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Abstract

Motivated by the high electric vehicle (EV) penetration percentages foreseen for the near future, this paper studies
the participation of large fleets of EVs in electricity day-ahead markets. Specifically, we consider a scenario where a
number of independent and self-interested EV aggregators participate in the day-ahead market to purchase energy to
satisfy their clients’ driving needs. In this scenario, independent bidding can drive prices up unnecessarily, resulting in
increased electricity costs for all participants. Inter-aggregator cooperation can mitigate this by producing coordinated
bids. However, this is challenging due to the self-interested nature of the aggregators, who may try to manipulate the
system in order to obtain personal benefit. In order to overcome this issue, we employ techniques from mechanism
design to develop a coordination mechanism which incentivises self-interested EV aggregators to report their energy
requirements truthfully to a third-party coordinator. This coordinator is then able to employ a day-ahead bidding
algorithm to optimise the global bids on their behalf, extending the benefits of smart bidding to groups of competing
EV aggregators. Importantly, the proposed coordination mechanism is straightforward to implement and does not
require any additional infrastructure. To ensure scalability and computational tractability, a novel price-maker day-
ahead bidding algorithm is proposed, which is formulated in terms of simple energy requirement constraints. The
coordination mechanism substantially reduces bidding costs, as shown in a case study which uses real market and
driver data from the Iberian Peninsula.

Keywords: electric vehicle charging, electric vehicle aggregation, inter-aggregator coordination, mechanism design,
Vickrey-Clarke-Groves, day-ahead electricity market

1. Introduction

Climate change and environment conservation consti-
tute two of the main challenges to address in the twenty-
first century. In particular, fossil fuels account for a
great proportion of the global contaminant emissions.
Nowadays, around 29% of the total energy consump-
tion in the US is attributable to the transportation sector,
and fossil fuels power around 95% of this amount [1].
Similarly, in the UK, transportation is the biggest en-
ergy consumer accounting for 40% of the total energy
consumption [2], where 96% of this consumption de-
pends on fossil fuels [3].

Transportation is then a key participant in the mod-
ernisation and improvement of the energy generation-
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demand duo. Specifically, the electrification of trans-
portation has the potential to reduce the dependence
on fossil fuels and allow the effective use of renewable
electricity sources. However, it presents important chal-
lenges, such as accommodating the very large electricity
requirements of a large electric vehicle (EV) fleet. If left
unmanaged, uncoordinated operation can pose a novel
and heavy strain on the existing electricity generation,
transmission and pricing methods. As an example, cur-
rently, the UK has a fleet of nearly 100,000 EVs, com-
bining purely electrical and hybrid vehicles [4]. Further-
more, the UK has a 10% target for electrification in the
transportation sector by 2020 [5]. Similarly, at a global
scale, there are targets to achieve 100 to 140 million of
EVs by 2020 [6]. Hence, given the current and targeted
EV penetration numbers, EV fleet management must be
seen as a priority [7].

In order to address this issue, one of the proposed
methods is to employ an EV aggregator. Originally in-
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troduced in [8], this entity acts as an intermediary be-
tween an EV fleet and the electricity grid and markets,
and has control of the charging, and possibly discharg-
ing, of the fleet’s batteries. By harvesting the combined
capacity of a number of EVs, the EV aggregator can
participate in wholesale electricity markets and provide
ancillary services. However, given the increasing num-
bers of EVs, we envision a scenario where independent
and self-interested EV aggregators compete in the same
electricity market, trying to maximise their own profit
[9]. Each of these aggregators can optimise its own op-
eration, but lack of coordination can cause global ineffi-
ciencies.

In more detail, we consider EV aggregators pur-
chasing energy in day-ahead markets, in order to meet
their clients’ electricity requirements. Without coordi-
nation, energy bidding could become concentrated in
time, driving prices up and resulting in more expensive
costs. This issue can be overcome by sharing informa-
tion, cooperating, which can translate in cost decreases,
a more stable grid and cleaner production methods, as
demand peaks can be softened. However, manipulation
can exist due to the self-interested nature of the aggre-
gators, who could choose to cheat the system if greater
personal benefit is perceived.

EV aggregator participation in day-ahead markets has
been widely studied in the literature. Existing works
consider either price-taker approaches [10, 11, 12, 13],
where prices are exogenous and unaffected by the EV
aggregator activity, or price-maker approaches [14, 15,
16, 17], where the aggregator’s bids affect electricity
prices. However, all these works consider a single EV
aggregator which is able to optimise its own bidding,
but do not consider the realistic scenario of several ag-
gregators coexisting. To extend these works to a multi-
aggregator setting, and to address the inter-aggregator
cooperation challenge presented above, we propose a
novel coordination mechanism which uses techniques
from mechanism design to allow extending the bene-
fits of optimised bidding to groups of self-interested
EV aggregators. Mechanism design studies agent in-
teraction protocols which take into account the fact
that agents are rational and self-interested [18]. Our
approach is based on the well-known Vickrey-Clarke-
Groves (VCG) mechanism [18], and we consider three
approaches for computing the payments using well-
known redistribution mechanisms to ensure the pay-
ments made by the aggregators are fair. Two of these
payment approaches are guaranteed to be truthful in our
setting, meaning that participating EV aggregators are
incentivised to cooperate by truthfully reporting their re-
quirements to the third-party coordinator. By doing so,

globally informed bidding decisions can be made, low-
ering total energy costs. This challenge has not been
previously addressed for this setting.

In addition to the coordination mechanism, we in-
troduce a novel price-maker bidding algorithm which
is scalable and computationally tractable. This algo-
rithm extends the price-taker algorithm from [13] by
accounting for price impact through using residual sup-
ply curves [19]. We consider two approaches. The first
utilises raw historical supply and demand data, while
the second formulation employs a quadratic convex ap-
proximation. These approaches are in contrast with the
linear price impact utilised in [14, 15, 16]. Moreover,
unlike [17], who also consider non-linear price impact,
our approach has only 72 linear constraints. Hence, it is
simpler to implement and scales to arbitrary numbers of
EVs. Another advantage of our convex approximation
approach is that it guarantees finding the global mini-
mum of the approximated function. This is important
for using the VCG-type mechanisms, which require an
optimal solution to ensure the truthfulness property.1

More precisely, the contributions of this paper are
three-fold.

1. The development of a novel price-maker day-
ahead bidding algorithm for EV aggregators, for-
mulated in terms of simple driver requirement con-
straints, which scales to very large fleets with very
little computational burden.

