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Abstract

With the environmental externalities of civil aviation under unprecedented scrutiny, and with 

the projected significant increase in air traffic demand over the next few decades, fleet-level 

studies are required to assess the potential benefit of novel aircraft technologies and operational 

procedures for minimising environmental impact of aviation.  Using a statistical classification 

process, the UK commercial aircraft fleet is reduced to four representative-in-class aircraft on 

the basis of aircraft physical characteristics, and aircraft noise and engine exhaust emissions.  

These four representative aircraft, that appropriately capture the noise and emissions 

characteristics for each category within the UK commercial fleet, are also selected to be used 

as baseline cases for the high-level assessment of the environmental benefit of novel aircraft 

technologies.  For the particular case of aviation noise, the modelling tools are highly sensitive 

to the number of aircraft types in the flight schedule.  A reduction of about 80% in 

computational time with relatively minor decrease in accuracy (between -4% and +5%) is 

observed when the whole aircraft fleet is replaced with the four representative-in-class aircraft 

for computing noise contours.  Therefore, the statistical classification and selection of 

representative-in-class aircraft presented in this paper is a valid approach for the rapid and 

accurate computation of a large number of exploratory cases to assess aviation noise reduction 

strategies.

Keywords: Aircraft noise; Engine exhaust emissions; Aviation environmental impacts; Fleet-

level studies; Noise contours; Noise modelling.
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1. Introduction

Aircraft noise is often the primary environmental factor of concern to communities 

living near airports (Durmaz, 2011).  Clearly noticeable effects of aircraft noise include 

annoyance and sleep disturbance which significantly impacts on quality of life and welfare 

(Miedema, 2007).  Less noticeably, Wolfe et al. (2017) found that aircraft noise from Heathrow 

and Gatwick airports in 2010 was associated with 57 myocardial infarctions leading to an 

estimated 17 premature mortalities, and estimated the total cost of noise in 2010 at £81.2 

million a year.  In addition to noise, aircraft engine exhaust emissions have direct and indirect 

effects upon climate (Ramanathan and Feng, 2009; Miyoshi and Merkert, 2015), and are 

detrimental to air quality in the locality of airports which is considered by some researchers to 

pose a real public health hazard (Barrett et al., 2013; Masiol and Harrison, 2014).  Ashok et al. 

(2013) estimated that aviation LTO (i.e. Landing/Take-of cycle) emissions at US airports in 

2005 caused about 195 early deaths, while LTO emissions were forecast to cause ~350 deaths 

in the US in 2018.  Yim et al. (2013) also estimated that, based on data in 2005, airport 

emissions cause about 110 early deaths in the UK each year.

If the projected increase in air traffic demand over the next few decades (DfT, 2013; 

Airbus, 2016; Boeing, 2016) materialises then, without appropriate mitigation the 

environmental externalities of aviation might reach critical values, leading to a further 

deterioration of the relationships between aviation industry and communities around airports 

(Torija et al., 2017) and jeopardising the sustainability of air transport (Miyoshi and Merkert, 

2015).  To address such an issue, several technology programmes and environmental initiatives 

(ASTS, 2010; EC, 2011; Clean Sky Joint Undertaking, 2012; FAA, 2012; FAA, 2014; Del 

Rosario, 2014) have been established to explore different technology platforms, and thus 

develop technologies for minimising aircraft noise and emissions.  Although these technologies 

might be evaluated at a vehicle-level, their environmental impact will be measured at a fleet-
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level considering the entire aircraft fleet composition and number of movements, flight 

procedures, and replacement strategies (Tetzloff and Crossley, 2014; Bernardo et al., 2015).  

These fleet-level studies involve a substantial number of variables with multiple combinations, 

therefore making the environmental impact assessment of different aviation scenarios a highly 

combinatorial and computationally expensive problem.  

For the specific case of noise impact at ground-level due to airport operations, since 

thousands of potential scenarios might have to be evaluated before an ‘optimal’ solution is 

found, tools and/or methodologies are required that can rapidly analyse the noise impact of 

technology options, noise-abatement procedures and/or air traffic strategies (Dikshit and 

Crossley, 2009; Bernardo et al., 2016).  Current high-fidelity airport noise models (Ollerhead 

et al., 1999; EMPA, 2010; FAA, 2008) allow the calculation of noise outputs with minimal 

uncertainty.  For instance, Schäffer et al. (2014) estimated the uncertainty of the A-weighted 

equivalent continuous sound level –LAeq– (see Section 2.2 for further details on LAeq) ranging 

from 0.5 dB (day) to 1.0 dB (night), when calculated with the airport noise model FLULA2 in 

Zurich and Geneva airports for past-time scenarios using radar data as input.  However, these 

high-fidelity airport noise models achieve minimal uncertainty at the expense of a significant 

computational time, and therefore they are not always practical in preliminary strategic 

planning and decision making involving several technology options, noise-abatement 

procedures and/or air traffic strategies.  To overcome such requirements of computational time 

and allow a rapid calculation of airport noise outputs, a number of simplified airport noise 

models for fleet-level studies have been developed (Dikshit and Crossley, 2009; Bernardo et 

al., 2015; Li et al., 2015; Torija et al., 2017).  These simplified airport noise models assume 

several simplifications, which decrease the accuracy when computing noise outputs and restrict 

their application to some specific conditions and/or scenarios.  For instance, as discussed in 

Torija et al. (2018), the simplified model developed by Dikshit and Crossley (2009) uses sound-
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levels measured at certification points for individual aircraft as input, which causes an 

important overestimation of noise contour areas (as compared to INM); the simplified model 

developed by Bernardo et al. (2015) assumes straight ground tracks, which can lead to 

important errors when computing noise contours at busy airports; the simplified model 

developed by Torija et al. (2017) assumes straight ground tracks, and it is restricted to single 

runway airports.  

The computational time of airport noise models is most sensitive to the number of 

aircraft in the flight schedule (Bernardo et al., 2015).  Therefore, another approach for reducing 

the combinatorial nature of the problem is the classification of the fleet into representative 

aircraft categories, and then selecting an indicative aircraft representative of each category 

(Hollingsworth and Sulitzer, 2011; Tetzloff and Crossley, 2014).  With this approach, noise 

outputs can be more rapidly computed with either high-fidelity or simplified airport noise 

models using only a reduced number of aircraft types, i.e. a representative aircraft for each 

category. 

