value="predict"/>

<xs:enumeration value="update"/>

</xs:restriction >

</xs:simpleType >

<xs:complexType name="scalar_calculation_type">

<xs:sequence >

<xs:element name="scalar" type="scalar_type"/>
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<xs:element name="stage" type="stage_type"/>

<xs:element name="expr" type="expr_string_type"/>

<xs:element name="var_name" type="name_string_type"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="vector_calculation_type">

<xs:sequence >

<xs:element name="vector" type="vector_type"/>

<xs:element name="stage" type="stage_type"/>

<xs:element name="expr" type="expr_string_type"/>

<xs:element name="var_name" type="name_string_type"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="matrix_calculation_type">

<xs:sequence >

<xs:element name="matrix" type="matrix_type"/>

<xs:element name="stage" type="stage_type"/>

<xs:element name="expr" type="expr_string_type"/>

<xs:element name="var_name" type="name_string_type"/>

</xs:sequence >

</xs:complexType >

<!-- </helper_types > -->

<xs:complexType name="kalman_filter_type">

<xs:complexContent >

<xs:extension base="filter_type">

<xs:sequence >

<xs:element name="process_model" type="matrix_type

"/>

<xs:element name="control_model" type="matrix_type

" minOccurs="0" maxOccurs="1"/>

<xs:element name="process_noise_covariance" type="

matrix_type"/>

<xs:element name="measurement_noise_covariance"

type="matrix_type"/>

<xs:element name="observation_model" type="

matrix_type"/>

<xs:element name="measurement_vector" type="

vector_type"/>
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<xs:element name="Identity_matrix" type="

matrix_type"/>

<xs:element name="priori_state_estimate" type="

vector_calculation_type"/>

<xs:element name="prior_process_covariance" type="

matrix_calculation_type"/>

<xs:element name="innovation" type="

vector_calculation_type"/>

<xs:element name="innovation_covariance" type="

matrix_calculation_type"/>

<xs:element name="kalman_gain" type="

matrix_calculation_type"/>

<xs:element name="posteriori_state_estimate" type=

"vector_calculation_type"/>

<xs:element name="posterior_process_covariance"

type="matrix_calculation_type"/>

</xs:sequence >

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name="solution_type">

<xs:sequence >

<xs:element name="kalman_filter" type="

kalman_filter_type"/>

<xs:element name="kalman_estimator" type="

estimator_type"/>

</xs:sequence >

</xs:complexType >

<!--<xs:element name="solution" type="solution_type"/>-->

</xs:schema >

Listing B.2: The meta-model of the solution domain i.e. the Kalman filter domain

<?xml version="1.0" encoding="utf -8"?>

<xs:schema id="KalmanFilterDomainSchema" xmlns:xs="http ://

www.w3.org /2001/ XMLSchema">

<!-- <helpers > -->

<xs:simpleType name="natural_number">

<xs:restriction base="xs:integer">
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<xs:minInclusive value="1"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="expr_string">

<xs:restriction base="xs:normalizedString"/>

</xs:simpleType >

<xs:simpleType name="name_string">

<xs:restriction base="xs:string">

<xs:pattern value="([A-Za -z_])+"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="basic_data_ref">

<xs:restriction base="xs:string">

<xs:enumeration value="nat"/>

<xs:enumeration value="int"/>

<xs:enumeration value="double"/>

</xs:restriction >

</xs:simpleType >

<!-- </helpers > -->

<xs:complexType name="Scalar">

<xs:sequence >

<xs:element name="name" type="name_string"/>

<xs:element name="element" type="basic_data_ref"/>

<xs:element name="init_value" type="expr_string"

minOccurs="0" maxOccurs="1"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="Vector">

<xs:sequence >

<xs:element name="name" type="name_string"/>

<xs:element name="element" type="basic_data_ref"/>

<xs:element name="length" type="natural_number"/>

<xs:element name="init_value" type="expr_string"

minOccurs="0" maxOccurs="1"/>

</xs:sequence >

</xs:complexType >
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<xs:complexType name="Matrix">

<xs:sequence >

<xs:element name="name" type="name_string"/>

<xs:element name="element" type="basic_data_ref"/>

<xs:element name="size_1" type="natural_number"/>

<xs:element name="size_2" type="natural_number"/>

<xs:element name="init_value" type="expr_string"

minOccurs="0" maxOccurs="1"/>

</xs:sequence >

</xs:complexType >

<xs:simpleType name="AlgorithmicParticipantType">

<xs:restriction base="xs:string">

<xs:enumeration value="Scalar"/>

<xs:enumeration value="Vector"/>

<xs:enumeration value="Matrix"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="AlgorithmicStage">

<xs:annotation >

<xs:documentation >IJoinInstance </xs:documentation >

</xs:annotation >

<xs:restriction base="xs:string">

<xs:enumeration value="init"/>

<xs:enumeration value="predict"/>

<xs:enumeration value="update"/>

</xs:restriction >

</xs:simpleType >

<xs:complexType name="AlgorithmicParticipant">

<xs:annotation >

<xs:documentation >IJoinInstance </xs:documentation >

</xs:annotation >

<xs:sequence >

<xs:element name="name" type="name_string"/>

<xs:element name="type" type="

AlgorithmicParticipantType"/>

</xs:sequence >

</xs:complexType >
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</xs:schema >

Listing B.3: The effective meta-model of the Kalman filter domain

%% Kalman Filter Aspect Language

module KFAL

imports KFCS

exports

sorts CrosscutPatternModifier ReservedString Keyword

APIdentifier PointcutDescriptorName

GenericPointcutDescriptor SpecificPointcutDescriptor

PointcutDescriptorDeclaration AdviceBlock

CustomizationBlock

lexical syntax

"before" ->

CrosscutPatternModifier {cons("before")}

"after" ->

CrosscutPatternModifier {cons("after")}

"around" ->

CrosscutPatternModifier {cons("around")}

"customization" -> ReservedString {

cons("customization")}

ReservedString -> Keyword {cons("

ReservedString")}

CrosscutPatternModifier -> Keyword {cons("

CrosscutPatternModifier")}

Keyword -> Identifier {

reject}

"Base" -> Keyword {cons("

BasecodePlaceholder")}

context -free syntax

"$" AlgorithmicParticipant -> APIdentifier {

cons("APIdentifier")}
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APIdentifier -> Identifier {cons(

"APApplication")}

Identifier ->

PointcutDescriptorName {cons("PointcutDescriptorName")}

AlgorithmicStage ->

PointcutDescriptorName {reject}

AlgorithmicStage ->

GenericPointcutDescriptor {cons("

GenericPointcutDescriptor")}

AlgorithmicStage "$" AlgorithmicParticipant ->

SpecificPointcutDescriptor {cons("

SpecificPointcutDescriptor")}

"pointcut" PointcutDescriptorName ":"

GenericPointcutDescriptor ->

PointcutDescriptorDeclaration {cons("

GenericPointcutDescriptorDeclaration")}

"pointcut" PointcutDescriptorName ":"

SpecificPointcutDescriptor ->

PointcutDescriptorDeclaration {cons("

SpecificPointcutDescriptorDeclaration")}

CrosscutPatternModifier PointcutDescriptorName "()" "{"

Statement "};" -> AdviceBlock {cons("

PointcutNameBasedAdvice")}

CrosscutPatternModifier GenericPointcutDescriptor "()" "

{" Statement "};" -> AdviceBlock {cons("GenericAdvice")

}

CrosscutPatternModifier SpecificPointcutDescriptor "()"

"{" Statement "};" -> AdviceBlock {cons("SpecificAdvice"

)}

"customization" Identifier "{"

PointcutDescriptorDeclaration* AdviceBlock* "}" ->

CustomizationBlock {cons("CustomizationBlock")}

"customization" APIdentifier "{" AdviceBlock* "}" ->

CustomizationBlock {reject}
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"Base;" -> Statement {cons("

BasecodePlaceholderStatement")}

hiddens

context -free start -symbols CustomizationBlock

Listing B.4: The SDF module of our DSAL template

%% KalmanFilterAlgorithm - effective meta -model

module KalmanFilterAlgorithm

imports Whitespace

exports

sorts Vector Matrix AlgorithmicParticipant

AlgorithmicStage DomainSpecificElement

lexical syntax

"u" -> ControlVector

"x" -> StateVector

"y" -> Innovation

"z" -> MeasurementVector

ControlVector -> Vector

StateVector -> Vector

InnovationVector -> Vector

MeasurementVector -> Vector

"K" -> KalmanGain

"P" -> EstimateCovariance

"S" -> InnovationCovariance

KalmanGain -> Matrix

EstimateCovariance -> Matrix

InnovationCovariance -> Matrix

Vector -> AlgorithmicParticipant

Matrix -> AlgorithmicParticipant
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"init" -> AlgorithmicStage {cons("

init")}

"predict" -> AlgorithmicStage {cons("

predict")}

"update" -> AlgorithmicStage {cons("

update")}

AlgorithmicStage -> DomainSpecificElement

AlgorithmicParticipant -> DomainSpecificElement

Listing B.5: Join point expansion for the KFAL generation

SpecificAdviceApplication (| weavingpattern ,algostage ,

algoparticipant ,customcode ,participantlist) = ?tmp;!

