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ABSTRACT 

Climate change has been observed using multiple 
methods of Earth Observation (EO) including in situ, air-
borne and space-borne sensing methods. These use multi-
modal observation platforms, with various geospatial 
coverages, spatio-temporal resolutions and accuracies. The 
resulting EO Big Data from heterogeneous sources constitute 
valuable sources for scientists to investigate on the 
manifested responses of natural species behaviour to climate 
change. In the EO4wildlife1 research project, we have access 
to Copernicus and Argos EO Big Data for conducting studies 
on the changes of habitats for a variety of marine species. The 
challenge is to discover causality of Metocean environmental 
observations and their relationship with the changing habitats 
of species. Nevertheless, there is a need to deploy Big Data 
technologies for connecting, ingesting, processing of EO 
data, as well as implementing specialised open data analytics 
services in this study. The particular services shall be made 
accessible to the scientific community for setting up 
modelling scenarios concerning the potential discovery of 
new trends of marine species habitats due to climate change. 
Three marine species are being studied in the EO4wildlife 
project. They include the Bluefin Tuna in the Atlantic-
Mediterranean migratory regions, the black-footed albatross 
seabirds across the sub-tropical Atlantic Ocean and 
Loggerhead sea turtles along the North West coast of the 
African continent and Cape Verde. Large data representing 
geospatial migratory tracks and settlements of these 
respective marine species have been acquired in the project 
over period of times together with Metocean EO data from 
Copernicus and Argos satellites. These are currently analysed 
and modelled with a set of features obtained by searching in 
a large space of possible measured and derived Metocean 
parameters. A two-step search was used involving 
significance measurement and an iterative breadth first search 
based wrapper type feature selection algorithm. Furthermore, 
the analysis is useful for improving the performance of our 
habitat prediction models across the three marine species in 
the study. The discovery of new habitats geospatial and 
temporal trends which may be associated to the changing 

                                                 
1 http://eo4wildlife.eu/  

climate under these analyses will be achieved through the 
deployment of web-enabled data mining and analytics open 
services. A dedicated Big Data platform supported by generic 
data management services in the cloud is therefore deployed 
for assuring the scalability of the data processing and 
analytics services. 

Index Terms— Big Data, Earth Observation, 
Copernicus satellite, Climate change, habitat modelling 

1. INTRODUCTION 

EO4wildlife brings large number of multidisciplinary 
scientists such as marine biologists, ecologists and 
ornithologists around the world to collaborate closely 
together while using European Sentinel Copernicus Earth 
Observations more efficiently [1]. In order to reach such 
important capability, an open service oriented platform with 
an interoperable toolbox, that is compliant with OGC 
standards and supported by scalable cloud infrastructure is 
being implemented. The EO4wildlife platform offers 
dedicated open services that enable scientists to connect to 
marine species tracks databases and Big EO data in order to 
run habitat modelling simulations under a scalable processing 
environment. In particular, the platform enables the full 
integration of Copernicus sentinel data, ARGOS archive 
databases and animal track databases which can be 
effectively mined and fused for advanced big data analytics 
concerning the discovery of new trends of animal behaviour 
in the marine environments. 

2. OPEN SERVICE ARCHITECTURE FOR BIG DATA 
MANAGEMENT 

The EO4wildlife platform is composed of various functional 
components: 1- An internal data catalogue for aggregating 
geo-referenced products from external heterogeneous 
sources; 2- An ingestion module that allows the retrieval of 
data for exploitation by the platform services and; 4- A 
service Manager with which developers and/or data scientists 
manage the life cycle and execution of deployed services. 
Finally, the platform has built-in visualization features for the 
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resulting geographic data from the processing services. The 
service management mechanism in the Big Data 
infrastructure is built on the containerization concept (i.e.  
Docker) which allows to encapsulate each service into an 
independent component that can be easily deployed on the 
cloud. An orchestration technology (i.e. Kubernetes) is used 
to manage container life cycle so that the underlying 
infrastructure becomes totally transparent [2]. 

3. BIG EO DATA ANALYTICS  

In order to provide proofs of concept of the EO4wildlife 
platform and its dedicated Big EO data analytics services, a 
number of scenarios on habitat modelling for marine species 
behaviour are being developed. These required a pre-
processing and analysis of the acquired big data for the 
discovery of strengths and relationships between data 
features prior to achieving efficiently performing models.   

