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Abstract. In [8] one of the authors constructed uncountable families of
groups of type FP and of n-dimensional Poincaré duality groups for each
n ≥ 4. We show that the groups constructed in [8] comprise uncount-
ably many quasi-isometry classes. We deduce that for each n ≥ 4 there
are uncountably many quasi-isometry classes of acyclic n-manifolds ad-
mitting free cocompact properly discontinuous discrete group actions.

1. Introduction

Throughout this article, the phrase ‘continuously many’ will be used to
describe sets having the cardinality of the real numbers. In [8] one of the
authors exhibited continuously many isomorphism types of groups of type
FP , extending the work of Bestvina and Brady [1], who constructed the first
examples of groups of type FP that are not finitely presented. We extend
these results still further, by showing that the groups constructed in [8] fall
into continuously many quasi-isometry classes.

Bestvina-Brady associate a group BBL to each finite flag complex in such
a way that the homological properties of the group BBL are controlled by
those of the flag complex L. In particular, in the case when L is acyclic
but not contractible, BBL is type FP but not finitely presented. In [8],
a group GL(S) is associated to each connected finite flag complex L and
each set S ⊆ Z in such a way that the homological properties of GL(S)

are controlled by those of L and its universal cover, L̃. In the case when L

and L̃ are both acyclic, each GL(S) is type FP . The construction of GL(S)
generalizes that of BBL, and in particular GL(Z) is BBL. Our first main
theorem is as follows.

Theorem 1.1. For each finite connected flag complex L that is not simply-
connected, there are continuously many quasi-isometry classes of groups
GL(S).
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The invariant that we rely on to distinguish the groups GL(S) is the
invariant that was introduced by Bowditch [2] in his construction of con-
tinuously many quasi-isometry classes of 2-generator groups. (Grigorchuk’s
construction of such a family, using growth rate to distinguish the groups [7],
is no help to us because the groups GL(S) all have exponential growth.) Our
account of Bowditch’s invariant differs from his and may be of independent
interest.

To a graph Γ Bowditch associates a set H(Γ) of natural numbers, con-
sisting of the lengths of loops in Γ that are taut in the sense that they are
not consequences of shorter loops. He describes the relationship between
H(Γ) and H(Γ′) in the case when Γ and Γ′ are quasi-isometric. When Γ is
the Cayley graph associated to a group presentation satisfying the C ′(1/6)
small cancellation condition, the set H(Γ) is equal to the set of lengths of
the relators of the presentation.

Our proof involves estimating the set H(Γ(S)), where Γ(S) is the Cayley
graph associated to the natural generating set for GL(S). The natural pre-
sentation for GL(S) contains relators whose lengths are parametrized by the
absolute values of the members of S, but it also contains many relators of
length 3, and does not satisfy the C ′(1/6) condition. To apply Bowditch’s
technique we need a lower bound for the word lengths of elements in the
kernel of the map GL(S)→ GL(T ) for S ⊆ T , in terms of T − S. The Cay-
ley graph Γ(S) embeds naturally in a CAT(0) cubical complex. Our lower
bound on word length uses this embedding and an easy lemma concerning
maps between CAT(0) spaces, which will be proved in Section 3. In the
statement, the singular set for a map consists of all points at which it is not
a local isometry.

Lemma 1.2. Let f : X → Y be a continuous map of CAT(0) metric spaces,
and suppose that x 6= x′ but f(x) = f(x′). Then the distance dX(x, x′) is at
least the sum of the distances from x and x′ to the singular set for f .

The so-called ‘Davis trick’ [5, 6] allows one to embed groups of type FP as
retracts of Poincaré duality groups, and enabled the construction of contin-
uously many isomorphism types of Poincaré dualtiy groups [8, Thm. 18.1].
In the final section we strengthen this result in two ways.

Corollary 1.3. For each n ≥ 4 there are continuously many quasi-isometry
classes of non-finitely presented n-dimensional Poincaré duality groups.

Corollary 1.4. For each n ≥ 4 there is a closed aspherical n-manifold ad-
mitting continuously many quasi-isometry classes of regular acyclic covers.

To establish these results, we study the behaviour of the Bowditch length
spectrum under some semi-direct product constructions that arise when im-
plementing the Davis trick. In contrast to the geometric methods used
throughout the rest of the article, the proof of Theorem 6.2, which is the
main result of the final section, is purely algebraic. It would be interesting
to have a geometric proof of this theorem and conversely to have algebraic
proofs of our results concerning GL(S).
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2. Background

There are various types of Cayley graphs, but we shall need just one type
which we shall call the simplicial Cayley graph Γ(G,S) associated to the
group G and generating set S. This is the simplicial graph with vertex set
G and edge set the 2-element sets of the form {g, gs} for some s ∈ S. This
definition could be made for any S ⊆ G; the fact that S generates G is
equivalent to the graph Γ(G,S) being connected. Any simplicial graph with
a free, transitive G-action on its vertex set is isomorphic as a graph with
G-action to Γ(G,S) for some S. The action of G on the edges of Γ(G,S) is
free if and only if S contains no element of order two.

