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We investigate the bound and evanescent fields of the optical whispering gallery modes which are
supported by a toroid microcavity and which may be used for a wide range of applications. Results
of simulations using finite-difference time domain solutions of Maxwell’s equations are compared
with semi-analytical solutions based on coupled mode theory. Key parameters such as resonance
frequencies, transmittance characteristics, coupling efficiencies, and bending/scattering losses are
analyzed as a function of experimental variables such as size, distance, and fabrication roughness.
Finally, the feasibility of single-atom detection is discussed.
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I. INTRODUCTION

Micro resonators are a promising system for a wide range of applications because of the existence of high-
quality optical modes, where light is trapped within very small volumes. Their spectral properties can be
exploited in various fields ranging from telecommunication [1, 2] to biological/chemical sensors [3] as well as in
fundamental research. Of specific interest is the potential contribution of such devices to the fast emerging field
of quantum technology (QT), which may again serve as an enabling technology for both fundamental science
and applicative research [4]. In particular, micro resonators can be used to enhance the interaction of light with
single atoms or ions, which have been identified as a promising system for storage of quantum information.

Recently reported progress in the manufacturing of high Q dielectric microdisk resonant structures [5] moti-
vates the development of compact and integrable devices. Of specific interest is the wafer-based manufacturing
of resonators where a good control of the physical characteristics can be achieved during fabrication enabling for
example extremely small mode volumes as well as accurate alignment with other elements such as micro traps.
Furthermore, a wafer based device may allow for more complex functions such as tunability to be integrated.

In this paper we investigate the external fields of optical whispering gallery modes which are supported by a
toroid microcavity and which may be used in QT.

This work is organized as follows. In Sec. II we describe the system under consideration. Section III deals
with the different numerical and analytical methods which we apply to examine the disk resonator structures.
In Sec. IV we discussed loss mechanisms and presented results of our simulation. Subsequently, we discussed
experimental considerations such as tunability (Sec. V). We investigate the feasibility of single-atom detection
using the calculated optical modes in Sec. VI. Finally, we conclude in Sec. VII.

II. SYSTEM DESIGN

The basic system under discussion consists of a circular plate (disk) and a linear waveguide, as shown in Fig.
1. This minimal system can be used as an integrated part of a larger chip containing several optical, electronical,
and micromechanical devices. As an example, we will discuss single-atom detection as a possible application of
this device for QT purposes in Sec. VI.

The waveguide couples light into and out of the disk. In a realistic setup, both waveguide ends will be attached
to optical fibers. In order to optimize power transfer between the waveguide and a single-mode fiber, the mode
overlap at the interface has to be maximized. This requires waveguide dimensions of 9x9 to 12x12 microns in
the refractive index range of 1.454 - 2.17 for wavelengths around 780nm . In this case, best coupling efficiencies
of the order of 96-98% can be achieved. For best mode matching with the microdisk modes, the waveguide
width has to be reduced to about 0.3 to 1.2µm using adiabatic tapers, as shown in Fig. 1.



FIG. 1: The structure under consideration. The evanescent wave from the slab waveguide (1) is coupled into the disk (2)
and back through a small gap between them. The adiabatic waveguide tapers (3) serve to couple light back and forth
from an optical fiber (not shown) to the waveguide (of any needed size). An interaction with an external particle (4)
may be initiated by positioning the particle on the disk side.

The disk itself supports a large range of resonant modes. Here, we are mainly interested in the low-loss modes
traveling along the disk edge in the form of whispering gallery modes (WGM). While most of the mode energy
is confined within the disk, a small part of the mode exists outside the disk as an evanescent field, and it is here
that an atom can interact with the light. This external particle-light coupling changes the optical properties of
the disk mode, which subsequently changes the intensity and/or phase of the light at the output of the linear
waveguide. These changes can then be measured to infer the presence of the external particle.

In the horizontal direction the linear waveguides and the disk are bordered by the air (nclad = 1.0). In
our calculations we assumed structures made of fused silica with nc = 1.454 at a wavelength of 780nm. In
the vertical direction the structure may be more complicated with several layers in order to give good mode
confinement.