3.1. Big Data Features Selection  

Features selection is the process of selecting the most 
dominant and connected variables or features for modelling 
environmental processes. Although initially there is only a 
small set of features (e.g. 8 features in the case of the pelagic 
fish use case) derived features such as gradients over time, 
averages over time and gradient over horizontal and vertical 
space are important to consider as they are related to the 
physical dispersion of nutrients and other hydrodynamic 
transport processes that take place within the marine 
environment [3]. In this case a genetic algorithm is used to 
search in the space of potential feature subsets. For each 
subset of selected features, ecological envelopes based on 
percentiles that the algorithm chooses and combines it into 
trees using “AND” and “OR” logical assertions are 
discovered. This process is performed stochastically and 
repeatedly so that a good number of possible subsets 
(therefore models) can be explored and trialled on the training 
set. Prior to this step a systematic search to find the best 
granularity for each derived feature (e.g. establishing whether 
temporal gradient for a given feature should be on a 10 or 30 
day scale) is also conducted. This big data features selection 
process aims at optimizing the feature set to be used for best 
niche modelling the relationship between EO data and 
processes with trends on observed animal presence in space 
and time.  

3.2. Habitat Modelling 

Habitat niche modelling is a method for discovering and 
modelling the link between where the animal has been found 
(presence) and the environmental conditions at those points. 
These methods give an indication of the conditions which are 
favourable for the animal. Similarly, where the animals have 
not been found (absences) give an indication on the 
conditions that are not suitable for the animals. Given a model 
of climatic changes that forecasts metocean environmental 

conditions, a habitat model for given species can be used to 
predict how the boundaries of its habitat do change due to 
such environmental conditions. One of the most concerning 
results of climate change is the vulnerability of habitats of 
certain species. Other problems may include rapid shifts in 
the spatial positioning of these habitats which can have severe 
consequences for less mobile species. In order to visualise the 
animal tracks as they evolve in time, and compare the 
distribution of metocean observations where the animals have 
been detected, a working demonstrator is being developed 
(see Figure 1). The demonstrator allows users to integrate and 
explore different types of data under a single user interface. 
 

Figure 1 Spatial density distribution of sea turtles versus sea 
surface temperature environmental Observations  

3.2.1. Habitat Modelling for Atlantic Bluefin Tuna (ABFT)   

An Ecological Niche Modelling (ENM) framework which 
uses using observed animal presence data (animal tracks) has 
been developed for predicting probabilities of Potential 
Habitats. Specifically, monthly ENMs on Potential Habitat 
predictions of ABFT in the Mediterranean Sea were 
developed.  The most relevant Earth Observation (EO) 
variables which influence habitat preferences were also 
identified [4]. These include Bathymetry, Sea Surface 
Temperature (SST), Chlorophyll (CHL), CO2 Net Primary 
Production (NPP), Sea Level Anomalies (SLA) and Eddy 
Kinetic Energy (EKE).  Environmental Envelopes (EE) were 
calculated during the model training stages for each variable 
through using pre-defined bounds.  During the testing stage, 
geospatial areas of interest in the Mediterranean Sea were 
analysed with [0.1 x 0.1] degrees grid resolution. Each grid 
cell was set up to unity (Potential Habitat = 1), if for 
example, the sampled EO variables at the grid cell satisfies 
some specific environmental conditions, such as:   
 
   CHL_min≤CHL(i)≤CHL_max, SST_min≤SST(i)≤SST_max  
 
The model for predicting Potential Habitat(0/1) is simply 
defined as follows: 
 
  Bathyrange (0/1)*SSTrange(0/1)*CHLrange (0/1)*NPPrange (0/1)*EKErange 
(0/1) 
 



 
As a result, 99% percentiles for EE bounds were obtained. 
(See Table 1). Proportion of Sea notes the fraction of the 
spatial region that was classified as Habitat.  Number found 
is the number of observed relocations that are considered as 
Potential Habitat. Out of is the number of all observed 
relocations. % in the last column is the percentage of correct 
predicted relocations in potential habitat. 
 

