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Abstract

The active control of an incident sound field with an array of secondary
sources is a fundamental problem in active control. In this paper the op-
timal performance of an infinite array of secondary sources in controlling a
plane incident sound wave is first considered in free space. An analytic solu-
tion for normal incidence plane waves is presented, indicating a clear cut-off
frequency for good performance, when the separation distance between the
uniformly-spaced sources is equal to a wavelength. The extent of the near
field pressure close to the source array is also quantified, since this determines
the positions of the error microphones in a practical arrangement. The the-
ory is also extended to oblique incident waves. This result is then compared
with numerical simulations of controlling the sound power radiated through
an open aperture in a rigid wall, subject to an incident plane wave, using
an array of secondary sources in the aperture. In this case the diffraction
through the aperture becomes important when its size is compatible with the
acoustic wavelength, in which case only a few sources are necessary for good
control. When the size of the aperture is large compared to the wavelength,
and diffraction is less important but more secondary sources need to be used
for good control, the results then become similar to those for the free field
problem with an infinite source array.
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1. Introduction

The active control of an incident sound field inside a closed surface using
a discrete array of secondary sources has been considered using numerical
models in the 2-D case of a circle by Zavadskaya et al [1] and in the 3-D case
of a sphere by Konyaev et al [2]. The secondary sources were assumed to be
combinations of point monopoles and dipoles, as described by Mangiante [3]
for example as a Huygens’ source, regularly arranged to control the sound
inside the surface without external radiation. It was found in both the 2-D
and the 3-D studies [1, 2] that the spacing between the secondary sources,
required to achieve a good level of control within the closed surface needed
to be closer than about λ/2, where λ is the acoustic wavelength, as noted by
Nelson and Elliott [4].

It might be expected that as the radius of the surface becomes very large,
the problem would reduce to that of the control of an incident plane wave by
an infinite array of secondary sources normal to the direction of propagation.
It is shown below, however, that perfect control of such a normally-incident
plane wave can be achieved with an infinite array having a separation of
λ, rather than λ/2. This analysis is best performed using a wavenumber
decomposition of the secondary source array and subsequent sound radiation,
and this wavenumber analysis can be extended to plane waves that are not
normal to the array, both in 2-D and in 3-D.

Although it is of fundamental interest to analyse the limits to the perfor-
mance of such an array, it potentially has applications in sound reproduction
and in the active control of environmental noise. It becomes more difficult
to analyse the performance when the size of the array is finite, although this
case is applicable to the active control of sound transmitted through open
windows, as considered, for example, by Murao and Nishimura [5], Lam et al

[6] and Wang et al [7]. The analytic results for an infinite array are therefore
compared with the results from a numerical simulation of active control in
this application.

A preliminary version of this paper with a less general formulation for the
active control was presented by Elliott et al [8], and some of the numerical
simulations in Section 6 were presented by Bhan et al [6].
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2. Control of a normally-incident plane wave with an infinite array

of secondary sources in 2-D

In order to easily illustrate the method, we begin by considering the active
control of a normally-incident plane wave in free space using an infinite 2-D
array of secondary sources. This arrangement is illustrated in Figure 1a,
where the objective is to suppress the incident primary wave to the right
of the array of line sources in the plane of the figure. If the aim was to
actively absorb the incident wave, each of the secondary sources would need
to be a combination of a monopole and a dipole, arranged such that the
sound radiation to the left of the array was minimised. The problem to the
right of the array, however, is similar to that if the secondary sources were
only assumed to be monopoles, although in this case the secondary source
array would reflect the incident wave and so the sound field to the left of
the array would consist of a standing wave, due to the interference between
the incident and a reflected wave, as it does for a plane wave in a duct
controlled with a single secondary source [4]. In order to provide generality,
and extension to the control of oblique waves in Section 4, a wavenumber
analysis of the problem is presented here, although in an earlier conference
publication [8] the control of a normally-incident plane wave was analysed
using an analogous duct formulation [9].