2. The development of a novel EV aggregator co-
ordination mechanism in which different self-
interested EV aggregators can coordinate their bids
in the day-ahead market to achieve reduced costs.
This mechanism is generic and can be employed
in combination with any underlying bidding algo-
rithm. However, when employing our proposed
bidding algorithm, the coordination mechanism
scales linearly with number of aggregators and
fleet size, allowing it to be applied to very large
populations. Moreover, when combined with the
convex approximation variant of the bidding algo-
rithm, the mechanism incentivises truthful report-
ing.

3. Evaluation of the proposed bidding algorithm and
coordination mechanism in a realistic scenario us-
ing real market and driver behaviour data from the
Iberian Peninsula.

1More precisely, even though the function is not optimal from the
coordinator perspective, because the allocation and payments are both
based on this function, from the individual aggregator perspective the
allocation is perceived to be optimal and their utility cannot be im-
proved by misreporting.
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The rest of the paper is structured as follows. Sec-
tion 2 introduces the novel price-maker day-ahead bid-
ding algorithm. Section 3 details the proposed inter-
aggregator coordination mechanisms, which utilise the
bidding algorithm from Section 2. Then, Section 4
presents a realistic case study to evaluate the perfor-
mance of the proposed algorithms. Finally, Section 5
presents the conclusions.

2. Participation of an EV Aggregator in the Day-
Ahead Market

This section introduces the proposed day-ahead bidding
framework. Firstly, the typical day-ahead market found
in most countries is detailed, together with the mathe-
matical formalism to quantify the impact of the aggre-
gator’s bids on electricity prices. Then, the proposed EV
aggregator and novel bidding algorithm are described.

2.1. The Day-Ahead Market

Typical day-ahead markets are daily forward markets
featuring a uniform-priced double-sided auction. In
more detail, they run every day of the year and each
day is divided into 24 one-hour slots. A separate auc-
tion is run for each hourly slot. All bids and offers for
each hourly slot of day D + 1 need to be submitted be-
fore market closure time, noon on day D. Uniform price
refers to marginal pricing, by which all the accepted or-
ders have the same price, which coincides with the price
of the intersection between supply and demand.

The supply side, consisting of electricity producers,
offers volumes of electricity at different prices. All sup-
ply side offers are aggregated by low-price priority, re-
sulting in a generation stack curve, which relates pro-
duction size to price per energy unit, as seen in Figure
1a. Similarly, the demand side consists of large elec-
tricity consumers, such as industries, retailers or aggre-
gators, who similarly submit their bids to the day-ahead
auction, consisting of both desired electricity volumes
and prices. All the bids are aggregated by high-price
priority forming the aggregated demand curve, as shown
in Fig 1a.

Based on supply and demand, a clearing price is de-
termined. The exact clearing and pricing mechanisms
depend on the particular market, but the most common
approach is to find the intersection between the aggre-
gated supply and demand curves. The resulting price
will be the clearing price which applies to all accepted
bids and offers (uniform pricing). Note that there is usu-
ally a maximum price for bids and offers, pmax. The
accepted bids and offers are the ones lying towards the

left-hand side of the intersection, i.e. cheaper offers and
more expensive bids than the clearing price.

2.2. Price Impact

Price impact is an important characteristic associated
with large market participants, such as large EV aggre-
gators, bidding individually or as a cooperating group.
In case of large buyers, their bids will significantly con-
tribute towards the aggregated demand curve, and hence
will impact the clearing price by pushing it up. In the
power systems literature, residual demand techniques
have been widely employed to quantify and study price
impact, especially in day-ahead markets, and we de-
scribe the mathematical framework below.

Following standard notation from [19], for any given
hour t, let Dt(p) and S t(p) be the aggregated demand
and supply curves respectively, as a function of price,
p. Consider a new agent participating in the market as a
buyer. The residual supply curve is defined as:

Rt(p) = S t(p) − Dt(p) = E

and represents the amount of energy, E, the new agent
can bid for while maintaining a clearing price p. With-
out loss of generality, we assume that the agent’s bids
are set at maximum price, pmax, to guarantee execution.

More relevant here is the clearing price when request-
ing a quantity E, which can be obtained from the resid-
ual supply curve p = R−1

t (E). Introducing the notation
Pt(E) = R−1

t (E), the clearing price when the new agent
bids an amount E is:

p = Pt(E)

and the price impact ∆p of this order is:

∆p = Pt(E) − Pt(0)

where Pt(0) represents the base price at hour t, i.e. the
price without the agent’s new bid. This formalism is
depicted in Figures 1b and 1c.

Focusing on EVs, a single EV will have a negligi-
ble price impact, but for an aggregator managing a large
number of EVs, the combined capacity of their batter-
ies gets sufficiently large to have a non-negligible im-
pact on the market. Due to the high degree of flexibility
characteristic of EVs, there is ample room for coordi-
nation which will result in lowered costs and better grid
functioning, which motivates the need for efficient en-
ergy buying algorithms under the price-maker approach
considered in this paper.
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Figure 1: (a) Aggregated supply and demand curves, and market clearing mechanism. (b) Price impact of a buy order with volume E and maximum
price pmax. (c) Final price function P(E) for a volume range up to 10 MWh. Source: OMIE, 01/11/2016, 11th hour.

2.3. EV Aggregator Model
An EV aggregator is the entity in charge of coordinat-
ing fleets of EVs as described below. Specifically, their
main purpose is to manage the charging of a number
of EVs which use its services, acting as an intermedi-
ary between the fleet of EVs and the day-ahead elec-
tricity market, in order to minimize costs for itself and
its customers/members [13, 20, 9, 17]. Examples of EV
aggregators range from a private car park, to a residen-
tial micro-grid or a virtual cooperative with no physical
proximity.

In our model, on arrival, each EV driver will input
her requirements in the form of a departure time ti

d, and
a desired state of charge SoCi

d at departure time. It is
assumed that the aggregator can automatically record
the arrival time ti

0, the state of charge at arrival time
SoCi

0, and the battery size, SoCi
total. Based on this in-

formation, the aggregator will make scheduling deci-
sions, guaranteeing the desired SoCd at departure time
ti
d

2. The possibility to charge the EV’s battery in an
informed way (rather than immediately at arrival time,
or randomly when charging resources are available) will
result in cheaper charging costs which ultimately means
cheaper tariffs for the EV drivers and/or increased profit
for the aggregator. Each EV has a maximum charging
speed, Pi

max, in kW. This charging speed will depend on
two factors: the available physical infrastructure (elec-
tricity grid) and the battery of each particular EV. With-
out loss of generality, we will assume that all EVs have
the same charging speed, Pi

max = Pmax. Note that the
proposed bidding algorithm can be easily generalised to
accommodate different charging speeds, which would
have little impact in the results presented in Section 4.
Lastly, in order to convert from quantity charged at hour

2We assume that the input requirements are feasible.

t to charging speed, E = P∆t, we employ the length of
one time step, ∆t = 1 hour.