Description Proportion 
of Sea 

Number 
found 

Out 
of 

% 

ABFT 
habitat 

0.679 80 85 94.12 

       Table 1. Potential Habitat Modelling for ABFT 
 

3.2.2. Habitat Modelling for Black-Browed Albatross (BBA) 

 
Though for the BBA species, only presence data are 
available, it is common practice to generate animal pseudo-
absences techniques [5]. The generated pseudo-absences 
should be well separated from presences both in spatial and 
environmental (or ecological) space. The pseudo-absences 
are selected using a two-step approach. First, Correlated 
random Walk is used to generate 10 pseudo-absences for each 
presence relocation, where a constraint function is used to 
implement a spatial separation of presences from pseudo-
absences. Second, EE and ENM is used to select the number 
of pseudo-absences which are well separated in 
environmental space. Though [6] performed a number of 
experiments and gave some recommendations on a number 
of pseudo-absences for different habitat modelling 
techniques, the experiments showed that equal number of 
presences and pseudo-absences lead to more robust 
performance for our Big data. Therefore we selected as many 
pseudo-absences as presences in the second step of pseudo-
absence selection. This led us to a two-class problem for each 
geographic grid cells. Basically classified as either as 
Potential Habitat (=1) or no Potential Habitat (=0). Two 
regression techniques were used to predict Potential Habitat 
for the BBA. These include: A Generalised Additive Model 
(GAM) and Boosted Regression Trees (BRT).  The EO data 
which influence Potential Habitat selections were in this 
case: Bathymetry, SST, SLA and EKE. The Potential Habitat 
modelling was done for each animal breeding stage (or 
monthly for non-breeding stage).  The comparison of GAM 
and BRT for incubation stage both on training and testing set 
are given in Table 2, where Correct Classification Rates 
(CCRs) are shown for each class. The threshold for selecting 
habitat/no habitat was set to 0.5. Table 2 also shows that BRT 
produces better results both on training and testing modes. 
 
 
 
 

 
 

Classifiers Training Testing 
Habitat No Habitat Habitat 

GAM 77.1% 76.3% 68.45% 
BRT 93.39% 99.51% 91.65% 

      Table 2. Correct Classification Rates(CCRs) for BBA 
 

3.2.3. Habitat Modelling for Loggerhead sea turtles 

Twenty one tracks of data on adult loggerhead sea turtles 
capturing their post-nesting movements during the years of 
2004-2009 were also used for habitat modelling in this work. 
Two different foraging behaviours were observed with this 
animal population. These have been manually identified, and 
each animal was labelled as either an oceanic or a neritic 
forager. The overall modelling, pre-processing and pseudo-
absence selection methods in this case were based on the 
works by Pikesley et al. [7], [8]. Three classification methods 
have been added and compared to the regression methods 
which were investigated in these works. Different spatial 
extents and numbers have also been examined for pseudo-
absences. Data pre-processing stages include discarding 
relocations with unlikely speeds and turning angels. Best 
non-interpolated daily locations were then extracted for each 
of the tracks. Pseudo-absences were then generated within the 
convex hull of the presences via a random spatial-temporal 
sampling technique. Similar number of pseudo-absences as 
available presences were also generated (prevalence≅1). 
The post-nesting habitat for oceanic adult loggerhead sea 
turtles was modelled using different classification and 
regression models. These experiments on EO data were 
performed eight times (8 replications) using different random 
sets of pseudo-absences [9]. In each replication, the data is 
split with a 75%/25% ratio for training and validation 
purposes. This random data splitting to training and 
validation sets is independently repeated four times in each 
replication. Table 3 shows the modelling evaluation results 
using TSS (True Skill Statistic), which is the most widely 
used stat alongside kappa for evaluating the accuracy of the 
species distribution models [10], and AUC (Area Under 
Curve) as the only non-threshold based evaluation method. 
The reported results are the mean of all the performances in 
all the runs and replications. It can be seen that overall 
classification methods provide better models while they can 
be further improved by building ensemble models with the 
four runs in each replication. 
 
 
 
 
 
 
 
 



 
 
Table 3. Habitat modelling results for Loggerhead sea turtles 
(GLM (Generalized Linear Model), MARS (Multiple 
Adaptive Regression Splines), MaxEnt (Maximum Entropy), 
GAM (Generalized Additive Model), RF (Random Forest), 
BRT (Boosted Regression Trees), CTA (Classification Tree 
Analysis). (TSS (EM) and AUC (EM) are ensemble models based 
on the four runs in one replication.) 

4. SUMMARY  

The above research work used Copernicus and Argos Big 
data resources while adopting Big data infrastructure for 
wrapping a new generation of big data analytics services for 
predicting marine species habitats. The main focus of the 
EO4wildlife project was to establish performing mining and 
data analytics methods which automatically extract new 
knowledge from the newly available Copernicus Big EO data 
combined with those from Argos. The extracted knowledge, 
specifically concerns the confirmation of existing causalities 
between new emerging ecological conditions, due to climate 
change, and the response of selected vulnerable animal 
species at various oceanic regions. The next activity in the 
project will be on validating the elasticity and scalability of 
the big data analytics services which are being implemented 
on the EO4wildlife platform in collaboration with our project 
partners.      
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