Next we recall some material from [2] concerning quasi-isometries and
Bowditch’s taut loop length spectrum. Bowditch’s article [2] does not men-
tion homotopies, 2-complexes or the fundamental group, all of which play
crucial roles in our account of his work. We believe that some readers will
benefit from our different but equivalent account. For this reason we restate
some of his results in our terms, and encourage the interested reader to try
to prove them before consulting [2].

Each graph Γ that we consider will be connected, simplicial, and will be
viewed as a metric space via the path metric dΓ, in which each edge has
length one. The induced metric on the vertex set of a Cayley graph Γ(G,S)
is thus the S-word length metric on the group G. For k > 0 an integer,
recall that a function f : X → Y between metric spaces is k-Lipschitz if
dY (f(x), f(x′)) ≤ k.dX(x, x′) for all x, x′ ∈ X. Following Bowditch [2],
we say that graphs Γ and Λ are k-quasi-isometric if there exist a pair of k-
Lipschitz maps of vertex sets φ : V (Γ)→ V (Λ) and ψ : V (Λ)→ V (Γ) so that
dΓ(x, ψ◦φ(x)) ≤ k for each vertex x of Γ and similarly dΛ(y, φ◦ψ(y)) ≤ k for
each vertex y of Λ. Graphs are quasi-isometric if they are k-quasi-isometric
for some integer k > 0.

We remark that the above definition is not the standard one; see for
example [3, I.8.14] for the standard definition of a quasi-isometry between
metric spaces. We leave it as an exercise to check that graphs Γ, Λ are
quasi-isometric as above if and only if the metric spaces (Γ, dΓ) and (Λ, dΛ)
are quasi-isometric in the usual sense.

An edge loop of length l in a (simplicial) graph Γ is a sequence v0, . . . , vl
of vertices such that v0 = vl and {vi−1, vi} is an edge for 1 ≤ i ≤ l. For
a graph Γ and an integer constant l, let Γl denote the 2-complex whose
1-skeleton is the geometric realization of Γ, with one 2-cell attached to each
edge loop in Γ of length strictly less than l. An edge loop of length l in Γ is
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said to be taut if it is not null-homotopic in Γl. Bowditch’s taut loop length
spectrum H(Γ) for the graph Γ is the set of lengths of taut loops.

We are interested in the 2-complex Γl only to define taut loops: if Γ′ is
any subcomplex with Γ ⊆ Γ′ ⊆ Γl so that the induced map on fundamental
groups π1(Γ′)→ π1(Γl) is an isomorphism, then an edge loop is taut if and
only if it is not null-homotopic in Γ′.

Bowditch defines subsets H,H ′ ⊆ N to be k-related if for all l ≥ k2+2k+2,
whenever l ∈ H then there is some l′ ∈ H ′ with l/k ≤ l′ ≤ lk and vice-versa.
He then proves

Lemma 2.1. If (connected) graphs Γ and Λ are k-quasi-isometric, then
H(Γ) and H(Λ) are k-related.

In our terms, the lemmas that Bowditch uses to prove the above result
are as follows.

Lemma 2.2. H(Γ) is equal to the set of l ∈ N for which the induced map
of fundamental groups π1(Γl)→ π1(Γl+1) is not an isomorphism.

For any fixed l, let iΓ,l denote the inclusion of Γ in the 2-complex Γl.

Lemma 2.3. If φ : Γ → Λ and ψ : Λ → Γ are k-Lipschitz maps whose
restrictions to vertex sets define a k-quasi-isometry between Γ and Λ, then
for any l ≥ k2 + 2k + 2 there are homotopies

iΓ,l ◦ ψ ◦ φ ' iΓ,l and iΛ,l ◦ φ ◦ ψ ' iΛ,l.

Next we review some material from [1, 8]. A flag complex or clique com-
plex is a simplicial complex in which every finite set of mutually adjacent
vertices spans a simplex. For the remainder of this section, L will denote a
finite flag complex. Let T denote the circle R/Z, viewed as a CW-complex
with one vertex at 0 + Z ∈ R/Z and one edge. For a finite set V let TV

denote the product
∏

v∈V Tv, where Tv denotes a copy of T. Non-empty sub-

complexes of TV are in bijective correspondence with simplicial complexes
with vertex set contained in V . If L is a finite flag complex with vertex
set V , let TL denote the corresponding subcomplex of TV . This complex
is aspherical, and its fundamental group is the right-angled Artin group AL

associated to L, with generators corresponding to the vertices of L, subject
only to the relations that v and w commute whenever {v, w} is an edge of
L.