LeVine et al. (2017) proposed a novel method to define average generic vehicles for 

fleet-level modelling of aviation noise and emissions.  Firstly, the fleet of (in-production) 

aircraft with a significant number of operations at a subset of 94 US airports was grouped, 

using a linear discriminant analysis, into a number of classes on the basis of three aircraft-level 

metrics: fuel burn, NOx emissions, and Sound Exposure Level (SEL) noise contours (see 

Section 2.2 for further details on SEL).  Then, the so-called GENERICA method implemented 

designs of experiments, surrogate models, Monte Carlo simulations, and multicriteria decision-

making techniques to define class-based average generic vehicles for more realistic 

approximation of fleet-level results.  When aggregated noise contours were computed for the 

subset of 94 US airports under study, the average generic vehicles were found less robust than 

the representative-in-class vehicles.  The authors suggested that the higher average error and 
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standard deviations when computing noise contours with the average generic vehicles was 

mainly due to the presence (in the 94 US airports subset) of airports (typically with low volume 

of operations) where the operations were significantly dominated by one single aircraft type.  

Conversely, for airports with more operations distributed across several aircraft types, the 

average generic vehicles were found to be very accurate.

A significant number of UK airports have a reduced volume of operations, and even in 

London Gatwick airport (second busiest airport in the UK) almost 65% of the operations 

involve Airbus A319 and A320 aircraft types (see Lee et al. 2017b).  Therefore, based on the 

characteristics of the aircraft fleet and airports in the UK, this research implemented a 

representative-in-class approach where a cluster analysis was applied for grouping the UK 

commercial aircraft fleet into a number of aircraft categories (with minimal within-group 

variance) on the basis of aircraft physical characteristics, and aircraft noise and engine exhaust 

emissions; and then selected a representative aircraft for each aircraft category identified.  The 

ultimate goal is to reduce the fleet to a number of representative vehicles that capture the noise 

and engine exhaust emission characteristics for each aircraft category in a holistic way.  

Although these representative-in-class vehicles were selected to address efficient aviation noise 

and emissions fleet-level studies without compromising accuracy, this paper focuses 

specifically on the application to aviation noise.  Using an hypothetical airport, with both the 

fleet in 2015 at London Heathrow and London Gatwick airports, aggregated noise contour 

areas were calculated with the whole fleet and solely with the representative-in-class aircraft 

in order to assess the validity of the proposed method.  These representative-in-class aircraft 

were also selected with the objective to be used as baseline cases for the high-level examination 

of general technological improvements for reducing the aviation noise and emissions impact 

(at a fleet-level).
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2. Methodology

2.1. Aircraft database

The aircraft fleet with scheduled flights in 2015 in the UK was obtained from the Sabre 

AirVision Market Intelligence database1, and from the movements (per aircraft type) database 

used by the UK Civil Aviation Authority (CAA) for computing the noise exposure contours 

around London airports2.   From these aircraft databases, the aircraft types with data published 

in the Aircraft Noise and Performance (ANP) database3 were selected for the analysis carried 

out in this research.  This excluded the aircraft type Airbus A350-900 (with 64 cycles during 

year 2015 in the UK, according to Sabre AirVision Market Intelligence database) which is not 

yet included in the ANP database.  This exclusion did not affect the noise calculations 

performed with the aircraft fleet at Heathrow and Gatwick airports (see Section 3.3), since there 

were no scheduled flights of the A350-900 aircraft in these airports in year 2015 (see Lee et al. 

2017a,b).  Moreover, this research only considered jet-propelled aircraft, which represented the 

88% of the total aircraft movements in the UK in year 2015 (according to Sabre AirVision 

Market Intelligence database).  Only jet engines (turbojets and turbofans) are included in the 

ICAO Aircraft Engine Emissions (AEE) databank4 (ICAO, 2008), the database used in this 

research for characterizing the engine exhaust emissions for each aircraft type.  For the specific 

cases of Heathrow and Gatwick airports, large twin-turboprop aircraft represented (in year 

2015) only the 0.02% and 1.23% of the total of aircraft movements (see Lee et al. 2017a,b).  

Table 1 shows the 38 aircraft types composing the final database used for this research, 

including the aircraft designation, the associated Integrated Noise Model (INM) type, the 

1 https://www.sabreairlinesolutions.com/home/software_solutions/product/market_competitive_intelligence/
2 https://www.gov.uk/government/publications/noise-exposure-contours-around-london-airports
3 https://www.aircraftnoisemodel.org/
4 https://www.easa.europa.eu/document-library/icao-aircraft-engine-emissions-databank



7

airframe manufacturer, and the engine type and manufacturer.  The specific engine of each 

aircraft type as shown in Table 1 was assigned based on the aircraft records published in the 

ANP database.

Table 1

Aircraft fleet database.

