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Abstract 

The study implements a classic signal analysis technique, typically applied to structural dynamics, to 

examine the nonlinear characteristics seen in the apparent mass of a recumbent person during whole-

body horizontal random vibration. The nonlinearity in the present context refers to the amount of 

‘output’ that is not correlated or coherent to the ‘input’, usually indicated by values of the coherence 

function that are less than unity. The analysis is based on the longitudinal horizontal inline and vertical 

cross-axis apparent mass of twelve human subjects exposed to 0.25-20 Hz random acceleration 

vibration at 0.125 and 1.0 ms-2 r.m.s. The conditioned reverse path frequency response functions (FRF) 

reveal that the uncorrelated ‘linear’ relationship between physical input (acceleration) and outputs 

(inline and cross-axis forces) has much greater variation around the primary resonance frequency 

between 0.5 and 5 Hz. By reversing the input and outputs of the physical system, it is possible to 

assemble additional mathematical inputs from the physical output forces and mathematical constructs 

(e.g. square root of inline force). Depending on the specific construct, this can improve the summed 

multiple coherence at frequencies where the response magnitude is low. In the present case this is 

between 6 and 20 Hz. The statistical measures of the response force time histories of each of the 

twelve subjects indicate that there are potential anatomical ‘end-stops’ for the sprung mass in the 

inline axis. No previous study has applied this reverse path multi-input-single-output approach to 

human vibration kinematic and kinetic data before. The implementation demonstrated in the present 

study will allow new and existing data to be examined using this different analytical tool.  

Keywords: Whole-body vibration; biomechanics; nonlinear dynamics; multi-input-single-output   
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1 Introduction  

The study applied a system identification procedure to analyse ‘paths’ that contributed to nonlinear 

dynamic behaviour of the human body during whole-body vibration (WBV). The nonlinearity in this 

context refers to the amount of ‘output’ response that is not linearly correlated to the ‘input’ excitation, 

usually indicated by values of the coherence function that are less than unity. This mathematical 

nonlinearity may be associated with the biomechanical nonlinearity, previously referred to as 

‘biodynamic nonlinearity’, in which the resonance frequency increased with decreasing vibration 

magnitude [1,2]. Improved understanding of the mathematical nonlinearity may help to quantify the 

biomechanical nonlinearity that holds the key to dynamic response predictions at substantially 

different magnitudes.  

Biomechanical nonlinearity has been reported in both the vertical and the fore-and-aft responses of the 

seated human body during vertical whole-body vibration [3], in both the fore-and-aft and vertical 

responses of the seated human body during fore-and-aft whole-body vibration [4,5], in both vertical 

and longitudinal horizontal responses of the recumbent person during vertical whole-body vibration 

[6], and in both longitudinal horizontal and vertical responses of the recumbent person during 

longitudinal horizontal whole-body vibration (see Figure 1). With recumbent subjects, any voluntary 

or involuntary movement and muscular activity were assumed to be reduced compared to a seated 

person. Therefore, it provided a better condition to examine the ‘linearity’ of a dynamic system in 

comparison with other postures [2]. 

By measuring dual axial responses of seated subjects exposed to simultaneous dual axial excitation, 

Mansfield and Maeda [7] observed similar magnitude dependency of the resonance frequency. The 

additional axis of excitation had a similar effect of increasing the vibration magnitude in a single axis 

excitation, with a reduced resonance frequency characteristic in its apparent mass. Experimental 

studies like this would benefit from an analytical framework that could isolate effects of each axis of 

excitation on each axis of the response.  

The intended procedure applied in this paper is called the reverse path nonlinear multi-input-single-

output (MISO) method. It was introduced by Bendat et al. [8] and later demonstrated with 

implementations by Bendat and Piersol [9,10]. There are two principle steps: first, one needs to define 

and prepare ‘mathematical’ inputs, usually physical output from measurement of the structural 

response, and ‘mathematical’ output, usually the physical input excitation, in the reverse path diagram 

shown in Figure 2. Secondly, one produces a formulation of the MISO system including computation 

of frequency response functions (FRF) based on correlated and uncorrelated (or conditioned) 

mathematical inputs and their coherence functions (Figure 3). 
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Figure 1 Schematic experimental setup of the supine human body exposed to horizontal 
vibration and the axes of the forces (in horizontal z-axis, vertical x-axis and lateral y-axis) and 
acceleration (z-axis) transducers following Huang and Griffin [1]. 

 

 

Figure 2 Reverse path diagram (b) derived from the original forward path diagram (a) 
eliminates the feedback loop – a cumbersome computational procedure. Diagram (c) presents the 
reverse path MISO system implemented for the present study adapted from Bendat and Piersol [9]. 

 

The procedure has been widely used in structural dynamics to identify nonlinear behaviour present in 

flexible and slender structures. An example being the nonlinear cubic stiffening effect of a two-end-

clamped mid-excited beam, characterised by two nonlinear mathematical inputs in addition to the 

original dynamic force input [11]. The two added inputs were the square and cubed power of the input 
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dynamic force. With the two mathematically constructed inputs, the multiple coherence function was 

markedly improved, enabling a more accurate prediction model to be used for the structural response 

when the ordinary coherence was low.  

For road-induced vehicle vibration a MISO system was employed to analyse transmissibilities of 

multiple acceleration inputs [12]. Instead of using arbitrarily constructed mathematical inputs, the 

authors used multiple channels of physical inputs – up to twelve accelerations at the four corners of 

the seat floor and in each of the three orthogonal directions. The method identified the dominant 

channels for the input acceleration in predicting the seat transmissibility. 

With longitudinal horizontal random excitation of a semi-supine human body, the coherence function 

of the apparent mass showed a drop between 6 and 20 Hz [1]. With increasing magnitude of 

excitation, the frequency of the coherence drop decreased – a similar behaviour to the resonance 

frequency of the apparent mass between 2 and 4 Hz. It was plausible to assume that at certain 

frequencies a part of the output force in the inline (longitudinal) direction was transferred to the cross-

axis (vertical) direction, and therefore the coherence of the inline apparent mass was low at these 

frequencies. However, there has been no investigation to quantify the amount of ‘transferred’ output 

force from the inline axis to the cross axis.  