Incident  

plane wave

d

Array of         

secondary sources

(a)

Spatial distribution of normal velocity

for secondary source array

(b) (c)

Figure 1: Physical arrangement in 2-D of an incident plane wave being controlled to the
right of an infinite array of secondary line sources in the plane of the figure (a). Also
shown (b) is the spatial distribution of the normal velocity for a section of the secondary
source array and the first three spatial harmonics of its wavenumber decomposition (c).
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We assume a primary plane wave of the form

pp(z) = ppe
−jk0z, (1)

where z is the direction normal to the array, as shown in Fig. 1 k0 is ω/c0,
c0 is the speed of sound and pp is the complex pressure proportional to ejωt.
The normal particle velocity associated with this wave is

vp(z) =
pp
ρ0c0

e−jk0z, (2)

where ρ0 is the density of the medium. To control this primary field we
assume an infinite array of secondary line sources, uniformly separated by
a distance d in the x direction, which must all have equal source strengths,
by symmetry. If each secondary source strength per unit length is q′s, then
the normal particle velocity associated with the secondary sources when z is
equal to zero is

vs(x, 0) = q′s

∞
∑

m=−∞

δ(x−md), (3)

where δ is the Dirac delta function and m is the secondary source index.
Taking the Fourier series of vs(x, 0) gives

vs(x, 0) =
q′s
d

∞
∑

n=−∞

ej2πnx/d, (4)

where q′s/d has the dimensions of a linear velocity and can be written as vs.
The Fourier series can also be written in terms of the wave numbers kxn,
equal to 2πn/d, as

vs(x, 0) = vs

[

1 + 2
∞
∑

n=1

cos(kxnx)

]

. (5)

The secondary source velocity distribution, eq. (3), is shown in Figure 1b,
together with the first 3 terms of the Fourier series in eq. (5). This velocity
distribution will propagate in the z direction so that in general [10]

vs(x, z) = vs

[

e−jk0z + 2
∞
∑

n=1

cos(kxnx)e
−jkznz

]

. (6)
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where the wavenumber in the z direction for the n-th spatial harmonic is

kzn =
√

k2
0 − k2

xn. (7)

At frequencies for which k0 < kx1, i.e. f < c0
d
, where f is the frequency

in hertz, only the zeroth-order term in the Fourier series propagates, since
kzn is imaginary for all other n and so these terms are evanescent. When
kx1 > k0 < kx2, i.e.

c0
d
< f < 2c0

d
, both the zeroth and first terms propagate,

since kx1 is then also real.
Figure 2a shows the number of higher-order terms in the Fourier series

that can propagate, as a function of normalised frequency kd, together with
the real parts of kzn in each case (Figure 2b). The total normal particle
velocity due to both the primary and secondary sources is thus

vT (x, z) =

(

pp
ρ0c0

+ vs

)

e−jk0z + 2vs

∞
∑

n=1

cos(kxnx)e
−jkznz. (8)

Using the conservation of momentum equation, the pressure associated with
the normal velocity distribution at the secondary source array can be written
as [10]

ps(x, 0) = ρ0c0vs

[

1 + 2
∞
∑

n=1

k0
kzn

cos(kxnx)

]

, (9)

which also propagates in the z direction to give

ps(x, z) = ρ0c0vs

[

e−jk0z + 2

∞
∑

n=1

k0
kzn

cos(kxnx)e
−jkznz

]

. (10)

The total pressure due to the primary and secondary sources is thus

pT (x, z) = (pp + ρ0c0vs) e
−jk0z + 2ρ0c0vs

∞
∑

n=1

k0
kzn

cos(kxnx)e
−jkznz (11)

The acoustic intensity normal to the array is

I(x, z) =
1

2
ℜ [p∗T (x, z)vT (x, z)] , (12)
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where ℜ denotes the real part of the complex quantity in square brackets
and ∗ denotes complex conjugation. Integrating this from x = 0 to x = d,
the spatially-averaged intensity is

Π(x, z) =
1

2
ℜ

[
∫ d

0

p∗T (x, z)vT (x, z)dx

]

. (13)

Using equations (8) and (11), and the orthogonality of the cosine functions,
this can be written as

Π(x, z) =
1

2

(

p∗p + ρ0c0v
∗

s

)

(

pp
ρ0c0

+ vs

)

+ ρ0c0|vs|
2ℜ

∞
∑

n=1

k0
kzn

e−j(kzn−k∗
zn

)z.

(14)
At the ‘cut-on’ frequency for the n-th spatial harmonic, kxn is equal to k0,
so that kzn in eq. (7) is zero. The dependence of the intensity on 1/kzn in
eq. (14) would give rise to singularities in this quantity if vs were finite at
the cut-on frequency, as illustrated in Figure 9.10 in [11] for example. So,
at any given frequency, only some of the spatial harmonics can propagate,
when kzn is real, in which case kzn−k∗

zn is zero and e−j(kzn−k∗
zn

)z is unity. The
higher order spatial harmonics are evanescent, and so since kzn is imaginary,
ℜ{k0/kzn} is zero.

