Historical Effects of CO2 and Climate Trends on Global Crop Water Demand
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A critical question for agricultural production and food security is how water demand for staple crops will respond to climate and carbon dioxide (CO2) changes1, especially in light of expected increases in extreme heat exposure2.  To quantify the tradeoffs between climate and CO2’s effect on water demand, we use a “sink-strength” model of demand3,4 which relies on vapor pressure deficit (VPD), incident radiation, canopy radiation use efficiency, and canopy transpiration efficiency; with the latter two both dependent on CO2. This model is applied to a global dataset of gridded, monthly weather data over the cropping regions of maize, soybean, wheat, and rice over the years 1948-2013. We find that this approach agrees well with Penman-Monteith (PM) potential evapotranspiration for the C3 crops of soybean, wheat, and rice, where the competing CO2 effects largely cancel each other, but that water demand in maize is significantly overstated by a demand measure like PM that does not include CO2. We find the largest changes in wheat, for which water demand has increased since 1981 over 86% of global cropping area and by 2.3 to 3.6 percentage points per decade in different regions.
Recent studies assessing global changes in evapotranspiration, water consumption and drought conditions have focused on measures that treat crops generically and largely ignore the physiological effects of CO2 on crop water demand5–7. While such work is critical to better understanding the global hydrological cycle and its feedbacks with land surface processes, it is limited in its ability to characterize historical patterns in crop water demand for two reasons: (i) the relevant variables such as PM or VPD are frequently constructed as averages taken over all months of the year, or over summer months (typically June-July-August for northern hemisphere) that do not necessarily coincide with the main crop seasons7–9, and (ii) crop-specific physiological characteristics that regulate crop water demand in response to atmospheric conditions are neglected. While some global10 and regional11  studies have incorporated CO2 in projections of future water demand, our understanding of the effects of competing influences of climate and CO2 on crop water demand at a global level remains lacking.  Some results from studies focusing on ET or drought severity measures suggest that the “dry gets drier, wet gets wetter” rule of thumb has little basis in observational data12, and that historical trends in drought have largely not been significant7, but these results do not necessarily imply that crops have not experienced increased water demand to sustain growth rates. ET and crop water demand are not necessarily equivalent, and this study aims to provide an analysis of crop water demand at a global scale, which is not sufficiently addressed by global ET analyses. Additionally, crop water demand should not be confused with irrigation requirements, as the latter depends on other factors such as rainfall amounts and frequency, and we caution against interpreting our results as such.
In a crop-specific context, many studies have focused on the role of VPD or extreme degree-days in driving high transpiration rates and thus being strong predictors of crop water demand13. VPD, in particular, is often the preferred meteorological predictor of crop water stress, due its close connection with transpiration via stomatal closure at high VPD levels14,15. PM is commonly used in estimating crop water requirements. Like VPD, it combines temperature with humidity in estimating atmospheric demand, but unlike VPD also includes terms accounting for net radiation and wind speed. However, because neither explicitly considers CO2, assessing historical crop water demand trends solely through either of these common measures ignores CO2-driven changes in transpiration and radiation use efficiencies over time.  Radiation use efficiency (RUE) increases in C3 crops with higher ambient CO2 concentrations because of greater efficiency of Rubisco, a key enzyme in photosynthesis. In contrast, C4 crops concentrate CO2 around Rubisco to roughly five times ambient concentrations, which leads Rubisco to be saturated with respect to CO2 at current concentrations and thus RUE to be unresponsive to higher CO2 1. Both C3 and C4 crops, however, can see improved transpiration efficiency (TE) at elevated CO2, as stomata close and restrict transpiration.
Our work aims to overcome these limitations by combining global harvest dates, gridded weather data, and a crop sink-strength water demand model4 to estimate average daily water demand during the water-critical stage of the growing season. The latter was proposed as a modified version of Penman’s original sink-strength model that incorporates insights from crop physiology into a simple energy balance model, yet does not require the empirically-derived crop coefficients that are needed in traditional approaches. 

