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ABSTRACT

Climate change has been observed using multiple
methods of Earth Observation (EO) including in situ, air-
borne and space-borne sensing methods. These use multi-
modal observation platforms, with various geospatial
coverages, spatio-temporal resolutions and accuracies. The
resulting EO Big Data from heterogeneous sources constitute
valuable sources for scientists to investigate on the
manifested responses of natural species behaviour to climate
change. In the EO4wildlife® research project, we have access
to Copernicus and Argos EO Big Data for conducting studies
on the changes of habitats for a variety of marine species. The
challenge is to discover causality of Metocean environmental
observations and their relationship with the changing habitats
of species. Nevertheless, there is a need to deploy Big Data
technologies for connecting, ingesting, processing of EO
data, as well as implementing specialised open data analytics
services in this study. The particular services shall be made
accessible to the scientific community for setting up
modelling scenarios concerning the potential discovery of
new trends of marine species habitats due to climate change.
Three marine species are being studied in the EO4wildlife
project. They include the Bluefin Tuna in the Atlantic-
Mediterranean migratory regions, the black-footed albatross
seabirds across the sub-tropical Atlantic Ocean and
Loggerhead sea turtles along the North West coast of the
African continent and Cape Verde. Large data representing
geospatial migratory tracks and settlements of these
respective marine species have been acquired in the project
over period of times together with Metocean EO data from
Copernicus and Argos satellites. These are currently analysed
and modelled with a set of features obtained by searching in
a large space of possible measured and derived Metocean
parameters. A two-step search was used involving
significance measurement and an iterative breadth first search
based wrapper type feature selection algorithm. Furthermore,
the analysis is useful for improving the performance of our
habitat prediction models across the three marine species in
the study. The discovery of new habitats geospatial and
temporal trends which may be associated to the changing
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climate under these analyses will be achieved through the
deployment of web-enabled data mining and analytics open
services. A dedicated Big Data platform supported by generic
data management services in the cloud is therefore deployed
for assuring the scalability of the data processing and
analytics services.

Index Terms— Big Data, Earth Observation,
Copernicus satellite, Climate change, habitat modelling

1. INTRODUCTION

EOA4wildlife brings large number of multidisciplinary
scientists such as marine biologists, ecologists and
ornithologists around the world to collaborate closely
together while using European Sentinel Copernicus Earth
Observations more efficiently [1]. In order to reach such
important capability, an open service oriented platform with
an interoperable toolbox, that is compliant with OGC
standards and supported by scalable cloud infrastructure is
being implemented. The EOA4wildlife platform offers
dedicated open services that enable scientists to connect to
marine species tracks databases and Big EO data in order to
run habitat modelling simulations under a scalable processing
environment. In particular, the platform enables the full
integration of Copernicus sentinel data, ARGOS archive
databases and animal track databases which can be
effectively mined and fused for advanced big data analytics
concerning the discovery of new trends of animal behaviour
in the marine environments.

2. OPEN SERVICE ARCHITECTURE FOR BIG DATA
MANAGEMENT

The EO4wildlife platform is composed of various functional
components: 1- An internal data catalogue for aggregating
geo-referenced products from external heterogeneous
sources; 2- An ingestion module that allows the retrieval of
data for exploitation by the platform services and; 4- A
service Manager with which developers and/or data scientists
manage the life cycle and execution of deployed services.
Finally, the platform has built-in visualization features for the
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resulting geographic data from the processing services. The
service management mechanism in the Big Data
infrastructure is built on the containerization concept (i.e.
Docker) which allows to encapsulate each service into an
independent component that can be easily deployed on the
cloud. An orchestration technology (i.e. Kubernetes) is used
to manage container life cycle so that the underlying
infrastructure becomes totally transparent [2].

3. BIG EO DATAANALYTICS

In order to provide proofs of concept of the EO4wildlife
platform and its dedicated Big EO data analytics services, a
number of scenarios on habitat modelling for marine species
behaviour are being developed. These required a pre-
processing and analysis of the acquired big data for the
discovery of strengths and relationships between data
features prior to achieving efficiently performing models.