We investigate the resonance behavior of the microdisk cavity. The general scheme is simple: light enters the
system through the waveguide and couples into the microdisk at point 1 in Fig. 1. The intensity in the disk is
significantly increased depending on the coupling efficiency, and on intrinsic and other loss mechanisms. The
disk supports both clockwise and counterclockwise propagating modes. Direct coupling excites the clockwise
mode but backscattering due to side-wall roughness can excite the counterpropagating mode.

The refractive index (RI) difference between core and cladding defines the bending losses for a given disk
diameter, which together with the external loss mechanisms defines the quality factor. The balance between RI,
disk diameter, waveguide width, gap width between the straight waveguide and disk resonator, and the surface
quality of the disk determine the WGM characteristics.

III. SIMULATION FRAMEWORK AND METHODS

A number of numerical and analytical tools have been utilized to investigate the optical properties of such
systems, for example coupled mode theory (CMT) [8, 9], scattering matrix theory [10], finite element [11], and
finite difference time domain (FDTD) methods [12]. In this work we will use FDTD simulations which provide
rigorous numerical results but which are rather time-consuming and therefore not adapt to scan large parameter
ranges. We will thus resort to a semi-analytical CMT as a fast tool for a detailed design parameter analysis.
These two methods complement one another and give a powerful tool for the investigation of micro resonators.
In particular, we are interested in the system characteristics dependent on disk diameter, waveguide width, gap



width between the linear waveguide and the disk resonator, and the surface quality of the disk.

A. Finite difference time domain calculations

The first method we use to investigate the resonance behavior of the microdisk is by FDTD simulations. Here,
Maxwell’s equations are discretized in space and time, and the time evolution of the electromagnetic fields is
numerically calculated on this grid. To obtain high accuracy it is necessary to make the cells much smaller than
the optical wavelength, which leads to long calculation times, in particular for a three-dimensional (3D) model.

In two-dimensional simulations it is possible to do direct FDTD calculation for relatively large disks of
diameter > 50µm. In 3D, simulations are only feasible for small disk diameters. However, comparisons of 2D
and 3D simulations for small disk diameters have shown reasonable agreement. In the rest of this paper, we
will thus restrict ourselves to simplified 2D calculations, where the disk and waveguide modes are calculated for
a geometry infinitely extended in the vertical (y) direction. The 3D modes are assumed to be simple slices of
thickness dy of these infinite modes. For the calculations presented in this work we always assume dy = 5µm.
We will also limit the calculations to electric fields polarized along the y direction, i.e., to TE modes only.

In this case, Maxwell’s equations for the electric and magnetic fields, Ey, Hx, and Hz reduce to
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where µ0 and ε are the magnetic and electric permeability, respectively. The FDTD simulations solve Eqs.
(1)-(3) on a spatial grid for a given initial field distribution. We used the so-called unsplit perfectly matched
layer (UPLM) boundary conditions [13] and a uniform discretization with a step size range of 0.02µm to 0.08µm
in the x and z directions and with a time step range of 4.45× 10−17s to 1.78× 10−16s.

For our calculations the initial condition was such that the disk was empty and that light was pumped into the
lowest transverse mode of the linear waveguide from one end. The incoming light was either a continuous wave
or a 30fs Gaussian pulse. In the former case, we are interested in the steady state field distribution which, for
example, allows us to observe the resonant disk mode and the evanescent field. Pulsed input allows to calculate
the output power at the other end of the linear waveguide as a function of frequency, i.e., the transmission
spectrum, by applying a discrete Fourier transform on the output field, calculating the Poynting power density
and integrating over the waveguide cross-section.

As an example of our FDTD simulations, snapshots in time of the propagation of a 30fs pulse are shown in
Fig. 2. The pulse enters through the linear waveguide, is coupled into the microdisk cavity and completes one
round trip in approximately 230fs.

B. Coupled mode theory

We complement the numerical FDTD results with a semi-analytical CMT. For this, it is assumed that the
linear waveguide supports only a single transverse mode, while the disk supports two degenerate, counter-
propagating WGM. The pumped waveguide mode only couples to the forward propagating disk mode, but
scattering due to side-wall roughness may couple light into the second mode. Both WGM are coupled to the
waveguide mode via their evanescent fields at point 1 in Fig. 1. For the calculations we closely follow the work
by Rowland and Love [9].

