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This paper focuses on resolving the storage issue of correlation matrices generated by kriging surrogate models in the context
of electromagnetic optimization problems with many design variables and multiple objectives. The suggested-improved kriging
approach incorporating a direct algorithm is able to maintain memory requirements at a nearly constant level while offering high
efficiency of searching for a global optimum. The feasibility and efficiency of this proposed methodology are demonstrated using
an example of a classic two-variable analytic function and a new proposed benchmark TEAM multi-objective Pareto optimization
problem.
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I. INTRODUCTION

KRIGING, as a type of regression model, is able to
predict response surface of the objective function through

exploiting the spatial correlation of data which based only
on limited information [1]–[3]. However, it was found that
large-scale tasks—multi-objective and employing many design
variables—may lead to a “combinatorial explosion” when
all the required correlation matrices are established between
the sample points and the design vectors. The partitioning
scheme [4] of the correlation matrices, splitting them into
manageable sizes, can mitigate to some extent the burden of
storing this massive amount of data, but sacrifices may need
to be made in terms of computing efficiency at each iteration
to achieve more available physical memory. Therefore, a more
efficient method capable of removing this bottleneck is sought.

II. KRIGING WITH LIPSCHITZIAN OPTIMIZED EI

Kriging can exploit the spatial correlation of data to predict
the shape of the objective function and search for the global
optimum using limited information. Kriging is defined as

ŷ(xi ) =
m�

k=1

βk fk(xi ) + γ(xi ) (1)

where the sum
�m

k=1 βk fk(xi ), being a linear combination of
the values of initial sampled points xi , may be viewed as a
global approximation of the true function. The coefficients βk
are regression parameters and γ are an additive Gaussian noise,
representing uncertainty. To be interpolating, the Gaussian
distribution γ(xi ) must be N(0, σ 2), with σ 2 to be determined.
Two design vectors xi and x j , close to each other in the
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design space, may be expected to have their corresponding
objective function values similar. This is modeled statistically
by assuming that the errors γ(xi ) and γ(x j ) are correlated

R(γ(xi ), γ(x j )) =
n�

k=1

e−θk

��xi
k−x j

k

��Pk

(2)

where θk determines how fast the correlation between design
vectors drops away in the kth coordinate direction, while pk
determines the smoothness of the function in this direction.

The prediction made by the kriging surrogate model can be
viewed as a Gaussian process γ, while a number of updating
schemes can be adopted in this process. This allows for the
following concept of improvement to be defined: for a single
objective to be minimized, the improvement may be measured
by comparing the value realized by the objective function with
the current minimum of the prediction. This is written as [5]

I (x) = max( fmin − γ (x), 0). (3)

The expected improvement (EI) (see [5], [6]) may be found
by integrating over the likelihood of achieving it, which is
given by the normal density function. The maximum of EI
indicates the position where the new sampling point should
be selected. The EI and the standard error are defined as

EIF[I (x)] =

⎧
⎪⎪⎨

⎪⎪⎩

( fmin − ŷ(x))�



fmin−ŷ(x)
s(x)

�

+ s(x)φ



fmin−ŷ(x)
s(x)

�
, s(x) > 0

0, s(x) = 0

(4)

s(x) =
�

σ̂ 2



1 − r T R−1r + (1 − r T R−1r)

1T R−11

�

(5)

where ŷ(x) is the value of the objective function predicted
by kriging; fmin—the minimum of y for the existing samples;
s(x) is the root-mean-square error produced by kriging, which
contains the correlation R (the correlation matrices between x
and the existing sampling points) and r (the correlation
between x and the other unknown points); and φ are the
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normal density and normal distribution functions, respectively.
Along with the increasing number of sampling points selected
by kriging throughout the iterative process, the amount of
data produced by the correlation matrices in (2) accumulates
constantly, which may become problematic especially when
dealing with large-scale multi-variable problems. The known
sampling points chosen during the iterative process only take
account of very limited parts of the full design vectors, thus
the correlation matrices between only the existing sampling
points are unlikely to cause memory problems. However,
the correlation matrices between the known points and all
the design vectors, in the whole design space, may become
incredibly large and keep increasing. This paper focuses on a
methodology to mitigate the burden of data storage in kriging.