Aircraft designation INM aircraft Airframe Engine
717-200 717200 Boeing BR715 (BMW Rolls-Royce)
737-300 737300 Boeing CFM56-3B-1 (CFM International)
737-400 737400 Boeing CFM56-3C-1 (CFM International)
737-500 737500 Boeing CFM56-3C-1 (CFM International)
737-700 737700 Boeing CFM56-7B24 (CFM International)
737-800 737800 Boeing CFM56-7B26 (CFM International)
747-400 747400 Boeing PW4056 (Pratt & Whitney)
747-8 7478 Boeing GEnx-2B67 (General Electric)
757-300 757300 Boeing RB211-535E4B (Rolls-Royce)
757-200 757PW Boeing PW2037 (Pratt & Whitney)
757-200 757RR Boeing RB211-535E4 (Rolls-Royce)
767-200 767CF6 Boeing CF6-80A (General Electric)
767-300 767300 Boeing PW4060 (Pratt & Whitney)
767-400ER 767400 Boeing CF6-80C2B(F) (General Electric)
777-200ER 777200 Boeing GE90-90B (General Electric)
777-300 777300 Boeing TRENT-892 (Rolls-Royce)
787-8 787R Boeing TRENT-1000-C/01 (Rolls-Royce)
A300 A300-622R Airbus PW4158 (Pratt & Whitney)
A310 A310-304 Airbus CF6-80C2A2 (General Electric)
A319 A319-131 Airbus V2522-A5 (International Aero Engines)
A320 A320-211 Airbus CFM56-5A1 (CFM International)
A320 A320-232 Airbus V2527-A5 (International Aero Engines)
A321 A321-232 Airbus V2530-A5 (International Aero Engines)
A330 A330-301 Airbus CF6-80E1A2 (General Electric)
A330 A330-343 Airbus TRENT-772B (Rolls-Royce)
A340-200 A340-211 Airbus CFM56-5C2 (CFM International)
A340-600 A340-642 Airbus TRENT-556 (Rolls-Royce)
A380 A380-841 Airbus TRENT-970 (Rolls-Royce)
A380 A380-861 Airbus GP7270 (Engine Alliance)
BAE146-200 BAE146 BAE ALF502R-5 (Lycoming)
CRJ-700 CRJ701 Bombardier BR710 (BMW Rolls-Royce)
CRJ-900 CRJ900 Bombardier BR710 (BMW Rolls-Royce)
Embraer 135 EMB135 Embraer AE3007 (Allison)
Embraer 145ER EMB145 Embraer AE3007 (Allison)
Embraer 170 EMB170 Embraer BR710 (BMW Rolls-Royce)
Embraer 190 EMB190 Embraer BR710 (BMW Rolls-Royce)
Fokker 100 F10062 Fokker TAY 620-15 (BMW Rolls-Royce)
Fokker 100 F10065 Fokker TAY 650-15 (BMW Rolls-Royce)



8

As stated above, this research was aimed at selecting a number of representative-in-

class aircraft that capture the environmental performance of the different aircraft categories 

within the UK commercial fleet, but also at selecting baseline cases for modelling the 

environmental benefit of aircraft technology improvements.  During the design stage of the 

aircraft database for this research, it was decided to include any aircraft type with scheduled 

flights in the UK in year 2015 (with the exceptions explained above) regardless they are in-

production or out-of-production.  Although the inclusion of out-of-production aircraft might 

affect the selection of the baseline cases for technology-infused aircraft studies, it was 

considered absolutely necessary for the environmental modelling of the current aircraft fleet in 

the UK.

2.2. Variables for aircraft classification

A number of variables were selected for performing the clustering analysis of the 

aircraft fleet database shown in Table 1.  As shown in Table 2 a set of variables were considered 

for the physical characterization of the aircraft, and for measuring the aircraft noise and engine 

exhaust emissions (at a vehicle-level).

The environmental performance of a given aircraft is clearly linked to the parameters 

defining the physical characteristics of aircraft and engines.  Six variables were selected for the 

physical characterization of the aircraft because of their assumed relevance for the aircraft noise 

and engine exhaust emissions.  These physical variables were used for the clustering process 

as they are required in order to define baseline cases for studies examining technology 

improvements (LeVine et al., 2017).  Also, these physical variables were used to help with the 

interpretation of the set of clusters obtained with the clustering process.  The three variables 

for the physical characterization of aircraft engines used in the ICAO AEE databank were 
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selected:  Bypass Ratio (BPR), i.e. the ratio of the air mass flow through the bypass ducts of a 

gas turbine engine to the air mass flow through the engine core; Overall Pressure Ratio (OPR), 

i.e. the ratio of the mean total pressure at the last compressor discharge plane of the compressor 

to the mean total pressure at the compressor entry plane when the engine is developing take-

off thrust rating in ISA5 sea level static conditions; and Rated Output , i.e. the maximum 

thrust available for take-off under normal operating conditions at ISA sea level static conditions 

(ICAO, 2008).  Moreover, there were also selected the physical variables Number of Engines 

(NoE), and the Departure and Landing Aircraft Weights (DW and LW respectively) defined 

for a series of “Standard” flight profiles, as found in both the ANP database and INM 7.0 

software database.  The aircraft weights were determined as the operating empty weights plus 

the total payload plus the fuel load (i.e. fuel required for representative trip length plus reserves) 

(FAA, 2008).

In this paper, the aircraft noise emission at a vehicle-level is measured using SEL noise 

contours.  The SEL of an aircraft noise event is the sound level, in dBA, of a one second burst 

of steady noise that contains the same total sound energy as the whole event (Jones and Cadoux, 

2009).  The SEL is usually use for comparing the noise emission of individual aircraft.  The 

noise exposure at a fleet-level is measured, in this paper, using the A-weighted equivalent 

continuous sound level (LAeq,t).  The LAeq,t aggregates all the individual aircraft noise events 

over a specific time period.  The LAeq,16h (covering the period 7-23 h) is the metric used in the 

UK for computing noise contour areas, and so it was used in this paper for the calculation of 

noise contour areas presented in Section 3.3.

Assuming a straight-in/straight-out trajectory, the 100-, 90- and 80-SEL contour area 

was calculated for each aircraft type using INM.  These three SEL contours were selected as 

5 International Standard Atmosphere
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representative of the maximum sound-levels when the aircraft is flying at maximum take-off 

power, of the sound-levels further away from the airport when the aircraft is flying with a 

reduced power, and of the threshold for community noise annoyance respectively.  These noise 

contour areas were calculated for two conditions: landing and departure.  At the departure 

condition, for each aircraft type, the noise contour areas were calculated for the whole set of 

“Standard” flight procedures published in the ANP database.  The final departure noise contour 

areas assigned to each aircraft type were the average values of the noise contour areas computed 

using the set of departure “Standard” flight procedures.  This process was also used for 

obtaining an average departure weight for each aircraft.

Table 2

Independent variables for clustering.

Variables
Physical characteristics Number of Engines (NoE)

Bypass Ratio (BPR)
Overall pressure ratio (OPR)
Rated output 
Average Departure Weight (DW)
Landing Weight (LW)

Aircraft noise emission 80-SEL noise contour area (Departure)
90-SEL noise contour area (Departure)
100-SEL noise contour area (Departure)
80-SEL noise contour area (Landing)
90-SEL noise contour area (Landing)
100-SEL noise contour area (Landing)

Aircraft engine exhaust emission LTO total fuel
LTO total HC
LTO total CO
LTO total NOx
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This research only considered the aircraft engine exhaust emissions during the LTO 

cycle, therefore below 915 m (3,000 ft).  The engine exhaust emissions considered in this 

research were the total HC, CO and NOx emitted during the LTO cycle.  The clustering process 

addressed in this research did not use mission level metrics, so that, in order to avoid that 

clusters were overfit to the local area emission metrics, three relative measures were 

considered, i.e. the mass of HC, CO and NOx emitted during the LTO cycle divided by the 

rated output of the engine.  Moreover, the total fuel burnt during the LTO cycle was used for 

the clustering process.  The fuel burnt is a direct proxy for CO2 emissions, at a ratio of ~3.155 

kilograms of CO2 produced per kilogram of fuel (Bernardo, et al., 2012). This data was 

obtained from the AEE databank.