The universal covering space XL of TL has a natural cubical structure,
and is a CAT(0) cubical complex. The additive group structure in T = R/Z
defines a map l : TV → T, and hence a map lL : TL → T. Define T̃L to be the
regular covering of TL induced by pulling back the universal covering of T
along lL. The Bestvina-Brady group BBL is defined to be the fundamental

group π1(T̃L), or equivalently the kernel of the map AL → Z of fundamental
groups induced by l : TL → T. Bestvina and Brady showed that many
properties of BBL are determined by properties of L. In the case when
L is acyclic but not simply connected, BBL is type FP but not finitely
presented [1].
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Let fL : XL → R be the map of universal coverings induced by lL. This
map has the following properties: if we identify each n-cube of XL with
[0, 1]n then its restriction to each n-cube is equal to an affine map; the
image of each vertex of XL is an integer; the image of each n-cube of XL

is an interval of length n. We view fL as defining a height function on XL.

There is a regular covering map XL → T̃L, with covering group BBL.
In [8] this is generalized, under the extra assumption that L be connected.

For each set S ⊆ Z, a CAT(0) cubical complex X
(S)
L is defined, together with

a regular branched covering map X
(S)
L → T̃L, and the group GL(S) is by

definition the covering group for this covering. The only branch points of

this covering are the vertices of X
(S)
L whose height is not in S, and the

stabilizer in GL(S) of each branch point is a subgroup isomorphic to the
fundamental group π1(L). (In particular, the construction is non-trivial
only when L is not simply-connected.) If S ⊆ T ⊆ Z, there is a regular

branched covering map X
(S)
L → X

(T )
L , branched only at vertices of height in

T −S, and the branched covering X
(S)
L → TL factors through this. If S ⊆ T

then there is a surjective group homomorphism GL(S) → GL(T ), and the

branched covering map X
(S)
L → X

(T )
L is equivariant for this homomorphism.

The group GL(Z) is equal to BBL.
The height function on XL induces a GL(S)-invariant height function

on X
(S)
L for each S ⊆ Z. Since T̃L has only one vertex of each integer

height, the group GL(S) acts transitively on the vertices of X
(S)
L of each

height. The intersection of the 2-skeleton of X
(S)
L and the 0-level set (i.e.,

the points of height 0) is a simplicial graph Γ whose 0-skeleton is the vertices
of height 0. Orbits of edges in Γ correspond to AL-orbits of squares in XL, or
equivalently to edges of L. If 0 ∈ S then GL(S) acts freely on Γ, and so Γ can
be identified with a simplicial Cayley graph for GL(S). This gives a natural
choice of generators for GL(S) when 0 ∈ S, in bijective correspondence with
the directed edges of L. Under the composite map GL(S) → GL(Z) =
BBL → AL the element corresponding to the directed edge from vertex x
to vertex y maps to the element xy−1. To give a presentation for GL(S)
with this generating set, we first fix a finite collection Ω of directed loops
in L that normally generates π1(L). In other words, if one attaches discs
to L along the loops in Ω, one obtains a simply-connected complex. Three
families of relators occur in this presentation, which we call P (L,Ω):

• (Edge relations) for each directed edge a with opposite edge a, the
relation aa = 1;
• (Triangle relations) for each directed triangle (a, b, c) in L the rela-

tions abc = 1 and a−1b−1c−1 = 1;
• (Long cycle relations) for each n ∈ S−{0} and each (a1, . . . , al) ∈ Ω

the relation an1a
n
2 · · · anl = 1.

Another crucial property of these presentations is that only the long re-
lations corresponding to n ∈ S hold in GL(S): if (a1, . . . , al) ∈ Ω is not
null-homotopic in L, then an1a

n
2 · · · anl 6= 1 for n /∈ S ∪ {0}.
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We close by giving some references for more general background material.
For CAT(0) spaces we suggest [3], and for homological finiteness conditions
such as the FP property we suggest [4]. Each of these topics is also covered
briefly in the appendices to [6], which is our recommended source for Coxeter
groups.

3. Bounding word lengths by CAT(0) distances

Our first task is to establish Lemma 1.2, as stated in the Introduction.
Recall that a singular point of a map between CAT(0) spaces is a point at
which the map is not a local isometry.

Proof. (Lemma 1.2). As in the statement, let x, x′ ∈ X be distinct points
such that f(x) = f(x′), and suppose that the geodesic arc γ from x to x′

does not pass through the singular set. In this case, f ◦γ is a locally geodesic
arc in Y , whose end points are both equal to f(x). In a CAT(0) space any
locally geodesic arc is a geodesic arc, and the unique geodesic arc from f(x)
to f(x′) = f(x) is the constant arc of length 0. This contradiction shows
that γ must pass through the singular set. The claim follows. �

Lemma 3.1. Let L be a finite connected flag complex of dimension d. For

any S ⊆ Z the distance from the 0-level set in the CAT(0) space X = X
(S)
L

to a vertex of height n is |n|/
√
d+ 1.