The “DIRECT optimization” approach [7], motivated by
a revised Lipschitzian algorithm, is able to address difficult
global optimization problems with constraints. It only requires
a decision based on available information where to search next.
The Lipschitzian optimization process can be defined as

| f (x) − f (x �)| ≤ α|x − x �| ∀x, x � ∈ M. (6)

If the function f is Lipschitz continuous, with a constant α,
then this information can be used to seek the minimum of f
iteratively. DIRECT begins the optimization by transforming
the domain of the design space into the unit hyper-cube. The
center of the design space is c1, the optimization is initialized
by finding the f (c1). The next step is to divide this hyper-cube
by evaluating the function at the points c1± δi ei , i = 1, . . . , N

ω j = min{ f (c1 + δi ei ), f (c1 − δi ei )}, 1 < i < N (7)

where δ is one third the side-length of the hyper-cube and
ei is the i th unit vector. The algorithm triggers a loop of
identifying potentially optimal hyper-rectangles, dividing them
suitably, and sampling at their centers. DIRECT determines
which rectangles are potentially optimal and should thus be
divided, by searching locally and globally and applying the
criteria

f (c j ) − �K d j ≤ f (ci ) − �K di ∀i (8)

f (c j ) − �K d j ≤ fmin − �| fmin| (9)

where � > 0 and fmin is the current best function value; a
hyper-rectangle j is said to be potentially optimal, if there
exists a certain constant �K ; c j is the center of the hyper-
rectangle j , and d j represents the measurement for this rec-
tangle. The criteria are used to search optimal hyper-rectangles
to converge to the optimum based on the initialization of
DIRECT.

The DIRECT algorithm is utilized here to assist kriging
in finding the next sampling point with an optimal value
of EI [6], rather than constructing a complete EI over the
whole design space using very large correlation matrices. This
combination of kriging and the direct algorithm constitutes
the main novelty of the proposed approach. As a number
of sampling points selected by kriging increases, the amount
of data produced by the improved algorithm remains nearly
constant. The optimizing procedures for kriging and kriging
with Lipschitzian optimized EI are shown in Fig. 1, the latter
referred to as “hybrid kriging.”

III. NUMERICAL EXPERIMENTS

To verify the advantages of the proposed hybrid kriging
methodology, a two-variable (n = 2) analytical test function

Fig. 1. Decision-making chart for normal kriging and modified kriging.

Fig. 2. Two-variable analytical test function.

Fig. 3. Highly efficient approximation of hybrid kriging (fewer iterations).

of Fig. 2, with one global minimum and several local minima,
has been attempted. The analytical function [8] is defined as

f (x) = 10 −
n�

i=1



3.5

1 + (xi − 5)2 + 2.2

1 + (xi − 15)2/10

+ 1.2

1 + (xi − 25)2/30

�
(10)

for 0 ≤ xi ≤ 27. The hybrid kriging located the global
minimum after 143 iterations (Fig. 3) and is more than twice
as efficient as the kriging assisted EI requiring 324 iterations
(Fig. 4) [6].

More significantly, however, the peak memory occupied by
the hybrid kriging at each iteration is maintained at a nearly
constant level, as presented in Fig. 5, whereas the memory
required by the kriging with EI increases linearly throughout
the optimization process. On the other hand, the computing
times, simultaneously monitored, show similarity for both the
hybrid kriging and the normal kriging (see Fig. 6).

IV. PROPOSED BENCHMARK TEAM
OPTIMIZATION PROBLEM

The normal kriging, with different sampling strategies for
balancing exploration and exploitation, was previously applied
to the benchmark TEAM 22 and 25 problems [9]. The results
were good but the memory issue clearly visible. The hybrid



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XIAO et al.: MULTI-OBJECTIVE PARETO OPTIMIZATION 3

Fig. 4. Kriging assisted EI [6] with more iterations.

Fig. 5. Monitoring of peak memory requirements of each iteration.