  

2.3. Statistical classification process

The set of physical variables (described above) were used in the clustering process 

under the assumption of their relevance for explaining aircraft noise and engine exhaust 

emissions.  A series of multiple linear regression (MLR) analyses were performed in order to 

validate the correlation between the six variables used for the physical characterization of 

aircraft and the variables used for measuring aircraft noise and engine exhaust emissions.

A hierarchical cluster analysis (HCA) based on the independent variables described 

above was conducted in order to group the aircraft fleet into a number of representative 

categories.  This HCA was performed using Ward’s method for clustering and with the squared 

Euclidean distance as the interval measure.  Based on an agglomerative process, the Ward’s 

method iteratively allows for the merging of the two clusters that will increase the total within-

cluster variance by the minimum possible (Torija et al., 2013; de Amorim, 2015).  The “elbow 

criterion” was used for selecting the appropriate number of clusters in the aircraft dataset 
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(Torija and Ruiz, 2016).   This criterion assumes that the “optimal” number of clusters is found 

when there is a significant increase in the inter-cluster distance.  For each aircraft category 

determined an aircraft was selected as representative, on the basis of the smallest distance to 

the centroid of the category.

After the HCA, a linear discriminant analysis was carried out to identify which of the 

physical and environmental (noise and engine exhaust emissions) variables are most influential 

for the differentiation between the different aircraft categories observed.  Moreover, a series of 

Independent-samples Kruskal Wallis tests were carried out for testing whether there are 

statistically significant differences between the aircraft categories observed, from the 

environmental standpoint.  These Kruskal Wallis tests allowed also a ‘sanity check’ of the 

aircraft categories found with the HCA, using a totally different approach for the differential 

comparison between categories.

3. Results

3.1. Aircraft classification based on physical and environmental characteristics

A series of MLR were performed in order to validate the correlation between all the 

variables used for the physical characterization of the aircraft and the environmental variables 

(Table 2).  Based on the results of these MLR analyses (t-tests), a clear correlation was found 

between all the six physical variables selected and the aircraft noise and emissions variables 

(see Table 3). 
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Table 3

Most influential physical variables (selected for aircraft characterisation) for each environmental 
variables (noise and engine emissions).  All showed physical variables with p-value ≤ 0.05.

Environmental variables Most influential physical variables
80-SEL noise contour area (Departure) BPR
90-SEL noise contour area (Departure) BPR, NoE
100-SEL noise contour area (Departure) BPR, , NoE
80-SEL noise contour area (Landing) None
90-SEL noise contour area (Landing) None
100-SEL noise contour area (Landing) None
LTO total fuel BPR, , NoE, DW, OPR
LTO total HC OPR
LTO total CO OPR
LTO total NOx , DW, LW, NoE

 OPR, 

 OPR

 , BPR, LW, DW

Prior to the HCA, the “optimal” number of clusters was investigated by analyzing the 

inter-cluster distances during the clustering process (“elbow criterion”).  As shown in Fig. 1, 

when the aircraft fleet under study is reduced to 4 clusters there is a notable increase in the 

inter-cluster distance.  Based on these results 4 aircraft categories were assumed to represent 

the whole aircraft fleet on the basis of the physical and environmental variables used for the 

analysis.
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 Fig. 1. Difference between inter-cluster distances in HCA.

The dendrogram using Ward linkage with squared Euclidean distance as the measure 

unit (Fig. 2) also confirms this result, identifying 4 main aircraft categories: (1) Regional 

aircraft with 2 engines, and 32.5/28.9 t as DW and LW; (2) Short-Medium haul with 2 engines, 

and 71.4/62.9 t as DW and LW; (3) Long haul with 4 engines, and 384.5/304.8 t as DW and 

LW; and (4) Long haul with 2 engines, and 176.0/152.6 t as DW and LW.  The average value 

of the engine physical variables for each of these 4 aircraft categories are: (1) BPR = 4.32, OPR 

= 19.77 and  = 54.41 kN; (2) BPR = 4.95, OPR = 26.74 and  = 123.25 kN; (3) BPR = 

7.28, OPR = 37.02 and  = 296.64 kN; and (4) BPR = 5.89, OPR = 33.70 and  = 284.70 

kN.
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Fig. 2. Dendrogram using Ward Linkage (with squared Euclidean distance as measure unit).

The aircraft types with the smallest distance to the centroid of the corresponding 

category were selected as representative-in-class (Table 4).  There was one exception for the 

specific case of category 2.  For this category, the aircraft type with the smallest distance to 

centroid was the Boeing 737-700, but the representative-in-class aircraft selected was the 

Airbus 321-232.  Both aircraft have a similar distance to centroid: 737-700 = 0.004 and A321-

232 = 0.018 (in a range 0.004-0.080).  The aircraft A321-232 was selected as representative-

in-class because of its flights scheduled in the UK in year 2015 (82,321), as compared to the 

flights scheduled for 737-700 (only 6,045).  Also, with the selection of the aircraft A321-232, 

the four representative-in-class aircraft selected are consistent with the selection of reference 

aircraft for noise technology studies conducted by the ICAO Committee on Aviation 

Environmental Protection (CAEP) (Adib, 2014 – Figs. C.1 to C.4). 
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Table 4

Representative-in-class aircraft for each category.

