
Governing  equations for the amplitudes of interacting modes  

 

 The slowly varying complex amplitudes of the breathing  00 00 0exp(i )a a t  and distortion 

modes exp(i )lm lm la a t satisfy the equations that have the form [1]: 
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    is the coupling coefficient in the energy of 

interaction of the breathing and distortion modes and 1(4 ) sinA A d d      is the averaging 

over the solid angle. The coupling coefficient in the energy of interaction of the distortion modes 

'n llC  has the form  
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The canonical equations of motion (1) describe evolution of the complex amplitudes of the 

monopole mode 00a , the parametrically unstable distortion mode lma   and the partner of the 

unstable mode in resonant triad ' 'n ma . The resonant triad is formed by two unstable waves with the 

same frequencies l  interacting to form a wave of higher frequency ' 2n l  . These equations 

are obtained by differentiation of the Hamiltonian with respect to 
00a , 

lma , 
' 'n ma   and retaining 

only the resonant terms having the same time evolution as 00a , lma , ' 'n ma . 

 The damping of the breathing mode 0  and the distortion modes of order l  and 'n  (i.e. l  

and 'n  are included in this model. The damping factor for the breathing mode 
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damping and damping owing to thermal diffusion, as estimated by a linear analysis, where D is 

the diffusivity coefficient. The damping factor for the distortion modes is given by Lamb’s formula 
2

0( 2)(2 1) /l l l R    . It is assumed in the both cases that thermal and viscous lengths are 

smaller than the bubble radius 0R . 
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