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Abstract
The problem of computing the strategy to com-
mit to has been widely investigated in the scien-
tific literature for the case where a single follower
is present. In the multi-follower setting though, re-
sults are only sporadic. In this paper, we address
the multi-follower case for normal-form games, as-
suming that, after observing the leader’s commit-
ment, the followers play pure strategies and reach a
Nash equilibrium. We focus on the pessimistic case
where, among many equilibria, one minimizing the
leader’s utility is chosen (the opposite case is com-
putationally trivial). We show that the problem is
NP-hard even with only two followers, and pro-
pose an exact exponential-time algorithm which,
for any number of followers, finds either an equi-
librium when it exists (the leader’s utility admitting
a maximum) or, if not, an α-approximation of the
supremum, for any α > 0.

1 Introduction
In recent years, Leader-Follower (or Stackelberg) Games
(LFG) and their corresponding Equilibria (LFE) have at-
tracted a growing interest in Artificial Intelligence. Consid-
ering, for simplicity, the two-player case, LFGs describe sit-
uations where one player (leader) commits to a strategy and
the other player (follower) first observes the leader’s com-
mitment and, then, decides how to play. This is the case of,
e.g., security games, where a defender (leader) is tasked to
allocate scarce resources to protect valuable targets from an
attacker (follower). See [Paruchuri et al., 2008; Kiekintveld
et al., 2009; An et al., 2011] for real-world applications of
such games. Outside the security domain, applications can
be found in, e.g., interdiction games [Caprara et al., 2016;
Matuschke et al., 2017], toll-setting problems [Labbé and Vi-
olin, 2016], and network routing [Amaldi et al., 2013].

While the majority of the game theoretical investigations
on computing LFE have focused on the single-follower case,
in this work we address the multi-follower scenario. When
facing a multi-follower LFG, two aspects need to be consid-
ered: what game the followers play and, in it, how ties among
multiple equilibria are broken. As to the type of game, the fol-
lowers may play, e.g., hierarchically one at a time [Conitzer

and Sandholm, 2006], simultaneously in a correlated man-
ner [Conitzer and Korzhyk, 2011], or simultaneously and
noncooperatively [Basilico et al., 2016]. As to breaking ties,
two cases are possible: the optimistic one, where an equilib-
rium maximizing the leader’s utility is chosen, and the pes-
simistic case, where the followers select an equilibrium which
minimizes the leader’s utility. While, in the optimistic case, a
LFE always exists, in the pessimistic setting it may not exist,
since the leader’s utility function may admit a supremum but
not a maximum [von Stengel and Zamir, 2010].

We focus on multi-follower LFGs in normal-form where
the followers play simultaneously and noncooperatively,
reaching a Nash equilibrium. We refer to the corresponding
equilibrium as Leader-Follower Nash Equilibrium (LFNE).
Related Work. In single-follower games (n = 2 players),
the follower’s best-response to the leader’s commitment is al-
ways (disregarding degenerate cases) a pure strategy. In the
optimistic case, a LFE is found in polynomial time by solv-
ing a Linear Programming (LP) problem for each action of
the follower [Conitzer and Sandholm, 2006]. Although the
pessimistic case is more involved, it can still be solved with
similar techniques [von Stengel and Zamir, 2010].

In the multi-follower case (n ≥ 3), see [Basilico et al.,
2016], the problem is NP-hard and inapproximable, in poly-
time, to within any polynomial factor unless P = NP. While
the optimistic version can be solved to global optimality with
global optimization techniques (spatial branch-and-bound) up
to a finite precision [Basilico et al., 2016], no exact algo-
rithms are known for the pessimistic case. When the fol-
lowers are restricted to pure strategies though, the optimistic
problem is in P, as discussed in the next section.
Original Contributions. We address the pessimistic multi-
follower case, with followers playing pure strategies. This is
the case of many applications such as potential games [Mon-
derer and Shapley, 1996], congestion games [Rosenthal,
1973], and toll-setting problems [Labbé and Violin, 2016].

Differently from the optimistic/pessimistic case with a sin-
gle follower and the optimistic case with many followers,
which are all in P, we show that computing a LFNE in the
pessimistic case (P-LFNE) with at least two followers play-
ing pure strategies is NP-hard. This problem is crucial, as
the difference in leader’s utility between an optimistic LFE
and a pessimistic one can be arbitrarily large, as we show in
Section 2. We then propose an exact exponential-time algo-



rithm (a multi-lex-MILP) for computing a P-LFNE and, then,
extend it to a branch-and-bound algorithm.

