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Abstract

Run-Time Management (RTM) systems are used in embedded systems to

dynamically adapt hardware performance to minimise energy consumption.

A significant challenge is that RTM software can require laborious manual

adjustment across different hardware platforms due to the diversity of ar-

chitecture characteristics. Model-driven development offers the potential to

simplify the management of platform diversity by shifting the focus away

from hand-written platform-specific code to platform-independent models

from which platform-specific implementations are automatically generated.

Furthermore, the use of formal verification provides the means to ensure

that implementations are correct-by-construction. In this paper, we present a

framework for automatic generation of RTM implementations from platform-

independent formal models. The methodology in designing the RTM sys-

tems uses a high-level mathematical language, Event-B, which can describe

systems at different abstraction levels. A code generation tool is used to

translate platform-independent Event-B RTM models to platform-specific
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implementations in C. Formal verification is used to ensure correctness of

the Event-B models. The portability offered by our methodology is val-

idated by modelling a Reinforcement Learning (RL) based RTM for two

embedded applications and generating implementations for three different

platforms (ARM Cortex-A8, A7 and A15) that all achieve energy savings on

the respective platforms.

Keywords: Run-Time Management, Code Generation, Formal Methods,

Verification

1. Introduction

Dynamic Voltage and Frequency Scaling (DVFS) has been used to reduce

the energy consumption of mobile and embedded systems at run-time, while

maintaining a required Quality of Service (QoS) [1, 2, 3]. In a cross-layer ap-

proach to DVFS control, a Run-Time Management (RTM) system interacts

with both the application (to ensure that QoS requirements are met) and the

hardware platform (to monitor and control core activities). RTM typically

includes workload prediction and machine learning algorithms [4, 5].

There are a number of complexities associated with the RTM system im-

plementation. One of the challenges is that it is coupled with the hardware10

platform specifications, and is implemented individually for each specific plat-

form. Hardware specifications vary from one platform to another, and include

a number of characteristic including performance parameters and interaction

interfaces. Performance parameters include the range of Voltage and Fre-

quency (VF) settings, the range of workload types to execute an application,

and the DVFS latency. Interaction interfaces define the connection between
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the hardware platform, the application and the RTM. The former influences

the RTM algorithms. The later influences the way the RTM interacts with

the application and the hardware, e.g. to read QoS from the application, to

control VF in the core, and to monitor the workload from the core.20

In this paper, we present a framework for developing RTM systems in

a way that is independent of the platform specification diversity, making

RTM designs portable across different platforms. Our approach uses a for-

mal method to design a high level model of the RTM system, and generate

the implementation automatically from the formal model. Formal methods

are mathematically-based techniques used for specifying and reasoning about

software and hardware systems [6]. We use the Event-B formal method [7] to

model and verify RTM systems. The performance parameters and interac-

tion interfaces are instantiated for a specific platform in order to generate a

platform-specific RTM implementation from a platform-independent design30

model. Code generation has been introduced in the Event-B formal method

to bridge the gap between abstract specifications and implementation [8].

While the design model is independent of the platforms, the generated code

is specific to each platform.

The other challenge associated with the RTM system is its correctness.

An RTM mechanism should not compromise the reliability or performance

of the platform it is managing. Formal modelling is associated with the

verification techniques which can ensure the correctness of the RTM design.

The use of formal methods helps to reduce costs by identifying specification

and design errors at early development stages when they are cheaper to fix [7].40

To validate the portability offered by our approach, we have modelled a
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platform-independent Reinforcement Learning (RL) based RTM for deadline-

based applications and generated platform-specific implementations for three

different platforms: ARM Cortex-A8, A7, A15. The impact analysis shows

energy saving on the respective platforms. The run-time algorithms are based

on the work of [9], which uses prediction for estimating the workload, and

RL to select the VF setting; but it [9] does not include any formal approach

nor a design model.

In [10] we presented work on automatic code generation of an RTM im-

plementation from a platform-dependent Event-B design model for a specific50

platform (ARM Cortex-A8) and a video decoder application. In this paper we

present a general model-based framework for RTM generation that deals with

platform diversity through model parameterisation and customised code gen-

eration and we present a more comprehensive validation through experimen-

tation with three different platforms and a wider range of applications. To the

best of our knowledge, no work on a formal design of platform-independent

RTM systems followed by automatic generation of RTM implementation has

been reported.

The paper is structured as follows: Section 2 outlines the platform archi-

tectural diversity that motivates our research and an approach to address60

platform-independent design. Background knowledge including learning-

based power management and the Event-B formal method, are presented

in Section 3. Section 4 explains our model-based framework for embedded

RTM in detail. Finally Section 5 presents the experimental results for three

platforms and Section 6 concludes and outlines the future work.
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2. Motivation: Addressing Platform Specification Diversity

Our RTM approach uses Reinforcement Learning (RL) [11] to achieve

optimal decisions for VF settings. An RL based RTM is highly dependent

on hardware platform specifications. The objective of RL is to learn and make

better decisions under workload variation. In the exploration stage, random70

actions are taken and the corresponding responses (rewards or penalties)

are recorded in a lookup table called a QTable. In the exploitation stage,

the decisions that can achieve highest rewards are applied. Decisions in RL

terminology are known as actions and the workloads are known as states.

This information is stored as rows and columns in the QTable.

To implement the RL correctly in various platforms, the differences be-

tween the platforms need to be identified. We have implemented a video

decoding application in three different platforms: ARM Cortex-A8, A7 and

A15 processors. Table 1 shows the platform specific parameters including

number of VF pairs, DVFS switching latency and relative performance of80

each platform measured by Cycles Per Instruction (CPI) normalised to that

of A8. CPI can be different for different applications (due to different in-

structions), and the CPI data presented in Table 1 represents average CPI

measurements based on the video decoder application. These platform spe-

cific parameters can influence the implementation of the RL algorithm, for

example the size of the QTable is different for each platform because of the

difference in the number of VF pairs (2nd column) and the CPI (last col-

umn). In addition, the switching between different VF pairs is not instant,

and the DVFS switching latency (3rd column) needs to be subtracted from

the deadline when calculating rewards and penalties.90
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Table 1: Platform-specific parameters

Platform Num of VF pairs DVFS latency

(milli second)

Performance

(Relative CPI)

Cortex-A8 4 0.2 ms 1

Cortex-A7 13 1.6 ms 1.37

Cortex-A15 19 1.1 ms 0.81

The other difference is to do with the interfacing functions between the

application, runtime manager and hardware such as reading the deadline,

controlling VF settings and monitoring the workload. All these factors will

affect the implementation of the RTM code. To ensure the correct function-

ality of RTM code, a systematic approach is needed to identify the difference

in platform parameters and generate the correct implementation for each

platform.