We now define a cost function to be minimised, J , equal to 2Π(x, z) ,
which is given by

J =
(

p∗p + ρ0c0v
∗

s

)

(

pp
ρ0c0

+ vs

)

+ 2ρ0c0|vs|
2ℜ

L
∑

n=1

k0
kzn

, (15)

where the summation is only taken over the L higher order spatial harmonics
that generate a propagating acoustic field, at a given frequency, and ℜ again
denotes the real part and is introduced to avoid including the n = 1 term
before kz1 becomes real. This cost function can be written in Hermitian
quadratic form

J = v∗sAvs + b∗vs + v∗sb+ c (16)

where

A = ρ0c0

(

1 + 2ℜ

L
∑

n=1

k0
kzn

)

(17)

b = pp (18)
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Figure 2: The number of higher-order spatial harmonics that can propagate, L, as a
function of normalised frequency, kd, equal to 2πd/λ (a), together with the real parts of
the corresponding wavenumbers in the propagating direction (b). The optimal secondary
source velocity is also shown (c) together with the attenuation in the primary field (d).
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and

c =
|pp|

2

ρ0c0
. (19)

This cost function is minimised if the secondary source strength corresponds
to

vs,opt =
−pp/ρ0c0

(

1 + 2ℜ
∑L

n=1
k0
kzn

) , (20)

in which case the attenuation in the power can be written as

Atten = −10 log10
Jmin

c
, (21)

where
Jmin = c− |b|2/A. (22)

The optimal secondary source strength and predicted attenuation are
plotted in Figures 2c and 2d respectively, and show that below the first cut-
on frequency, at f = c0/d, the secondary source strength is constant. The
attenuation is, in principle, infinite below this frequency but drops to zero
when the frequency is exactly c0/d, since the secondary source strength is
then zero to avoid the singularity referred to above. Although the optimum
value of the secondary source strength is generally finite above this frequency,
the attenuation is small.

3. Positioning of error sensors

The optimum source strength in eq. (20) has been derived by minimising
the total acoustic power transmitted past the secondary source array. A
practical system, however, would probably operate by minimising the sum of
the squared outputs of an array of error microphones and so it is of interest
to calculate how far this error microphone array must be from the secondary
source array to achieve good control.

Figure 3 shows the magnitude of the sound pressure level after active
control in the 2-D case, with the source strengths given by eq. (20). The
pressure field to the right of the secondary source array is calculated using
eq. (11). For completeness, the pressure field to the left of the secondary
source array is also shown and is calculated from

pT (x, z)|z<0 = ppe
−jk0z + ρ0c0vse

jk0z + 2ρ0c0vs

∞
∑

n=1

k0
kzn

cos(kxnx)e
jkznz. (23)
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(a) (b)

Figure 3: The sound pressure level, in dB relative to the incident pressure, after active con-
trol with an infinite array of secondary sources in the 2-D case, where the secondary source
strengths are adjusted using eq. (20), for k0d equal to π (a) and 1.8π (b) corresponding
to source separation distances of 0.5λ and 0.9λ.

The pressure field to the right of the secondary sources after control is
characterised by “tongues” of high pressure eminating from each secondary
source, caused by the evanescent decay of the higher order spatial harmonics.
Similar tongues of pressure are seen for the reproduction of plane waves
using wave field synthesis, WFS, and analysed using a similar wavenumber
decomposition in [12] and [13]. This near-field pressure extends further to the
right in Figure 3 at higher frequencies and is dominated by the evanescent
decay of the first higher order spatial harmonic, which, for k0 < 2π/d, has
an imaginary axial wavenumber of

kz1 = −j

√

(

2π

d

)2

− k2
0. (24)

This harmonic has thus decayed by 20 dB when

z

d
=

ln(10)
√

(2π)2 − (k0d)2
, (25)

which has a limiting low frequency value of about 0.37, and this distance
is plotted as a function k0d in Figure 4. This gives an indication of the
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minimum distance between the secondary sources and the error microphones
for control performance of at least 20 dB.

0 2
0

2

4

6

8

Figure 4: The minimum distance of the error microphones from the secondary source array
for 20 dB attenuation of the evanescent field. This tends to infinity when d = λ and does
not exist for frequencies above this limit.

After the evanescent field has decayed away, it is clear from Figure 3 that,
to the left of the array, a standing wave is formed between the forward-going
incident plane wave and the backwards-going plane wave generated by the
secondary source array. The monopole secondary sources essentially reflect
the incident wave, as does a single secondary source in a duct [4]. A com-
bination of monopoles and dipoles can be used to absorb the incident wave
[3], as noted in the introduction. In practice, pairs of loudspeakers could
be used to synthesise the effect of a monopole and a dipole source arrange-
ment [4]. These could either be implemented with two separate loudspeaker
drivers, which are more efficient if they share an enclosure [14], or a single
loudspeaker driver in a phase-shift enclosure [15, 16, 17, 18]. It is interesting
to examine the near field contribution of such pairs of sources, in comparison
with the monopole above, since this again determines the minimum spacing
of an array of error sensors from the secondary source array.