Due to the nature of the day-ahead market, in which
bids need to be submitted a number of hours prior to
actual delivery time, bidding is based on several fore-
casts, including EV requirements and electricity prices,
as detailed in the next section.

2.4. Forecasting of Energy Requirements

As day-ahead markets close around 12h prior to elec-
tricity delivery time, the EV aggregator needs to fore-
cast its electricity requirements 12 to 36h in advance.
The amount of purchased electricity needs to be enough
to satisfy its clients’ needs, at the cheapest possible
price. Energy requirements are defined in a similar fash-
ion as in [13, 14].

In more detail, the requirements of each EV driver,
as described in the Section 2.3, translate into two re-
quirement vectors, rmin,i and rmax,i, each with 24 entries.
Specifically, rmin,i

t is the amount of energy needed at
hour t assuming charging has been left for the last pos-
sible moment and that the charging requirements need
to be fulfilled. Conversely, rmax,i

t is the amount of en-
ergy needed at hour t assuming charging starts as soon
as possible. For example, consider an EV arriving at
the EV aggregator at 3pm and stating 9pm departure
time and 8kWh charging needs with Pmax = 3kW. Then,
rmin,i would be as specified in Table 1. Specifically,
charging can happen at any time, at a maximum rate
of Pmax = 3kW, but if 6pm is reached with no charg-
ing done, at least 2kW of energy needs to be charged
between 6-7pm in order to fulfil the EV driver require-
ments. The same applies with 3kW between 7-8pm and
8-9pm. Similarly, for the same scenario, the require-
ment vector rmax,i would be as specified in Table 2.
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rmin,i
3 rmin,i

4 rmin,i
5 rmin,i

6 rmin,i
7 rmin,i

8 rmin,i
9

0 0 0 2 3 3 0
Table 1: Example of requirement vector rmin,i

rmax,i
3 rmax,i

4 rmax,i
5 rmax,i

6 rmax,i
7 rmax,i

8 rmax,i
9

3 3 2 0 0 0 0
Table 2: Example of requirement vector rmax,i

Then, two global energy requirement vectors, Rmin

and Rmax, can be obtained by adding together the hourly
requirements of all the aggregated EVs, i.e. Rmin

t =∑N
i=1 rmin,i

t and Rmax
t =

∑N
i=1 rmax,i

t .
In order to make informed bids in the day-ahead mar-

ket, several quantities need to be forecasted by the EV
aggregator, which are denoted by placing a hat over the
variable name: hourly energy requirements, R̂min

t and
R̂max

t , hourly number of available plugged-in EVs, N̂t,
and hourly price impact functions, P̂t.

Considering advanced forecasting is outside of the
scope of this paper and simple forecasting is employed
henceforth. Specifically, we consider two different fore-
casting approaches: a naive method, in which historical
data from the day before is the forecast for the day af-
ter, and a perfect forecast, in which exact next day in-
formation is available [13, 17]. Furthermore, as shown
in Section 4, forecasting is not essential for the correct
working of our algorithms, apart from when considering
very small fleet sizes.

2.5. Price-Maker Day-Ahead Bidding Algorithm

Now that the characteristics of the day-ahead market
and the role of the EV aggregator have been defined, we
proceed to detail our proposed price-maker day-ahead
bidding algorithm. This algorithm is an extension of the
optimisation algorithm proposed in [13], using residual
supply curves to account for the price impact of the EV
aggregator’s energy bids.

The exact problem is as follows. Given an EV ag-
gregator with capacity for N EVs participating in the
day-ahead market, find the optimal distribution of en-
ergy quantities to bid across the 24 hourly slots of the
next day, {E0, . . . , E23}, in order to satisfy its clients’
charging needs while minimising the total cost of the
purchased energy. We assume that the agent’s bids are
set at maximum price, pmax, in order to guarantee exe-
cution.

Formally, the proposed optimization problem is de-
fined as follows:

min
{Et}

∑
t

P̂t(Et) · Et (1)

t∑
j=0

E j ≥

t∑
j=0

R̂min
j , ∀t = 0, . . . , 23 (2a)

t∑
j=0

E j ≤

t∑
j=0

R̂max
j , ∀t = 0, . . . , 23 (2b)

Et/∆t ≤ N̂tPmax , ∀t = 0, . . . , 23 (2c)

In more detail, the objective function (1) minimizes
the total cost of the purchased energy. As explained in
Sections 2.2 and 2.4, P̂t(Et) is the forecasted price at
hour t if the EV aggregator bids a quantity Et. The con-
straints guarantee that the amount of purchased energy
is enough to satisfy the forecasted demand (2a), that it
is not purchased before the forecasted arrival of the EVs
(2b) and that the energy purchased at each hour is not
greater than the amount that the aggregator is able to
charge at the given hour, based on the forecasted num-
ber of available vehicles (the aggregator cannot store en-
ergy). It is worth noting that the number of constraints
is always 72, independent on the fleet size. In contrast
with the original algorithm without price impact, the
novel optimization problem given by Eqs. 1, 2a, 2b, 2c
is no longer linear, making the problem more complex
to solve.

Specifically, due to the arbitrary nature of real price
impact functions obtained from real market historical
data, the optimisation problem is non-convex and non-
linear. Moreover, it presents a complex optimisation
landscape with multiple local minima, which often pre-
vents solving algorithms from obtaining the global min-
imum. In this paper, we compare two different optimi-
sation approaches. First, we consider a basin-hopping
algorithm [21], which sequentially solves the optimisa-
tion problem with different initial guesses, choosing the
best solution. In addition, we consider an approximated
convex bidding algorithm in which any local minima is
actually the global minimum. The advantage of this for-
mulation is that the global minimum is guaranteed to be
found, which has attractive theoretical properties for the
coordination mechanism proposed in Section 3.

In detail, we approximate the price impact functions,
P̂t by fitting a convex quadratic curve, P̂convex

t = atE2
t +

btEt + P̂t(0), where all the coefficients at and bt are re-
stricted to be positive. This guarantees the convexity of
the optimisation problem, which in mathematical terms
takes the following form:

min
{Et}

∑
t

P̂convex
t (Et) · Et (3)
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t∑
j=0

E j ≥

t∑
j=0

R̂min
j , ∀t = 0, . . . , 23 (4a)

t∑
j=0

E j ≤

t∑
j=0

R̂max
j , ∀t = 0, . . . , 23 (4b)

Et/∆t ≤ N̂tPmax , ∀t = 0, . . . , 23 (4c)

This resulting optimisation problem is then convex,
where theoretical global optimality is guaranteed, and
can be readily solved with little computational burden
by using, for example, the SLSQP algorithm [22]. How-
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Figure 2: Real and approximated price impact curves, showing a good
(LHS) and a poor (RHS) approximation. Source: OMIE, 01/11/2016,
LHS: 3rd hour, RHS: 12th hour.

ever, this convex approximation introduces a deviation
from real data which will affect the accuracy of the so-
lution. The degree of deviation depends on the consid-
ered day and hour, ranging from small to considerable in
some cases, as shown in Figure 2. As shown in the case
study (Section 4.4.1), solving the original algorithm
with a SLSQP algorithm together with basin-hopping,
provides lower costs than solving the convex approxi-
mation introduced in this section. However, these cost
differences are small. We will henceforth refer to these
two formulations of the bidding algorithm as raw and
convex, respectively.