Most biomechanical studies of whole-body vibration have allocated any nonlinear effects at the 

‘output’ side of a transfer function, e.g. [13]. From a system linearity point of view, it was not known 

whether the output could have a nonlinear feedback path to affect the linear input such as that shown 

in Figure 2a. At the same time, implementing a feedback loop in the frequency response functions 

(FRF) involves time-consuming iterative procedures and stringent assumptions about the random 

distribution of the output. A ‘reversed path’ approach would offer a more efficient computational 

algorithm for FRFs and coherences [9].  

When using correlated inputs it is difficult to obtain separately the linear FRF, in an optimum least-

squares predicted sense, between the individual inputs and the output(s). The identification method 

applied in the present study enables firstly a primary input to be used to estimate the first linear 

transfer function between itself and the output. The correlated parts of the other inputs are identified 

separately and are expressed in terms of linear transfer functions between the primary input and the 

other inputs. A calculation is then made to estimate any further linear transfer function between the 

uncorrelated parts of the other inputs and the output. To obtain the optimum linear transfer functions 

for the other inputs, there is the iterative relationship relating the subsequent transfer functions 

between the uncorrelated components in addition to the contribution from the correlated components.  

In this manner the optimum linear transfer functions between each of the inputs can be evaluated. 

Bendat and Piersol [9] applied this procedure to the ‘Duffing’ oscillator model excited by a force. The 

method recovered the two linear transfer functions between the two ‘inputs’, namely the displacement 
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and the cube of the displacement, and the applied force. The former transfer function incorporated the 

linear mass, stiffness and damping terms and the second transfer function estimated the constant 

coefficient multiplying the cubed displacement for example. 

The present study examines the longitudinal inline and vertical cross-axis apparent mass of a supine 

body exposed to 0.25-20 Hz random vibration at 0.125 and 1.0 ms-2 r.m.s. acceleration measured by 

Huang and Griffin [1] (Figure 1). The original system of input excitation and output force measured at 

the driving point, i.e. the subject-support interface, was transformed into the reverse path diagram in 

Figure 2b. The longitudinal inline z-axis force forms the first mathematical input, the vertical cross x-

axis force forms the second mathematical input, and the third mathematical input is arbitrary and could 

be formulated by either the lateral cross y-axis force, the square of the inline z-axis force, or the square 

root of the inline z-axis force. The displacement-force relationship at the base could then be 

interpreted, for example, by a ‘softening’ stiffness component when a squared force construct is 

applied, as the third mathematical input, or a ‘hardening’ stiffness when a sign-conserved square 

rooted force construct is employed. The longitudinal z-axis excitation acceleration forms the 

mathematical output (Figure 2c). The purpose of the adapted reversed MISO scheme (reMISO) would 

be to obtain the linear frequency response functions after removing the effects from each mathematical 

input (or physical output). The study tried to demonstrate the effects of mathematically constructed 

inputs, e.g. the sign-conserved square root of the inline z-axis force, to the nonlinear relationship 

between physical input and physical output of a system. Such relationships will be examined using 

ordinary, partial and multiple coherences. No previous study has applied this reverse path multi-input-

single-output approach to human vibration kinematic and kinetic data before. The implementation 

demonstrated in the present study will allow new and existing data to be examined using this different 

analytical tool. 

2 Method  

The present study focuses on the key variables used to implement the reversed multi-input-single-

output (reMISO) method to examine the transfer function defined by apparent mass. Apparent mass is 

defined as the ratio between the resultant ‘physical output’ force measured at the driving point, i.e. the 

excitation-subject interface, and the excitation ‘input’ acceleration at the supporting surface or base. 

Extensive procedures to derive uncorrelated, or conditioned, mathematical inputs, correlated and 

uncorrelated FRF, ordinary, partial and multiple coherence functions have been demonstrated by 

Bendat and Piersol [9,10]. They were implemented with single physical input and single physical 

output by Sweitzer [11], with multiple physical inputs and outputs by Qiu and Griffin [12], and with 

both single input and multiple inputs by Mandapuram et al. [14].  
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The apparent masses of twelve semi-supine subjects measured at two magnitudes of continuous 

broadband random (0.25 to 20 Hz) vibration, i.e. 0.125 and 1.0 ms-2 r.m.s., were examined using time 

histories from Huang and Griffin [1]. MATLAB 7.10 was used to perform all computational analysis.  

The three mathematical inputs were defined from Figure 2 as:  

x1 – measured longitudinal inline response force at the driving point (N). 

x2 – measured vertical cross-axis response force at the driving point (N). 

x3 – constructed sign-conserved square root of the horizontal longitudinal z-axis inline 

response force at the driving point (N1/2). So x3 has the same sign and therefore phase as the z -axis 

inline force – it always produces a restoring force. The mathematical construct of the input is not 

unique. The choice of a square root function is purely arbitrary and the intention was to show a 

nonlinear dependency of the displacement or equivalently acceleration as a function of the force 

amplitude. So a displacement or acceleration proportional to the square root of the force would not 

increase to as large a value as a linear relationship at high enough force amplitudes. In contrast, a 

relationship proportional to the squared function of force would have the displacement and 

acceleration amplitude increasing nonlinearly at a larger rate than a linear relationship between them 

and the force. See the discussions in Section 4.1 where the interpretation is further elaborated, 

dependent upon the level of the force, acceleration and corresponding displacement.   

The one mathematical output was defined from Figure 2 as: 

y – measured longitudinal excitation acceleration at the base (m/s2). 

In general, ‘H’ is used to denote transfer functions based on correlated original mathematical inputs, 

while ‘L’ denotes the transfer functions based on conditioned or uncorrelated mathematical inputs 

where correlated portions are removed from each path. The general algorithm to formulate the MISO 

system in operational order is provided in Appendix A. The present study was based on three inputs 

and one output. A simplified notation is summarised below with a schematic representation shown in 

Figure 3.  
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Figure 3 (a) Conditioned or uncorrelated mathematical inputs (U1, U2, U3) determined by 
recursive operation from correlated inputs (x1, x2, x3). (b) FRF of correlated inputs ‘H’ found from 
recursive sum of uncorrelated FRFs ‘L’ adapted from Bendat and Piersol [9]. 