weavingpattern;

switch id

case equal (|"before") : !tmp;oncebu(

SpecificAdviceApplicationBefore (|algostage ,

algoparticipant ,customcode ,participantlist))

case equal (|"after") : !tmp;oncebu(

SpecificAdviceApplicationAfter (|algostage ,algoparticipant

,customcode ,participantlist))

case equal (|"around") : !tmp;oncebu(

SpecificAdviceApplicationAround (|algostage ,

algoparticipant ,customcode ,participantlist))

otherwise : fail

end

/* SpecificAdviceApplication helper strategy section

begins. */

SpecificAdviceApplicationBefore (|algostage ,algoparticipant

,customcode ,participantlist) :

JoinPointSentinelStatement(JoinPointSentinel(

JoinPointSentinelBeginTag("/*<JoinPoint -Begin",

CommonJoinPointDescription(StageDescription(algostage),

KeyRoleDescription(Participant(algoparticipant , apvarid))

),

"/>*/"), JoinPointSentinelContent(Code),

JoinPointSentinelEndTag("/*<JoinPoint -End",

CommonJoinPointDescription(StageDescription(algostage),

KeyRoleDescription(Participant(algoparticipant , apvarid))

),

"/>*/"))) ->
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JoinPointSentinelStatement(JoinPointSentinel(

JoinPointSentinelBeginTag("/*<JoinPoint -Begin",

CommonJoinPointDescription(StageDescription(algostage),

KeyRoleDescription(Participant(algoparticipant , apvarid))

),

"/>*/"), JoinPointSentinelContent(mergedcode),

JoinPointSentinelEndTag("/*<JoinPoint -End",

CommonJoinPointDescription(StageDescription(algostage),

KeyRoleDescription(Participant(algoparticipant , apvarid))

),

"/>*/"))) where ctmcode := <ReplaceAPWithVar (|

algoparticipant , apvarid , participantlist , customcode)>

customcode;mergedcode := <MergeCode (|ctmcode ,Code)> Code

Listing B.6: Stratego rewriting rules supporting before, after and around advice

patterns

/* Code manipulation helper strategy section begins. */

MergeCode (|t1,t2) = <oncebu (? CompoundStat(t2S1 ,t2S2);!

CompoundStat(CompoundStat(t1 ,t2S1),t2S2))> t2

MergeCode (|t1,t2) : t1 -> CompoundStat(t1,t2) where !t2;

not(oncebu (? CompoundStat(_,_)))

ReplaceSingleAPWithVar (|ap, apvar , code) = <innermost (?Id(

APApplication(APIdentifier(ap)));!Id(apvar))> code

ReplaceAPWithVar (|ap , apvar , pl , code) =

tmpcode := <ReplaceApplier > (pl , code); <innermost (?Id(

APApplication(APIdentifier(ap)));!Id(apvar))> tmpcode

ReplaceApplier :

([], code) -> code

ReplaceApplier :

([ Participant(ap ,apvar) | aps], code1) -> code3

where code2 := <ReplaceSingleAPWithVar (|ap, apvar , code1)>

code1;

code3 := <ReplaceApplier >(aps , code2)

StatementExtractor =

collect(not(? CompoundStat(_,_)))
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StatementWrapperHelper :

([], ct) -> ct

StatementWrapperHelper :

([x|xs], ct1) -> ct3

where ct2 := CompoundStat(ct1 ,x);

ct3 := <StatementWrapperHelper > (xs ,ct2)

StatementWrapper :

[x,y|xs] -> <StatementWrapperHelper > (xs,CompoundStat(x,y)

)

ReplaceBasecodePlaceHolder (| basecode) :

customcode -> <StatementWrapper > ctclist where extcode :=

<StatementExtractor > basecode;

ctc := <StatementExtractor > customcode ;(befcode ,aftcode) :

= <split -fetch (? BasecodePlaceholderStatement ())> ctc;

ctclist := <concat >[befcode ,extcode ,aftcode]

BasecodePlaceholderHandler (| basecode) :

customcode -> <ReplaceBasecodePlaceHolder (| basecode)>

customcode where <oncebu (? BasecodePlaceholderStatement ())

> customcode

/* Code manipulation helper strategy section ends. */

Listing B.7: Stratego rewriting rules replacing domain element names during merging

B.2 The ANTLR Case Study

/*

[The "BSD licence "]

Copyright (c) 2005 -2007 Terence Parr

All rights reserved.

Redistribution and use in source and binary forms , with or

without

modification , are permitted provided that the following

conditions

are met:

1. Redistributions of source code must retain the above

copyright
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notice , this list of conditions and the following

disclaimer.

2. Redistributions in binary form must reproduce the above

copyright

notice , this list of conditions and the following

disclaimer in the

documentation and/or other materials provided with the

distribution.

3. The name of the author may not be used to endorse or

promote products

derived from this software without specific prior

written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY

EXPRESS OR

IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO , THE

IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT ,

INDIRECT ,

INCIDENTAL , SPECIAL , EXEMPLARY , OR CONSEQUENTIAL DAMAGES (

INCLUDING , BUT

NOT LIMITED TO , PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES

; LOSS OF USE ,

DATA , OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED

AND ON ANY

THEORY OF LIABILITY , WHETHER IN CONTRACT , STRICT LIABILITY ,

OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF

THIS SOFTWARE , EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

*/

grammar ANTLRv3;

grammarDef

: DOC_COMMENT? ( ’lexer ’ | ’parser ’ | ’tree’ )

;

tokensSpec

: TOKENS tokenSpec+ ’}’
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;

tokenSpec

: TOKEN_REF ( ’=’ ( STRING_LITERAL | CHAR_LITERAL ) | ) ’

;’

;

attrScope

: ’scope ’ id ACTION

;

action

: ’@’ ( actionScopeName ’::’ )? id ACTION

;

actionScopeName

: id | ’lexer ’ | ’parser ’

;

optionsSpec

: OPTIONS ( option ’;’ )+ ’}’

;

option

: id ’=’ optionValue

;

optionValue

: id | STRING_LITERAL | CHAR_LITERAL | INT | s = ’*’

;

rule_

: DOC_COMMENT? ( ( ’protected ’ | ’public ’ | ’private ’ | ’

fragment ’ ) )? id ’!’? ( ARG_ACTION )? ( ’returns ’

ARG_ACTION )? throwsSpec? optionsSpec? ruleScopeSpec?

ruleAction* ’:’ altList ’;’ exceptionGroup?

;

ruleAction

: ’@’ id ACTION

;
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throwsSpec

: ’throws ’ id ( ’,’ id )*

;

ruleScopeSpec

: ’scope ’ ACTION | ’scope ’ id ( ’,’ id )* ’;’ | ’scope ’

ACTION ’scope’ id ( ’,’ id )* ’;’

;

block

: ’(’ ( ( optionsSpec )? ’:’ )? alternative rewrite ( ’|’

alternative rewrite )* ’)’

;

altList

: alternative rewrite ( ’|’ alternative rewrite )*

;

alternative

: element+

;

exceptionGroup

: ( exceptionHandler )+ ( finallyClause )? |

finallyClause

;

exceptionHandler

: ’catch ’ ARG_ACTION ACTION

;

finallyClause

: ’finally ’ ACTION

;

element

: elementNoOptionSpec

;

elementNoOptionSpec
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: id ( ’=’ | ’+=’ ) atom ( ebnfSuffix ) | id ( ’=’ | ’+=’

) block ( ebnfSuffix ) | atom ( ebnfSuffix ) | ebnf |

ACTION | SEMPRED ( ’=>’ ) | treeSpec ( ebnfSuffix )

;

atom

: range ( ( ’ˆ’ | ’!’ ) ) | terminal_ | notSet ( ( ’ˆ’ |

’!’ ) ) | RULE_REF ( ARG_ACTION )? ( ( ’ˆ’ | ’!’ ) )?

;

notSet

: ’˜’ ( notTerminal | block )

;

treeSpec

: ’ˆ(’ element ( element )+ ’)’

;

ebnf

: block ( ’?’ | ’*’ | ’+’ | ’=>’ )

;

range

: CHAR_LITERAL RANGE CHAR_LITERAL

;

terminal_

: ( CHAR_LITERAL | TOKEN_REF ( ARG_ACTION ) |

STRING_LITERAL | ’.’ ) ( ’ˆ’ | ’!’ )?