Proof. By symmetry it suffices to consider the case n > 0. Let γ be a
path starting at a vertex v of height n, and moving at unit speed in X
to the 0-level set, and let f : X → R denote the height function on X.
Minimizing the length of γ is equivalent to maximizing the speed of descent,
i.e., minimizing the derivative of f ◦ γ.

The initial direction of travel of the path γ can be represented by a point
of the link, LkX(v), of v in X. This is a simplicial complex in which each m-
cube C of X that is incident on v contributes one (m−1)-simplex, consisting
of the unit tangent vectors at v that point into C.

If we identify an m-cube C of X with [0, 1]m, then f restricted to C is
equal to (t1, . . . , tm) 7→ t1 + t2 + · · ·+ tm +r for some integer r. The gradient
of f on the cube C is the vector (1, 1, . . . , 1), of length

√
m. Thus any path

γ of fastest descent leaves v travelling in the direction of the long diagonal
of a cube C of maximal dimension whose highest vertex is v.

If
√
m < n then the path will reach the unique lowest vertex v′ of C

before it reaches the 0-level set; at this vertex a new choice of cube C ′ of
maximal dimension with v′ as its highest vertex should be made.

If w is any vertex of X then the cubes of X that have w as their highest
vertex correspond to a subcomplex of LkX(w) called the descending or ↓-
link, Lk↓X(w). Each descending link Lk↓X(w) is isomorphic to either L or

its universal covering space L̃, depending only on whether the height of w
lies in S. In particular, each descending link has dimension equal to d, the
dimension of L.
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It follows that we can always find at least one unit speed path γ starting at
v with constant rate of descent

√
d+ 1 and there is no path descending faster.

Hence the distance from v to the 0-level set is n/
√
d+ 1 as claimed. �

For S ⊆ Z, define m(S) := min{|n| : n ∈ S}.

Lemma 3.2. Suppose that L is d-dimensional and that 0 ∈ S ⊆ T ⊆ Z, and
take the standard generating set for GL(S) and GL(T ). The word length of
any non-identity element in the kernel of the map GL(S) → GL(T ) is at

least m(T − S)
√

2/(d+ 1).

Proof. The Cayley graph Γ(S) for GL(S) is embedded in the 0-level set

in X := X
(S)
L , and similarly Γ(T ) is embedded in the 0-level set in Y :=

X
(T )
L . Moreover the branched covering map X → Y induces the natural

quotient map Γ(S)→ Γ(T ). Let v be a height 0 vertex of X. Each standard
generator for GL(S) is represented by the diagonal of a square of X so for
any g ∈ GL(S) the triangle inequality tells us that the word length l(g)
satisfies dX(v, gv) ≤

√
2l(g). Now g is in the kernel of the map to GL(T ) if

and only if gv and v map to the same vertex of Y . Singular points for the
map X → Y are vertices w whose heights lie in T − S, and by Lemma 3.1
these have dX(v, w) ≥ m(T − S)/

√
d+ 1. By Lemma 1.2 it follows that

dX(v, gv) ≥ 2m(T − S)/
√
d+ 1 and hence l(g) ≥ dX(v, gv)/

√
2 ≥ m(T −

S)
√

2/(d+ 1). �

4. Digression on convexity

The arguments used in the previous section can be used to show that the
0-level sets are very rarely convex or even quasi-convex. The material in
this section is not needed for our main theorem.

Corollary 4.1. The 0-level set in X
(S)
L is convex if and only if L is a single

simplex. In this case X
(S)
L = XL does not depend on S.

Proof. If L is a d-simplex then X
(S)
L = XL is a copy of Rd+1 and the 0-level

set is an affine subspace. For the converse, if L is any flag complex other than
a single simplex, then L will contain at least two maximal simplices. If v is

any vertex of X
(S)
L of height one, the directions defined by the barycentres

of these two maximal simplices give distinct geodesic paths from v to the
0-level set that are both locally distance minimizing, with end points x, x′

of height 0. Within the geodesic arc from x to x′, at most one point can
locally minimize distance to v; the assumption that this geodesic arc lies in
the 0-level set leads to a contradiction. �

Corollary 4.2. If either L contains two simplices of maximal dimension d,

or L̃ does and Z − S is infinite, then the 0-level set in X
(S)
L is not quasi-

convex.