3. Inter-EV Aggregator Coordination

We are now ready to introduce the novel inter-EV ag-
gregator coordination mechanism. We propose the use
of an external entity, a third-party coordinator, which
incentivises the participating aggregators to truthfully
report their energy needs, and bids on their behalf in
the day-ahead market. Specifically, it proceeds in three
stages. Firstly, the individual requirements reported by
the EV aggregators are aggregated, and the coordina-
tor applies a bidding algorithm to obtain day-ahead en-
ergy in bulk for all the participants. Secondly, it dis-
tributes the obtained energy across the participants tak-
ing into account their individual constraints. Thirdly,

it computes payments in a way that promotes coopera-
tion, instead of speculation to increase personal benefit
in detriment of the other participants, by employing re-
sults from the field of mechanism design.

This proposed coordination mechanism is generic
and independent on the particular bidding algorithm
employed. However, the simple constraint formula-
tion and little computational burden characteristic of the
novel bidding algorithm introduced in Section 2 guaran-
tee linear scaling with number of participating aggrega-
tors and fleet size. It is also worth noting that, in order
to operationalise the coordination mechanism, there is
no need for any additional infrastructure; it suffices to
have a form of communication between each participat-
ing aggregator and the coordinator, such as an Internet
connection. We will now proceed to detail each of the
three stages, and the proposed implementation in prac-
tice.

3.1. Coordinated Bidding
In this first stage, the coordinator receives and combines
the requirements reported by each of the participants.
Let n be the number of EV aggregators, R̂min,i

t and R̂max,i
t

aggregator i’s forecasted energy requirements for hour t
, and N̂ i

t the number of available EVs from aggregator i,
as specified in Section 2.4. The combined requirements
of all the aggregators are then:

R̂min
t =

n∑
i=1

R̂min,i
t (5)

R̂max
t =

n∑
i=1

R̂max,i
t (6)

N̂t =

n∑
i=1

N̂ i
t (7)

To find the optimal global energy bids, the bidding
optimisation algorithm given by Eqs. 3, 4a, 4b, 4c can
be applied with constraints given by the combined re-
quirements (5), (6) and (7). This will result in obtaining
a global day-ahead energy volume Eglobal

t for each hour
t.

3.2. Hourly Energy Distribution
In the second stage, the purchased energy needs to
be distributed among the participating EV aggregators,
based on their reported requirements. In particular,
when employing the novel bidding algorithm from Sec-
tion 2.5, the energy distribution problem can be for-
mulated as follows. Letting Ei

t be the amount of en-
ergy allocated to EV aggregator i at time h, find Ei

t for
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t = 0, . . . , 23 and i = 1, . . . , n satisfying the following
constraints:

t∑
j=0

E j ≥

t∑
j=0

R̂min
j , ∀t = 0, . . . , 23; ∀i = 1, . . . , n (8a)

t∑
j=0

E j ≤

t∑
j=0

R̂max
j , ∀t = 0, . . . , 23; ∀i = 1, . . . , n (8b)

Ei
t/∆t ≤ N̂ i

t Pmax, ∀t = 0, . . . , 23; ∀i = 1, . . . , n (8c)
n∑

i=1

Ei
t = Eglobal

t , ∀t = 0, . . . , 23 (8d)

This is a so-called constraint satisfaction problem
(CSP), in which the allocation of the existing resources
that satisfies the imposed constraints needs to be found
[23, 24]. In more detail, Eqs. 8a, 8b, 8c ensure that each
EV aggregator has enough energy to satisfy its require-
ments (no more, no less) for each hour. Eq. 8d makes
sure the sums of the allocated hourly energies add up to
that available global energy.

Existence of a solution is guaranteed by definition of
the optimization problem, Eqs. 3, 4a, 4b, 4c. How-
ever, uniqueness is not guaranteed. For example, con-
sider the case with two EV aggregators who report the
same preferences to the coordinator; energy purchas-
ing will be spread along a number of different hours by
the bidding algorithm, and given that the two aggrega-
tors have the same requirements, hourly energy can be
distributed in an large number of ways, up to the Wh,
or the smallest energy unit considered in the system.
More precisely, if the coordinator’s non-zero bids are
E1 = 200 and E2 = 300, we could do an even distri-
bution E1

1 = E2
1 = 100 and E1

2 = E2
2 = 150, or any

other combination E1
1 = 100 + e ; E2

1 = 100 − e and
E1

2 = 150 − e ; E2
2 = 150 + e for each e ∈ [0, 100].

Nonetheless, every possible distribution is entirely valid
and will satisfy each EV aggregator’s reported require-
ments.

This distribution problem given by Eqs. 8a, 8b, 8c
and 8d grows linearly with the number of participat-
ing EV aggregators, n, being the number of constraints
72n + 24. With this particular choice of model con-
straints, given by the proposed bidding algorithm, com-
putation time scales linearly with the number of EV ag-
gregators and fleet size, and presents very little compu-
tational burden. This constraint problem can be adapted
to other bidding models by employing their require-
ments definition, and their constraints. However, the
performance and scalability will depend on the partic-
ular model considered.

3.3. Payment Distribution

So far, the coordinator bids in the day-ahead market
and distributes the energy to the individual EV aggre-
gators. The third stage decides how to compute pay-
ments appropriately, so that each aggregator pays an
appropriate price for the electricity it has obtained, and
strategical manipulation is prevented or minimised. We
propose using mechanisms from the Vickrey-Clarke-
Groves (VCG) family [25, Ch. 9] which incentivise co-
operation across the participating aggregators. In these
mechanisms, the payments reflect the marginal cost that
each EV aggregator incurs on the total overall cost.
However, in our experiments (discussed in Section 4)
we find that the typical VCG mechanism, known as
VCG with Clarke pivot payments [25] and henceforth
referred to here as pure VCG, results in too high pay-
ments in this setting. To alleviate this problem, we con-
sider two so-called redistribution mechanisms, which
attempt to redistribute some of the pure VCG payments
back to the aggregators. The three payment mechanisms
are detailed next.

