Long-term self-noise estimates of seismic sensors from high-noise vault installations

Stephen P. Hicks¹, Shawn Goessen², Andreas Rietbrock³, Phil Hill² 1) Dept. Ocean and Earth Sciences, University of Southampton, UK; 2) Güralp Systems Ltd, Aldermaston, UK; 3) University of Liverpool, UK

1. Motivation & Aims

- Ability to record seismic signals is partly dependent on sensor selfnoise: accurate insights could lead to better practices in sensor installations, improving the overall station performance.
- The sources of noise inside sensors are difficult to discern: mechanical noise, electronic interference, Brownian motion.
- Measuring self-noise is challenging and subject to the data selection & calculation methods, and installation type.
- Self-noise is often calculated from hand-picked segments of seismic waveform data in quiet installations. Data are normally selected on a variety of criteria, which may lead to inconsistent self-noise estimates.

Can we accurately determine self-noise in relatively noisy vault installations?

What is the effect of small sensor misalignments on calculated self-noise?

How much does self-noise vary during an installation?

How does sensor installation style and thermal isolation affect self-noise estimates?

2. Sensors, data & processing steps

i) Instruments tested

Model	Resp.	Nom.	Serial
		gain	nos
3T	120 s to	2000	T39335
	50 Hz	V/m/s	T39373
			T39372
3T	360 s to	4000	T39474
	50 Hz	V/m/s	T39454
			T39453
3ESPC	120 s to	2000	T39413
	50 Hz	V/m/s	T39443
			T39441

- ii) Installation Eskdalemuir seismic observatory, Scotland.
 - Purpose-built vault.
 - Instruments installed on concrete pier.
 - Felt blankets for insulation.

iii) Data processing

- 64x digitiser gain for seismometers.
- Data recorded at 200 sps and 1 sps streams.
- Long-term 1 sps stream was visually checked: day files rejected when human activity in the vault and/or mass centre / lock-unlock.
- Raw GCF day files converted to miniSEED for processing.

Email: s.hicks@soton.ac.uk

	Sample rate	Coverage	Segment length
	100 sps	16 s - 50 Hz	4,600 s (1.3 hr)
	40 sps	100 s - 16 s	13,100 s (3.6 hr)
).	1 sps	> 100 s	16,320 s (4.5 hr)

6. Effect of instrument isolation i) Installation set-up Loft insulation Seismomete Concrete ii) Results

7. Summary

References

Evans et al. (2010), SRL Gerner & Bokelmann (2013), Adv. Geosci. Gerner et al. (2013), SRL Li et al. (2015), Geodesy & Geodynamics

S11C-0611 | AGU Fall Meeting 2017

Southampton UNIVERSITY OF LIVERPOOL GUIDO

Through use of probability density function analysis, we have been able to provide reliable estimates of self-noise for seismic sensors in a noisy seismic vault.

Rotation of vertical-component waveforms is an important step for producing robust self-noise estimates in noisy installations

Crossing points of min. self noise with New Low Noise Model: 3T(120 s) = 125 s; 3T(360 s) = 220 s; 3ESPC = 29 s.

Thermally isolating and insulating each seismometer can improve long-period self-noise estimates by up to 4 dB.

We plan to make a repository openly accessible on github containing our ObsPy self-noise toolbox and test data.

> McNamara & Buland (2004), SRL Ringler & Hutt (2010), SRL Sleeman & Melichar (2012), BSSA Sleeman et al. (2006), BSSA This work was funded by Güralp Systems Ltd.