First, the WGM are obtained as solutions of Eqs. (1)-(3) in cylindrical coordinates. This gives mode functions



FIG. 2: FDTD computed initial coupling of 30 fs pulse into a microdisk (D = 15µm, n = 1.454, w = 0.6µm, gap size
0.1µm, wavelength 0.7807µm.)

of the form
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where Jl are Bessel functions and H
(1)
l are Hankel functions of the first kind, and R is the disk radius. The

eigenvalue equation for these modes is given by
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As all WGM are lossy, the eigenvalues are complex

k = kr − iki (6)

and the intrinsic quality factor of the WGM is given by [9]

QWGM =
kr

2ki
. (7)

Similarly, the mode functions Elin of the linear waveguide are calculated for the same wavenumber k.
The second step of the CMT is to write the total light field as a superposition of disk and waveguide mode

E(x, z) = a1(z)Elin(x, z) + a2(z)EWGM (x, z). (8)

The coupled mode equations read

da1

dz
= −iβlina1 + iC(z)a2, (9)

da2

dz
= −iβWGM (z)a2 + iC(z)a1, (10)

where βlin and βWGM are the propagation constants of the waveguide and the WGM, respectively, and C(z)
is the position-dependent coupling coefficient obtained by calculating the mode overlap of waveguide and disk.
For details of this calculations see Ref. [9].



Finally, integrating Eqs. (9) and (10) over z in the region of significant coupling around point 1 in Fig. 1
yields the coupler transmission matrix T which relates the waveguide and disk output fields to the inputs,

(
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)
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(
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)

in

(11)

where

T =
(

t11 t12
t21 t22

)
. (12)

The cavity decay rate (half width at half maximum) κT of the WGM due to the coupling to the waveguide is

κT = |t12|2/(2Tr) (13)

where Tr = 2πl/(ck) is the round trip time. The corresponding quality factor is

Qcoup = ck/(2κT ) = 2πl/|t12|2. (14)

IV. OPTICAL PROPERTIES OF WAVEGUIDE-COUPLED WHISPERING GALLERY MODES

A. System losses

Apart from the intrinsic WGM losses (7) and the coupling losses into the waveguide (14) at least two other
loss mechanisms have to be taken into account, intrinsic material losses and surface scattering losses.

The main material loss mechanisms are bulk Rayleigh scattering and ultraviolet and infrared absorption. The
corresponding quality factor Qmat can be expressed in the form [14, 15]

Qmat =
2ncπ

αλ
, (15)

where α is the loss coefficient and λ = 2π/k is the vacuum wavelength. Material losses for fused silica in the
wavelength range near 780nm are of the order of 5dB/km, which gives rise to Q ∼ 1010.

Greater uncertainty is associated with losses due to surface scattering and absorption due to surface roughness
or the presence of an absorbing impurity on the surface of the disk. For a given size of surface inhomogeneities
(roughness) and correlation length, the surface scattering quality factor Qsurf has to take into account not only
the direct scattering of light out of the disk (”leakage”) but also scattering into other modes with high rates of
leakage. Various expressions have been used to describe quality limits due to surface scattering [14–16]. In this
work, we apply the expression based on the model of Rayleigh scattering by molecule-sized surface clusters [14]

Qsurf =
Dλ2

2Lcπ2σ2
, (16)

where D is the disk diameter, σ is the root-mean-square of the surface roughness and Lc the surface correlation
length. As was reported in [17], the numerical values for σ and Lc can be less than 1nm and 5nm, respectively.
In our calculations we used σ=1nm, Lc=5nm and σ=2nm, Lc=10nm.

The overall cavity quality factor taking all the loss mechanisms discussed above into account is then given by

Q−1 = Q−1
coup + Q−1

WGM + Q−1
mat + Q−1

surf . (17)

This is related to the cavity line width (HWHM) κ by

Q = ck/(2κ) (18)

and to the cavity finesse F by

F = Q
FSR
ck

≈ Q/l (19)

where FSR ≈ ck/l denotes the free spectral range (l is the mode index of the WGM). For later use we also
introduce κloss = κ − κT which is the cavity loss rate due to losses into all channels apart from the linear
waveguide.