We follow the APSIM16 approach to calculating daily crop water demand, which derives from the sink-strength ET model and expresses demand (D) as
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where Rnet is net intercepted shortwave radiation, RUE is radiation use efficiency, VPD is vapor pressure deficit, and TE is transpiration efficiency. We follow the APSIM approach where radiation use and transpiration efficiencies each consist of the product of a crop-specific constant value (typically denoted RUE and TE, respectively) and a CO2-dependent factor (typically denoted fc and fc_TE, respectively). For brevity, we refer to these products RUE*fc and TE*fc_TE as simply RUE and TE throughout the text, and both are time-varying functions of CO2. This reflects the fundamental physiological insight that TE is increased by CO2 in C4 crops such as maize, while both TE and RUE increase with CO2 in C3 crops such as soybean17. The coefficients determining RUE and TE for each crop as a function of CO2 are taken directly from each crop’s respective APSIM module, including rice, whose APSIM module derives from the ORYZA2000 rice model16. In C4 crops, water demand decreases with higher CO2, since TE increases while RUE remains unchanged, while for C3 crops, the net water demand effect is governed by tradeoffs between greater water consumption through accelerated photosynthetic activity (represented by the product Rnet * RUE) and decreased water consumption through higher TE. 
An account of historical spatial patterns and temporal trends in crop water demand will therefore be incomplete without accounting for CO2. We provide a global assessment of crop water demand, comparing trends and drivers both globally within major growing regions for each crop. The areal cropping density, as well as the boundaries we use to define these major regions for each crop in this study, are presented in Fig. 1. We show that the atmospheric demand measures of VPD and PM can differ significantly from the results of the sink-strength demand (D), which incorporates radiation and CO2 effects. We also find that these changes differ significantly by region, and that multi-decadal trends can mask large decadal variability. Much valuable work has been done examining crop water demands at local spatial scale, or ET at regional or global scales. Our study aims to combine the crop-specific physiological insights of the former with the scale of the latter, and serve as a starting point for future work examining interactions of water, climate, and CO2 changes on crop yields in more detail. 
We find that globally aggregated measures of water demand, both atmospheric (VPD and PM) and sink-strength (D), have increased for all crops except maize in the 1981-2013 period, with wheat areas seeing the largest increase at roughly 8% globally (Fig. 2a). The difference in historical trend magnitudes for D versus PM is notable in several instances, but especially for maize, where even the sign of the trend differs between these two measures (Fig. 2a). The percentage of global area experiencing an increase in water demand (Fig. 2b) follows a similar pattern, with nearly 90% of wheat area seeing a demand increase in the 1981-2013 period. The global aggregate demand change differences between crops are driven largely by the relative contributions from different regions to VPD and Tmax increases. Supplementary Figure S2 shows that over the 1981-2013 period, globally aggregated Tmax and VPD rose faster for wheat than for other crops, but considerable regional variability underlies these trends (Supplementary Figure S6). It is important to note that within-region weather trends are the product of differences in both location and season for all crops.  A given crop in a given region might see larger percent increases in Tmax or VPD because the months comprising its growing season experience increases than other months for the same area, or because its cropping area experiences larger increases than another crop’s during the same months, or some combination of both. This distinction is especially important for wheat, which is grown over winter and spring months in many areas.
Focusing on sink-strength demand (D), we demonstrate in Fig. 2c the effect of successively allowing each component of equation (1) to vary while holding other components constant. In this way, we build a demand measure starting from VPD alone, and successively including the effects of the historical time series of radiation, CO2 effects on TE, and CO2 effects on RUE. We see that for the C3 crops of soy, rice, and wheat, the combined effect is very similar to that VPD alone. This indicates that the offsetting effects of radiation use and transpiration efficiency on water demand through rising CO2 have been of nearly equal magnitude in the historical period. For maize, however, which as a C4 crop exhibits a TE but not RUE response, water demand from the sink-strength model is less than for VPD. This is evident in, for example, Figure 2a, where the difference between sink-strength demand (D) and VPD are virtually indistinguishable for rice, soy, and wheat, but is roughly 10 percentage points for maize for the 1948-2013 period and six percentage points for 1981-2013.  We perform an equivalent analysis at the regional level (Supplementary Fig. S1) and find similar patterns within each region.
Demand increases are notably greater since 1981 than the longer period of 1948-2013, which is consistent with the acceleration of global warming at roughly that point. Globally, trends in maximum temperature, VPD, and PM have risen in the last two to three decades, but were relatively neutral in the decades prior (Supplementary Fig. S2). Global aggregate radiation, on the other hand, has not seen significant trends in either the short or long-term periods as defined in this study, and global trends in crop water demand therefore owe more to changes in CO2 and other meteorological factors.
These globally aggregated demand changes mask significant variation between major cropping regions. In Fig. 3 we present the demand changes within each region for each crop, which reveals that some areas have benefited from combined climate and CO2 changes while others have not. For example, for the case of maize, most areas have seen demand decreases due to CO2-driven TE gains, but in Europe, the rate of VPD increase has outpaced the TE benefit of rising CO2, leading to a demand increase of 6%. Other regions could similarly see a switch from decreasing to increasing demand if trends from the last two to three decades continue. Wheat shows the largest demand increases, with all regions except northern China rising between 7% and 11% over the 1981-2013 period, corresponding to trends of 2.3% to 3.6% percentage points per decade.
This distinction between the atmospheric and sink-strength demand models in C3 vs. C4 crops at the regional and global aggregate levels also manifests itself at finer scales. In observing the gridcell-level trends in Fig. 4, we see that spatial variability of the sign of demand change within a region is much reduced for maize when moving from atmospheric (Fig. 4a) to sink-strength (Fig. 4c) demand. This owes to the effect of CO2 overwhelming meteorological trends and causing the majority of grid cells to show demand decreases. For wheat, however, variability in sign and magnitude remains largely unchanged both within and across regions, as the effects of CO2 on RUE and TE tend to offset each other (Fig. 4b and 4d).  