 

The standard transfer function of (ordinary) apparent mass using cross spectral density (CSD) method 

takes the form:      

 

 

 

and for the ordinary coherence function:  

where, f is frequency scale, H1(f) and H2(f) both measure the amount of the output that is linearly 

correlated to the input; H1(f) assumes that nonlinearity or noise comes from the output; H2(f) assumes 

that nonlinearity or noise comes from the input; Hv(f) assumes that nonlinearity or noise comes from 

both the input and the output [15]. With normal single input multiple output, Hv reduces to an 

equivalent of the ‘PSD’ estimator, i.e. (Goo(f) / Gii(f) )1/2, but with the phase of Goi(f). The modulus of 

Hv usually falls between those of the H1 and H2 estimators. Goi(f) is the cross spectral density (CSD) 

function between the physical output and input; Gii(f) and Goo(f) are the power spectral density (PSD) 

function for the physical input and output, e.g. G11 is the PSD of the z-axis inline force as the first 

mathematical input; cohio is the (ordinary) coherence function between the physical input and output. 

In a normal sense, the input for the apparent mass is the acceleration excitation, and the output is the 

driving point dynamic force. However, in the reverse path method illustrated, the mathematical inputs 
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will be constructed from the driving point dynamic force, i.e. x1, x2, and x3, and the mathematical 

output will be the excitation acceleration, i.e. y. 

The CSDs and PSDs were estimated via Welch’s method at frequencies between 0.25 and 20 Hz with 

data shown between 0.25 and 10 Hz. Each time history of 90 s was processed using a Fast Fourier 

transform (FFT) window length of 2048 samples, a Hamming window with 50% overlap, a sampling 

rate of 200 samples per second and an ensuing frequency resolution of approximately 0.1 Hz [1].  

The FRFs based on correlated mathematical inputs i.e. H3y, H2y, and H1y take the form: 

   where  

  

   

Subscripts 1, 2, 3 and y refer to the three mathematical inputs and one output respectively, while ‘!’ 

refers to the removal of all lower counts channels, e.g. ‘2!’ means both x1 and x2 are removed from the 

function.  

The FRFs based on uncorrelated conditioned mathematical inputs, i.e. L2y and L1y, are: 

   

The ordinary coherence functions for the conditioned inputs are: 

  which is the same as the ordinary coherence function 

    

where subscript u denotes uncorrelated inputs, e.g. u1 = G11, u2 = G22.1, u3 = G33.2!,                 

see Appendix A for Gjj.r!. 

The multiple coherence function as a summation of all uncorrelated contribution of inputs is:  

 

The algorithm used above computes the ordinary coherence functions of conditioned inputs as a 

percentage of the uncorrelated input u to the total output (Gyy) and then sum them up [9]. These are 

used in the present study, as the ordinary coherence functions of conditioned inputs offer more 

physically meaningful interpretation of each uncorrelated input with regard to the overall output. 
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The linear FRF determined from the mathematical output y and the original mathematical input x1 is 

then expressed as: 

  

A linear two-pole-two-zero fit of the Hy1 function was then performed so as to estimate its peak 

frequency. Peak frequencies for the ordinary FRF H1 were previously obtained by fitting a parallel 

two-degree-of-freedom lumped parameter mass-spring-damper system in the frequency range 0 to 10 

Hz by Huang and Griffin [1].  

The peak frequencies extracted from the ordinary and conditioned FRF of the twelve subjects at the 

two vibration magnitudes are tested using the Wilcoxon’s matched-pairs signed ranks test. This class 

of statistical methods was ’distribution-free’ or ’non-parametric’. They use the rank order of the data 

and in some cases the difference in value rather than the absolute value. This is because it was not 

always valid to make assumptions about the distribution of the data [16]. Parametric methods require 

normally distributed data. The Wilcoxon’s test is used in situations when individual values for two 

samples are related. For instance, when the same set of twelve subjects are exposed to two magnitudes 

of vibration, the two sets of data would be related samples. Usually a confidence level p value of less 

than 0.05 is used to indicate that the two samples of data are different.  

 

3 Results 

The results are presented in the working order of the MISO recursive operation of one subject (S9), as 

an example, in Figures 4 to 8. The results for all twelve subjects are presented in Figures 9 to 11, and 

in Tables 1 and 2.  

At 0.125 ms-2 r.m.s. acceleration, an example of the first 6 seconds of the three mathematical inputs 

and one mathematical output are presented in Figure 4. Note that x3 is the sign-conserved square 

rooted horizontal inline force. Figure 5 shows the power spectral density functions of the three 

mathematical inputs G11 for inline horizontal force, G22 for cross-axis vertical force, G33 for square 

rooted inline horizontal force, one mathematical output Gyy for inline horizontal excitation 

acceleration, and the measured lateral y-axis force (Glateral) that has been replaced by the third 

mathematical input (G33) in the current numerical study. Between 6 and 18 Hz, G33 exhibits a similar 

profile to the cross-axis vertical force (G22).   
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Figure 4 Time histories of the mathematical inputs: (a) x1 – horizontal inline output force at the 
driving point (N); (b) x2 – vertical cross-axis output force at the driving point (N); (c) x3 – sign 
conserved square rooted horizontal inline force (N1/2); and mathematical output: (d) y – horizontal 
acceleration excitation at the base (ms-2) with each lasting for 90 seconds at 1.0 ms-2 r.m.s. for subject 
S9. 