The status, in terms of complexity and known algorithms,
of the problem of computing a LFNE, updated with the orig-
inal results provided in this paper (reported in bold), is:

Optimistic Pessimistic
Pure Mixed Pure Mixed

n = 2 Comp P P
Alg multi-LP multi-LP

n ≥ 3 Comp P NP-hard,/∈Poly-APX NP-hard NP-hard,/∈Poly-APX
Alg multi-LP Global optimization multi-lex-MILP -

2 Problem Definition
Let N = {1, . . . , n} be the set of players and, for each
p ∈ N , let Ap be the corresponding set of actions, with
mp = |Ap|. For each player p ∈ N , let xp ∈ [0, 1]mp , with∑
a∈Ap

xap = 1, be her strategy vector (or strategy, for short),
where each component xap represents the probability that ac-
tion a ∈ Ap is played. For each p ∈ N , let also ∆p = {xp ∈
[0, 1]mp :

∑
a∈Ap

xap = 1} be the set of her strategies, called
strategy space. A strategy is called pure when only one ac-
tion is played with positive probability, and mixed otherwise.
We denote the collection of strategies of the different players,
or strategy profile, by x = (x1, . . . , xn). When all strategies
are pure, we denote the collection of actions played by the
players, or action profile, by a = (a1, . . . , an).

Consider a normal-form game [Shoham and Leyton-
Brown, 2008] where Up ∈ Qm1×...×mn represents, for
each player p ∈ N , her (multidimensional) utility (or pay-
off) matrix. Each of its components Ua1,...,anp corresponds
to the utility obtained by player p when all the players
play actions a1, . . . , an. For a strategy profile x, the ex-
pected utility of player p ∈ N is the nth-degree polynomial∑
a1∈A1

. . .
∑
an∈An

Ua1,...,anp xa11 . . . xann .
An action profile a = (a1, . . . , an) is called a pure Nash

Equilibrium (NE) if Ua1,...,anp ≥ U
a′1,...,a

′
n

p for each player
p ∈ N and action profile a′ such that, for all q ∈ N \ {p},
a′q = aq and, possibly, a′p 6= ap. This implies that, for each
p ∈ N , if the players in N \ {p} play as the equilibrium pre-
scribes, player p cannot improve her utility by deviating from
the equilibrium and playing some other action a′p 6= ap. More
generally, a mixed NE is a strategy profile x = (x1, . . . , xn)
such that no player p ∈ N can improve her utility playing a
strategy x′p 6= xp, assuming the others play as the equilibrium
prescribes. Observe that, in a normal-form game, a mixed NE
always exists [Nash, 1951], while a pure NE may not.

In this paper, we are concerned with the computation of
an equilibrium in a normal-form game where the followers,
after observing the leader’s commitment to a mixed strategy,
play a pure NE in the resulting game, so as to minimize the
leader’s utility. We refer to it as Pessimistic Leader-Follower
Nash Equilibrium (P-LFNE). For the sake of presentation, we
consider the case of two followers (thus, with n = 3), where
the nth player (player 3) takes on the role of leader. We also
assume, w.l.o.g., m1 = m2 = m3 = m. Our results can be
easily generalized to the case of any n > 3.

Computing a P-LFNE amounts to solving the following

bilevel problem:

sup
x3∈∆3

min
(i∗,j∗)∈
A1×A2

∑
k∈A3

U i
∗j∗k

3 xk3 : i∗ ∈ argmax
i∈A1

{ ∑
k∈A3

U ij
∗k

1 xk3

}

j∗ ∈ argmax
j∈A2

{ ∑
k∈A3

U i
∗jk

2 xk3

}
.

For any x3 ∈ ∆3 determined in the first level, the second level
calls for a pair of followers’ actions (i∗, j∗) forming a pure
NE in the followers’ game induced by x3 which minimizes
the leader’s utility. Notice that, by definition, (i∗, j∗) is a
NE for the given x3 if and only if i∗ maximizes the utility of
follower 1 when assuming that follower 2 would play j∗, and
j∗ maximizes the utility of follower 2 when assuming that
follower 1 would play i∗.

In the following, we write the above problem as
supx3∈∆3

f(x3), where f is the leader’s utility in the pes-
simistic case. At any x3 where the followers’ game does
not admit a pure NE we define f(x3) = −∞. Even if
supx3∈∆3

f(x3) < ∞ due to the boundedness of f , f may
not admit a maximum and, thus, the game may not admit a
P-LFNE [von Stengel and Zamir, 2010].

The optimistic version of the problem (i.e., the O-LFNE
finding problem), obtained by changing the second level ob-
jective from min to max, can be solved in polynomial time.
This is because the formulation in [Basilico et al., 2016] be-
comes an LP when the followers’ pure strategies are given,
and the set of pure strategies of a normal-form game can be
enumerated in polynomial time. Note that a P-LFNE cannot
be obtained by just perturbing the leader’s strategy in an O-
LFNE, as shown in Figure 1.
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Figure 1: A game with n = 3, A1 = {i1, i2}, A2 = {j1, j2},
A3 = {k1, k2}, parameterized by µ > 1. The leader’s utility
is plotted as a function of ρ ∈ [0, 1], with x3 = (1 − ρ, ρ).
The unique O-LFNE is achieved at ρ = 1

2 (utility 2µ) and the
unique P-LFNE at ρ = 1 (utility µ), with an arbitrarily large
(for µ→∞) difference in utility. After a perturbation ε→ 0
of x3 in the O-LFNE, we obtain a utility of ' (1 + µ)/2,
whose difference w.r.t. the P-LFNE is arbitrarily large for
µ→∞.