;

notTerminal

: CHAR_LITERAL | TOKEN_REF | STRING_LITERAL

;

ebnfSuffix

: ’?’ | ’*’ | ’+’

;

rewrite
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: ( ’->’ SEMPREDrewrite_alternative )* ’->’

rewrite_alternative

;

rewrite_alternative

: rewrite_template | rewrite_tree_alternative

;

rewrite_tree_block

: ’(’ rewrite_tree_alternative ’)’

;

rewrite_tree_alternative

: rewrite_tree_element+

;

rewrite_tree_element

: rewrite_tree_atom | rewrite_tree_atom ebnfSuffix |

rewrite_tree ( ebnfSuffix ) | rewrite_tree_ebnf

;

rewrite_tree_atom

: CHAR_LITERAL | TOKEN_REF ARG_ACTION? | RULE_REF |

STRING_LITERAL | ’$’ id | ACTION

;

rewrite_tree_ebnf

: rewrite_tree_block ebnfSuffix

;

rewrite_tree

: ’ˆ(’ rewrite_tree_atom rewrite_tree_element* ’)’

;

rewrite_template

:

;

rewrite_template_ref

: id ’(’ rewrite_template_args ’)’

;
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rewrite_indirect_template_head

: ’(’ ACTION ’)’ ’(’ rewrite_template_args ’)’

;

rewrite_template_args

: rewrite_template_arg ( ’,’ rewrite_template_arg )*

;

rewrite_template_arg

: id ’=’ ACTION

;

id

: TOKEN_REF | RULE_REF

;

SL_COMMENT

: ’//’ ( ’ $ANTLR ’ SRC | ˜ ( ’\r’ | ’\n’ )* ) ’\r’? ’\n’

-> skip

;

ML_COMMENT

: ’/*’ ()*? ’*/’

;

CHAR_LITERAL

: ’\’’ LITERAL_CHAR ’\’’

;

STRING_LITERAL

: ’\’’ LITERAL_CHAR LITERAL_CHAR* ’\’’

;

fragment LITERAL_CHAR

: ESC | ˜ ( ’\’’ | ’\\’ )
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;

DOUBLE_QUOTE_STRING_LITERAL

: ’"’ ( ESC | ˜ ( ’\\’ | ’"’ ) )* ’"’

;

DOUBLE_ANGLE_STRING_LITERAL

: ’<<’ ()*? ’>>’

;

fragment ESC

: ’\\’ ( ’n’ | ’r’ | ’t’ | ’b’ | ’f’ | ’"’ | ’\’’ | ’\\’

| ’>’ | ’u’ XDIGIT XDIGIT XDIGIT XDIGIT | . )

;

fragment XDIGIT

: ’0’ .. ’9’ | ’a’ .. ’f’ | ’A’ .. ’F’

;

INT

: ’0’ .. ’9’+

;

ARG_ACTION

: NESTED_ARG_ACTION

;

fragment NESTED_ARG_ACTION

: ’[’ ( NESTED_ARG_ACTION | ACTION_STRING_LITERAL |

ACTION_CHAR_LITERAL | . )* ’]’

;

ACTION
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: NESTED_ACTION ( ’?’ )?

;

fragment NESTED_ACTION

: ’{’ ( NESTED_ACTION | SL_COMMENT | ML_COMMENT |

ACTION_STRING_LITERAL | ACTION_CHAR_LITERAL | . )* ’}’

;

fragment ACTION_CHAR_LITERAL

: ’\’’ ( ACTION_ESC | ˜ ( ’\\’ | ’\’’ ) ) ’\’’

;

fragment ACTION_STRING_LITERAL

: ’"’ ( ACTION_ESC | ˜ ( ’\\’ | ’"’ ) )* ’"’

;

fragment ACTION_ESC

: ’\\\’’ | ’\\’ ’"’ | ’\\’ ˜ ( ’\’’ | ’"’ )

;

TOKEN_REF

: ’A’ .. ’Z’ ( ’a’ .. ’z’ | ’A’ .. ’Z’ | ’_’ | ’0’ .. ’9’

)*

;

RULE_REF

: ’a’ .. ’z’ ( ’a’ .. ’z’ | ’A’ .. ’Z’ | ’_’ | ’0’ .. ’9’

)*

;

OPTIONS

: ’options ’ WS_LOOP ’{’

;
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TOKENS

: ’tokens ’ WS_LOOP ’{’

;

fragment SRC

: ’src’ ’ ’ ACTION_STRING_LITERAL ’ ’ INT

;

WS

: ( ’ ’ | ’\t’ | ’\r’? ’\n’ )+ -> skip

;

fragment WS_LOOP

: ( WS | SL_COMMENT | ML_COMMENT )*

;

DOC_COMMENT

: ’DOC_COMMENT ’

;

PARSER

: ’PARSER ’

;

LEXER

: ’LEXER ’

;

RULE

: ’RULE’

;
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BLOCK

: ’BLOCK ’

;

OPTIONAL

: ’OPTIONAL ’

;

CLOSURE

: ’CLOSURE ’

;

POSITIVE_CLOSURE

: ’POSITIVE_CLOSURE ’

;

SYNPRED

: ’SYNPRED ’

;

RANGE

: ’RANGE ’

;

CHAR_RANGE

: ’CHAR_RANGE ’

;

EPSILON

: ’EPSILON ’

;

ALT
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: ’ALT’

;

EOR

: ’EOR’

;

EOB

: ’EOB’

;

EOA

: ’EOA’

;

// end of alt

ID

: ’ID’

;

ARG

: ’ARG’

;

ARGLIST

: ’ARGLIST ’

;

RET

: ’RET’

;

LEXER_GRAMMAR
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: ’LEXER_GRAMMAR ’

;

PARSER_GRAMMAR

: ’PARSER_GRAMMAR ’

;

TREE_GRAMMAR

: ’TREE_GRAMMAR ’

;

COMBINED_GRAMMAR

: ’COMBINED_GRAMMAR ’

;

INITACTION

: ’INITACTION ’

;

LABEL

: ’LABEL ’

;

TEMPLATE

: ’TEMPLATE ’

;

SCOPE

: ’scope ’

;

SEMPRED

: ’SEMPRED ’
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;

GATED_SEMPRED

: ’GATED_SEMPRED ’

;

SYN_SEMPRED

: ’SYN_SEMPRED ’

;

BACKTRACK_SEMPRED

: ’BACKTRACK_SEMPRED ’

;

FRAGMENT

: ’fragment ’

;

TREE_BEGIN

: ’ˆ(’

;

ROOT

: ’ˆ’

;

BANG

: ’!’

;

RANGE2

: ’..’

;
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REWRITE

: ’->’

;

Listing B.8: The ANTLR grammar of the ANTLR grammar specification language

<?xml version="1.0" encoding="utf -8"?>

<xs:schema id="generalParsingDomainSchema" xmlns:xs="http://

www.w3.org /2001/ XMLSchema">

<xs:simpleType name="terminalNameConvention">

<xs:restriction base="xs:string">

<!-- by convention -->

<xs:pattern value="([A-Z_])+"/>

</xs:restriction >

</xs:simpleType >

<xs:simpleType name="nonterminalNameConvention">

<xs:restriction base="xs:string">

<!-- by convention -->

<xs:pattern value="([a-z_])+"/>

</xs:restriction >

</xs:simpleType >

<xs:complexType name="terminalType">

<xs:sequence >

<xs:element name="name" type="terminalNameConvention"/

>

<xs:element name="value" type="xs:string"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="nonterminalType">

<xs:sequence >

<xs:element name="name" type="

nonterminalNameConvention">

</xs:element >

</xs:sequence >

</xs:complexType >

<xs:complexType name="singleNonterminalType">



Appendix B Case Studies 217

<xs:sequence >

<xs:element name="nonterminal" type="nonterminalType"/

>

</xs:sequence >

</xs:complexType >

<!--

<xs:simpleType name="nonZeroUnsignedInt">

<xs:restriction base="xs:unsignedInt">

<xs:minInclusive value="1"/>

</xs:restriction >

</xs:simpleType >

-->

<xs:complexType name="alternativeType">

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="terminal" type="terminalType"/>

<xs:element name="nonterminal" type="nonterminalType"/

>

</xs:choice >

</xs:complexType >

<xs:complexType name="rhsType">

<xs:sequence >

<xs:element name="alternative" type="alternativeType"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="ruleType">

<xs:sequence >

<xs:element name="lhs" type="singleNonterminalType"/>

<xs:element name="rhs" type="rhsType"/>

</xs:sequence >

</xs:complexType >

<!-- independent type definition facilitates modular

extension -->

<xs:complexType name="GeneralGrammarType">

<xs:sequence >
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<xs:element name="symbols">