B. Results

After describing the building blocks of our calculation and loss mechanisms, let us now discuss some numerical
results for the optical properties of our system. This will serve two purposes: first, to compare our different
calculation methods with each other and with available experimental data in order to show the accuracy of our
results; second, we need to apply our calculation to the experimental parameters that are of interest in our case,
in order to establish a base for the atom-light interaction that will be discussed in the section VI.

We have compared the spatial profile of the WGM obtained from FDTD simulation with the one resulting
from a CMT calculations and found good agreement,. We have also looked at the resonance spectrum of the
disk for different parameters, and extracted values for the free spectral range (FSR) and the quality factor Q.
As presented below, here too the agreement was good.

In Fig. 3, we plot the FSR for disk diameters D in the range of 5 - 50µm, refractive index values 1.454 - 3.2
and wavelengths near 0.78µm and 1.55µm. The latter is chosen to compare with previously published results
[12]. FDTD simulations and analytically calculated WGM are in excellent agreement with each other and with
the experimental data. As expected, the FSR is approximately inversely proportional to the disk diameter.
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FIG. 3: Free spectral range versus disk diameter. The lines present results of analytical calculations at wavelengths
780nm (solid line) and 1550nm (dashed) in fused silica and at 1550nm for nc = 3.2 (dotted). FDTD results are indicated
by (•), and experimental data [12] by (5) and [5] by (4).

The main result of our simulation is to show the ability to arrive at a high Q with relatively small disk
sizes worthy of the title of micro resonators. The quality factor Qtotal was calculated by using FDTD and
CMT models for different gap width depends on disk diameter. The total Q also included all loss mechanisms
described in section IB. We present (Fig.3) also upper limit for quality factor in assuming ideal almost lossless
coupling between straight waveguide and a disk.

Figure 4 shows the total cavity quality factor Q, Eq. (17), dependent on the outer diameter D of the disk and
the size of the air gap between disk and linear waveguide. Q was calculated using FDTD and CMT models,
which again show excellent agreement. We note that very high quality factors up to about 108 can be achieved
with the current system for disk diameters of several tens of microns. The upper limit for Q shown in Fig. 4
is the value obtained for a very large air gap, where coupling losses κT are negligible and the cavity quality
is limited by the intrinsic and material quality factors QWGM , Qmat, and Qsurf . We have also performed
calculations at wavelength λ = 1550nm and found good agreement with recently reported Q values [5].

To calculate the Q factor for different disk sizes, the index l of the WGM must be changed accordingly to
keep the resonant wavelength near 780nm relevant for Rb atoms. The necessary wavelength for optimal mode
resonance can be achieved by choosing a precise disk size. We will discuss tuning of the micro resonator later
in Sec. V.

Let us briefly mention the issue of different refractive indices. So far,different materials have been used to
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FIG. 4: Quality factor Q versus disk diameter for gap sizes 0.1µm, 0.3µm, 0.5µm, 0.7µm (from bottom to top). The
topmost curve is the quality factor Q of the uncoupled disk. The solid lines present the CMT calculation and (•)
represents the FDTD simulations. Parameters are λ = 780nm, nc = 1.454, σ = 2nm, Lc = 10nm. The dashed line
represents the results for n=1.444 at wavelength 1550nm and (¦) shows the measured result of [5].

fabricate microdisk resonators with refractive indices ranging from 1.444 up to 3.5[5, 12, 19]. In Fig. 4 the quality
factor Q was presented for fused silica at different wavelengths. We checked Q for materials with other refractive
indices where some tuning mechanisms have been reported. Note that the Q factor for higher refractive indices
is even higher as shown in Fig. 5 as far as material losses not limited it.
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FIG. 5: Quality factor Qtotal vs. disk diameter for different refractive indexes (gap size 0.2µm). At 780nm, the lines
present the CMT calculation for n=2.17 (dashed) and n=1.454 (solid) and (•) represents the FDTD simulation. At
1550nm and n=3.2, the dotted line shows the simulation results and (¦) represents the experimental data of Ref.[12].