 
 

 
 

Figure 5 Power Spectral Densities of the excitation acceleration Gyy, the inline z-axis force G11, 
the cross-axis vertical x-axis force G22, the sign conserved square root of the inline z-axis force G33 and 
the cross-axis lateral y-axis force Glateral of subject S9 at 0.125 ms-2 r.m.s. 
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3.1 Partial and multiple coherence functions  

The partial and multiple coherence functions, and the corresponding correlated and uncorrelated 

transfer functions at 0.125 ms-2 r.m.s. acceleration are presented in Figure 6, depicting the working 

sequence of the recursive conditioning algorithm. The correlated (H) and uncorrelated (L) transfer 

functions produce envelopes for the inverse of the apparent mass transfer function (H1 and H2 in 

Figure 7a) due to the reverse path algorithm. The main drop in the ordinary coherence (coh1y) is 

between 12 and 20 Hz. Shown by its partial coherence (coh2y), the second mathematical input (x2), i.e. 

the vertical cross-axis output force, exhibits improvement of up to 40% to the multiple coherence 

(cohyy) in the frequency range where the ordinary coherence drops below 70%. At 0.125 ms-2 r.m.s., 

the vertical cross-axis force also improves the ordinary coherence at lower frequencies near the 

primary resonance i.e. around 3, 4 and 7 Hz. The third mathematical input (x3), i.e. the sign conserved 

square rooted inline output force, had little contribution to the overall response.     

At 1.0 ms-2 r.m.s., the vertical cross-axis force (coh2y) contributes to the multiple coherence (cohyy) by 

up to 70% between 10 and 16 Hz. The third mathematical input of square rooted inline horizontal 

force (coh3y) also contributes 10% to 30% to the multiple coherence in the same frequency range 

(Figure 8f). This is considerably higher than that obtained at the lower vibration magnitude of 0.125 

ms-2 r.m.s. (Figure 8c). The drop in ordinary coherence was observed over a wider frequency range 

and greater in reduction at the higher vibration magnitude than at the lower magnitude. In the 

frequency range of the main coherence drop, the cross-axis force improved the multiple coherence 

more at the higher magnitude of vibration than at the lower magnitude. There was a small but evident 

improvement in the multiple coherence at lower frequencies, near the primary resonance around 2 to 4 

Hz. 
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Figure 6 (a) Ordinary coherence coh1y, partial coherence coh2y, coh3y, and multiple coherence 
∑cohy:x computed using individual and combined mathematical inputs (x1, x2, x3) and output (y). (b) 
H3y, (c) H2y and (d) H1y are FRF based on correlated mathematical inputs. (c) L2y and (d) L1y are FRF 
based on uncorrelated mathematical inputs. Vibration magnitude: 0.125 ms-2 r.m.s., subject S9. 
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Figure 7 Individual (Subject S9) H1 and H2 as standard apparent mass FRF, Hy1 the linear FRF 
determined from the mathematical output y and mathematical input x1 at vibration magnitude 0.125 
ms-2 r.m.s. (a) and (b), and at 1.0 ms-2 r.m.s. (c) and (d). (b) and (d) show the linear FRF 2-poles and 2-
zeros fit of the Hy1 function at the two magnitudes respectively. 

 
 

 

 
       
Figure 8 Individual (subject S9) ordinary coherence coh1y, partial coherence coh2y, coh3y, and 
summed multiple coherence function ∑cohy:x computed using individual and combined mathematical 
inputs (x1, x2, x3) and output (y). (a), (b) and (c) show vibration magnitude at 0.125 ms-2 r.m.s. (d), (e) 
and (f) show vibration magnitude at 1.0 ms-2 r.m.s. (a) and (d) use the original lateral force for 
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mathematical input x3. (b) and (e) use the  squared inline force x1 as x3. (c) and (f) uses the sign 
conserved square root of the inline force x1 as x3.   

 

3.2 Ordinary and conditioned frequency response functions  

The difference between the two standard FRF H1 and H2 of an individual subject (S9) in Figure 7 

illustrates the frequency range at which the ordinary coherence function is low.  

The peak frequencies of the ordinary (H1) and conditioned (Hy1) FRF at the two vibration magnitudes 

are summarised in Table 1 and presented in Figure 9. The ordinary FRF peak frequencies were 

obtained by fitting a parallel two-degree-of-freedom mass-spring-damper lumped parameter model to 

H1 by Huang and Griffin [1]. The conditioned FRF peak frequencies are estimated by fitting a two-

zero-two-pole continuous filter in the Laplace form to Hy1 using the MATLAB routine ‘invfreqs’ in 

the present study. The Hy1 obtained from the reverse path algorithm exhibits much more scattered 

variation in the frequency range 0.5 to 20 Hz. Therefore, the two-zero-two-pole filter does not provide 

as satisfactory a fit as the lumped parameter fit for the ordinary H1. At 1.0 ms-2 r.m.s., there is a 

significant difference between the peak frequencies estimated from the Hy1 fit and those estimated 

from the H1 fit (p<0.05, Wilcoxon matched-pairs signed ranks test, Table 2). In contrast, no 

statistically significant difference in the peak frequencies was found between the two techniques at 

0.125 ms-2 r.m.s. (p>0.05, Wilcoxon). The magnitude dependent biomechanical nonlinearity is 

observed using both the H1 fit method and the Hy1 fit method – the peak frequencies are significantly 

different at the two vibration magnitudes (p<0.05, Wilcoxon).  

 

Table 1 Peak frequencies (fr) at low (0.125 ms-2 r.m.s.) and high (1.0 ms-2 r.m.s.) acceleration 
magnitudes. Peak frequencies for ordinary FRF H1 are obtained by fitting a two-degree-of-freedom 
lumped parameter mass-spring-damper system in the frequency range 0 to 10 Hz by Huang and 
Griffin [1]; peak frequencies for the conditioned FRF Hy1 in the present study are obtained by fitting a 
two-zero-two-pole Laplace FRF estimation in the frequency range 0 to 10 Hz. Both fitting processes 
use least square error optimisation.  

fr (Hz) S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Low H1 3.81 3.32 4.00 3.32 3.81 3.81 3.42 4.00 3.71 3.61 3.52 3.52 