Proof. We give only a sketch. Let θ = θ(d) be the angle in Rd+1 between
the vector (1, 1, . . . , 1) and one of the coordinate hyperplanes. Let v be a

vertex of height N in X := X
(S)
L . If L has a unique simplex of dimension d,
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then N should be chosen in Z − S, otherwise N may be arbitrary. In this
case there are two distance-minimizing geodesic paths from v to the 0-level
set, with end points x and x′ as above, corresponding to leaving v in the
directions given by the barycentres of two distinct d-dimensional simplices
of the descending link. We view x, x′ and other points that depend on them
as functions of N . The angle at v between these two geodesics is at least the
constant 2θ. The geodesic triangle with vertices x, x′ and v is isosceles with
angle at least 2θ between the two equal sides. The length of the equal sides
is N/

√
d+ 1. If y is the midpoint of the geodesic arc from x to x′, it follows

that dX(v, y) ≤ N cos(θ)/
√
d+ 1. By increasing N this distance can be

made arbitrarily smaller than N/
√
d+ 1, the distance from v to the 0-level

set. Hence for any k, there is an N so that y is not in the k-neighbourhood
of the 0-level set. Thus the 0-level set is not quasi-convex. �

5. Taut loop length spectra for GL(S)

Throughout this section we fix a finite connected non-simply connected
flag complex L. For S a subset of Z containing 0, let Γ(S) denote the
Cayley graph of GL(S) with respect to the standard generators. We analyze
the taut loop length spectrum H(Γ(S)). As in [2], it will be convenient to
assume that elements of S grow quickly, which we do as follows.

Define α = α(L) by α =
√

2/(d+ 1), where d is the dimension of L. For
a finite set Ω of loops in L that normally generates π1(L), let β(L,Ω) be
the maximum of the lengths of the loops in Ω, and define β = β(L) to be
the minimum value of β(L,Ω) over all such Ω. Choose an integer constant
C = C(L) so that C > β/α and Cα > 3. For F any subset of N, define
S(F ) = {0} ∪ {C2n : n ∈ F}. With these definitions we prove an analogue
of [2, Proposition 1].

Proposition 5.1. If F, F ′ are subsets of N so that Γ(S(F )) and Γ(S(F ′))
are quasi-isometric then the symmetric difference of F and F ′ is finite.

Theorem 1.1 follows immediately from this Proposition. To prove the
Proposition we first describe H(Γ(S(F ))).

Theorem 5.2. For any F ⊆ N, the set H(Γ(S(F ))) is contained in the
disjoint union {3}∪

⋃
n∈N[αC2n , βC2n ]. The set H(Γ(S(F )))∩ [αC2n , βC2n ]

is non-empty if and only if n ∈ F . Also 3 is in H(Γ(S(F ))) if and only if
L is not 1-dimensional.

Proof. The choice of C ensures that 3 < αC20 and that for all n, βC2n <

αC2n+1
, which implies that the union is disjoint. Since Γ = Γ(S(F )) is a

simplicial Cayley graph, the edge relations aa = 1 do not contribute to H(Γ),
but the triangle relations imply that 3 ∈ H(Γ) whenever L has dimension
at least two. If F = ∅ then the presentation P (L,Ω) contains only relations
of length at most 3, so H(Γ) is either empty if L is 1-dimensional or is equal
to {3} otherwise.

It remains to establish three statements

• If n ∈ F then H(Γ(S(F ))) ∩ [αC2n , βC2n ] 6= ∅;
• If n /∈ F then H(Γ(S(F ))) ∩ [αC2n , βC2n ] = ∅;
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• If k > 3 and k /∈
⋃

n∈N[αC2n , βC2n ] then k /∈ H(Γ(S(F ))).

The second and third of these statements can be grouped together into a
single fourth statement:

• If k > 3 and k /∈
⋃

n∈F [αC2n , βC2n ] then k /∈ H(Γ(S(F ))).

For the first statement, let F ′ = F − {n}, and consider the covering
map Γ(S(F ′)) → Γ(S(F )). The group GL(S(F ′)) acts freely on Γ(S(F ′)),
so we may attach free orbits of 2-cells to Γ(S(F ′)) to make a simply-
connected Cayley 2-complex ∆. Now let K be the kernel of the map
GL(S(F ′)) → GL(S(F )), or equivalently the covering group for the regu-
lar covering Γ(S(F ′)) → Γ(S(F )). The quotient ∆/K is a 2-complex with
1-skeleton the graph Γ(S(F )) and fundamental group K. We know that any
non-identity element of K has word length at least αC2n and that there is a
non-identity element of K of word length βC2n . The shortest non-identity
element of K defines a loop in Γ(S(F )) ⊆ ∆/K that must be taut, since it is
not null-homotopic in ∆/K whereas every strictly shorter loop in Γ(S(F ))
is null-homotopic in ∆/K.