3 Computational Complexity
In this section, we show that computing a P-LFNE is NP-
hard. In decision form, the problem reads:
Definition 1 (P-LFNE-d). Given a normal-form game with
n ≥ 3 players and a finite K, is there a P-LFNE where the
leader achieves a utility ≥ K?
We show the hardness of the P-LFNE searching problem by a
polynomial-time reduction of IND-SET, one of Karp’s orig-
inal 21 NP-complete problems [Karp, 1972], to P-LFNE-d.
In decision form, IND-SET reads:



Definition 2 (IND-SET). Given an undirected graph G =
(V,E) and a finite J with J ≤ |V |, does G contain an in-
dependent set (a subset of vertices V ′ ⊆ V : ∀u, v ∈ V ′,
{u, v} /∈ E) of size ≥ J?

Before presenting our reduction, we introduce the follow-
ing class of normal-form games:
Definition 3. Given two reals b and c, with 1 > c > b > 0,
and an integer m ≥ 1, let Γcb(m) be a class of normal-form
games with three players (n = 3), the first two having m+ 1
actions each, with action setsA1 = A2 = A = {1, ...,m, f},
and the third one having m actions, with action set A3 =
A \ {f}. For every third player’s action k ∈ A \ {f}, the
other players play a game where:
• the payoffs on the main diagonal (where both players

play the same action) satisfy Ukkk1 =Ukkk2 = 1, Uffk1 =

c, Uffk2 =b and, ∀i ∈ A \ {k, f}, U iik1 =U iik2 =0;

• ∀i, j ∈ A \ {f} with i 6= j, U ijk1 =U ijk2 = b;

• ∀j ∈ A \ {f}, Ufjk1 =c and Ufjk2 =0;

• ∀i ∈ A \ {f}, U ifk1 =1 and U ifk2 =0.
No restrictions are imposed on the third player’s payoffs.

These games are of interest for the following reason:
Proposition 1. In a Γcb(m) game with c ≤ 1

m , for all S ⊆
{(i, i) : i ∈ A \ {f}} with S 6= ∅ there is a leader’s strategy
x3 ∈ ∆3 such that the outcomes (i, i) ∈ S are the only pure
NE in the resulting followers’ game.

Proof. First, observe that the followers’ payoffs not on the
main diagonal do not depend on the leader’s strategy x3.
Thus, outcomes (i, j), for any i, j ∈ A \ {f} with i 6= j,
cannot be NE, as the first follower would deviate by playing
action f , obtaining a utility c > b. Analogously, outcomes
(f, j), with j ∈ A \ {f}, cannot be NE because the second
follower would deviate by playing f (since b > 0). The same
holds for outcomes (i, f) with i ∈ A \ {f}, since the sec-
ond follower would be better off playing another action (as
b > 0). The last outcome on the diagonal, (f, f), cannot be a
NE either, as the first follower would deviate from it (as she
would get c in it, while she can obtain 1 > c).

As a result, the only outcomes which can be pure NE are
those in {(i, i) : i ∈ A \ {f}}. Clearly, when the leader
plays a pure strategy k, the unique pure NE in the followers’
game is (k, k) as, due to providing the followers with their
maximum payoff, they would not deviate from it. Outcomes
(i, i) with i ∈ A \ {f, k} are not NE as, with them, the first
follower would get 0 < c. In general, if the leader plays an
arbitrary mixed strategy x3 ∈ ∆3, the resulting followers’
game is such that the payoffs in (k, k), with k ∈ A \ {f}, are
(xk3 , x

k
3). Noticing that (k, k) is an equilibrium if and only

if xk3 ≥ c (as, otherwise, the first follower would deviate by
playing action f ), we conclude that the set of pure NE in the
followers’ game is S = {(k, k) : xk3 ≥ c}.

In order to guarantee that for every possible S ⊆ {(i, i) :
i ∈ A \ {f}} s.t. S 6= ∅ there is a leader’s strategy such
that S contains all the pure NE, we must allow the diago-
nal outcomes to be all (simultaneously) equilibria by prop-
erly choosing the value of c. This is done by imposing that,

when the leader plays x3 = ( 1
m ,

1
m , ...,

1
m ), all outcomes in

{(i, i) : i ∈ A \ {f}} are NE, which is obtained by selecting
c ≤ 1

m .

Notice that, in a Γcb(m) game, the followers’ game always
admits a pure NE for any leader’s commitment x3. See Fig-
ure 2 for an example.
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Figure 2: A Γcb(m) game with m = 3 and c ≤ 1
m . The

leader’s strategy space ∆3 is partitioned into 2m − 1 regions,
one per subset of {(i, i) : i ∈ A \ {f}} (the three NE in the
followers’ game, (1, 1), (2, 2), and (3, 3), are labeled A,B,C).

Theorem 1. P-LFNE-d is strongly NP-complete even for
n = 3.