<xs:complexType >

<xs:sequence >

<xs:element name="terminal" type="terminalType"

minOccurs="1" maxOccurs="unbounded"/>

<xs:element name="nonterminal" type="

nonterminalType" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence >

</xs:complexType >

</xs:element >

<xs:element name="root" type="singleNonterminalType"/>

<xs:element name="rules">

<xs:complexType >

<xs:sequence >

<xs:element name="rule" type="ruleType"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence >

</xs:complexType >

</xs:element >

</xs:sequence >

<xs:attribute name="name" type="xs:string" use="required

"/>

<xs:attribute name="type" use="required">

<xs:simpleType >

<xs:restriction base="xs:string">

<xs:pattern value="LL_STAR"/>

<xs:pattern value="LALR_1"/>

</xs:restriction >

</xs:simpleType >

</xs:attribute >

</xs:complexType >

</xs:schema >

Listing B.9: The general CFG domain meta-model

<?xml version="1.0" encoding="utf -8"?>

<xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema">

<xs:include schemaLocation="General_Parsing_Domain.xsd"/>
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<xs:redefine schemaLocation="General_Parsing_Domain.xsd">

<xs:complexType name="ruleType">

<xs:complexContent >

<xs:extension base="ruleType">

<xs:sequence >

<xs:element name="attributes" type="

attributesType" minOccurs="0" maxOccurs="1"/>

<xs:element name="parameters" type="

parametersType" minOccurs="0" maxOccurs="1"/>

<xs:element name="rule_actions" type="

ruleActionType" minOccurs="0" maxOccurs="1"/>

</xs:sequence >

</xs:extension >

</xs:complexContent >

</xs:complexType >

<xs:complexType name="alternativeType">

<xs:complexContent >

<xs:extension base="alternativeType">

<xs:sequence >

<xs:element name="alternative_action" type="

alternativeActionType" minOccurs="0" maxOccurs="1"/>

</xs:sequence >

</xs:extension >

</xs:complexContent >

</xs:complexType >

</xs:redefine >

<!-- <domain elements that do not need to be involved in a

domain -specific model , i.e., a LL* grammar > -->

<xs:complexType name="peekAction">

<xs:sequence >

<xs:element name="peek_token" type="terminalType"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="matchAction">

<xs:sequence >

<xs:element name="match_token" type="terminalType"/>

</xs:sequence >
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</xs:complexType >

<xs:complexType name="predictAction">

<xs:sequence >

<xs:element name="target_symbol" type="nonterminalType

"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="actionType">

<xs:choice >

<xs:element name="peek" type="peekAction"/>

<xs:element name="match" type="matchAction"/>

<xs:element name="predict" type="predictAction"/>

</xs:choice >

</xs:complexType >

<!-- </domain elements that do not need to be involved in

a domain -specific model , i.e., a LL* grammar > -->

<!-- <extension for rule attribute > -->

<xs:simpleType name="attributeTypeType">

<xs:restriction base="xs:string">

<xs:enumeration value="String"/>

<xs:enumeration value="int"/>

<xs:enumeration value="float"/>

</xs:restriction >

</xs:simpleType >

<xs:complexType name="attributeType">

<xs:sequence >

<xs:element name="name" type="xs:string"/>

<xs:element name="type" type="attributeTypeType"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="attributesType">

<xs:sequence >

<xs:element name="attribute" type="attributeType"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence >

</xs:complexType >
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<!-- </extension for rule attribute > -->

<!-- <extension for rule parameter > -->

<xs:complexType name="parametersType">

<xs:sequence >

<xs:element name="parameter" type="attributeType"

minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence >

</xs:complexType >

<!-- </extension for rule parameter > -->

<!-- <extension for rule action > -->

<xs:simpleType name="alternativeActionType">

<xs:restriction base="xs:string"/>

</xs:simpleType >

<xs:complexType name="ruleActionType">

<xs:sequence >

<xs:element name="before_rule_action" type="xs:string"

minOccurs="0" maxOccurs="1"/>

<xs:element name="after_rule_action" type="xs:string"

minOccurs="0" maxOccurs="1"/>

</xs:sequence >

</xs:complexType >

<!-- </extension for rule action > -->

<xs:element name="grammar" type="GeneralGrammarType"/>

</xs:schema >

Listing B.10: The LL(*) grammar domain meta-model

prog

: (temporal {System.out.println($temporal.esbmc);}) + EOF

;

temporal returns [String esbmc , int a, int c]

: NEXT disj {$esbmc = "X ".concat($disj.esbmc);$a=1;}

| EVENTUALLY disj {$esbmc = "F ".concat($disj.esbmc);$c

=3;}

| GLOBALLY disj {$esbmc = "G ".concat($disj.esbmc);$a=3;$c

=3;}

| disj temporal_f[$disj.esbmc] {$esbmc = $temporal_f.esbmc

;}
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;

temporal_f[String left] returns [String esbmc , int b]

: UNTIL disj {$esbmc = $left.concat(" U ").concat($disj.

esbmc);}

| WEAKUNTIL disj

{$esbmc = "(".concat($left).concat(" U ").concat($disj.

esbmc).concat(")

|| (G ").concat($left).concat(")");$b=-2;}

| RELEASE disj {$esbmc = $left.concat(" R ").concat($disj.

esbmc);}

| {$esbmc = $left ;}

;

disj returns [String esbmc]

: conj disj_f {$esbmc = $conj.esbmc.concat($disj_f.esbmc)

;}

;

disj_f returns [String esbmc]

: OR d=disj {$esbmc = " || ".concat($d.esbmc);}

| {$esbmc = "";}

;

conj returns [String esbmc]

: literal conj_f {$esbmc = $literal.esbmc.concat($conj_f.

esbmc);}

;

conj_f returns [String esbmc]

: AND c=conj {$esbmc = " && ".concat($c.esbmc);}

| {$esbmc = "";}

;

literal returns [String esbmc]

: NOT LPAR temporal RPAR

{$esbmc = "!(".concat($temporal.esbmc).concat(")");}

| LPAR temporal RPAR

{$esbmc = "(".concat($temporal.esbmc).concat(")");}

| NOT atom["!="] {$esbmc = $atom.esbmc ;}

| atom["=="] {$esbmc = $atom.esbmc ;}
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;

atom[String op] returns [String esbmc , int c]

: input[$op] {$esbmc = $input.esbmc;$c=1;}

| output[$op] {$esbmc = $output.esbmc;$c=2;}

;

input[String op] returns [String esbmc]

: ’iA’ {$esbmc = "{input ".concat($op).concat(" 1}");}

| ’iB’ {$esbmc = "{input ".concat($op).concat(" 2}");}

| ’iC’ {$esbmc = "{input ".concat($op).concat(" 3}");}

| ’iD’ {$esbmc = "{input ".concat($op).concat(" 4}");}

| ’iE’ {$esbmc = "{input ".concat($op).concat(" 5}");}

| ’iF’ {$esbmc = "{input ".concat($op).concat(" 6}");}

;

output[String op] returns [String esbmc , int c]

: ’oU’ {$esbmc = "{output ".concat($op).concat(" 21}");$c

=11;}

| ’oV’ {$esbmc = "{output ".concat($op).concat(" 22}");$c

=12;}

| ’oW’ {$esbmc = "{output ".concat($op).concat(" 23}");$c

=13;}

| ’oX’ {$esbmc = "{output ".concat($op).concat(" 24}");$c

=14;}

| ’oY’ {$esbmc = "{output ".concat($op).concat(" 25}");$c

=15;}

| ’oZ’ {$esbmc = "{output ".concat($op).concat(" 26}");$c

=16;}

;

Listing B.11: Production rules of the RERS grammar

grammar AspectRERS;

options {

backtrack=true;

memoize=true;

output=template;

}

tokens {

ASP = ’aspect ’;
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PCD = ’pointcut ’;

RUL = ’@’;

TKN = ’#’;

ATR = ’$’;

BEF = ’before ’;

AFT = ’after’;

MTH = ’match’;

SET = ’set’;

WTN = ’within ’;

CFW = ’cflow’;

NOT = ’!’;

OR = ’||’;

AND = ’&&’;

BEFORE_MAIN_EXIT = ’BeforeMainExit ’;

}

program

: pd=packageDeclaration ad=aspect_declaration EOF

;

packageDeclaration

: PACKAGE qn=qualifiedName SEMI

;

aspect_declaration

: am=access_modifier ASP an=IDENTIFIER LPAREN grn=

IDENTIFIER RPAREN LBRACE asl=aspect_statement_list RBRACE

;

access_modifier returns [String code]

: PUBLIC {$code = $PUBLIC.text;}

| PROTECTED {$code = $PROTECTED.text;}

| PRIVATE {$code = $PRIVATE.text;}

| {$code = "private";}

;

aspect_statement_list
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: (s+= aspect_statement)+