To address platform-independent RTM development, we propose a frame-

work in which the RTM design model is independent of the platform diversity,

and the RTM implementation can be automatically generated specifically for100

each platform. Figure 1 shows an example of the framework being used for

two different platforms: a Cortex-A8 and A7. The generic framework, and

details of the steps, will be explained later in Section 4. From top to bottom,

Figure 1 illustrates 1) requirements, 2) part of the Event-B design model

concerning RL QTable update, and 3) the corresponding generated C code

including the specific interaction interfaces, for Cortex-A8 and A7 platforms

separately. We start from the high level description of the RTM algorithms

and platform parameters. In Step 1, the RTM requirements are identified

and documented. In Step 2, an Event-B design model is constructed from the

requirements. In Step 3, the design model is instantiated for the Cortex-A8110
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Cortex'A8
Platform'specific3parameters3instantiation

N = 4

FREQ1)=)300)…)FREQ4)=)1000

F)=){1�FREQ1,)…)4�FREQ4}
Latency)=)200

Cortex'A7
Platform'specific3parameters3instantiation

N = 13

FREQ1)=)200)…)FREQ4)=)1400

F)=){1�FREQ1,)…)13�FREQ13}
Latency)=)1600

Cortex'A83
Generated C3Code

Controller.c
if)((0)<)freq))&&)(freq <=)FREQ1))

{

qTable[row][0])=)re_pe;

}

else)if)((FREQ1)<)freq))&&)(freq <=)FREQ2))

{

qTable[row][1])=)re_pe;

}

else)if)((FREQ2)<)freq))&&)(freq <=)FREQ3))

{

qTable[row][2])=)re_pe;

}

else

{

qTable[row][3])=)re_pe;

}

Common.c
#define)N))4

#define)FREQ1))300

.

#define)FREQ4))1000

Environment.c
void)Read_Deadline(int *p1)

{

(*p1)=) required_deadline S Latency;

}

void)Control_VF(int p1)

{

change_cpu_A8_frequency(&p1);

}

void)Monitor_Workload(int *p1)

{

read_cpu_A8_cycle(&p1);

}

Cortex'A73
Generated C3Code

Controller.c
if)((0)<)freq))&&)(freq <=)FREQ1))

{

qTable[row][0])=)re_pe;

}

else)if)((FREQ1)<)freq))&&)(freq <=)FREQ2))

{

qTable[row][1])=)re_pe;

}

.

.

.

else)if)((FREQ11)<)freq))&&)(freq <=)FREQ12))

{

qTable[row][11])=)re_pe;

}

else

{

qTable[row][12])=)re_pe;

}

Common.c
#define N 13

#define FREQ1))200

.

#define FREQ13))1400

Environment.c
void)Read_Deadline(int *p1)

{

(*p1)=) required_deadline S Latency;

}

void)Control_VF(int p1)

{

change_cpu_A7_frequency(&p1);

}

void)Monitor_Workload(int *p1)

{

read_cpu_A7_cycle(&p1);

}

Instantiation

Code3Generation Code3Generation

Requirements
High) level)description)of

EWMA)prediction)algorithm,)RL)algorithm.

Platform)Parameters:)frequencies,) DVFS)latency.

Design3Model:
an3action3 from3the3Event'B3model

update_qTable �
ANY i
WHERE
i� 1� N)&) F( iS1 ) < freq ≤ F(i)))

THEN
qTable � updateArray( qTable,)row, i,)re_pe )

Step)1

Step)2

Step)3

Figure 1: Addressing platform specification diversity: Cortex ARM8 and ARM7
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platform and for the Cortex-A7 platform and corresponding C implementa-

tions are generated.

Figure 1, Step 2 presents one of the events of the design model, up-

date qTable, which updates the qTable array. The event specifies that a value

i (indicated by the keyword ANY) should be selected that satisfies the event

guards (indicated by the keyword WHERE) and the update action (indi-

cated by the keyword THEN) should be performed with the selected value

for i. Here i represents an index for a frequency value and determines which

column of the qTable gets updated with the value of the reward/penalty

(re pe).120

Figure 1, Step 3 the independent model is instantiated by defining con-

crete values for the model parameters for the Cortex-A8 platform and the

Cortex-A7 platform. For the Cortex-A8 on the left, the number of VF pairs

is 4, whereas for the Cortex-A7 on the right, it is 13. The values of fre-

quencies, an ordering function, called f, and the DVFS latency value are also

instantiated.

The code generation result contains three files: Common.c contains the

data definition, Controller.c contains the C code of the RTM algorithms,

and Environment.c contains the interaction interfaces. As explained earlier

in this section, the number of frequencies corresponds to the number of qTable130

columns. The Event-B model is independent of these platform parameters

but Controller.c is dependent on the number of frequencies. The event is

translated to a set of “if then else” branches in the number of frequencies

(number of qTable columns), to modify the qTable. The left Controller.c

box presents the generated implementation for the Cortex-A8 by 4 branches
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modifying the 4 columns of the qTable depending on the value of selected

frequency. For the Cortex-A7 (left box), there are 13 branches to modify the

columns of QTable by 13 columns. The variable row, specifying the appro-

priate row of the qTable, has been assigned in a separated event according to

the value of the predicted workload. Each Environment.c includes platform-140

specific API calls in the interaction interfaces to the application layer and

the hardware layer. For example, change cpu A8 frequency, a predefined API

for the Cortex-A8, is called in the body of generated Control VF interaction

interface in order to change the frequency of the Cortex-A8 hardware.

Both implementations are automatically generated from the same model,

even though one has 4 branches and the other has 13. In contrast to the

automatic generation, modifying one version of an implementation to a dif-

ferent number of branches manually, would require re-coding and can be

error-prone.