Low Hy1 3.81 2.54 2.54 3.32 4.39 3.81 3.13 4.39 3.71 3.22 3.42 3.42 

High H1 2.44 2.15 2.73 2.25 2.54 2.54 2.44 2.64 2.34 2.34 2.15 2.44 

High Hy1 2.44 2.64 2.93 3.22 3.32 2.54 3.52 3.32 3.13 2.15 3.22 2.44 
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Table 2 Statistical significance of the ordinary and conditioned apparent mass FRF resonance 
frequencies (fr in Hz) at the low and high magnitudes (p values for Wilcoxon matched-pairs signed 
ranks test, * indicates p < 0.05 and the results are significantly different)   

 Low H1 Low Hy1 High H1 High Hy1 

Low H1 ___ 0.292 0.002* 0.003* 

Low Hy1 ___ ___ 0.003* 0.025* 

High H1 ___ ___ ___ 0.011* 

High Hy1 ___ ___ ___ ___ 

 

 

 

 

Figure 9 Individual apparent mass estimated by ordinary H1 FRF for 12 subjects at 0.125 ms-2 
r.m.s. (a) and 1.0 ms-2 r.m.s. (c), and then estimated by conditioned Hy1 FRFs for 12 subjects at 0.125 
ms-2 r.m.s. (b) and 1.0 ms-2 r.m.s. (d). 

 

The peak frequencies only depict dynamic behaviour around the resonance peak. The individual H1 

and Hy1 at both magnitudes for all twelve subjects provide a sense of inter-subject variation over the 

entire frequency range from 0.5 to 20 Hz (Figure 9). For the ordinary H1 FRF, there was greater 

variation around the resonance frequencies between 0.5 and 5 Hz at the lower magnitude of 0.125 ms-2 

r.m.s. than those at 1.0 ms-2 r.m.s. (Figure 9 a and c). However, between 10 and 20 Hz where the major 
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coherence drop occurred, the variation was greater at the higher magnitude. For the conditioned Hy1 

FRF, there was greater variation in the apparent mass at the higher magnitude of 1.0 ms-2 r.m.s. across 

the frequency range 0.5 to 20 Hz (Figure 9 b and d). Between 0.5 and 10 Hz where the primary 

resonance occurs, the Hy1 estimate shows greater variation than the H1 estimate. Some subjects exhibit 

greater variation than others. The summed multiple coherence is improved.  

3.3 Statistical characteristics of the response forces  

The skewness, a measure of asymmetry, and kurtosis, a measure of whether the data has increased or 

reduced ‘tails’ relative to a Gaussian normal distribution, for each time history (90 seconds) for twelve 

subjects at each of 0.125 and 1.0 ms-2 r.m.s. are compared in Figure 10. The kurtosis value of 3 for a 

Gaussian distribution was always subtracted from any kurtosis values presented. The horizontal z-axis 

excitation acceleration shows greater asymmetry and heavier tails compared to a normally distributed 

random set at the higher vibration magnitude. This would be the benchmark to be compared with the 

three output forces in x, y and z axes. For a perfectly ‘linear’ system, one would expect that the same 

amount of skewness and kurtosis would appear on each of the output forces. To ease the comparison 

between the three response forces and the horizontal excitation acceleration, the skewness and kurtosis 

values of the excitation acceleration (Figure 10 a and b) were subtracted from the skewness and 

kurtosis values presented for the three response forces in x, y and z axes (Figure 10 c to h). These are 

therefore referred to as centred skewness and centred kurtosis.  

The asymmetry and tail characteristics of the distribution could be used to interpret the response forces 

relative to the characteristics of the excitation acceleration. A large skewness indicates that some other 

factor or input might have contributed a bias or greater range of force response given that the 

underlying nonlinearity sought after is similar in all subjects. A negative skewness value would imply 

that there exists an increased tail of values below the mean or that the values above the mean are 

concentrated in a smaller range or interval. If the kurtosis values are lower than zero, there is an 

increased chance that the sprung mass of the body is regularly reaching the ‘end-stops’ of the 

anatomical boundaries. A high kurtosis value above zero would indicate either 1) effects that might 

have caused the response force to deviate from a normal tail, or 2) a low level of response force where 

the chance of biased non-normal behaviour would emerge e.g. in the x-axis and y-axis forces.     

One of the twelve subjects, S3, showed unusually high skewness and kurtosis values for the horizontal 

z-axis inline force (x1) and vertical x-axis cross-axis force (x2) at 0.125 ms-2 r.m.s. An inspection of the 

time histories revealed that this was likely due to drifts over time of the charge amplifier of the force-

sensing instrument. The discussion will therefore focus on the remaining eleven subjects. 

For the horizontal z-axis inline force, its symmetry is similar to that of the low magnitude excitation 

acceleration for 11 out of 12 subjects except for S3 (Figure 10 a and c). At the high vibration 

magnitude, 9 out of the 12 subjects showed an asymmetry in the opposite direction to that of the 
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excitation acceleration. At the lower magnitude, 11 subjects show reduced tails than the excitation 

acceleration except for subject S3 (Figure 10 b and d). At the higher magnitude, 5 out of 12 subjects 

showed reduced tails. A reduced tail might indicate that the sprung mass of an oscillation system has 

regularly reached the ‘end-stops’ boundaries of its motion giving rise to forces that do not follow a 

Gaussian distribution.   

For the x-axis cross-axis force, there is slightly higher level of asymmetry than the z-axis force at the 

low magnitude, but slightly lower level of asymmetry than the z-axis force at the high magnitude 

(Figure 10 c and e). There is a slightly reduced tail for the low magnitude but a considerable reduction 

in tail size for the high magnitude acceleration (Figure 10 d and f).   

For the y-axis cross-axis force, the level of asymmetry is very similar to the excitation at both 

magnitudes (Figure 10 g). The tails are much reduced, corresponding to a negative change in the 

kurtosis, for both magnitudes (Figure 10 h).   