Proof. Mapping. Given an instance of IND-SET, i.e., an
undirected graph G = (V,E) and a positive integer J , we
construct Γ(G), a special instance of P-LFNE-d of class
Γcb(m), as follows. Assuming an arbitrary labeling of the
vertices {v1, v2, ..., vm}, let Γ(G) be an instance of Γcb(m)
with c < 1

(m+1)2 ≤
1
m and 0 < b < c < 1, where each ac-

tion i ∈ A \ {f} is associated with vertex vi. In compliance
with Definition 3, in which no constraints are specified for the
leader’s payoffs, we define:

• for any pair of vertices vi, vj ∈ V , U iij3 = U jji3 =

− 1
c−1 if {vi, vj} ∈ E, and U iij3 = U jji3 = 1 otherwise;

• ∀k ∈ A \ {f}, Ukkk3 = 0 and Uffk3 = 0;

• ∀i 6= j ∈ A and k ∈ A \ {f}, U ijk3 = U jik3 = 0.

Finally, let K = J−1
J . Clearly, this transformation can be

performed in time polynomial in the number of vertices m.
If. We show that, if the graph G contains an independent

set of size ≥ J , then Γ(G) has a P-LFNE with leader’s utility
≥ K. Let V ∗ be an independent set with |V ∗| = J . Consider
the case in which outcomes (i, i), with vi ∈ V ∗, are the only
pure NE in the followers’ game, and suppose the leader plays
x3 with xk3 = 1

|V ∗| if vk ∈ V ∗ and xk3 = 0 otherwise. Since
U iik3 = 1 for all k ∈ A \ {f, i}, the leader’s utility at any
equilibrium (i, i) is:∑
k∈A\{f}

U iik3 xk3 =
∑

k∈A\{f,i}

U iik3 xk3 =
∑

k∈A\{f,i}

xk3 =
|V ∗| − 1

|V ∗| =
J − 1

J
=K.

Only if. We show that, if Γ(G) has a P-LFNE with leader’s
utility ≥ K, then G has an independent set of size ≥ J . Due
to Proposition 1, at any P-LFNE the leader plays a strategy
x̄3 inducing a set of pure NE in the followers’ game S∗ =
{(k, k) : x̄k3 ≥ c}. We now show that, in a P-LFNE, the
leader never plays two actions i, j ∈ A\{f} with probability
≥ c if {vi, vj} ∈ E. By contradiction, suppose the leader’s
equilibrium strategy x̄3 is such that x̄i3, x̄

j
3 ≥ c. The leader’s



utility when the followers play the equilibrium (i, i) (the same
holds for (j, j)) is:∑

k∈A\{f}

U iik3 x̄k3 =
∑

k∈A\{f,i,j}

U iik3 x̄k3 + x̄j3(−1

c
− 1).

In the right-hand side, the first term is < 1 (as the leader’s
payoffs are ≤ 1 and

∑
k∈A\{f,i,j} x̄

k
3 = 1 − x̄i3 − x̄

j
3 < 1,

since x̄i3, x̄
j
3 ≥ c). The second term is≤ c(− 1

c −1) = −1−c
(as x̄j3 ≥ c), which is < −1. It follows that, since (i, i)
(or, equivalently, (j, j)) always provides the leader with a <
0 utility, she would never play x̄3 in an equilibrium. This
is because, by playing a pure strategy, she would obtain a
utility of at least zero (as, when she plays a pure strategy, the
followers’ game admits a unique pure NE giving her a zero
payoff). As a result, for any action k such that x̄k3 ≥ c, we
have Ukkk3 = 0, and U iik3 = 1 for every i such that x̄i3 ≥ c
(since vi and vk are not connected by an edge).

Assume the leader either plays an action with probability
≥ c or she does not play it at all. If this is the case, then the
leader’s utility at an equilibrium (k, k) ∈ S∗ is 1− x̄k3 . Since,
due to the pessimistic assumption, the leader maximizes her
utility in the worst NE, her best choice is to select an x̄3 such
that all NE yield the same utility, that is: x̄i3 = x̄j3 for ev-
ery i, j such that (i, i), (j, j) ∈ S∗. This results in the leader
playing all actions k such that (k, k) ∈ S∗ with the same
probability x̄k3 = 1

|S∗| , obtaining a utility of |S
∗|−1
|S∗| = K.

Therefore, the vertices {vk : (k, k) ∈ S∗} must form an in-
dependent set of G, whose size is |S∗| = J .

We now show that the previous assumption always holds,
i.e., that in a P-LFNE the leader is not better off playing any
action with probability less than c. Indeed, this may not hap-
pen in presence of isolated vertices. Assume that vi is isolated
and that the leader plays actions A \ {i, f} with probability
c− = c − ε, for some ε > 0, and action i with probability
1 − c−(m − 1). Since the latter is greater than c by defini-
tion, the unique NE for the followers is (i, i), providing the
leader with a utility of c−(m−1), which approaches m−1

m for
c− → 1

m . In general, let us denote by ` the number of isolated
vertices in G, and assume that the other m − ` ≥ 2 vertices
form a complete graph. This represents the worst case pos-
sible as, for it, the leader cannot get a utility larger than `

`+1
without playing some actions with probability smaller than c,
but, at the same time, she could get more by uniformly play-
ing the ` actions associated with the isolated vertices, each
with probability α = 1−(m−`)c−

` , while playing with prob-
ability c− the other m − ` actions. If this is the case, the
leader’s utility is:

(`− 1)α+ (m− `) c− =
(`− 1) + (m− `)c−

`
.