Consider the sound field due to the array shown in Figure 5 when control-
ling a normally incident plane wave. The source strength of all the secondary
sources in each of the two layers are the same, by symmetry. The left-hand
layer of secondary sources, with volume velocity per unit length of q′s2, must,
however, be arranged to cancel out the backward going plane wave from the
right-hand layer of secondary sources, with volume velocity per unit length
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q′s1.
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Array of         
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d

a

Figure 5: Arrangement of an array of secondary source pairs used to absorb a normally-
incident plane wave.

Two hypothetical planes, normal to the array of secondary sources, and
placed at the mid-point on either side of one pair of sources, are also shown
in Figure 5. By symmetry, the particle velocity in the direction parallel
to the line of the sources must be zero on these planes and so they can
be considered as the sides of an infinite 2D duct [8]. The condition that the
backward going plane wave is suppressed is thus the same as in the analogous
problem of active control in a duct [4], i.e.,

vs2 = −vs1e
−jk0a, (26)

where vs1 = q′s1/d and vs2 = q′s2/d and a is the distance between the two layers
of secondary sources. The plane-wave pressure generated in the forward going
direction is thus

ps0(z) = ρ0c0vs1
(

1− e−j2k0a
)

e−jk0z. (27)

Setting this equal to −ppe
−jk0z gives the value of vs1 required for plane wave

control, when f < c0/d,

vs1,opt =
−pp

ρ0c0(1− e−j2k0a)
. (28)

Using this and vs2 given by eq. (26), again allows the total pressure field
around the secondary sources to be calculated, and this is plotted in Figure
6, in which a is assumed to be d/10.
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(a) (b)

Figure 6: The sound pressure level, in dB relative to the incident field, after active control
with an infinite array of secondary sources arranged in 2 layers, as show in Figure 5 in the
2-D case, where the secondary source strengths are adjusted using eqs. (26) and (28), for
k0d equal to π (a) and 1.8π (b), corresponding to source separation distances of 0.5λ and
0.9λ.

Provided a is not too small compared with the wavelength, the magnitude
of the term (1− e−j2k0a) in eq. (28) will not be too much smaller than unity,
so the magnitudes of the source strengths in this two-layer array will not
be too much greater than those in the single layer array. This explains why
the extent of the near-fields in Figures 3 and 6 are similar and suggests that
the guidelines for the error sensor positioning given in eq. 25 is still useful,
assuming again that k0a is not too small. The sound field to the left of the
double-layer array in Figure 6 is almost uniform, since the array is absorbing
the incident wave in this case, as in the original formulation in [1, 2].

4. Control of an oblique plane wave with an infinite array of sec-

ondary sources in 2-D

Returning to active control with a single layer of monopole secondary
sources, we now assume that the primary field is generated at an oblique
angle, θ, in the 2-D geometry shown in Figure 2a, in which case its pressure
field is

pp(x, z) = ppe
−jk0(x sin θ+z cos θ) (29)
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and the particle velocity in the normal direction becomes

vp(x, z) =
pp cos θ

ρ0c0
e−jk0(x sin θ+z cos θ). (30)

In order to control this primary field, the elements of the secondary source
array must have an appropriate phase shift, equal to k0md sin θ. Writing md
as x, the normal velocity distribution due to the secondary source array can
thus be written as

vs(x, 0) = q′s

∞
∑

n=1

δ(x−md)e−jk0x sin θ. (31)

Taking the spatial Fourier transform of vs(x, 0) gives

vs(x, 0) = vs

∞
∑

n=−∞

ej(2πnx/d−k0x sin θ) (32)

and assuming that kxn is equal to 2πn/d, as above,

vs(x, 0) = vse
−jk0x sin θ

[

1 + 2
∞
∑

n=1

cos(kxnx)

]

. (33)

Figure 7 shows the positions of these spatial harmonics in k-space [10],
together with a radiation circle of radius k0 when the frequency is just below
c0/d Hz. In the case where θ is equal to 0, only one spatial harmonic, at
kx = 0, would be able to propagate at this frequency, but assuming θ > 0,
there is now an additional spatial harmonic that can radiate when

2π

d
− k0 sin θ = k0, (34)

i.e.

k0 =
2π

d(1 + sin θ)
for θ > 0. (35)

If θ < 0, it is the higher order spatial harmonic, originally at −2π/d, that
first starts to radiate, when

−
2π

d
+ k0 sin θ = −k0 (36)
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i.e.

k0 =
2π

d(1− sin θ)
for θ < 0. (37)

So the general condition for this first higher order spatial harmonic to radiate
is that

k0 =
2π

d(1 + | sin θ|)
, (38)

which occurs when the frequency is given by

fc =
c

d(1 + | sin θ|)
, (39)

so that θ is assumed to be greater than zero below without loss of generality.
This condition on the spacing is the same as that required to avoid side lobes
in an array with many elements, as noted by Kinsler et al [19] (eqn 7.8.19)
for example.