 

 
 

Figure 10 Skewness (a) and kurtosis (b) values of the z-axis excitation acceleration, centred 
skewness and kurtosis of inline z-axis force (c and d), centred skewness and kurtosis of fore-and-aft 
cross x-axis force (e and f), and centred skewness and kurtosis of lateral cross y-axis force (g and h) 
time histories of 90 seconds at the low magnitude of 0.125 ms-2 r.m.s. and the high magnitude of 1.0 
ms-2 r.m.s. of 12 subjects. Subject 3 is identified in c, d, e, and f. 
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4 Discussion 

4.1 Partial and multiple coherence functions  

The partial coherence of the vertical cross-axis force obtained by the recursive conditioning procedure 

improved the overall multiple coherence representing the linearity of the dynamic body system in the 

frequency range 8 to 20 Hz. However, in the frequency 8 to 18 Hz, some compensated coherences 

were about 0.9 at 0.125 ms-2 r.m.s and around 0.7 at 1.0 ms-2 r.m.s. There must have been some other 

causes. Huang and Griffin [1] speculated that the low output force at the driving point, or, high noise 

and distortion, at these frequencies could be the primary cause. By constructing the mathematical input 

of the ‘reversed’ dynamic system, the current study intends to provide a more quantitative explanation 

of the coherence drop in the horizontal apparent mass. By replacing the y-axis lateral cross-axis force 

by the sign conserved square rooted z-axis horizontal inline force, as the third mathematical input in 

the reversed recursive conditioning procedure, the coherence was further improved at the higher 

magnitude of vibration, but was not so apparent at the lower magnitude (Figure 8 a and d). The 

increased contribution from the third mathematical input at the higher magnitude seems to agree with 

a previous suggestion that the body system is more nonlinear at the higher excitation magnitude [2]. 

Alternative nonlinear quantities could also be considered in the analysis, if required, or considered to 

be based on biomechanical principles. 

The constructed mathematical input (x3) played a relatively small role in the multiple coherence 

function in comparison to the main cross-axis response force in the vertical x-axis of the recumbent 

subject. The cross-axis movement of the recumbent human body introduced complexity when 

analysing the linearity or the nonlinearity of the body. Any test conditions involving human subjects 

will involve degrees of cross-axis response. Means to eliminate or control such movements in 

experiments are desirable. 

By mathematically constructing analytical inputs, comparison between the effects of physical inputs, 

i.e. x1 and x2, and analytical inputs, i.e. x3, of the reversed system is now possible (Figure 8). The 

constructed input (x3) herein this paper could be either the square of the first mathematical (physical) 

input x1 (Figure 8 b and e), the sign conserved square root of x1 (Figure 8 c and f), or the original 

physical lateral y-axis cross-axis force (Figure 8 a and d). At the low vibration magnitude, there was 

not much difference by changing between the three constructed inputs. But at the higher magnitude, 

the sign conserved square root component seemed to offer the highest contribution in the multiple 

coherence for the third mathematical input x3 (Figure 8 d, e and f). Similar behaviour was observed 

across the twelve subjects. This was the primary reason for the current study to use the sign conserved 

square root construction.  
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The higher coherence using a square root function of the force, rather than that using a squared 

function, suggest that the nonlinear component is better captured by an increased force response for a 

given input displacement or acceleration, rather than a reduced force response for the same input 

displacement or acceleration. As the force increases, the sign conserved square root function produces 

an increased value, but with a decreasing gradient as a function of the input acceleration. The reducing 

force behaviour coincides with the biomechanical nonlinearity observations at the main resonance 

frequencies; with higher magnitudes of vibration the resonance frequency for the apparent mass 

decreases indicating a reducing force dynamic response.       

Before conducting the reversed MISO process, the order of the mathematical inputs could be 

determined using the ordinary FRF [9]. The inline response usually dominates when the effect of 

active muscular activity is considered secondary or less important. The majority of whole-body 

vibration studies suggest that the primary cross-axis response during a single axis excitation would be 

in the mid-sagittal plane. Among the three orthogonal axes fixed to the recumbent human body (Figure 

1), the horizontal z-axis inline force was set as the first mathematical input (x1), and the vertical x-axis 

cross-axis force was the second mathematical input (x2). By treating the third mathematical input (x3) 

as the lateral y-axis cross-axis force and then as an analytically constructed input, the comparison can 

reveal the effective or better mathematical representation of the nonlinear component in a system.  

4.2 Vibration magnitude and peak frequency 

By relating the peak frequencies estimated at the two vibration magnitudes, 0.125 and 1.0 ms-2 r.m.s., 

and overlaying results from the two analytical methods, H1 fit and Hy1 fit, the gradients of trend lines 

for each method would reveal the degree of a numerical ‘linearity’ (Figure 11).  A gradient of one for 

this plot, indicated by a 45O line on Figure 11, would indicate a perfectly linear relationship. As the 

peak frequency at the low vibration magnitude increases or decreases its counterpart at the high 

vibration magnitude would also change by the same amount.  
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Figure 11 Comparison of the peak frequencies (fr) at low (0.125 ms-2 r.m.s.) and high (1.0 ms-2 
r.m.s.) magnitudes using: 1) ordinary FRF H1 (solid triangle) obtained by fitting to a two-degree-of-
freedom lumped parameter mass-spring-damper system in the frequency range 0 to 10 Hz [1] with 
linear trend line slope = 0.63 and R2 = 0.70; 2) conditioned FRF Hy1 (square) obtained by fitting to a 2-
zero-2-pole Laplace FRF estimation in the frequency range 0 to 10 Hz with linear trend line gradient = 
0.18 and R2 = 0.06. The diagonal dotted line represents theoretical equal peak frequencies for the 
individual subjects at the two input acceleration magnitudes. 

 

With a coefficient of determination R2 of 0.70, a linear trend line produced a reasonable goodness of 

fit for the ordinary H1 fit of the peak frequencies of the twelve subjects. With a gradient of 0.63, the H1 

fit method indicates that the peak frequency is approximately reduced by a third compared to the peak 

at the lower acceleration input level across the twelve subjects.  

With a R2 of 0.06, the conditioned Hy1 fit of peak frequencies is largely unpredictable by a linear trend 

line. This was partly due to the noisy conditioned FRF Hy1 meaning it was difficult to identify a peak. 