Note also that, while the intrinsic quality factor QWGM is always lower for higher radial modes, the overall Q
can in fact be higher due to weaker coupling (smaller losses) to the linear waveguide, which is the dominating
loss mechanism for most parameter regimes we are interested in. Table I shows the optical properties of a few
selected disk-waveguide geometries.



D (µm) l q λ (nm) Q1 Q2

30 167 1 778.73 1.55× 105 8.44× 106

30 166 1 783.27 1.47× 105 8.05× 106

30 159 2 780.04 1.83× 105 8.85× 106

15 81 1 780.41 7.66× 104 3.82× 106

45 253 1 780.15 2.66× 105 1.40× 107

TABLE I: Optical properties of selected WGM. Q1 (Q2) is the quality factor Q for a gap size of 0.3µm (0.6µm), l and q
are the longitudinal and radial mode index, respectively. Results are obtained using CMT.

V. EXPERIMENTAL CONSIDERATIONS AND TUNABILITY

In this section we consider applicability of a micro disk resonator in a real experiment. This includes a tolerance
of the micro disk fabrication and that the frequencies of the resonances has to be tunable. The tunable devices
are essential in the different applications,for example, as tunable optical filters which are important features for
dense wavelength division multiplexing (WDM) networks ([2]) or as a physical element in the optical biosensors.

As already noted, high Q devices such as micro spheres, Fabry-Perot cavities, or micro disks are an extremely
effective tool for the delicate manipulation and measurement of subtle quantum states, where a long lived
photon interacts many times with the same atom so that a significant interaction can be achieved. However,
such strong coupling requires that the device is kept on resonance with the exact frequency close to the chosen
atom transition [6, 18].

In general, the FWHM and the FSR of microdisks differ by orders of magnitude and therefore coincidences
between the transverse fundamental WGM and the atomic transition frequency are extremely unlikely. To keep
a WGM resonance near the wavelength of interest we need to change the diameter or the refractive index of
the disk. The tuning procedure should also be stable and reversible and the tuning range has to be of the same
order of magnitude as the FSR. Under these conditions a resonant mode close to the required atomic frequency
can always be found, even if the disk was initially fabricated with some mismatch in diameter or in refractive
index. Finally, the tuning procedure also has to be fast enough to compensate for temporal instabilities such as
those arising from temperature fluctuations of the chip.

To realize tunability for microdisk resonators one may consider at least three possibilities: UV-, optoelectrical-
and piezo- effects.

All of them affect, at first order, the mode resonance through simple relation [18]: ∆ν/ν=-∆n/n - ∆D/D,
where ν is the resonance mode frequency, n is the refractive index and D is the disk diameter. To scan full FSR
tuning we need that one FSR tuning will be equivalent to ∆ν/ν ≈ 1/l, where l is the longitudinal mode index.
Actually, since higher order radial modes could also be used, there are in fact several usable resonances within
each FSR.

In Fig. 6 we show the results of our calculation of relative change of the diameter and refractive index vs.
disk diameter for fused silica (n=1.454 at λ = 780nm) and for n=2.17 at λ = 780nm, in order to scan one full
FSR.

UV tuning was reported in [20]. There, it has been shown that it is possible to change the refractive index of
Ge doped silica by up to ∆n = 0.006 using UV radiation. The drawback is that this procedure is not reversible.

In the case of electro - optical tuning, the effect is achieved by a uniform electric field that tunes the optical
refractive index and allows to change the wavelength. The idea is to cover both the bottom and top of the disk
with a metal layer, and apply a voltage to create the necessary electric field. For example, crystaline materials
usually have a relative index of refraction change of 0.01% − 1% for a field of 106V/m (5V for our 5µm disk
thickness). Though demanding a more complex fabrication process, such crystals may indeed be used. Figure
6 compares the needed values to the former 1%, and shows that disk diameters as small as 15µm will enable
a full FSR scan. Other methods for such index of refraction changes also exist. For example, it was reported
in [19] that tuning an InP micro disk was done by utilizing free carrier injection to change the refractive index
from ∆n ∼ 0.002 up to ∆n ∼ 0.01.