Figure 7: The k-space representation of the wavenumber spectrum for the infinite 2-D
array, phased to control plane waves at an angle of θ, where ◦ denotes a spatial harmonic.
A radiation circle is also plotted, dashed, for a frequency that is slightly below c/d. The
spatial harmonics are shifted along the kx axis from their positions when there is no
phasing by a distance of k0 sin θ.

The normal velocity distribution due to the secondary source array is now

vs(x, z) = vse
−jk0x sin θ

[

e−jk0z cos θ + 2
∞
∑

n=1

cos(kxnx)e
−jkznz

]

, (40)
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where

kzn =
√

k2
0 − (kxn − k0 sin θ)2. (41)

So if n = 0, then kz0 = k0 cos θ, as expected. The pressure field associated
with the secondary source array can again be obtained from the momentum
equation as

ps(x, z) = ρ0c0vse
−jk0x sin θ

[

e−jk0z cos θ

cos θ
+ 2

∞
∑

n=1

k0
kzn

cos(kxnx)e
−jkznz

]

. (42)

The total normal velocity and pressure distributions, due to both the
primary plane wave and the secondary source array are thus

vT (x, z) =

(

pp cos θ

ρ0c0
+ vs

)

e−jk0(x sin θ+z cos θ) + · · ·

2vs

∞
∑

n=1

cos(kxnx)e
−j(k0x sin θ+kznz) (43)

pT (x, z) =
(

pp +
ρ0c0vs
cos θ

)

e−jk0(x sin θ+z cos θ) + · · ·

2ρ0c0vs

∞
∑

n=1

k0
kzn

cos(kxnx)e
−j(k0x sin θ+kznz). (44)

In this case the cost function, again equal to twice the spatially averaged
intensity for this sound field so only the propagating spatial harmonics are
considered, is

J =

(

p∗p +
ρ0c0v

∗

s

cos θ

)(

pp cos θ

ρ0c0
+ vs

)

+ 2ρ0c0|vs|
2ℜ

L
∑

n=1

k0
kzn

, (45)

where L is again the number of propagating terms. The optimum secondary
source strength that minimises J in this case corresponds to

vs,opt =
−pp cos θ/ρ0c0

(

1 + 2 cos θℜ
∑L

n=1
k0
kzn

) . (46)

The optimum source strength is plotted in Figure 8 as a function of the nor-
malised frequency for the cases when θ is equal to 30◦ and 60◦, together with
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the attenuation of the primary field in these cases, the number of propagat-
ing higher-order spatial harmonics and their wavenumbers. The wavenum-
bers become real when kd is equal to 2π/(1 + sin θ) and have an asymptotic
value of k0 cos θ for large values of kd, as expected, but also rise above this
asymptotic value, to be equal to k0 when k0 sin θ is equal to kxn

in eq. (41).
It can be seen that the frequency at which perfect control is achieved now
drops below c/d Hz, for which d is equal to the acoustic wavelength, towards
c/2d, for which d is equal to half an acoustic wavelength.

5. Control of plane waves with an infinite array of secondary sources

in 3-D

The analysis above for a secondary source array in a 2-D arrangement
can be readily extended to the case of an array in a 3-D arrangement. In
this case we assume an infinite array of monopole secondary sources in both
the x and y directions, as illustrated in Figure 9a. For simplicity, we initially
assume a normally incident plane primary wave, as described in Section 2,
in which case all the secondary sources must have an equal complex volume
velocity, qs. The normal particle velocity due to the secondary source array
is then

vs(x, y) = qs

∞
∑

m1=−∞

∞
∑

m2=−∞

δ(x−m1d)δ(y −m2d). (47)