The two-zero-two-pole linear filter might not be a good characterisation model for the uncorrelated 

Hy1 function (Figure 11). Bearing in mind the poor quality of fit, the highly scattered estimates by Hy1 

might imply that the underlying dynamic systems of the human body are fundamentally different 

between each subject. A change in excitation acceleration magnitude will cause very different changes 

in the resonance behaviour. Some subjects will change more than the others.  

The ordinary FRF estimate H1 fit approach assumes a linear system between the inputs and output, 

without consideration of the interaction or correlation between the input channels. Whilst it is 

acceptable for systems exhibiting linearity and high coherence, it is less justifiable as the coherence 

reduces and potentially the behaviour is clearly not linear. Analysis of the human biomechanical 

response would therefore benefit from examination of the underlying uncorrelated linear systems 

using the reverse path method. The highly variable conditioned FRF (Hy1) unveil the inter-subject 

characteristics during exposure to different vibration magnitudes. The approach could be readily 
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utilised to investigate other variables such as vibration spectra, vibration waveform, subject posture 

and subject anthropometric variables.  

The multiple excitation magnitudes peak frequency plot, shown in Figure 11, provides a 

straightforward qualitative comparison of resonance behaviour between 1) different vibration 

magnitudes and 2) different measures of linearity between the ‘smeared’ linear estimate (H1) and the 

uncorrelated ‘linearised’ estimate (Hy1) of the same dynamic system. Although the zero-pole filter is 

inadequate to fit the Hy1 estimate, it demonstrates the large variation of each conditioned input. The 

human body system is complex with many degrees of freedom. The interpretation of the conditioned 

estimates will require further investigation using multiple degree of freedom mechanistic models to 

establish the numerical relationship between the conditioned mathematical inputs and output.    

4.3 Statistical distribution of the response forces  

The primary coupling mechanism between the recumbent person and the excitation surface was the 

soft tissue at the back of the subject in a ‘shearing’ mode in the z-axis. Due to distinctive anatomical 

characteristics towards the head and towards the feet, it is plausible that the main ‘sprung’ body mass 

coupled on top of the back soft tissue will be subjected to asymmetric elastic and damping restoring 

forces. The constraining boundaries or ‘end-stops’ during a cycle of oscillation would also be 

different. The centred kurtosis values of the response forces would be below zero (Figure 10 c to h), if 

the sprung mass of the body regularly reaches the ‘end-stops’ of the anatomical boundaries. This is 

likely when the vibration magnitude is high.  

The intention of the statistical distribution analysis was to provide a qualitative summary of the 

response force time histories ‘centred’ relative to the excitation acceleration time histories. 

At the low magnitude, the z-axis inline force exhibited an overwhelmingly near-zero skewness (except 

for S3) indicting a symmetric response towards the head and the feet (Figure 10 c). Asymmetry was 

evident with 9 out the 12 subjects at the high magnitude. This might be due to asymmetric response 

towards the head and the feet at higher magnitudes of excitation where anatomical end-stops were 

reached.   

Slightly reduced tails (kurtosis values) can be observed for 11 of the 12 subjects in the z-axis inline 

force at the low magnitude, implying a close-to-normal tail behaviour (Figure 10 d). At the high 

magnitude, 7 of 12 subjects showed reduced tails, and 3 of 12 increased tails. Five out of the 12 

subjects (S2, S8, S9, S11, S12) showed more reduced tails at the high magnitude than those at the low 

magnitude. This does not confirm the original expectation that higher input acceleration levels produce 

lighter response distribution tails due to more likely access to the end-stop region. These distributions 

suggest that the response forces at the two excitation magnitudes may have engaged different coupling 

mechanisms. For example, at the low magnitude, the sprung mass might already have regular access to 

the anatomical end stops with the response primarily in the inline axis. At the high magnitude, more 
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response transfers to measureable cross-axis response, which accommodates the large movement of 

the sprung mass. The inline response force in this case would have less chance to reach the newly 

established anatomical end stops that have been modified by increased cross-axis response and 

possibly a change in property of soft tissue in the excitation-subject interface. Such speculation would 

be best facilitated by numerical simulation of possible mechanisms. Previous lumped parameter 

approaches seemed inadequate to represent both the magnitude dependency and the cross-axis 

coupling mechanism [3,4,17]. The present results provide an analytical basis and interpretation.       

The x-axis cross-axis force showed a similarly low degree of asymmetry at both magnitudes for 

different subjects (Figure 10 e). The y-axis cross-axis force exhibits similar symmetry to the excitation 

acceleration at both magnitudes (Figure 10 g). 

A much more reduced tail is present at the lower magnitude than that at the higher magnitude (Figure 

10 f). The different cross-axis coupling mechanisms at high and low magnitudes offer one possible 

explanation. Another reason could be the low level of response force at the lower magnitude, giving 

rise to a biased response with reduced tail. There are very similar tail characteristics in both the x-axis 

and y-axis for both magnitudes. In the y-axis, the low level of the response force seems to be a 

particular plausible explanation for the much reduced tail.          

   

5 Conclusions 

The analytical study of previously published force data of human response to vibration offers 

interpretation based on a few classic mathematical tools for dynamics systems that have not been 

reported before. Very often, the complex human body biomechanical responses are represented by 

linear frequency response function estimates (H1 or H2) and sometimes further simplified by lumped 

parameter approach. Such representation tends to smear out the distinction between individuals. The 

conditioned reverse path FRF (e.g. Hy1) reveals that uncorrelated ‘linear’ relationship between physical 

input (acceleration) and outputs (inline and cross-axis forces) has much greater variation around the 

primary resonance frequency between 0.5 and 5 Hz. By reversing the input and outputs of the physical 

system, it is possible to assemble mathematical inputs from the physical output forces and 

mathematical constructs (e.g. square root of inline force). Depending on the specific construct, this 

could improve the summed multiple coherence at frequencies where the response magnitude is low. In 

the present case this is between 6 and 20 Hz. The centred skewness and kurtosis of response forces 

suggest that there are potential anatomical ‘end-stops’ for the sprung mass in the inline axis. Different 

coupling mechanisms might also be present at different magnitudes of vibration.             
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Appendix A  

General arithmetic for formulation of the MISO system (Bendat and Piersol, 1993)  

Subscripts: 

1, 2, 3 or x1, x2, x3 – mathematical input y – mathematical output 

i, o – input and output    q – number of inputs    

i, j – counter up to q    r – removed input channel number  

r! – all input channels up to r 

Recursive algorithm defined in Figure 2 is used to compute: 

- conditioned single-sided auto and cross spectral density functions (e.g. G23); 

- individual transfer functions between uncorrelated (conditioned) inputs and the output (Liy);  

- individual transfer functions between (usually correlated) original inputs and the output (Hiy); 

- ordinary and partial coherence functions (cohiy:r!),  

- multiple coherence functions (cohyi).  

