Adaptive transceiver design for C-RAN in mmWave communications
Adaptive transceiver design for C-RAN in mmWave communications
An adaptive array design is proposed for hybrid beam forming in millimeter wave (mmWave) communications in the context of cloud radio access networks (C-RAN). More explicitly, the adaptive design focuses on the physical layer aspect of C-RAN. The adaptation is performed at two levels, depending on whether the channel is of line-of-sight (LOS) or non-line-of sight (NLOS) nature. Firstly, the antenna array architecture can be adapted between a fully-connected and a sub-array-connected architecture. Then, the employment of a digital precoder in the baseband is decided based on both the channel conditions and the architecture employed. We show that the proposed adaptive design performs better than the fully-connected and sub-array-connected constituent designs, when the channel varies between LOS and NLOS scenarios. Then, we extend our proposed adaptive design to mmWave communications in the context of C-RAN, where we propose an adaptive virtual cell formation algorithm, where a user can be connected to one or two remote radio heads (RRHs), depending on the channel conditions.
Satyanarayana, Katla
f3436daa-e5da-4b3c-ab4b-ad07a0cef99a
El-Hajjar, Mohammed
3a829028-a427-4123-b885-2bab81a44b6f
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Satyanarayana, Katla
f3436daa-e5da-4b3c-ab4b-ad07a0cef99a
El-Hajjar, Mohammed
3a829028-a427-4123-b885-2bab81a44b6f
Hanzo, Lajos
66e7266f-3066-4fc0-8391-e000acce71a1
Satyanarayana, Katla, El-Hajjar, Mohammed and Hanzo, Lajos
(2017)
Adaptive transceiver design for C-RAN in mmWave communications.
IEEE Access.
Abstract
An adaptive array design is proposed for hybrid beam forming in millimeter wave (mmWave) communications in the context of cloud radio access networks (C-RAN). More explicitly, the adaptive design focuses on the physical layer aspect of C-RAN. The adaptation is performed at two levels, depending on whether the channel is of line-of-sight (LOS) or non-line-of sight (NLOS) nature. Firstly, the antenna array architecture can be adapted between a fully-connected and a sub-array-connected architecture. Then, the employment of a digital precoder in the baseband is decided based on both the channel conditions and the architecture employed. We show that the proposed adaptive design performs better than the fully-connected and sub-array-connected constituent designs, when the channel varies between LOS and NLOS scenarios. Then, we extend our proposed adaptive design to mmWave communications in the context of C-RAN, where we propose an adaptive virtual cell formation algorithm, where a user can be connected to one or two remote radio heads (RRHs), depending on the channel conditions.
Text
Final_Access_Paper
- Accepted Manuscript
More information
Accepted/In Press date: 16 November 2017
e-pub ahead of print date: 20 November 2017
Identifiers
Local EPrints ID: 416756
URI: http://eprints.soton.ac.uk/id/eprint/416756
ISSN: 2169-3536
PURE UUID: 3d63d69d-169c-461a-9eec-05d269d8fbbb
Catalogue record
Date deposited: 08 Jan 2018 17:30
Last modified: 18 Mar 2024 05:14
Export record
Contributors
Author:
Katla Satyanarayana
Author:
Mohammed El-Hajjar
Author:
Lajos Hanzo
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics