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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Ibrahim Ahmad Bello

The use of multiple antennas in wireless transmission, otherwise known as multiple-
input multiple-output (MIMO), is an important technique for achieving the high data-
rates required by future communication systems. Already, MIMO technology has been
adopted by the 3rd Generation Partnership Project Long Term Evolution, WiMAX and
by recent Wireless Local Area Network standards, such as the IEEE 802.11ac. It is
envisaged that multi-antenna systems will play an even more prominent role in future as
more diverse platforms become interconnected and user data rates requirements increase.
Although MIMO offers numerous advantages to communication systems, it also presents
a number of challenges, in particular to the receiver, where the complexity of the signal
detection is exacerbated by the interferences from the multiple transmit antennas. In
the worst-case scenario, the signal detection in MIMO systems is an NP-hard problem,
which makes its application to real-time systems impractical. As a result, low-complexity
detection algorithms, with near-optimal performance, have been extensively studied in
the literature in the past decade.

In this thesis, a number of detection techniques for MIMO systems will be investigated,
with particular focus on achieving high throughput and low power consumption. We be-
gin by presenting the VLSI implementation of the sphere decoder (SD), which achieves
the optimal maximum likelihood bit error rate (BER) performance. Although the SD has
the potential of achieving a high throughput - specifically in high signal-to-noise ratios
(SNR) - it also suffers a severe throughput degradation at low SNR, which is undesirable
in a real-time system. This problem motivates us to investigate the K-best algorithm,
which delivers a constant throughput irrespective of the channel condition. Two archi-
tectures for theK-best detector are considered: single and multi-stage architectures. The
latter case is particularly interesting as the multiple stages can be utilised to achieve
deeply pipelined detectors, which is attractive for high-throughput applications. The
proposed multi-stage K-best detector is implemented in a 65 nm CMOS process, and
achieves a throughput of 3.29 Gbps and a power consumption of 580 mW for a 64-QAM
4×4 MIMO configuration, which compares favourably with recent implementations in
the literature.
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Chapter 1

Introduction

The field of wireless communications has experienced quite spectacular advancements
in recent years. From humble beginnings in radio telegraphy and Morse codes, wireless
communications is now an indispensable part of daily life, present in applications as
diverse as mobile phones to domestic electrical installations. In the next few years, it
is estimated that tens to hundreds of billions of devices will become interconnected [1].
This development has instigated a significant amount of research work in developing
new standards and techniques to power the next generation communication devices.

One of the most noticeable trends in wireless communications is the exponential increase
in the data rate as illustrated in Fig. 1.1. Over time, this has been achieved by switching
from analogue to digital signal processing, increasing the channel bandwidth, adopting
more sophisticated modulation schemes and more recently, by employing multiple an-
tennas at the transmitter and receiver. The latter case, which is the focus of this thesis,
is also known as multiple-input multiple-output (MIMO), and it allows higher transmis-
sion rates to be achieved without increasing the bandwidth [2]. A MIMO communication
system is illustrated in Fig. 1.2 and compared with a conventional single-antenna system.

MIMO can be employed in three major ways: spatial-multiplexing, diversity and beam-
forming. In the spatial-multiplexing mode, the MIMO system aims to maximise the
transmission rate by transmitting independent streams of data in parallel over multiple
transmit antennas. In the absence of correlation between the parallel streams, the spatial-
multiplexing MIMO system can increase the channel capacity in direct proportion to the
number of transmit antennas [3]. Meanwhile, the MIMO system operating in the diver-
sity mode aims to take advantage of the several antennas at the transmitter and receiver
to improve the error rate of the transmission. The information bits are duplicated over
the multiple antennas using one of a number of space-time block codes (STBC), such
that multiple copies of the same data are available to the receiver, thereby, improving the
performance. Diversity can be implemented both at the transmitter and receiver sides
of the communication link; however, it is typically implemented at the transmitter since

1
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Figure 1.1: Wireless trends in the past 20 years

implementing diversity techniques at the receiver-side could result in highly complex
remote units due to their physical and computational limitations [4]. MIMO can also
be utilised to provide a beamforming gain in a multi-user scenario, where the gain of a
transmitter or receiver is increased in the direction of the desired user while suppressing
the interferences from other users [5]. MIMO can also be used in conjunction with or-
thogonal frequency division multiplexing (OFDM), to combat inter-symbol interference
at the receiver by transmitting independent streams on a tone-by-tone basis [6]. In spite
of these benefits, MIMO also complicates the wireless transceiver, which is explained in
more detail in the next section.

1.1 Challenges of Multi-Antenna Communication Systems

The use of multiple antennas at the transmitter and receiver presents a number of
challenges as follows:

• At the transmitter: In spatial-multiplexing and diversity modes, the transmitter
needs to transmit multiple data simultaneously over multiple antennas. In a multi-
user scenario, the transmitter will also be equipped with user-selection capabilities
based on certain criteria. All these impose additional complexity at the multi-
antenna transmitter compared to a single-antenna transmitter.

• At the receiver: The signal detection at the receiver in a MIMO system is com-
plicated as a result of interferences between the transmitted substreams on each
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Figure 1.2: Illustration of single and multiple antenna systems

receive antenna. A straightforward detection using the maximum likelihood de-
tector [7], results in an NP-hard problem, which is undesirable in a real-time
communication system. This is particularly problematic when the receiver is a
small hand-held device with limited power supply. This problem has inspired a
significant amount of research into low-complexity alternatives to the maximum
likelihood detector.

1.2 Energy-Efficient Communications

Energy efficiency refers to the ability of a digital circuit to meet its throughput target
at a relatively low power consumption. Due to the increasing need for higher data rates,
energy efficiency is expected to play a crucial role in future communication systems [8].
In this thesis, we will consider various strategies for achieving energy-efficient signal
detection for MIMO communication systems. These design trade-offs are summarised in
Fig. 1.3, which we elaborate as follows:

1. High throughput: Digital circuits that achieve a high throughput tend to be highly
energy efficient, since they are operational over a short period, compared to slower
digital circuits. However, a high throughput may also come at the expense of a
higher power consumption.

2. Low power design techniques: These refer to circuit-level design techniques for
reducing power consumption. Examples include well-established low power tech-
niques such as power gating, clock gating and operand isolation. Optimising a
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design for low power is a critical step in achieving highly energy-efficient digital
circuits.

3. Low complexity: Complexity refers to different things depending on the context.
In hardware design, this refers to the area consumption. A circuit with high com-
plexity tends to incur a high power consumption due to the corresponding increase
in the number of combinational and sequential elements. Thus, reducing the area
of a design may lead to a more energy efficient system. Alternatively, complexity
may refer to the number of operations required by an algorithm. This is usually
measured in terms of floating-point operations per second (FLOPS). A circuit with
a large number of FLOPS will tend to incur a high power consumption.

4. Error rate: This is the mismatch between the expected result of a computation
and the actual output of a digital circuit. This is typically measured as the ratio
of the number of correct information bits to the total number of bits transmitted.
A relationship between the error rate and energy efficiency is less obvious than the
previous three metrics. However, if a circuit does not meet its target error rate, this
may increase the transmission power of the communication link [9]. Conversely, a
system may deliberately aim for a lower error performance to reduce the power
consumption.

1.3 Research Motivation

As already highlighted in Fig. 1.1, the data rates required by wireless communication sys-
tems have experienced an exponential growth in the past few decades. This phenomenon
is expected to continue in the coming years with the introduction of 5G wireless systems.
MIMO is a driving force of future wireless communication systems, and it is vital that
the VLSI circuits for MIMO systems are designed as efficiently as possible to deliver
the advantages promised by MIMO with high throughput and low power consumption.
To achieve this, application specific integrated circuits (ASICs) are attractive as they
have better potential for achieving low-power implementations compared to other plat-
forms, such as field programmable gate arrays (FPGAs) [10] and digital signal processors
(DSPs) [11].

In Section 1.1, the detector at the receiver-side was identified as a potential bottleneck
in the MIMO communication system due to the high complexity required for detect-
ing the transmitted data. Unfortunately, most of the existing VLSI implementations of
MIMO detection in the literature do not achieve the high data-rates required by the
next-generation communication systems, which now exceed the 1 Gbps mark [1]. Thus,
more advanced circuit-level techniques are required to achieve the theoretic benefits
promised by MIMO. The aim of this thesis is thus to fill this gap by presenting the
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VLSI implementations of different MIMO detector architectures and investigating nu-
merous circuit-level strategies for achieving low complexity and high throughput MIMO
detection.

1.4 Research Objectives

As highlighted in the previous sections, the signal detection in a MIMO receiver presents
a major bottleneck in achieving the gains promised by MIMO technology. Several com-
peting objectives come into play when implementing MIMO detection in hardware as
illustrated in Fig. 1.3. Therefore, an efficient MIMO detector implementation should
achieve a suitable trade-off among these objectives. This leads us to formulate a number
of research questions as follows:

1. What is the impact of algorithm choice on the hardware implementation of a
MIMO detector?

2. How do different architectural design choices of a particular algorithm impact the
hardware implementation of the MIMO detector?

3. How do throughput optimisation strategies, such as pipelining and parallelism,
compare with regards to achieving high data-rate MIMO detection?

To address these questions, we present a number of objectives for this thesis as follows:

1. Undertake a comprehensive survey of VLSI implementations of MIMO detection
algorithms, which to the best of our knowledge is missing in the literature.
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2. Investigate techniques for reducing the complexity of the sphere decoding algo-
rithm [12] through critical path optimisations of the Euclidean distance computa-
tion. We will also implement a “look-ahead” strategy for reducing the number of
clock cycles required by the sphere decoder for detecting the transmitted symbols.

3. Implement a high-speed sorting architecture, which will be applied to the K -
best algorithm [13]. We will also study the impact of a reduced-complexity K -
best algorithm on the BER performance compared with the original K -best algo-
rithm.

4. Implement a fully-pipelined K -best architecture with a processing rate of 1 MIMO
symbol per clock cycle. A novel pipeline scheduling technique will be implemented
with the view of reducing the area consumption required by successive input sig-
nals. The fully-pipelined implementation will be compared with interleaved imple-
mentations (i.e. parallelism) of unpipelined K-best detectors.

5. Present a number of design guidelines for the hardware implementation of energy-
efficient MIMO detectors, which will hopefully excite more research activity and
innovations within this area.

1.5 Publications

The following papers have been published/submitted for publication as part of this
research:

1. “A Survey of VLSI Implementations of Tree Search Algorithms for MIMO Detec-
tion,” Circuits, Systems, and Signal Processing, 2015 [14].

2. “VLSI Implementation of a Scalable K -best MIMO Detector,” in 2015 15th Inter-
national Symposium on Communications and Information Technologies (ISCIT),
Oct. 2015 [15].

3. “VLSI Implementation of a Low-Complexity Look-Ahead Sphere Decoder,” sub-
mitted to Transactions on Circuits and Systems II: Express Briefs.

1.6 Organisation of the Thesis

The thesis is organised as follows:

• Chapter 2: In this chapter, we tackle the first objective of the thesis as provided
in Section 1.4. Firstly, the mathematical foundation for the MIMO communication
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channel is presented. The complexity problem of the signal detection in a multi-
antenna system is highlighted, and several low-complexity detection algorithms
are presented. We pay particular attention to the class of detection algorithms
that carry out the MIMO detection as a tree search, where each antenna corre-
sponds with a level in the search-tree, and each branch of the tree corresponds to a
possible solution. The chapter concludes by presenting a number of notable VLSI
implementation results of tree-search detection algorithms from the literature.

• Chapter 3: This chapter addresses the second objective of the thesis. The sphere
decoder is adopted for VLSI implementation due to its ML performance, which
makes it useful in benchmarking other detection algorithms implemented in sub-
sequent chapters of the thesis. We consider a number of strategies for improving
the throughput of the sphere decoder, especially at low signal to noise ratios. We
present and compare two implementations of the sphere decoder based on the con-
ventional and proposed techniques for computing the partial Euclidean distance.

• Chapter 4: In this chapter, the implementation of a hybrid merge architecture is
presented, which will be used in the K -best detector implementation, to meet the
third objective of the thesis. Furthermore, a classification of K -best architectures
is provided according to different criteria. The single-stage K -best architecture is
selected due to its small area, and the VLSI implementation results are compared
with that of the sphere decoder.

• Chapter 5: In this chapter, we tackle the fourth objective of the thesis by inves-
tigating pipelining as a technique for improving the throughput of the K -best de-
tector. The pipeline schedules of a partial and fully-pipelined K -best detector are
presented and analysed. A VLSI implementation of the fully-pipelined K -best de-
tector is presented, and the results are compared with the interleaved single-stage
K -best detector, as well as state-of-the-art implementations of K -best implemen-
tations from the literature. Finally, the potential application of the implemented
fully-pipelined K -best architecture to recent high-throughput wireless communi-
cation standards is discussed.

• Chapter 6: The thesis is concluded in this chapter. A number of design guidelines
are outlined, and possible topics are presented for future research.



Chapter 2

Background

2.1 Introduction

In Chapter 1, we provided an overview of MIMO technology and the impact it has had on
wireless communications in the past few decades. In this chapter, we will provide a more
in-depth discussion of MIMO technology, with particular focus on the signal detection
at the receiver. The chapter is organised as follows. In Section 2.2, we will present the
MIMO system model. In Section 2.3, we will provide an overview of the maximum
likelihood MIMO detector. In Section 2.4, we will discuss linear detection algorithms.
In Sections 2.5 and 2.6, we will present a number of non-linear techniques for improving
the performance of linear detectors. In Section 2.7 a number of tree-search detection
techniques will be presented. In Section 2.8, we will present a number of performance
metrics for comparing hardware implementations of MIMO detectors. Furthermore, a
number of notable results of tree-search VLSI implementations from the literature are
provided. The chapter is concluded in Section 2.9.

2.2 System Model

Figure 2.1 illustrates a MIMO system employing NT and NR antennas at the transmitter
and receiver respectively. A stream of bits, denoted by x is sent to a quadrature ampli-
tude modulator (QAM), which maps Q bits to a QAM symbol, denoted by s, which is
drawn from a constellation set of complex-valued symbols denoted by S. The symbols
for a 16-QAM scheme and their corresponding bit patterns are illustrated in Fig. 2.2.
The QAM symbols are then demultiplexed over NT transmit antennas to get an NT × 1
MIMO symbol, s, using one of several MIMO encoding schemes [16]. The wireless chan-
nel can be represented by the NR×NT matrix, H, whose elements represent the channel

8
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fading coefficient for each path between the transmit and receive antennas. That is,

H = [h1 h2 . . . hNT ] =


h1,1 h1,2 . . . h1,NT

h2,1 h2,2 . . . h2,NT

...
... . . . ...

hNR,1 hNR,2 . . . hNR,NT


where hij are complex-valued with normal distribution [3]. The ith column of the channel
matrix, hi, represents the NR × 1 vector of channel coefficients from the ith transmit
antenna to all the NR receive antennas. If the transmitted substreams are sufficiently
decorrelated (which is achieved by separating the transmit antennas by a distance of at
least λ/2), then the entries of H can be considered to be independent and identically
distributed, which allows the maximum channel capacity1 to be achieved [17].

The NR × 1 received signal vector (RSV) at the receiver can be represented using the
following linear equation:

y = Hs + n, (2.1)

where n is the NR×1 additive white Gaussian noise (AWGN) experienced by the signal2

at the receive antennas. At the receiver, a MIMO detector estimates the transmitted sym-
bols by attempting to find the symbol, ŝ, that minimises the error probability P (̂s 6= s).

1Capacity, here, refers to the maximum data rate that the communication system can achieve at an
arbitrarily small BER.

2The terms “signal” and “symbol” will be used frequently throughout the thesis. A symbol is scalar
and is drawn from the complex constellation set, while a signal is a vector of complex numbers, obtained
as a result of the attenuation and interferences experienced by the transmitted symbol vector in the
channel.
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This procedure can be achieved in several ways as summarised in Fig. 2.3. After the
signal has been detected, a demapper converts the symbols to their binary equivalent,
according to the chosen modulation scheme, and a multiplexer converts the detected
parallel bit streams into a single bit stream to recover the transmitted bits. A channel
decoder may also be concatenated with the MIMO detector in a technique known as
iterative decoding [18], in order to improve the BER. For the remainder of the thesis,
we will assume an equal number of antennas at the transmitter and the receiver such
that NT = NR.

2.3 MIMO Detection

In Chapter 1, we highlighted the problem of the signal detection in a multi-antenna
system, which is complicated by the mutual interferences between the transmitted sub-
streams at each receive antenna. Essentially, the received substream at each antenna
will need to be detected in the presence of NT − 1 interfering substreams. One approach
of carrying out the signal detection is to consider all the possible transmitted symbol
vectors as lattice points centred on the received signal, y, as shown in Fig. 2.4. The
detector exhaustively examines all the lattice points and determines the solution that
minimises the Euclidean distance to the received signal. The maximum likelihood (ML)
solution is obtained as follows:
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sML = arg min
s∈SNT

‖y−Hs‖2 , (2.2)

where S represents the complex QAM constellation set and SNT is an NT dimensional
lattice with complex entries formed from all possible combinations of the NT × 1 trans-
mitted symbols. The total number of lattice points in the ML search is |S|NT which
requires N2

T +NT complex multiplications per lattice point. Thus, the ML detector for
a MIMO system employing binary phase shift keying (BPSK) modulation and 2 an-
tennas will need to examine 4 lattice points and perform 12 complex multiplications,
while 65, 536 lattice points and 393, 216 complex multiplications will be required in the
case of 16-QAM with 4 antennas. This exponential complexity makes the ML detector
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y

Figure 2.4: Lattice search for the maximum likelihood detector. Each of the circles
represents a lattice point, Hs.

unsuitable for implementation in real-time systems, especially at larger MIMO dimen-
sions. As such, a number of low-complexity alternatives to the ML detector have been
investigated in recent years, which we will discuss in the subsequent sections.

2.4 Linear Detection Algorithms

Linear detectors apply a linear filter, W, to the received signal, which suppresses the
mutual interference on each of the receive antennas. The received signal is multiplied by
the filter matrix, and the symbol is detected by carrying out a parallel decision on all the
layers [19]. Linear detection can be performed by applying either the zero-forcing (ZF)
or the minimum mean square error (MMSE) criterion and is discussed in the following
sections.

2.4.1 Zero-forcing

The ZF detector suppresses the mutual interferences between all the layers (i.e. the NT

transmitted data substreams [19]). In this detector, the filter matrix is computed as the
pseudoinverse of the channel matrix and the ZF estimate is obtained as follows:

WZF = H† = (HHH)−1HH ,

s̃ZF = WZFy. (2.3)

The estimation errors of the different layers correspond to the main diagonal of the error
covariance matrix given as follows [19]:

ΦZF = E{(s̃ZF − s) (s̃ZF − s)H} = σ2
n

(
HHH

)−1
. (2.4)

The result of the multiplication in (2.3) is a vector of floating-point numbers, there-
fore, a quantiser is required in a final step to round off the ZF estimate to the nearest
constellation point as follows:

ŝZF = Q (s̃ZF) ,
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where Q is the slicing function corresponding to the modulation scheme adopted for
the data transmission. Where NT = NR (i.e. when H is square), WZF can simply be
computed as the ordinary inverse of H, i.e.

WZF = H−1, (2.5)

which eliminates 2N3
T complex multiplications and 2N2

T (NT − 1) complex additions,3

compared to the pseudoinverse based computation in (2.3).

2.4.2 Minimum Mean Square Error

In the computation of the error covariance matrix in (2.4) for the ZF detector, it can
be observed that small eigenvalues of the matrix HHH will result in large errors due
to noise amplification, especially for large values of NT [19]. The performance can be
improved by incorporating the noise variance in the filter matrix, which results in a
minimum mean square error criterion. The MMSE detection is carried out as follows:

WMMSE = (HHH + σ2
nINT

)−1HH

s̃MMSE = WMMSEy, (2.6)

which results in a better estimate of the transmitted symbols. The estimation errors of
the layers using the MMSE detector is given as follows:

ΦMMSE = E{(s̃MMSE − s) (s̃MMSE − s)H} = σ2
n

(
HHH + σ2INT

)−1
.

Alternatively, the MMSE equalisation can be performed by substituting H in (2.3) with
an (NT +NR)×NT extended channel matrix H as follows [19]:

H =
[

H
σnINT

]
.

The received signal vector is extended as follows:

y =
[

y
0NT ,1

]
,

where 0NT ,1 is a zero vector with NT rows. Thus, the MMSE detection can be computed
using (2.3), by simply replacing H and y with H and y respectively. The advantage of
this approach is that the addition in (2.6) is eliminated and it is also convenient for the
sorted QR decomposition MMSE detection described in [19].

3Two extra matrix multiplications are required if (2.3) is used to compute the ZF estimate compared
to (2.5). Each matrix multiplication requires N3

T complex multiplications and N2
T (NT − 1) complex

additions.
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Table 2.1: Numerical complexity of linear detectors versus the ML detector

Detector ZF MMSE ML

W N3
T 3N3

T -
W · y N2

T N2
T -

H · s - - N2
T

‖y−H · s‖2 - - N2
T +NT

Total CMs N3
T +N2

T 3N3
T +N2

T (N2
T +NT ) |S|NT

2.4.3 Complexity Analysis

The complexities of the ZF and MMSE detectors, in terms of the number of complex
multiplications (CMs), are compared to the ML detector in Table 2.1. The number
of CMs for the MMSE detector is determined according to (2.6). The Gauss-Jordan
algorithm was considered for computing the matrix inverse, which has a polynomial
complexity to the order of N3

T [20]. The slicing operation and minimum Euclidean search
required by the linear detectors and MLD respectively have not been considered. It is
clear from the table that linear detectors have a much lower complexity compared to the
ML detector. Furthermore, their complexities are independent of the constellation size
employed. For example, the number of CMs required at 4-QAM for 4× 4 MIMO is 5120
for the ML detector and approximately 1.3 × 106 at 16-QAM. Meanwhile, the number
of CMs required for the ZF and MMSE for 4× 4 MIMO is 80 and 208 respectively, and
remains the same irrespective of the modulation scheme employed.

The complexities of the linear detectors can also be reduced if the channel is relatively
stationary. In this case, the computationally expensive matrix inverse operations need
only be performed for 1/τ of the time on average [21]. The ZF and MMSE detectors
require N3

T and 3N3
T CMs respectively for computing the filter matrix (channel-rate pro-

cessing). N2
T CMs are required for the multiplication with y (i.e. symbol rate processing).

If the channel is sampled at the rate of 1/τ , it implies that the total number of CMs
required for the ZF and MMSE detectors are N3

T /τ +N2
T and 3N3

T /τ +N2
T respectively.

On the other hand, there is no possibility to separate the ML detector into channel
and symbol-rate processing. Unfortunately, this complexity advantage enjoyed by the
ZF and MMSE detectors comes at the cost of a reduced diversity order compared to the
ML detector, which limits their usefulness in practice. Non-linear techniques achieve an
improved diversity order compared to linear detection techniques and will be discussed
in the subsequent sections.
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Algorithm 1 Ordered SIC-aided ZF detection for V-BLAST spatial multiplexing
1: r(1) ← ŷ
2: H(1) ← H
3:
4: for k = 1 to NT do
5: W← H(k)†

6: i← arg mini ‖wi‖ , 1 ≤ i ≤ NT , where substream i is yet to be detected
7: ŝi ← Q(wT

i rk)
8: r(k+1) ← r(k) − hiŝi
9: hi ← 0NT×1

10: end for
11:
12: return ŝ

2.5 Successive Interference Cancellation

Linear detectors estimate the transmitted symbols by suppressing the interference on
each of the layers. The performance can be improved by successively carrying out the
detection layer by layer and cancelling out the interference of the already determined
substreams on the currently detected symbol at every iteration. The successive interfer-
ence cancellation algorithm (SIC) begins with the following initialisations:

r(1) = y

W = H†, (2.7)

where the superscript indicates the current iteration of the algorithm. With this initial-
isation, the SIC-aided detection iteratively computes the signal at the kth iteration as
follows:

r(k+1) = r(k) − hkŝk, (2.8)

where ŝk is obtained by quantising the product of the kth column of W and the received
signal vector in the current iteration as follows:

ŝk = Q(wT
k rk), (2.9)

where wk is the kth column of W and Q(.) is the quantisation function, which rounds
the soft estimate, ŝk, to the nearest constellation point in S. It should be noted that wk

is derived by taking the pseudoinverse of a deflated version of the channel matrix, H,
obtained by setting the kth column of H to zero. The MMSE criterion can also be used
to compute the weighting vectors in (2.7) for improved performance.

Although SIC improves the performance of linear detectors, the error propagation from
previously detected symbols affects the overall performance of the detection. Essentially,
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if a symbol is erroneously detected in previous iterations, then this will affect the reliabil-
ity of the subsequent detections. The SIC detection proposed by Wolniansky, Foschini,
Golden, et al. [22] for the vertical Bell Laboratories layered space-time (V-BLAST) com-
munication system mitigates this problem by carrying out the detection starting with
the layer with the maximum post-detection SNR, which is defined as:

ρk =

〈
|sk|2

〉
σ2
n‖wk‖2

. (2.10)

Since the values for
〈
|sk|2

〉
are not known prior, the optimal detection ordering can

simply be estimated by detecting the symbols according to the ascending order of ‖wk‖2.
An ordered SIC-aided ZF detection is illustrated in Algorithm 1.

Figure 2.5 provide a comparison of the performances of linear detectors with the MLD.
The BER plot is simulated for 16-QAM with NT = 4 based on 100, 000 randomly
generated symbol vectors. The transmitter is assumed to employ spatial multiplexing in
transmitting the symbol vectors over a Rayleigh fading channel. From the figure, it can
be seen that the MMSE detector provides an improved performance compared to the
ZF detector. Meanwhile, the use of V-BLAST ordering improves the BER in both cases.
However, the performance still falls short of the diversity order delivered by the MLD.
Another technique for improving the performance of linear detectors (as well as other
sub-optimal algorithms) is lattice reduction, which is discussed in the next section.

2.6 Lattice Reduction

Although lattice reduction (LR) is originally applied in the field of linear algebra, it has
also been successfully applied to MIMO detection [23]. If the matrix H is considered to
be a basis for the lattice Hs, then lattice reduction techniques can be applied to make H
more orthogonal, which leads to better decision boundaries for the detection [24]. Linear
detection techniques, as well as SIC-aided linear detectors, can then be applied to the
reduced channel matrix to complete the detection.

The main operation of the LR-aided detector is to find a unimodular matrix, T (i.e.
det (T) = ±1), such that H̃ = HT where H̃ spans the same lattice as H. This transforms
the channel equation as follows [24]:

y = (HT)T−1s + n

y = (H̃T−1)s + n.

The ZF (or MMSE) linear detection is then computed with respect to H̃, rather than
H. After the output of the detector is quantised to the nearest constellation point, the
detected symbol is computed as ŝ = Tẑ, where ẑ = Q(H̃−1y).
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Figure 2.5: BER performance of ZF and MMSE detectors for 16-QAM and NT = 4

Unfortunately, the computation of T for large matrix dimensions is NP hard, which
results in a less than favourable detection complexity. Furthermore, the procedure is non-
deterministic, which implies that different computation times will be required depending
on the condition of the matrix. The most common method of finding the orthogonal
matrix is using the Lenstra, Lenstra, Lovász (LLL) algorithm [25], which was originally
formulated on real-valued lattices. This implies that a real-valued decomposition needs
to be performed on the channel matrix [26]. A complex version of the LLL algorithm
(CLLL) was proposed by Gan, Ling, and Mow [27], which implements the LLL algorithm
on complex-valued lattices, which eliminates the need for an extra RVD step.

Like SIC, LR-aided detection has the attractive feature of having a complexity that
is independent of the number of constellation points. Additionally, LR-aided detection
is able to restore the full ML diversity order to the linear detectors [28]. However,
LR has a variable complexity as the procedure is affected by the characteristics of the
channel matrix which is random [29]. A particularly interesting result was by Shabany,
Youssef, and Gulak [30], where a fixed complexity “hardware-optimized” CLLL (HOLLL)
algorithm was realised. The implementation was able to achieve a fixed complexity by
using a fixed number of iterations for its lattice reduction.

LR techniques can be used to improve the BER performance of the linear detectors and
achieve ML diversity. However, the complexity is non-trivial, especially on larger matrix
sizes [31]. The problem of a variable throughput has been resolved in [29] and [30] with
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Figure 2.6: Depth first tree search for a MIMO system with NT = 3

some penalty to the BER performance. The sphere decoder is only slightly more complex
than the LR-aided linear detector and achieves a better BER performance at a given
SNR especially at lower order modulations [32]. A background on the sphere decoder
and similar algorithms is provided in the next section.

2.7 Tree-Search Detection Algorithms

Tree search (TS) algorithms refer to a wide range of MIMO detection techniques that
carry out the signal detection successively from one layer to another in a procedure
somewhat similar to SIC-aided linear detection. Like the ML detector, TS algorithms are
search-based methods that apply a branch-and-bound operation [33] to every candidate
solution by keeping or discarding it depending on certain criteria. Unlike the ML detec-
tor, however, only a subset of the candidates is considered which allows performance-
complexity trade-offs to be achieved. In the next sections, some well-known TS algo-
rithms and notable VLSI implementations from the literature are discussed.
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2.7.1 Sphere Decoding

The channel equation presented in (2.1) can be simplified by carrying out a QR decom-
position4 on the channel matrix to transform the channel equation (2.1) as follows:

y = QRs + n,

QHy = Rs + QHn, (2.11)

where Q is an NT × NT unitary matrix and R is an NR × NT triangular matrix. Due
to the unitary nature of Q (i.e. QHQ = I), the norm, and consequently the statistics of
n, is unchanged by multiplication with QH and thus (2.11) can be rewritten as:

QHy = Rs + n. (2.12)

For simplicity, QHy shall be denoted by ŷ, and will refer to the “received signal vector”
in subsequent discussions.

The triangular property of R has interesting implications for the signal detection as only
one symbol needs to be detected in each layer, while removing the interferences from
previously detected symbols, unlike the ML detector where an NT × 1 symbol vector
is considered at a time. This results in an M -ary tree with NT levels as shown in Fig.
2.6. The sphere decoder (SD) invented by Viterbo and Boutros [12] carries out a depth-
first search (DFS), where the detection proceeds from level NT , corresponding with the
channel entry rNT ,NT

, down to level 1 corresponding with r1,1. At the top level, the
detector selects a symbol from the QAM constellation points and proceeds iteratively
down the tree until the cumulative metric of the selected path violates a pre-determined
constraint. With respect to the ML lattice search, the SD only considers those lattice
points that lie within a given radius from the filtered received signal, ŷ, as shown in
shown in Fig. 2.7. This can be expressed mathematically as:

d(s) = ‖ŷ−Rs‖2 < r2, (2.13)

where d(s) represents the Euclidean distance between the symbol vector, s, and ŷ. The
radius constraint can be computed using a simple linear detector such as zero-forcing
or as a measure of the noise variance [35]. In the next sections, we will present some
important concepts and equations related to the sphere decoder.

4A Cholesky decomposition which decomposes the channel matrix into the product of an upper
triangular matrix and its complex conjugate (i.e. H∗H = U∗U) has also been applied to the SD [18].
However, the QR decomposition is attractive for hardware implementation as it can easily be realised
using CORDIC rotations, which replace many complex arithmetic functions with shifts and additions
[34]. A number of QR decomposition methods have been provided in Appendix A.
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Figure 2.7: Modified lattice search using the sphere decoding algorithm.
Only the lattice points that fall within the radius are considered in the search.

2.7.1.1 Complexity of the Sphere Decoder

The complexity of the SD is directly related to the number of nodes that are visited
to arrive at a solution, which determines the number of times the Euclidean distance
operation is invoked. Unlike the ML and ZF/MMSE detectors, it is difficult to derive a
closed-form expression for the number of visited nodes, since the SD algorithm is highly
recursive and has different termination times depending on the channel condition. Since
the SD is essentially a reduced-complexity ML algorithm, we can assume there exists
a number γ ∈ (0, 1], which reduces the problem size of the SD compared to the ML
detector, such that the complexity of the SD can be expressed as follows [36]:

C(NT ) = |S|γNT ,

where the value of γ is a function of the statistics of the channel matrix and the noise
variance.

In the worst case, the SD can be expected to approach the exponential complexity of
the MLD, while in high SNR, and for a small number of antennas, the SD exhibits a
low complexity, which competes favourably with polynomial-time algorithms [36]. This
result implies that at low SNR, the lattice points are more closely clustered around the
received signal, than at high SNR, necessitating a much larger radius to ensure that a
solution is found. Fig. 2.8 shows the number of visited nodes for the SD for different
antenna sizes.

2.7.1.2 Partial Euclidean Distance Computation

The sequential nature of the depth-first search ensures that the Euclidean distance (2.13)
cannot be calculated at once, instead, it must be computed incrementally as the detector
progresses deeper into the tree. The Euclidean distance up to any level in the tree is
thus known as the partial Euclidean distance (PED). By traversing the tree from level
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Figure 2.8: Number of visited nodes for the SD versus SNR using 16-QAM

i = NT to i = 1, the PED Ti, up to the ith level is given as

Ti = Ti+1 + |ei|2 , (2.14)

where |ei|2 is the PED increment at the ith level and is given by

|ei|2 = |bi − ri,isi|2 , (2.15)

where si represents a symbol at the ith level and bi is defined as

bi = ŷi −
NT∑

j=i+1
ri,jsj . (2.16)

The summation term in (2.16) represents the interference of previously detected symbols
which needs to be cancelled out from the currently detected symbol.

2.7.1.3 Real-valued Channel Decomposition

The original sphere decoder works on the basis of a complex constellation set and com-
plex channel matrix. The channel equation described in (2.1) can also be decomposed



Chapter 2 Background 22

into the real and imaginary parts of the respective variables as follows [37]:
[
<{y}
={y}

]
=
[
<{H} −={H}
={H} <{H}

] [
<{s}
={s}

]
+
[
<{n}
={n}

]
, (2.17)

where R {.} and I {.} denote the real and imaginary parts of a complex number respec-
tively. This results in an equivalent tree with twice as many levels as the tree search
based on the original complex-valued channel equation. Furthermore, the number of
children per parent is reduced from M to

√
M resulting in a new constellation set of

odd-valued integer symbols, D, which is defined as: {−
√
M + 1, . . . ,

√
M − 1}. It should

be noted that as a result of the doubling of the tree depth, the summation in (2.16) now
needs to be carried out up to j = 2NT .

The conversion of the channel equation to a real model results in an attractive hardware
implementation as it is generally easier to compute on real numbers than on complex
numbers. The critical path of the multiplication in (2.16) is reduced from one real mul-
tiplier and adder in series to one real multiplier only, which results in a faster processing
per node. However, the overall throughput of the real-valued detector suffers as a result
of the longer time required to reach the leaf nodes.

2.7.1.4 Orthogonal Real-valued Decomposition

In the previous section, a real-valued decomposition of the channel equation was pre-
sented, which generates an equivalent tree detection to the complex channel model, but
which allows for a simpler hardware realisation. A different real-valued channel decom-
position was proposed by Azzam and Ayanoglu [38], where the complex channel matrix
is decomposed as follows:

H̃ =



<{h1,1} −={h1,1} . . . <{h1,NT} −={h1,NT}
={h1,1} <{h1,1} . . . ={h1,NT} <{h1,NT}

... ... . . . ... ...
<{hNT ,1} −={hNT ,1} . . . <{hNT ,NT} −={hNT ,NT}
={hNT ,1} <{hNT ,1} . . . ={hNT ,NT} <{hNT ,NT}



. (2.18)

This new channel representation has the property that adjacent columns (i.e. h̃n and
h̃n+1) are orthogonal to each other, that is, h̃n · h̃Tn+1= 0 for odd values of n (i.e.
1, 3, . . . , 2NT − 1). It can also be shown that the QR decomposition of the modified
channel matrix results in r̃i,i+1 = 0 for all odd values of i. Thus, setting r̃i,i+1si+1 = 0,
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Table 2.2: Simplification of ri,i × si for 16-QAM [40]

Computation Equivalent

ri,i × (+3) ri,i + (ri,i << 1)
ri,i × (+1) ri,i
ri,i × (−3) −ri,i − (ri,i << 1)
ri,i × (−1) −ri,i

the computation of (2.16) at the ith level is modified to

b̃i = ŷi −
2NT∑
j=i+1

r̃i,j ŝj

= ŷi −
2NT∑
j=i+2

r̃i,j ŝj .

Meanwhile, b̃i+1 for the computation of the PED in the (i + 1)th level is computed
normally as

b̃i+1 = ŷi+1 −
2NT∑
j=i+2

r̃i+1,j ŝj .

Thus, |ẽi|2 for odd-valued levels can be computed concurrently with |ẽi+1|2 since b̃i no
longer depends on the previously detected symbol, si+1. The PED up to the ith level is
then computed as

Ti = Ti+2 +
∣∣∣b̃i+1 − r̃i+1,i+1si+1

∣∣∣2 +
∣∣∣b̃i − r̃i,isi∣∣∣2 .

This result allows two adjacent levels to be processed concurrently, which can allow
higher throughputs to be achieved.

Another consequence of the orthogonal real-valued decomposition (ORVD) is that
the detection ordering is altered from detecting the symbols from the imagi-
nary part, then the real part, to detecting the symbols alternately from the
imaginary to the real part of each symbol. More precisely, the symbol or-
dering is altered from ={sNT

}={sNT−1} . . . ={s1}<{sNT
}<{sNT−1} . . .<{s1} to

={sNT
}<{sNT

}={sNT−1}<{sNT−1} . . .={s1}<{s1}. Thus, the ORVD tree search gen-
erates a different set of intermediary results and PEDs from the conventional RVD. As
a result, the ORVD incurs a performance degradation compared with the conventional
RVD channel model [39].

2.7.1.5 Schnorr-Euchner Lattice Search

The SD is originally based on the Fincke-Pohst algorithm [41], which does not specify a
particular order when visiting the lattice points. This can be inefficient, as the SD might
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Figure 2.9: SE enumeration based on a real axis for 16-QAM. The encircled numbers
indicate the child ordering.

spend too much time traversing non-promising paths. Furthermore, the Fincke-Pohst
SD requires an initial starting point, called the Babai point [42], which results in added
complexity. If the Babai point is not well selected, the Fincke-Pohst SD may fail to find
a solution.

Schnorr and Euchner [43] proposed a modification to the Fincke-Pohst lattice search
by visiting the nodes according to their path metrics, which enables the solution to
be reached more quickly. Additionally, the Schnorr-Euchner (SE) solves the problem of
detection failure by starting with an infinity radius, which is reduced any time a solution
with a smaller metric is found.

The SE search visits the node according to their distance from a so-called SE centre,
which is computed as follows:

ci = bi/ri,i. (2.19)

Thus, the PED increment for a given symbol level can be expressed alternatively as:

|ei|2 = |ri,i (ci − si)|2 , (2.20)

The magnitude of the PED increment is directly proportional to the distance of the sym-
bol from the SE centre. It should be noted that the PED does not have to be computed
explicitly in order to determine the SE enumeration, instead, a zigzag search is car-
ried out by iteratively determining the closest constellation points to the SE centre [44],
which can be done by exploiting the geometrical relationship between the constellation
points and the SE centre.

In hardware implementation however, the SE enumeration is typically determined based
on (2.15) rather than (2.20) in order to avoid the costly division required in computing
the SE centre. Considering a complex channel model, the starting point of the zigzag
search, s(0)

i , is determined as the symbol that minimises the phase difference to bi as
follows [45]:

s
(0)
i = arg min

si∈S
|arc(bi)− arc(si)| ,
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Figure 2.10: Breadth first tree search for a MIMO system using BPSK and NT = 3

where arc (.) computes the phase of a complex number. arc (.) requires the computation
of trigonometric functions, which is cumbersome in a hardware implementation. A real
channel model results in a much simpler implementation as it dispenses with the com-
putation of phase values. Furthermore, since si is drawn from an integer set in the case
of the real channel model, the realization of ri,i×si is quite simple as illustrated in Table
2.2. Figure 2.9 shows the SE enumeration for 16-QAM based on a real constellation set.

2.7.2 K-Best Algorithm

The sphere decoder presented in the previous section is highly recursive making it im-
possible to predict when a solution will be found. This makes it unsuitable for hardware
implementation, especially in applications where a high throughput is desired. The tree
search can also be carried out in a breadth-first manner where all sibling nodes are
visited before descending to the subsequent levels. This is illustrated in Fig 2.10, where
the numbers within the nodes indicate the order in which the nodes are visited. The
breadth-first search is “forward-only”, which results in a highly parallel and pipelineable
architecture that is attractive for hardware implementation.

The most well-known breadth-first search is the K -best algorithm [13], which retains a
fixed number of nodes, K, at each level, after a sorting operation. The K -best nodes are
selected from a total of KM candidates or K

√
M candidates if the real channel model

is employed. Typically, no sorting is carried out at the top level, since K is typically
greater than the number of candidates available. The K value provides a performance-
complexity trade-off as larger K values approach the ML performance but incur a huge
area cost, while smaller K values achieve a smaller area but with a penalty to the
performance. In view of this, it is also possible to employ a non-constant K value for
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the tree search, where large K values are employed at the upper levels, and smaller K
values are employed towards the leaf levels, in order to achieve a smaller area [46], [47].
Since the probability of making an erroneous detection reduces with each level,5 this
does not have a significant effect on the performance.

2.7.3 Fixed-Complexity Sphere Decoder

The fixed-complexity sphere decoder (FSD) [48] is similar to the non-constant K-best
detector as it expands a variable number of nodes from each level in its breadth-first
detection. The FSD assigns a “node distribution” to the tree search, which determines
the number of children that are extended from each parent node at each level. Typically,
the FSD carries out an ML search at the topmost layer, that is nNT

= M , where ni
is the number of nodes expanded in the ith layer. The ML search at the topmost level
ensures that the FSD does not miss the ML solution right at the beginning of the search,
which is a pitfall of the K-best detector. The number of extended nodes is decreased
in subsequent layers to satisfy the relation nNT

≥ nNT−1 ≥ . . . ≥ n1 [49]. For example,
a node distribution of (1, 1, 1, 16)T implies that 16 nodes are expanded at the topmost
layer while only a single node is expanded from each parent in the remaining layers
as illustrated in Fig. 2.11. In subsequent layers, a simple decision feedback equalisation
using a linear detector (such as zero-forcing) is carried out to extend a single node from
each parent.

Since all the nodes are expanded in the topmost layer and only a simple linear detection
is carried out in subsequent layers, the FSD is able to eliminate the sorting operation that

5Tree-search algorithms are quite similar to SIC-aided detection where the detection error is prop-
agated from the upper to the lower levels. As such, the upper levels need to be detected stringently
while this requirement can be relaxed at lower levels since there are fewer levels where the error could
be propagated to.
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is required in the conventional K-best detector [50]. Although the FSD was originally
formulated for a complex constellation, it can also be used on real-valued constellations.

The FSD also introduces a novel channel ordering at the preprocessing stage, where the
ML expansion at the topmost level is executed on the weakest substream, that is, the
substream with the smallest post-detection SNR [22]. In subsequent layers, however, the
linear detection is carried out on the substream with the largest post-detection SNR
among the yet-to-be detected substreams, which is quite similar to ZF-SIC detection in
V-BLAST systems [22]. In this respect, the FSD can also be considered to be a hybrid
scheme combining ML and linear detection.

2.7.4 Best-First Search Algorithm

Unlike the DFS and BFS algorithms, the best-first search (BeFS) always extends along
the path of the least-metric node irrespective of its level on the tree. The most popular
implementation of the BeFS is the “stack” decoder [51], which maintains a sorted list for
storing all the expanded nodes, and always extends the tree along the path of the node
at the top of the list (i.e. the least-metric node). The search is terminated whenever a
leaf node emerges on top of the list, and its path is presented as the ML estimate [52].

The need for a sorted list to store all the expanded nodes obviously makes the BeFS a
memory-hungry algorithm, and a constraint is usually applied to the memory to reduce
its complexity in hardware [52]. The detector may also spend too much time in the upper
layers without reaching a leaf node under a given time constraint [53].

Fig. 2.12 illustrates the BeFS for a 2-ary tree. The current best node is fetched off the
top of the stack and is replaced by all of its children. However, this may be expensive if
M is large. Alternatively, a node may be replaced by its best child and best sibling as
illustrated in Fig. 2.12(b) [54]. The modified BeFS reduces the complexity of the BeFS
as only the PED of two nodes needs to be computed at a time to extend the tree.

Like the DFS, the BeFS has a variable complexity; however, it achieves a better worst-
case and average complexity than the DFS [55]. A more detailed discussion of the BeFS
is provided in [33], where it is indicated that the BeFS achieves the best performance-
complexity trade-off among all the TS algorithms as it expands the fewest number of
nodes on average.

2.7.5 Soft-Output Detection

Our discussion thus far has been focused on hard-output detection, where only a single
solution is presented by the MIMO detector. This limits the performance of the detector
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as the performance depends on the “correctness” of the single hard-detection output and
there is no possibility to explore other hypotheses.

Soft-output detection generates several other possible solutions (referred to as counter-
hypotheses) apart from the hard-output solution. These soft outputs can then be used
to generate the a posteriori reliability information for each bit position, expressed as a
log-likelihood ratio (LLR), which is then passed to a channel decoder. For a given bit
position i, the reliability information is expressed as [18]:

LD(xi |y) = P (xi = 1 |y)
P (xi = 0 |y) .

In each iteration, the soft-input soft-output (SISO) detector computes the probability,
LDi,b, that the bth bit of the ith symbol in the output is a 1 or 0, given a channel
observation, y. The a priori reliability information computed by the channel decoder,
LAi,b, in the previous iteration is fed back to the SISO detector to derive the new extrinsic
information, LEi,b, which in turn is fed to the channel decoder. LDi,b is expressed as a log
likelihood ratio (LLR) and can be computed as [56]:

LDi,b , min
s∈X 0

i,b

{ 1
N0
‖ŷ−Rs‖2 − logP [s]

}
−

min
s∈X 1

i,b

{ 1
N0
‖ŷ−Rs‖2 − logP [s]

}
, (2.21)

where X 0
i,b and X 1

i,b are the sets of symbol vectors with the bth bit equal to 0 and 1
respectively, and P [s] is the a priori reliability information computed by the channel
decoder. Computing (2.21) for every bit is computationally expensive, and the SD can
be applied to reduce the complexity by considering only those s for which the PED is
small [18]. These solutions are stored in a candidate list and the decoder computes the



Chapter 2 Background 29

SISO
Detector

Channel
Decoder

+
LD

i,b LE
i,b

x̂ŷ,R
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extrinsic information only for the solutions within that list. As such, the algorithm is
referred to as the “list” sphere decoder (LSD).

A different strategy from the LSD is the single tree search (STS) proposed by C. Studer
and H. Bolcskei [56], which does not require a list for storing the possible solutions. The
algorithm computes the maximum a posteriori probability (MAP) solution, sMAP, and
its bit-wise counter-hypotheses concurrently, in a single tree search. The MAP solution
is given as

sMAP = arg min
s∈SNT

{ 1
N0
‖ŷ−Rs‖2 − logP [s]

}
and its corresponding reliability λMAP is computed as

λMAP = 1
N0
‖ŷ−RsMAP‖2 − logP [sMAP].

One of the two minima in (2.21) corresponds to the MAP solution, as such, LDi,b can be
computed by determining sMAP, λMAP and its bit-wise counter-hypotheses λMAP, which
is computed as

λMAP = min
s∈XMAP

i,b

{ 1
N0
‖ŷ−Rs‖2 − logP [s]

}
,

where XMAP
i,b = X

xMAP
i,b

i,b . The STS-SD employs an efficient tree search strategy, where a
node is traversed only once, which is achieved by descending into a sub-tree only if it
would lead to an update to either λMAP or λMAP.

The inclusion of the a priori information in the STS also modifies the SE enumeration
such that the geometric properties of S can no longer be directly applied to determine the
node with the smallest metric as described in Section 2.7.1.5. In this case, the metric of
a node,MP (si), comprises of two separate components: the channel-based PED denoted
byMC(si), and the a priori based metric,MA(si), which is computed as

MA(si) = −logP [si] ≈
Q∑
b=1

1
2(|LAi,b| − xi,bLAi,b),

for
∣∣∣LAi,b∣∣∣ > 2 [57]. In [58], a hybrid enumeration is proposed, where two candidates

(based onMC andMA respectively) are selected in each iteration, and the node with
the smaller metric is selected for the next visit.
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Due to the inclusion of the a priori information in the tree search, the STS achieves
a better performance than the LSD, which only considers candidates around the ML
solution for computing the extrinsic information. It also requires less area than the LSD
as it does not require a candidate list. A more in-depth discussion on the STS is provided
in [59] and [56].

2.8 Previous Work

Tree-search techniques have received plenty of research interest in recent years due to
their excellent performance-complexity trade-off compared with other sub-optimal meth-
ods. In the following sections, we will present some notable VLSI implementation results
of TS algorithms. We will begin with a brief discussion on technology scaling and the
effect this has on the comparison of results from different implementations. We will
then provide a number of metrics which will be used in comparing the implementations
presented in this section.

2.8.1 Performance Metrics

The performance of digital circuits is typically assessed using the throughput, area and
power consumption. Other performance metrics such as power-delay product and hard-
ware efficiency can be derived from these three metrics. In many cases, the throughput
is the most important consideration, since a device is only useful if it meets the data
rate required by the target application. However, low power consumption is becoming
increasingly important recently due to the proliferation of devices that need to run on
a limited power supply for a long period of time. It must be stated that performance
metrics, when considered in isolation, might not always present a complete picture of
the performance of a circuit: for example, a serial architecture might have a much better
energy efficiency than a pipelined architecture, but will only be useful for applications
requiring a low data rate. Similarly, a circuit could achieve a high throughput at a power
consumption that overwhelms the target device. In this section, we will present different
performance metrics that will be used for comparing previous works in the literature, as
well as the designs presented in the rest of the thesis.

2.8.1.1 Impact of Technology Scaling

Since different implementations employ different CMOS processes for their designs, a
direct comparison of results will result in unfair conclusions. For example, an architecture
implemented on 90 nm would be expected to be faster and smaller compared with the 180
nm implementation of the same architecture. The generalised scaling equations assume



Chapter 2 Background 31

that as transistor feature size reduces, the supply voltage, delay and power dissipation
will change similarly [60]. However, as we approach submicron levels (≤ 45 nm), leakage
power becomes quite significant, which makes comparison with larger CMOS processes
inaccurate. In [61], a set of scaling equations based on a lookup table, derived from
SPICE simulations of an inverter chain, is presented. However, in this thesis, we generally
compare designs using the same bulk type CMOS processes of 65 nm and above and
therefore use the simpler generalised scaling equations. All the designs are scaled to the
STMicroelectronics 65 nm process with a 1.05 V supply voltage. S is taken as the ratio
of a given CMOS technology to the reference technology (i.e. 65 nm), and U denotes the
ratio between a given supply voltage and the reference supply voltage (i.e. 1.05 V).

2.8.1.2 Area Consumption

The area consumption of a circuit is typically provided in metric units by synthesis
tools; however, this does not take into account the technology in which the design is
implemented. A more accurate comparison of different implementations is performed
by expressing the area in terms of gate equivalent (GE), where one gate is taken as a
2-input drive-1 NAND gate. The gate equivalent of an implementation is expressed as
the ratio of the area in metric units to the area occupied by one gate as follows:

Area = Area of implementation
Area of one 2-input NAND gate GE

= Area of implementation
1000×Area of one 2-input NAND gate kGE.

For the STMicroelectronics 65 nm “CORE65LPLVT” technology, 1 GE is equivalent to
2.08µm2.

2.8.1.3 Throughput

The throughput, Φ, of the MIMO detector is the rate at which one NT × 1 symbol
vector is detected and is measured in megabits-per-second (Mbps). The throughput is
directly proportional to the clock frequency, fclk, which in turn is affected by the process
technology. The throughput of a given implementation can be scaled to the reference
technology as follows:

Φ′ = S × Φ.

As an example, if a design achieves a throughput of 100 Mbps in 130 nm technology,
its throughput if implemented on 65 nm will be approximately 200 Mbps according to
the generalised scaling theory, given S = 130/65 = 2. Based on the throughput, we can
define the hardware efficiency of a detector as the ratio of the throughput to the area
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consumption (TAR). This metric provides a measure of how efficiently the hardware
resources are utilised to meet a target throughput. A high TAR figure suggests that
the implementation utilises the available hardware resources more efficiently than an
implementation with a low TAR value.

2.8.1.4 Power Consumption

The power consumption of a digital circuit is the rate at which it utilises energy per unit
of time and comprises the dynamic power, which relates to the switching activity of the
circuit and static power, which refers to the power consumption due to short-circuit and
leakage current. Thus, the average power consumption is determined as follows [62]:

Power = Powerdynamic + Powershort-circuit + Powerleakage︸ ︷︷ ︸
static

Power = α0→1CLV
2
ddfclk + Ishort-circuitVdd + IleakageVdd, (2.22)

where α0→1 captures the switching component of the power consumption, CL represents
the load capacitance, and Ishort-circuit and Ileakage represent the short-circuit and leakage
currents respectively.

It is evident from the previous equations that power has a quadratic relationship with
the supply voltage. We can therefore scale the power consumption to the reference
technology as follows:

P ′ = Power×
( 1
U

)2
×
( 1
S

)
. (2.23)

This scaling is only approximate as it does not incorporate all the components of the
power equation presented in (2.22). However, we can assume it provides a fair comparison
of the power consumption since the dynamic power typically dominates the static com-
ponents [63]. Based on the power consumption, we can also define the energy-efficiency,
which is computed as 1/Ebit, where Ebit is the energy required to detect one bit of data,
which is computed as the ratio of the power consumption to the throughput (i.e. power-
delay product). As such, the energy-efficiency provides us with the number of bits that
can be detected per unit joule of energy. The normalised energy consumption scaled to
the reference technology is given as follows [53]:

E
′
bit =

( Power
Throughput

)
×
( 1
U

)2
×
( 1
S

)
. (2.24)

The energy-efficiency provides a more accurate assessment of the performance of a design
than the power consumption alone, since it also captures the speed of the design. Thus,
if a design has a high power consumption, but a low Ebit, it implies the design is more
energy-efficient compared to one with a low power consumption but relatively high Ebit.
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2.8.2 VLSI Implementations of the Sphere Decoder

In this section, we will present notable implementation results of the sphere decoder from
the literature. The first VLSI implementation of the sphere decoder in the open literature
was by Burg, Borgmann, Wenk, et al. [45]. In this work, two detectors based on different
methods for computing the PED were presented. In the first implementation (ASIC I),
the PED was computed using the `2 norm i.e. according to (2.14), while in the second
implementation (ASIC II), the PED was computed according to an `∞ approximation
as follows:

Ti ≈ max (Ti+1, |ei|), (2.25)

which resulted in an area reduction of about 50% compared with the original `2-norm
SD. Interestingly, this approximation only resulted in a 1.4 dB loss to the BER. Unfor-
tunately, the implementation suffered a throughput degradation at low SNR due to the
SNR-dependent complexity of the SD. An early termination strategy was proposed by
the authors in another work [64], which places a maximum number of visited nodes on
the SD with some penalty to the performance. Both ASIC I and ASIC II are based on
a serial one-node-per-cycle (ONPC) architecture based on a single stage consisting of
a metric computation unit, which computes the PED, and an enumeration unit, which
determines the next node to visit according to the SE ordering. For a 4 × 4, 16-QAM
system, ASIC II achieves a scaled throughput of 650 Mbps at a reference SNR of 20 dB,
while ASIC I achieves a scaled throughput of 281 Mbps.

Borlenghi, Witte, Ascheid, et al. [65] implemented the first soft-input soft-output STS
detector based on the ONPC architecture described by Burg, Borgmann, Wenk, et al.
[45]. Using a convolutional channel code with 1/2 code rate, the STS detector achieves
an SNR gain of about 5 dB compared to the hard-output SD for a target BER of 10−2

using two iterations. The implementation has three cores for 4-QAM, 16-QAM and 64-
QAM. The 64-QAM implementation achieves a throughput of 132.9 Mbps using two
iterations at an SNR of 24 dB, while it is capable of achieving a maximum throughput
of more than 1 Gbps.

Yang, Tsai, Chang, et al. [66] adopt the use of a “table enumeration” [67], which stores
precomputed SE orderings in a lookup table. In this method, the 16-QAM complex plane
is divided into 64 sub-regions, and the ordering is determined based on the location of the
SE centre as illustrated in Fig. 2.14. Due to the symmetry of the complex plane, only the
orderings based on the first quadrant need to be stored in memory. The implementation
achieves a throughput of up to 231 Mbps at high SNR.

Jenkal and Davis [68] implemented a deeply pipelined detector that is capable of process-
ing multiple received signals in order to achieve a higher throughput. Each independent
received signal is assigned a separate memory unit for storing the surviving nodes; how-
ever, the received signals share the same computation resources in a time-multiplexed
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Figure 2.14: Illustration of tabular enumeration using 16-QAM

arrangement. The implementation achieves a throughput of 443 Mbps at 24 dB with an
area consumption of 175 kGE.

2.8.3 VLSI Implementations of the K-Best Algorithm

The K -best algorithm, which provides an SNR-independent alternative to the sphere
decoder, has featured quite prominently in the literature. The first VLSI implementation
of a tree-search based algorithm in the open literature was by Wong, Tsui, Cheng, et al.
[13], where a K -best detector for a 16-QAM 4× 4 MIMO system was implemented. The
implementation was based on a bubble-sort algorithm, which resulted in a relatively
modest scaled throughput of 54 Mbps. Guo and Nilsson [69] implemented a similar
detector to that of Wong, Tsui, Cheng, et al. [13], and achieve an improved throughput
of 287 Mbps by using a smaller K value of 5 and other hardware-level optimisations.
Certain PED operations are relegated to the preprocessing stage, which reduces the
complexity of the detector unit compared to that of Wong, Tsui, Cheng, et al. [13].

Both Wong, Tsui, Cheng, et al. [13] and Guo and Nilsson [69] employ a bubble-sort unit,
which requires several cycles to select the best K nodes. Wenk, Zellweger, Burg, et al.
[37] implemented a single-cycle list merge, which merges the partially sorted children
of each parent node in the search-tree, into one sorted list in a single step. The SE
enumeration of the child nodes, for each parent, is determined in a zigzag manner based
on the position of bi on the real axis. The implementation achieves a throughput of 1.63
Gbps.
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Shabany and Gulak [70] proposed a “distributed” sorting scheme that provides a com-
promise between the high-latency bubble-sort unit of Wong, Tsui, Cheng, et al. [13],
and the low-latency, large-area single-cycle merge of Wenk, Zellweger, Burg, et al. [37].
This implementation is able to deliver K best nodes out of K

√
M candidates in only K

cycles. In the conventional K-best algorithm [13], all the children of the parent nodes
from the previous level are expanded in parallel and sent to a bubble-sort unit. In this
implementation, only the minimum-metric child of each parent node is expanded in a
cycle, and the minimum amongst them is declared as the first node in the K -best list.
Once a candidate is selected as part of the list, it is replaced by its next best sibling in the
next cycle, and the process is repeated until all the K -best candidates are determined.

A hardware implementation of the distributedK-best detector is presented in [71], which
achieves a scaled throughput of more than 1 Gbps. The implementation is extended in
[72] to support soft-output generation by using the generated K best paths at the end
of the detection to compute the LLR values. To improve the BER, selected discarded
paths are also included in generating the soft outputs using ZF augmentation, which
extends partial paths to full length by rounding them to the nearest constellation point
[57], [69]. By using a convolutional turbo encoder, with 1/2 code rate, the soft-output
implementation achieves an SNR gain of 2.9 dB at a BER of 10−3 compared to the
hard-output detector.

Kim and Park [73] implemented a K-best detector based on the ORVD channel model
[38], which allows adjacent levels to be processed simultaneously in a pipeline stage. The
total number of pipeline stages in their implementation is reduced from 8 to 3, which
leads to a small area consumption. Another contribution of this work is the use of an
approximate sorting scheme, where only a subset of the children of the parent nodes is
considered for the sorting, which is carried out in a distributed fashion.

Two VLSI implementations of theK-best are presented. The first implementation (KB-I)
consists of a single K-best detector core, while the second implementation (KB-II) con-
sists of 4 detector cores that are interleaved in order to increase the throughput. The
single-core detector achieves a throughput of 404 Mbps, while the multi-core implemen-
tation improves the throughput by a factor of 4, with a corresponding increase in the
area.

Liu, Ye, Ma, et al. [74] implemented a configurable K-best architecture that supports
different number of antennas (2 × 2 up to 4 × 4) and modulation schemes (quadrature
phase-shift keying (QPSK) up to 64-QAM). In this implementation, an “extension num-
ber” is formulated to determine the number of nodes that are to be extended from each
parent node at a given level. More nodes are expanded from the more “reliable” parent
nodes (i.e. nodes with smaller metrics) than from the less reliable nodes. A candidate
generation unit calculates all the possible values of ri,jsj in (2.16) and makes them avail-
able to all the candidates at a given level. In a block fading channel, the computation of
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the ri,jsj values can also be pushed back to the preprocessing unit and performed once
per frame, which leads to further energy savings.

All the previously discussed implementations are based on a multi-stage architecture,
where a PE is assigned to each level of the tree. Moezzi-Madani, Thorolfsson, and Davis
[75] implemented a single-stage architecture where a single PE is used for all levels in
a folded arrangement similar to the SD. A single-stage architecture is attractive for an
application requiring moderate throughputs and where area consumption is premium.
Similar to the SD, a higher throughput can be achieved by employing more than one
detector core to operate in parallel on independent received symbol vectors. Their im-
plementation supports antenna configurations of 2× 2 up to 4× 4, and a single core is
able to achieve a throughput of 480 Mbps.

TheK value contributes significantly to the complexity of theK-best detector. However,
a lower complexity can be achieved by using smaller K values at lower levels, without
significantly affecting the BER performance. Moezzi-Madani and Davis [46] implemented
a modified K-best algorithm, which uses a non-constant K value that is decreased
gradually at the lower levels. The implementation is able to save on area by up to 20%,
while incurring a loss of 0.03 dB at an SNR of 20 dB compared to the conventional
implementation. Another contribution of this work is a novel parallel merge algorithm
(PMA) that is able to merge two sorted lists in one step, which makes it suited to high
throughput applications. However, the area cost of the PMA is relatively high with a
complexity of O(N2) [76]. The throughput of the PMA-based detector is 540 Mbps with
an area consumption of 131 kGE.

Tsai et al. [47] implemented a non-constant K-best detector utilising the distributed
sorting proposed by Shabany and Gulak [70]. Like Yang, Tsai, Chang, et al. [66], this is
another work that implements the SE enumeration using a table lookup; however, a real
constellation is considered in this case. Instead of deciding the SE ordering by finding
the nearest constellation points to the SE centre (which requires a division step), this
implementation decides the SE ordering through (2.16) by finding the closest ri,isi to bi.
The enumeration module in this implementation consists only of 3 adders/subtractors
and one small table that is pre-calculated. A fully-pipelined version of this detector,
which generates one MIMO symbol vector per clock cycle, was presented in [77].

2.8.4 VLSI Implementations of the Fixed-Complexity Sphere Decoder

The first hardware implementation of the FSD was by Barbero and Thompson [49],
which was realised on an FPGA device for a 4 × 4 16-QAM system employing a node
distribution of (1, 1, 1, 16)T . The performance degradation of the implementation with
respect to the ML at a BER of 10−3 is only 0.06 dB. The implementation achieves a
throughput of 400 Mbps.
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Liu, Lofgren, and Nilsson [78] implemented a modified FSD algorithm that uses extension
numbers [74] to replace the ML search in the top layer of the tree with a reliability-
based search, where more children are extended from the more reliable parent nodes.
This results in an “imbalanced” tree expansion, where an unequal number of nodes are
extended from each parent node. Similar to [74], this work employs the use of a candidate
generation unit for precomputing the ri,jsj values required to detect a symbol vector.
In this case, an ORVD channel model (2.18) is employed, which allows the precomputed
results to be shared by adjacent layers. The implementation achieves a throughput of
1.98 Gbps with an area consumption of 88.2 kGE.

Chen, He, and Ma [79] extended the imbalanced FSD architecture, proposed in [78], to
support iterative decoding. Unlike the STS-SD enumeration [58], which uses 2 symbols
(channel-based and a priori-based) in deciding the node for the next visit, this imple-
mentation derives an extra symbol that is derived from the a priori-based node, and is
closest to the channel-based node, in order to get a better estimate of the node with the
minimumMP . The implementation achieves a throughput of approximately 3 Gbps per
iteration with an area consumption of 555 kGE.

2.8.5 VLSI Implementations of the Best-First Search Detector

Unlike the SD and breadth-first search algorithms, the best-first search has not received
much attention in the literature. This might be due to the large memory required by the
BeFS to store the visited nodes. Liao, Wang, and Chiueh [53] implemented a soft-output
BeFS detector, which is capable of supporting QPSK up to 64-QAM modulations and
2 × 2 up to 8 × 8 antenna configurations. The stack is managed using a quad-dual-
heap data structure [80], which reduces the complexity of identifying the best and worst
nodes. This work also computes the PED incrementally, by distributing its computation
over previous levels, which significantly reduces the critical path. The implementation
achieves a maximum throughput of 863.6 Mbps in the 4× 4, 64-QAM configuration.

Shen, Eltawil, Salama, et al. [81] implemented a soft/hard-output BeFS detector, which
adopts features of depth-first and breadth-first search proposed by the authors in [54].
For any selected node, the detector enumerates to its best child and next best sibling and
then extends along the path with the lower metric. Additionally, a Fano-like bias [82] is
used to enable the detector to generate full solutions more quickly. The implementation
achieves an average throughput of 199.8 Mbps for the hard-detection case, and an average
throughput of 83.3 Mbps for the soft-detection case over the entire SNR range.
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2.9 Summary and Conclusion

In this chapter, we have carried out an in-depth survey of MIMO detection algorithms.
With respect to complexity, detection algorithms range from linear detectors, which carry
out the detection by applying a linear filter to the received signal, to the maximum like-
lihood detector, which carries out an exhaustive search of all possible hypotheses. The
high complexity of the ML detector limits its usefulness to applications requiring only
small spectral efficiencies (e.g. 2 × 2, BPSK). Meanwhile, linear detectors suffer from
a severe performance degradation at high SNR. This problem motivates us to explore
alternative detection algorithms that achieve a good balance between performance and
complexity. Tree-search algorithms, such as the sphere decoder, are very suitable candi-
dates to fill this gap as they are able to achieve ML diversity with a significant reduction
in complexity. In the next chapter, we will present VLSI implementation aspects of the
sphere decoder, with focus on achieving both low complexity and high throughput.



Chapter 3

VLSI Implementation of the
Sphere Decoder

3.1 Introduction

In the previous chapter, a number of low-complexity alternatives to the ML detector
were presented. We paid particular attention to tree-search detection algorithms, which
are attractive for implementing MIMO detection in hardware due to their excellent
performance-complexity trade-offs. In particular, the sphere decoder has received a lot
of research interest as it achieves the ML performance while incurring a similar com-
plexity, in terms of number of numerical operations, to linear detection schemes at high
SNR. As a result, the sphere decoder provides a more practical means of assessing the
performances of other detection algorithms rather than the exponential-complexity ML
detector.

In this chapter, the VLSI implementation of the sphere decoding algorithm is presented.
The main objectives of the chapter are as follows:

1. Investigate techniques for reducing the computational complexity of the sphere
decoder. The use of a novel look-ahead tree search and adaptive runtime constraints
to improve the worst-case complexity of the SD will be investigated.

2. Present the ASIC implementation of the proposed sphere decoder. Several circuit-
level techniques for reducing the complexity of the computational units of the SD
will be presented.

The chapter is organised as follows. In Chapter 3.2, the methodology employed for the
ASIC implementations proposed in this chapter, and the rest of the thesis, is presented.
In Chapter 3.3, we evaluate the impact of runtime constraints on the complexity of the

39
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Figure 3.1: High performance computing setup using the IRIDIS computer cluster

sphere decoder. In Section 3.4, we present the architecture of the proposed sphere de-
coder. We also present a novel “look-ahead” strategy, which reduces the average number
of clock cycles required to process a received signal. In Section 3.5, we present the hard-
ware implementation results of the sphere decoder and compare with notable results of
the SD from the literature. The chapter is concluded in Section 3.6.

3.2 Methodology

In this section, the steps taken to implement the sphere decoder in hardware from a
high-level description in MATLAB to a placed-and-routed layout will be described. We
will also provide an overview of how relevant implementation results, such as power
consumption and bit error rate, are obtained. The same methodology will be used for
the designs in Chapters 4 and 5.
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3.2.1 High Level Analysis

The first step in the hardware implementation of the sphere decoder, and other MIMO
detection algorithms, is a functional verification using a high-level programming lan-
guage such as MATLAB. In order to achieve accurate results, several channel matrices
and symbol vectors need to be generated. For this thesis, a Rayleigh channel is consid-
ered, with the assumption that the transmit antennas are sufficiently set apart to prevent
the deleterious effects of correlation on the channel capacity at the receiver. At the re-
ceiver, additive white Gaussian noise (AWGN) is imposed on the incoming signal vectors.
Unless otherwise specified, a total of 100, 000 symbol vectors are generated for each SNR
point, with the assumption that the channel remains stationary for the duration of 4
symbol vectors. The received signal vectors are assumed to have been filtered by multi-
plication with QH according to (2.11). For a 64-QAM, 4×4 system this is equivalent to
2.4Mbits (6 bits per symbol×4 antennas×100, 000 symbol vectors) considered for each
SNR point. A sample wireless communication testbed, implemented in MATLAB and
using the ZF algorithm as the MIMO detector, is provided in Appendix B.

Unfortunately, the large number of symbol vectors required for the high-level simula-
tions makes meaningful analysis using a single workstation employing a serial processing
approach almost impossible. For this thesis, high-performance computing using the Uni-
versity of Southampton IRIDIS computer cluster is employed to speed up the analysis
by parallelising the high-level source files over several compute nodes as illustrated in
Fig. 3.1. Each node has 16 processors and runs at 2.4 GHz. This distributed process-
ing approach results in several orders of magnitude reduction in the simulation times
compared with a single workstation. After the functionality of the algorithm is verified,
the next step is to convert the variables into a suitable digital number format, which is
discussed in the next section.

3.2.2 Number Representation

The received signal and the entries of the channel matrix in (2.17) are real numbers and
must be converted to a suitable format for hardware implementation. Numbers can be
represented using either floating or fixed-point format. Floating-point number represen-
tation converts a number into a format similar to the scientific notation as a product
of a significand and an exponent. With a relatively small word-length, a wide range of
numbers can be represented using floating-point, however, for many applications, the
area and power consumption of the floating-point computation units outweighs the ex-
tra accuracy obtained from this number representation [83]. The fixed-point format is
much simpler than the floating-point format and provides an acceptable performance for
many DSP applications. The fixed-point format is described in more detail in the next
section. Then in Section 3.2.2.2, the appropriate variable word-lengths for the hardware
implementation of the SD for a 64-QAM 4×4 MIMO system will be determined.



Chapter 3 VLSI Implementation of the Sphere Decoder 42

Table 3.1: Fixed-point values of SD parameters

Variable ŷi ri,j si bi Ti

Format Q(8, 6) Q(4, 10) Q(3, 0) Q(8, 6) Q(7, 6)
Signed Yes Yes Yes Yes No

3.2.2.1 Fixed-Point Number Representation

The fixed-point number representation assigns a fixed number of bits for the integer and
fractional parts of a number respectively. The most common notation for fixed-point
numbers is the Q-notation, where a number is represented as Q(i, f), where i denotes
the number of bits for the integer part, and f denotes the number of bits for the fractional
part of the number. For a fixed word-length, i and f can be varied to increase or decrease
the range and the precision of the fixed-point representation respectively. The maximum
number a number can take using the Q-format is ∑−i+1

f 2−k for unsigned numbers and∑−i/2+1
f 2−k for signed numbers.

Another variant of the fixed-point representation sets i = 0, which pushes the decimal
point to the left of the MSB [84]. In this case, every number takes a value between 0 and
1−2−f . If the maximum value (MAX) a number can take is known, then the number can
be normalised to [0, 1) by dividing it by the maximum value. This notation is particularly
attractive for multiplication since the multiplication of 2 fractional numbers is always
fractional. However, it also assumes that the target application has the facility to scale
the result back to its real-world representation (i.e. by multiplying it with MAX).

Unlike the floating-point representation, where the location of the decimal point varies
depending on the exponent, the location of the decimal point for the fixed-point notation
is fixed. The flowchart for adding two fixed-point numbers is shown in Fig. 3.2. If the
numbers have different Q formats, then the decimal points have to be aligned manually.
Furthermore, if the numbers have different signs, a sign augmentation will be necessary
to ensure correct results. Despite these extra bookkeeping procedures, the fixed-point
format is widely used in digital circuits where area and power consumption are critical.

3.2.2.2 Fixed-Point Simulation

In this thesis, the fixed-point number format is adopted due to its suitability for low-
complexity digital systems. In order to derive the word-lengths for the various SD vari-
ables, extensive simulations are carried out using MATLAB’s inbuilt fixed-point conver-
sion tool, which determines the typical values that the variables may assume based on
simulation data.

A BER versus SNR simulation for the SD for a 64-QAM 4×4 MIMO system using various
word-lengths for the entries of ŷ and R is shown in Fig. 3.3. The simulation is carried out
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Figure 3.2: Flowchart for adding two fixed-point numbers

using 100, 000 transmitted symbol vectors with the channel randomly regenerated for
every 4 consecutive symbol vectors. The simulations show that a word-length of 14 for
ŷi and ri,j practically achieves the same performance as a word-length of 32 and incurs
an SNR loss of less than 1 dB relative to the floating-point `2-norm simulation at a BER
of 10−3. The fixed-point simulation of the SD is based on the `1-norm approximation
of the partial Euclidean distance presented in [45]. The fixed-point values of the various
SD variables are shown in Table 3.1. The constellation points, si, for 64-QAM can be
represented using a word-length of 4. However, since all the constellation points are
odd-valued, the LSB, which is always a “1” can be discarded during the normal SD
processing in order to save area and appended at the output of the detector.



Chapter 3 VLSI Implementation of the Sphere Decoder 44

10 12 14 16 18 20 22 24 26 28 3010−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

BE
R

`2-norm floating point
`1-norm 32-bit
`1-norm 14-bit
`1-norm 8-bit

Figure 3.3: BER versus SNR simulation for different word-lengths

3.2.3 ASIC Design Flow

In this section, we will describe the design flow for taking an algorithm, implemented in
the high-level analysis step, and converting it into an ASIC ready for fabrication. The
algorithm can alternatively be implemented on an FPGA, or as a software routine run-
ning on a general-purpose microprocessor, however, an ASIC allows a relatively small
design and lower power consumption to be achieved compared to the alternatives. Figure
3.4 shows a simplified ASIC design flow. The flow is highly iterative, and several passes
of the flowchart are usually necessary to achieve a design that meets the desired specifi-
cation. In the next sections, the various stages of the ASIC design flow are discussed in
more detail.

3.2.3.1 RTL Implementation

After the algorithm has been functionally verified at high-level and the fixed-point word-
lengths for the variables have been determined, the next step is to implement the algo-
rithm using a hardware description language, such as SystemVerilog, to create a register
transfer level (RTL) design. The RTL implementation can be generated automatically
from a high-level programming language, such as SystemC and MATLAB, using a high-
level synthesis tool [85], or it can be implemented through manual coding. For this thesis,
the manual approach is adopted as it allows for more control over the architecture selec-
tion. The RTL is then simulated in ModelSim to verify its functionality with the aid of
stimulus files generated from MATLAB. The stimulus files contain randomly generated
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values of ŷi and ri,j for the SNR range considered (0 to 30 dB). The BER of the hardware
implementation is then obtained as follows:

BER =
∑|x|
i=1 xi 6= x̂i
|x| ,

where |x| is the number of bits in the transmitted vector, x, and xi and x̂i are the
ith transmitted (from MATLAB) and detected bits (from the SystemVerilog implemen-
tation) respectively. During the entire ASIC flow, it is often necessary to return to
the functional verification step several times to verify that the circuit still meets the
design intent.
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3.2.3.2 Logic Synthesis

In this stage, the RTL netlists are converted into gate-level netlists using gates from
a proprietary cell library, using a synthesis tool such as Design Compiler from Syn-
opsys. For the proposed implementation, the 65 nm low threshold voltage process,
CORE65LPLVT, from STMicroelectronics is used for the synthesis. The first step of the
logic synthesis is to determine a number of realistic constraints that the circuit should
meet. These constraints include the timing and power consumption budget for the design.
The synthesis begins with an initial design exploration using a low-effort compilation.
Typically, if the timing of the design fails to meet the timing budget by more than
15%, further modifications to the RTL might be necessary [86]. The low-effort synthesis
also allows various architectures to be investigated quite quickly. For larger designs, a
bottom-up synthesis strategy is employed, where sub-modules are compiled separately
and then linked at the topmost module. The choice of synthesis strategy can have quite a
dramatic impact on the quality of results. The bottom-up synthesis procedure is carried
out using the following pseudocode:

foreach submodule in submodules

analyse submodule

apply constraints

compile submodule

end

analyse top level module

apply top level and I/O port constraints

compile top level module

generate reports

Small-sized submodules are synthesised in a top-down manner along with their parent
modules. Although the bottom-up strategy does not always yield the best synthesis
results, it reduces the memory usage, and enables “snapshots” of the synthesis output
at various stages to be saved for further exploration.

3.2.3.3 Place and Route

Place and route refers to a series of steps where the cells in the gate-level netlist, gener-
ated by the synthesis tool, are interconnected. Other important steps include specifying
the floorplan for the chip, and efficiently routeing the clock signal (also referred to as
“clock tree synthesis”) to reduce the clock skew and latency. For this thesis, Cadence
Encounter is used for the place and route stage. In order to make the timing result from
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the logic synthesis closely match the output of the place and route, a clock latency of
1 ns is added to the clock period during the synthesis step. This reduces the number of
potential iterations between the synthesis and place and route stages. After the design
is routed, it is typically sent for further functional and layout verification steps before
being sent to the foundry for fabrication. The area consumption and maximum clock
frequency of the design are determined at this stage.

3.2.4 Power Estimation Flow

Power estimation at different stages of the ASIC design flow is a necessary step for
achieving a power-efficient implementation. Power estimation during early design stages
can quickly inform the designer on whether a modification to the RTL is necessary, or
if low power techniques, such as clock gating and operand isolation, need to be applied
during the high-effort synthesis stage, to meet the power target set for the design.

After the logic synthesis step, the gate-level netlist is passed through a second post-
synthesis step to obtain a more accurate power consumption estimate. Synopsys Power
Compiler [87] is used for estimating the power consumption of the design. Power Com-
piler estimates the power consumption by using the static probability and toggle rate for
all the nets in the design, which are collected during a gate-level post-synthesis timing
simulation using the Synopsys Delay Format (SDF) file, generated after the logic syn-
thesis. (The SDF will also be later used during the post-route timing optimisation step
in Cadence Encounter). The switching activity of the design is saved as a value change
dump (VCD) file, which is subsequently converted into a switching activity information
format (SAIF) file by the synthesis tool. This is then used to annotate all the nets and
signals in the design during the post-synthesis gate-level optimisation.

For the proposed implementation, operand isolation is applied automatically to the
designs during the synthesis stage in order to reduce power consumption. Flip-flops are
also equipped with enable signals wherever possible during idle states. For the post-
synthesis power optimisation, only an incremental compilation is performed, where the
synthesis tool incrementally tries different logic selections in order to improve the quality
of results. No logic mapping is carried out in this stage. Due to the large size of the
switching activity dump files, the power analysis simulations are restricted to a total of
100 symbol vectors per SNR point. Eleven SNR points are considered, which results in
a total of 1100 symbol vectors. For the post-synthesis gate-level simulation, the analysis
is carried out using 220 symbol vectors (20 symbol vectors per SNR). To summarise, the
power consumption estimate is obtained as follows:

1. Simulate RTL/post-synthesis netlist in Modelsim and generate a value change
dump (VCD) file containing switching activities of the design and its sub-modules

2. Convert VCD file into a SAIF file for use by Power Compiler
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3. Read SAIF file from Design Compiler and annotate the design and its sub-modules

4. Run Design/Power Compiler to synthesise design and perform power optimisation
and estimation

5. Generate power consumption reports

6. Modify RTL/synthesis strategy/synthesis constraints until a satisfactory power
estimate is obtained

3.3 Sphere Decoder with Runtime Constraints

In the previous chapter, the sphere decoder was introduced as a low-complexity alterna-
tive to the maximum likelihood detector. It was noted that the SD is a data-dependent
algorithm with a complexity that varies according to the SNR and the characteristics
of the channel matrix. As such, the number of clock cycles required to process a single
RSV and by extension, the throughput of the detector, cannot be known beforehand.
The throughput of the SD is computed based on the expected number of clock cycles,
E{Nclk}, as follows:

Φ = Q×NT × fclk
E{Nclk}

. (3.1)

Unfortunately, Nclk at lower SNRs may be too large as a result of the higher number
of nodes visited (see Fig. 2.8), which results in a significant throughput degradation. In
practice, runtime constraints are applied to the SD to achieve a higher average through-
put. Some of these techniques are discussed subsequently.

3.3.1 Sphere Decoder with Early Termination

The complexity of the SD can be bounded by specifying a maximum number of nodes,
Dmax, which can be visited during the tree traversal [64]. The tree search is terminated if
Dmax nodes are visited or if no remaining solution is better than the best solution found
so far. Dmax must be selected such that at least one valid solution could be found (i.e.
Dmax ≥ NT for the complex model SD and Dmax ≥ 2NT for the real channel model).
Unfortunately, this simplistic approach may result in a performance degradation, since
all symbols are detected with the same computational effort irrespective of the channel
condition. A more efficient early termination strategy is described in the next section.

3.3.2 Sphere Decoder with Block Processing

Consider a block ofN received signal vectors. Instead of the per-symbol early termination
described in the previous section, an average of runtime constraint Davg ≈ Dmax can
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be assigned to each symbol vector in the block, such that ∑N
n=1D

(n) = NDmax, where
D(n) is the number of nodes actually visited for the nth symbol vector in the block.

One strategy for assigning the runtime constraint among the RSVs is the recursive
“maximum-first” approach proposed in [88] for the one-node-per-cycle SD, where earlier
RSVs are given preference to later ones. For the nth symbol vector, the maximum number
of nodes that may be visited is determined as:

D(n)
max = NDavg −

n−1∑
j=1

D(j) − (N − n)NT . (3.2)

The first term on the right-hand side of (3.2) represents the total number of nodes that
can be visited per block; the second term refers to the total number of nodes visited
for previous symbol vectors within the block prior to the current symbol vector, while
the third term guards against detection failure by guaranteeing at least one solution
is found for the yet-to-be-detected symbol vectors. A solution needs at least NT nodes
to be visited using a complex channel model and the one-node-per-cycle (ONPC) tree
search [45]. For a detector that requires more than one cycle per node, and employing
a real channel model, then the third term will need to be adjusted to number of clock
cycles per node ×(N − n)× 2NT .

In this thesis, we propose a modification to (3.2) by defining the runtime constraint based
on the number of solutions found rather than on the number of visited nodes. Counting
the number of visited nodes, rather than the number of solutions found, potentially leads
to a high power consumption especially at low SNR, where a large number of potential
solutions are encountered. In the latter case, the counter is only updated when a solution
is found, while in the former the counter is updated for every node visited irrespective
of whether a solution has been found or not. Equation (3.2) can thus be modified as:

D̃(n)
max = ND̃avg −

n−1∑
j=1

D̃(j) − (N − n), (3.3)

where the second term in this case is the total number of solutions that have been found
so far.

3.3.3 Simulation Results

Figure 3.5 shows the BER versus SNR simulation for the sphere decoder using different
runtime constraints, using a block size of N = 4. The simulation was considered for
200, 000 transmitted symbol vectors and 50, 000 channel matrices. The figure shows
that applying early termination on a per-block basis is advantageous in terms of the BER
performance. The SD with D̃avg = 100 exhibits the same performance as the unbounded
SD with D̃max =∞. This suggests that the SD is inefficient at certain channel conditions
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Figure 3.5: BER versus SNR simulation for the sphere decoder using per-symbol and
per-block runtime constraints

as a longer processing time may not always result in an appreciable improvement to the
BER. With D̃max = 1, the SD has a similar complexity to the ZF-SIC detector and offers
the maximum data rate possible. However, the performance loss is appreciable at high
SNR. The SD with D̃avg = 10 provides a near-optimal performance up to about a BER
of 10−3, while incurring a much lower average complexity than the SD with D̃avg = 100.
The actual choice of D̃avg will depend on a combination of performance and throughput
considerations.

3.4 Hardware Implementation

In this section, the VLSI implementation of the SD, based on the proposed runtime
constraints, is presented. The SD architecture is divided into a single controller unit
and a datapath, which allows separate testing and a more maintainable design to be
achieved. The real channel model will be adopted in order to achieve a low-complexity
implementation. The implementation of the SD is explained in more detail in subsequent
sections.

3.4.1 Controller

The controller unit oversees the entire operation of the detector and is implemented as a
finite state machine (FSM). The controller has two main operations: forward trace and
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Figure 3.6: ASM chart for the sphere decoder

back trace. A trace refers to the movement of the SD from one tree level to another based
on the accumulated metric of the current path. The detector is in forward tracing mode
any time the metric of a visited node is less than the metric of the Babai point, that is,
T (si) < TBabai. This is also the case if the controller is currently processing the top level
nodes, i.e. the constellation points, where a backward trace is not possible. The detector
is also automatically in a forward trace mode during the initial tree traversal before the
bottom level is reached. Any time a visited node satisfies the sphere constraint, the level
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. . .

Figure 3.7: High-level architecture of the SD showing the controller and datapath. For
a 4×4 MIMO system, there are 8 signal entries and 36 channel matrix entries, assuming
a real-valued channel model is employed.

indicator, Level, is decremented, and the detector fetches the best child of the current
node for the next visit at the subsequent level.

On the other hand, the detector enters the back trace mode any time the sphere con-
straint is violated. This can only happen in levels i = 2NT − 1 to 1. In the bottom
level, i = 1, a back trace is performed irrespective of whether the sphere constraint is
violated or not, in order to try another path. Since the nodes at a given level are visited
according to their metrics, a sphere constraint violation on a given node automatically
implies that all its siblings will also violate the sphere constraint, and as such are not
worth visiting. Any time a back trace occurs, the level counter is incremented, and the
sibling of the parent of the current node is marked for the next visit. In the proposed
implementation, all the children of a node at a given level are stored into a shift register,
and its output at any point corresponds with the next best child. A dummy symbol is
also stored into the shift register, which is used to check if all the children of a node
have been exhausted.

The algorithmic state machine (ASM) chart for the controller unit is shown in Fig. 3.6.
The controller comprises 6 states namely: S_IDLE, S_TOP_PED, S_BI, S_PED, S_CHECK

and S_DONE. All the state registers are encoded using one-hot encoding, which assigns
one flip-flop to each state, resulting in a fast state decoding. The states of the controller
ASM are described as follows.

• S_IDLE : The detector is put to an idle state upon the assertion of an asynchronous
reset signal. The detector remains in this state until the synchronous frame_ready
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input signal is asserted. Counters are used to keep track of the tree level and the
number of symbol vectors found so far. The symbol vector counter is updated any
time the last level is reached, that is, i = 1. In the idle state, the level and symbol
counters are restored to their default values of 2NT and 0 respectively. Similar to
the state registers, the level counter is represented using one-hot encoding, such
that an independent bit location corresponds with a level of the tree search.

• S_TOP_PED : In this state, the constellation points, s ∈ D, are expanded, which
marks the start of a new path. As mentioned previously, a back trace is not pos-
sible in this state, since the symbols at the top level have no ancestors. An SE
enumeration is also performed at this level in order to locate the Babai point
quickly.

• S_BI : In the proposed SD, a node is expanded over 2 cycles. In the first cycle,
the interferences of previously detected symbols are computed and cancelled from
the current layer, and in the second cycle, the PED of the current symbol is
computed. The former operation is executed in this state. By the decoupling the
node expansion in this way, the proposed SD incurs a higher number of clock
cycles compared to the ONPC SD [45]. A higher throughput can be achieved by
expanding the nodes in one cycle, albeit, at the expense of a longer critical path.
Different approaches for computing bi are described in Section 3.4.3.2. For levels
i = 2NT − 1 to 1, this state marks the beginning of a new level.

• S_PED : The metric of the current node is computed in this state, using the bi
output of S_BI as an input. After the metric is computed, the datapath, shown in
Fig. 3.7, issues a back_trace signal depending on whether the sphere constraint
has been violated or not. The datapath also issues a search_end signal when a
top level node has violated the sphere constraint1 or if all viable branches have
been visited. Similar to S_TOP_PED, an SE enumeration is also performed in this
state, which ensures that the best child is always visited first.

• S_CHECK : In this state, the back_trace and search_end signals generated from
S_PED are examined. If a back trace is triggered, then the level counter is incre-
mented. The detector then returns to S_PED, and iteratively back tracks until a
viable node satisfying the sphere constraint is found. If back_trace is not asserted,
the level counter is decremented and the controller moves to S_BI. If search_end is
triggered, the controller moves to S_DONE, which ends the detection for the current
RSV.

1If a top level node has violated the sphere constraint it implies that all its branches, as well as
any subsequent top level nodes, will violate the sphere constraint as well. In the former case, this is as
a result of the monotonically increasing nature of the PED, which dictates that any branch emerging
from a node will have a larger PED, while in the latter case, it is as a result of the Schnorr-Euchner
enumeration, which arranges sibling nodes according to their metrics.
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Figure 3.8: Modified ASM chart for the sphere decoder with look ahead

In the next section, we will propose a more efficient implementation of the controller
unit.

3.4.2 Controller with Look-Ahead

The controller ASM presented in the previous section requires an additional cycle to
check if a back-trace has occurred, which can result in a large latency especially at low
SNR. In this section, we will present a modification to the controller discussed previously,
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Figure 3.9: Impact of “look-ahead” on the speed of the sphere decoder

by adopting a “look-ahead” strategy,2 where the controller immediately transits to the
next level, i − 1, even before it is known if a back-trace has occurred or not. In other
words, the PED computation as well as the next level transition occur within the same
cycle. Unlike the conventional SD, the direction of the tree search (whether to increment
or decrement the level counter) is only known after the PED has been computed and
compared with the metric of the Babai point.

The tree traversal using the look-ahead strategy is illustrated in Fig. 3.10. In the con-
ventional SD, the PED and sphere-constraint check (i.e. Ti < TBabai) are computed
serially, which is represented by the horizontal lines within the tree nodes (represented
by circles in the figure). Meanwhile, the PED and sphere-constraint check are computed
concurrently in the modified SD with look-ahead, which is indicated by the vertical line
within the tree nodes. “1” and “2” represent the PED and sphere-constraint check oper-
ations respectively. Observe that when a back-trace occurs in the modified SD, the SD
actually still descends to the next level, i− 1. This is unlike the conventional SD, where
the SD immediately back-tracks to the previous level, i + 1, once it is known that the
sphere constraint has been violated. However, since a back-trace had been flagged in the
previous level, the node s[1]

i−1 is never processed. Instead, the SD traverses to the sibling
of s[j]

i+1, i.e., s
[j+1]
i+1 by back-tracing twice. This operation effectively makes Fig. 3.10(d)

equivalent to Fig. 3.10(b). It should be mentioned that in both the conventional SD and
the SD with look-ahead, a back-trace incurs the same number of clock cycles (i.e. 2), as

2An SD with “look-ahead” was also presented in [89], where the SD attempts to predict the next
node at level i − 1. However, this results in an increase in the number of clock cycles. Look-ahead, as
used in this chapter, refers to making a forward trace without checking if the sphere constraint has been
violated or not, which reduces the number of clock cycles as shown in Fig. 3.9.
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such the look-ahead technique does not incur any additional clock cycles compared with
the conventional SD.

Figure 3.8 shows the ASM chart for the SD using the look-ahead strategy. In the modified
ASM chart, the search_end and back_trace checks are moved from S_CHECK to S_BI.
If T (si) is eventually less than TBabai, then it means a correct decision has been made
and an extra cycle is saved. However, if an incorrect decision has been made, then this
must be corrected, which is achieved by incrementing the level counter twice, which
back-traces the controller to level i+ 1.

Figure 3.9 compares the number of clock cycles required by the conventional SD with
that of the SD with look-ahead. The RTL implementation of the SD is simulated using
100, 000 symbol vectors for both the conventional and modified look-ahead strategies,
and the average of the number of clock cycles required to detect a single symbol vector is
then taken for each SNR point. In spite of the occurrence of erroneous forward traces, the
number of clock cycles using the look-ahead strategy is significantly reduced compared to
the original SD. Since the forward trace is accelerated through the use of the look-ahead
strategy, and a back trace incurs the same number of cycles in both the conventional and
modified tree search, the look-ahead will always reduce the total number of clock cycles
required by the SD. As expected, the reduction in the number of clock cycles is higher
in low SNR regions due to the larger number of solutions observed in those regions. On
average, a percentage reduction of 25.5% is achieved in the number of clock cycles over
an SNR range of 0 to 30 dB by applying look-ahead.

3.4.3 Datapath

The main function of the datapath is to expand the nodes and enumerate them based
on their metrics. The datapath also sends control signals back to the controller to signal
a “back-trace” or an end to the tree search as shown in Fig. 3.7. After expanding a node,
it is saved to a temporary 2NT ×1 symbol register, T, if its metric is less than the metric
of the best solution found so far. If a leaf node has a metric that is less than that of the
best solution found so far, then the contents of T are copied to the symbol register, S,
which holds the current best solution. The symbol vector counter is also updated at this
point, and its value is compared with D̃(n)

max before the start of a new tree search. If the
symbol vector counter exceeds D̃(n)

max, then the current content of S is presented as the
hard-detection output. The implementation of the datapath is explained in more detail
in subsequent sections.

3.4.3.1 Tabular Enumeration

In the Schnorr-Euchner SD, the nodes at each level are visited in accordance with their
metrics, which speeds up the tree traversal. In Chapter 2, we explained that the metrics
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Figure 3.10: Illustration of SD tree traversal with look-ahead. The “1” in the circles
represents the PED computation, while “2” represents the sphere constraint check. The
dashed line represents a back-trace operation.

of the nodes do not need to be explicitly computed in order to enumerate them. Instead,
the nodes can be arranged by iteratively comparing their distances from a so-called SE
centre. In detectors based on a complex model, this will require the computation of
trigonometric functions or their approximations [18], which increases the complexity of
the datapath.

In the proposed detector, the SE enumeration is computed based on a lookup table
(LUT) as proposed by Wiesel, Mestre, Pages, et al. [67]. Instead of computing the SE
enumeration based on the SE centre, ci (see Section 2.19), it is computed based on
bi, which dispenses with the need for a division. The ri,isi axis is divided into discrete
regions, and the enumeration is determined based on the location of bi on the axis. A
tabular enumeration for 64-QAM, using the real-channel model, is illustrated in Table
3.2, where the axis is divided into 14 regions. On close examination, it can be seen that
the enumeration of the negative axis mirrors that of the positive axis. Therefore, only
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Figure 3.11: Determining enumeration region for bi using bitwise comparisons

one half of the enumeration table needs to be stored into the LUT. This saves the area
by about 57% compared with the full enumeration unit. The final enumeration is then
determined based on the polarity of bi.

Figure 3.12 illustrates the simplified circuit diagram of the SE enumeration unit, where
the enumeration is determined by the positive half of the enumeration table. It should
be noted that a comparator is not explicitly required for the region (0,+|ri,i| ], since the
comparison |ri,i| >= 0 is redundant. Thus, only 6 comparators are required. A 6-to-3
priority encoder is used to determine the location of bi on the ri,isi axis, which is then
used to select the appropriate enumeration from the LUT.

In order to reduce the complexity of the SE enumeration unit, bi is only compared
with the left boundary of the decision regions shown in Table 3.2. A straightforward
approach to implement the comparison is to use a subtractor and then note if the result
is positive or negative. In the proposed implementation, the comparator is implemented
by comparing individual bits of bi and integer multiples of ri,i in parallel and then
forwarding the results of the individual comparisons to a priority encoder.

Two priority encoders are required for determining the location of bi as shown in Fig.
3.11. The wordlength is indicated byW in the figure, integer multiples of ri,i are denoted
by ri,i, and the jth bit for bi and ri,i is denoted by bj and rj respectively. If the output
of right encoder is “1” and the left encoder is “0”, it implies that bi is greater than (GT)
ri,i. The leftmost AND gate checks if bi is equal (EQ) to ri,i. An additional OR gate is
required to check if bi ≥ ri,i. It should be noted that the decimal points of bi and ri,i

need to be aligned to ensure a correct comparison. The proposed comparator reduces
the critical path length by approximately 13% compared with the direct unoptimised
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Table 3.2: Tabular enumeration for 64-QAM

Region Enumeration

(−∞,−6|ri,i| ] −7 −5 −3 −1 +1 +3 +5 +7
(−6|ri,i|,−5|ri,i| ] −5 −7 −3 −1 +1 +3 +5 +7
(−5|ri,i|,−4|ri,i| ] −5 −3 −7 −1 +1 +3 +5 +7
(−4|ri,i|,−3|ri,i| ] −3 −5 −1 −7 +1 +3 +5 +7
(−3|ri,i|,−2|ri,i| ] −3 −1 −5 +1 −7 +3 +5 +7
(−2|ri,i|,−|ri,i| ] −1 −3 +1 −5 +3 −7 +5 +7
(−|ri,i|, 0 ] −1 +1 −3 +3 −5 +5 −7 +7
(0,+|ri,i| ] +1 −1 +3 −3 +5 −5 +7 −7
(+|ri,i|,+2|ri,i| ] +1 +3 −1 +5 −3 +7 −5 −7
(+2|ri,i|,+3|ri,i| ] +3 +1 +5 −1 +7 −3 −5 −7
(+3|ri,i|,+4|ri,i| ] +3 +5 +1 +7 −1 −3 −5 −7
(+4|ri,i|,+5|ri,i| ] +5 +3 +7 +1 −1 −3 −5 −7
(+5|ri,i|,+6|ri,i| ] +5 +7 +3 +1 −1 −3 −5 −7
(+6|ri,i|,+∞ ] +7 +5 +3 +1 −1 −3 −5 −7

implementation. After the appropriate SE enumeration region is determined, a single
XOR gate in Fig. 3.12 decides whether to “flip” or “keep” the generated enumeration
based on whether bi and ri,i have different or the same signs respectively.

3.4.3.2 Partial Euclidean Distance

In Chapter 2, we introduced the partial Euclidean distance (PED) computation for tree
search (TS) algorithms. The PED plays a crucial role in determining the performance
and complexity of TS algorithms, and several low-complexity approximations to the
PED have been investigated for the purpose of VLSI implementation. Most notably, a
number of norm approximations to the PED were proposed by Burg, Borgmann, Wenk,
et al. [45], which significantly reduced the area cost of the SD at a small penalty to the
BER. For this implementation, the `1-norm approximation is employed, which computes
the PED as follows:

Ti = Ti+1 + |bi − ri,isi| .

Table 3.3 shows the conventional computation of the interference term in (2.14) at each
level, i, for NT = 3. It is immediately clear that at large NT the interference can become
a throughput bottleneck due to the large number of additions required in series at
lower levels. For example, at the last level, 4 adders are required in order to compute∑6
j=2 ri,jsj , which can negatively impact the attainable clock frequency. A simplistic

solution to this problem is to compute ∑2NT
j=i+1 ri,jsj incrementally over 2NT − i cycles.

However, this will incur a large latency resulting in a significant throughput degradation.

Kang and Park [90] proposed an interesting solution to this problem by computing the
interference terms immediately a new symbol has been detected. Any time a new symbol,
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Figure 3.12: Reduced-complexity SE enumeration computation unit for 64-QAM using
a lookup table. The enumeration is computed based on the positive half of the ri,isi

axis for reduced complexity.

sj , is detected, all the dependent ri,jsj terms from level i − 1 to level 1 are computed
and stored into registers for later use. In other words, the ri,jsj terms in Table 3.3 are
computed “vertically” instead of “horizontally”. For example, in level 5, all the 5 terms
in the first column of Table 3.3 are computed in the same clock cycle and stored into
registers. Since the interference terms are used for the computation of independent Ti,
the number of adders required in series is constant at all the tree levels irrespective of the
number of antennas. The result is that only 2 adders are required for the bi computation
at level 1 instead of 6 adders in the direct implementation as shown in (3.4) and (3.5)
respectively:

b1 = ŷ1 − b2
1 (3.4)

b1 = ŷ1 −
6∑
j=2

r1,jsj , (3.5)

where b2
1 represents the partial bi value for level 1 that has been accumulated and stored

into registers from level 2NT down to level 2, that is, b2
1 = ∑2NT

j=2 ri,jsj . The complexity
of the interference cancellation unit (ICU) can also be reduced by reusing the same ri,jsj
multipliers for different tree levels. For example, in level 1 of Table 3.3, five multipliers
are required for computing ∑6

j=2 r1,js1, while only a single multiplier is required in
level 5. Overall, 15 multipliers are required for the direct implementation of ∑6

j=1 ri,jsj .
However, since the levels are processed in different clock cycles, it would be possible to
share the multipliers across different levels. In the proposed VPED implementation, all
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Table 3.3: Conventional interference computation for NT = 3

i
∑2NT
j=i+1 ri,jsj

6 N/A
5 r5,6s6
4 r4,6s6 + r4,5s5
3 r3,6s6 + r3,5s5 + r3,4s4
2 r2,6s6 + r2,5s5 + r2,4s4 + r2,3s3
1 r1,6s6 + r1,5s5 + r1,4s4 + r1,3s3 + r1,2s2

+ + +. . .r1,6s6 b1

r1,5s5 r1,4s4 ŷ1

-
(a) Conventional Horizontal PED computation

+ +

r1,2s2 ŷ1

b3
1 =
∑2NT

j=3 ri,jsj b1-
(b) Modified Vertical PED computation

Figure 3.13: Horizontal and vertical PED computations at level 1

the ri,j × sj entries in the same row of Table 3.3 are computed by the same multiplier,
which reduces the total number of multipliers from 15, in the direct implementation, to
5 in the modified implementation.

Figure 3.13 illustrates the computation of bi at level 1 using the conventional “horizontal”
and modified “vertical” approaches. The block diagram of the ICU for a MIMO system
employing NT = 4 is shown Fig. 3.14, where several ICU blocks, each corresponding to
a tree level, are connected in a feed-forward manner. The output of the ICU is sent as an
input to the PED computation unit as shown in Fig. 3.15. The absolute value function,
|f(x)|, in the figure, is implemented by checking the MSB of the result of bi − ri,isi and
taking the two’s complement of the result if it is negative.

For complexity reduction, the multiplication ri,i × si is implemented using adders and
shifters as described in Table 2.2. Furthermore, only the absolute value, |ri,isi|, is com-
puted, which reduces the number of adders and shifters required. An XOR gate deter-
mines if the result of the multiplication, ri,i × si is negative, by checking if the MSBs
of ri,i are si are different. All possible |ri,isi| results are generated and a compare and
select (C & S) block determines the correct output based on the value of |si|.
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Figure 3.15: Architecture of the PED computation unit. The structure of the ri,i× si

multiplier is shown on the right. The multiplication is performed on positive symbols
only. The result for negative symbols is obtained by taking the two’s complement of
the output of this module.

3.5 Results and Discussion

In this section, we will present the results of the VLSI implementation of the proposed
SD for a MIMO system employing 64-QAM and 4× 4 antennas. The results are shown
in Table 3.4. Two different designs based on the conventional horizontal PED (HPED)
computation and the modified vertical PED computation are presented. The designs are
synthesised using the ST 65 nm CMOS technology at a supply voltage of 1.05 V. Both
detectors are based on the `1-norm PED computation proposed in [45], and the look-
ahead tree traversal, which has a negligible (less than 10%) impact on the complexity of
the controller unit, and less than 1% overall area cost, compared with the conventional
SD implementation.

As expected, the sphere decoder employing the vertical PED computation (SD-VPED)
achieves an improved clock frequency compared with the conventional SD (i.e. SD-
HPED). The proposed detectors achieve their maximum throughputs, Φmax, at Dmax =
1, which corresponds to a latency of 18 clock cycles.3 This is the number of clock cycles
required to find the Babai point and corresponds with maximum throughputs of 275
Mbps and 344 Mbps for the SD-HPED and SD-VPED respectively. The throughput ad-
vantage of SD-VPED comes at the cost of a slightly higher power and area consumption,

3For NT = 4, the top level is processed in 1 clock cycle, while the remaining 7 levels are processed
using 2 clock cycles each. One further clock cycle is needed to check if the next constellation point at
the topmost level violates the metric of the Babai point. Two clock cycles are required to transit to the
next symbol vector.
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Figure 3.16: Critical path delay of bi versus NT [15]

which can be attributed to the extra pipeline registers required by the VPED technique.
At the 4 × 4 MIMO configuration considered, the impact of the VPED technique ap-
pears quite marginal. However, at larger MIMO configurations, the improvement to the
achievable maximum clock frequency due to the vertical PED computation could be
expected to be more significant as shown in Fig. 3.16.

3.5.1 Comparisons with State-of-the-Art

Table 3.4 presents the results of other notable VLSI implementations of the sphere de-
coder for a 4× 4 MIMO configuration. ISCIT’13 [66] uses a similar tabular enumeration
method to the proposed implementation and achieves a higher maximum throughput.
However, our implementation has the advantage of a lower area and power consumption.
ISLPED’07 [68] applies parallel processing, where several input signals are processed at
once, to achieve a maximum throughput of 443 Mbps. But this comes at the cost of a
relatively high energy consumption per bit of 312.57 pJ/bit. ESPC’06 [92] achieves an
impressive throughput of 1.5 Gbps through the use of a complex channel model, one-
node-per-cycle architecture and parallel processing. The comparatively low throughput
of our implementation is due to the multi-cycle node processing and single-tree pro-
cessing, where independent RSVs are processed sequentially. The throughput of the
proposed detectors can easily be improved almost two-folds by eliminating the pipeline
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Figure 3.17: Throughput versus SNR for the sphere decoder using different values of
D̃avg. At D̃avg = 1, the throughput is constant irrespective of the SNR.

register between the computations of bi and Ti, which will reduce the number of clock
cycles required for finding the Babai point from 18 to 11 clock cycles. As a result of
the simple architecture, our proposed implementations achieve comparatively small area
and power consumptions. The low energy-per-bit figures achieved also indicate that the
implementations will be suitable for energy-efficient communications.

3.5.2 Impact of Runtime Constraints

Figure 3.17 shows the variation of the throughput of the SD with D̃avg. The hardware
implementation of the SD with look-ahead is simulated using test vectors generated
from MATLAB, and the throughput is computed according to (3.1). The number of
clock cycles, Nclk, is obtained by counting all the state transitions required to detect one
symbol vector, from the S_IDLE state to S_DONE as shown in Fig. 3.8. Unfortunately,
the maximum achievable throughput also coincides with a performance degradation. In
practice, several solutions will need to be explored in order to achieve an acceptable BER
performance. Using D̃avg = 10, the average number of clock cycles is 509, corresponding
to a throughput of 9.71 and 12.17 Mbps for the SD-HPED and SD-VPED respectively.
As the SNR increases, the impact of the runtime constraints on the throughput reduces in
significance. This is because the SD, especially when the Schnorr-Euchner enumeration is
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employed, is quite efficient at finding the solution quickly, using its natural unconstrained
tree search.

Going back to Fig. 3.5, we observe that the impact of the runtime constraints on the
BER, at low SNR values, is not significant. For example, the SD with Dmax = 1 offers
a near optimal performance up to an SNR of 14 dB for the Rayleigh fading channel
considered. Therefore, Dmax > 1 is not required for SNRs below 14 dB. As such, we can
adopt different runtime constraints for different channel conditions to achieve a more
efficient detection. For example, if the runtime constraint is selected as follows:

D̃adaptive =

1 if SNR ≤ 14 dB

10 if SNR > 14 dB

then the BER is similar as that of the SD using D̃avg = 10 throughout the SNR range
considered. Selecting the runtime constraint thus, the average number of clock cycles is
reduced from 509 to 63 clock cycles for the entire SNR range, corresponding to approx-
imately 90% complexity reduction compared with the unconstrained SD. The average
throughput of the SD using this adaptive scheme is 79 and 98 Mbps for the SD-HPED
and SD-VPED respectively.

3.6 Summary and Conclusion

In this chapter, we have analysed the performance and throughput of the sphere de-
coder using different runtime constraints. Simulation results show that an acceptable
BER performance can be achieved by applying runtime constraints to the SD, which
also results in appreciable throughput gains. We have also presented a novel look-ahead
tree search, which reduces the number of clock cycles required by the SD by about
25%, using a real channel model. Unlike the complex channel model, which increases
the throughput of the SD at the expense of an increased complexity, the complexity
cost of the proposed look-ahead technique is negligible. Furthermore, an optimised PED
computation technique has been presented, where the interference terms of the PED are
computed incrementally, which results in a constant critical path length irrespective of
the number of transmit antennas employed. To improve the average throughput of the
SD, we have also proposed the use of adaptive runtime constraints, which varies the
maximum number of visited nodes depending on the SNR. The SD with the modified
PED computation achieves an average and maximum throughput of 98 Mbps and 344
Mbps respectively, at a clock frequency of 258 MHz. In the next chapter, we will present
the VLSI implementation of the K -best algorithm. Unlike the SD, the K -best algo-
rithm features a forward-only tree-search, which results in a throughput that is constant
irrespective of the channel condition.



Chapter 4

VLSI Implementation of a
Single-Stage K-best Detector

4.1 Introduction

In Chapter 3, we presented the hardware implementation of the sphere decoder. The
sphere decoder is notable for its ML performance and high throughput at high SNR.
However, it also suffers from a severe throughput degradation at low SNR. To combat
this, runtime constraints are applied in practice to terminate the sphere decoder within
a more reasonable time frame. Unfortunately, this also degrades the performance of the
SD, and as such, the ML performance is not achieved in practice.

The K -best algorithm [13], which carries out the MIMO detection using a breadth-first
tree search was presented in Chapter 2 as an alternative to the sphere decoder. Due
to its breadth-first search, the K -best detector is able to achieve very high throughput
performances, since multiple tree nodes can be processed in parallel, and the tree search
does not involve any back traces. Furthermore, because the number of visited nodes is
fixed with respect to the channel condition, the K -best detector is able to avoid the
throughput degradation problem suffered by the sphere decoder in low-SNR scenarios.

In this chapter, we will study the K -best algorithm in more detail and also present its
hardware implementation. The K -best detector is classified into two basic architectures
namely, single-stage and multi-stage architectures. The single-stage architecture is quite
similar to the SD and will be the focus of this chapter. The multi-stage architecture will
be presented in Chapter 5, and a detailed comparison between the two architectures, in
terms of energy and hardware efficiency, will be presented. The main objectives of the
chapter are as follows:

68
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1. Exploit the inherent regularities of the K -best algorithm to implement a folded
single-stage architecture, similar to the SD, where one processing element is reused
across different tree levels in order to achieve low complexity.

2. Compare the hardware implementation results of different sorting algorithms. This
will be used to select the most appropriate sorting algorithm for our proposed
detector implementation.

3. Implement a low-complexity sorting algorithm suitable for high-throughput MIMO
detection. The Batcher’s sort algorithms [94] will be used for the implementation.

The chapter is organised as follows. In Section 4.2, the BER performance of the K -
best detector is compared with the SD. A reduced-complexity K -best algorithm is also
presented in this section. In Section 4.3, we present a number of sorting algorithms and
compare their hardware implementations. In Section 4.4, the overall architecture of the
proposed K -best detector is presented. Finally, the implementation results are presented
in Section 4.5

4.2 Performance Analysis

In this section, we will compare the performance of the K -best detector with the sphere
decoder. For the fixed-point representation of the K -best implementation, the same
values as provided in Table 3.1 are adopted. We will also present the implementation of
a reduced-complexity K -best algorithm and its impact on the BER performance.

4.2.1 Comparison with the Sphere Decoder

Figure 4.1 compares the floating-point performance of the K -best detector with the
sphere decoder. Different K values and average runtime constraints, D̃avg, for the SD
are considered, for a total of 200, 000 transmitted symbol vectors. The results clearly
show that the sphere decoder outperforms the K -best detector in terms of the BER
performance. This result is expected, as the K -best detector lacks the ability to make
a back-trace to retry other possible solutions. In order to improve the performance of
the K -best algorithm, a larger K value may be employed, or detection ordering may
be applied to begin processing substreams with the largest signal to interference and
noise ratios (SINR). In the figure, the K -best detector with K = 32 achieves a similar
performance to the sphere decoder with D̃avg = 10. However, this large value of K has
a negative impact on the area consumption, and potentially on the critical path, if a
merge-sort procedure is employed for determining the best K nodes. For the proposed
K -best detector, K = 16 is adopted,1 which provides a reasonable performance with

1This choice of K also simplifies the sorting unit (see Section 4.3.5).
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Figure 4.1: BER performance of the K -best algorithm versus SD for different values
of K and D̃avg

much reduced complexity compared to K = 32. At a BER of 10−3, the SNR loss of the
K -best detector with K = 16 with respect to the SD with D̃avg = 10 is less than 1 dB.
With a sorted QR decomposition [19] in the preprocessing stage, the K -best detector
exhibits similar performance as the SD with D̃avg = 20 up to a BER of about 10−4.
The results indicate that with an appropriate choice of K, and preprocessing, the K -
best detector can approach the performance of the SD in practice. In the next section,
we will present a strategy for further reducing the complexity of the K -best detector.

4.2.2 Reduced-Complexity K-best Detector

The number of children per parent node in the tree search can be utilised as a parameter
to reduce the complexity of the K -best algorithm. If the number of children per parent
is denoted by λ, then the K -best detection can be characterised as KB(K,λ), where
KB(K,

√
M) represents the original K -best algorithm. If λ = 1, then the K -best detector

essentially reduces to a SIC-based detection, where each of the K paths extends only its
best child. A similar reduced-complexity K -best detector was proposed by Kim and Park
[73], which was based on the ORVD channel model [38]. As a result of the channel model
employed in that work, two layers are processed in parallel, which results in almost a 10×
increase in the number of PED increment computations compared with the proposed
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Figure 4.2: BER performance of the K -best algorithm with K = 16 using different
values of λ

implementation. Furthermore, the ORVD incurs a BER penalty, as the resulting tree
search is not equivalent to the conventional RVD-based scheme [39].

Figure 4.2 shows the BER simulation for the proposed K -best detector using K = 16 for
different values of λ. The K -best detector using λ = 4 displays similar performance to the
original K -best detector up to a BER of 10−3. On the other hand, the K -best detector
using λ = 2 suffers a significant SNR loss of approximately 3 dB compared with the
original K -best detector at a BER of 10−3. The result of Fig. 4.2 is noteworthy, as the
choice of λ has an impact on the sorting complexity as will be discussed in the next
section.

4.3 Sorting

Sorting plays a prominent role in many digital signal processing applications. In the K -
best algorithm, sorting is required to select the best candidates at each level of the tree
search. The choice of sorting algorithm has an impact on the complexity and performance
of the K -best detector. Single-cycle sort algorithms are suitable for high-throughput
applications (particularly for single-tree detection), while multi-cycle sort algorithms
typically incur a lower complexity but at the expense of a longer latency. Table 4.1 shows
a number of design trade-offs for different sorting algorithms. In the next sections, the
sorting algorithms will be discussed in more detail.
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Table 4.1: Design trade-offs for different sorting algorithms

Algorithm Bubble [13] Distributed [71] Relaxed [15] Batcher’s

Time O(N2) O(K) O(1) O(1)
Area O(N) O(N) O(N) O(N(logN)2)

Performance Exact Exact Approx. Exact

4.3.1 Bubble Sort

The bubble sort is one of the oldest and most well-known sorting algorithms. Given
an unsorted list, a, of length N , the bubble sort (BS) compares adjacent elements and
swaps them if they are out of place. With each pass of the algorithm, the larger of the
two elements compared is shifted towards the end of the list giving rise to a “bubble”
like effect. An implementation of the Bubble sort algorithm is provided in [95] as follows:

for j = N-1 to 1

for k = 1 to j-1

if a[k] < a[k+1]

swap(a[k], a[k+1])

end if

end for

end for

where a represents an input list having n elements, and a[k] is the kth element of a.
Due to its large O(N2) worst-case time-complexity, the bubble sort is rarely applied in
practical systems requiring high throughput. However, the bubble sort is well suited to
smaller constellation sizes, such as 4-QAM, which do not require large values of K.

4.3.2 Distributed Sort

The distributed sort algorithm [70] (also referred to as the winner path extension in [96])
was initially proposed by Wenk, Zellweger, Burg, et al. [37], as a low-latency alternative
to the bubble sort for larger constellation sizes. The algorithm works by dividing the
input list into groups, and then comparing the best element of each group in each iter-
ation until the desired number of sorted elements is obtained. K iterations are required
to obtain the best K candidates. The operation of the distributed sort (DS) algorithm
is illustrated in Fig. 4.3. In the first cycle, the minimum-metric child of parent node, p1

(c1,1), is compared against the minimum-metric child of p2 (c2,1). In this case, c1,1 is the
winner and is disregarded in the next cycle and replaced by its next best sibling (i.e.
c1,2). The attractive feature of this method is that the number of clock cycles required to
produce the K-best candidates depends only on the K value and is constant irrespective
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Figure 4.3: Distributed K-best sorting [70] for 16-QAM system with K = 2 showing
two parent nodes p1 and p2. The respective PEDs are shown above each of the child
nodes.

of the constellation size that is employed. The distributed sort algorithm can be imple-
mented using an on-demand expansion, where the best child is computed only when
required [71]. Initially, K best children are expanded from the K best candidates in the
first iteration. In the subsequent K−1 iterations, the next best child of the winning path
is extended, resulting in 2K − 1 path extensions overall. An alternative to on-demand
expansion is tabular enumeration [67], which reduces the complexity of computing the
next best child in each iteration through the use of a pre-computed lookup table.

4.3.3 Relaxed Sort

In order to reduce the complexity of the sorter, a “relaxed” sorting (RS) procedure may
be adopted, which produces the result in an approximate order. One of such techniques
was proposed by Kim and Park [73]. In this technique, the list is divided into K groups,
and a minimum (MIN) search is carried out only for elements within the same group. The
groups are formed in such a way as to ensure that the best candidates are retained until
the next stage with a high probability. In order to avoid duplicate results, an element is
only sent to one MIN unit. For the kth MIN unit, the inputs are selected according to
c((j−1) %K)+1,i, where j = k, k + 1, . . . , k + λ − 1, i = 1, 2, . . . , λ, ck,i represents the ith
child node of the kth parent, and % represents the modulus operation. This arrangement
prevents the best children of the parent nodes from being compared against each other,
which may result in the best path being lost during the sorting operation. An architecture
for the relaxed sorter for a K -best detector employing K = 4 and λ = 4 is provided
in Fig. 4.4. The MIN unit, shown on the right in the figure, successively compares two
elements at a time, until the element with the smallest PED is obtained.
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Figure 4.4: Architecture for a relaxed sorter with K = 4 and λ = 4 [15]. The 4-input
MIN circuit is constructed from three 2-input MIN circuits to reduce the critical path
length.

4.3.4 Merge Algorithms

Traditional sorting algorithms, such as the bubble sort, require a large number of clock
cycles, which is not suitable for high throughput applications. Merge algorithms on the
other hand, sort a data sequence in a single step and as such the desired sorted result can
be obtained within one cycle. Merge algorithms typically employ a “divide-and-conquer”
approach to sorting, by dividing the data to be sorted into sublists and then merging the
sorted sublists in parallel. After each iteration, a larger sublist is formed and the merge
process is repeated until a single list is obtained, which corresponds to the sorted result.
In this way, a merge network is formed whose depth is proportional to the number of
sublists at the input. Unfortunately, this may also result in a large combinational delay,
which limits the attainable maximum clock frequency. To solve this, pipeline registers can
be inserted at selected points in the merge network to shorten the combinational delay
from the input to the output. In this thesis, we will limit ourselves to the well-known
Batcher’s merge (BM) networks [94], which are discussed in the subsequent sections.

4.3.4.1 Odd-Even Merge

Given two length-N lists, a = [a1, a2, . . . , aN ] and b = [b1, b2, . . . , bN ], where a1 < a2 <

. . . < aN and b1 < b2 < . . . < bN , the odd-even sorter splits the two lists into their odd
and even-indexed components and sorts them independently by comparing two items
at a time and then swapping them if they are out of place. The first item of the odd
merge is also the first item of the final result, while the last item of the even merge is the
last item of the final result. After the odd and even lists have been sorted, the odd-even
sorter iteratively compares the (i+ 1)th item of the odd merge with the ith element of
the even merge to get the remaining items of the final length-2N result. By comparing
two sublists at a time, a larger merge network with 2p inputs (where p is some integer)
can be constructed. Figure 4.5(a) illustrates the odd even merge for two 4-item sublists,
where each arrow represents a compare-and-exchange operation. The top and tip of each
arrow correspond with the smaller and larger number of the comparison respectively.
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Figure 4.5: Illustration of Batcher’s merge algorithms

4.3.4.2 Bitonic Merge

Closely related to the odd-even merge is the bitonic merge (BM), which sorts one as-
cending list and one descending list, otherwise known as a bitonic sequence. Thus,
a1, a2, . . . , aN , bN , bN−1, . . . , b1 forms a bitonic sequence if a1 < a2 < . . . < aN and
bN > bN−1 > . . . > b1. If two lists are constructed as follows:

cmin = min(a1, bN ),min(a2, bN−1), . . . ,min(aN , b1)

cmax = max(a1, bN ),max(a2, bN−1), . . . ,max(aN , b1), (4.1)

then it can be shown that all the elements in the first list are less than the elements of
the second list. Furthermore, each of cmin and cmax is bitonic. After the sequence is split
into cmin and cmax, the bitonic sorter compares two elements of each sublist at a time,
swapping them if they are out of place. This process is continued iteratively until the
final length-2N list is obtained. Unlike the odd-even merge, which has unequal paths
from the inputs to the outputs, the input-output lines of the bitonic merge all have equal
lengths. However, the bitonic sorter requires more compare-and-exchange elements for
a given input sequence, which increases its complexity in hardware.



Chapter 4 VLSI Implementation of a Single-Stage K-best Detector 76

U41

U42

U43

U44

U45

U46

U47

U48

U81

U82

U83

U84

U161

U162

U321

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

8

8

8

8

8

8

8

8

16

16

16

16

32

32

64

Figure 4.6: Full unoptimised merge network for 64 candidates. All the candidates are
included in the final sorted result and the best K candidates are taken to the next level.

4.3.5 Implementation of the Merge Network

In this thesis, the Batcher’s merge networks will be adopted, as they produce the sorted
result within one clock cycle, which is suited to high-throughput applications. The odd-
even merge is selected to construct the merge network due to its lower complexity com-
pared to the bitonic merge. The merge network sorts the candidates in pairs of two
λ-length sublists, where each candidate is organised as (si,j,k, Ti,j,k, k), where k denotes
the parent path, si,j,k is the jth child of the kth parent after SE enumeration, and Ti,j,k
is its corresponding metric. Before the merge operation at the current level, k simply
takes a value from the ascending sequence 1, 2, ...,K. After the merge operation, k is
updated according to the indices of the sorted PEDs at the current level.

Figure 4.6 illustrates the merge network for 16 sublists each comprising four elements.
The merge units labelled U4X,U8X,U16X and U32X denote merge units for 4×4, 8×8,
16×16 and 32×32 inputs respectively. With K = 16, the candidates are merged in pairs
of two by eight U4X units operating in parallel, and the outputs are successively doubled
at every stage until the final 64 sorted result is obtained. Thereafter, the upper 16 results
are selected and forwarded to the next level. The operation of the Batcher’s merge
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Figure 4.7: Optimised merge network for 64 candidates. The merge units in the third
and final stages are modified to produce only the top 16 results, while discarding the
bottom results. The implementation of the modified U16 merge units (indicated by the
overline) is presented in Figs. 4.8 and 4.9.

network makes it more convenient to adopt K values that are powers of two; however,
it is possible to construct a merge network with non-power-of-2 K values by simple
architectural modifications. For example, to construct a merge network for K = 10,
U46, U47, U48 and U84 can be discarded and the bottom inputs to U83 and U162 can
be replaced with dummy candidates having Ti = ∞. These dummy candidates will be
automatically relegated to the bottom of the 64-length sorted output at the end of the
merge operation.

4.3.5.1 Area Optimisation

The merge network in Fig. 4.6 includes several redundant candidates in the final sorted
result, which will eventually get discarded and play no further role in the detection pro-
cess. This is inefficient and leads to an unnecessary increase in the detector complexity.
Since only K = 16 candidates are required, U321 can be replaced with a simpler U16
unit as shown in Fig. 4.7. Similarly, U161 and U162 can be replaced with simpler U16
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Figure 4.8: Modified U16 using the odd-even merge. Only 1 comparator can be elim-
inated from the bottom half of the 4th step given K = 16.

equivalents having only 16 outputs, instead of the 32 outputs in the original merge net-
work. This also has a timing advantage, as the U16 element requires one less comparator
stage compared with U32.

To construct the optimised U16 unit, all the comparators that do not contribute to the
final output are eliminated. Interestingly, the bitonic sorter requires fewer comparators
to implement the optimised U16 than the odd-even sorter. This is due to the unique
property of the bitonic sorter whereby the upper and lower halves of the sorted result
are generated in the first step of the merge process as shown in (4.1). Therefore, the
lower half can be discarded early in the sorting, and the subsequent sort operations
can be carried out on the upper half only. By contrast, although the odd-even sorter
requires fewer comparators in general, the two halves of the final sorted result are only
determined in the last stage.

The modified U16 unit, implemented using the odd-even and bitonic merge units, is
shown in Figs. 4.8 and 4.9 respectively, showing the individual comparator operations.
While the bitonic U16 unit is able to eliminate up to 32 comparators, the odd-even
U16 unit is only able to eliminate 9 comparators. Thus, a hybrid merge network can
be constructed with a bitonic merge for the third and final stages and odd-even merge
for the remaining stages. The optimised U16 unit with 16 outputs is denoted by U16.
Overall, the hybrid merge unit achieves an area saving of approximately 30% compared
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Figure 4.9: Modified U16 using the bitonic merge. All the comparators in the lower
halves of steps 2 to 5 can be eliminated using the bitonic algorithm given K = 16.

with the unoptimised network using odd-even merge for all the stages. It should be noted
that the merge unit at level 2NT−1 is further reduced since the total number of available
candidates is

√
M ×

√
M rather than K

√
M in the lower levels. The optimised hybrid

merge unit is compared with the unoptimised bitonic and odd-even merge networks in
Table 4.2.

4.3.5.2 Pipelining the Merge Network

The inputs to the proposed merge network described in the previous section pass through
a total of 12 comparators in series before emerging at the output. This results in a large
combinational delay, which limits the attainable clock frequency of the detector. The
combinational delay of the merge network can be reduced by inserting one or more
pipeline registers at suitable locations, thereby splitting the merge network into two or
more smaller merge networks. This will however entail an increase in the area consump-
tion of the design. Furthermore, the latency of the detection for one signal vector is
increased by one clock cycle. However, this is compensated by an increased clock fre-
quency, which allows a higher throughput to be achieved overall. If pipeline registers are
inserted after the first step of the U16 blocks in the 3rd stage of the merge network in
Fig. 4.7, then the merge network can be split into two nearly identical merge networks
with 7 and 5 comparators.
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Table 4.2: Comparison of full and optimised bitonic and odd-even merge networks for
K = 16 and λ = 4

Sorter BM OM HM

Implementation Full Optimised Full Optimised Optimised
Area [kGE] 114.7 72.7 93.2 69.7 62.6
Comparators 576 432 463 340 316

4.3.5.3 Results and Discussion

Table 4.3 compares the hardware implementation results of the proposed hybrid merge
(HM) network with other sorting algorithms. The relaxed sorter incurs the smallest area
consumption, however, this is at the expense of a degradation to the BER performance.
Despite its simplicity, the bubble sorter incurs a relatively large area, which is as a result
of the registers required for storing the temporary sorting results as well as the input
elements. Furthermore, a counter needs to be created to keep track of the number of
iterations, which is the largest among the algorithms compared. The distributed sort
algorithm was implemented with the assumption that all the child nodes are already
enumerated via a table lookup. In order to find the MIN element in each iteration,
assuming K = 16, two elements are compared at a time, resulting in a critical path of
8 comparators in series. This makes the distributed sort to have a longer critical path
length than the bubble sort, which only needs to compare two elements in each cycle. As
expected, the proposed hybrid merge incurs the largest area consumption and longest
critical path. The application of pipelining increases the area by 15.5%, while reducing
the critical path length by 55.3%, which is almost the same as that of the distributed
sort algorithm.

The comparatively large area of the bubble sort, relative to the distributed and relaxed
sort algorithms, as well as its large latency, further underscores its unsuitability to the K -
best algorithm. For small constellation sizes, however, such as 4-QAM, the bubble sort is
ideal since only a few iterations are required to get the final sorted result. The distributed
sorter is suited to larger constellation sizes since the number of clock cycles required
depends on K only. However, it should be noted that larger constellation sizes tend
to require larger values of K since the BER performance degrades with the modulation
order. Where area is not critical, the hybrid merge appears to be attractive as it achieves
an exact sorting and also produces the sorted results within a single cycle. As noted, the
hybrid merge can be pipelined in order to reduce the critical path at the expense of a
larger area and additional clock cycles to obtain the sorted results. In the next section,
the hardware implementation for the K -best detector, based on the pipelined hybrid
merge network, will be presented.
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Table 4.3: Comparison of hardware implementations of different sorting algorithms

Sorter BS DS RS HM HM (Pipelined)

Area [mm2] 0.085 0.034 0.010 0.13 0.15
Area [kGE] 40.83 16.21 5 62.6 72.37
Tcrit [ns] 1.78 4.43 3.43 9.50 4.25

4.4 Hardware Implementation

The K-best algorithm can be implemented using different architectures depending on
various criteria as summarised in Table 4.4. The classifications of tree search algorithms
according to the pruning strategy, channel model and K value, in the case of the K-best
detector, have already been discussed in Chapter 2. It should be mentioned that these
classifications are not orthogonal as a single K-best implementation can incorporate
these techniques jointly, in order to meet the design specification. In this thesis, we are
more interested in the implementation of theK-best algorithm according to the mapping
of the tree search to the processing elements, as well as the number of tree searches that
the detector can execute concurrently. This classification results in two main architec-
tures namely: single and multi-stage. The number of stages that the K-best architecture
has, influences the number of tree searches that can be executed concurrently. The pro-
posed detector in this chapter is implemented using a single-stage architecture, which
we discuss in more detail in the next section.

4.4.1 Single-Tree Single-Stage Architecture

The operations at each level of the K -best algorithm are quite similar, and with suitable
multiplexing, it is possible to reuse the same computational elements for all levels of
the tree search, which results in a similar architecture to the SD as shown in Fig. 4.10.
The figure shows a single-stage detector for a MIMO system employing a real-valued
channel model, which requires K×2×NT symbol registers, which are served by a single
processing element. The detector takes R and ŷ as inputs, which are assumed to be
computed by an external processor. In contrast to the SD, K nodes instead of a single
node, are processed in parallel in each iteration of the tree search. We will refer to this
architecture as single-tree single-stage (STSS), since only one tree is processed at a time
and the architecture utilises only one stage. The K -best algorithm can also be imple-
mented using a multi-stage architecture, which is presented in Chapter 5. The folded
architecture results in a much smaller detector compared to the multi-stage architecture
and allows the same detector to be reused for different MIMO configurations, with only
minor architectural modifications. The architecture for the proposed STSS detector is
demarcated into a datapath, which comprises the main arithmetic units and a controller,
which is implemented as an FSM.
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Figure 4.10: Single-tree single-stage architecture

4.4.2 Controller

The ASM chart of the controller, annotated with relevant datapath operations, is shown
in Fig. 4.11. The states of the FSM are implemented using one-hot encoding, which
simplifies the state decoding operation. The controller has seven states as follows:

• S_IDLE: The detector is put in the idle state by an asynchronous system reset,
which is de-asserted synchronously. In this state, the level indicator is set to 2NT .
The controller transits to S_TOP_PED upon receiving a new frame of data, indi-
cated by the frame_ready signal.

• S_TOP_PED: In this state, all the constellation points are expanded to form the
initial

√
M paths, which will be expanded to K paths in the subsequent level. No

sorting operation or interference computation is carried out in this state.

• S_BI: The interferences of previously detected symbols along all K paths are
computed in this state. In level 2NT -1, only

√
M bi results need to be computed,

since there are only
√
M paths from level 2NT . The en_BI signal is asserted to

enable the ICU’s registers. At i = 2NT -1, only
√
M ICUs are asserted, while K

ICUs are asserted in subsequent levels. The complexity of the bi computation is
higher in later stages.

• S_PED: In this state, the children of all the K parents are enumerated using a table
lookup and expanded by the PED units. SE enumeration is required to present a
presorted candidate list to the merge network. Both the PED computation and the
sorting are carried out in the same cycle. The en_PED signal is asserted to enable
the registers in the PED units. This is not necessary for the correct functioning of
the circuit, however, but it is required to reduce power consumption.

• S_PED+: Due to the pipelining of the merge network, an extra cycle is required
to get the final sorted result. In this state, no PED or SE enumeration op-
erations are executed. If the current level is the last, the controller asserts a
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Figure 4.11: Simplified ASMD chart for the single-stage K-best detector

fetch_next_signal flag, which loads the next signal vector and its correspond-
ing channel entries into memory. In the proposed implementation, the next signal
needs to be fetched and loaded into memory 2 cycles before the end of the current
processing.
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• S_PATH_UPDATE: In this state, the detector updates the previously detected sym-
bols, that is, [ŝ2NT

, . . . , ŝi+1]T for each path, according to the newly sorted results
at the current level. Path updating is only carried out from 2NT -1 to 1 since no
sorting is carried out at level 2NT . For hard detection, only the best path needs to
be updated at the last level. An update_paths signal is asserted, which instructs
the datapath to update the symbol registers according to the sorted result deter-
mined in the previous state. The controller also checks to see if the last level has
been reached in this state: if the last level has been reached then the controller
transits to the final state, otherwise, it decrements the level counter and goes back
to S_BI.

• S_DONE: This is the last state of the proposed K -best controller. At each path
update stage, the controller checks if the last level has been reached, in which
case, it transits to this state. If frame_ready is asserted (not shown in the figure),
the detector returns to S_TOP_PED to begin processing the next RSV. The latency
for one symbol vector can be expressed as

Nclk =
2NT∑
i=1

Ci, (4.2)

where Ci is the number of clock cycles required to process the ith level. In the
proposed detector, the constellation set at the beginning of the search is expanded
in one cycle, which implies that C2NT

= 1. For the remaining levels, 1 ≤ i < 2NT ,
Ci = 4. An extra cycle is required for transiting to the next signal vector. Thus,
the total latency for one MIMO symbol vector is 30 clock cycles for 4× 4 MIMO.

4.4.3 Datapath

The datapath receives control signals from the controller, which synchronises its op-
erations with the relevant states of the FSM. The datapath of the K -best detector is
quite similar to that of the SD, with the notable exception of a sorter, which is nec-
essary to generate the K -best results and a path update unit for updating previously
detected symbols according to the sorted results at the current level. The datapath of
the K -best detector is explained in more detail in the subsequent sections.

4.4.3.1 Processing Element

The processing elements (PE) execute the main arithmetic operations of the detector and
constitute the main blocks of the datapath. The general architecture of a PE is shown
in Fig. 4.12, and comprises the merge network, implemented as described in previous
sections, and K expansion units operating in parallel. Each expansion unit comprises an
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ri,i+2
...

ri,2NT−1 ri,2NT

. . .

K1

K2

K3

K16

. . .

feed back

. . .

Figure 4.12: General architecture of a K -best processing element

interference computation unit and λ PED units. The merge network produces a sorted
candidate list, denoted by K = [K1,K2, . . . ,K16], where each candidate is formed from
a concatenation of a symbol, its PED and its parent path, as

(
si,j,k′ , Ti,j,k′ , k

′
)
, where

k
′ is the path index after sorting. In the single-stage architecture, the sorted candidates

are fed back to the input of the processing element for subsequent processing. It should
be noted that the level indicator (not shown) also needs to be sent to the PE from the
controller so as to correctly compute the PEDs for that level.

In the previous chapter, two different PED computation techniques were presented based
on how the interference terms are computed. For the K -best detector, the VPED tech-
nique proposed for the SD cannot be directly applied since the K -best paths change ac-
cording to the sorted results, which potentially makes the partial bi results accumulated
at a previous level unusable for the currently detected symbol. A technique modifying
the VPED for the K -best detector was proposed in [15], where all the K interference
terms are computed incrementally and fed to a total of K K − to − 1 multiplexers for
the computation of the next level interference terms. The modified computation of bi
for the K -best detector at level 1 is shown in Fig. 4.13. However, for the proposed K -
best detector, the critical path is along the merge network, and not in the computation
of the interference terms, as such, the proposed K -best detector is implemented based
on the conventional HPED approach described in the previous chapter.

Like the SD, the nodes in the K -best algorithm are visited according to an SE enu-
meration, which is precomputed and stored into a lookup table. The architecture of the
SE enumeration unit for the K -best detector is the same as that of Fig. 3.12, with the
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Figure 4.13: Modified Vertical PED computation block for the K -best detector pro-
posed in [15]. The partial PED result for the PED computation at level i, accumulated
up to the jth level and for the kth path, is denoted as bj

i,k. k′ = [k′
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′
2, . . . , k

′
K ] repre-

sents the list of sorted indices of the K -best candidates from the previous level.

exception that only λ = 4 children are enumerated according to the reduced-complexity
K -best algorithm proposed in Section 4.2.2. The PED of the K -best detector is also
computed using the `1-norm proposed by Burg, Borgmann, Wenk, et al. [45], which
achieves an appreciable reduction in complexity compared with the original Euclidean-
norm-based computation at the cost of a small penalty to the BER.

4.4.3.2 Path Update Unit

After the candidates have been sorted, a path update operation is necessary to reorder
the previous K -best paths according to the PEDs at the current level. If the path index
k at level i + 1 is equal to the updated path index, k′k, then the kth symbol registers,
[ŝi+1,k . . . ŝ2NT ,k]

T , retain their values, where ŝi,k is the detected symbol at the ith level
and kth path. This simply means that the kth best path in level i+ 1 remains the kth
best path in level i after sorting. However, if k 6= k′k, then the contents of the kth symbol
registers are updated with the contents of the k′k symbol registers in the next clock cycle.

Figure 4.14 illustrates the architecture of the path update unit. A feedback line is con-
nected to the outputs of all the symbol registers and sent to a bank of multiplexers,
which are fed back to the input of the symbol registers. The sorted path indices list is
then connected to the multiplexers, which connects the new path indices to the appro-
priate symbol registers depending on the current level of the tree search. Observe that
the path update operation ends at ŝ2 in the figure. This is because there are no further
sorting operations to alter the computed K-best list in level 1. During the path update
operation, all the symbol registers below the current level, ŝi−1 to ŝ1, are disabled in
order to reduce power consumption.

4.5 Results and Discussion

The proposed single-stage K -best architecture is implemented for a 64-QAM 4×4 MIMO
system. The design is synthesised using Design Compiler targeting the 65 nm CMOS
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ŝ2NT
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Figure 4.14: Path update operation for the K -best detector

technology and place-and-route is performed using Cadence Encounter. The results are
provided in Table 4.5. The throughput of the K -best detector is computed as:

Φ = Total number of bits detected
Latency of one signal vector

= NT ×Q× fclk
Nclk

, (4.3)

where Q is the number of bits in a QAM symbol and Nclk is the latency required to
process one signal vector. Timing analysis post place-and-route indicate that the detector
is able to operate at a clock frequency of 137 MHz, which results in a throughput of
about 109 Mbps. This throughput falls short of the gigabit data rates required by recent
communications standards, such as the IEEE 802.11ac. In the next section, a technique
for increasing the throughput of the single-stage K -best detector will be described.
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Figure 4.15: Illustration of detector interleaving

4.5.1 Detector Interleaving

The throughput of the single-stage K -best detector is limited to how fast it can accept
a new signal vector. If Nclk is large, then the throughput deliverable by one detector
is limited. To solve this problem, a complex channel model may be employed, which
reduces the tree depth by half. The detector can also be operated at a higher frequency,
but this is limited by the critical path constraints of the circuit, which may not always be
improved. Operating the detector at a higher clock frequency may also have a detrimental
effect on the power consumption.

Another alternative is to combine several detector units to form a larger detector as
illustrated in Fig. 4.15 [73]. If P is the number of detector units, and Φdetector is the
throughput deliverable by a single detector, then the throughput of the interleaved
detector is given as:

Φinterleaved ≈ P × Φdetector.

For example, to achieve 3120 Mbps, which is the maximum uncoded data rate for the
IEEE 802.11ac in the 64-QAM configuration, approximately 30 detector cores will be
required. Usually, the interleaved throughput will be less than P × Φdetector due to the
delay experienced when switching from one received signal to the other. Theoretically,
if the switching delay, tswitch, between one RSV to another is equal to 0, then the
full interleaved throughput of P × Φdetector can be achieved. This however does not
take into account the delay required at the output to arrange the detected symbol
vectors according to their arrival times. However, if the delay is equal to Nclk, then the
throughput is practically the same as that of a single detector unit and no interleaving
advantage is obtained.

4.5.2 Comparison with the Sphere Decoder

In Chapter 3, the throughput of the SD was shown to be affected by the application of
runtime constraints. Like the K -best detector presented in this chapter, the SD processes
a single MIMO tree search at a time. At some arbitrarily high SNR, the SD will achieve
its maximum throughput of 344 Mbps, which corresponds withDmax = 1 and a latency of



Chapter 4 VLSI Implementation of a Single-Stage K-best Detector 90

18 clock cycles. Unfortunately, this throughput is achieved at the expense of a reduced
performance. By applying adaptive runtime constraints (Dmax = 1 below 14 dB and
D̃avg = 10 above 14 dB), the SD achieves an average throughput of approximately
100 Mbps, which is slightly less than the throughput of the proposed single-stage K -
best detector.

In Fig. 4.1, we see that the K -best detector achieves a performance close to the SD,
especially with the application of SQRD at the preprocessing stage. Furthermore, the K -
best detector achieves a higher average throughput than the SD, which is also unaffected
by the SNR. Like the K-best detector, the throughput of the SD can be improved by
interleaving, however, the interleaved SD is complicated as the symbol vectors may be
generated out-of-order (i.e. in a different order to which they were received), or even
received by the “sink” concurrently if 2 or more symbol vectors terminate at the same
time. Furthermore, the per-block runtime constraints can no longer be applied, since the
actual runtimes of previously-detected symbol vectors, which are required by (3.3), are
not known. However, the SD has the advantage of a smaller area required to achieve a
given throughput target.

Overall, this result suggests that the K -best detector is more suited to high throughput
applications than the SD. This is despite the fact that the SD proposed in Chapter 3
achieves almost a two-fold maximum clock frequency advantage over theK -best detector.
This result differs from the findings of Burg, Borgmann, Studer, et al. [64], where it was
suggested that the SD achieves a higher throughput compared to the K-best. However,
the comparison in their study was based on a complex SD versus the K -best detector
based on a real channel model [37]. Since the channel model has an impact on the
throughput, a fair comparison between the SD and the K -best detector should be with
respect to a common channel model. To some extent, the application of pipelining can
make the effects of the channel model less significant as will be explained in the next
chapter.

4.5.3 Comparison with State-of-the-Art

The proposed detector is also compared with some results of interleaved single-tree
single-stage architectures from the literature. All the implementations are targeted to
a MIMO system employing 64-QAM. The proposed detector achieves a better energy
efficiency and lower power consumption compared to TVLSI’07 [99] and TVLSI’10 [96].
TVLSI’07 [99] adopts a radius-based pruning strategy and as such does not have a
fixed throughput. Despite running at almost twice the clock frequency of the proposed
implementation, the detector of TVLSI’07 [99] achieves a throughput of 100 Mbps at a
much larger area consumption than the proposed single-stage detector. With 3 detector
cores, TVLSI’10 [96] achieves a larger area than our proposed implementation. However,
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their implementation achieves a better normalised area consumption,2 kGE
K , which can

be attributed to the merge networks employed by the proposed detector, which occupy
almost 30% of the total area.

DATE’10 [75] achieves a throughput of 214 Mbps for a 2 × 2 antenna configuration with
a relatively small area of 24 kGE. By comparison, our implementation requires 14 clock
cycles to completely detect one symbol vector in the 2 × 2 configuration resulting in a
better throughput performance of 234 Mbps. Assuming the proposed implementation
consumes the same power in 2 × 2 as the 4 × 4 case, our implementation achieves an
energy-per-bit of 145.62 pJ/bit, which is not significantly higher than that of DATE’10
[75], but at a higher throughput. Although ISCIT’15 [15] achieves a higher throughput
than the proposed implementation, this is at the cost of a reduced BER performance
due to the relaxed sorting algorithm that was employed.

4.6 Summary and Conclusion

In this chapter, the K -best algorithm has been implemented in hardware based on a
single-tree single-stage architecture, which has a fixed number of computational units
irrespective of the number of antennas. In order to achieve a high throughput, a pipelined
hybrid merge network, combining the Batcher’s odd-even and bitonic sort algorithms,
was implemented, which produces the sorted results within two clock cycles. Detector
interleaving has also been presented as a technique for increasing the throughput of
the single-stage K -best detector. The proposed detector achieves a competitive energy
efficiency compared to existing single-stage K -best detectors.

Compared with the SD, the K -best detector incurs a larger area, and in general, ex-
hibits an inferior BER performance. However, the application of simple preprocessing
techniques, such as SQRD, as well as the requirement of runtime constraints by the SD,
closes the performance gap between the K -best detector and the SD. Furthermore, the
K -best detector has a fixed throughput irrespective of the SNR, which is attractive for
real-time hardware applications. The throughputs of both the SD and K -best detector
can be improved by detector interleaving, however, the variable nature of the SD makes
it less suited to this procedure. In the next chapter, the multi-stage architecture for the
K -best algorithm will be presented, which will enable multiple-tree processing as well
as a higher throughput to be achieved.

2The K value determines the sizes of the symbol registers, so the area of the K -best detector can be
assumed to vary according to K. However, a linear relationship will not hold true for all cases, due to
the differences in architectures.



Chapter 5

VLSI Implementation of a
Fully-Pipelined K-Best Detector

5.1 Introduction

In Chapters 3 and 4, the VLSI implementations of the sphere decoder and the single-
stage K -best detector were presented. Both detectors featured a single-tree processing,
which limits their throughputs to the number of clock cycles required to traverse a
search-tree. This is particularly problematic for the real channel model, which has been
adopted in this thesis, as the depth of the tree is effectively doubled, which reduces the
throughput by approximately 50% compared to the complex channel model. As a result,
the SD and the single-stage K -best detectors are only relevant for applications requiring
throughputs of a few 100s of megabits-per-second.

In this chapter, a fully-pipelined K -best detector, which processes several tree searches
concurrently will be presented. The proposed detector achieves a throughput of one
MIMO symbol vector per clock cycle, which makes the channel model employed less
consequential to the final throughput unlike the detectors presented in the previous two
chapters. In fact, the real channel model appears advantageous for such an architecture,
since MIMO detectors based on a real channel model generally exhibit a much simpler
datapath than corresponding complex channel implementations. The primary objectives
of this chapter are as follows:

1. To implement a fully-pipelined K -best detector using a multi-stage architecture
and explore ways of reducing its complexity

2. To compare the hardware and energy efficiencies of the interleaved implementation
of the single-stage K -best detector, presented in the previous chapter, and a fully-
pipelined single-core K -best detector

93
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3. Evaluate the potential application of the proposed fully-pipelined K -best detector
to recent high-speed wireless communication standards

This chapter is organised as follows. In Section 5.2, we will present implementation
aspects of the pipelined K -best detector. In Section 5.3, the overall architecture of the
proposed fully-pipelined K -best detector is presented. In Section 5.4, the implementation
results of the proposed fully-pipelined K -best detector is presented. Furthermore, the
potential application of the proposed detector to recent high-throughput wireless local
area network standards is discussed. The chapter is concluded in Section 5.5.

5.2 Multiple-Tree Multi-Stage Architecture

In the previous chapter, a single-stage architecture for theK -best detector was presented,
where the levels of the search-tree are mapped to a single processing element, which is
shared among the tree levels in a time-multiplexed fashion. This architecture results in
a small implementation that is not significantly affected by the number of antennas.
More conventionally, however, the K -best detector is implemented using a multi-stage
architecture, such that a processing element is uniquely mapped to a level of the tree as
shown in Fig. 5.1. The multi-stage architecture can be utilised to process multiple tree
searches concurrently, which is a significant advantage over the SD and the single-stage
K -best detector. This architecture can therefore be referred to as multiple-tree multi-
stage (MTMS) and supports the pipelining of the K -best detector as explained in the
next sections.

5.2.1 Pipelining the K-Best Detector

Pipelining is a well-established technique for improving the throughputs of digital circuits
by processing multiple data concurrently [100]. Pipelining as used in this chapter differs
from the circuit-level critical path optimisations, where a large combinational circuit is
split into two or more small combinational blocks, with the aid of pipeline registers. Both
types of “pipelining” enable a faster circuit to be realised, but in this chapter, we are
more interested in the former case, which allows an even more dramatic improvement
to the throughput of the K -best detector based on the multi-stage architecture.

In a pipelined system, the circuit is partitioned into several pipeline stages, such that at
each cycle, a pipeline stage is executing an independent instruction. The system incurs
a latency at the beginning of the processing, where no output is produced. However,
after the pipeline is full, the circuit is able to generate one output in every clock cycle.
Although the latency required for a single instruction remains unchanged, compared to
the unpipelined circuit, the throughput of the circuit is increased due to the concurrent
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Figure 5.2: Pipeline schedule for the K -best detector

processing of multiple instructions. We can apply this same concept to the K -best detec-
tor, by operating on several RSVs concurrently, where each RSV is at a different stage of
its tree search. This results in an improved throughput performance compared with the
detectors of the previous chapters. In the next sections, different strategies for pipelining
the K -best detector will be discussed.

5.2.1.1 Fine-Grained Pipelining

Figure 5.2 shows the pipeline schedule for a fully-pipelined K -best detector. The opera-
tions of the K -best algorithm are completely unrolled such that no single operation takes
more than one clock cycle to execute. For simplicity, the pipeline schedule is shown for a
MIMO system employing two antennas at the transmitter. The shaded regions indicate
the initial period when the pipeline is unfilled. After the pipeline is full, the detector
outputs one symbol vector in every clock cycle.

In the first clock cycle, the topmost level PED for the first signal vector, denoted by ŷ(1),
is computed. In the second clock cycle, the interference (INFR) due to the expanded
nodes at the topmost level, ŝ4, is cancelled from the current signal, ŷ(1)

3 , according to
(2.16), in order to compute b3. Meanwhile, the detector begins to concurrently expand
the topmost level symbols for the next signal vector, ŷ(2), which also marks the beginning
of level 2 for the first signal, ŷ(1). In the third cycle, the PED of the first signal vector
is computed simultaneously with the interference computation for the second signal
vector. The end of level 3 for ŷ(1) is marked by the path update operation (PAU), which
reshuffles the previously detected symbols, ŝ4, according to the PED results of level 3.
In this stage, the initial

√
M paths from the root node are expanded to K paths, by

selecting the best K paths from
√
M×

√
M candidates (or

√
M×λ candidates if a subset

of the child nodes of a parent, λ ≤
√
M , is considered). This process is continued until
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Figure 5.3: Pipeline schedule using pipelined merge unit

the level 1 path update operation for ŷ(1) at t = 10, which also signals the beginning of
the last signal, ŷ(10).

The start of every new signal vector is marked by a PED operation at level 2NT , in which
the constellation points, D, are expanded. This is indicated by the underline, PED, in the
figure. To fill the pipeline, such that one symbol vector is detected in every clock cycle,
there must be as many concurrent RSVs as pipeline stages. Apart from the topmost
level, each level comprises three operations namely: INFR, PED and PAU. Thus, for a
MIMO system employing NT = 2, and using a real-valued detection, 1 + (2NT − 1)× 3
or 10 clock cycles are required to process one signal vector.

If the merge unit is pipelined, as described in Section 4.3.5.2, then an extra cycle is
required for the merge operation. This extra cycle is denoted by PED+. In this cycle,
the partially sorted candidates prior the U16 pipeline registers, are moved to the final
stage of the merge network. No PEDs are actually computed in this cycle. Although
pipelining the merge network increases the clock frequency, it also increases the number
of clock cycles required to process one RSV, and thus, the time required to fill the
pipeline. Figure 5.3 shows the modified pipeline schedule using the pipelined merge
network, where it can be seen that the latency for one signal vector is increased from 10
to 12 clock cycles. It should be noted that further pipelining of the merge unit will lead
to an increase in the number of pipeline stages and thus, the time required to achieve a
full pipeline. The throughput deliverable by this architecture, after the pipeline is filled,
is given as:

Φpipeline = NT ×Q× fclk.

Therefore, the throughput is no longer dependent on the latency, and is thus, only slightly
affected by the channel model adopted. Since the complex channel model presents a more
complicated datapath, and potentially a lower maximum clock frequency, this result sug-
gests that the real channel model is more suitable for a fully-pipelined implementation.
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Figure 5.4: Pipelining at tree level. The throughput is inversely proportional to the
number of clock cycles required to process a tree level.

The fully-pipelined architecture requires a large amount of hardware resources due to the
number of RSVs processed. If a smaller area consumption is desired, and the throughput
requirement is not stringent, it is possible to pipeline at a more coarse level, for example,
with respect to the levels of the search tree. This is explained in the next section.

5.2.1.2 Coarse-Grained Pipelining

In the coarse-grained pipelining approach, a PE corresponding to a particular level is
fully engaged to an RSV until that level is completely processed. This is unlike the
fine-grained pipelining, presented in the previous section, where a single PE processes
different RSVs concurrently, with each RSV at a different stage of that particular level.
However, since a tree level typically requires several cycles, the throughput of this archi-
tecture will not achieve the processing rate of the fine-grained pipelined implementation,
which achieves one MIMO symbol vector per clock cycle.

Figure 5.4 shows the pipeline schedule of the modified pipelined detector. It should be
noted that if the number of clock cycles per level are unequal, then the pipeline stages
may need to be balanced, in order to prevent stalling in the processing of any RSV.1 For
example in the figure, the top level (where only a PED computation is executed) can be
collapsed into the second level such that T2NT−1 = T2NT

+ |bi − ri,isi| is computed over
2 cycles instead of 3 cycles. Thus, only (2NT − 1) concurrent signals are required, and a
symbol is generated after every C1 clock cycles, where C1 is the number of clock cycles
required to process the first pipeline stage. For the pipelined merge network adopted,
Ci = 4, for all i ∈ {1, 2, . . . , 2NT }. Thus the throughput of the detector can be computed
as:

Φ = NT ×Q× fclk
4 ,

which is just a quarter of the throughput deliverable by the fine-grained implementa-
tion. An obvious advantage of the coarse-grained approach is that power consumption

1If the pipeline stages are unequal, No Operations (NOPs) will need to be introduced into the pipeline
in order to prevent two or more instructions/RSVs from accessing a pipeline stage at the same time.
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Figure 5.5: Memory layout for Ti+1

can be reduced since the pipeline processes fewer RSVs per time. However, in the pro-
posed multi-stage architecture, we will adopt the fine-grained approach, described in
the previous section, due to its ability to achieve the gigabit data rates required by fu-
ture communication systems. The overall architecture of the fully-pipelined detector is
described in the next section.

5.2.2 Implementing the Fully-Pipelined K-Best Detector

Implementing the K-best detector using the fine-grained pipelining technique described
in Section 5.2.1.1 allows the K -best to be fully pipelined such that each pipeline stage
processes only one RSV. A pipeline stage in the fine-grained pipelining technique per-
forms only a single task, which takes only one cycle to complete before the pipeline stage
switches to the next RSV. Based on this observation, we can identify two architectures
for implementing the fully-pipelined detector depending on how the independent RSVs
access the computation elements.

5.2.2.1 Multiplexer-Based Pipelined K-Best Detector

Due to the multiplicity of signals that need to be processed in the pipelined detector,
certain registers need to be replicated for each of the concurrent signals. This is de-
picted graphically in Fig. 5.5 for the Ti+1 register, where the register replication results
in a three-dimensional memory layout, with a depth that is equal to the number of
independent signal vectors. Each row represents the Ti+1 inputs to the subsequent pro-
cessing element. For example, the last row represents the best PEDs at level 2, which are
passed as inputs to level 1. Each row has K columns corresponding to the K -best paths,
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ŷ
(1)
i ŷ
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Figure 5.6: Input selection using the MUX-based pipelined detector for NT = 2

with the exception of the first row, whose
√
M columns correspond to the PEDs of the

constellation points.

Figure 5.6 shows the arbitration of the independent signal vectors for a MIMO system
with NT = 2. In every cycle, a dedicated controller sends control signals to a bank
of multiplexers, which chooses the signal vector that has access to the computation
elements, where the signal vectors are chosen from Fig. 5.3. In the figure, the signal
inputs at the ith level, ŷi, are connected to a 12-to-1 multiplexer, which chooses the
appropriate RSV, to connect to the computation unit using a control signal. A similar
multiplexing arrangement is also required for the channel matrix entries, ri,j . Overall,
14 multiplexers are required for NT = 2, while 44 multiplexers are required for NT = 4.

A bank of symbol registers, with dimension V × K × 2NT , is also required to store
the temporary detected symbols, where V represents the number of concurrent RSVs.
In a fully-pipelined detector, V is equal to the total number of clock cycles required
to process one symbol vector (see Eqn. (4.2)). In this case, the total number of clock
cycles required for the last level, C1, is equal to 3 (instead of 4), since no sorting is
carried out in the last level. Furthermore, the detector is able to switch immediately
to the next RSV in the next cycle. Thus, the multi-stage detector achieves a slightly
shorter latency (28 versus 30 clock cycles) than the single-stage detector presented in
the previous chapter. At the output of the detector, multiplexers are also required to
select the solution corresponding to the appropriate RSV from the symbol bank.

5.2.2.2 Shift-Register-Based Pipelined K-Best Detector

In the previous section, we presented a MUX-based pipelined K -best detector, which
requires the PED and channel/signal registers to be replicated for each of the RSVs.
However, that approach is quite inefficient and incurs a large area consumption. In this
section, we will propose a more efficient method, by reusing the PED and channel/signal
registers among different RSVs. This technique relies on the fact that an RSV does not
require all its registers throughout the duration of the symbol detection. As such, unused
registers may be assigned to other RSVs, as will be discussed subsequently.
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1 2
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Clock
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Data T4 b3 T3 T3 b2 T2

Figure 5.7: Duration of K -best variables during pipeline operation

PED Registers

Registers are required for storing the PEDs of the K -best results, which will be used
as inputs to subsequent processing elements. In the MUX-based implementation, the
PED registers will need to be reserved for each of the RSVs. However, a more efficient
detector can be implemented by observing that the PED registers are not required for
the entire duration of the pipeline, and thus can be reused for other RSVs.

The data movement of the PEDs in the pipeline is shown in Fig. 5.7 for a MIMO system
employing NT = 2. In the first cycle, the top level PED, T4, is generated. In the second
cycle, the interferences due to the top level symbols are computed according to (2.16).
Finally, T4 concludes its lifetime in the third cycle, where it is used in computing the
second level PEDs as T3 = T4 + |b3 − r3,3s3|. Thus, T4 for a signal vector, ŷ(t), can be
saved into a register in the first clock cycle. In the second clock cycle, the register holds
the computed T4. At the same time, the detector computes T4 for the next signal vector,
ŷ(t+1). At the third clock cycle, T3 for ŷ(t) is computed, while the content of the register
is replaced by the computed T4 for ŷ(t+1). It should be noted that this data movement
applies to all the available K paths.

The situation is different for T3, which needs to be kept in memory for 2 clock cycles,
in order to arrive just in time for the computation of T2. Thus, a single shift register
per path with a word size of 2, rather than 12 registers (or 28 registers in the case of
NT = 4) in the direct implementation is sufficient for all the RSVs. After T3 is computed
in the 3rd clock cycle, it is saved into the shift register. At each clock cycle, the value
of T3 is shifted to the right, while the computed T3 for the subsequent RSV occupies
its position. When the shift register is full, the T3 values for all RSVs are correctly read
during the computation of T2. This analysis applies for all the PEDs at the remaining
levels of the tree. Thus, with register sharing, the total number of PED registers required
for storing the values of Ti+1 is (1×

√
M) + ((2NT − 2)× 2)×K. The number of PED

registers required for storing Ti+1 is plotted against NT in Fig. 5.8 and compared with
the direct implementation.
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Figure 5.8: Number of Ti+1 registers versus NT

Channel and Signal Registers

In our proposed pipelined detector, we assume a new set of signal vectors and channel
entries is sent to the detector at every clock cycle. When the pipeline is full, the detector
must maintain memory for all the signal vectors and all the channel matrices. To ensure
the correct functioning of the circuit, a control unit must decide which signal has access
to the computation units at any given time. A straightforward (even if costly) approach
is to save all the signal and channel entries for all the RSVs in memory and then use a
multiplexer to select the appropriate signal. Similar to the PED registers, we note that
the entries of the ŷ and R vectors are required for different lengths of time. For example,
ŷ4 and r4,4 are only required in the first cycle. Meanwhile, r1,1 must be held in memory
for 11 clock cycles in order to compute the PEDs of the last level nodes. Figure 5.9
shows the signal and channel entries for the first RSV and the time and pipeline stages
in which they are required. Instead of assigning dedicated registers for each channel and
signal input, their values are saved into shift registers that are sized to ensure that the
entries are correctly read at every clock cycle. Thus, a single register is sufficient for ŷ4

and r4,4. Meanwhile, a single shift register with a word size of 11 is used for storing the
value of r1,1 for all RSVs.

Symbol Registers

Symbol registers are used to store the intermediate detected symbols,
[ŝ2NT

, ŝ2NT−1, . . . , ŝ1]T , for all the K paths. In a multiple-tree detection, each
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Table 5.1: Symbol register sharing for NT = 2. Four ŝ2 symbol registers can be shared
among all the RSVs, with three RSVs per symbol register, while a single ŝ1 symbol
register can be used for all the RSVs.

Register Number RSVs

ŝ4 N/A Cannot be shared
ŝ3 N/A Cannot be shared
ŝ2 1 ŷ(1) ŷ(5) ŷ(9)

X 2 ŷ(2) ŷ(6) ŷ(10)

X 3 ŷ(3) ŷ(7) ŷ(11)

X 4 ŷ(4) ŷ(8) ŷ(12)

ŝ1 1 ŷ(1) . . . ŷ(12)

RSV will need to be allocated a dedicated register bank for storing its symbols. Thus, a
total of K × 2×NT × V symbol registers are required in the MTMS detector. However,
unlike the PED and channel registers, all the symbols need to be in memory throughout
the duration of the detection, since the final result is only determined after the path
update operation at the last level. It is still possible however, to share symbol registers
among different RSVs. For example, when an RSV is at the top level, then the lower
level symbol registers may be used by another RSV that is currently processing those
levels.

Table 5.1 shows a possible register sharing strategy for the symbol registers using
NT = 2. While the first two symbol registers cannot be shared (because they are re-
quired throughout the lifetime of a given RSV), four ŝ2 symbol registers per path can be
shared among all the RSVs. In Fig. 5.9, it can be observed that the ŝ2 symbol register
is only required in the 9th clock cycle during the path update stage of the first signal
vector. Meanwhile, a single ŝ1 register per path can be used for all the 12 RSVs, since it
is utilised for a duration of one clock cycle only. Unfortunately, the multiplexing costs
of such an arrangement, counter the area savings that can be achieved from sharing the
symbol registers. However, the symbol register for the last level, ŝ1, requires no multi-
plexing as it is utilised for only one clock cycle. Thus, in the proposed implementation,
only the last level symbol registers are shared.

5.3 Hardware Implementation

In this section, we will present the VLSI implementation aspects of the MTMS K -
best detector in more detail. We will adopt the shift-register-based architecture described
in the previous section for the proposed implementation. The overall architecture is
presented in Fig. 5.10. The controller and datapath of the proposed detector are discussed
in the subsequent sections.



Chapter 5 VLSI Implementation of a Fully-Pipelined K-Best Detector 105

C
on

tr
ol
le
r

PE
8

1
×
K

PE
7

1
×
K

PE
1

K
-in

pu
t
M
IN

fin
de

r

. . . . . .

D
at
ap

at
h
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Figure 5.10: Overall architecture of the multiple-tree multi-stage architecture. The
“MIN” finder in the last stage is constructed in a similar fashion to Fig. 4.4, in order
to reduce the critical path.

5.3.1 Controller

Like the single-stage detector of the previous chapter, the architecture of the MTMS
detector is separated into a single controller unit and a datapath engine. The imple-
mentation of the controller unit is relatively simple. Control signals specify which signal
vector is carrying out a given operation at any point in time. Although two signal vec-
tors can carry out the same operation concurrently, no two signal vectors carry out the
same operation for the same tree level at the same time.2 Once a given operation for the
first signal vector has been determined, the controller repeats the same operation for all
the remaining signal vectors, ŷ(2), ŷ(3), . . . , ŷ(V ), in that order. After the last signal is
reached, the controller rolls back and repeats the process starting from the first signal
vector. A simple counter can be used to automatically determine the next signal vector
for each operation at any time. However, a more efficient design can be achieved by
specifying the next signal vectors explicitly in every state of the controller.

Figure 5.11 shows the ASM chart for the MTMS controller. For simplicity, the ASM
chart is shown for 2 transmit antennas. The controller has 13 states, with 1 state for
idle and the remaining 12 states corresponding to the start of a new signal. Unlike the
single stage controller in Fig. 4.11, no dedicated done state is required. Instead, when
the pipeline is full, the output is read in every clock cycle. The 12 states S1 to S12,
correspond to clock cycles 1 to 12, during the pipeline loading stage. For the first RSV,

2For example, only one signal may be computing the first level PEDs at any given time.
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S_IDLE

frame_ready

pipeline_loading

S_1

pipeline_full

output_ready

S_2

S_3

S_12

pipeline_full

reset

S_4 to S_11

1

0

0

1

Controllerframe_ready

addr_bi_Level_2
addr_bi_Level_1
addr_ti_top_Level
addr_pau_Level_3
addr_pau_Level_2
addr_pau_Level_1
output_ready

clk

reset

Figure 5.11: ASM chart for the K -best MTMS controller for a 2× 2 MIMO system.
The structural representation of the controller is also shown with the relevant control
signals.
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states S1 to S12 correspond to the full detection of one symbol vector. After the pipeline
is full, the controller FSM restarts from S1, and the pipeline_full flag is asserted.
The corresponding states of the other RSVs, ŷ(1<j≤ 12), are cyclically offset from that
of the tth state of the first RSV as follows:

S(1)
t ⇐⇒

S(j)
j+t j + t ≤ V

S(j)
V−j+t j + t > V,

where the superscript refers to the signal index in question. For example, state S2 for
the first RSV corresponds to state S1 for ŷ(12). Both states compute b3 for ŷ(1) and ŷ(12)

respectively.

The state and next state registers are coded using one-hot encoding to ensure a fast
state transition. Also shown in Fig. 5.11, is the block diagram of the controller with
the main input and output signals. Unlike the single-stage controller, no Level signal is
explicitly sent to the datapath. The address control signals, denoted by “addr”, indicate
which signal vector is carrying out a given operation and at which level. All the address
signals are 4-bit wide and thus can specify up to 16 signal vectors, although only 12
signal vectors are required for NT = 2. The functions of the ports of the controller unit
are described subsequently. i denotes the corresponding levels in which the control signal
is issued.

• addr_bi_Level_i: These control signals indicate which RSV is currently comput-
ing bi at the 1st and 2nd levels respectively. They are used to route the appropri-
ate previously detected symbols, [ŝ2NT

, . . . , ŝi+1]T , to the interference computation
units.

• addr_ti_top_Level: This control signal specifies which RSV is currently comput-
ing the PEDs for the top level nodes (i.e. the constellation points). At state S_1,
addr_ti_top_Level = 1, which indicates that the datapath will compute the PED
of the first RSV in the next clock cycle. The control signal is incremented by 1 until
S_12. The main function of this control signal is to route the appropriate symbol
register to the output ports of the K -best detector. In the case of the MUX-based
pipelined detector, additional control signals will need to be implemented to select
the signal that is currently computing the PEDs for the remaining levels in the
tree, i.e., i = 2NT − 1 to i = 1.

• addr_pau_Level_i: These control signals are used in the path update stage to
access the previously detected symbols for the current signal for the 1st, 2nd and
3rd levels respectively.

• frame_ready: This is an input signal that is used to launch the detector from the
idle state, S_IDLE, to the first state, S_1. After this input signal is asserted, the
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pipeline starts getting filled up, which is indicated by the pipeline_loading flag.
At this point, the registers in the datapath are enabled.

• output_ready: This signal is asserted in the S_1 state after the pipeline is full.
Once this control signal is asserted, the detected MIMO symbols can be read from
the detector in every cycle.

It should also be mentioned that for the MUX-based detector, the next signal, ŷi, as
well as the channel entries, ri,j , need additional “addr” buses to explicitly specify the
current signal as shown in Fig. 5.6. However, this is not required in the shift-register-
based detector as the next signals are determined automatically at every cycle with
little intervention from the controller. However, both architectures do require the sig-
nals to be explicitly specified for accessing detected symbols from the symbol registers,
for example, in order to compute bi. This is achieved using the addr_bi_Level_i and
addr_pau_Level_i buses.

5.3.2 Processing Element

The architecture of the processing element for the multi-stage architecture is basically
the same as that of the single-stage architecture as shown in Fig. 4.12. However, in
this case, there are no feedback paths from the merge network to the input of the PE;
instead, the outputs of the merge network are fed to the next PE. Furthermore, the
controller does not need to supply the current level to the processing element. The top
level PE simply expands the constellation points and passes the PEDs to the second
level PE. Since the number of constellation points

√
M is less than K, no sorting is

required at the top level PE. Furthermore, no SE enumeration is required. The second
level PE expands the children of the constellation points and sorts them according to
their PEDs. The total number of candidates expanded is

√
M×λ, where λ is the number

of children expansible per parent. An SE enumeration is also required for presenting the
candidates to the merge network in a pre-sorted format. However, it should be noted
that SE enumeration is not necessary for the K -best detection if a brute-force sorter
(e.g. bubble-sort), which compares all the candidates, is employed.

The PEs at the remaining levels, i = 6 to 1, are quite similar: each PE comprises
K expansion units operating in parallel, and one merge network. The expansion unit
comprises an ICU and λ PED units. The main difference between the PEs is in the
complexity of the ICUs, with PEs at lower levels requiring longer adder-chains in the
ICUs than those at upper levels. Since each level is uniquely mapped to a PE, in the case
of the multi-stage architecture, it is possible to reduce the complexity of a PE depending
on the level it corresponds to. For example, in hard-output detection, the merge network
can be eliminated in the last PE and replaced with a simpler MIN finder, which finds
the minimum-metric path. Similar to the single-stage detector, a path update is required
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at the end of every level, to ensure that the paths are arranged according to the sorted
PEDs at the current level. However, unlike the single-stage detector, the path update
operation in the MTMS detector is carried out in every clock cycle instead of at the end
of every level, which contributes to an increase in the power consumption.

5.4 Results and Discussion

In this section, the implementation results of the fully-pipelined K -best detector are
presented. The detector consumes a post-layout area of approximately 2.74 mm2, which
is equivalent to 1753 kGE in the ST 65 nm CMOS technology. The merge networks
in PEs 6 to 2 contribute more than 30% of the total area consumption. As a result of
the proposed pipeline scheduling, the area savings of the signal and channel memories
compared with the MUX-based detector is 59%, while the reduction in the PED reg-
isters is 92%. The detector achieves a throughput of 3288 Gbps in the 64-QAM, 4×4
configuration.

Given 14 bits for the signal and channel matrix entries, the implemented detector has a
total of 654 input and output pins. Since the number of entries in the upper triangular
channel matrix has a quadratic relationship with the number of antennas,3 the num-
ber of input/output pins might not be realisable on certain packages for larger MIMO
configurations. While time-multiplexing might be used to read in the channel entries in
the case of the SD and single-stage K -best detector (for example, by reading the upper
triangular channel matrix in a column-wise manner), this is difficult to achieve in the
proposed fully-pipelined implementation, since the pipeline begins reading all the entries
of the channel matrix and received signal vector at the same time. This is thus a notable
disadvantage of the fully-pipelined approach, which merits further investigation.

In the following sections, the significance of the implementation results will be evaluated
based and compared with state-of-the-art VLSI implementations. The potential appli-
cation of the implemented detector to recent high-throughput wireless communications
standards will also be discussed.

5.4.1 Cost of Pipelining

The cost of pipelining is the overhead incurred by a pipelined implementation to achieve
a given throughput gain over the corresponding unpipelined implementation. Obviously,
to achieve an efficient pipelined implementation, the throughput gain with respect to the
unpipelined implementation, must be greater than the area penalty. In order to assess

3There are NT + 2N2
T channel entries overall when using the RVD. For a 4 × 4 channel matrix, 36

channel input buses are required, while as much as 136 channel input buses will be required in the case
of an 8× 8 channel matrix.
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Table 5.2: Comparison of implementation results for MTMS, STMS and STSS K -
best architectures

Architecture MTMS STSS STMS

Number of cores 1 1 30 1 30
Area [kGE] 1753 285 8550 1089 32,670
Φ [Mbps] 3288 109 3270 113 3390

TAR [Mbps/ kGE] 1.88 0.38 0.38 0.10 0.10
Power [mW] 580 34.20 1026 42 1260
Ebit [pJ/bit] 176 312 312 372 372

the efficiency of the proposed pipelined detector, it is compared with an unpipelined
multi-stage architecture, otherwise known as the single-tree multi-stage (STMS) K -
best detector, as shown in Table 5.2. The throughputs of all detectors are computed at
a clock frequency of 137 MHz.

The STMS requires 29 clock cycles to fully detect one symbol vector, resulting in a
throughput of 113 Mbps. Notice that the STMS requires one less clock cycle than the
serial STSS detector presented in the previous chapter. This is because the last stage of
the STMS requires a single clock cycle for finding the minimum-metric path, whereas,
two clock cycles are required for getting the best results in all stages of the STSS. It
should be noted that the STMS is simply the MTMS without the multiple tree search
processing capability. Thus, to evaluate the pipelining cost, we recall from Section 2.8.1
that the hardware efficiency of a detector is defined as the ratio of the throughput to
the area consumption (TAR). To compare the hard efficiencies of the pipelined and
unpipelined detectors, the ratio of their respective TARs can be computed as follows:

RTAR = Hardware efficiency of pipelined detector
Hardware efficiency of unpipelined detector

=
(Pipelined throughput

Pipelined area

)
×
( Unpipelined area
Unpipelined throughput

)
, (5.1)

to derive the relative throughput to area ratio (RTAR). Since the TAR gives the through-
put deliverable per unit area for a given implementation, the RTAR evaluates the
throughput gain of the pipelined detector over the unpipelined detector using the same
area consumption. The RTAR of the MTMS detector with respect to the STMS is thus
(3288/1753) × (113/1089) = 19.5. Therefore, with the same area, the fully-pipelined
MTMS detector provides approximately 20 times the throughput deliverable by the un-
pipelined STMS implementation. In other words, the throughput is improved by a factor
of 20× relative to the penalty incurred in the area consumption. The MTMS incurs an
area increase of 61% compared with the STMS detector, while improving the throughput
by a factor of 29×. As expected, the MTMS detector incurs a higher power consump-
tion compared to the unpipelined STMS detector. However, due to the vast throughput



Chapter 5 VLSI Implementation of a Fully-Pipelined K-Best Detector 111

improvement, the energy efficiency is actually significantly improved in the pipelined
MTMS implementation.