Aircraft category Aircraft type Entry into service (year)
1 CRJ-900 2001
2 A321-232 1993
3 747-8 2012
4 A330-343 1992

The most influential (physical and environmental) variables for the differentiation 

between the aircraft categories identified in the HCA were determined using a linear 

discriminant analysis.  For the discrimination of the 4 aircraft categories identified on the basis 

of the value of the set of the physical and environmental variables used, 3 discriminant 

functions were built explaining the 85.9 %, 11.4 % and 2.8 % of the variance. As observed in 

Table 5, the variables with the highest correlations with the discriminant function 1 are: LTO 

total fuel, LW, DW, LTO total NOx and the 90-SEL noise contour area during landing 

conditions.  Therefore, these are the most influential variables for the discrimination between 

the four aircraft categories found.  , OPR, BPR, , and the other noise emission 

variables seem to have a reduced influence for the discrimination, while the other engine 

exhaust emission variables have very little contribution for the discrimination.

Table 5

Pooled within-groups correlations between discriminating variables and standardised canonical 
discriminant functions. *Largest absolute correlation between each variable and any discriminant 
function.

Discriminant functionsVariables
1 2 3

LTO total fuel 0.335* 0.248 0.088
LW 0.295* 0.220 0.105
DW 0.289* 0.176 0.071
LTO total NOx 0.209* 0.195 0.119
90-SEL noise contour area (Landing) 0.163* 0.158 -0.063
NoE 0.131* -0.104 -0.015
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0.132 0.343* 0.237
OPR 0.100 0.243* 0.002
100-SEL noise contour area (Departure) 0.119 0.236* -0.070
100-SEL noise contour area (Landing) 0.128 0.209* -0.076

 0.030 0.161* -0.014
90-SEL noise contour area (Departure) 0.109 0.157* -0.008
80-SEL noise contour area (Departure) 0.117 0.143* -0.022
80-SEL noise contour area (Landing) 0.132 0.134* 0.007
BPR 0.074 0.083* 0.005

 -0.024 -0.001 0.371*
LTO total HC 0.022 0.130 0.272*

 -0.054 -0.132 0.230*
LTO total CO 0.077 0.113 0.181*

3.2. Environmental impact aviation metric

For the purpose of assessing the environmental impact of individual aircraft, this 

research defines the Environmental Impact Aviation metric (EIAm).  The calculation of EIAm 

is based on the environmental variables:  80-, 90- and 100-SEL contour areas at departure and 

landing conditions, the total fuel burnt during the LTO cycle, and the total HC, CO and NOx 

emitted during the LTO cycle.  The range (minimum value – maximum value) of each 

environmental variable was re-scaled (normalised) to a 0-1 range.  For the calculation of EIAm 

each (normalised) environmental variable ( ) is multiplied by a weighting factor ( ) 

accounting for the negative effects on both the surrounding environment and the communities 

affected:

                                                                                                            (1)
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Fig. 3. Box-plot diagram with the value of the environmental impact aviation metric, EIAm (all 
), for each aircraft category.

If all weighting factors ( ) are set equal to 1 (Fig. 3), the average value of EIAm is 

0.08, 0.20, 0.66 and 0.43 for the aircraft categories 1, 2, 3 and 4 respectively.  As observed in 

Fig. 3, the environmental impact of individual aircraft increases significantly from regional 

aircraft (category 1) to long haul aircraft with 4 engines (category 3).  This trend is especially 

apparent in the variables LTO Total Fuel, LTO Total NOx and 90-SEL contour area (landing).  

Despite similar range characteristics, the environmental impact of quad long haul aircraft 

during a LTO cycle is equivalent to 1.5 LTO cycles of a twin long haul aircraft (category 4).  

A series of Independent-samples Kruskal Wallis tests were performed for the pairwise 

comparison of the EIAm (all ) of each aircraft category identified (Table 6).  These tests, 
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as a different approach for differential comparison, were used to ‘sanity check’ the aircraft 

categories identified with the HCA (from the environmental standpoint).  Statistically 

significant differences (p ≤ 0.05) are observed between aircraft category 1 and aircraft 

categories 3 and 4, and between aircraft category 2 and aircraft categories 3 and 4.  Therefore, 

only the environmental impact of regional and short/medium haul aircraft (categories 1 and 2), 

and long haul aircraft (categories 3 and 4) is statistically different.  Although the results of the 

Kruskal Wallis tests suggested that, from an environmental perspective, there might only be 

two categories (categories 1/2 and 3/4), with a conservative approach it was decided to consider 

the 4 aircraft categories identified with HCA.  Moreover, four aircraft categories allow much 

more refined aircraft technology-infused studies.

Table 6

Pairwise comparisons of the environmental impact aviation metric (EIAm) of each aircraft category 
(Independent-samples Kruskal Wallis test). *Statistically significant differences (p-value ≤ 0.05).

Aircraft 
category 1

Aircraft 
category 2

Aircraft 
category 3

Aircraft 
category 4

Aircraft 
category 1

- 0.261 0.000* 0.000*

Aircraft 
category 2

0.261 - 0.004* 0.039*

Aircraft 
category 3

0.000* 0.004* - 1.000

Aircraft 
category 4

0.000* 0.039* 1.000 -

3.2.1 EIAm for global and local impact

On the basis of the weighting factors ( ) chosen, the EIAm can be used for assessing 

the aircraft environmental impact at both a local or on a global scale.  The so-called impact 

weight for each environmental impact considered in this research, i.e. climate, air quality and 
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noise, was computed from the environmental damage of aviation calculated by Wolfe et al. 

(2014).  The climate, air quality and noise damage (in 2006 USD) calculated by Wolfe et al. 

(2014 – Fig. 1) at a global and local (within 5 km of the airport) scale were re-scaled to a 0-1 

range for computing the impact weights: climate = 0.22, air quality = 0.22 and noise = 0.56 for 

a local scale, and climate = 0.72, air quality = 0.19 and noise = 0.09 for a global scale.  The so-

called within-impact weights for the air quality emissions considered were computed on the 

basis of their impact on human health as reviewed by Mahashabde et al. (2011) and Masiol and 

Harrison (2014).  A clearer link to adverse health effects on exposed people is suggested for 

HC and NOx emissions than for CO emissions (Mahashabde et al., 2011; Masiol and Harrison, 

2014).  For this reason, using a 0-1 scale, both HC and NOx were given a within-impact weight 

of 0.4, while CO was given a within-impact weight of 0.2.  The within-impact weight for the 

noise variables considered were computed using the exposure-response function derived by 

Fidell and Silvati (2004) for quantifying the percentage of people annoyed by a given aircraft 

noise level.  Exposure-response functions allow an appropriate prediction of community-wide 

response (Mahashabde et al., 2011).  The 80-, 90- and 100-SEL values were converted to DNL 

values (using the overall number of day and night movements at Heathrow airport in year 2015 

(Lee et al., 2017a)), then the corresponding percentages of annoyed people were calculated 

using the Fidell and Silvati (2004) exposure-response function, and finally, these percentages 

of annoyed people were re-scaled to a 0-1 range for computing the within-impact weights: 80-

SEL = 0.170, 90-SEL = 0.319 and 100-SEL = 0.512.  It should be noted that, because two 

different noise contour areas were calculated for each SEL value (e.g. 80-SEL noise contour 

area for departure and landing operations), the final within-impact weights for noise were 

computed as, for instance, 80-SEL noise contour area (departure/landing) = 0.170/2 = 0.085.  
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The resulting weighting factor ( )6 for each environmental variable ( ), for assessing local 

and global impacts, is shown in Table 7.

