Jassey, Vincent, Reczuga, Monika, Zielińska, Małgorzata, Słowińska, Sandra, Robroek, Bjorn J.M., Mariotte, Pierre, Seppey, Christophe, Lara, Enrique, Barabach, Jan, Słowiński, Michal, Bragazza, Luca, Chojnicki, Bogdan, Lamentowicz, Mariusz, Mitchell, Edward and Buttler, Alexandre (2018) Tipping point effect in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Global Change Biology, 24 (3), 972-986. (doi:10.1111/gcb.13928).
Abstract
Ecostems are increasingly prone to climate extremes, such as drought, with long lasting effects on both plant and soil communities and, subsequently, on carbon (C) cycling. However, recent studies underlined the strong variability in ecosystem’s response to droughts, raising the issue of non-linear responses in plant and soil communities. The conundrum is what causes ecosystems to shift in response to drought. Here, we investigated the response of plant and soil fungi to drought of different intensities using a water table gradient in peatlands – a major C sink ecosystem. Using moving window structural equation models, we show that substantial changes in ecosystem respiration, plant and soil fungal communities occurred when the water level fell below a tipping point of -24 cm. As a corollary, ecosystem respiration was the greatest when graminoids and saprotrophic fungi became prevalent as a response to the extreme drought. Graminoids indirectly influenced fungal functional composition and soil enzyme activities through their direct effect on dissolved organic matter quality, while saprotrophic fungi directly influenced soil enzyme activities. In turn, increasing enzyme activities promoted ecosystem respiration. We show that functional transitions in ecosystem respiration critically depends on the degree of response of graminoids and saprotrophic fungi to drought. Our results represent a major advance in understanding the non-linear nature of ecosystem properties to drought and pave the way towards a truly mechanistic understanding of the effects of drought on ecosystem processes.
More information
Identifiers
Catalogue record
Export record
Altmetrics
Contributors
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.