3.3.1. Pure VCG
The VCG family of mechanisms are a classical ap-
proach from the field of mechanism design and have the
desirable property of being truthful under certain con-
ditions, which in our case means that reporting true re-
quirements will yield each aggregator the best benefit
and there is no rational incentive for cheating [18, 25].
This is essential, as otherwise participants could de-
velop strategies to cheat the system, by reporting false
preferences to the coordinator if a greater personal ben-
efit is foreseen. Now, VCG requires global optimality3

in order to guarantee truthfulness which, from the per-
spective of the EV aggregators, is achieved when using
the convex formulation of the proposed bidding algo-
rithm. It is worth noting that solving the convex ap-
proximated problem does not actually yield a globally
optimal solution to the bidding problem, due to the de-
viations produced by the approximation. However, both
the allocation and the payments are calculated based on
the approximated function, which EV aggregators are
unable to influence. Hence, they have no opportunity to
change the outcome to their benefit by being untruthful
about their requirements.

Formally, let R̂min = (R̂min
0 , . . . , R̂

min
23 ), R̂max =

(R̂max
0 , . . . , R̂

max
23 ) and N̂ = (N̂0, . . . , N̂23) be the vec-

tors of aggregated requirements. Let E(R̂, N̂) =

3More precisely, the allocation needs to be optimal in range [? ].
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(Eglobal
0 , . . . , Eglobal

23 ) = Eglobal be the energy sched-
ule provided by the bidding algorithm (3) with re-
quirements R̂min, R̂max and N̂ . Let Pconvex(E) =

(Pconvex
0 , . . . , Pconvex

23 ) = Pconvex be the forecasted clear-
ing prices using the convex approximation. Let P(E) =

(P0, . . . , P23) = P be the real hourly clearing prices af-
ter market closure. Then, the total aggregated forecasted
cost incurred by the coordinator is given by:

Costconvex(R̂min, R̂max, N̂) = E(R̂min, R̂max, N̂) ·

· Pconvex(E(R̂min, R̂max, N̂))

and the real total aggregated cost incurred by the coor-
dinator is given by:

Cost(R̂min, R̂max, N̂) = E(R̂min, R̂min, N̂) ·

· P(E(R̂min, R̂max, N̂))

Given the use of the convex approximation, in general
these two cost functions are not equal:

Cost(R̂min, R̂max, N̂) , Costconvex(R̂min, R̂max, N̂)

Furthermore, let R̂min
−i , R̂max

−i and N̂−i be the vectors of
requirements without the contribution from the i-th EV
aggregator. Then, the VCG payment of EV aggregator i
to the coordinator, pi, is given by:

pi = Costconvex(R̂min, R̂max, N̂)−

− Costconvex(R̂min
−i , R̂

max
−i , N̂−i) (9)

Note that, to compute VCG payments, in case of n
EV aggregators, the coordinator needs to compute the
optimal solution n + 1 times (once to compute the to-
tal costs when all EV aggregators are present, and then
once for each EV aggregator when they are removed
from the market). Fortunately, due to the scalability of
our bidding strategy, we can easily compute VCG pay-
ments for very large settings.

The VCG payments effectively mean that the price
paid by each participant reflects the impact that its re-
quirements have on the overall constraints, i.e. an ag-
gregator which reports more flexible requirements will
pay less than another with tighter constraints, which is
a very desirable property when considering fairness of
the payments. However, there are other properties to
consider. First, the question is whether the coordinator
will run into a deficit, meaning that the sum of money
received from the EV aggregators is insufficient to cover
the payments for the electricity incurred by the coordi-
nator. In order to maintain the desirable properties of
VCG mechanisms, i.e. truthfulness, the allocations and

payments received from the EV aggregators are based
on the estimated price impact curves. These estimated
are due to both the approximated convex function and
because it uses a predicted price curve. As a result, the
coordinator can, depending on the accuracy of the pre-
diction, incur a loss.

However, as shown in Section 4, we find that the pay-
ments are actually often too high, even higher than the
costs the EV aggregators would incur by not participat-
ing in the mechanism. Technically, the mechanism is
said to violate so-called individual rationality [25], also
known as the participation constraint (meaning EV ag-
gregators have no incentive to participate if given the
choice). Hence, to address this, we consider so-called
payment redistribution mechanisms which, in the case
of a not-for-profit coordinator, should ideally result in a
surplus close to zero.

3.3.2. VCG-Based Truthful Redistribution
In recent years, the problem of redistributing some or
all the surplus of pure VCG payments, while preserv-
ing truthfulness, has been extensively studied [26, 27].
Formally, given the payments defined by Eq. 9, the re-
distributed amount to participant i is given by:

ri =
1
n

min
(R̂min

i ,R̂
max
i ,N̂i)

VCG
[
(R̂min

i , R̂
max
i , N̂i),

, (R̂min
−i , R̂

min
−i , N̂−i)

]
=

1
n

VCG(R̂min
−i , R̂

min
−i , N̂−i)

where VCG() is the total VCG payment collected from
those reports, i.e.:

VCG(R̂min
−i , R̂

min
−i , N̂−i) =

n∑
j=1
j,i

[
Costconvex(R̂min

−i , R̂
min
−i , N̂−i)−

−Costconvex(R̂min
−i− j, R̂

max
−i− j, N̂−i− j)

]
This way, the total payment of each EV aggregator i is
given by:

pi =
[
Costconvex(R̂min, R̂max, N̂)−

−Costconvex(R̂min
−i , R̂

max
−i , N̂−i)

]
−

−
1
n

n∑
j=1
j,i

[
Costconvex(R̂min

−i , R̂
min
−i , N̂−i)−

Costconvex(R̂min
−i− j, R̂

max
−i− j, N̂−i− j)

]
(10)

Note that, for this redistribution mechanism, optimal
bids need to be computed in the order of n2 times,
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requiring significant additional computation. Further-
more, depending on the particular scenario, the redistri-
bution provided by this technique can range from full
to small proportions [27]. In our experiments (see Sec-
tion 4), we find that the redistribution is too large, so the
money paid by the aggregators is not enough to cover
the costs for their purchased energy, and the coordina-
tor incurs large losses. Therefore, we explore another
redistribution mechanism, which achieves zero surplus
and losses for the coordinator by sacrificing theoretical
truthfulness.