Table 7

Weighting factors ( ) for the calculation of EIAm for global and local impacts. 

Local GlobalImpact Environmental 

variable ( ) Impact 

weight

Within-

impact 

weight

Weighting 

factor ( )

Impact 

weight

Within-

impact 

weight

Weighting 

factor ( )

80-SEL noise 

contour area 

(Departure)

0.085 0.047 0.085 0.008

90-SEL noise 

contour area 

(Departure)

0.159 0.089 0.159 0.014

100-SEL noise 

contour area 

(Departure)

0.256 0.143 0.256 0.023

Noise

80-SEL noise 

contour area 

(Landing)

0.560

0.085 0.047

0.090

0.085 0.008

6 Computed as impact weight multiplied by within-impact weight
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90-SEL noise 

contour area 

(Landing)

0.159 0.089 0.159 0.014

100-SEL noise 

contour area 

(Landing)

0.256 0.143 0.256 0.023

Climate LTO total fuel 0.220 1 0.220 0.720 1 0.720

LTO total HC 0.4 0.088 0.4 0.076

LTO total CO 0.2 0.044 0.2 0.038

Air 

quality

LTO total NOx

0.220

0.4 0.088

0.190

0.4 0.076

Fig. 4 shows the values of the EIAm for each aircraft category, and for the impacts at a 

local (left) and global (right) scale (on the basis of the weighting factors ( ) shown in Table 

7).  Comparing the local and global scenarios, the average value of EIAm remains similar for 

the category 4 (EIAm = 0.44); and a slight decrease in the average EIAm is observed for the 

categories 1 and 2 at the global scale (EIAm = 0.07 and 0.17 respectively) as compared to the 

local scale (EIAm = 0.08 and 0.22 respectively).  For the specific case of the category 3, an 

important increase in the average EIAm is observed at the global scale (EIAm = 0.81) as 

compared to the local scale (EIAm = 0.70).
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Fig. 4. Box-plot diagram with the value of the environmental impact aviation metric (EIAm) for each 
aircraft category, with weighting factors ( ) for the assessment of local (left) and global (right) 
impacts.

3.3. Airport noise calculation with representative-in-class aircraft

For the computation of airport noise outputs a hypothetical airport was created.  As 

shown in Fig. 5, three flight paths for departure operations were simulated: (Dep-1) easterly 

straight-out flight track, (Dep-2) easterly flight track with a 180 degrees turning angle at 7.5 

km from the start-of-roll (SOR) point, and (Dep-3) westerly straight-out flight track.  Also, two 

flight paths for arrival operations were simulated (Fig. 4): (App-1) westerly straight-in flight 

track, and (App-2) easterly flight track with a 60 degrees turning angle at 15 km from the 

touchdown point.  For this hypothetical airport, the noise contours (and noise contour areas) of 

54, 57 and 60 dB(A) LAeq,16h were computed for two aircraft fleets: Heathrow airport (daytime7) 

fleet (Lee et al., 2017a) and Gatwick airport (daytime) fleet (Lee et al. 2017b) in the year 2015.  

Table 8 shows the distribution of flights across the selected aircraft categories for each airport.  

The 54, 57 and 60 dB(A) LAeq,16h noise contours were selected because of their use for assessing 

the percentage of annoyed/highly annoyed in the vicinity of airports in the UK (CAA, 2017).

7 From 07:00 to 23:00
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Table 8

Distribution of daytime flights across the selected aircraft categories for Heathrow airport fleet in 
2015 and Gatwick airport fleet in 2015.  In brackets it is shown the percentage relative to the overall 
number of movements at the airport.  *Note that business jets and aircraft with less than 0.1 
movements/day were not considered.

Aircraft 

category

Representative-in-

class aircraft

Dep-

1

Dep-

2

Dep-

3

App-

1

App-

2

Total

Heathrow airport (year 2015)

1 CRJ-900 3.3 2.1 2.9 3.3 5.0 16.5 

(1.3%) 

2 A321-232 164.0 102.5 143.5 164.0 246.1 820.2 

(64.5%)

3 747-8 22.8 14.2 19.9 22.8 34.2 113.9 (9.0 

%)

4 A330-343 64.3 40.2 56.3 64.3 96.5 321.7 

(25.3%)

Gatwick airport (year 2015)

1 CRJ-900 4.0 2.5 3.5 4.0 6.1 20.2 

(2.7%)

2 A321-232 132.6 82.9 116.0 132.6 198.9 663.0 

(89.5%)

3 747-8 2.5 1.6 2.2 2.5 3.8 12.6 

(1.7%)

4 A330-343 9.0 5.6 7.8 9.0 13.4 44.8 

(6.0%)
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Table 9

Computational time (in seconds) comparison between the whole fleet, the four representative-in-class 
aircraft and the most utilized aircraft conditions for two cases: Heathrow airport fleet in 2015 and 
Gatwick airport fleet in 2015.  In brackets it is shown the computational time reduction (%) relative to 
the whole fleet.

Heathrow fleet 2015 Gatwick fleet 2015
Whole fleet (s) 670.7 672.8
Representative-in-class aircraft (s) 163.9 (76%) 146.9 (78%)
Most utilized aircraft (s) 88.3 (87%) 94.3 (86%)

To validate the simplification of reducing the whole aircraft fleet to the four 

representative-in-class aircraft (see Section 3.1) for computing airport noise outputs, the noise 

contours (and noise contour areas) described above were calculated with INM for two 

conditions: (i) with the whole aircraft fleet and (daytime) movements as presented in Lee et al. 