Fig. 6. Monitoring of computing times of each iteration.

kriging, with the burden of memory accumulation removed,
has now been applied to the proposed new TEAM problem,
with ten variables, details of which may be found in [11].
To summarize, an air-cored single-layer solenoid made up
of 20 coils carries a certain current. The target is to find the
optimal distribution of the 20 radii that yields the prescribed
flux density in a specified region along the solenoid axis.
The two goals are to minimize the discrepancy between
the prescribed ((B0(zq)) and the actual (B(zq , r(ξl ))) field
along the solenoid axis and to minimize the field sensitivity
with respect to perturbations in the solenoid radii. Hence,
the objectives are

f1(r) = max
q=1,np

|B(zq , r(ξl)) − B0(zq)|, l = 1, nt (11)

f2(r) = max
q=1,np

[�B+ − B(r(ξl))� + �B(r(ξl )) − B−�] (12)

where B+ and B− are the flux density values computed
after an expansion, or a contraction, of all radii with respect
to the unperturbed configuration. A scalarizing method [10]
has been applied to assist the hybrid kriging to combine the
multiple objectives using a weighted sum (the weights ωi are
set to 1)

Minimize f (x) =
M�

i=1

ωi f̂i (x) (M = 2). (13)

For an assumed current of 6 A, Fig. 7 shows the objective
function trajectory of the sampling points, obtained by hybrid
kriging when equal weights of w1 = 0.5 and w2 = 0.5

Fig. 7. Objective function trajectory for ( f1(r) and f2(r), (w1 = 0.5 and
w2 = 0.5).

Fig. 8. History of the iterative optimization process (w1 = 0.5 and
w2 = 0.5).

Fig. 9. Objective function trajectory for f1(r) and f2(r), (w1 = 0.6 and
w2 = 0.4).

are placed on both f1(r) and f2(r). For a randomly chosen
initial point the hybrid kriging required 201 sampling points.
The best results a1 and b1, for the minima of f1 and f2,
respectively, are depicted in Fig. 8, while point c1 denotes the
minimum of the objective function among all sampling points.
Throughout the iterative search, the minimum of the objective
function is traced at the 190th iteration, shown in Fig. 8. The
test was terminated manually after 200 iterations for better
clarity; it is recommended that ultimately the termination
criterion may be formulated so that when the EI of the
sampling points declines at a specific value, the hybrid kriging
predictor will be stopped.

To understand better the impact on the optimal results of
applying different weights to the objectives f1 and f2, more
emphasis was placed on the minimization of the discrepancy



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON MAGNETICS

Fig. 10. History of the iterative optimization process (w1 = 0.6 and
w2 = 0.4).

Fig. 11. Objective function trajectory for f1(r)and f2(r), (w1 = 0.4 and
w2 = 0.6).

Fig. 12. Optimal solution simulated by finite element method (w1 = 0.5
and w2 = 0.5).

between the actual field along the solenoid axis and the
prescribed value, rather than the reduction of the sensitivity
with respect to variations of the coil radii. The combination
of weights on f1 and f2 was set to w1 = 0.6 and w2 = 0.4,
respectively. As shown in Fig. 9, the point c2 found after
103 iterations (Fig. 10) dominates the minimum value of the
objective function, as well as the minimum of f2. Compared
with the results obtained using equal weights, a better optimal
value of f1 is achieved while maintaining the optimizing effect
in terms of f2.

When w1 = 0.4 and w2 = 0.6, the sampling point c3
arrived at the 195th iteration dominates the minimum of the
objective function f1 as well as the minimum of f2 (Fig. 11).
When more weight is put on f2 the hybrid kriging makes a
better attempt at searching for the minimum; consequently,
the tests have demonstrated the importance of appropriate
choice of the weights in terms of the ability of the opti-
mizer to achieve the ideal solution (global minimum) while
doing it efficiently (fewer sampling points). Unfortunately, for

Fig. 13. Pareto front for the bi-objective optimization.

multi-objective problems, the choice of weights is usually
problem dependent.

A typical optimal field solution for one of the cases (with
equal weights) is shown in Fig. 12 and a Pareto front is shown
in Fig. 13.

In the aforementioned tests the following critical parameters
were assumed: in (2), θk varies from 0.1 to 30 (initially 2);
the number of variables k is set as 10; the parameter Pk is set
as 2; the number of hyper-cubes i in (7) is set to 100. The
20 radii of the coils in (11) and (12) vary between 0.001 and
0.0145 m. The starting point was chosen randomly.

V. CONCLUSION

A novel Lipschitzian Optimized EI (“hybrid”) kriging model
has been proposed to resolve the storage issue of accumulating
data during normal kriging. The new algorithm outperforms
previous models in terms of efficiency. A proposed benchmark
TEAM problem with ten design variables for the multi-
objective Pareto optimization of electromagnetic devices has
been utilized to verify the feasibility and efficiency of the
proposed kriging. The importance of selecting appropriate
weights for the auxiliary objectives has been emphasized.
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