Demand trends are potentially affected by observational uncertainty in both Rnet and VPD. We address the former by examining differences between radiation datasets from the University of Maryland18,19 and Surface Radiation Budget V320 (SRB) , and the latter through an alternative VPD formulation that we test with both the Climatic Research Unit of East Anglia21 (CRU) and the Princeton Global Meteorological Forcing22 (PGF) datasets. We find that dataset differences in Rnet at individual grid cells and years largely average out at the regional level, leading to only small differences in linear trends (Supplementary Fig. S3). Regarding VPD, our preferred formulation computes the difference between saturation pressure at monthly maximum (Tmax) and minimum (Tmin) temperatures23, es(Tmax) – es(Tmin), where es is the saturation vapor pressure function. This approach makes an assumption of saturation at Tmin, which can be problematic in regions where humidity trends significantly outpace those of Tmin. We therefore test the sensitivity of our results by recomputing demand trends when using the alternative VPD formulation es(Tmax) – ea, where ea is actual vapor pressure taken directly from the CRU and PGF datasets. We find that China is the only region for which VPD trends significantly differ these two methods. These differences are as large as 15% in the CRU data, but much smaller (typically less than 5%) in the PGF data (Supplementary Fig. S4), which owes to PGF’s recording smaller humidity increases in China than CRU. We conclude that our key results are robust to the choice of dataset for most regions and at the global level, but that areas with large uncertainty in humidity trends deserve special consideration. Similarly, we find that our results are robust at broad scales to uncertainties in wind trends, growing season timing, and effects of CO2 on TE and RUE (see Methods, Fig. S5-8).
We emphasize that our results do not account for changes in cultivars, crop types, management practices, land use, or other factors that could affect crop water demand, nor do we attempt to estimate yield impacts, which are confounded by such factors that we cannot control for. Dynamical crop models can represent these processes in various capacities, and if given sufficient input data, provide a means of testing the sensitivity of water demand rates to variability in such factors10. Specifically, increased yield potential, either from genetic or agronomic changes, is generally associated with higher water demand24. Rather, we interpret our results as the changes in water demand imposed by atmospheric changes alone. While efforts have been made to map global water productivity25, these estimates are static and do not reflect changing yields, climatic conditions, and CO2 over time. The nearly equal magnitude of radiation use and transpiration efficiency effects in C3 crops in these data suggest that some biomass increases have come without the expense of increased water demand, and hence led to improved water productivity. We caution, however, that cultivar and management changes during the study period confound an interpretation of meteorologically driven water demand in terms of water use efficiency26.  Our results reflect seasonal average climate values, and therefore do not reflect the interactions between important factors such as extreme temperature and nitrogen stress and RUE that can occur at sub-seasonal time scales27. However, continued warming could likely push many regions further into regimes in which interactions between heat, water, nitrogen and other stresses begin to overwhelm the benefits of CO2, even at seasonal timescales28. We thus caution against extrapolating our analysis too far into future scenarios where both temperature and CO2 levels are significantly higher. Crop models’ ability to model interactions between temperature, nutrient supply, and CO2 fertilization are limited29, and our approach here incorporates temperature and CO2 interactions only simply, and nutrient interactions not at all. 
In summary, we find that climate and CO2 trends have driven significant changes in global crop water demand, with faster increases over the last 30 years and considerable variation by region. For example, though soy and wheat are both C3 crops, the global aggregate of soy water demand trends is essentially zero over the last two to three decades, while wheat regions have experienced a demand increase of roughly 8%. Our preferred sink-strength demand measure gives similar results as more conventional measures such as VPD or PM in C3 crops, due to the offsetting effects of RUE and TE. If trends from the last few decades continue, it will be crucial to consider whether adaptation measures can keep pace with rising water demand in regions experiencing the largest increases even for C3 crops, and especially the length of time for which maize regions can continue to avoid increases in demand through rising CO2.
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Figure Legends
Figure 1. Gridded (0.5 degree) percent crop cover. Blue boxes enclose cells belonging to major production regions, some of which are abbreviated for convenience in later figures as follows: US = United States, NAmer = North America, SAmer = South America, Eur = Europe and Russia, NChina = North China, SAsia = South Asia.
Figure 2. a) Water demand for each crop under various demand measures. Values represent the aggregate of all gridcell-level demand globally trends by cropping area. Both vapor pressure deficit (VPD) and Penman Monteith (PM) evapotranspiration indicate modest increases in water demand for most crops, while the difference between a sink-strength demand (D) and atmospheric approach for maize can be as large as 12%. Error bars indicate two standard errors. b) For each crop, the percentage of global area experiencing an upward linear trend in water demand for both a 60+ and 30+ year period. Using PM or VPD trends as proxies for crop water demand tends to overstate demand increases, underscoring the need for consideration of CO2 in future crop water demand studies. c)  Identifying the relative contribution of each component of the sink-strength demand measure. Radiation (Rnet) trends play a small role, differing very little from trends due to VPD alone. Adding the CO2 -driven effects to radiation use efficiency and transpiration efficiency largely cancel each other out for C3 crops. Maize, which receives negligible benefit to RUE, shows large demand difference when TE is taken into account. While the magnitudes of each of these components can differ largely by region, their relative contributions to total demand remain consistent. Within each group, bar heights from left to right correspond to the evaluation of equations 3 through 6.
Figure 3. Regional breakdown of linear demand changes for each crop and time period. The global values (black bars) correspond to the bar heights in Fig. 2a, with the colored bars representing the regional contributions to the global aggregate. Significant regional variation exists, with some areas showing demand decreases and others increases within the same crop. However, for almost all crops and regions, demand has been greater over the 1981-2013 than 1948-2013 period.
Figure 4. Gridcell-level linear trends for maize and wheat, highlighting the differing water demand spatial patterns of a C3 and C4 crop. The sign and magnitude of crop water demand changes shows considerable intra- and inter-regional variability. For wheat, a C3 crop, this spatial variability is largely the same whether using an atmospheric demand measure such as VPD (panel c) or sink-strength demand measure (d). For maize, the spatial variability in sign is significantly reduced for the sink-strength demand measure (b) than VPD (a), owing to the much larger benefit maize receives from CO2.
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Methods
We use the University of East Anglia Climatic Research Unit (CRU) TS-3.22 dataset21 at 0.5 degree resolution for monthly values of minimum and maximum temperature, vapor pressure, and Penman-Monteith potential evapotranspiration (PM) over the period 1948-2013. We obtain the equivalent variables from the Princeton Global Meteorological Forcing (PGF) dataset22 to assess the uncertainties in the meteorological data. The primary differences between these datasets lie in the use of bias-corrected reanalysis data for humidity and windspeed, and the availability of satellite-based surface radiation data in the PGF. We use two satellite-based radiation datasets from the PGF: one based on the Surface Radiation Budget V320 (SRB) and one based on the University of Maryland product.18,19  Though both satellite radiation datasets end in 2007, they are extended to 2013 by bias correcting reanalysis data to match the distribution of the satellite observations. In both radiation datasets, values prior to the beginning of the satellite data in 1981 derive from backward extrapolation based on reanalysis data. All figures are produced with values from the CRU and Maryland datasets, though we find similar results when using PGF meteorology and SRB radiation. 