The presented model-based framework to build the RTM is intended to150

achieve increased productivity of RTM software in embedded systems. Our

previous work [10] presents our initial effort to apply formal methods in

embedded software area and the outcome model was specific to one platform,

whereas the proposed framework in this paper is demonstrating a general

platform-independent model. The Platform Independent (PI) design model is

reusable across different platforms with diverse core characteristics. Platform

Specific (PS) core characteristics are used to instantiate the PI design model

to be transformed to the PS executable software. Moreover the framework

addresses the correctness of the RTM design; the Event-B formal model is

verified using theorem proving and model checking to ensure the correctness160
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of the modelled properties and consistency between different refinement levels

of the design model.

3. Background

3.1. Learning-based RTM

In this paper, we apply our approach to an RTM that manages applica-

tions with epochs of varying workload, e.g., each frame in a video decoder

is an epoch and workload varies between frames. Our RTM algorithm [9]

works in two phases, Prediction and Decision Making. For each frame, the

RTM first predicts the workload to be executed, and then it decides the VF

setting so that the predicted workload can finish execution before the epoch170

deadline. After the epoch has completed, the RTM learns by using feedback

to update its parameters for computing future frames. To achieve the first

objective, predictions of the workload for the next frame are performed using

an Exponential Weighted Moving Average (EWMA) [12]. For the Decision

Making, Reinforcement Learning (RL) is used [11], using the Q-Learning

algorithm. The objective of RL is to learn how to make better decisions

under variations. Decisions in RL terminology are known as actions, and the

environment is represented as states.

The RTM algorithm is shown in Algorithm 1. For every new epoch,

the RTM first predicts the workload, based on this it selects a VF value.180

After processing the frame, the performance is determined to fine tune the

prediction and the decision algorithms.

Exploration and Exploitation Phases: initially there is no knowledge of

the system workloads, so the decision algorithm must start exploring deci-
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Algorithm 1 RTM Algorithm

for every New Epoch do

Prediction Unit.PredictWorkload

Decision Unit.MapWorkload

Decision Unit.SelectPowerState(VF)

Prediction Unit.UpdatePrediction

Decision Unit.UpdateQ-Table

end for

sions in different states to find the optimal (or most suitable) action for a

particular chosen state. This is called the Exploration phase. Exploration

is done by taking a random action for a selected state. Good actions are

rewarded and bad actions are penalised. Actions in this context, are the VF

pairs, and states are the different amounts of workload the system may have.

It is important to note that the VF pairs are discrete, so the best decision190

may not be optimal, but it is the best among the VF pairs available. As

an example, let the optimal frequency for a given workload be 533.35MHz;

if the CPU supports only 300MHz, 600MHz, 800MHz and 1GHz (Cortex-

A8), the best decision is to execute the workload at 600MHz. The ‘best’ in

the context of this paper is defined as the lowest VF pair that fulfils the

performance requirement. Initially, the decisions of the algorithm are not

optimal. However, after several epochs1 the accuracy in the selected action

improves and the algorithm always selects the best action in a given state.

1In RL terminology, the interval at which the algorithm is triggered is known as the

decision epoch.
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This phase of the algorithm is called the Exploitation phase. The learning

algorithm [11] also penalises in case of system overload, even at the highest200

frequency. However the penalty is proportional to the deadline miss time,

therefore even though running at the highest frequency incurs a penalty, it

will be smaller than running at lower frequencies. In this paper, we have not

modelled the system overload and so we do not support penalisation for it.

3.2. Event-B Formal Method

Event-B [7] is a formal method for system-level modelling and analysis

which allows us to produce a precise formal model of the RTM algorithms

that abstract away from platform dependent parameters and interfaces. Key

features of Event-B are the use of set theory and first order logic as a mod-

elling notation, the use of refinement to represent systems at different ab-210

straction levels and the use of mathematical proof to verify correctness of

models and consistency between refinement levels. Instead of building a sin-

gle big model which can be complex and error-prone, Event-B refinement

allows us to build the model gradually by introducing details of the system

in each refinement level. Therefore we can verify the correctness of a model

step by step. The Rodin platform [13] is an Eclipse-based IDE for Event-B

that provides support for modelling and mathematical proof.

A model in Event-B can consist of several Contexts and Machines. Con-

texts contain the static part (types and constants) of a model while machines

contain the dynamic part (variables and events). Contexts provide axiomatic220

properties of an Event-B model, whereas Machines provide behavioural prop-

erties. A Machine consists of variables, invariants and events. An invariant is

a predicate or constraint, which every state in the model must satisfy. Each
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event is composed of a name, a set of guards G(t,v) and some actions S(t,v),

where t are parameters of the event and v is state of the system which is

defined by variables. All events are atomic and can be executed only when

their guards hold.

The correctness of an Event-B model is defined by invariant properties.

More practically, every event in the model must be shown to preserve this

invariant. This verification requirement is expressed in a number of proof230

obligations (POs). In practice this verification is performed either by model

checking or theorem proving (or both). In addition to correctness, the con-

sistency of the refinement levels are proved by a number of proof obligations.

The Rodin toolset provides an environment for both theorem proving and

model checking. PO generation, automatic proof and interactive proof are

incorporated into Rodin. A user can prove a non-discharged proof obligation

manually using the interactive proving feature available in the Rodin toolset.

Theorem Proving: There are different POs which are generated by Rodin

during development of a system [14]. The most important of these are the

Invariant Preservation (INV ) proof obligation and the Guard Strengthen-240

ing (GRD) proof obligation. The INV PO ensures that each invariant is

preserved by each event; and the GRD PO ensures refinement consistency

by verifying that each abstract guard is no stronger than the concrete ones

in the refining event. As a result, when a concrete event is enabled the

corresponding abstract one is also enabled.

Model Checking: ProB [15] is an animator and model checker for Event-

B. ProB allows fully automatic exploration of Event-B models restricted to

finite states., and can be used to systematically check a specification for a
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range of errors.

4. The Model-Based Framework250

Figure 2 illustrates our layered model-driven framework in which our

RTM design, providing generic (platform-independent) functionality across

different platforms, can be selectively instantiated by additional user defined

platform specific parameters and interfaces. The dashed lines indicate the

Platform Independent (PI) components, while the solid lines present the

Platform Specific (PS) components.