(2017a,b)8, (ii) from the aircraft fleet data presented in Lee et al. (2017a,b)8, the number of 

aircraft (daytime) movements were summed within each corresponding category, and then 

assigned to the representative-in-class aircraft (see Table 8).  Moreover, the changes in 

computational time9 and model accuracy when the aircraft fleet is reduced to four 

representative-in-class aircraft were compared to the changes in computational time and 

accuracy with only the most utilized aircraft, A320-232 (Heathrow airport in 2015) and A319-

131 (Gatwick airport in 2015).   The noise computations in INM were carried out with a fixed 

spacing of 200 m, with a total number of grid points of 112,800.

8 Excluding business jets and aircraft with less than 0.1 movements/day.
9 Defined in this research as the time used by INM for computing noise outputs.
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Table 10

Noise contour areas (km2) computed for the conditions: (i) whole aircraft fleet, (ii) only 4 
representative-in-class aircraft and (iii) only the most utilized aircraft, using Heathrow airport fleet in 
2015 and Gatwick airport fleet in 2015. In brackets it is shown the absolute percentage error.

Heathrow fleet 2015 Gatwick fleet 2015LAeq,16h 
contour Whole 

fleet
4 representative-
in-class aircraft

Most 
utilized 
aircraft

Whole 
fleet

4 representative-
in-class aircraft

Most 
utilized 
aircraft

54 dBA 105.3 107.8 (2%) 66.5 (-
38%)

60.4 58.0 (-4%) 40.4 (-
30%)

57 dBA 66.3 67.6 (2%) 41.7 (-
38%)

35.6 35.9 (1%) 23.3 (-
35%)

60 dBA 40.2 41.4 (3%) 24.4 (-
41%)

20.5 21.6 (5%) 13.5 (-
38%)

The reduction of the whole aircraft fleet to only the four representative-in-class aircraft 

identified in Section 3.1 allows a significant decrease in computational time when calculating 

noise contours.  As shown in Table 9, the reduction in computational time ranges between 76% 

(with Heathrow aircraft fleet in 2015) and 78% (with Gatwick aircraft fleet in 2015).  However, 

this substantial increase in the computational efficiency is not at the expense of an equally 

substantial decrease in accuracy.  With the four representative-in-class aircraft found (Table 

4), the noise contour areas for the 54, 57 and 60 dB(A) LAeq,16h were calculated with relatively 

minor uncertainty (within a range of -4% to +5%) as compared with the calculations using the 

whole aircraft fleet (Table 10).  As observed in Table 10, similar results were obtained for two 

completely different aircraft fleet: Gatwick airport (year 2015) had a very unbalanced 

distribution of aircraft movements with 90% corresponding to category 2, and only 3%, 2% 

and 6% corresponding to categories 1, 3 and 4 respectively (see Table 8) Heathrow airport 

(year 2015) had a more balanced distribution of aircraft movements with 65% corresponding 

to category 2, 25% to category 4, 9% to category 3, and only 1% to category 1 (see Table 8). 

On the other hand, with only the most utilized aircraft the computational time was reduced in 
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87% and 86% (Heathrow and Gatwick airports respectively), but also the model accuracy 

dropped dramatically as shown in Table 10.

 

Fig. 5. Noise contours computed for two conditions: (i) whole aircraft fleet and (ii) only 4 
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representative-in-class aircraft, using Heathrow airport fleet in 2015 (top) and Gatwick airport fleet in 
2015 (bottom).

 

Fig. 6. Scatter diagram between LAeq,16h calculated with (i) the whole aircraft fleet and with (i) the 4 
representative-in-class aircraft, using Heathrow airport fleet in 2015 (left) and Gatwick airport fleet in 
2015 (right).

From a fleet-level perspective the four representative-in-class aircraft identified were 

able to capture the noise characteristics of the aircraft fleet as shown in Fig. 5.  The calculations 

with the four representative-in-class aircraft accurately replicated the spatial distribution of the 

sound-levels obtained with the whole fleet (Fig. 5).  Moreover, Fig. 6 displays the LAeq,16h at 

each grid point, as calculated with INM using the whole aircraft fleet and using only the 4 

representative-in-class aircraft.  Within the range 48 – 75 dB(A), the mean absolute deviation 

and the mean absolute percentage error with the representative aircraft simplification was 0.30 

dB and 0.55% respectively (Heathrow fleet 2015), and 0.69 dB and 1.28% respectively 

(Gatwick fleet 2015).

4. Discussion
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The computational time of airport noise models, either high-fidelity models such as 

INM or simplified models (e.g. Bernardo et al., 2015; Torija et al., 2017), is highly sensitive to 

the number of aircraft types in the flight schedule.  This research reduces the aircraft fleet in 

the UK by defining four representative-in-class aircraft, based on a statistical process (see 

Section 3.1).  This classification and selection of representative-in-class aircraft lessens the 

combinatorial nature of the fleet, and therefore maximizes the computational efficiency of 

airport noise models (Bernardo et al., 2015).    As described in Section 3.3, and for the specific 

cases tested in the paper, the simplification of using four representative-in-class aircraft allows 

a reduction of about 80% of the computational time without decreasing the accuracy when 

calculating airport noise outputs (within a range of -4% to +5%).  LeVine et al. (2017) found 

that the representative vehicles approach demonstrated more robustness than the average 

generic vehicles approach for the computation of noise outputs in the set of 94 US airports 

evaluated.  LeVine et al. (2017) suggested that this finding was due to the better performance 

of the representative vehicles approach in airports with a low volume of operations, and where 

the operations were dominated by only one aircraft type; and also they stated that the average 

generic vehicles approach outperformed the representative vehicles approach for airports with 

more operations spread across a variety of aircraft.  In this research the representative-in-class 

approach for computing airport noise outputs was validated using the aircraft fleets (in year 

2015) of the two main airports in the UK: Heathrow and Gatwick airports.  Heathrow airport 

had a higher volume of operations, with operations more evenly distributed across the four 

aircraft categories identified, while Gatwick airport had a lower volume of operations, with 

most operations concentrated in the aircraft category 2.  As shown in Table 10 and Figs. 5 and 

6, the representative-in-class approach achieved similar high accuracy values in both airports 

evaluated.
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The aircraft classification performed in this research was based on variables for the 

physical characterization of the aircraft, and variables describing the aircraft noise and engine 

exhaust emissions at a vehicle-level.  As demonstrated in Section 3.3, the aircraft representing 

the 4 aircraft categories identified were able to accurately represent the fleet in terms of 

distribution of sound-levels around airports.  Similarly, these representative-in-class aircraft 

can be used for approximating the climate and air quality impact of aviation at a fleet-level.  