3.1. Big Data Features Selection

Features selection is the process of selecting the most
dominant and connected variables or features for modelling
environmental processes. Although initially there is only a
small set of features (e.g. 8 features in the case of the pelagic
fish use case) derived features such as gradients over time,
averages over time and gradient over horizontal and vertical
space are important to consider as they are related to the
physical dispersion of nutrients and other hydrodynamic
transport processes that take place within the marine
environment [3]. In this case a genetic algorithm is used to
search in the space of potential feature subsets. For each
subset of selected features, ecological envelopes based on
percentiles that the algorithm chooses and combines it into
trees using “AND” and “OR” logical assertions are
discovered. This process is performed stochastically and
repeatedly so that a good number of possible subsets
(therefore models) can be explored and trialled on the training
set. Prior to this step a systematic search to find the best
granularity for each derived feature (e.g. establishing whether
temporal gradient for a given feature should be on a 10 or 30
day scale) is also conducted. This big data features selection
process aims at optimizing the feature set to be used for best
niche modelling the relationship between EO data and
processes with trends on observed animal presence in space
and time.

3.2. Habitat Modelling

Habitat niche modelling is a method for discovering and
modelling the link between where the animal has been found
(presence) and the environmental conditions at those points.
These methods give an indication of the conditions which are
favourable for the animal. Similarly, where the animals have
not been found (absences) give an indication on the
conditions that are not suitable for the animals. Given a model
of climatic changes that forecasts metocean environmental

conditions, a habitat model for given species can be used to
predict how the boundaries of its habitat do change due to
such environmental conditions. One of the most concerning
results of climate change is the vulnerability of habitats of
certain species. Other problems may include rapid shifts in
the spatial positioning of these habitats which can have severe
consequences for less mobile species. In order to visualise the
animal tracks as they evolve in time, and compare the
distribution of metocean observations where the animals have
been detected, a working demonstrator is being developed
(see Figure 1). The demonstrator allows users to integrate and
explore different types of data under a single user interface.

Figure 1 Spatial density distribution of sea turtles versus sea
surface temperature environmental Observations

3.2.1. Habitat Modelling for Atlantic Bluefin Tuna (ABFT)

An Ecological Niche Modelling (ENM) framework which
uses using observed animal presence data (animal tracks) has
been developed for predicting probabilities of Potential
Habitats. Specifically, monthly ENMs on Potential Habitat
predictions of ABFT in the Mediterranean Sea were
developed. The most relevant Earth Observation (EO)
variables which influence habitat preferences were also
identified [4]. These include Bathymetry, Sea Surface
Temperature (SST), Chlorophyll (CHL), CO2> Net Primary
Production (NPP), Sea Level Anomalies (SLA) and Eddy
Kinetic Energy (EKE). Environmental Envelopes (EE) were
calculated during the model training stages for each variable
through using pre-defined bounds. During the testing stage,
geospatial areas of interest in the Mediterranean Sea were
analysed with [0.1 x 0.1] degrees grid resolution. Each grid
cell was set up to unity (Potential Habitat = 1), if for
example, the sampled EO variables at the grid cell satisfies
some specific environmental conditions, such as:

CHL min<CHL<CHL max, SST min<SST{<SST max

The model for predicting Potential Habitat(0/1) is simply
defined as follows:

Bathyrange (O/L)*SST range(O/1)*CHLyange (O/L)*NPPrange (O/L)*EKE ange
(01)



As a result, 99% percentiles for EE bounds were obtained.
(See Table 1). Proportion of Sea notes the fraction of the
spatial region that was classified as Habitat. Number found
is the number of observed relocations that are considered as
Potential Habitat. Out of is the number of all observed
relocations. % in the last column is the percentage of correct
predicted relocations in potential habitat.