Verified'Design'Level

Implementation'Level

Requirement'Level

Execution'Level

Instantiation'and'
Code'Generation

Compilation

• Dashed'Line:'Platform3Independent'(PI)
• Solid'Line:'Platform3Specific'(PS)

• High'level'RTM'Algorithms
• Platform'Parameters'

Code'Generator'Tool

GCC'Compiler

Platform'(e.g.'Contex3ARM7,'ARM8,'ARM15)

Platform3Specific'
C'Code

monitors

controls

QoS

Platform3Specific'
Interfaces'

Platform3Independent
RTM'Event3B'Formal'Model

Platform3Specific'
Parameters'Instantiation

Figure 2: A framework to automate code generation of a platform independent RTM from

a high level formal model

Following is a summary of the layers:

The requirement level: Starting from the top layer, the requirement

level includes the PI high level description of RTM algorithms, such as a
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high level description of the RL in Figure 1, and platform parameters, such260

as the number of frequencies in Figure 1. High level requirements provide

knowledge to make the formal design model in the next step.

The verified design level: Our design methodology uses the Event-

B formal method to create a verified PI model of the RTM system using

incremental refinement.

Code generation: The gap between the design level and implementation

level is bridged by the code generation tool which automatically transforms

the instantiated design model into the executable C code. The code genera-

tion in performed by the code generation plugin [8] in the Rodin platform.

The implementation level: The generated RTM implementation is270

specific to each platform as well as the interfaces to access the QoS, control

knobs such as VF setting and monitor core activities.

The execution level: Finally the RTM implementation is complied by

GCC compiler and executed in the platforms using Hardware Abstraction

Layers (HAL) in the Linux operating system.

We have applied our framework to develop a Reinforcement Learning

(RL) RTM system for applications with soft deadlines. The Event-B design

model of RL RTM system is instantiated per HW platform and the RL

algorithm is automatically generated from the instantiated Event-B design

model of the RTM system for each platform. This section presents details of280

each framework level separately.

4.1. Requirement Level

According to the framework illustrated in Figure 2, our requirement

level includes the high level descriptions of the platform-independent RTM
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algorithms and platform parameters. We outline requirements on the RTM

algorithms in this section and the corresponding design model is outlined in

the next section.

An overview of the RTM is illustrated in Figure 3. First the application

provides the required deadline, e.g., frames-per-second (FPS) for video de-

coding, to the RTM; then the optimal value of VF is decided by the RTM.290

The RTM controls the VF in the hardware and the frame is executed in the

hardware. After that the actual value of workload to decode the frame is

monitored.

Application*
Layer Soft%Deadline%Application

OS
Layer Run2Time%Manager

Hardware
Layer CPU

epoch%deadline

VF%setting CPU%cycles

Figure 3: Run-Time Management system: a cross-layer approach

To achieve the required deadline set by the application, we use the learn-

ing approach outlined in Section 3.1. Details of the prediction and learning

algorithms are explained and modelled next.

4.2. Design Level

The top level of Figure 4 illustrates our design architecture for Event-B

modelling of the RTM. This figure presents details of the verified design
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level in Figure 2.300

As shown in Figure 4, the Event-B model of the RTM system comprises

an abstraction level and two refinement levels. In the abstract model we

focus on the main functionalities of the RTM system including the variables

and actions modelling the interaction of the RTM with the application in

a platform-independent way. The abstract model is followed by two levels

of refinement, where the workload prediction and the RL algorithms are

introduced respectively.

To manage the complexity of the final refinement, and also to prepare the

model for code generation, the model is decomposed into two sub-models:

Controller and Environment. The Controller sub-model consists of proper-310

ties of the RTM algorithms and the Environment sub-model represents the

interaction interfaces between the RTM and the application and hardware.

By separating controller behaviour and environment behaviour, the represen-

tation of the RTM and, the application/hardware are divided. This structure

is used for code generation configuration, where the controller translation

consists of RTM algorithms, and the environment translation represents the

interfaces to the application and hardware. Details of this implementation

are explained in Section 4.3. The sub-models need some preparation before

the final step of being translated to the executable code. These preparations

are included in refinement of sub-models: Controller tasking and Environ-320

ment tasking. In these refinements, the sequencing and branching of Event-B

actions are defined. Also additional translation rules are defined to translate

the Event-B mathematical operators to the corresponding C operators.

Our RTM design model is independent of the platform (indicated by
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Verified	Design	Level

refines

refines

refines refines

decompose

RTM	Controller	
(Controller.c)

Interaction	Interfaces	
(Environment.c)

Data	Definition
(Common.c)

Abstract	Model
Interaction	interfaces between	
application,	RTM	and	hardware

Prediction	Refinement
Prediction	algorithm	details

Decision	Making	Refinement
Machine	learning	algorithm	details

Controller
RTM	algorithms: Prediction, ML

Environment
Interaction	Interfaces

Controller	Refinement
Tasking	controller

Environment	Refinement
Tasking	Environment

Platform	Parameters
N:	number	of	VF
VF:	set	of	VF	values
Wl: maximum	workload
Latency:	DVFS	switch	Latency

Automatic	code	generation Automatic	code	generation	&
interaction	APIs	call	replacement

Instantiation	&
Automatic	code	generation

Instantiation	and	Code	Generation

Implementation	Level

Figure 4: Design Level and Implementation Level
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dashed lines in Figure 4). The platform parameters, including number of

supported VF, maximum workload and DVFS switch latency, are used to

instantiate the model to generated platform-specific C code for each platform.

The C code is generated automatically from the final refinement models

of the controller and the environment. The next section will explain the

implementation level (bottom level of Figure 4). All of design steps, including330

the abstraction, refinements, model decomposition and code generation are

verified using the Rodin toolset.