The wave number decomposition in this case is

vs(x, y) = vs

∞
∑

n1=0

∞
∑

n2=0

ǫn1
ǫn2

cos(kxn1
x) cos(kyn2

y), (48)

where the constant ǫn1
is defined to be 1 if n1 = 0 and to be 2 if n1 > 0 and

ǫn2
is similarly defined, vs = qs/d

2, kxn1
= 2πn1/d and kyn2

= 2πn2/d. The
k-space diagram [10] for this distribution is shown in Figure 9b, and has a
regular grid of wave number components with spacing 2π/d. Also shown by
the dashed line on this diagram is the radiation circle corresponding to an
excitation frequency that is just above c/d, in which case the four (n1, n2)
higher order wave components (0,±1) and (±1, 0) can all propagate. The
four wave number components (±1,±1) cannot propagate at this frequency
however, but do propagate at a slightly higher frequency. Figure 10a shows
the number of higher-order wave number components that can propagate in
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Figure 8: The number of higher-order spatial harmonics that can propagate as a function
of non-dimensional frequency kd (a) for steered angles of θ = 30◦ (solid lines) and θ = 60◦

(dashed lines). The real parts of the corresponding wavenumbers in the propagating
direction are shown in (b). Also shown is the variation of the optimal secondary source
strength with normalised frequency (c), and the resulting attenuation in the primary field
(d).

17



this case as a function of the normalised frequency kd, together with the real
parts of kzn in Figure 10b. The number of propagating modes is considerably
larger than in the 2D case shown in Figure 2a, and, on average, the number
of propagating higher-order components becomes proportional to k2 for large
kd, in contrast to the 2-D case where the average value of L is proportional
to k, in agreement with the analogous duct case [11].

(a) (b)

Figure 9: The physical locations of the secondary monopole sources in the x-y plane for
the 3-D case, with a separation of d, (a) and the corresponding k-space diagram, with
regular wavenumber components with a separation of 2π/d (b).

Assuming a normally incident primary plane wave, as in section 2, then
the total particle velocity in the 3-D case is now

vT (x, y, z) =

(

pp
ρ0c0

+ vs

)

e−jk0z + · · ·

vs

[

∞
∑

n1=0

∞
∑

n2=0

ǫn1
ǫn2

cos(kxn1
x) cos(kyn2

y)e−jkznz − e−jk0z

]

(49)

where the terms in square brackets correspond to the higher order spatial
harmonics and now

kzn =
√

k2
0 − k2

xn1

− k2
yn2

. (50)
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Figure 10: The number of higher-order spatial harmonics that can propagate, L, in the
case of the two-dimensional array shown in Fig. 9, as a function of normalised frequency,
kd, equal to 2πd/λ (a) for steered angles of θ = 0◦ (solid lines), θ = 30◦ (dashed lines) and
θ = 60◦ (dotted lines), together with the real parts of the corresponding wavenumbers in
the propagating direction for θ = 0◦ only (b). The optimal secondary source velocity is
also shown (c) together with the attenuation in the primary field (d) for steered angles of
θ = 0◦ (solid lines), θ = 30◦ (dashed lines) and θ = 60◦ (dotted lines).
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The corresponding total pressure is

pT (x, z) = (pp + ρ0c0vs) e
−jk0z + · · ·

ρ0c0vs

[

∞
∑

n1=0

∞
∑

n2=0

ǫn1
ǫn2

k0
kzn

cos(kxn1
x) cos(kyn2

y)e−j(kznz) − e−jk0z

]

.

(51)

The cost function defined above, equal to twice the space averaged acoustic
intensity is given in this case by

J =
(

p∗p + ρ0c0v
∗

s

)

(

pp
ρ0c0

+ vs

)

+ ρ0c0|vs|
2ℜ

L
∑

n=1

ǫn1
ǫn2

k0
kzn

, (52)

where L is again the total number of propagating higher-order modes.
It is important to note that the first higher-order wave number compo-

nents in the 3-D case starts to propagate when kd is equal to 2π, i.e. at a
frequency of c/d Hz, which is exactly the same as in the 2-D case in Section
2. It is the way that the number of propagating higher-order modes increase
with frequency beyond c/d Hz that is different in the two cases.

The optimum secondary source strengths thus correspond in this case to

vs,opt =
−pp/ρ0c0

(

1 + ℜ
∑L

n=1 ǫn1
ǫn2

k0
kzn

) (53)

as also plotted, together with the attenuation in this case, in Figure 10. The
attenuation has a similar form to that in the 2-D case, being perfect up to
a frequency of c/d Hz, but drops off more rapidly than in the 2-D case for
frequencies above this because of the larger number of higher-order wave
number components that can propagate in the 3-D case.