;

aspect_statement

: md=memberDecl

| pd=pcd_decl

| ad=adv_decl

;

pcd_decl

: am=access_modifier pd=pointcut_descriptor SEMI

;

pointcut_descriptor

: PCD IDENTIFIER EQ p=pcd_body

;

pcd_body

: df=disflt

| mf=macro_filter

;

adv_decl

: lm=location_modifier COLON d=disflt b=block

;

disflt

: c=conflt d=disflt_f

;

disflt_f

: OR d=disflt

|

;

conflt

: l=litflt c=conflt_f

;

conflt_f

: AND c=conflt
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|

;

litflt

: LPAREN d=disflt RPAREN

| af=atomic_filter

| NOT lf=litflt

;

atomic_filter

: pf=pointcut_filter

| abf=advice_bound_filter

;

advice_bound_filter

: IDENTIFIER LPAREN RPAREN

;

/* Java grammar block below */

Listing B.12: The AspectRERS template skeleton

pointcut_filter

: pf=pinpoint_filter

| rf=range_filter

;

pinpoint_filter

: af=attribute_filter

| tf=token_filter

| nf=nonterminel_filter

| bf=branch_filter

;

macro_filter

: PERCENT m=macro_filter_expression

;

macro_filter_expression

: b=before_main_exit

;

before_main_exit

: BEFORE_MAIN_EXIT
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;

attribute_filter

: lm=location_modifier LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON an=attr_indicator RPAREN

| lm=location_modifier LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON NOT an=attr_indicator

RPAREN

| lm=location_modifier LPAREN NOT rn=rule_indicator ai

=alt_indicator_for_within COLON an=attr_indicator RPAREN

| lm=location_modifier LPAREN an=attr_indicator RPAREN

| lm=location_modifier LPAREN NOT an=attr_indicator

RPAREN

;

location_modifier returns

: BEF

| AFT

;

rule_indicator returns

: RUL IDENTIFIER

|

;

alt_indicator_for_within

: COLON ai=INTLITERAL

| COLON NOT ai=INTLITERAL

|

;

attr_indicator returns

: ATR IDENTIFIER

| ATR

;

token_filter

: lm=location_modifier LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON tn=token_indicator RPAREN

| lm=location_modifier LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON NOT tn=token_indicator
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RPAREN

| lm=location_modifier LPAREN NOT rn=rule_indicator ai

=alt_indicator_for_within COLON tn=token_indicator RPAREN

| lm=location_modifier LPAREN tn=token_indicator

RPAREN

| lm=location_modifier LPAREN NOT tn=token_indicator

RPAREN

;

token_indicator returns [String code]

: TKN IDENTIFIER {$code=$IDENTIFIER.text;}

| TKN {$code="*";}

;

nonterminel_filter

: lm=location_modifier LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON srn=subrule_indicator

RPAREN

| lm=location_modifier LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON NOT srn=subrule_indicator

RPAREN

| lm=location_modifier LPAREN NOT rn=rule_indicator ai

=alt_indicator_for_within COLON srn=subrule_indicator

RPAREN

;

subrule_indicator returns [String code]

: RUL IDENTIFIER {$code=$IDENTIFIER.text;}

| RUL {$code="*";}

;

branch_filter

: lm=location_modifier LPAREN rn=rule_indicator COLON

bi=branch_indicator RPAREN

| lm=location_modifier LPAREN rn=rule_indicator COLON

NOT bi=branch_indicator RPAREN

| lm=location_modifier LPAREN NOT rn=rule_indicator

COLON bi=branch_indicator RPAREN

| lm=location_modifier LPAREN NOT rn=rule_indicator

COLON NOT bi=branch_indicator RPAREN

| lm=location_modifier LPAREN rn=rule_indicator RPAREN
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| lm=location_modifier LPAREN NOT rn=rule_indicator

RPAREN

;

branch_indicator returns [String code]

: INTLITERAL {$code=$INTLITERAL.text;}

| {$code="*";}

;

range_filter

: wf=within_filter

| cf=cflow_filter

;

within_filter

: WTN LPAREN rn=rule_indicator ai=

alt_indicator_for_within RPAREN

| WTN LPAREN NOT rn=rule_indicator ai=

alt_indicator_for_within RPAREN

;

cflow_filter

: CFW LPAREN rn=rule_indicator ai=

alt_indicator_for_cflow RPAREN

| CFW LPAREN NOT rn=rule_indicator ai=

alt_indicator_for_cflow RPAREN

;

alt_indicator_for_cflow

: COLON ai=INTLITERAL

| COLON NOT ai=INTLITERAL

|

;

Listing B.13: The AspectRERS template skeleton

attribute_filter

: lm=location_modifier LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON an=attr_indicator RPAREN

-> attrFilter1(locationModifier ={$lm.code},

ruleNameValue ={$rn.value}, ruleNamePattern ={$rn.pattern},

alt={$ai.st}, attributeName ={$an.code})



230 Appendix B Case Studies

| lm=location_modifier LPAREN rn=rule_indicator ai=

alt_indicator_for_within COLON NOT an=attr_indicator

RPAREN

-> attrFilter2(locationModifier ={$lm.code},

ruleNameValue ={$rn.value}, ruleNamePattern ={$rn.pattern},

alt={$ai.st}, attributeName ={$an.code})

| lm=location_modifier LPAREN NOT rn=rule_indicator ai

=alt_indicator_for_within COLON an=attr_indicator RPAREN

-> attrFilter3(locationModifier ={$lm.code},

ruleNameValue ={$rn.value}, ruleNamePattern ={"\\\\w*"},

alt={$ai.st}, attributeName ={$an.code})

| lm=location_modifier LPAREN an=attr_indicator RPAREN

-> attrFilter1(locationModifier ={$lm.code},

ruleNameValue ={"*"}, alt={""}, attributeName ={$an.code})

| lm=location_modifier LPAREN NOT an=attr_indicator

RPAREN

-> attrFilter2(locationModifier ={$lm.code},

ruleNameValue ={"*"}, alt={""}, attributeName ={$an.code})

;

location_modifier returns [String code]

: BEF {$code = "Begin";}

| AFT {$code = "End";}

;

rule_indicator returns [String value , String pattern]

: RUL IDENTIFIER

{$value=$IDENTIFIER.text;$pattern=$IDENTIFIER.text;}

| {$value="*";$pattern="\\\\w*";}

;

alt_indicator_for_within

: COLON ai=INTLITERAL -> altFilterForWithin(altIndex ={

$ai.text})

| COLON NOT ai=INTLITERAL -> reverseAltFilterForWithin

(altIndex ={$ai.text})

| -> eptStr ()

;

attr_indicator returns [String code]

: ATR IDENTIFIER {$code=$IDENTIFIER.text;}
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| ATR {$code="*";}

;

Listing B.14: String templates attrFilterN to translate attribute setting pointcuts

altFilterForWithin(altIndex) ::= <<

&&if(<grammarName >Parser.branchTrace.peek().matches("<

ruleNamePattern >:<altIndex >"))

>>

reverseAltFilterForWithin(altIndex) ::= <<

&&if(!<grammarName >Parser.branchTrace.peek().matches("<

ruleNamePattern >:<altIndex >"))

>>

/* default behaviour of @rule:alt:$attr is set($attr)&&

within(@rule:alt) */

attrFilter1(locationModifier , ruleNameValue , ruleNamePattern

, alt , attributeName) ::= <<

call(public static void <grammarName >Parser.<

locationModifier >_Set_Rule_ <ruleNameValue >_Attribute_ <

attributeName >())<alt >

>>

attrFilter2(locationModifier , ruleNameValue , ruleNamePattern

, alt , attributeName) ::= <<

call(public static void <grammarName >Parser.<

locationModifier >_Set_Rule_ <ruleNameValue >_Attribute_ *())

&&! call(public static void <grammarName >Parser.<

locationModifier >_Set_Rule_ <ruleNameValue >_Attribute_ <

attributeName >())<alt >

>>

attrFilter3(locationModifier , ruleNameValue , ruleNamePattern

, alt , attributeName) ::= <<

call(public static void <grammarName >Parser.<

locationModifier >_Set_Rule_*_Attribute_ <attributeName >())

&&! call(public static void <grammarName >Parser.<

locationModifier >_Set_Rule_ <ruleNameValue >_Attribute_ <

attributeName >())<alt >

>>

Listing B.15: Definition of the string templates for attribute filter in AspectRERS.stg
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parExpression

: ’(’ expression ’)’

;

expressionList

: expression

(’,’ expression

)*

;

expression

: conditionalExpression

(assignmentOperator expression

)?