To compute yearly summary values of all meteorological and associated demand variables, we use fractional crop area and harvest dates from 0.5-degree global crop area and harvest dates30 to compute an average over the portion of each crop’s growing season for which water demand is typically highest. For maize, rice, and soybean, we define this period as two to three months prior to the harvest month. For example, for a U.S. grid cell with an average harvest month of October, we take the corresponding grid cell’s July-August average of temperature, VPD, etc. in each year to form an annual time series. For wheat, which has comparatively higher water demand during the end stages of its growth cycle, we take the average of the three months leading up to harvest.

In order to compute the linear change associated with a given variable and time period, we fit an ordinary least squares regression to its annual time series, where each yearly value is the average over the growing season months for that crop and at that location, and compute the difference between the linear trend’s endpoints. Percent changes are then computed as this difference divided by the mean value over the stated period. When computing the contributions of each component of sink-strength demand, we evaluate time series of demand as a factorial experiment using equation 1, where certain components of the right hand are time series while others are held at their mean value, as detailed in equations 2-5. 
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Equation 3 uses the observed time series of VPD while holding Rnet and TE at their mean values over that time period. Equation (4) allows both VPD and Rnet to vary, while equation (6) allows all components to vary. The aim is not to isolate each component’s role individually (such an interpretation would be inappropriate given the co-variation between terms in the right hand side), but rather to assess the demand change that results as one moves toward an increasingly sophisticated treatment of evaporative demand, and to compare the end result with the “naïve” view of PM or VPD alone as a proxy for water demand. To compute percent changes of a given demand measure over a given time period, we divide by that period’s mean value as given by equation (2). While our analysis emphasizes percent changes rather than absolute differences in water demand, there is the danger that the former could be artificially inflated if the latter are physically implausible, and we have taken care to ensure that our parameterizations produce reasonable values. For example, US maize water demand values under our parameterization have an interquartile range of 7.6 to 9.1 mm/day, which is consistent with typical agronomic benchmarks for midseason water consumption31,32.
We compute linear trends in the time series defined by equations 3-5, as well as PM and all meteorological inputs, at three spatial domains: i) each 0.5 degree cell, ii) the aggregate of each major cropping region, with cells weighted by crop area, and iii) the global aggregate over all regions, again weighted by crop area. We do this for each crop (maize, soybean, rice, and wheat), and for both a long and short time period (1948-2013 and 1981-2013). This division was chosen because global warming began accelerating in the 1980s, and our two periods thus respectively represent ones of more moderate and severe warming.