3.3.3. VCG-Based Proportional Redistribution
One such non-truthful redistribution mechanisms is
to redistribute the real monetary surplus among the
group of EV aggregators proportionally to their size.
This real monetary surplus is given by

∑n
i=1 pi −

Cost(R̂min, R̂max, N̂), the sum of all payments minus the
real cost of the energy paid by the coordinator to the
day-ahead market. In more detail, letting Ni be the vehi-
cle capacity of EV aggregator i, the resulting payments
are given by a two-stage algorithm, in which first VCG
payments are computed, p1

i , and then the proportional
redistribution takes place, providing the final payments
assigned to each aggregator, p2

i . Specifically:

p1
i = Costconvex(R̂min, R̂max, N̂)−Costconvex(R̂min

−i , R̂
min
−i , N̂−i)

p2
i = p1

i −
Ni∑n

j=1 N j

 n∑
j=1

p1
j − Cost(R̂min, R̂max, N̂)

 (11)

It is worth noting that, in contrast to the redistribu-
tion approach discussed in Section 3.3.2, this payment
mechanism scales linearly with the number of partici-
pating EV aggregators. The loss of truthfulness means
that strategic misreporting of requirements by an EV
aggregator to the coordinator could improve an aggre-
gator’s performance. For example, it could be the case
that misreporting less flexible energy requirements, re-
sulting in earlier energy allocation at a more expensive
price, provides the aggregator with earlier energy while
the cost excess will be partially absorbed by other ag-
gregators. In practise, however, the bulk of each ag-
gregator’s payments are computed using VCG, which
is truthful. This means that the tighter the reported re-
quirements, the more expensive the payment gets, so
the room for manipulation is slim. Hence, in the case
study presented in Section 4, we assume aggregators are
truthful when using this mechanism. Analysis on the ex-
tent of strategic manipulation possible by this payment
mechanism is left for future work.

3.4. The Coordination Mechanism in Practice
Now that the three stages of the coordination mecha-
nism have been described, we proceed to discuss how it
could be implemented in practice. As noted earlier, the
coordination mechanism does not need any additional
infrastructure, relying only on the aggregator’s existing
electrical infrastructure and an Internet connection. In
more detail, the proposed implementation of the three-
stage coordination mechanism works as follows:

1. Coordinated bidding: the participating EV aggre-
gators securely and privately submit their electric-
ity requirements to the coordinator over the Inter-
net. Given the low computational cost of the pro-
posed bidding algorithm and coordination mecha-
nism, the coordinator is then able to use a standard
computer to calculate the optimal bidding sched-
ule, as shown in Section 3.1. The bids are submit-
ted to the day-ahead market online.

2. Hourly energy distribution: once the market is
cleared and an electricity schedule has been al-
located to the coordinator, the hourly energy dis-
tribution algorithm detailed in Section 3.2 can be
applied, using the same standard computer. En-
ergy delivery to the aggregators is then managed
by the distribution system operator (DSO) [13] in
the same way as in the individual bidding case.

3. Payment distribution: payments are computed by
the coordinator (see Section 3.3), and reported to
the participating aggregators, which can then read-
ily process them online.

By using this simple implementation, which requires no
infrastructure investment, an EV aggregator can seam-
lessly transition from individual to cooperative opera-
tion. Similarly, the role of the coordinator can be easily
assumed by any trusted third-party, such as a govern-
ment agency or a private company.

4. Case Study

This section describes a case study based on real data4,
in order to test the performance of the bidding strategy,
and the coordination and payment mechanisms intro-
duced in Sections 2 and 3, respectively. We will de-
scribe the simulation characteristics first, detailing the
considered EV aggregators, market data and real driver
behavioural data. Then, the results concerning the per-
formance of the proposed algorithms are presented and
described.

4All data supporting this case study are publicly available at [28].
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4.1. EV Aggregator Characteristics

This case study considers a night-time residential sce-
nario in which EVs arrive in the evening and need to
be charged by the next morning. With respect to the
EV fleet, we consider medium-sizes electric vehicles
with battery capacities of 24kWh [29, 20]. Charging
speed is considered to be the same for all EVs and set
to Pmax = 3.7kW [20, 13]. Charging efficiency is con-
sidered to be 90%, meaning that 10% of the consumed
electricity is lost and does not contribute to the charging
of the battery [30, 31].

The considered fleet sizes range from 100 000 to
3 000 000 EVs. These values correspond to EV pene-
tration rates of 0.27% and 8.14% in the Iberian Penin-
sula, whose electricity market is considered in the sim-
ulations. Note that European targets for EV penetration
include, for example, 10% in the UK by 2020 [5].

4.2. Day-Ahead Market Data

Real market data from the Iberian day-ahead market,
OMIE, is employed in the simulations [32]. Detailed
order data is available online, containing hourly supply
and demand data down to individual order level. All
simulations utilize OMIE weekday market data from
November and December 2016, and January and Febru-
ary 2017. Weekends are removed in order to eliminate
weekly seasonality [19].

Residual supply curves are employed to build price
impact functions as described in Section 2.2. In or-
der to obtain the convex approximation of price impact
functions described in Section 2.5, we proceed as fol-
lows. The interval 0-10 GWh is discretised in 50 equally
spaced points, and the clearing price at each point is
computed. Then, the corresponding quantity-clearing
price pairs can be interpolated by using a quadratic
curve as described in Section 2.5. A more detailed de-
scription about the pre-processing of the historical mar-
ket data can be found in Appendix A.

4.3. Driver Behavioural Data

To model the behaviour of the EVs in our simula-
tions, real data from the Spanish driver behaviour sur-
vey MOVILIA [33] is employed. This survey studies a
plethora of driving patterns, among which are the aver-
age number of daily commutes, length and time of this
trips, etc. Specifically, driver behaviour for our simu-
lations is based on [34], which provides a convenient
analysis of MOVILIA data which determines the dis-
tribution of times for the first and last trip from and to
home. These distributions are given in Tables 3 and 4.
To account for driver mobility, each EV will make use

of the aggregator’s services with 80% probability every
day.

With respect to energy requirements, the state
of charge of an EV at arrival and departure
times is drawn from a uniform distribution as fol-
lows: SoC0 ∈ [SoCtotal/4,SoCtotal/2] and SoC f ∈

[2 · SoCtotal/3,SoCtotal]. Consequently, the EV charg-
ing requirements range between a large percentage of
the battery (up to 75%), to a small percentage (down
to 16%), accounting for long and short trips home, a
choice consistent with the literature [30].

Time 19h 20h 21h 22h 23h
Probability 0.16 0.25 0.32 0.12 0.15

Table 3: Possible arrival times rounded to the nearest hour, with their
respective probabilities.

Time 6h 7h 8h 9h 10h
Probability 0.04 0.02 0.34 0.5 0.1

Table 4: Possible departure times rounded to the nearest hour, with
their respective probabilities.

The results from the simulations are described next,
starting with the performance of the bidding algorithm
proposed in Section 2 and then looking at the coordina-
tion mechanism proposed in Section 3.