5.4.2 Pipelining versus Interleaving

In the previous chapter, the single-stage K -best detector was presented, and detector
interleaving was proposed to improve its throughput. Table 5.2 also compares the re-
sult of the STSS detector and the proposed MTMS detector. The results indicate that
approximately 30 cores, with a combined area of 8550 kGE, are required to achieve
the throughput of a single MTMS detector. Furthermore, the interleaved STSS detec-
tors incur almost 2× the power consumption of the MTMS detector. However, the STSS
achieves a better RTAR than the STMS detector discussed in the previous section, which
suggests that the multi-stage architecture is only beneficial if multiple-tree processing
is employed. At the same area consumption, the MTMS delivers approximately 5× the
throughput of the STSS detector. The MTMS also achieves a lower energy-per-bit than
the STSS detector. The foregoing results suggest that pipelining is a more effective tech-
nique than interleaving for meeting the high-throughput requirements of next-generation
wireless systems. Despite this, the STSS detector is still relevant in applications requiring
low data rates and low power consumption, such as wireless sensor networks.

5.4.3 Comparison with State-of-the-Art

The proposed detector is compared with state-of-the-art K -best detectors for a 64-
QAM, 4×4 MIMO system in Table 5.3. TCSYS’14 [77] and JSPS’16 [102] feature a
similar fully-pipelined architecture to the proposed implementation and report higher
throughput figures. However, in the case of TCSYS’14 [77], a low complexity is obtained
partly by employing variable K values, which degrades the performance to an extent
and also limits its applicability to soft-output detection.

JSPS’16 [102] reports the highest throughput of 26 Gbps in the open literature. How-
ever, it requires costly division operations in the preprocessing stage, which need to be
executed for each received signal. This will likely degrade the stated throughput and
power consumption in a practical scenario. Thus, a fair comparison will include the
preprocessing cost as well. By contrast, the proposed MTMS implementation requires
no multiplication or division at the symbol-rate processing, due to the use of simple
shift/addition-based multipliers and tabular enumeration. It should also be noted that
unlike TCSYS’14 [77], the stated area of our implementation includes the channel matrix
registers as well. For the 4 × 4 MIMO configuration considered, the architecture can
support up to 28 independent channel matrices, which makes it suitable for both slow
and fast-fading channel scenarios.
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Table 5.4: Optional and Mandatory Parameters for IEEE 802.11ac PHY Layer

Parameters Mandatory Optional
Channel Bandwidth (MHz) 20, 40, 80 160, 80 + 80
Forward Error Correction Convolutional LDPC
Number of streams 1 2 to 8
Modulation BPSK, 4/16/64-QAM 256-QAM

5.4.4 Application to Current Wireless Standards

As has been highlighted in the introduction to this thesis, the growing user demand
for high data-rate communications, has led to the development of sophisticated wire-
less standards, capable of achieving several gigabits per second in throughput. The use
of MIMO technology in conjunction with multiuser support, allows a communication
system to deliver vastly improved data rates compared to legacy SISO communication
schemes. One of such recent wireless standards is the IEEE 802.11ac, which was devel-
oped in 2013, for wireless LAN communications [103]. In the following sections, we will
discuss the potential application of the proposed fully-pipelined K -best detector to an
IEEE 802.11ac wireless system.

5.4.4.1 Throughput Considerations

The IEEE 802.11ac standard builds upon IEEE 802.11n by providing support for up to
256-QAM and increasing the channel bandwidth from 40 MHz up to 160 MHz. IEEE
802.11ac also provides multiuser support as well as support for up to 8 downlink anten-
nas. That is, multiple users, each with a different MIMO configuration (e.g. 2× 2), can
be served by a single access point with 8 antennas. The mandatory and optional parame-
ters for IEEE 802.11ac are summarised in Table 5.4. In the 160 MHz channel bandwidth
configuration, IEEE 802.11ac supports a maximum throughput of 650 Mbps per stream
at a coding rate of 5/6 and 64-QAM modulation scheme [104]. This corresponds to a
hard detection throughput of 3120 Mbps for a 4 × 4 MIMO system,4 which suggests
that the proposed detector is potentially applicable to an IEEE 802.11ac communica-
tion system. Assuming the same clock frequency, the detector can achieve over 4 Gbps,
which makes it potentially applicable to the 256-QAM configuration, which offers the
maximum data rate possible. An obvious bottleneck when forward error correction code
is employed, is the need for a channel decoding step at the receiver end, which needs to
match the throughput of the detector. Furthermore, a deinterleaver will be required to
unscramble the decoded bits at the receiver end, if the information bits are interleaved
prior to transmission. However, the effect of these additional processes on the overall
throughput of the MIMO receiver unit has not be studied in this thesis.

4Hard detection throughput for 4 streams is given as: (throughput per stream ×
number of streams)/(coding rate) = (650× 4)/(5/6) = 3120 Mbps.
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5.4.4.2 Performance Considerations

In a typical wireless communication system, channel coding is employed to make the
data transmission more robust to errors. IEEE 802.11ac provides an optional low-density
parity-check (LDPC) code in addition to the mandatory binary convolutional coding.
The actual coding rate employed is a tradeoff between the performance and through-
put requirement. Although only the VLSI implementation of the hard-output MIMO
detector was presented in this thesis, the proposed detector can easily be extended to
provide reliability information for each detected bit, using approximations to the max-log
computation as provided in [59] (see Section 2.7.5).

In order to compute the reliability information, a candidate list needs to be built, which
comprises several potential candidate solutions extended down to the final level. In K -
best detection, this is straightforward, since several competing paths are generated in
order to find the minimum metric candidate (i.e. the hard detection output). Unfor-
tunately, the choice of K = 16 as adopted for the proposed implementation does not
provide an adequate candidate list size to compute the LLRs accurately. An obvious
approach will be to increase K to a large value, for example, K = 256, however, this is
hardly practical, due to the large area overhead required by the sorters, which would also
degrade the achievable maximum clock frequency. Another approach will be to simply
extend a selected number of paths from a given level without any sorting, in a manner
similar to the fixed-complexity sphere decoder. For example, if all paths from level 3
are extended, a maximum list size of 1024 can be obtained. That is,

√
M ×

√
M chil-

dren are extended in levels 1 and 2 from K best paths in level 3, resulting in a total of
K×
√
M×

√
M candidates. As with the case of the hard-output detector, the number of

children per parent per level can be reduced, in order to control the size of the candidate
list and achieve complexity-performance tradeoffs.

Figure 5.12 compares the hard and soft-output K -best detectors for 64-QAM 4×4 using
a convolutional code, with a code rate of 1/2, for the forward error correction and a
payload size of 1200 bytes. At this code rate, the achievable throughput of the soft-output
detector is approximately 1/2× the throughput deliverable by the hard-output detector.
The figure shows that a large list size is required for maximising the BER performance
compared to the hard-output detector. This observation also precludes simply increasing
K to build the candidate list for computing the LLRs. At a list size of 3888, the SNR gain
compared to the hard-output detector at a BER target of 10−4 is approximately 4 dB,
while a list size of 1296 achieves approximately a 2 dB gain. A list size of 256 does not
provide any appreciable performance gain beyond Eb/N0 = 25 dB. This suggests that a
substantial list size is required to take advantage of the convolutional code employed in
an IEEE 802.11ac system. It is possible to achieve a smaller list size by performing two
or more detection-decoding iterations at the expense of a reduced throughput. Although
a large list size is desirable for improved performance, as shown in the plot, it also makes
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Figure 5.12: BER vs SNR comparison of hard and soft K-best detectors for 64-QAM
4× 4 with code rate = 1/2, K = 16 and constraint length k = 7

computing the probability information for all the bits quite cumbersome. The integration
of a low-complexity low-latency LLR unit with a fully-pipelined K -best detector is an
interesting direction for future research.

5.5 Summary and Conclusion

In this chapter, the VLSI implementation of a fully-pipelined K -best detector has been
presented. The detector processes several MIMO tree searches concurrently, which re-
sults in a processing rate of one MIMO symbol vector per clock cycle. Although it has
been suggested by some authors that the sphere decoder achieves a better data rate than
the K -best detector [64], [68], the results of this chapter indicate that the K -best de-
tector is more suited to high-throughput applications compared to the sphere decoder.
The proposed detector has also been compared with the single-stage K -best detector
presented in Chapter 4, and the results indicate that a single fully-pipelined detector
is more hardware and energy efficient than interleaving several unpipelined detectors.
However, single-stage detectors still remain useful for applications requiring low power
and low data-rates. The application of the proposed detector to the IEEE 802.11ac
standard was also discussed, and a number of possible design challenges were identified.

The foregoing results suggest that the single-core implementation of the SD, as well as
the single-stage K -best detector, are best suited to a complex channel model, while the
fully-pipelined detector, is more suited to the real channel model. At a clock frequency of
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137 MHz, the proposed fully-pipelined detector achieves a throughput of over 3 Gbps and
a power consumption of 580 mW, which makes it well-suited to applications requiring
gigabit data rates.



Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

MIMO technology delivers several benefits to communication systems as highlighted in
Chapter 1. However, MIMO also complicates the design of the receiver as a result of the
multiple interferences at each receive antenna. In the worst case, the signal detection at
the MIMO receiver scales exponentially with the number of transmit antennas, which
is problematic in a real-time system. In this thesis, we have tackled two main objec-
tives namely: achieving high-throughput detection and secondly, achieving low-power
consumption. These two objectives are crucial to forthcoming 5G communication sys-
tems, and ASICs provide an attractive platform for realising these goals. We also posed
a number of research questions, which motivated us to undertake the implementations of
different MIMO algorithms and architectures, with the view of evaluating their impacts
on the aforementioned objectives. As a result, a number of novel contributions have been
achieved as follows:

1. In Chapter 3, we presented a modified SD algorithm, which achieves 25% reduction
in the number of clock cycles compared to the conventional SD algorithm, based on
a real channel model, through the use of a “look-ahead” strategy. We also presented
the implementation of a modified PED computation unit for the SD based on the
work of Kang and Park [90], which resulted in a lower area consumption and
a higher clock frequency compared with the conventional implementation. Two
VLSI implementations of the SD based on the aforementioned techniques were
also presented.

2. Also in Chapter 3, we proposed the use of adaptive runtime constraints for the
SD, which uses less stringent runtime constraints at SNR values below a cut-off
SNR determined through simulations. This results in almost a 90% reduction in
the number of clock cycles compared to the unconstrained SD.

117
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3. In Chapter 4, we implemented a reduced-complexity hybrid-merge network, which
combines the Batcher’s odd-even and bitonic sorters to achieve a highly optimised
design. The hybrid-merge algorithm achieves an area reduction of 30% compared
with the merge network utilising odd-even sorters only. Furthermore, a reduced
complexity K -best algorithm was proposed, which incurs minimal performance
loss compared with the conventional K -best algorithm.

4. In Chapter 5, we implemented a fully-pipelined K -best detector, which achieves a
throughput of 3.29 Gbps in the 64-QAM 4×4 MIMO configuration, which is one
of the highest reported in the literature. Furthermore, the proposed implemen-
tation achieves one of the best energy-efficiency figures compared with other K -
best detectors from the literature. The proposed detector features a novel pipeline
scheduling, which results in area reductions of 59% and 92% to the signal/channel
and PED registers respectively.

5. The interleaved and pipelined implementations of the K -best detector were also
compared in Chapter 5. Based on the implementation results, we can conclude
that although pipelining has area and power consumption overheads compared
with unpipelined implementations, it is more hardware and energy efficient than
corresponding interleaved implementations of unpipelined detectors. The fully-
pipelined detector presented incurs an area overhead of 61% compared to the
unpipelined detector, while significantly improving the throughput by a factor of
20×.

6.2 Design Guidelines

The choice of a MIMO detector is critical in the overall baseband processing at the
receiver. In a coded transmission, the MIMO detector has an impact on the design of
the channel decoder as well. In this thesis, we have studied two of the most popular
MIMO detectors namely, the sphere decoder and the K -best detector. In Chapter 1, a
number of design objectives were identified. Because these objectives are conflicting, it
is unlikely that any one MIMO detection algorithm will be “best” for all communication
requirements. Apart from the choice of detection algorithm, the architecture of the
detector itself, as shown in this thesis, has a significant impact on the overall receiver
performance. With the VLSI results of the aforementioned detectors, and discussions in
the background chapter, a number of design guidelines can be provided as follows:

• Area: With the rapid technology scaling, this objective is mainly critical when
targeting off-the-shelf platforms such as FPGAs and DSPs, which have a fixed
number of resources, which cannot be optimised further. Typically, the area is
sacrificed to meet other design objectives. The sphere decoder offers the smallest
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area consumption among the tree-search algorithms. The K -best detector can be
implemented using a similar folded architecture to the SD and would be an al-
ternative if a fixed throughput is required in addition to a small implementation
area. Strategies used for reducing the area consumption employed in the proposed
detectors, include the use of single-stage architectures; elimination of division in
determining the SE enumeration through the use of tabular enumeration; the use of
the optimised partial Euclidean distance computation for the SD and the adoption
of a low-complexity `1-norm approximation to the partial Euclidean distance.

• Performance: This is the most critical requirement of the identified objectives.
However, due to practical reasons, the “optimal” BER performance cannot be
achieved. Furthermore, different applications require different qualities of service
(for example, audio can tolerate a less reliable transmission than textual data). In
view of this, the performance of the MIMO detector can be traded off to achieve
other objectives such low power and high throughput. The unconstrained sphere
decoder (and best-first search algorithm) offers the best performance in an uncoded
scenario. However, in practice, channel coding will also be required in addition to
the hard-detection covered in this thesis. Thus, the natural extensibility of the
K -best algorithm to soft-output generation is a factor worth considering.

• Throughput: The sphere decoder features a single-tree processing, which limits
the throughput to the number of clock cycles required to detect one symbol vector.
Furthermore, the sphere decoder suffers from a significant throughput degradation
in poor channel conditions. Although runtime constraints can be used to improve
the throughput of the sphere decoder, the K -best detector implemented with a
comparable folded architecture appears to have an advantage. More significantly,
however, the K -best detector can be implemented in a multi-stage architecture,
which can support a partial or fully-pipelined processing, which is attractive for
gigabit MIMO detection. The use of merge networks, rather than multi-cycle sort
algorithms, has been shown to be advantageous for high-throughput implemen-
tations of single-tree architectures. Multi-cycle sort algorithms may be used in a
fully pipelined implementation without an impact on the throughput, however,
the latency is increased as a result. A complex channel model appears to be more
suitable for single-tree detectors, while a real channel model is attractive for the
fully-pipelined detector, since the reduced tree-depth of the complex channel model
does not offer any throughput advantage in a fully-pipelined scenario, and the real
channel model allows simpler computational units to be achieved. A comparison
of the fully-pipelined detector using both the real and complex channel models is
an interesting direction for future research.

• Power: Power consumption is critical in communication systems, particularly at
the receiver-end. In a power-centric application, the sphere decoder appears to be
the most suitable tree-search detection scheme. However, runtime constraints need
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to be applied to the sphere decoder to prevent a near-ML tree search in low SNR
conditions, which can increase the power consumption. In conclusion, the sphere
decoder appears most suited for applications requiring low power and small area
(e.g. medical devices and remote wireless sensor nodes), while the K -best detector
is more suited for applications requiring a high throughput performance, such as
wireless LANs.

6.3 Future Work

A number of techniques at both the circuit and algorithmic levels have been investigated
in this thesis, for the implementation of low-complexity and high-throughput MIMO
detectors. Considering the rapid-changing developments in the wireless communications
field, it is obvious that further innovations will be required to meet future challenges.
Some possible areas for further investigation are presented as follows:

• Adaptive Modulation: In a typical wireless system, the transmitter would em-
ploy different modulation schemes depending on the channel condition. For exam-
ple, in the IEEE 802.11ac standard, BPSK is used for sending channel state infor-
mation, which requires a high level of reliability but low data rate, while 64-QAM
or 256-QAM are employed at high SNR to achieve a higher transmission rate. In
this thesis, we have only considered the case of a single modulation scheme, which
will not be suitable for all channel conditions. The presented MIMO detectors
can be modified to accommodate different modulation schemes by instantiating
different enumeration lookup tables for each modulation scheme and making the
channel condition available to the MIMO detector.

• Throughput:One of the main objectives of this thesis is realising high-throughput
MIMO detectors. To this end, several innovations, such as fine-grained pipelining
and pre-computation using lookup tables have been employed in order to speed up
the detector. However, there is still scope for further improvements in this aspect.
For example, the merge network adopted in our proposed detectors constitutes a
bottleneck in the attainable speed of the detectors due to its large combinational
delay. The throughput of the detector can be improved by further pipelining the
merge network; however, this would have an undesirable impact on the area as well
as the dynamic power consumption. On the other hand, low-complexity sorting
algorithms that have been so far investigated in the literature inevitably lead to a
deterioration of the detection performance. We can therefore conclude that high-
performance and low-complexity sorting algorithms will be vital in meeting the
high-throughput requirements of future communication systems.
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• Preprocessing: Preprocessing plays a crucial role in reducing the complexity of
the MIMO detector as has been investigated in several works [38], [105], [106]. Un-
fortunately, however, preprocessing is itself quite computationally expensive, and
this may be even more significant in frequently-changing channel conditions. While
tree search algorithms require simple operations, preprocessing typically involves
complicated operations such as division and matrix inversion. Furthermore, the
preprocessing must be carried out with a high level of accuracy (since any errors
will be propagated to the MIMO detector), and this limits the application of sim-
pler but sub-optimal operations in the preprocessor unit. Considering the impact
of preprocessing on the detection as a whole, novel low-complexity preprocessing
techniques are required for achieving lower complexity MIMO detectors.

• Soft-Output MIMO Detection: In this thesis, we have considered the case of
hard-output detection only. However, a typical wireless system would employ one
or more forward-error codes in order to improve the reliability of the transmission.
This will require a channel decoder at the receiver in addition to the MIMO detec-
tor. Fortunately, the K -best detectors presented in this thesis are very suitable for
soft-output generation, since several solutions are generated as by-products of the
hard-detection. The presence of multiple antennas, apart from complicating the
MIMO detection, also makes the channel decoding more difficult. Thus, complete
ASIC systems, combining MIMO detection as well as channel decoding, merit more
attention from the future works.

• Technology Scaling: One of the major challenge encountered during this thesis
was the implementation of a high-throughput sorting unit for the K -best detector.
One possible approach for speeding up the sorting operation is by using more
advanced transistor technology. The disadvantage of this, however, is that the
circuit becomes increasingly susceptible to single-event upset (SEU) induced errors,
which will need to be mitigated. Several SEU mitigation strategies at both the
circuit and system levels have been widely investigated in the literature [107],
[108]. An interesting research will be to model the degradation of the performance
of the MIMO detector with transistor scaling and apply a combination of these
mitigation techniques to improve the performance.



Appendix A

QR Decomposition

QR decomposition is a frequently applied technique for solving mathematical problems
involving matrices. Consider an N × M matrix, A. QR decomposition is applied to
express A as a product of an N × N matrix, Q = [q1,q2, . . . ,qN ], with orthogonal
columns (i.e. qiqTj = 0, i 6= j), and an N ×M upper triangular matrix, R. Due to the
unitary nature of Q, we have ‖QR‖ = ‖R‖ = ‖H‖, which allows R to be used in place
of H in many situations. In the next sections, we will discuss some algorithms for QR
decomposition.

A.1 Givens Rotation

Consider two rows in the matrix A as follows a = [0, 0, . . . , ai,j , ai,j+1, . . . , ai,M ] and
r = [0, 0, . . . , rk,j , rk,j+1, . . . , rk,M ]. Assuming, it is desired to annihilate the element ai,j ,
then a rotation matrix, G(i, j, θ), given as:

G(i, j, θ) =
[

cos θ sin θ
− sin θ cos θ

]

can be constructed to rotate the vector [rk,j ai,j ]T through an angle θ, where cos θ and
sin θ are rk,j/

√
r2
k,j + a2

i,j and ak,j/
√
r2
k,j + a2

i,j respectively. It can be easily shown that

G(i, j, θ)
[
rk,j

ai,j

]
=

 √r2
k,j + a2

k,j

0

 .
In order to completely triangularise A, a series of NM −M(M + 1)/2 such rotations
are required. Since Givens rotation operates on only 2 rows at a time, it is attractive
for parallel implementation. Furthermore, the trigonometric functions can be obtained
without any square root operations by using CORDIC [34].
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A.2 Gram-Schmidt Orthogonalisation

Gram-Schmidt orthogonalisation works by successively orthogonalising the columns of
the matrix A = [a1,a2, . . . ,aN ]. Consider the matrix at the kth iteration as follows
[109]:

A(k) = [q1,q2,qk−1, . . . ,a
(k)
k , . . . ,a(k)

N ],

where q1,q2, . . . ,qk−1 denotes the columns of the orthogonal matrix, Q. Then rk,k is
determined as follows:

rk,k =
√

akaTk

and
qk = a(k)

k /rk,k.

The remaining columns of A are then orthogonalised against qk as follows:

a(k+1)
k = a(k)

j − rk,jqk

where rk,j = qTk a(k)
j for j = k + 1, . . . , N . Gram-Schmidt orthogonalisation is attractive

since the columns of A can be used for storing the columns of the orthogonal matrix as
they are generated.

A.3 Householder Reflections

Unlike the Givens rotation, the Householder QR decomposition operates on A in a
columnwise fashion and annihilates all the elements below the diagonal element. The
matrix is triangularised by a series of multiplications with a transformation matrix as
follows:

R = P(N)P(N−1) . . .P(1)A.

Each multiplication results in a new matrix, A(k), with the off-diagonal elements in the
kth column annihilated. The Householder transformation matrix, P, is given as

PN×1 = IN×N − 2vvT ,

where
v = ak ± αe1

|ak ± αe1|
,

and α is the norm of the kth column of A(k−1), ‖ak‖, and the sign of α is chosen so as
to prevent cancellation.
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An attractive feature of the Householder method is its speed, since it eliminates several
elements at once. It is also more numerically stable than the Gram-Schmidt orthogo-
nalisation. However, constructing the transformation matrix is cumbersome, due to the
square root computation involved. Furthermore, the Householder method is less paral-
lelisable than the Givens rotation since each reflection affects the entire matrix.



Appendix B

MIMO Communication Testbed

The following code shows a sample MIMO environment used for simulating the algo-
rithms described in the thesis. The code shows a complete MIMO system employing
spatial multiplexing with 4 × 4 antennas. Zero-forcing linear detector is used for the
detection at the receiver. It is assumed that there is no correlation between the parallel
substreams from the transmitter i.e. the channel gains are completely random.

clc;
clear;

N = 4; % Number of transmit and receive antennas
EbNoVec = 0:2:30; % Eb/No in dB
M = 64; % 64 QAM

constellation = qammod(0:M-1,M);

% Random stream used by random number generators for repeatability
hStr = RandStream(’mt19937ar’);

% Create QAM modulator and demodulator system objects
hMod = comm.RectangularQAMModulator(...

’ModulationOrder’, M, ...
’PhaseOffset’, 0, ...
’BitInput’, true, ...
’SymbolMapping’, ’Binary’...

);

hDemod = comm.RectangularQAMDemodulator( ...
’ModulationOrder’, M, ...
’PhaseOffset’, 0, ...
’BitOutput’, true, ...
’SymbolMapping’, ’Binary’ ...

);

% Create error rate calculation system objects
hZFBERCalc = comm.ErrorRate;
BER_ZF = zeros(length(EbNoVec), 3);
bits_per_symbol = log2(M);
nchannels = 100e3;
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% Number of symbol vectors per channel realisation
symbs_per_channel = 4;
L = nchannels * symbs_per_channel;

for idx = 1:length(EbNoVec)
fprintf(’EbNo = %d dB\n’, EbNoVec(idx));

% Reset error rate calculation system object
reset(hZFBERCalc);

% Calculate SNR from EbNo
snrIndB = EbNoVec(idx) + 10 * log10(bits_per_symbol * N);
hStr = RandStream(’mt19937ar’, ’Seed’, EbNoVec(idx));

indChans = 1/sqrt(2) .* (randn(hStr,N,N,nchannels) + 1j*randn(hStr,N,N,nchannels));
H = indChans(:,:,ceil(1/symbs_per_channel:1/symbs_per_channel:nchannels));

for j = 1:L
msg = randi(hStr, [0 1], [N * bits_per_symbol, 1]);
h = H(:,:,j);

% Modulate data
s = step(hMod, msg);
y = awgn(h*s, snrIndB, ’measured’, hStr);

% MIMO detection using the ZF detector
s_ZF = h^-1 * y;

s_ZF_sliced = zeros(N,1);

% Round soft values to nearest constellation point
for i = 1:N

[~, min_index] = min(abs(s_ZF(i) - constellation));
s_ZF_sliced(i) = constellation(min_index);

end

% Demodulation
x_ZF = step(hDemod, s_ZF_sliced);

% Update BER
BER_ZF(idx, :) = step(hZFBERCalc, x_ZF, msg);

end
end

semilogy(EbNoVec, BER_ZF(:,1), ’ko-’);
title(’BER versus SNR’);
xlabel(’Eb/No’);
ylabel(’BER’);
grid on;
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