It is important to note that our gridded weather datasets use monthly wind climatology values at each grid cell, so while spatial differences in wind magnitude are built into the reported PM trends, possible temporal wind trends are not. Similarly, some sink-strength demand trends could be overestimated, considering research that has found global stilling trends leading to decreased pan evaporation33,34. However, many studies reporting stilling trends do so at a global and annual level, and for earlier time periods ending circa 2000, whereas our study focuses on particular growing-season months and agricultural regions and up to more recent years. Additionally, observed stilling varies by region and season, with some seeing little contribution from wind trends to PM-based demand35, whilst the contribution in others is significant36. Global reanalysis data, such as those we use in this study, can indeed underestimate regional station-based wind stilling, but experiments that impose greater wind stilling to match the station-based wind trends result in only a small difference in global PM trend7.  These studies motivate an investigation of the sensitivity of our results to wind trends in our regions and seasons of interest. Although adequate gridded wind data do not exist for the scope of our study, we have gathered monthly wind data from over 500 stations among those used in compiling the PGF dataset, screening for those with >85% coverage in the growing season months of interest since 1980. From these stations we obtain all necessary inputs to the FAO standard PM equation, except for Rnet which was estimated based on a land surface model simulation forced by the PGF data at corresponding grid cells to the stations. We then compute PM with and without time-varying wind at these stations (additional details in Supplemental), and while we find substantial regional variation in wind trends and their effect on PET, the global aggregate for each crop is very near zero (Fig. S5-S6). 