It remains to prove the fourth statement. Fix an integer k > 3 that is not
an element of

⋃
n∈F [αC2n , βC2n ]. Choose n ∈ N maximal so that βC2n < k,

if such n exists, and define n := −1 in the case when 3 < k < αC. Now let
F ′ := F ∩ [0, n], where by definition [0,−1] = ∅. Once again, consider the
covering map Γ(S(F ′)) → Γ(S(F )). Since every relator in the presentation
for GL(S(F ′)) has length at most βC2n , we may build a Cayley 2-complex ∆
with 1-skeleton Γ(S(F ′)) in which each 2-cell is attached to a loop of length
at most βC2n . Now suppose that γ is a loop of length k in Γ(S(F )). If γ lifts
to a loop in Γ(S(F ′)) then it cannot be taut, since every loop in Γ(S(F ′))
is null-homotopic in ∆. If on the other hand γ lifts to a non-closed path in
Γ(S(F ′)) then it corresponds to a non-identity element of the kernel of the
map GL(S(F ′)) → GL(S(F )) of word length at most k. But the shortest
element in the kernel of this map has length at least αC2m , where m is the
least element of S(F )−S(F ′). By choice of n, we have that k ≤ βC2m , and
by hypothesis k /∈ [αC2m , βC2m ]. This contradiction shows that the loop γ
cannot be taut. �

Proof. (Proposition 5.1). For l ∈ [αC2n , βC2n ] and l′ ∈ [αC2n+m
, βC2n+m

]
for some m > 0, we have that l′/l ≥ C2n−1. By Lemma 2.1, since Γ(S(F ))
and Γ(S(F ′)) are quasi-isometric, we see that H(Γ(S(F ))) and H(Γ(S(F ′)))
are k-related. Now if n is in the symmetric difference of F and F ′ then
C2n−1 < k. �

6. Poincaré duality groups and semi-direct products

A right-angled Coxeter group is a group W admitting a presentation in
which the only relators are that each generator has order two and that
certain pairs of generators commute. A simplicial graph K gives rise to a
right-angled Coxeter group WK , with generators the set V (K) of vertices of
K and as commuting pairs the ends of each element of the edge set E(K).
As we consider cases when K is infinite, we start with a well-known lemma
that will help us reduce to the finite case.
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Lemma 6.1. Let K ′ be any full subgraph of the simplicial graph K. The
Coxeter group W ′ = WK′ is a retract of the Coxeter group W = WK .

Proof. Let V := V (K) and V ′ := V (K ′). The inclusion of V ′ into V extends
to define a group homomorphism i : W ′ → W . The function π : V →
V ′ ∪ {1} defined by π(v′) = v′ for v′ ∈ V ′ and π(v) = 1 for v /∈ V ′ extends
to a group homomorphism π : W →W ′ and the composite π ◦ i : W ′ →W ′

is the identity. �

Now suppose that a group G acts by automorphisms on the graph K.
This induces an action of G on WK by automorphisms, permuting the given
generators for WK , and so there is a semidirect product group J = WKoG.
Identify G with its image inside the semidirect product J . A choice of
generating set for G together with a choice of G-orbit representatives in
V (K) gives rise to a generating set for J .

Now suppose that S 7→ G(S) is a functor from the category of subsets of
Z with inclusions as morphisms to the category of finitely generated groups
and surjective homomorphisms; for example S 7→ GL(S) is such a functor
for any connected finite flag complex L. Suppose further that G(∅) acts
freely cocompactly on a (simplicial) graph K(∅) in such a way that any two
vertices in the same G(∅)-orbit are at edge path distance at least four. For
S ⊆ Z, define K(S) to be the quotient of K(∅) by the kernel of the map
G(∅)→ G(S), so that G(S) acts freely cocompactly on the graph K(S).

For S ⊆ Z, define J(S) to be the semidirect product WK(S)oG(S). Then
S 7→ J(S) is another functor from subsets of Z and inclusions to finitely
generated groups and surjective group homomorphisms. Fix a finite gen-
erating set for J(∅) consisting of a finite generating set for G(∅) and a set
V ′ of G(∅)-orbit representatives in V (K(∅)). As generating set for J(S),
take the image of our given generating set for J(∅), and as generating set
for G(S) take the image of our given generating set for G(∅). For each
S, the generating set for G(S) is a subset of the generating set for J(S),
and its complement consists of generators that are in the kernel of the map
J(S)→ G(S).

It will be useful to have a presentation for J(S) in terms of our gener-
ating set. Since G(∅) acts freely on the graph K(∅), the Coxeter relators
between all of the generators for WK(∅) are consequences of a finite set of
relators indexed by the orbit representatives of vertices and edges in K(∅).
To describe these relations, we choose a set E′ of G(∅)-orbit representatives
of edges in K(∅), in such a way that each e ∈ E′ is incident on at least one
v ∈ V ′. For each u ∈ V (K(∅)), let gu ∈ G(∅) be the unique element such
that gu.u ∈ V ′. Now define an integer N1 by

N1 := max{l(gu) : u is incident on some edge in E′},

where l(g) denotes the word length of g ∈ G(∅). The relations in our pre-
sentation for J(S) are of the following kinds:

• v2 for each v ∈ V ′;
• relators (vguug

−1
u )2, where e ∈ E′, u and v are the vertices incident

on e and v ∈ V ′;
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• the relators in a presentation for G(S).