Thus, we require (`−1)+(m−`)c−
` < `

`+1 for every ` ∈
{1, ...,m− 2}, which implies that c must satisfy:

(`+1)(`−1)+(`+1)(m−`)c < `2 ↔ c <
1

(`+ 1)(m− `)
,

in which we upper bounded c− by c. Clearly, c satisfies the
condition whenever it is less than the minimum value taken by

1
(`+1)(m−`) for all `. The first order derivative of the bound

is (`+1)−(m−`)
(`+1)2(m−`)2 , which vanishes at ` = m−1

2 . Given that,
according to our definition, c < 1

(m+1)2 <
4

(m+1)2 , we obtain
that the leader either plays an action with probability at least c
or she never plays such action. The reduction is complete.

NP membership. Since we can verify in polynomial
time whether a triple (i, j, x3) is a P-LFNE, we deduce that
P-LFNE-d is strongly NP-complete due to IND-SET being
strongly NP-complete.

4 Enumerative Algorithm
We propose an exact exponential-time algorithm for the com-
putation of supx3∈∆3

f(x3). If there is no x3 ∈ ∆3 where
f(x3) achieves value supx3∈∆3

f(x3) (as f(x3) does not ad-
mit a maximum), our algorithm also returns a strategy x̂3 pro-
viding the leader with a utility equal to an α-approximation
(in additive sense) of supx3∈∆3

f(x3), for any α > 0.
In the remainder of the paper, we denote the closure of a

setX ⊆ ∆3 relative to aff(∆3) byX , its boundary relative to
aff(∆3) by ∂X , and its complement relative to ∆3 by Xc.1

4.1 Computing supx3∈∆3
f(x3)

The key ingredient of our algorithm is what we call outcome
configurations. We say that, for a given x3 ∈ ∆3, a pair
(S+, S−) with S+ ⊆ A1 × A2 and S− = A1 × A2 \ S+ is
an outcome configuration if, in the followers’ game induced
by x3, all pairs of actions (i, j) ∈ S+ constitute a NE and all
pairs (i, j) ∈ S− do not.

For any (i, j) ∈ A1 × A2, we introduce X(i, j) as the
polytope of all x3 ∈ ∆3 for which (i, j) is a NE, so defined:

X(i, j) :=


x3 ∈ ∆3 :

∑
k∈A3

U
ijk
1 x

k
3 ≥

∑
k∈A3

U
i′jk
1 x

k
3 ∀i′ ∈ A1∑

k∈A3

U
ijk
2 x

k
3 ≥

∑
k∈A3

U
ij′k
2 x

k
3 ∀j′ ∈ A2

 .

For all (i, j) ∈ A1 × A2, we also introduce the set
Xc(i, j) of all x3 ∈ ∆3 for which (i, j) is not a NE.

Let D1(i, j, i
′
) :=

x3 ∈ ∆3 :
∑

k∈A3

U
ijk
1 x

k
3 <

∑
k∈A3

U
i′jk
1 x

k
3

 and

D2(i, j, j
′
) :=

x3 ∈ ∆3 :
∑

k∈A3

U
ijk
2 x

k
3 <

∑
k∈A3

U
ij′k
2 x

k
3

. They

correspond to the values of x3 for which player 1 (resp.,
2) would deviate from (i, j) by playing action i′ (resp., j′).
Xc(i, j) is thus the set:

X
c
(i, j) :=

 ⋃
i′∈A1\{i}

D1(i, j, i
′
)

 ⋃  ⋃
j′∈A2\{j}

D2(i, j, j
′
)

 .

Notice that ∂Xc(i, j) ⊆ ∂∆3, as any other accumulation
point ofXc(i, j) satisfies one of the inequalities inD1(i, j, i′)
or D2(i, j, j′) as an equation and, thus, it is not in Xc(i, j).

Let now X(S+) := ∩(i,j)∈S+X(i, j) (a closed polytope)
and X(S−) := ∩(i,j)∈S−X

c(i, j) (the union of nor open
not closed polytopes). As for Xc(i, j), X(S−) satisfies
∂X(S−) ⊆ ∂∆3. Its closure X(S−) is obtained by turning
the < constraints into ≤ in the definition of D1(i, j, i′) and
D2(i, j, j′). Finally, let us define P := {(S+, S−) : S+ ∈
2A1×A2 , S− = 2A1×A2 \ S+}.

1Here, aff(∆3) denotes the affine hull of ∆3, which is, in our
case, the hyperplane in Rm containing ∆3.