Enabling a large number of scenarios to be computed in a short period of time, this statistically 

based classification and selection of representative-in-class vehicles can therefore be especially 

useful for multi-objective optimization analysis of aircraft technologies for minimizing 

environmental impact (Afonso et al., 2017; Jimenez and Mavris, 2017), aircraft route 

optimization for minimizing aircraft noise and emissions (Li et al., 2015), and economic-

environmental tradeoffs analysis (Rosskopf et al., 2014).

As mentioned above, the aircraft database used in this research included out-of-

production aircraft.  Out-of-production aircraft were included because they were considered 

absolutely necessary for the environmental modeling of the aircraft fleet currently in use in the 

UK.  During the design of the aircraft database it was anticipated that the inclusion of out-of-

production aircraft might have some effect in the selection of the most appropriate baseline 

cases for aircraft technology evaluation.  However, as demonstrated with Fig. 7, the inclusion 

of the out-of-production aircraft has not had any effect on the selection of the representative-

in-class aircraft (from an environmental perspective).  Fig. 7 shows that within each category 

the corresponding representative-in-class aircraft selected is the aircraft with the smallest 

distance to EIAm centroid, regardless the inclusion or exclusion of the out-of-production 

vehicles.



31

Fig. 7. Distance to EIAm centroid within each category, for all the aircraft in the database (top) and 

only in-production aircraft (bottom).

This paper defines a metric for the assessment of the aircraft environmental impact (see 

EIAm in Section 3.2).  Although it is defined for individual aircraft, this metric could be 
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extended to assess the cumulative environmental impact of aviation scenarios.  As illustrated 

in Section 3.2.1, the aviation stakeholders or expert panels can apply different weighting factors 

to the set of environmental variables composing the EIAm depending on the priorities or 

particular circumstances of specific cases, e.g. for assessing environmental impacts at a local 

or on a global scale.  EIAm can therefore be useful for the integrated assessment of the 

environmental benefit/drawbacks of policies, technologies, and operational procedures within 

the framework of aviation decision-making (Mahashabde, et al., 2011).  EIAm can also be used 

by airlines for the assessment process of strategies to increase their environmental performance 

(Miyoshi and Merkert, 2015).

Defined on the basis of aircraft noise and engine exhaust emissions, the four 

representative-in-class aircraft can be used as baseline cases for examining the potential 

environmental benefits of novel technological capabilities (Adib et al., 2014) in a lower fidelity 

state, but also for projecting environmental emissions and noise for future aviation scenarios 

with varying air traffic demands and fleet renewal (SA, 2012, 2013).  The representative-in-

class approach, as presented in this paper, is of direct application for assessing the evolution of 

technology improvements within conventional tube and wing aircraft, or for the analysis of 

aircraft retirements where those aircraft are replaced with newer technology but would be 

within the same category.  However, if on the basis of both physical characteristics and 

environmental performance, novel (radical) aircraft concepts cannot be assigned to any of the 

aircraft categories identified, then the categories and representative-in-class aircraft will need 

to be updated.  Once the appropriate baseline cases are defined, then the fleet-level 

environmental benefits of technological changes within the design space (of each baseline case) 

can be examined.  For the specific case of aircraft noise, the framework developed by 

Synodinos et al. (2017) can be used for generating noise-power-distance (NPD) data for novel 

aircraft designs, which then can be used by airport noise models (e.g. Torija et al., 2017)) for 
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investigating the potential benefit of such designs for reducing the impact of aviation noise 

around airports.  The framework developed by Synodinos et al. (2017) combines noise 

prediction methods for individual aircraft noise sources with aircraft noise and performance 

data to estimate noise variations with respect to a baseline case, where noise levels are known.

5. Conclusions

This paper presented the results of a statistically based classification of the UK 

commercial aircraft fleet into four representative aircraft categories on the basis of aircraft 

physical characteristics and aircraft noise and engine exhaust emissions metrics.  The four 

aircraft categories found correspond to 2 engine regional aircraft, 2 engine short-medium haul 

aircraft, 2 engine long haul aircraft, and 4 engine long haul aircraft.  These aircraft categories 

and the aircraft selected as representative-in-class are consistent with the selection of reference 

aircraft for aircraft technology studies conducted by the ICAO CAEP.   The total fuel during 

the LTO cycle, the departure and landing weight, the total NOx emitted during the LTO cycle 

and the 90-SEL noise contour area during landing conditions were the variables with the 

highest contribution to the discrimination between the four aircraft categories.  The four aircraft 

categories were well differentiated in terms of their environmental impact (EIAm), but only 

the environmental impact of regional and short/medium haul aircraft (categories 1 and 2), and 

long haul aircraft (categories 3 and 4) was found statistically different.

Reducing the combinatorial nature of the fleet, i.e. assigning the scheduled movements 

of the whole fleet to the corresponding four representative-in-class aircraft selected in this 

paper, allows a reduction of approximately 80% of the computational time.  This significant 

increase of the computational efficiency is achieved with a relatively minor decrease in 

accuracy (between -4% and +5% as compared to the results with the whole fleet).  Although 
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based on a classification and selection at a vehicle-level, the four representative-in-class aircraft 

were able to accurately approximate the distribution of the fleet sound-levels in the specific 

airport scenarios tested.

The simplification of the whole aircraft fleet to four aircraft appropriately representing 

the fleet noise and environmental emissions (i.e. climate and air quality) characteristics has two 

important benefits: (i) maximization of computational efficiency, enabling a rapid computation 

of a large number of fleet-level analysis for the optimization of aircraft technologies and flight 

routes to minimize environmental impact, and for economic-environmental tradeoffs; (ii) 

availability of representative baseline aircraft for the high-level examination of the 

environmental benefits (at a fleet-level) of aircraft technological developments.
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