;

assignmentOperator

: ’=’

| ’+=’

| ’-=’

| ’*=’

| ’/=’

| ’&=’

| ’|=’

| ’ˆ=’

| ’%=’

| ’<’ ’<’ ’=’

| ’>’ ’>’ ’>’ ’=’

| ’>’ ’>’ ’=’

;

conditionalExpression

: conditionalOrExpression

(’?’ expression ’:’ conditionalExpression

)?

;

conditionalOrExpression
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: conditionalAndExpression

(’||’ conditionalAndExpression

)*

;

conditionalAndExpression

: inclusiveOrExpression

(’&&’ inclusiveOrExpression

)*

;

inclusiveOrExpression

: exclusiveOrExpression

(’|’ exclusiveOrExpression

)*

;

exclusiveOrExpression

: andExpression

(’ˆ’ andExpression

)*

;

andExpression

: equalityExpression

(’&’ equalityExpression

)*

;

equalityExpression

: instanceOfExpression

(

( ’==’

| ’!=’

)

instanceOfExpression

)*

;

instanceOfExpression

: relationalExpression
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(’instanceof ’ type

)?

;

relationalExpression

: shiftExpression

(relationalOp shiftExpression

)*

;

relationalOp

: ’<’ ’=’

| ’>’ ’=’

| ’<’

| ’>’

;

shiftExpression

: additiveExpression

(shiftOp additiveExpression

)*

;

shiftOp

: ’<’ ’<’

| ’>’ ’>’ ’>’

| ’>’ ’>’

;

additiveExpression

: multiplicativeExpression

(

( ’+’

| ’-’

)

multiplicativeExpression

)*

;
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multiplicativeExpression

:

unaryExpression

(

( ’*’

| ’/’

| ’%’

)

unaryExpression

)*

;

Listing B.16: Production rules involved in the application of parExpression in Java

ANTLR grammar

import java.util.Random;

import java.util.HashMap;

public class testJavaProg {

public static int a1=0;

public boolean flag=true;

private static HashMap <String ,Integer > map = new HashMap <

String ,Integer >();

public static void s_test(int x, char cc) {

double y=(1 >0) ?1.5:0.5;

int dec_only;

dec_only =1;

int z=10;

char no_init;

if (y<=1) {

System.out.println(y-1);

} else if (y!=2&&z<=1) {

System.out.println(y);

} else {

System.out.println(y++);

}

for (;true;z--) {

if (z>3) continue;

else break;

}

System.out.println(x);
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}

public int m1() {

synchronized(this) {

System.out.println("sync block");

}

Random ran = new Random ();

int x = 0;

while (x<7) {

x=ran.nextInt (6) + 3;

}

do {

x=ran.nextInt (6) + 3;

} while (x<7);

switch (x) {

case 1: System.out.println (1);break;

case 5: System.out.println(x+1);break;

default: System.out.println("default");

}

return x;

}

public static int s_m2() {

testJavaProg tjp = null;

try{

if(tjp.flag==true) tjp=new testJavaProg ();

if(true) tjp.flag=false;

if(tjp.m1()==2) System.out.println("nothing");

throw new Exception("bla");

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println(e.getMessage ());

} catch(IOException e) {

System.out.println(e.getMessage ());

} catch(FileNotFoundException e) {

System.out.println(e.getMessage ());

} finally {

System.out.println("finally");
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}

return tjp.m1();

}

public static void main(String [] args) {

int tmp=2;

s_test ((( tmp)));

s_test(tmp);

}

}

Listing B.17: Our artificial test Java program testJavaProg.java

/* <begin: primitive statement > */

pointcut assert_stmt=after(@statement :2)||after(

@statement :3);

after : assert_stmt () {

System.out.println("end of an assert statement\n");

}

pointcut branch_stmt=after(@statement :4);

after : branch_stmt () {

System.out.println("end of an if -else statement\n");

}

pointcut for_stmt=after(@statement :5);

after : for_stmt () {

System.out.println("end of a for statement\n");

}

pointcut while_stmt=after(@statement :6);

after : while_stmt () {

System.out.println("end of a while statement\n");

}

pointcut do_stmt=after(@statement :7);

after : do_stmt () {

System.out.println("end of a do statement\n");

}

pointcut try_stmt=after(@statement :8);

after : try_stmt () {

System.out.println("end of a try -catch statement\n")

;

}

pointcut switch_stmt=after(@statement :9);

after : switch_stmt () {

System.out.println("end of a switch statement\n");
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}

pointcut sync_stmt=after(@statement :10);

after : sync_stmt () {

System.out.println("end of a synchronized statement\

n");

}

pointcut return_stmt=after(@statement :11);

after : return_stmt () {

System.out.println("end of a return statement\n");

}

pointcut throw_stmt=after(@statement :12);

after : throw_stmt () {

System.out.println("end of a throw statement\n");

}

pointcut break_stmt=after(@statement :13);

after : break_stmt () {

System.out.println("end of a break statement\n");

}

pointcut cont_stmt=after(@statement :14);

after : cont_stmt () {

System.out.println("end of a continue statement\n");

}

pointcut norm_stmt=after(@statement :15);

after : norm_stmt () {

System.out.println("end of a normal statement\n");

}

pointcut label_stmt=after(@statement :16);

after : label_stmt () {

System.out.println("end of a label statement\n");

}

pointcut empty_stmt=after(@statement :17);

after : empty_stmt () {

System.out.println("end of an empty statement\n");

}

pointcut countable_primitive_stmt=assert_stmt ()||

return_stmt ()|| throw_stmt ()|| norm_stmt ();

pointcut uncountable_primitive_stmt=branch_stmt ()||

for_stmt ()|| while_stmt ()|| do_stmt ()|| try_stmt ()||

switch_stmt ()|| sync_stmt ()|| break_stmt ()|| cont_stmt ()||

label_stmt ()|| empty_stmt ();
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/* <end: primitive statement > */

Listing B.18: AspectJava code to identify the Java primitive statements

/* <begin: countable statement > */

/* <begin: variable/field declaration > */

pointcut local_var_decl=after(@variableDeclarator:

@variableInitializer)&& cflowpattern(

@localVariableDeclarationStatement :1,

@localVariableDeclaration :1, @variableDeclarator :1);

after : local_var_decl () {

System.out.println("end of a local variable

declaration\n");

}

pointcut class_var_decl=after(@memberDecl :1);

after : class_var_decl () {

System.out.println("end of a class field declaration

\n");

}

/* <end: variable/field declaration > */

/* <begin: method declaration > */

pointcut class_method_name_decl_1=before(

@methodDeclaration:@blockStatement);

pointcut class_method_name_decl_2=before(

@methodDeclaration:@block);

pointcut class_method_name_decl=class_method_name_decl_1

()|| class_method_name_decl_2 ();

after : class_method_name_decl () {

System.out.println("start of a method declaration\n"

);

}

/* <end: method declaration > */

/* <begin: class declaration > */

pointcut class_name_decl=before(@normalClassDeclaration:

@classBody);

after : class_name_decl () {

System.out.println("start of a class declaration\n")

;

}

/* <end: class declaration > */
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pointcut countable_stmt=countable_primitive_stmt ()||

local_var_decl ()|| class_var_decl ()||

class_method_name_decl ()|| class_name_decl ();

Listing B.19: AspectJava code for the declarations to count

/* <begin: countable sub -statement > */

/* <begin: branch condition > */

pointcut if_predicate=after(@statement:@parExpression)&&

within(@statement :4);

after : if_predicate () {

System.out.println("end of a branch condition (if

predicate)\n");

}

/* <end: branch condition > */

/* <begin: for condition > */

pointcut for_condition=after(@forstatement :# RPAREN);

after : for_condition () {

System.out.println("end of a for condition\n");

}

/* <end: for condition > */

/* <begin: while condition > */

pointcut while_condition=after(@statement:@parExpression

)&& within(@statement :6);

after : while_condition () {

System.out.println("end of a while condition\n");

}

/* <end: while condition > */

/* <begin: do while condition > */

pointcut do_while_condition=after(@statement:

@parExpression)&& within(@statement :7);

after : do_while_condition () {

System.out.println("end of a do -while condition\n");

}

/* <end: do while condition > */

/* <begin: try catch finally > */

pointcut trystmt_catch=after(@catchClause :# RPAREN);

after : trystmt_catch () {
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System.out.println("end of a catch clause condition\

n");

}

pointcut try_clause_group=trystmt_catch ();

/* <end: try catch finally > */

/* <begin: switch condition > */

pointcut switch_condition=after(@statement:

@parExpression)&& within(@statement :9);

after : switch_condition () {

System.out.println("end of a switch condition\n");

}

/* <end: switch condition > */

/* <begin: synchronized resource > */

pointcut sync_source=after(@statement:@parExpression)&&

within(@statement :10);

after : sync_source () {

System.out.println("start of a synchronized block\n"