Theorem 2. Let ψ(x3;S+) := min(i,j)∈S+

∑
k∈A3

U ijkx3.
The following holds:

sup
x3∈∆3

f(x3) = max
(S+,S−)∈P :

X(S+)∩X(S−)6=∅

max
x3∈X(S+)

∩X(S−)

ψ(x3;S+).

Proof. Let ∆′3 := {x3 ∈ ∆3 : there exists a pure NE in the
followers’ game induced by x3}. Clearly, since f(x3) > −∞
only on this set, supx3∈∆3

f(x3) = supx3∈∆′3
f(x3). Thus,

we can focus w.l.o.g. on ∆′3.
The sets X(S+) ∩ X(S−) 6= ∅, obtained for all

(S+, S−) ∈ P , form a partition of ∆′3. Since, at any x3 ∈
X(S+)∩X(S−), the only pure NE induced by x3 in the fol-
lowers’ game are those in S+, we have f(x3) = ψ(x3;S+).
Since supx3∈∆′3

f(x3) is the largest value attained by the
supremum of f(x3) over all sets forming any partition of ∆′3,
we deduce:

sup
x3∈∆3

f(x3) = max
(S+,S−)∈P :

X(S+)∩X(S−) 6=∅

sup
x3∈X(S+)

∩X(S−)

ψ(x3;S+).

It remains to show that, for all X(S+) ∩ X(S−) 6= ∅,
sup

x3∈X(S+)∩X(S−)

ψ(x3;S+) = max
x3∈X(S+)∩X(S−)

ψ(x3;S+).

Note that, since X(S+) ∩X(S−) is, in general, not a closed
set, ψ(x3;S+) admits a supremum over it but not necessar-
ily a maximum. Since ψ(x3;S+) is continuous (it is the
point-wise minimum of finitely many continuous functions),
its supremum overX(S+)∩X(S−) equals its maximum over
the closureX(S+) ∩X(S−) ofX(S+)∩X(S−). The claim
follows since X(S+) ∩X(S−) = X(S+) ∩X(S−).

Corollary 1. If, according to the formula in Theorem 2, the
value of supx3∈∆3

f(x3) is attained at some (S+, S−) ∈ P
for which there exists an x∗3 ∈ X(S+) ∩ X(S−) such
that ψ(x∗3;S+) = max

x3∈X(S+)∩X(S−)
ψ(x3;S+), then

supx3∈∆3
f(x3) = maxx3∈∆3

f(x3) = f(x∗3).

Proof. Since x∗3 ∈ X(S+) ∩ X(S−), the only pure NE in
the followers’ game induced by x∗3 are those in S+. Hence,
f(x∗3) = ψ(x∗3;S+) and the result follows.

Theorem 3. There is a finite exponential-time algo-
rithm which computes supx3∈∆3

f(x3) and, whenever
supx3∈∆3

f(x3) = maxx3∈∆3 f(x3), also returns a strategy
x∗3 with f(x∗3) = maxx3∈∆3 f(x3).

Proof. The algorithm relies on the expression given in The-
orem 2. All pairs (S+, S−) ∈ P can be constructed by
enumeration in time exponential in m. Given ε ≥ 0, let:

D1(i, j, i
′
; ε) :=

x3 ∈ ∆3 :
∑

k∈A3

U
ijk
1 x

k
3 + ε ≤

∑
k∈A3

U
i′jk
1 x

k
3

 and

D2(i, j, j
′
; ε) :=

x3 ∈ ∆3 :
∑

k∈A3

U
ijk
2 x

k
3 + ε ≤

∑
k∈A3

U
ij′k
2 x

k
3

. Ac-

cordingly, let:

X
c
(i, j; ε) :=

 ⋃
i′∈A1\{i}

D1(i, j, i
′
; ε)

⋃ ⋃
j′∈A2\{j}

D2(i, j, j
′
; ε)


and define X(S−; ε) := ∩(i,j)∈S−X

c(i, j; ε).
Since, for ε = 0, X(S−; 0) = X(S−), checking whether

X(S+)∩X(S−) 6= ∅ is equivalent to verifying whether there

exists some ε > 0 such that X(S+) ∩ X(S−; ε) 6= ∅. This
can be done by solving:

max
ε≥0, x3∈∆3

{ε : x3 ∈ X(S+) ∩X(S−; ε)}.