FIG. 6: Requirement for full FSR scan capability. The required relative change for fused silica of the diameter and
refractive index vs. disk diameter (λ = 780nm). ∆D/D and ∆n/n are presented by ◦ and ¦ for n=1.454, and for n=2.17
by • and 4, respectively. Typical values for actual materials are also presented by the long base arrows.

By using a piezo effect one can change the diameter of the disk. Namely, one fabricates the disk from a
transparent piezo material. The voltage necessary will be obtained as above by two electrodes evaporated below
and above the device. Transparent piezo materials (such as BaTiO3) have a piezo electric coefficient of order
10−10m/V which leads to ∆D/D = 0.002 for 20106V/m (100V for our 5µm disk thickness). Figure 6 again
compares the needed values to the former ∆D/D = 0.002, and shows that disk diameters as small as 30µm will
enable a full FSR scan. For both ∆D/D and ∆n/n, higher voltages and more exotic materials should allow for
even smaller disk sizes.

VI. SINGLE ATOM DETECTION

Recently it was proposed to use for the purpose of atom-light interaction very small optical cavities microfab-
ricated on the atomchip based on Fabry-Perout [6] or photonic bandgap [7] cavities. Here, we will investigate
the properties of a microdisk, modeled as a high finesse ring resonator as described in Ref. [9], as a single atom
detector for quantum information processing on an atom chip. The scheme we discuss here is developed in [22]
and based on Jaynes-Cummings model for the coupling of a two level atom to the light field outside the disk.
Homodyne detection of the phase change of the light at the output of the linear waveguide in the forward direc-
tion is used to detect. There are several advantages of this scheme over a corresponding absorption detection. (i)
It allows to drive the atom far off resonance, in which case the precise tuning of the disk resonator with respect
to the atomic transition frequency is of minor importance. Cavity tuning will be discussed in more detail in
Sec. V. (ii) If the additional loss mechanisms discussed in Sec. IV A are small compared to the disk-waveguide
coupling strength, all of the pump light will leave the system through the forward waveguide output. Therefore
for most parameter regimes a strong signal can be expected, which allows the use of standard photodetectors
rather than sophisticated single-photon counters. (iii) The strong output signal also provides stability of the
detection scheme against weak background scattering processes.

Our detection scheme works as follows. The output field of the straight waveguide is mixed with a strong local
oscillator field at a 50-50 beamsplitter and the light intensities in the two beamsplitter outputs are measured
and integrated over the observation time τ to give the total number of detected photons N1 and N2. The signal
we are interested in is given by the difference |N1 −N2|. The phase of the local oscillator is adjusted such that
this difference is zero when no atom is interacting with the disk field. The presence of an atom is then inferred



from a change in this intensity difference. Assuming that the detection is shot-noise limited, the signal-to-noise
ratio S of the atom detection is given by

S =
|N1 −N2|√

N1 + N2

≈ 2
√

τ |Aout,0|| sin(φ− φ0)| (20)

where φ (φ0) is the phase of the waveguide output field Aout,+ with (without) an atom, Aout,0 is the field
amplitude without an atom, and we have assumed that only the phase and not the amplitude of the output is
changed due to the atom.

The second quantity of interest is the number of photons M spontaneously scattered by the atom during the
interaction time, given by

M = 2Γτρ11. (21)

where Γ is atomic decay rate and ρ11 is population of atomic excited state. This should be as small as possible
in order to minimize the backaction of the detection process onto the atom. Ideally, M ¿ 1 corresponds to the
limit of non-destructive measurements. Finally, we note that S and M scale differently with interaction time
τ . For any given parameters, we can thus choose τ in such a way to yield a certain, fixed signal-to-noise ratio.
As an example, we will in the following consider the number M10 of spontaneously scattered photons when τ is
rescaled to give S = 10,

M10 = 100M/S2. (22)

For simplicity we will assume that the cavity is driven on resonance with the disk modes, ∆c = 0, thereby
minimizing the effect of other, off-resonant modes. The atom is assumed to be far off resonance with respect to
the cavity mode, ∆a À Γ, such that the effect of the atom is mainly to provide a phase shift of the cavity mode.
Under these conditions and in the limit of small atomic saturation we can derive analytical approximations for
S, M and M10 [6]