Two additional sources of uncertainty in our analysis are (i) the growing season definition and (ii) the parameterization of the CO2 scaling effect on both RUE and TE. To address the first, we recompute our results for weather time series in which our preferred set of months for each crop and grid cell has been extended in two ways: once by including the month preceding our preferred season, and once including one month following. The effect on demand trends is around one percentage point, though the direction induced by a shift to include an earlier vs. later month depends on the crop and region (Fig S7). 

Addressing the sensitivity to the parameterization of CO2’s impact on RUE and TE is similarly important. While our trend results in percentage terms are not sensitive to each crop’s baseline RUE or TE, since these are constants in the sink-strength equation, the rate at which RUE(TE) is assumed to increase(decrease) with rising CO2 clearly affects our reported trends. Starting with each crop’s values of these parameters in their respective APSIM modules, which are consistent with numerous studies17,37–39, we increase or decrease the rate of CO2 effect by 10% and recompute sink-strength demand trends. We find that even in the cases where RUE and TE factors are pushed in opposing directions with respect to their effect on demand, the resulting trend differences are only around on percentage point (Fig. S8).
Data Availability

The data that support the findings of this study are available from the corresponding author upon request.
Additional References
30.
Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Glob. Ecol. Biogeogr. 19, 607–620 (2010).

31.
Piccinni, G., Ko, J., Marek, T. & Howell, T. Determination of growth-stage-specific crop coefficients (KC) of maize and sorghum. Agric. Water Manag. 96, 1698–1704 (2009).

32.
Hamilton, S. K., Hussain, M. Z., Bhardwaj, A. K., Basso, B. & Robertson, G. P. Comparative water use by maize, perennial crops, restored prairie, and poplar trees in the US Midwest. Environ. Res. Lett. 10, 64015 (2015).

33.
McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 416–417, 182–205 (2012).

34.
Roderick, M. L., Hobbins, M. T. & Farquhar, G. D. Pan Evaporation Trends and the Terrestrial Water Balance. II. Energy Balance and Interpretation. Geogr. Compass 3, 761–780 (2009).

35.
Estes, L. D. et al. Changing water availability during the African maize-growing season, 1979–2010. Environ. Res. Lett. 9, 75005 (2014).

36.
Hobbins, M. T., Dai, A., Roderick, M. L. & Farquhar, G. D. Revisiting the parameterization of potential evaporation as a driver of long-term water balance trends. Geophys. Res. Lett. 35, L12403 (2008).

37.
Lobell, D. B. et al. The shifting influence of drought and heat stress for crops in Northeast Australia. Glob. Change Biol. n/a-n/a (2015). doi:10.1111/gcb.13022

38.
Asseng, S. et al. Performance of the APSIM-wheat model in Western Australia. Field Crops Res. 57, 163–179 (1998).

39.
Archontoulis, S. V., Miguez, F. E. & Moore, K. J. Evaluating APSIM Maize, Soil Water, Soil Nitrogen, Manure, and Soil Temperature Modules in the Midwestern United States. Agron. J. 106, 1025 (2014).

PAGE  
22