Note that J(S) is finitely presented whenever G(S) is, and that the relators
of the second kind are of length at most 4N1 + 4.

In the theorem below we write lJ(S) and lG(S) for the word length with
respect to these generating sets.

Theorem 6.2. Take notation and hypotheses as in the paragraphs above,
and define N := 2N1. For all S ⊆ T ⊆ Z, if w ∈ J(S) is in the kernel
of J(S) → J(T ) and lJ(S)(w) > N then there is g ∈ G(S) − {1} with
lG(S)(g) ≤ lJ(S)(w) so that g is in the kernel of G(S)→ G(T ).

Proof. In the case when w is not in the kernel of the map J(S) → G(S),
we may take g = w, the image of w, since this element is in the kernel of
G(S)→ G(T ) and lG(S)(g) ≤ lJ(S)(w).

Before starting the remaining (more difficult) case, we recall Tits’ solution
to the word problem for a right-angled Coxeter group [6, Theorem 3.4.2].
(This is usually only stated for the finitely generated case, but the general
case follows via Lemma 6.1.) If w = v1v2 · · · vl is a word in the standard
generators for a right-angled Coxeter group that represents the identity, then
w can be reduced to the trivial word using some sequence of moves of two
types:

• if v, v′ are Coxeter generators that commute, replace the subword
vv′ by v′v;
• replace a subword vv by the trivial subword.

The kernel of the map J(S) → G(S) is the right-angled Coxeter group
W (S) := WK(S). Let w be in the kernel of this map as well as in the kernel of
the map J(S)→ J(T ). Pick a shortest word in the generators for J(S) rep-
resenting w, and write this word in the form w = h0v1h1v2h2 · · ·hn−1vnhn,
where each vi ∈ V ′, each hi ∈ G(S), so that lJ(S)(w) = n +

∑n
i=0 lG(S)(hi).

Now define gi = h0h1 · · ·hi−1 for 1 ≤ i ≤ n. We have that

w = h0v1h1v2h2 · · ·hn−1vnhn = (g1v1g
−1
1 )(g2v2g

−1
2 ) · · · (gnvng−1

n ).

This second expression for w will not be reduced in general, but each subword
givig

−1
i is equal to one of the standard Coxeter generators for the subgroup

W (S). By hypothesis w is non-trivial in W (S) but is in the kernel of the
map W (S)→W (T ). Hence there must be a Tits move that can be applied
to the image of this expression in W (T ) that cannot be applied to the same
expression in W (S).

If there is a Tits move of the second type that can be applied in W (T )
but not in W (S), this implies that there exist i and j with 1 ≤ i < j ≤ n
so that gi = gj ∈ G(T ), but gi 6= gj ∈ G(S). If on the other hand there is a
Tits move of the first type that can be applied in W (T ) but not in W (S),
there exist 1 ≤ i < j ≤ n so that gi = gjgu ∈ G(T ) but gi 6= gjgu ∈ G(S),
where gu is one of the elements that takes a vertex of some edge in E′ to a
vertex in V ′, and so by definition of N1, lG(S)(gu) ≤ lG(∅)(gu) ≤ N1.

Define an element of J(S) by w′ := vihivi+1 · · ·hj−1vj , where i and j are
as above. Since the expression w = h0v1h1v2h2 · · ·hnvn is of minimal length
in terms of our generators for J(S), the length of the defining expression for
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w′ is also minimal. But lJ(S)(w
′) is greater than or equal to the length of

its image in G(S), hihi+1 · · ·hj−1 = g−1
i gj . Thus lJ(S)(w

′) ≥ lG(S)(g
−1
i gj).

Depending on which sort of Tits move was applied, g−1
i gj is either a non-

trivial element of the kernel of the map G(S) → G(T ) or differs from such
an element by some gu. Let g be this element of the kernel, and note that
lG(S)(g) ≤ lG(S)(g

−1
i gj) +N1. Since w maps to the identity element of G(S)

and the image in G(S) of w′ is a path whose endpoints are at distance
at least lG(S)(g

−1
i gj), we see that lJ(S)(w) ≥ 2lG(S)(g

−1
i gj). Putting these

inequalities together we obtain lG(S)(g) ≤ lJ(S)(w)/2 + N1. Since we may
assume that lJ(S)(w) > N = 2N1, this implies that lG(S)(g) ≤ lJ(S)(w) as
required. �

Now we specialize to the case of interest; the case when G(S) is the
group GL(S) for some finite flag complex L that is connected but not simply
connected. In this case, Theorem 6.2 allows us to prove an analogue of
Theorem 5.2 for the semidirect product J(S) := WK(S)oGL(S). We define
constants α = α(L), β := β(L) and C := C(L) as in the previous section,
and for F ⊆ N we define S(F ) ⊆ N as before. Finally, we define M :=
4N1 + 4, which depends on both L and on the action of G(∅) on K(∅), and
we denote by Λ(S(F )) the Cayley graph Γ(J(S(F ))).