4.4. Results: Performance of the Bidding Algorithm

In this section we first compare the two formulations
of the novel price-maker day-ahead bidding algorithm
proposed in Section 2, namely the raw problem with
basin-hopping, and the convex approximation. Our ex-
periments confirm the appropriateness of the convex ap-
proximation, and hence we focus on this bidding strat-
egy in subsequent experiments. Then, the algorithm’s
performance is assessed by direct comparison with two
existing algorithms, in the nigh-time residential sce-
nario detailed in Section 4.1.

4.4.1. Comparing the Raw and Convex Formulations
We now compare the performance of the two formula-
tions of our proposed bidding algorithm: the raw for-
mulation given by Eqs. 1, 2a, 2b, 2c and the convex
approximation given by Eqs. 3, 4a, 4b, 4c. Both for-
mulations are solved using the Sequental Least Squares
Programming (SLSQP) algorithm for solving quadratic
programmes, and we used the implementation from
[35]. In the raw case, we present two separate results,
by solving the optimisation problems with and without
employing a basin-hopping algorithm (see Section 2.5).
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In both cases, the initial guess is set to the optimal so-
lution provided by the algorithm without price impact
(which has a linear objective and can easily be solved
optimally [13]).

Specifically, we present a comparison of EV aggre-
gators of different sizes employing both formulations
and the naive forecasting technique, during four months
of day-ahead trading, as specified in Section 4.2. The
results are shown in Figure 4a. As seen for small
EV fleet sizes, both formulations achieve very simi-
lar results. However, as the price impact of the EV
aggregator grows, the raw formulation without basin-
hopping struggles to find the global minimum, result-
ing in worse solutions than the convex approximation.
The raw formulation with basin-hopping explores the
solution space and consistently achieves better solutions
than the convex approximation. However, these cost
differences are very small. This slight performance loss
justifies employing the convex approximation in order
to make use of its desirable theoretical properties for
the VCG mechanism. Thus, we will focus on the con-
vex formulation of the bidding algorithm from now on.

4.4.2. Comparison with Benchmark Algorithms
We now compare the proposed bidding algorithm using
convex approximation with two existing bidding algo-
rithms. The first of these algorithms is a simple zero-
intelligence, dumb, algorithm which acts as a lower per-
formance bound and simply charges each EV as soon
as it becomes available, without any further considera-
tion to future prices or requirements [13, 34]. The sec-
ond is the price-taker algorithm proposed by [13], which
inspired our proposed price-maker algorithm. We will
henceforth refer to these strategies as dumb and noPI
respectively, and to our strategy with price impact as PI.
Moreover, depending on the employed forecast, naive or
perfect (see Section 2.4), we will refer to the PI strategy
as PI naive and PI perfect.

To demonstrate the behaviour of each algorithm, an
example of the bidding decisions of the three com-
pared strategies for a given day is presented in Figure 3.
Here, we consider an EV aggregator managing a fleet
of one million EVs, corresponding to an EV penetra-
tion of 2.71% in the Iberian Peninsula. For this mag-
nitude of EV penetration, price impact is already very
pronounced and plays an essential role in the bidding
process. Figure 3 provides important insight into the
behaviour of each of the three strategies. Specifically,
the dumb strategy forecasts that EVs come home in the
evening and tries to charge their batteries as soon as they
are available. At this time of the day, prices are highest
and large orders from the EV aggregator push them even

higher. The second strategy, noPI, is able to take advan-
tage of the fact that EVs stay idle during the night and
only need to be charged by the morning. By forecast-
ing the EV requirements as explained in Section 2.4, it
obtains the bidding schedule that provides the cheapest
hourly prices. However, by neglecting price impact, the
bids are mainly concentrated in three hours, and price
impact is high. Lastly, our proposed strategy is able
to mitigate price impact by spreading its bids in time,
achieving lower costs.

Next, we consider the average results over the entire
four-month time period. Specifically, we compare the
average daily payments per EV for each strategy as we
vary the size of the EV fleet. Results are shown in Fig-
ure 4b. In more detail, the dumb bidding strategy pro-
vides the highest payments, due to its inability to con-
sider hourly electricity prices. The results of the noPI
and PI strategies are comparable when the size of the
EV fleet is moderate, but as the fleet gets larger, the
noPI strategy incurs significantly increased payments,
approaching the results from the dumb strategy for large
fleets. In contrast, the PI strategy is able to maintain
a sub-linear payment increase as the fleet grows, pro-
viding consistent payment reduction. In more detail,
the payment reduction percentage between noPI and PI
strategies is shown in Figure 4c. We can see that, once
the price impact of the EV fleet becomes appreciable,
with a size of around 500 000 vehicles, the improve-
ment percentage grows linearly with fleet size, achiev-
ing around 10% improvement for EV penetration values
around 8%, and higher percentages for larger fleets.

Also, it is important to note the performance differ-
ence between the perfect and the naive forecasts (see
Section 2.4). The average payment improvement com-
paring the results of the proposed strategy with price im-
pact with perfect and naive forecasts is around 2%. The
importance of the forecasting technique is more crucial
for small fleet sizes, where a poor forecast can cause
the PI strategy to perform slightly worse than the noPI
one. This is due to the PI strategy spreading bidding
to hours with forecasted mid-range prices which, with
a poor forecast, can have high prices in reality. In con-
trast, when employing the perfect forecast, the PI strat-
egy consistently outperforms noPI.

4.5. Performance of the Coordination Mechanism
In this section we consider the setting where a num-
ber of self-interested and independent EV aggregators
participate in the same day-ahead market, as described
in Section 4.1. To this end, we compare the setting
with uncoordinated bidding, where each EV aggregator
does independent bidding based on past historical data,
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Figure 3: Comparison of the three bidding strategies for a single day: dumb, without price impact and with price impact for the same scenario
where the aggregators manage one million EVs. Curves represent hourly prices, both with and without the EV aggregator bids, and correspond to
the LHS axis. Bars represent the amount of energy purchased at each hourly slot by the EV aggregator and correspond to the RHS axis. Market
data corresponds to OMIE, 09-10/11/2016.
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Figure 4: (a) Average daily payments per EV, for both bidding algorithm formulations and for different EV aggregator sizes, employing perfect
forecasts. (b) Average daily payments per EV, for each different bidding strategy and for different EV aggregator sizes. Both with naive and perfect
forecasts. (c) Percentage payment reduction when using the novel algorithm with price impact, compared to its counterpart without price impact.

0.46

0.48

0.5

0.52

0.54

3 4 5 6 7 8 9

0.1

0.2

0.3

Number of EV aggregators
(150 000 EVs per aggregator)

Av
er

ag
e

da
ily

pa
ym

en
t

pe
r

EV
(e

)

VCG
Uncoordinated
Coordinated

Truthful redist.