4.2.1. Abstraction

RTM

read_deadline select_vf control_vf monitor_workload

predict_workload select_vf

Abstract	Model

ranGenerator updateE

xor

VFGenerator explore exploit

Decision	Making	(RL)	
Refinement

monitor_workload update_prediction

ran	>	 ε ran	≤	ε

monitor_workload update_qTable

Prediction	
Refinement

Figure 5: Design Level Details: Event Refinement Structure for the RL-based RTM Event-

B model

To visualise the events of the Event-B abstract/refinement levels, pre-

sented in the top level of Figure 4, we use an approach, called Event Re-

finement Structures (ERS) [16]. The ERS of the RTM Event-B model is

presented in Figure 5 which is divided into three regions indicating the refine-
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ment levels: the abstract model, prediction refinement and decision making

refinement. The top region shows the abstract level including four events.

Each node indicates an event in the Event-B model and the oval contains a340

name for the overall flow of events in the model. The nodes are read from left

to right indicating the ordering between them. First the read deadline event

executes followed by execution of select vf, control vf and monitor workload.

Abstractly the value of the VF is decided nondeterministically from the

constant set VF. Below is the Event-B specification of select vf event. act1

(action1) indicates the body of the event where the value of VF is nondeter-

ministically assigned to a value from the set VF.

Event select vf =̂

act1 : freq :∈ V F

The set VF is instantiated specifically for each platform. For example,350

for the ARM Cortex-A8, which provides four values of VF, it is defined as

follows:

VF := { FREQ1, FREQ2, FREQ3, FREQ4 }

4.2.2. Prediction Refinements

In the abstract level, we do not model details of the workload prediction

nor the decision making. In a refinement level (the middle region of Figure 5),

the details of the prediction algorithm are added to the abstract events:

select vf and monitor workload.

The select vf event is refined into two concrete events: predict workload,

where the workload is predicted and select vf, where the value of VF is de-360

cided based on our prediction. The monitor workload event is also refined
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into two events: monitor workload (monitoring the actual workload) and

update prediction (updating the prediction factors). In ERS, the line types

indicate whether the corresponding event is a refining event (solid line) or a

new event (dashed line). In refining the select vf event, predict workload is

a new event and the concrete select vf event refines the abstract select vf.

The prediction algorithm estimates the workload for the next frame using

a modified form of Exponential Weighted Moving Average (EWMA). The

EWMA algorithm is widely used in the literature [17, 1, 18] because of its

lightweight implementation.370

The EWMA predictor is modelled in two levels of refinements. In the

first level, the predictor is defined in terms of the full history of measured

workloads; and in the second level, the predictor generates a prediction of

the future value based on the average of the previous values weighted expo-

nentially, where the most recent values have greater weight than the older

ones. In Section 4.2.4, it is proved that the second definition is a correct

refinement of the first one.

In the first refinement of the prediction, the specification of predict workload

and update prediction events are as follows:

Event predict workload =̂380

act1 : pwl := predict(l, n, wl hst)

Event update prediction =̂

act1 : wl hst := wl hst ∪ {n 7→ w}
act2 : n := n+ 1

l is a constant specifying the weighting factor, n and ws hst (ws hst :

(1..n)→ INT ) are variables specifying a frame counter and history of mea-
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sured workloads respectively. In the predict workload event, the predict work-

load variable (pwl) is assigned to the predicted value through the predict

operator from the EWMA theory. In the update prediction event, the his-

tory of the workloads (wl hst variable) is updated to include the last (nth)390

monitored actual workload (w variable).

A theory is an Event-B component where we can introduce new mathe-

matical operators. In this development, we have defined a theory of EWMA

where the prediction operators are defined. The predict operator is defined

in terms of the full history of measured workloads, with three arguments as

follows2 (Z is the set of natural numbers):

Theory EWMA
operator predict (l ∈ Z, index ∈ Z, w ∈ Z 7→ Z) =̂

l ∗ SUM(λi.i ∈ 0..index− 1 | w(i) ∗ (i− l) exp (index− i))

Here w(i) is the actual workload (for the i th frame).400

In the second refinement of the prediction, the specification of predict workload

and update prediction events are as follows:

Event predict workload =̂
refines predict workload

act1 : pwl := avgwl

Event update prediction =̂
refines update prediction

2A conventional representation of the abstract predict operator is:

l ·
n−1∑
i=0

w(i) · (i− l)n−i where 0 ≤ l ≤ 1 (1)
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act1 : avgwl := update(l, w, avgwl)

In the predict workload event, the pwl variable is assigned to the average

workload variable (avgwl); where avgwl is updated in the update prediction410

event, according to the definition of update operator in the EWMA theory:

Theory EWMA
operator update(l ∈ Z, w ∈ Z, avgwl ∈ Z) =̂ l ∗ w + (1− l) ∗ avgwl

Using the Event-B proof techniques (Section 4.2.4), we verify that the

abstract definition, based on the full history of actual workloads, is correctly

refined by maintaining a running average. The abstract definition is more

clear and thus easier to validate. The refined definition is much more efficient

to implement.

The value of freq is calculated based on the predicted workload in select vf

event:420

Event select vf =̂
refines select vf

act1 : freq := pwl ∗ fps

This event is refined in the next refinement (decision making) where the

freq is selected based on the decision making algorithm.

4.2.3. Decision Making (Reinforcement Learning) Refinement

The bottom region of Figure 5 shows a further refinement, where details

of RL are modelled. The select vf event and monitor workload event are

refined to include the details of the RL.

At the bottom region of Figure 5, the select vf event is refined to spec-430

ify the exploration and exploitation phases. Reading the children of the
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select vf node from left to right, first the ranGenerator event nondeterminis-

tically generates a value (implemented as a random choice). Comparing this

nondeterministically chosen value with the exploration-exploitation ratio (ε),

either the explore or exploit event are executed and this is followed by up-

dating ε (updateE event). The oval containing xor represents an exclusive

choice between its branches. In case of exploration, first the VFGenerator

event nondeterministically choses a VF value within the available VFs to be

used in the explore event. The transition from exploration to exploitation is

not immediate, but is a gradual change, defined as the ε-greedy strategy, in440

which the exploration-exploitation ratio (ε) is gradually increased to reduce

the random decisions in favour of appropriate decisions3. The availability of

ε makes ‘re-learning’ a feasible operation, especially for dynamic systems in

which the best action for a particular state may change gradually. If relearn-

ing is needed, the ε may be reduced to allow for more exploration to take

place.