Description | Proportion | Number | Out | %
of Sea found of

ABFT 0.679 80 85 94.12

habitat

Table 1. Potential Habitat Modelling for ABFT

3.2.2. Habitat Modelling for Black-Browed Albatross (BBA)

Though for the BBA species, only presence data are
available, it is common practice to generate animal pseudo-
absences techniques [5]. The generated pseudo-absences
should be well separated from presences both in spatial and
environmental (or ecological) space. The pseudo-absences
are selected using a two-step approach. First, Correlated
random Walk is used to generate 10 pseudo-absences for each
presence relocation, where a constraint function is used to
implement a spatial separation of presences from pseudo-
absences. Second, EE and ENM is used to select the number
of pseudo-absences which are well separated in
environmental space. Though [6] performed a number of
experiments and gave some recommendations on a number
of pseudo-absences for different habitat modelling
techniques, the experiments showed that equal number of
presences and pseudo-absences lead to more robust
performance for our Big data. Therefore we selected as many
pseudo-absences as presences in the second step of pseudo-
absence selection. This led us to a two-class problem for each
geographic grid cells. Basically classified as either as
Potential Habitat (=1) or no Potential Habitat (=0). Two
regression techniques were used to predict Potential Habitat
for the BBA. These include: A Generalised Additive Model
(GAM) and Boosted Regression Trees (BRT). The EO data
which influence Potential Habitat selections were in this
case: Bathymetry, SST, SLA and EKE. The Potential Habitat
modelling was done for each animal breeding stage (or
monthly for non-breeding stage). The comparison of GAM
and BRT for incubation stage both on training and testing set
are given in Table 2, where Correct Classification Rates
(CCRs) are shown for each class. The threshold for selecting
habitat/no habitat was set to 0.5. Table 2 also shows that BRT
produces better results both on training and testing modes.

Classifiers | Training Testing

Habitat No Habitat | Habitat
GAM 77.1% 76.3% 68.45%
BRT 93.39% 99.51% 91.65%

Table 2. Correct Classification Rates(CCRs) for BBA

3.2.3. Habitat Modelling for Loggerhead sea turtles

Twenty one tracks of data on adult loggerhead sea turtles
capturing their post-nesting movements during the years of
2004-2009 were also used for habitat modelling in this work.
Two different foraging behaviours were observed with this
animal population. These have been manually identified, and
each animal was labelled as either an oceanic or a neritic
forager. The overall modelling, pre-processing and pseudo-
absence selection methods in this case were based on the
works by Pikesley et al. [7], [8]. Three classification methods
have been added and compared to the regression methods
which were investigated in these works. Different spatial
extents and numbers have also been examined for pseudo-
absences. Data pre-processing stages include discarding
relocations with unlikely speeds and turning angels. Best
non-interpolated daily locations were then extracted for each
of the tracks. Pseudo-absences were then generated within the
convex hull of the presences via a random spatial-temporal
sampling technique. Similar number of pseudo-absences as
available presences were also generated (prevalencex1).

The post-nesting habitat for oceanic adult loggerhead sea
turtles was modelled using different classification and
regression models. These experiments on EO data were
performed eight times (8 replications) using different random
sets of pseudo-absences [9]. In each replication, the data is
split with a 75%/25% ratio for training and validation
purposes. This random data splitting to training and
validation sets is independently repeated four times in each
replication. Table 3 shows the modelling evaluation results
using TSS (True Skill Statistic), which is the most widely
used stat alongside kappa for evaluating the accuracy of the
species distribution models [10], and AUC (Area Under
Curve) as the only non-threshold based evaluation method.
The reported results are the mean of all the performances in
all the runs and replications. It can be seen that overall
classification methods provide better models while they can
be further improved by building ensemble models with the
four runs in each replication.



Regression models Classification models

GLM MARS MAXENT GAM RF BRT CTA
TSS 0.347 0.496 0414 0.434 0.606 0.536 0.531
AUC 0.722 0.813 0.767 0.770 0.875 0.843 0.814
TSS(EM) 0314 0.480 0.424 0.419 0.922 0.545 0.667
AUC(EM) 0712 0.EIR 0.785 0.766 0.995 0.856 0.893

Table 3. Habitat modelling results for Loggerhead sea turtles
(GLM (Generalized Linear Model), MARS (Multiple
Adaptive Regression Splines), MaxEnt (Maximum Entropy),
GAM (Generalized Additive Model), RF (Random Forest),
BRT (Boosted Regression Trees), CTA (Classification Tree
Analysis). (TSS (EM) and AUC (EM) are ensemble models based
on the four runs in one replication.)

4. SUMMARY

The above research work used Copernicus and Argos Big
data resources while adopting Big data infrastructure for
wrapping a new generation of big data analytics services for
predicting marine species habitats. The main focus of the
EO4wildlife project was to establish performing mining and
data analytics methods which automatically extract new
knowledge from the newly available Copernicus Big EO data
combined with those from Argos. The extracted knowledge,
specifically concerns the confirmation of existing causalities
between new emerging ecological conditions, due to climate
change, and the response of selected vulnerable animal
species at various oceanic regions. The next activity in the
project will be on validating the elasticity and scalability of
the big data analytics services which are being implemented
on the EO4wildlife platform in collaboration with our project
partners.
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