In the case of an oblique primary field, at an angle of θ and φ, the primary
pressure is

pp(x, y, z) = ppe
−j(k0x sin θ cosφ+k0y sin θ sinφ+kz0z) (54)

when
kz0 = k0 cos θ (55)

with associated particle velocity, normal to the array, of

vp(x, y, z) =
pp
ρ0c0

e−j(k0x sin θ cosφ+k0y sin θ sinφ+kz0z). (56)
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To control this the normal velocity of the secondary source array must be
phased such that

vs(x, y, z) = qs

∞
∑

m1=−∞

∞
∑

m2=−∞

δ(x−m1d)δ(y−m2d)e
−jk0d(m1 sin θ cosφ+m2 sin θ sinφ)

(57)
so that the wave number spectrum becomes

vs(x, y, z) = vse
−jk0(x sin θ cosφ+y sin θ sinφ)

[

∞
∑

n1=0

∞
∑

n2=0

ǫn1
ǫn2

cos(kxn1
x) cos(kyn2

y)

]

(58)
The wave number components in the k-space diagram are now shifted

with respected to both the kx and ky axes compared with the case in Figure
9b. The analysis of the performance follows from Section 4 and that above,
so that the optimum source strength now corresponds to

vs,opt =
−pp cos θ/ρ0c0

(

1 + cos θℜ
∑L

n=1 ǫn1
ǫn2

k0
kzn

) (59)

where in this case

kzn =
√

k2
0 − (kxn1

− k0 sin θ cosφ)2 − (kyn2
− k0 sin θ sinφ)2. (60)

This secondary source strength and the corresponding attenuation are also
plotted in Figure 10 for the case in which θ = 30◦ and θ = 60◦.

6. Control of plane waves transmitted through a finite aperture

To analyse the physical limits of the active control of a plane wave trans-
mitted through a finite aperture, the two-dimensional geometry shown in
Figure 11 is used, and the acoustic field is calculated using a 2-D finite-
element model (FEM). Although it may be possible to analyse the diffract-
ing effects of a finite aperture analytically, this is not straightforward. The
spatial windowing methods described in [20], for example, cannot be used
directly since it is found that the velocity distribution across the aperture is
not just a spatially-windowed version of that in the free field, as the particle
velocity around the edges of the aperture is increased due to the diffraction of
the incident wave and the scattered field in the opposite direction [21]. The
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sound field is also complicated by the thickness of the wall and so for conve-
nience numerical methods have been used in the first instance. The spatial
resolution in the simulation plane is set to be one-sixth the wavelength of the
highest frequency of interest, 4 kHz. The primary noise to be controlled is
an incident plane wave, as above, but in this case it is transmitted through
the finite aperture. It is initially assumed to be travelling in the z-direction,
at θ = 0◦. An array of N secondary line sources is used, and the sources
nearest to the edges are a distance of d/2 from the edge of the aperture [6].
When N = 1, the source is placed at the centre of the aperture and d is set
equal to w/2, where w is the overall size of the aperture in Figure 11.

The active control problem in this case [22] can be formulated in terms of
minimising a cost function equal to the sum of squared pressures, which in
this case are calculated at 1100 evaluation points on an arc 5 m away from
the centre of the window, that is itself 2 m across, as shown in Figure 11.
The cost function is given by

J = eHe+ βqH
s qs = qH

s Aqs + qH
s b+ bHqs + dHd, (61)

where e = d + Gq, is the vector of complex pressures at the evaluation
points, d is the vector of disturbance signals due to the incident plane wave
at these points, G is the matrix of plant responses between the secondary
sources and the pressure evaluation points, qs is the vector of secondary
source strengths. The superscript H denotes the Hermitian of the matrix,
i.e. the complex conjugate transpose and β is a regularisation parameter
[22]. Hence, after substitution, A = GHG+ βI and b = GHd.

The resulting optimal secondary source strengths are given by

qs,opt = −
[

GHG+ βI
]

−1
GHd. (62)

The regularisation parameter is chosen to avoid ill-conditioning with respect
to the calculation of the inverse of the matrix GHG, but has little effect on
the control performance for the values used in these simulations.