Below is the Event-B description of the explore and exploit events. These

events are guarded based on the value of the random variable (nondeter-

ministically chosen in the ranGenerator event). If random is greater than

the exploration-exploitation ratio (ε), explore executes, otherwise exploit ex-450

ecutes. In the body of the explore event, the freq is assigned to a random VF

value (generated in the VFGenerator). The exploit event assigns freq value

into the optimal value of VF according to the predicted workload (pwl). op-

timalVF is an operator defined in a theory where all of the necessary RL

3Appropriate decisions are those that reduce the energy consumption, while satisfying

the performance.
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operators are defined.

Event explore =̂
refines select vf

when

grd : random > epsilon
then460

act1 : freq := randomV F

Event exploit =̂
refines select vf

when

grd : random ≤ epsilon
then

act1 : freq := optimalV F (QTable, pwl)

Updating Phase: knowledge generated from learning is stored as val-

ues in a QTable, which is a lookup table with values corresponding to all

State-Action pairs. At each decision epoch, the decision taken for the last

epoch is evaluated; the reward or penalty computed is added to the cor-

responding QTable entry, thereby gaining experience on the decision. This

reward/penalty is calculated with a cost function, which in this RTM context

is defined as:

re pe =


100t
d

if t ≤ d

−100(t−d)
3d

if t > d

(2)

where re pe is the reward/penalty, t is the runtime and d is the deadline.

At the bottom region of Figure 5, the monitor workload event is refined to470

include the update qTable event, where the workload is rewarded or penalised.

The Event-B specification of the update qTable event is as follows:

Event update qTable =̂
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any

i
when

grd : i ∈ 1..N ∧ F (i− 1) < freq ≤ F (i)
then

act1 : qTable := updateArray(qTable, row, i, re pe)

In the body of the event, the value of the variable qTable is updated, where480

qTable is defined as a two-dimension array, row specifies the row number, i

specifies the column number and re pe is the reward or penalty of the most

recent decision. The value of the row and re pe are assigned in the separated

events. The guard is defined as can be seen for the code generation purposes

(details described in Section 4.3).

The definition of updateArray is specified as an operator in the Array

theory including the corresponding C translation as follows:

Translator

Target C

MetaVariables490

: a ∈ Z

: r ∈ Z

: c ∈ Z

: v ∈ Z

Formula : a := updateArray(a, r, c, v)

Output: : a[r][c] = v

500

The Ouptput specifies the translation of the Event-B Formula to the

appropriate syntax in the C programming language.
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The value of the re pe variable is assigned in cost reward assign and

cost penalty assign events. The cost reward assign event is as follows:

Event cost reward assign =̂
when

grd : (w/freq) ≤ d
then

act1 : re pe := min(1, cost reward
(w, freq, d))510

The cost reward assign can executed only when its guard (grd) holds. grd

condition specifies when the finish time is less than or equal to the deadline,

meaning the deadline is achieved and the QTable needs to be rewarded. The

cost reward is defined as an operator in the RL theory based on Equation 2

.

Figure 6 shows the evolution of the QTable. Initially, the values in the

QTable are all zeros (Figure 6(A)). In the exploration phase the QTable will

be filled with values indicating rewards or penalties (Equation 2)). In the

exploitation phase, the ‘best’ actions are determined based on the QTable

entries with highest rewards (highlighted in Figure 6(B)).520

Model Decomposition: as shown in Figure 4, the final refinement is di-

vided into two smaller sub-models. The controller sub-model includes the

RTM actions: predict workload, ranGenerator, explore, exploit, VFGenera-

tor, updateE and update qTable. The environment sub-model includes the

actions to interact with the application and hardware: set fps, execute frame

and monitor workload.
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several'
epochs'
later

Figure 6: QTable during A) exploration and B) exploitation phases. The highlighted

boxes represent the best Action for each State.

4.2.4. Verification

The Event-B model of the RTM was verified using Rodin theorem proving.

In the last refinement before model decomposition, 76 POs were generated,

of which 96% are proved automatically, mostly associated with correct se-530

quencing of events. A manually proved PO is presented here as an example

of verification.

As presented in Section 4.2.2, the prediction refinement consists of two

levels. The following invariant captures the relationship between the avgwl

variable of the refinement and the workload history (wl hst) of the abstract

model:

inv1: avgwl = predict(l, n, wl hst)

This invariant is required to prove that the action of the refined predic-

tion event correctly implements the abstract event. To prove this invariant,

we introduce the following theorem which shows the algebraic connection540

between abstract update operator and the concrete predict operator:
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thm1: ∀n,w·n > 0 ∧ w ∈ Z⇒

update(l, w, predict(l, n, wl hst)) = predict(l, n+ 1, wl hst ∪ {n 7→ w})

The invariant and theorem are proved interactively with the Rodin the-

orem prover.

We also analysed our model using ProB to ensure that the model is dead-

lock free and convergent. At any point during model checking, at least one

of the events of the model should be enabled to ensure that the model is

deadlock free. For each new event added in the refinements, we have verified

that it would not take control forever (convergence). Also INV POs ensure

that the new events keep the existing ordering constrains between the ab-550

stract events. The ordering between events are specified as invariants, the

PO associated with each invariant ensures that its condition is preserved by

each event.

4.3. Code Generation and Implementation Level

The Event-B model of the RTM system is automatically translated to

executable C code using the code generation plugin of the Rodin toolset.

The bottom level of Figure 4 illustrates the procedure of generation of RTM

software to be executed on the hardware. To generate code, the controller is

instantiated by the platform-specific parameters for one platform and trans-

lated to the ”Controller.c” file. The platform specific parameters are trans-560

lated to the C variable definitions in the ”Common.c” file. The environment,

modelling the interactions, is translated to the signature of C functions, rep-

resenting the interactions. Since in the independent design model we ab-

stracted from details of interactions between the RTM and application and
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HW layers, the specific interaction APIs for each platform needs to be called

in the generated environment file. Our experimental results from executing

generated code in various hardware platforms, are presented in Section 5.

How Code Generation works: As shown in Figure 4, after decompo-

sition, the sub-models are refined to be prepared for translation into C code.