The condition X(S+) ∩ X(S−) 6= ∅ is verified if and only
if the problem admits a solution (ε, x3) with ε > 0. The
problem is a Mixed-Integer Linear Program (MILP). To see
this, it suffices to express each Xc(i, j; ε) as the set of x3 ∈
∆3 such that there are binary variables ziji′ ∈ {0, 1}, for
i′ ∈ A1\{i}, and zijj′ ∈ {0, 1}, for j′ ∈ A2\{j}, satisfying:∑
k∈A3

U
ijk
1 x

k
3 + ε ≤

∑
k∈A3

U
i′jk
1 x

k
3 +M

iji′
(1− ziji′ ) ∀i′ ∈ A1 \ {i}

∑
k∈A3

U
ijk
1 x

k
3 + ε ≤

∑
k∈A3

U
ij′k
2 x

k
3 +M

ijj′
(1− zijj′ ) ∀j′ ∈ A2 \ {j}

∑
i′∈A1\{i}

ziji′ +
∑

j′∈A2\{j}

zijj′ = 1,

with M iji′ := maxk∈A3{U
ijk
1 − U i

′jk
1 } and M ijj′ :=

maxk∈A3
{U ijk2 − U ij

′k
2 }. X(S−; ε) is the intersection of

such sets, for all (i, j) ∈ S−.
Finally, observe that max

x3∈X(S+)∩X(S−)
ψ(x3;S+) is

equal to the value that ψ(x3;S+) achieves at an optimal
solution of a lexicographical maximization problem where,
among all solutions which maximize ψ(x3;S+), one with the
largest ε is sought. It reads:

lex–max
ε≥0,x3∈X(S+)∩X(S−;ε)

[ψ(x3;S+); ε].

Due to the original problem being a restriction of the lex
one obtained for ε = 0, we deduce that optimal solu-
tions to the latter are also optimal for the former. There-
fore, max

x3∈X(S+)∩X(S−)
ψ(x3;S+) can be computed in, at

most, exponential time by solving the following lex-MILP:

max
η∈R,ε≥0
x3∈∆3

 [η ; ε] : η ≤
∑
k∈A3

U ijk3 xk3 ∀(i, j) ∈ S+

x3 ∈ X(S+) ∩X(S−; ε)

 .

Assume that supx3∈∆3
f(x3) is attained at some (S+, S−)

and let (x∗3, ε
∗) be the optimal solution of the correspond-

ing lex-MILP. Clearly, ε∗ > 0 if and only if x∗3 satis-
fies the assumptions of Corollary 1. Therefore, f(x∗3) =
maxx3∈∆3

f(x3).

4.2 Finding an α-Approximate Strategy
Assume that, for the strategy x∗3 where s := supx3∈∆3

f(x3)
is attained, f(x∗3) < s and, thus, the problem does not admit
a maximum. Given any α > 0, we look for a strategy x̂3 such
that s − f(x̂3) ≤ α, i.e., for an α-approximate strategy x̂3.
Its existence is guaranteed by the following lemma:

Lemma 1. Let X ⊆ Rn, for some n ∈ N, Y ⊆ R, f : X →
Y , and s := supx∈X f(x). Assume s < ∞. For any α > 0,
there exists x ∈ X : s− f(x) ≤ α.

Proof. By contradiction, assume there is some α > 0 such
that, for every x ∈ X , s − f(x) > α. Then, for all x ∈
X, f(x) < s− α, implying supx∈X f(x) ≤ s− α < s.

Theorem 4. Assume that f(x3) does not admit a maximum
over ∆3. Then, for any α > 0, there is an algorithm which
computes an α-approximate strategy x̂3 in, at most, exponen-
tial time.



Proof. According to the formula in Theorem 2, assume
supx3∈∆3

is achieved at some (S+, S−) and x∗3, with
ψ(x∗3, S

+) = max
x3∈X(S+)∩X(S−)

ψ(x3;S+). We deduce

x∗3 ∈ X(S−)\X(S−) as, otherwise, f would achieve a max-
imum at x∗3, in contrast with the assumption in the statement
of the theorem.

Aiming at an α-approximate strategy x̂3, we can, w.l.o.g.,
look for a point x̂3 ∈ X(S+)∩X(S−) where f(x̂3) ≥ s−α,
whose existence is guaranteed by Lemma 1. To find it, it
suffices to solve the following MILP (which takes, at most,
exponential time):

max
ε≥0,x3∈∆3

 ε :
∑
k∈A3

U ijk3 xk3 ≥ s− α ∀(i, j) ∈ S+

x3 ∈ X(S+) ∩X(S−, ε)

 ,

Notice that the problem achieves a solution with ε > 0 such
that there exists x3 ∈ X(S+) ∩ X(S−), whose existence is
guaranteed by the fact that the formula in Theorem 2 only
considers pairs (S+, S−) ∈ P : X(S+) ∩X(S−) 6= ∅.

5 Branch-and-Bound Algorithm
As it is clear, the computation of supx3∈∆3

f(x3) as in The-
orem 3 is impractical, as it requires the explicit enumeration
of all the outcome configurations of a game, many of which,
most likely, yield empty regions X(S+) ∩ X(S−). A more
efficient algorithm, albeit still exponential, can be obtained
by means of a branch-and-bound technique.

Rather than defining S− = (A1 × A2) \ S+, assume now
S− ⊆ (A1×A2) \S+. In such case, we call the correspond-
ing pair (S+, S−) a relaxed outcome configuration. Starting
from some pair of followers’ actions (i, j) ∈ A1 × A2, the
algorithm, through a sequence of branching operations, con-
structs and explores two search trees whose nodes correspond
to relaxed outcome configurations. One tree, which considers
the case where (i, j) is a NE, has the pair ({(i, j)}, ∅) as root,
while the other, which considers the case where (i, j) is not a
NE, has root (∅, {(i, j)}).