);

}

/* <end: synchronized resource > */

pointcut countable_sub_stmt=if_predicate ()||

for_condition ()|| while_condition ()|| do_while_condition ()

|| try_clause_group ()|| switch_condition ()|| sync_source ();

/* <end: countable sub -statement > */

Listing B.20: AspectJava code for the sub statements to count

B.3 The CUP Case Study

<?xml version="1.0" encoding="utf -8"?>

<xs:schema xmlns:xs="http://www.w3.org /2001/ XMLSchema">

<xs:include schemaLocation="General_Parsing_Domain.xsd"/>

<xs:complexType name="shiftAction">

<xs:sequence >

<xs:choice >

<xs:element name="before_shift" type="xs:string"/>

<xs:element name="after_shift" type="xs:string"/>
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</xs:choice >

</xs:sequence >

</xs:complexType >

<xs:complexType name="embeddedAction">

<xs:sequence >

<xs:element name="rule" type="ruleType"/>

</xs:sequence >

</xs:complexType >

<xs:complexType name="actionType">

<xs:choice >

<xs:element name="shift" type="shiftAction"/>

<xs:element name="reduce" type="reduceAction"/>

</xs:choice >

</xs:complexType >

<xs:complexType name="reduceAction">

<xs:choice >

<xs:element name="handle_detection" type="xs:string"/>

<xs:element name="handle_pruning" type="xs:string"/>

</xs:choice >

</xs:complexType >

<xs:complexType name="LALR1GrammarType">

<xs:complexContent >

<xs:extension base="GeneralGrammarType"/>

</xs:complexContent >

</xs:complexType >

<xs:element name="grammar" type="LALR1GrammarType"/>

</xs:schema >

Listing B.21: The LALR(1) grammar domain meta-model

// CUP specification for RERS

package cup.RERS;

import java_cup.runtime .*;

/* Terminals (tokens returned by the scanner). */

terminal NOT , AND , OR;

terminal NEXT , EVENTUALLY , GLOBALLY;

terminal UNTIL , WEAKUNTIL , RELEASE;
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terminal LPAR , RPAR;

terminal IA, IB, IC, ID, IE, IF;

terminal OU, OV, OW, OX, OY, OZ;

/* Non -terminals */

non terminal prog , temporal , temporal_f , disj , disj_f

, conj , conj_f;

non terminal literal , literal_f , atom , input , output;

/* Precedences */

precedence nonassoc AND , OR;

precedence right NEXT , EVENTUALLY , GLOBALLY , UNTIL ,

WEAKUNTIL , RELEASE;

precedence right NOT;

/* The grammar */

prog ::= prog:p temporal:t

{: RESULT = (String)p + (String)t + "\n"; :}

|

{: RESULT = ""; :}

;

temporal ::= NEXT disj:d

{: RESULT = "NEXT" + (String)d; :}

|

EVENTUALLY disj:d

{: RESULT = "EVENTUALLY" + (String)d; :}

|

GLOBALLY disj:d

{: RESULT = "GLOBALLY" + (String)d; :}

|

disj:d temporal_f:t

{: RESULT = (String)d + (String)t; :}

;

temporal_f ::= UNTIL disj:d

{: RESULT = "UNTIL" + (String)d; :}

|

WEAKUNTIL disj:d

{: RESULT = "WEAKUNTIL" + (String)d; :}

|
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RELEASE disj:d

{: RESULT = "RELEASE" + (String)d; :}

|

{: RESULT = ""; :}

;

disj ::= conj:c disj_f:d

{: RESULT = (String)c + (String)d; :}

;

disj_f ::= OR disj:d

{: RESULT = "|" + (String)d; :}

|

{: RESULT = ""; :}

;

conj ::= literal:l conj_f:c

{: RESULT = (String)l + (String)c; :}

;

conj_f ::= AND conj:c

{: RESULT = "&&" + (String)c; :}

|

{: RESULT = ""; :}

;

literal ::= NOT literal_f:l

{: RESULT = "!" + (String)l; :}

|

literal_f:l

{: RESULT = (String)l; :}

;

literal_f ::= LPAR temporal:t RPAR

{: RESULT = "(" + (String)t + ")"; :}

|

atom:a

{: RESULT = (String)a; :}

;

atom ::= input:i
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{: RESULT = (String)i; :}

|

output:o

{: RESULT = (String)o; :}

;

input ::= IA {: RESULT = "iA"; :}

|

IB {: RESULT = "iB"; :}

|

IC {: RESULT = "iC"; :}

|

ID {: RESULT = "iD"; :}

|

IE {: RESULT = "iE"; :}

|

IF {: RESULT = "iF"; :}

;

output ::= OU {: RESULT = "oU"; :}

|

OV {: RESULT = "oV"; :}

|

OW {: RESULT = "oW"; :}

|

OX {: RESULT = "oX"; :}

|

OY {: RESULT = "oY"; :}

|

OZ {: RESULT = "oZ"; :}

;

Listing B.22: The CUP grammar for RERS

reductionActionFilter1(locationModifier , ruleNameValue ,

altIndex) ::= <<

call(public void Parser.<locationModifier >_Action_Rule_ <

ruleNameValue >_Alternative_ <altIndex >( String))

>>

reductionActionFilter2(locationModifier , ruleNameValue ,

altIndex) ::= <<
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call(public void Parser.<locationModifier >_Parse_Rule_ <

ruleNameValue >_Alternative_ *( String))&&! call(public void

Parser.<locationModifier >_Action_Rule_ <ruleNameValue >

_Alternative_ <altIndex >( String))

>>

reductionActionFilter3(locationModifier , ruleNameValue ,

altIndex) ::= <<

call(public void Parser.<locationModifier >_Parse_Rule_*

_Alternative_ <altIndex >( String))&&! call(public void

Parser.<locationModifier >_Action_Rule_ <ruleNameValue >

_Alternative_ <altIndex >( String))

>>

reductionActionFilter4(locationModifier , ruleNameValue ,

altIndex) ::= <<

call(public void Parser.<locationModifier >_Action_Rule_*

_Alternative_ *( String))&&! call(public void Parser.<

locationModifier >_Action_Rule_*_Alternative_ <altIndex >(

String))&&! call(public void Parser.<locationModifier >

_Action_Rule_ <ruleNameValue >_Alternative_ *( String))

>>

Listing B.23: String template definitions behind the translation of the embedded

action pointcuts

beforeMainExit () ::= <<

execution(public static void main(String []))

>>

shiftFilter1 () ::= <<

call(public void java_cup.runtime.lr_parser.Begin_Shift ())

>>

shiftFilter2 () ::= <<

call(public void java_cup.runtime.lr_parser.End_Shift ())

>>

handleFilter1 () ::= <<

call(public void java_cup.runtime.lr_parser.Begin_Reduction

())

>>
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handleFilter2 () ::= <<

call(public void java_cup.runtime.lr_parser.End_Reduction ())

>>

Listing B.24: String template definitions behind the translation of the special

pointcuts

pointcut bef_OV=before (#20);

pointcut aft_IB=after (#14);

after : bef_OV () {

System.out.println("======== begin before token OV

========");

System.out.println("Parsed text: "+% GetParsedText ())

;

System.out.println (% GetStackToken (2));

System.out.println("Cur token: "+% GetCurrentToken ())

;

System.out.println("======== end before token OV

========");

}

before : aft_IB () {

System.out.println("======== begin after token IB

========");

System.out.println("Parsed text: "+% GetParsedText ())

;

System.out.println (% GetStackToken (2));

System.out.println("Cur token: "+% GetCurrentToken ())

;

System.out.println("======== end after token IB

========");

}

Listing B.25: An AspectRERS aspect snippet to test the token matching pointcuts

pointcut bef_act=before(@literal_f :1);

pointcut aft_act=after(@input :);

after : bef_act () {

System.out.println("======== begin before the

embedded action of literal_f :1========");

System.out.println("Parsed text: "+% GetParsedText ())

;

System.out.println (% GetStackToken (4));

System.out.println("Cur token: "+% GetCurrentToken ())

;
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System.out.println("Cur branch: "+% GetCurrentBranch

());

System.out.println("Cur branch text: "+%

GetCurrentBranchText ());

System.out.println("========");

System.out.print("Cur handle: ");

%PrintHandleTokens ();

System.out.println("========");

System.out.println("======== end before the embedded

action of literal_f :1========");

}

before : aft_act () {

System.out.println("======== begin after act input

:========");

System.out.println("Parsed text: "+% GetParsedText ())

;

System.out.println (% GetStackToken (2));

System.out.println("Cur token: "+% GetCurrentToken ())

;

System.out.println("Cur branch: "+% GetCurrentBranch

());