Tasking Event-B sub-models define the control flows between events. Part570

of the controller task is as follows:

monitor_workload;

update_avgwl;

if cost_reward_assign

else cost_penalty_assign;

update_qTable;

This indicates the ordering between events monitor workload and up-

date avgwl followed by a branching between cost reward assign event and

cost penalty assign event. Below is part of the result of automatic code gen-

eration for the ARM A8 platform with 4 values of frequencies (N = 4 in the580

update qTable event):

Env_monitor_actwl (&actwl);

avgwl = (l * w + (1 - l) * avgwl);

if (w / freq <= d) {

re_pe = min(1, (100 * w) / (freq * d));

} else {

re_pe = max(-1, -((w / freq - d) * 100) / (3* d));

}

if ((0 < freq) && (freq <= FREQ1)) {

qTable[row ][0] = re_pe;590

} else if ((FREQ1 < freq) && (freq <= FREQ2)) {
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qTable[row ][1] = re_pe;

} else if ((FREQ2 < freq) && (freq <= FREQ3)) {

qTable[row ][2] = re_pe;

} else {

qTable[row ][3] = re_pe;

}

First the monitor workload is translated to a call to the environment

function. Then update avgwl is translated into the second line according to

the operator definition for the update. Finally branching is generated on the600

cost reward assign and cost penalty assign depending on the event guards.

The Event-B guard of the event is translated into the branching condition

in C. re pe is assigned according to the definition of cost function operators

in the RL theory (according to the Equation 2). And the rest of the code is

the translation of the update qTable event which has been explained earlier

in Figure 1. The choice of i (an index representing the choice of frequency)

is translated to a set of “if then else” branches in the number of frequencies

(number of qTable columns), to modify the qTable.

As shown in Figure 1, the generated environment is similar for both plat-

forms. It includes the function signatures for the interfaces to read the dead-610

line (Read Deadline), control VF (Control VF) and monitor the workload

(Monitor Workload). In a further step, the bodies of these interface func-

tions are replaced by calling the right platform specific APIs. For exam-

ple the variable required deadline needs to be subtracted from the platform

dependent DVFS switching delay Latency which is 200 us for Cortex-A8

and 1600 us for Cortex-A7 (Table 1). Functions change cpu A8 frequency

and change cpu A7 frequency implement the hardware frequency changes for
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Cortex-A8 and A7 respectively to accommodate the difference in number of

VF pairs. It first checks if the required frequency is in the VF table for the

associated platform and make the change accordingly. read cpu A8 cycles620

and read cpu A7 cycles use platform specific assembly instructions to read

the cycle counter for Cortex-A8 and Cortex-A7 respectively. These API func-

tions need to be implemented specifically for each platform to address the

differences in both OS and hardware controls. The next section will describe

the adopted architecture for the generated RTM at the OS layer.

4.4. Execution Level and Hardware Abstraction Architecture

As discussed in previous sections, the model of the RTM is automat-

ically translated into C for its implementation. To provide genericity to

the RTM model, the Controller sub-model does not take into account the

hardware/application-specific calls needed to interact with the hardware and630

application layers (included in the Environment sub-model). Dividing into

Controller and Environment sub-models is in-line with the HAL4 (Hard-

ware Abstraction Layers) principle [19]; The Controller sub-model is ab-

stracted from platform dependencies, while the Environment sub-model pro-

vides platform-specific calls to get/set monitors/knobs. An interface to pro-

vide these functions has been designed. Figure 7 shows the modified RTM di-

agram from Figure 3, where the box in the centre represents the generic RTM

auto generated code, and the highlighted boxes provide the interactions with

4In computers, a hardware abstraction layer (HAL) is a layer of programming that

allows a computer operating system to interact with a hardware device at a general or

abstract level rather than at a detailed hardware level
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the hardware and application layers. The translated environmental functions

call these interaction interfaces.640

Application*
Layer Soft%Deadline%Application

OS
Layer

Code%Generated
Run5Time%Manager

Hardware
Layer CPU

FPS

VF%setting CPU%cycles

App.%Annotations

Freq Changer Perf.%Monitor

Figure 7: Code generated RTM architecture for a deadline-based application

Hardware Abstraction Architecture: In order for the generated

RTM to sit at the OS layer, it has been implemented as a Linux Governor [20]

through a Loadable Kernel Module (LKM), which provides the interface and

drivers to make the VF changes and monitoring workload. This Gover-

nor provides the three interfaces needed for the algorithm: the Frequency

Changer, the Performance Monitor and the Application Annotations.

As part of the HAL in Linux, the RTM implementation uses sysfs for

both the performance counter module and the RTM module (sysfs makes

device information available as virtual files). This allows the RTM module to

interact with the performance counter module, configuring it and requesting650
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for performance data. As the RTM module and performance counter module

are implemented as sysfs, they are visible at user space so the user can

read/write parameters and data to the modules.

The Frequency Changer provides the CPUFreq drivers to change the VF

setting at the CPU. The Performance Monitor interface allows the system

to recollect the CPU Cycles information from the hardware monitors. For

the current case study, the architecture used is ARMv7 (ARM Cortex-A8,

Cortex-A7 and Cortex-A15), which provides Performance Monitoring regis-

ters [21]. ARMv7 assembly code was used to access these monitors in the

LKM. The Application Annotations interface provides a library for the appli-660

cation to send its performance requirement (FPS) to the RTM using function

config governor(int fps). It also provides function calls to trigger the Gov-

ernor to start (start governor()) and to finish working (stop governor()). It

notifies the RTM of a new frame start through function new epoch(). This

communication is done through ioctl calls (device specific input/output calls).

After the RTM C code is generated, it is cross-compiled with the installed

Linux and processor architecture to create the respective LKM. When the

LKM is loaded, it waits for the read deadline from the application and the

start governor calls to start working. The new epoch call at every new frame

triggers the RTM algorithm both for deciding the new VF and learning (from670

the previous frame): the deadline is compared with the actual runtime to up-

date the learning table with the reward/penalty (Equation 2). At the end of

the application, the stop governor call ends the RTM execution.