Notice that, when S− ⊂ (A1 × A2) \ S+, solving
max

x3∈X(S+)∩X(S−)
ψ(x3;S+) might not give a strategy x3

such that, if the leader plays it, the only pure NE in the follow-
ers’ game are those in S+, even if x3 ∈ X(S+) ∩ X(S−).
This is because, due to S+ ∪ S− ⊂ A1 × A2, there might
be another NE (i′, j′) ∈ A1 × A2 \ (S+ ∪ S−) provid-
ing the leader with a strictly smaller utility than all the pairs
in S+. Since, if that is the case, the followers would play
(i′, j′) for that x3, ψ(x3;S+) is not a valid candidate for be-
ing supx3∈∆3

f(x3).
In order to detect whether one such (i′, j′) exists, it suffices

to carry out a feasibility check for x3 by looking for, in the
followers’ game, a pure NE different from those in S− which
minimizes the leader’s utility. This can be done by inspection
in O(m2). If the feasibility check returns some (i′, j′) /∈ S+,
the tree is expanded by performing a branching operation.
Two nodes are introduced: a left node (S+

L , S
−
L ), where S+

L =

S+ ∪ {(i′, j′)} and S−L = S− (accounting for the case where
(i′, j′) is a NE), and a right node (S+

R , S
−
R ), where S+

R = S+

and S−R = S− ∪ {(i′, j′)} (accounting for the case where
(i′, j′) is not a NE). Instead, if (i′, j′) ∈ S+, then ψ(x3;S+)

represents a valid candidate solution, and, thus, (S+, S−) is a
leaf node. Observe that the feasibility check can safely ignore
all (i, j) ∈ S− since, whenever (i, j) is a NE for x3, due to
how the tree is built, there is another node where (i, j) ∈ S+

(which accounts for the case where (i, j) is a NE).
Due to S− ⊆ (A1 × A2) \ S+, solving

max
x3∈X(S+)∩X(S−)

ψ(x3;S+) for some (S+, S−)

gives an upper bound on the leader’s utility under the
condition that all the pairs in S+ constitute a NE and
those in S− do not. Thus, the values obtained by solving
max

x3∈X(S+)∩X(S−)
ψ(x3;S+) can be used as bounds.

However, since max
x3∈X(S+)∩X(S−)

ψ(x3;S+) is not
well-defined for nodes where S+ = ∅, for such nodes we
solve, instead, the optimistic problem (see Section 2) with
additional MILP constraints (see Section 4) which impose
that all the pairs in S− are not NE.

Finally, suppose that supx3∈∆3
f(x3) is attained at

(S+, S−), and let (x∗3, ε
∗) be the optimal solution of the

associated lex-MILP problem. If ε∗ > 0, then f(x∗3) =
maxx3∈∆3

f(x3) due to Corollary 1. Otherwise, the prob-
lem admits a supremum but not a maximum. In this case,
we look for an α-approximate strategy x̂3 using the algo-
rithm of Theorem 4. However, since (S+, S−) is a relaxed
outcome configuration here, there might be a pair (i′, j′) ∈
A1 × A2 \ (S+ ∪ S−) which is a NE for x̂3 providing the
leader with a utility strictly smaller than ψ(x̂3;S+). In order
to establish whether such (i′, j′) exists, we perform a feasi-
bility check for x̂3. If we obtain (i′, j′) /∈ S+, we perform a
branching operation (adding (i′, j′) either to S+ or S−), and
repeat the procedure of Theorem 4 on each of the resulting
relaxed outcome configurations, iterating until we find an α-
approximate strategy for which the feasibility check returns
(i′, j′) ∈ S+. Observe that, due to the correctness of the
algorithm for the computation of the supremum, at x∗3 there
cannot be a NE (i′, j′) worse than those in S+. Therefore,
there must be a strategy which is a convex combination of x∗3
and x̂3 where either (i′, j′) is not a NE or it yields a leader’s
utility not worse than that obtained with the NE in S+. Thus,
the algorithm is guaranteed to converge.

Preliminary results (omitted for reasons of space) on three-
player GAMUT instances [Nudelman et al., 2004] show that,
with our branch-and-bound algorithm, we can solve games
with up to 30 actions within 1000 seconds.

6 Conclusions
In this paper, we have shown that the problem of comput-
ing a pessimistic leader-follower equilibrium with multiple
followers playing pure strategies simultaneously and nonco-
operatively is NP-hard even when the number of followers
is two. Moreover, we have described an exact exponential-
time algorithm for finding an equilibrium strategy (or, if it
does not exist, an α-approximate one), which we have then
enhanced with a branch-and-bound scheme. Future develop-
ments include applications to structured games (e.g., conges-
tion games) and the generalization to the mixed case—even
though we conjecture that this problem is much harder, prob-
ably Σp2-complete, given its bilevel structure.
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