System.out.println("Cur branch text: "+%

GetCurrentBranchText ());

System.out.println("========");

System.out.print("Cur handle: ");

%PrintHandleTokens ();

System.out.println("========");

System.out.println("======== end after act input

:========");

}

Listing B.26: The code block of testing the rule embedded action pointcuts in the

test aspect

pointcut bef_sft =% BeforeShift;

pointcut aft_sft =% AfterShift;

after : bef_sft () {

System.out.println("======== begin before shift

========");

System.out.println("Parsed text: "+% GetParsedText ())

;

System.out.println("======== end before shift ========

");
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}

before : aft_sft () {

System.out.println("======== begin after shift

========");

System.out.println("Parsed text: "+% GetParsedText ())

;

System.out.println("======== end after shift ========"

);

}

pointcut bef_red =% FoundHandle;

pointcut aft_red =% PrunedHandle;

after : bef_red () {

System.out.println("======== begin before reduction

========");

System.out.println("Parsed text: "+% GetParsedText ())

;

System.out.println (% GetStackToken (0));

%PrintHandleTokens ();

System.out.println("======== end before reduction

========");

}

before : aft_red () {

System.out.println("======== begin after reduction

========");

System.out.println("Parsed text: "+% GetParsedText ())

;

System.out.println (% GetStackToken (0));

%PrintHandleTokens ();

System.out.println("======== end after reduction

========");

}

Listing B.27: The code block of testing the “shift” and “reduce” action pointcuts in

the test aspect
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vol. 1241, pp. 220–242, Springer, 1997.

[14] T. Elrad, R. E. Filman, and A. Bader, “Aspect-oriented programming: Introduc-

tion,” Communications of the ACM, vol. 44, pp. 29–32, Oct 2001.

[15] J. Whittle and J. Schumann, “Automating the Implementation of Kalman Filter

Algorithms,” ACM Transactions on Mathematical Software, vol. 30, pp. 434–453,

Dec 2004.

[16] T. J. Parr and R. W. Quong, “ANTLR: A Predicated- LL(k) Parser Generator,”

Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[17] S. E. Hudson, F. Flannery, C. S. Ananian, D. Wang, and A. W. Appel, “CUP

parser generator for java,” Princeton University, 1999.

[18] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,” IEEE

Computer, vol. 39, no. 2, pp. 25–31, 2006.

[19] C. Atkinson and T. Kühne, “Model-driven development: A metamodeling foun-

dation,” IEEE Software, vol. 20, no. 5, pp. 36–41, 2003.

[20] B. Hailpern and P. Tarr, “Model-driven development: The good, the bad, and the

ugly,” IBM systems journal, vol. 45, no. 3, pp. 451–461, 2006.

[21] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, “Model-driven architecture,” in

Proceedings of the Advances in Object-Oriented Information Systems, OOIS 2002

Workshops, Montpellier, France, September 2, 2002 (J.-M. Bruel and Z. Bellah-

sene, eds.), vol. 2426 of Lecture Notes in Computer Science, pp. 290–297, Springer,

2002.



BIBLIOGRAPHY 253

[22] Object Management Group (OMG) Architecture Board, “MDA specifications,”

2001. http://www.omg.org/mda/specs.htm.

[23] S. Beydeda, M. Book, and V. Gruhn, Model-driven software development. Springer

Verlag, 2005.

[24] Object Management Group (OMG) Architecture Board, “MDA Guide V1.0.1,”

2001. http://www.omg.org/cgi-bin/doc?omg/03-06-01.

[25] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: the Model Driven Archi-

tecture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc.,

2003.

[26] P. Laforcade, B. Zendagui, and V. Barré, “A domain-specific-modeling approach to
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[90] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel, “Textbased

modeling,” CoRR, vol. abs/1409.6623, 2014.

[91] Object Management Group (OMG), “UML home page.” http://www.uml.org/.

[92] World Wide Web Consortium (W3C), “XML Scheme Language Specification.”

http://www.w3.org/TR/xmlschema-0/.

[93] Visual Paradigm International, “Visual Paradigm home page.” https://www.

visual-paradigm.com/.

[94] Microsoft Corporation, “Visual Studio - Microsoft Developer Tools.” http://www.

visualstudio.com/.

[95] M. O. Rabin and D. Scott, “Finite automata and their decision problems,” IBM

journal of research and development, vol. 3, no. 2, pp. 114–125, 1959.

[96] T. J. Parr, “The ANTLR parser generator.” http://www.antlr.org/.

[97] T. J. Parr, The Definitive ANTLR Reference: Building Domain-Specific Lan-

guages. Pragmatic Bookshelf, 2007.

http://www.uml.org/
http://www.w3.org/TR/xmlschema-0/
https://www.visual-paradigm.com/
https://www.visual-paradigm.com/
http://www.visualstudio.com/
http://www.visualstudio.com/
http://www.antlr.org/


260 BIBLIOGRAPHY

[98] L. M. Garshol, “BNF and EBNF: What are they and how do they work,” acedida

pela última vez em, vol. 16, 2003.

[99] E. Visser, Syntax Definition for Language Prototyping. Eelco Visser, 1997.

[100] D. Lohmann, G. Blaschke, and O. Spinczyk, “Generic Advice: On the Combi-

nation of AOP with Generative Programming in AspectC++,” in Proceedings

of the 3rd International Conference on Generative Programming and Component

Engineering, GPCE 2004, October 24-28, 2004, Vancouver, Canada (G. Karsai

and E. Visser, eds.), vol. 3286 of Lecture Notes in Computer Science, pp. 55–74,

Springer, 2004.

[101] T. J. Parr, “StringTemplate.” http://www.stringtemplate.org/.

[102] P. M. Lewis and R. E. Stearns, “Syntax-directed transduction,” Journal of the

ACM, vol. 15, no. 3, pp. 465–488, 1968.

[103] R. E. Kalman, “A new approach to linear filtering and prediction problems,”

Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[104] M. Grewal and A. Andrews, Kalman Filtering: Theory and Practice using MAT-

LAB. Wiley-IEEE Press, 2011.

[105] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” tech. rep.,

University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995.

[106] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Courier Dover Publi-

cations, 2007.

[107] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter to nonlinear

systems,” in The Proceedings of AeroSense: The 11th International Symposium on

Aerospace/Defense Sensing, Simulation and Controls. Orlando, Florida, USA.,

vol. 3068, pp. 182–193, SPIE, 1997.

[108] N. Wirth and D. Gries, Programming in MODULA-2, vol. 4. Springer, 1985.

[109] R. C. Martin, Clean Code: a Handbook of Agile Software Craftsmanship. Pearson

Education, 2008.

[110] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers, “The syntax definition

formalism SDF - reference manual,” SIGPLAN Notices, vol. 24, no. 11, pp. 43–75,

1989.

[111] J. Visser and J. Scheerder, “A Quick Introduction to SDF,” Community Works

Institute (CWI), April, vol. 25, 2000.

[112] M. G. van den Brand, H. A. de Jong, P. Klint, and P. A. Olivier, “Efficient

Annotated Terms,” Software: Practice and Experience, vol. 30, pp. 259–291, Mar.

2000.

http://www.stringtemplate.org/


BIBLIOGRAPHY 261

[113] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Stratego/XT

Manual, Part II. The XT Transformation Tools, Chapter 4: Annotated

Terms.” http://releases.strategoxt.org/strategoxt-manual/unstable/

manual/chunk-chapter/tutorial-aterms.html.

[114] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “XT / As Fix.”

http://www.program-transformation.org/Tools/AsFix.

[115] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser, “Strate-

go/XT Manual, Part II. The XT Transformation Tools, Chapter 9: Pretty

Printing with GPP.” http://releases.strategoxt.org/strategoxt-manual/

unstable/manual/chunk-chapter/generic-pretty-printing.html#box.

[116] N. Chomsky, Syntactic Structures. Walter de Gruyter, 2002.

[117] A. V. Aho and S. C. Johnson, “LR parsing,” ACM Computing Surveys, vol. 6,

no. 2, pp. 99–124, 1974.

[118] T. J. Parr and K. Fisher, “Ll(*): the foundation of the ANTLR parser generator,”

in Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI 2011, June 4-8, 2011, San Jose, California,

USA (M. W. Hall and D. A. Padua, eds.), pp. 425–436, ACM, 2011.

[119] T. J. Parr, “The Aggregate: PCCTS, Purdue Compiler Construction Tool Set.”

http://aggregate.org/PCCTS/.

[120] T. J. Parr, “ANTLR Version 3.5.2.” https://github.com/antlr/antlr3.

[121] F. Jouault, “The antlr grammar domain metamodel.” http://git.eclipse.org/

c/mmt/org.eclipse.atl.tcs.git/plain/dsls/ANTLR/Metamodel/ANTLR.km3.
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