(a)

0

2

4

·104

3 4 5 6 7 8 9

-5

0

·105

Number of EV aggregators
(150 000 EVs per aggregator)

Av
er

ag
e

da
ily

co
or

di
na

to
r

su
rp

lu
s

(e
)

VCG
Proportional redist.

Truthful redist.

(b)

2 4 6 8 10 12 14 16 18 20

0

2

4

6

8

10

12

slope=

slope=

0.66

0.71

Number of EV aggregators
(150 000 EVs per aggregator)

%
pa

ym
en

t
re

du
ct

io
n

Perfect
Naive

(c)
Figure 5: (a) Average daily payments per EV when using a perfect forecast. (b) Average daily monetary surplus for the coordinator when using a
perfect forecast. (c) Percentage payment reduction when using the proportional redistribution mechanism w.r.t. uncoordinated bidding, using both
naive and perfect forecasts.

and coordinated bidding, where all the EV aggregators
participate in the coordination mechanism presented in
Section 3. Furthermore, for the coordinated setting, we

compare the three different payment mechanisms, i.e.,
the VCG mechanism (Eq. 9), the truthful redistribution
(Eq. 10) and proportional redistribution (Eq. 11).
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Specifically, Figures 5a and 5b show the average
EV payments and coordinator surplus respectively for
the various mechanisms. We can see that the VCG
payments are higher than the uncoordinated ones, and
hence the coordination mechanism with VCG payments
does not offer any advantage to the aggregators. Con-
versely, the coordination mechanism with truthful redis-
tribution generates too low payments, causing the co-
ordinator to incur very large monetary losses. These
results indicate the inappropriateness of these two pay-
ment mechanisms, which incur too large and too little
payments, respectively. At the same time, the propor-
tional redistribution mechanism demonstrates a signifi-
cant reduction in payments compared to the uncoordi-
nated setting.

Considering the proportional redistribution mecha-
nism in more detail, Figure 5c shows the average daily
payment improvement compared to uncoordinated bid-
ding, employing both the naive and perfect forecasts.
We can see that the payment reductions w.r.t. uncoor-
dinated bidding grow linearly with fleet size and num-
ber of participating EV aggregators. Again, when em-
ploying the naive forecast, and for small fleet sizes, the
coordination mechanism presents a very small perfor-
mance reduction when compared to uncoordinated bid-
ding. However, for around 8% EV penetration val-
ues (see last data points in Figure 5c), we already see
that the coordination mechanism achieves around a 10%
payment reduction.

5. Conclusion and Discussion

This paper introduces a novel inter-EV aggregator coor-
dination mechanism which allows cooperation among
groups of self-interested aggregators bidding in the
same day-ahead market. The mechanism incentivises
the participating EV aggregators to truthfully report
their energy requirements to a third-party coordinator,
which is then able to employ a bidding algorithm to
bid on their behalf. The purchased energy and the cor-
responding payments are then distributed among the
participants. Techniques from mechanism design are
employed to determine each aggregator’s payment, in
a way that cooperation rather than strategic manipula-
tion is encouraged. To this end, three different payment
mechanisms are proposed.

In addition, to ensure scalability whilst taking into
consideration price impact, a novel price-maker day-
ahead bidding algorithm is proposed. This is formu-
lated in terms of convex non-linear optimisation prob-
lem with simple constraints, presenting very little com-
putational burden and scaling to very large fleet sizes.

By employing this bidding algorithm, the proposed co-
ordination mechanism scales linearly with fleet size and
number of participating aggregators, making it suitable
for arbitrary large systems.

The performance of both the coordination and the
bidding algorithms is assessed in a case study which
uses real market and driver data from the Iberian Penin-
sula. Results indicate that the coordination mechanism
(employing the proposed bidding algorithm) achieves
substantial cost reductions, which grow linearly with
fleet size and the number of participating EV aggrega-
tors. Specifically, the coordination mechanism achieves
around 10% cost reduction for a scenario with around
8% EV penetration.

Lastly, it is worth noting that the proposed coordina-
tion mechanism can be adapted to consider participation
in different electricity markets, such as intra-day or an-
cillary services. Similarly to the day-ahead scenario, the
participants’ actions in this markets affect prices, and
benefits could be obtained from cooperation. A relevant
example can be found in a vehicle-to-grid (V2G) setup,
where the energy stored in the vehicles’ batteries can be
sold back to the grid in times of scarcity. V2G is seen as
one of the main ambitions in the EV literature, and the
application of our mechanism to this scenario is left for
future work.
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Appendix A. Historical Market Data

All European markets employ the EUPHEMIA [36]
clearing algorithm and allow different types of orders,
some with complex requirements. Roughly, the clear-
ing algorithm proceeds as follows. First, it aggregates
all the supply and demand orders and finds the intersec-
tion point. This determines the accepted orders, and a
preliminary clearing price. Secondly, the particularities
of the accepted orders are taken into account, which ef-
fectively shifts the previously obtained clearing price,
determining the final hourly price.

The historical data available from OMIE has two
types of data. Firstly, the offered orders coming from all
market participants for every hour and day of the year,
corresponding to the first stage as defined above. Sec-
ondly, the matched accepted orders resulting from the
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second stage of the clearing algorithm. An example of
these two types of data is presented in Figure A.6a.

The procedure employed to obtain base prices and
price impact functions in the case study (see Section 4)
is as follows. Firstly, for each considered day and hour,
the matched orders are aggregated together to build sup-
ply and demand curves and to determine the clearing
price. This clearing price corresponds to the real hourly
price. Secondly, in order to consider the price impact
of the exogenous buy orders from our EV aggregators,
we look at the unaccepted supply orders. Specifically,
the unaccepted tail of the offered supply curve is ap-
pended to the intersection of the matched curves de-
scribed above, as shown in Figure A.6b. Then, the bids
from the external aggregators can be integrated in the
extended supply and demand curves, and the intersec-
tion of the two will determine the final clearing price
with the aggregators’ bids.

0 1 2 3 4 5 6
·104

0

50

100

150

Clearing
price

Volume (MWh)

Pr
ic

e
(e

/
M

W
h)

Raw orders
Matched

(a)

0 1 2 3 4 5 6
·104

0

50

100

150

Rejected
supply orders

Volume (MWh)

Pr
ic

e
(e

/
M

W
h)

Raw
Extended

(b)
Figure A.6: (a) Raw and matched market orders, together with
the hourly clearing price. (b) Appending the rejected supply or-
ders (dashed) to the accepted matched supply curve (solid). Source:
OMIE, 02/11/2016, 11th hour.
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