The resulting attenuations of the cost function, predicted from of the
FEM simulations, are shown in Figure 12 for different numbers of secondary
sources, N , in the plane of the aperture. The results are plotted as a function
of the normalised frequency, both when it is normalised to the size of the
aperture, kw in Figure 12a, and when it is normalised on the separation
distance between the sources, kd in Figure 12b. The results in Figure 12a
correspond to the practical case, in which the size of the aperture corresponds
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Figure 11: Finite element model geometry for the active control of a plane wave through
a finite aperture with a finite linear array of secondary line sources in 2-D.

to that of a window, which is fixed, and the excitation frequency is then
increased. The performance clearly increases as the number of secondary
sources is increased, as expected, but it is not clear whether this is entirely
because these sources are closer together, or whether there is also an effect
due to diffraction, which will be more important at low frequencies than at
high frequencies. This question is resolved in Figure 12b, which corresponds
to the case in which the size of the aperture is increased as the number of
sources becomes larger, and is consistent with the analytical representation
used in the previous sections. It can be seen in Figure 12b that when the
number of sources is large, the results approximate those for the infinite
case, in Figure 2d, with significant levels of attenuation being achieved up
to frequencies of f = c0/d, which corresponds to a normalised frequency of
kd = 2π. When only a few sources are used, the performance is not as great,
indicating that diffraction has a significant effect, although there is still some
sign of the cut-off frequency effect seen in the infinite case.

Simulations have also been performed for oblique incidence waves, and
an example set of results for 13 sources is shown in Figure 13. Although the
change in the cut-on frequency seen in the simulation results of Figure 8d is
not quite so clear, the simulation results do indicate that the upper frequency
of control is reduced, as predicted by eq. (39).
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(a) (b)

Figure 12: Attenuation of far-field pressure in the finite element simulations with a
normally-incident plane wave, plotted as a function of frequency, normalised both by the
size of the aperture, kw in Figure 12a, and when normalised by the separation between
the sources, kd in Figure 12b, for different numbers of secondary sources.
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Figure 13: Attenuation of the far-field pressure in the finite element simulations with
13 sources and for different angles of incidence of the primary plane wave, plotted as a
function of frequency normalised by the separation between the sources, kd.

24



Finally, Figure 14 shows the distributions of the sound pressure level,
normalised to that of the incident wave, after control with 5 secondary sources
in the geometry of Figure 11. The results are shown for excitation frequencies
corresponding to source separation distances of 0.5λ and 0.9λ, in order to be
comparable with the corresponding free field results in Figure 3. It can be
seen that in the lower frequency case shown in Figure 14a, when d is equal to
0.5λ, the pressure distribution is similar to that in the free field case, so that
the guidelines on the placement of the error microphones discussed in Section
3 are still valid. For the higher frequency excitation, corresponding to d equal
to 0.9λ, however, the near field generated by the secondary sources and the
diffracted incident wave is considerably more complicated in Figure 14b than
it is for the free field case, and the evanescent components of the pressure
distribution do not decay away as rapidly. It is perhaps not surprising that
the sound field beyond the aperture is more intense, since it can be seen from
Figure 12b that the attenuation in the radiated power is only about 10 dB
in this case, and good attenuation at this frequency requires more than just
5 secondary sources.

(a) (b)

Figure 14: The sound pressure level, in dB relative to the incident pressure, after active
control of an incident plane wave transmitted through the aperture shown in Figure 11
with 5 secondary sources, for k0d equal to π (a) and 1.8π (b) corresponding to source
separation distances of 0.5λ and 0.9λ.
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7. Conclusions

A wavenumber approach has been used to analyse the active control of an
incident plane wave with an infinite array of secondary sources. It is found
that perfect control of a normally-incident plane wave can be achieved in the
far field, provided the separation between the uniformly-spaced secondary
sources is less than the acoustic wavelength, i.e. at frequencies of less than
f = c0/d. This is found to be the case both for a 1-D array of line sources
in a 2D analysis, and also for a 2-D array of monopoles in a 3-D analysis.

For oblique angles of incidence, the upper frequency of control is reduced.
For a grazing wave the upper frequency of control is f = c0/2d, which corre-
sponds to the separation between the sources being half a wavelength. The
near-field of these sources is also analysed, which provides guidance on the
placement of the error microphones in a practical arrangement. At frequen-
cies for which the source separation distance is less than half a wavelength,
placing the error microphones at a distance of greater than about half the
source separation distance should ensure good active control performance.

A numerical simulation of active control is then performed for the active
control of a plane wave after transmission through an aperture in a rigid
wall, with an array of secondary sources in the aperture, which has practical
applications for the reduction of sound through open windows. When there
are many secondary sources, and the size of the aperture is large compared
with the wavelength, so that diffraction is not so important, significant at-
tenuations in far field power are again found for frequencies up to f = c0/d.
When the size the aperture is not large compared with the wavelength and
diffraction becomes more important, a smaller number of secondary sources
are required but the attenuation is then not as good as in the free field case
when plotted as a function of kd. It is also found that the near field pressure
in this case is similar to that in the free field when the source separation
is less than half a wavelength, but that this becomes more complicated and
intense at higher frequencies, indicating that greater care is required in the
placement of error microphones in this case.
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