Theorem 6.3. For any F ⊆ N, the set H(Λ(S(F ))) is contained in the
union [0,M ] ∪

⋃
n∈N[αC2n , βC2n ].

If αC2n > M , then H(Λ(S(F )))∩ [αC2n , βC2n ] is non-empty if and only
if n ∈ F .

Proof. Since the presentation for GL(S(∅)) has only relators of length at
most 3, we see that our presentation for J(S(∅)) consists of relators of length
at most M . This verifies the claim in the case when F = ∅. As in the proof
of Theorem 5.2, it suffices to verify two claims:

• If n ∈ F and αC2n > M then H(Λ(S(F ))) ∩ [αC2n , βC2n ] 6= ∅;
• If k > M and k /∈

⋃
n∈F [αC2n , βC2n ], then k /∈ H(Λ(S(F ))).

These statements can be verified exactly as in Theorem 5.2. For the first, we
consider F ′ := F −{n} and look at the covering map Λ(S(F ′))→ Λ(S(F )).
Attach free J(S)-orbits of 2-cells to Λ(S(F ′)) to make a simply-connected
Cayley complex ∆, and letK ′ be the kernel of the map J(S(F ′))→ J(S(F )).
The quotient ∆/K ′ has 1-skeleton Λ(S(F )) and fundamental group K ′. As
before, we know that there is an element of K ′ ∩ G(S(F ′)) of length βC2n

and that any non-identity element of this subgroup has length at least αC2n .
Since M = 4N1 + 4 > N = 2N1, Theorem 6.2 tells us that the word length
of any non-identity element of K ′ is also at least αC2n . Now the shortest
non-identity element of K ′ defines a taut loop in the required range.

For the second statement, given such a k, take n maximal so that βC2n <
k, let F ′ := F ∩ [0, n], and consider the covering map Λ(S(F ′))→ Λ(S(F )).
As before, we can build a Cayley 2-complex ∆ with 1-skeleton Λ(S(F ′)) in
which each 2-cell is attached to a loop of length at most max{M,βC2n}. If
γ is a loop in Λ(S(F )) of length k, then either γ is not taut, or the lift of γ to
Λ(S(F ′)) is a non-closed path. In the second case one obtains a non-identity
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element in the kernel of the map J(S(F ′))→ J(S(F )) of length at most k.
Since k > M > N , Theorem 6.2 tells us that there is a non-identity element
of length at most k in the kernel of the map G(S(F ′)) → G(S(F )), which
cannot happen. This contradiction shows that γ cannot be taut. �

The next two corollaries follow easily by the same proofs as in the previous
section.

Corollary 6.4. If F , F ′ are subsets of N so that Λ(S(F )) and Λ(S(F ′)) are
quasi-isometric, the symmetric difference of F and F ′ is finite.

Corollary 6.5. For any L that is not simply-connected, and any graph K(∅)
with a free GL(∅)-action, there are continuously many quasi-isometry classes
of groups J(S).

The reason why Corollary 6.5 is of value concerns the use of the Davis
trick [6] to construct non-finitely presented Poincaré duality groups, as de-
scribed in [8, Sec. 18]. The starting point is a 2-complex L for which each
GL(S) is type FP ; for this group there is a finite 2-complex that is an
Eilenberg-Mac Lane space K(GL(∅), 1). For any n ≥ 4, one can find a com-
pact n-manifold V with boundary that is also a K(GL(∅), 1). Now let K
be the 1-skeleton of the barycentric subdivision of a triangulation of the
boundary of V , and let K(∅) be the 1-skeleton of the induced triangulation
of the boundary of the universal cover of V , with GL(∅) acting via deck
transformations. For this choice of K(∅), the group J(∅) contains a finite-
index torsion-free subgroup J ′ that is the fundamental group of a closed
aspherical n-manifold M , and such that regular covering M(S) of M with
fundamental group the kernel of J ′ → J(S) is acyclic for each S ⊆ Z. One
deduces that each J(S) contains a finite-index torsion-free subgroup that is
a Poincaré duality group of dimension n. Since the inclusion of a finite-index
subgroup is always a quasi-isometry, Corollary 6.5 implies Corollary 1.3 as
stated in the introduction.

It remains to prove Corollary 1.4 from the introduction. This follows from
the above discussion by the Schwarz-Milnor Lemma [3, I.8.19], which tells
us that the acyclic covering manifold M(S) of M is quasi-isometric to the
group J(S).
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