S = 4
√

τ |Ain| κT g2

∆aκ2
, (23)

M = 4τ |Ain|2 κT g2Γ
∆2

aκ2
, (24)

M10 = 25
κ2Γ
κT g2

. (25)

Note that M10 is independent of the pump power and of the atomic detuning.
In Fig. 7 we show S, M and M10 as a function of the input power to the linear waveguide. For a weak pump

the signal-to-noise ratio increases with power since more photons are coupled into the cavity and interact with
the atom. However, because of saturation the atom can only interact with a maximum number of photons in
a given interaction time. Hence, S reaches a maximum value, and for stronger pump powers S is decreasing
again. The number of spontaneously scattered photons M increases with pump power and finally saturates at
the value Γτ . M10 shows an approximately linear increase with pump power, indicating that the least perturbing
atom detection for a given value of S is achieved for low atomic saturation. There is, however, a trade-off as
the required interaction time increases in this limit. For low saturation the numerical results are accurately
described by the approximations (23)-(25). (For details see [xx].)

Figure 8 shows S and M10 as a function of the gap between the microdisk and the waveguide in the limit of
weak atomic saturation (ρ11 < 0.03 for the shown parameter range). For small enough gap sizes, increasing the
gap reduces the coupling between disk and waveguide modes and therefore the cavity finesse increases. This
leads to improved signal-to-noise ratios and less spontaneous photon scattering by the atom. For very large gaps,
on the other hand, the cavity finesse is limited by the additional losses, see Sec. IVA. In this case, increasing
the gap even further reduces the number of photons coupled back from the cavity into the waveguide and thus
reduces the detected signal. If the cavity-waveguide coupling exactly equals the additional losses, no light is
transmitted through the waveguide at all, which leads to the points of S = 0 and the corresponding divergence
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FIG. 7: (a) Signal-to-noise ratio vs pump intensity for disk diameter 30µm (solid line) and 15µm (dashed). (b) Corre-
sponding photon scattering M (top curves) and M10 (bottom). Gap size is 0.3µm, waveguide width is 0.6µm, σ = 2nm,
Lc = 10nm, ∆a = 100Γ, and the atom is assumed to be positioned 50nm away from the disk surface.
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FIG. 8: (a) Signal-to-noise ratio S and (b) scattered photons M10 vs. gap size for weak pumping (|Ain|2 = 108 photons/s).
Solid curve: disk diameter 30µm, dashed: disk diameter 15µm for σ = 2nm, Lc = 10nm. Dotted curve: diameter 15µm,
σ = 1nm, Lc = 5nm. Waveguide width is 0.6µm, distance atom-disk is 50nm, and the interaction time is 10µs.

of M10 observed in the figure. We find numerically that S is maximum and M10 is minimum if losses from the
disk into the waveguide are about 4-5 times higher than the additional losses.

For the parameters of Fig. 8 we find that the minimum value of M10 is 0.85 for a disk diameter of D = 30µm
(solid line) and 0.49 for D = 15µm (dashed line). The reason for this difference is mainly that for the smaller
disk more energy of the resonant mode is in the evanescent field. This leads to improved coupling of the atom
to the mode. For both disk diameters, however, the minimum value of M10 is below unity, which indicates
that single atoms can be detected while on average scattering less than one photon spontaneously. Moreover,
we observe that this minimum value of M10 is limited by the additional losses due to surface roughness. If
the surface parameters are decreased by a factor of two to σ = 1nm and Lc = 5nm, M10 can be as small as
0.13, shown by the dotted curve in Fig. 8(b). In this case, our atom detection scheme approaches the limit of a
non-destructive measurement.



VII. SUMMARY AND CONCLUSION

We have calculated the quality factor Q as a function of micro disk size and quality of fabrication. We have
shown that it is possible to achieve a high Q for a micro disk diameter of several dozens of micron.

We have estimated the feasibility of initiating photon-atom interaction on an atom chip by utilizing a micro
disk as a high Q device. We found that it is possible to achieve high signal to noise ratios with practically no
photon scattering, and hence non destructive measurements may be possible.
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