The deadline tdeadline is given by the frame rate fps, so:

tdeadline =
1

fps
(3)

34



The time taken to process the frame (tframe) is obtained by getting timestamp(n)

of the global system clock given in microseconds every frame, obtaining the

difference with the previous frame timestamp(n − 1). The tframe is then

compared with tdeadline to decide whether the deadline was passed or not:

tframe = timestamp(n)− timestamp(n− 1) (4)

deadline passed =

1 if tframe ≤ tdeadline

0 if tframe > tdeadline

 (5)

5. Experimental Results and Evaluation

Our experiments demonstrate that we can automatically generate dif-

ferent platform-specific software for different architectures, from the same

platform-independent model and observe the effectiveness of the generated

implementations in terms of energy management. We validate our work ex-

perimentally for three different platforms and two applications in terms of

performance and power consumption. Experiments were conducted on the680

BeagleBoard-xM with Cortex-A8 processor and ODROID-XU3 with both

Cortex-A7 and Cortex-A15 processors. Both platforms were running the

Linux operating system. Our RL based RTM targets applications with soft

deadlines including multi media and computer vision applications. For our

experiment, the test applications are a video decoder and a Jacobian matrix

solver.

The video decoding is based on FFmpeg libraries using the H.264 codec at

a VGA resolution (640x480). On the Cortex-A8 it was running for 720 frames

while on the Cortex-A7 and Cortex-A15 it was 3000 frames. More frames are
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needed due to a longer learning period on the Cortex-A7 and Cortex-A15 due690

to a larger QTable caused by more VF pairs. The video decoding application

is annotated to communicate with the Governor through ioctl calls such

as config governor(int fps), start governor(), stop governor() and

new epoch() as shown in Section 4.4.

We also used the RTM for an application with different characteristics to

the video decoder on an ODROID-XU3 Cortext-A15 platform: a Jacobian

matrix solver followed by least-squares solution computation, targeting 10

solutions per second with a 1024x1024 randomly seeded matrix. This ap-

plication demonstrates higher compute load but lower frame rate than the

video decoder.700

Figure 8 shows the comparison of performance and power consumption

for the Cortex-A7 (video decoding application) when using our code gen-

erated RTM against the Linux-ondemand governor. Figure 8.(a) shows the

effectiveness of the generated RTM with a performance constraint of 15 FPS.

The ondemand governor occasionally misses the deadline, while the gener-

ated RTM perform worse in the beginning because of learning) but gradually

improved to achieve almost the same performance as the ondemand gover-

nor. Figure 8.(b) shows the power consumption in turn for each frame. This

shows the different VF controls during two phases (exploration and exploita-

tion) of the RTM. It can be seen during the exploration phase, low VF710

settings tend to cause performance losses. During the exploitation phase the

generated RTM achieves similar performance with significant power savings

when compared to the ondemand governor. This behaviour is comparable to

the one presented in [9] for hand written RTM code, where exploration and
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exploitation phases are present, with more variations at early stages of the

runtime.

(a) Cortex-A7, Performance

(b) Cortex-A7, Power

Figure 8: Performance and Power Consumption of the generated RTM governor on Cortex-

A7

Table 2 compares the average performance and power saving between the

code generated RTM and the ondemand governor for the video decoding ap-

plication on three platforms, e.g. for Cortex-A7 the generated RTM achieves

98% of the performance of the ondemand while using 61% of power used720

with the ondemand. It can be seen that across 3 different processors the
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generated RTM provides better power and energy savings while maintaining

similar performance. The amount of saving varies with platforms due to the

difference in number of VF pairs and in relationship between power, voltage

and frequency. The power/energy factors are calculated by using system calls

to measure time, and current is measured using a current sensor by setting

the operating voltage. Performance is the percentage of deadlines that are

passed (achieved). This is computed by dividing the number of frames with

deadlines passed over the total frames processed.

Table 2: Power and performance result for code generated RTM compared to the onde-

mand, Video decoding application

Processor Performance (%) Power (%) Energy (%)

Cortex-A8 99 95 96

Cortex-A7 98 61 62

Cortex-A15 96 77 80

Regarding the Jacobian matrix solver experiment on Cortex-A15, we730

achieved 100% of the performance of the ondemand while using 18% of power

used with the ondemand. We experimented with the matrix solver at exactly

10 times a second. The results are different to the video decoder experiment,

since ondemand chooses close to the maximum frequency whilst the RTM,

monitoring the application throughput, recognises that the second lowest

frequency is sufficient, i.e. 2000MHz vs 300Mhz.

The code generation that we used performs a fairly direct translation

of the refined Event-B models to C so the generated algorithms will be as

efficient in terms of complexity as the source Event-B model. We had one
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manually-written RTM implementation of the same RTM algorithm for the740

Cortex-A7 to compare against in terms of size and complexity. The number

of lines of code for the generated code was less than the manually written

code (1175 lines for the manually written code versus 475 for the generated

code); the difference is largely down to coding style. Both implementations

have similar algorithmic structure and thus similar algorithmic complexity.

6. Conclusion

We presented a model-based framework addressing complexity in RTM

software programming due to the diversity of hardware platform character-

istics. Although the designer needs to know the formal language and the

associated toolset, the formal design model is built once and specific RTM750

software for different platforms is automatically generated from an identical

formal design model. This can result in time saving compared to manual

adjustment of the RTM implementation.

In addition to the automatic code generation, formal modelling is aug-

mented by verification techniques. The correctness of the RTM design speci-

fications and consistency of the refinement levels can be ensured by theorem

proving and model checking.

We have validated our framework by applying it to develop an RL-based

RTM system for a deadline-based application. The Event-B formal language

is used to develop a single design model supporting platforms with differ-760

ent characteristics, and the RTM implementations are generated in the C

programming language specifically for each platform.

We instantiated the RTM design model for three platforms with different
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characteristics and performed code generation for each of them; this is fol-

lowed by evaluation of the effectiveness of the generated implementations in

terms of power consumption. In all of the three experiments, energy saving

is achieved compared to the Linux-ondemand governor.

To the best of our knowledge, this is the first reported investigation into

automatic generation of embedded RTM and verification using high level

model specification. The focus of this paper is evaluating the support for770

portability of RTM embedded across multiple hardware platforms. We en-

visage the framework working for wider experiments; In our ongoing work the

Event-B models are being refined to support RTM algorithms for multi-core

architectures and concurrent application.
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