Based on the recursive operations shown in Figure 2, arithmetic to formulate the MISO system can be 

performed in the following order (in the current study q = 3): 

Conditioned PSDs and CSDs of relative to 2nd, 3rd until qth mathematical input 

Lrj = Grj.(r – 1)! / Grr.(r – 1)!   r = 1, … , (j – 1); j = 1, … , q 

Gij.r! = Gij.(r – 1)! – Lrj Gir.(r – 1)!  i > r, j > r, i ≠ j 

Gjj.r! = Gjj.(r – 1)! – |Lrj|2 Grr.(r – 1)!  j > r 

Giy.r! = Giy.(r – 1)! – Lry Gir.(r – 1)!    i > r 

Liy = Giy.(i – 1)! / Gii.(i – 1)!   i = 1, … , q 

Partial coherence functions 

cohiy.(i – 1)! =  | Giy.(i – 1)! |2 / ( Gii.(i – 1)! Gyy.(i – 1)! )  i = 1, … , q 

Gyi.r! = Giy.(r – 1)! – Lri Gyr.(r – 1)!      i > r 

Gyy.i! = Gyy.(i – 1)! – | Liy |2 Gii.(i – 1)!     i = 1, … , q 

Multiple coherence function with q inputs x and outputs y. 

cohy:q! = 1 – (Gyy.q! / Gyy) = 1 – [(1 – coh1y) (1 – coh2y.1) … (1 – cohqy.(q – 1)!)] 

Individual transfer functions of original inputs calculated from relations of conditioned inputs 

Hqy = Lqy  Hiy = Liy –  Lij Hjy  i = (q – 1), (q – 2), … , 1 



25 

References 

[1] Y. Huang, M.J. Griffin, Nonlinear dual-axis biodynamic response of the supine human body 
during longitudinal horizontal whole-body vibration, Journal of Sound and Vibration 312 (1-2) (2008) 
273-295. 

[2] Y. Huang, M.J. Griffin, Nonlinearity in apparent mass and transmissibility of the supine human 
body during vertical whole-body vibration, Journal of Sound and Vibration 324 (1-2) (2009) 429-452. 

[3] N. Nawayseh, M.J. Griffin, Non-linear dual-axis biodynamic response to vertical whole-body 
vibration, Journal of Sound and Vibration 268 (2003) 503-523. 

[4] N. Nawayseh, M.J. Griffin, Non-linear dual-axis biodynamic response to fore-and-aft whole-body 
vibration, Journal of Sound and Vibration 282 (2005) 831-862. 

[5] P. Holmlund, R. Lundstrom, Mechanical impedance of the sitting human body in single-axis 
compared to multi-axis whole-body vibration exposure, Clinical Biomechanics 16 (S1) (2001) S101-
S110. 

[6] Y. Huang, M.J. Griffin, Nonlinear dual-axis biodynamic response of the supine human body 
during vertical whole-body vibration, Journal of Sound and Vibration 312 (1-2) (2008) 296-315. 

[7] N.J. Mansfield, S. Maeda, Comparison of the apparent masses and cross-axis apparent masses of 

seated humans exposed to single- and dual-axis whole-body vibration, Journal of Sound and Vibration 

298 (2006) 841-853. 

[8] J.S. Bendat, P.A. Palo, R.N. Coppolino, A general identification technique for nonlinear 
differential equations of motion, Probabilistic Engineering Mechanics 7 (1992) 43-61. 

[9] J.S. Bendat, A.G. Piersol, Engineering Applications of Correlation and Spectral Analysis, second 
ed., John Wiley & Sons, 1993. 

[10] J.S. Bendat, A.G. Piersol, Random Data: Analysis and Measurement Procedure, fourth ed., John 
Wiley & Sons, 2010. 

[11] K.A. Sweitzer, Random vibration response statistics for fatigue analysis of nonlinear structures, 
PhD thesis (2006), University of Southampton, Southampton, UK. 

[12] Y. Qiu, M.J. Griffin, Transmission of vibration to the backrest of a car seat evaluated with multi-
input models, Journal of Sound and Vibration 274 (2004) 297-321. 

[13] Y. Huang, Force harmonic distortion in the supine human body during vertical and longitudinal 
horizontal sinusoidal whole-body vibration, The 42nd United Kingdom Group Meeting on Human 
Responses to Vibration (17-19 September 2007), Institute of Sound and Vibration Research, 
University of Southampton, Southampton, England. 

[14] S. Mandapuram, S. Rakheja, P. Marcotte, P.E. Boileau, Analyses of biodynamic responses of 

seated occupants to uncorrelated fore-aft and vertical whole-body vibration, Journal of Sound and 

Vibration 330 (2011) 4064-4079. 

[15] G.T. Rocklin, J. Crowley, H. Vold, A comparison of H1, H2, and Hv frequency response functions, 



26 

Proceedings of the Third International Modal Analysis Conference, Orlando, FL, vol 1 (1985) 272-

278. 

[16] S. Siegel, N.J. Castellan, Nonparametric statistics for the behavioral sciences, New York, 

McGraw-Hill, 1988. 

[17] G. Zheng, Y. Qiu, M.J. Griffin, An analytic model of the in-line and cross-axis apparent mass of 

the seated human body exposed to vertical vibration with and without a backrest, Journal of Sound and 

Vibration 330 (2011) 6509-6525. 

 


